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Abstract:

The structure of wavefunctions of quantum systems strongly depends on the un-
derlying classical dynamics. In this text a selection of articles on eigenfunctions
in systems with fully chaotic dynamics and systems with a mixed phase space is
summarized. Of particular interest are statistical properties like amplitude distri-
bution and spatial autocorrelation function and the implication of eigenfunction
structures on transport properties. For systems with a mixed phase space the
separation into regular and chaotic states does not always hold away from the
semiclassical limit, such that chaotic states may completely penetrate into the
region of the regular island. The consequences of this flooding are discussed and
universal aspects highlighted.
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1 Introduction

This text contains a selection of articles on the structure of eigenfunctions in
quantum systems whose classical dynamics is either fully chaotic or shows a mixed
phase space. After a brief introduction on classical chaos the main results of the
articles in the appendix are summarized and put into perspective.

Chaotic behaviour in dynamical systems is a phenomenon which has been
studied in great detail. As quantum mechanics is the more fundamental descrip-
tion of nature, one would like to understand the properties of quantum systems
whose corresponding classical dynamics is chaotic [1-6]. For investigating this
subject billiards are a particularly suited class of systems because many rigorous
mathematical results exist, see e.g. [7]. In the Euclidean case a billiard system is
given by the free motion of a point particle inside a bounded domain 2. At the
boundary the particle is reflected specularly, i.e. angle of incidence and angle of
reflection coincide. So it is only the boundary which determines the dynamical
behaviour of the system which can range from integrable, over mixed to com-
pletely chaotic motion. Fig. 1 shows 100 successive reflections of one trajectory
for different integrable and chaotic systems. For the integrable case there is an-

(c)

(d) (f)

Figure 1: For different billiards 100 successive reflections of one orbit are
shown. The regular dynamics for the billiard in the (a) circle, (b) square
and (c) ellipse is in contrast to chaotic dynamics for the (d) Sinai billiard,
(e) stadium billiard and (f) cardioid billiard.



other conserved quantity besides the energy; e.g. for the billiard in a circle this
is the angular momentum such that the motion is confined to a two-dimensional
manifold in phase space.

However, in general no such additional constants of motion exist and the
resulting dynamics is much more complicated. For certain billiards it is possible
to prove that they are fully chaotic, i.e., they are ergodic, mixing and K—systems.
Ergodicity means that spatial and temporal averages agree. Considering the
trajectory (Pip,.q,)(t)s A(py.q,)(t)) Of a particle started in the point (py, q), the
probability to find it in a certain region D in position space is given by

Jim [ X0, 0) dt = 228 0

for almost all initial conditions (p,, q,), where xp is the characteristic function
of D. Thus in ergodic systems the probability to find the particle inside D is just
the relative area of that region. Therefore a typical trajectory will asymptotically
fill out the accessible space in a uniform way. This is nicely seen in Fig. 1(d-f) for
the Sinai billiard [8,9], the stadium billiard [10,11], and the cardioid billiard [12-
14]. The origin of ergodicity in these systems is hyperbolicity, which means that
initially infinitesimally close trajectories separate exponentially in time. Usually
hyperbolic billiards are also mixing, i.e. correlations decay and appear as random
as a coin-toss (K —property, Bernoulli property) [15-17]. Because of these rigorous
results, chaotic billiards are an important class of model systems to investigate
the implications of classical chaos in the corresponding quantum systems.

2 Chaos in quantum systems

While classical mechanics describes macroscopic objects correctly, at small scales
a quantum mechanical description is necessary. Due to the Heisenberg uncer-
tainty principle it is no longer possible to specify both position and momentum of
a particle at the same time. Therefore, instead of considering the time-evolution,
one of the main research lines in quantum chaos concerns the statistical proper-
ties of eigenfunctions and energy levels, in particular in which way they depend
on the underlying classical dynamics.

Quantum mechanically, billiards are described by the stationary Schrodinger



equation (in units h = 2m = 1)

_Awn(q) = En¢n(q) , g€ (2)

with e.g. Dirichlet boundary conditions v,(q) = 0 for g € 092. Here A denotes
the Laplace operator, which reads in two dimensions A = (aa—:% + aa—;g) The
mathematical problem defined by Eq. (2) is the well-known eigenvalue problem
of the Helmholtz equation, which for example also describes the eigenfrequencies
of a vibrating membrane or of flat microwave cavities [4].

For some simple domains (2 it is possible to solve Eq. (2) analytically. For the
billiard in a rectangle with sides a and b the (non—normalized) eigenfunctions are
given by ¥, n,(q) = sin(mniqi/a)sin(mnage/b) with corresponding eigenvalues
Epymy = 72(n?/a® + n2/b%) and (ny,ny) € N2 For the billiard in a circle the
eigenfunctions are given in polar coordinates by Y, (7, ©) = Jom (JmnT) exp(imyp),
where j,,, is the n—th zero of the Bessel function J,,(z) and m € Z, n € N.
However, in general no analytical solutions of Eq. (2) exist, so that numerical
methods have to be used to compute eigenvalues and eigenfunctions. Among
the many different possibilities, the boundary-integal method is widely used, see
e.g. [18-20] and [A4] for a review and further references.

2.1 Fully chaotic systems

One of the central questions in quantum chaos concerns the implications of the
underlying classical dynamical properties on the statistical behaviour of eigenval-
ues. It has been conjectured that for fully chaotic systems these are described
by the statistics of random matrices obeying appropriate symmetries [21]. For
generic integrable systems one expects that the energy—level statistics can be de-
scribed by a Poissonian random process [22]. These conjectures are supported by
semiclassical considerations and many numerical studies. However, in both cases
exceptions are known: for example, so-called arithmetic systems (see e.g. [23-27])
show Poissonian spectral statistics despite being strongly chaotic. Also quantized
cat maps show non-generic spectral statistics [28,29]. Moreover, there are also
cases where a limit distribution of common spectral statistics does not exist [30].
In [31,32] the distribution of the normalized fluctuations of the spectral staircase
function around its mean has been proposed as a possible signature of quantum
chaos. It has been conjectured that the limit distribution should be Gaussian
for fully chaotic systems, while integrable systems should exhibit a non-Gaussian
limit distribution. This conjecture was tested successfully for several regular and



chaotic billiard systems, see [32-37].

The main tool for analyzing spectral statistics are trace formulae [2] which
relate quantum mechanical properties, like the density of states, with purely
classical information, involving the periodic orbits and their properties. By this
a semiclassial prediction for the spectral rigidity was derived using the diagonal
approximation [38]. By including correlations between certain pairs of periodic
orbits important progress was made recently to obtain higher order corrections for
the two-point correlations [39-41]. This has been applied and extended to more
general situations, leading to a semiclassical explanation of two-point spectral
statistics in fully chaotic systems [42,43].

Concerning the eigenfunctions of (2) one would expect that the classical dy-
namics is reflected by their structure. According to the semiclassical eigenfunc-
tion hypothesis the eigenstates should concentrate on those regions which a generic
orbit explores in the long—time limit [44-46,1]. For integrable systems the mo-
tion is restricted to invariant tori in phase space while for ergodic systems the
whole energy surface is filled in a uniform way. In the case of ergodic systems
the semiclassical eigenfunction hypothesis is proven by the quantum ergodicity
theorem [47-52] (see [53] for an introduction), which states that almost all eigen-
functions become equidistributed in the semiclassical limit. Restricted to position

n = 100 n = 1000 n = 1500 n = 2000

Figure 2: The eigenstates of (a) the integrable circular billiard and (b) the
chaotic cardioid billiard reflect the structure of the corresponding classical
dynamics. Shown is a density plot of |1, (q)|> where black corresponds to
high probability.
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space this gives
vol(D) (3)
vol(2)

lim [ [, ()] d*g =
D

for a subsequence {9} C {1, } of density one. A subsequence of eigenfunctions
has density one if limp_.oc #{n; | E,; < E}/#{n | E, < E} = 1. So in this sense
for almost all eigenfunctions the probability of finding a particle in a certain
region D of the position space €2 is in the semiclassical limit just the same as
for the classical system, see Eq. (1). Fig. 2 illustrates the described behaviour
qualitatively for the case of the integrable circular billiard and the chaotic cardioid
billiard. In both cases the eigenfunctions show oscillations on the scale of a
de Broglie wavelength. For the integrable system the probability is on average
restricted to subregions of the billiard. In contrast, for the ergodic system the
probability density is on average uniformly distributed over the full billiard region.

As a statistical model for the eigenfunctions of strongly chaotic systems it
has been proposed that they behave like a random superposition of plane waves
[45]. Heuristically, this is motivated by the underlying chaotic dynamics where
a typical trajectory gets close to every point in position space with apparently
random directions and random phases (corresponding to the length of trajectory
segments). In the two—dimensional Euclidean case the random superposition of
plane waves on a region £ C R? may be written as

N
Yrwm(g) = ﬁ Z an cos(kng + @) (4)
n=1

where a,, € R are assumed to be independent Gaussian random variables with
mean zero and variance one; ¢,, are equidistributed random variables on [0, 27].
The factor in front of the sum ensures that ¥gwn is normalized in the limit N —
0o. The momenta k, € R? satisfy |k,| = /E and are randomly equidistributed
on the circle of radius vE.

In Fig. 3 one realization of a random wave (4) is compared with a chaotic
eigenstate in the cardioid billiard. Locally, the eigenstate nicely resembles the
random wave (ignoring the symmetry of the eigenstate and boundary effects).
Going beyond this qualitative comparison, the random wave model can be used
to obtain quantitative predictions on the statistical behaviour of wave functions
in chaotic systems. One of the simplest consequence concerns the amplitude
distribution. Using the central-limit-theorem one directly obtains that random
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Figure 3: Example of a random wave (4) in comparison with the 6000
eigenfunction of the cardioid billiard (of odd symmetry). For this state one
observes excellent agreement of the amplitude distribution with the expected
Gaussian.

waves show a Gaussian value distribution,

1 )2
P() = S 5
)= e (-1 5)
where 02 = 1/ vol(Q2). This conjecture is supported by various numerical studies,
see e.g. [54-57]. For the example shown in Fig. 3 the numerical histogram of
the amplitude distribution is (on this scale) essentially indistinguishable from the
normal distribution.

While the behaviour of expectation values for almost all eigenfunctions is
proven by the quantum ergodicity theorem, a proof of the random wave model is
an open problem. Still, both seem closely related, as exceptional (in the sense of

12



Figure 4: Sequence of eigenfunctions in the cardioid billiard, 1809 to %1824
of odd symmetry.
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---- Gaussian
1 — eigenfunction
0.0 P 3.5

Figure 5: For the scarred state 14042 the amplitude distribution is clearly
different from the Gaussian normal distribution (dashed curve).

quantum ergodicity) sequences of eigenfunctions also do not follow the prediction
of the random wave model. One candidate are the so-called scars [58] which are
eigenfunctions concentrating around unstable periodic orbits, see Fig. 4. For such
eigenfunctions also the value distribution clearly differs from the Gaussian, see
Fig. 5. By a semiclassical description for the eigenfunctions [59,60] it should be
possible to use the position-space averaged density together with the restricted
random wave model [A1] (discussed in the following section) to obtain a prediction
for the observed amplitude distribution.

2.2 Systems with a mixed phase space

Systems with either regular or fully chaotic dynamics are extreme cases and
typically one has a so-called mixed phase space in which regular and chaotic
motion coexist [61]. The transition from the integrable case to mixed dynamics
under small perturbations of the system is described by KAM-theory due to
Kolmogorov [62], Arnold [64], and Moser [65] which roughly speaking states that
for small perturbations sufficiently irrational invariant tori will persist. At the
same time small stochastic regions develop, leading to a complicated structure in
phase space.

As an example let us consider the family of limagon billiards which was in-
troduced as a deformation of the circle billiard [66], with boundary in polar

14



Figure 6: Example of a system with a mixed phase space. Shown are several
regular orbits and one chaotic orbit in the Poincaré section of the limagon
billiard at € = 0.3. To the right two regular orbits and trajectories in the
surrounding are displayed in position space in comparison with a chaotic
trajectory.

coordinates given by p(¢) = 14 ¢ cos(¢), with ¢ € [—m, 7], where € € [0, 1] is the
family parameter. For e > 0 one gets a mixed phase space, where (some of) the
KAM curves persist until € = 0.5 [67,66,68]. For stronger perturbations regular
islands become very small. However, even arbitrarily close to the fully chaotic
cardioid at £ = 1 one can find tiny regular islands [69].

To visualize the dynamics in phase space, it is convenient to introduce the
billiard boundary as a Poincaré section. As coordinates one chooses the point
of reflection, described by the arc-length s along the billiard boundary, and the
projection of the unit-velocity vector after the reflection onto the tangent in s.
The billiard flow therefore induces a two-dimensional area-preserving map of the
Poincaré section onto itself. Fig. 6 illustrates this for the limacon billiard at
e = 0.3 which shows a large irregular component (‘“chaotic sea”) intermixed
with regular islands around stable periodic orbits. An important question on the
classical dynamics is, whether the irregular component has positive measure. For
a constructed example [70] and the mushroom billiard [71] this has been proven
rigorously, however, for general systems the problem remains open (see also [72]
for a review on this coexistence problem).

15



2.2.1 Structure of eigenfunctions

For systems with a mixed phase space, the semiclassical eigenfunction hypothesis
implies that the eigenstates can be classified in the semiclassical limit as either
regular or chaotic according to the phase-space region on which they concentrate.
This is supported by several studies, see e.g. [73-78] and references therein. Fig. 7
shows examples for the limacon billiard, where in addition to a three-dimensional
visualization of |¢,(q)|?> and a density plot also a quantum Poincaré-Husimi
representation is shown [A5]. For such a representation on the billiard boundary
a natural starting point is to use the normal derivative (see [79] for a study of its
properties) of the eigenfunction and project it onto a periodized coherent state.
However, as there is no natural Hilbert space for the boundary functions, different
definitions of the scalar-product are possible [80-82]. By relating the Husimi
function in phase space with the one on the Poincaré-Husimi representation it
is possible to show that a meaningful representation can already be obtained
without further terms in the scalar product [A5]. From the relation between
the Poincaré-Husimi functions and the Husimi function in phase space also a
quantum ergodicity theorem for the Poincaré—Husimi functions in the case of

ergodic systems follows.

The statistical properties of regular eigenstates in systems with a mixed phase
space will strongly depend on the island in which they concentrate and on the
characterizing quantum numbers of a semiclassical quantization rule, as can be
seen for the moments of semiclassical wavefunctions [83]. However, for the irreg-
ular eigenstates which are concentrated on an irregular region D in phase space
the statistical properties should be described by those of a superposition of plane
waves with wave vectors of the same lengths and directions distributed uniformly
on D. We thus obtain the following restricted random wave model [A1]

N

YrrwM,D(q) = 47T)N nz:; Xp(kn, q) cos(k,q+¢,) . (6)

vol(D

In contrast to the random wave model (4) for fully chaotic systems, the charac-
teristic function xp(-) ensures the localization on the irregular region D in phase
space. Because the projection of D onto position space is in general non-uniform,
we obtain locally a Gaussian distribution

Pu) — |5 ew (— 5 ) 7)

2mo?
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T

Figure 7: Eigenstates in a billiard with a mixed phase space typically either
concentrate in the regular islands, or extend over the chaotic region. This is
most clearly seen in the quantum Poincaré—Husimi representation displayed
in the last column for each case.

but with a position dependent variance o%(q). For an ergodic system o?(q) =
1/vol(€2) and one recovers the result (5) of a Gaussian amplitude distribution.
However, if 0%(q) depends on g then the corresponding distribution can show
deviations from the Gaussian. Fig. 8 shows such an example for which P(v) is
clearly different from the normal distribution and agrees well with the prediction

17
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Figure 8: High lying eigenfunction (E = 1002754.70. .., approximately the
130568 state) in the limagon billiard at € = 0.3. The amplitude distribution
clearly differs from a normal distribution (dashed curve) expected for fully
chaotic systems and is in good agreement with the prediction of the restricted
random wave model (RRWM).

of the restricted random wave model [Al]. Such non-isotropic random wave
models are also of importance in other situations, see e.g. [84-86].

While the amplitude distribution only provides a local measure of the statis-
tical properties of eigenfunctions, the spatial autocorrelation function

C(q,0q) := (¥(q — 6q/2)Y(q + 6q/2)) (8)

measures correlations over a longer range. The average (-) in Eq. (8) is performed
over the random wave ensemble; when numerically computing the autocorrelation
function of eigenfunctions an averaging over q, sometimes with an additional
spectral averaging, is used. For ergodic systems the eigenfunctions semiclassically
concentrate on the energy shell. This implies that C(q,dq) = ﬁ(ﬁ) Jo(WVE|éq))
[45], which has been tested successfully for small correlation lengths |dq|, see
e.g. [54,56,57,87,88|. For larger |dq| deviations become visible, which can be
shown to vanish in the semiclassical limit [A2].

For the spatial autocorrelation function of irregular eigenstates in systems
with a mixed phase space, one can, similar to the case of the amplitude distri-
bution, use information about the irregular component in phase space to obtain
a semiclassical prediction which is found to be in very good agreement with nu-
merical results [A2].

Another important aspect in systems with a mixed phase space are bifur-
cations of periodic orbits under parameter variation. These have a substantial

18



influence on spectral statistics [89-92] and also on the spatial autocorrelation
function [93].

In a typical mixed phase space stable periodic orbits are not just surrounded
by invariant KAM tori, but also by broken tori, the so-called cantori [94-98].
These provide partial barriers to the dynamics and may have an important influ-
ence both classically and quantum mechanically. For example, they are responsi-
ble for a sequence of hierarchical states [99] living in the chaotic component close
to the regular regions. Such states can significantly influence the scattering sig-
natures of a corresponding open system [A3]. Here the hierarchical states lead to
additional isolated resonances in the conductance fluctuations. By a comparison
with the eigenstates of the corresponding closed system it is possible to charac-
terize the isolated resonances as hierarchical or regular, depending on where the
corresponding eigenstates concentrate in the classical phase space.

2.2.2 Flooding of regular islands

The phase-space structure of systems with a mixed phase space is typically rather
complicated because regular islands are surrounded by higher-order islands which
continues to arbitrarily fine scales. The chaotic regions also contain regular is-
lands of arbitrarily small size. This makes a treatment and understanding very
difficult. One successful approach is to consider systems for which the dynamics
can be tuned in such a way that for example only one large regular island exists
in a mainly homogeneous chaotic sea [100]. This is possible for certain area-
preserving maps on a two-torus arising from a one-dimensional kicked Hamilto-
nian H(p,q,t) =T(p)+V(q) > .- __ 6(t —n). The dynamics is fully determined

n=—oo

by the mapping of position and momentum (p,,, ¢,) at times ¢ = n+ 07 just after
the kicks

gn+1 = (Qn _I'T/(pn) 5 (9)
Pny1 = Pn— V/(qn+1) . (10)

We impose periodicity for p € [0, 1] and g € [0, M|, where the usual case of one
unit cell corresponds to M = 1.

For such kicked systems, the quantum evolution of a state after one period
of time [¢(t + 1)) = UJy(t)) is determined by the unitary operator, see e.g.
[101,28,102-104],

0 = exp (—Z;V@)) exp (—fl”iT(ﬁ)) - (11)

19



Figure 9: Phase space structure of an area-preserving map with one large
regular island and a narrow transition region to a homogeneous chaotic sea.

Here the effective Planck’s constant h.g is Planck’s constant h divided by the
size of one unit cell. The eigenstates |¢;) and eigenphases ¢; of this operator are
defined by

Ulap;) = ™1 |y) (12)

To fulfill the periodicity of the classical dynamics in both p and ¢ direction the
effective Planck’s constant can only be a rational number h.g = %

Choosing the functions 7"(p) and V'(q) appropriately, one can obtain a system
with a large regular island and a homogeneous chaotic sea, see Fig. 9. The
resulting eigenstates can be classified as either irregular or regular. The irregular
states mainly live outside of the regular island, see Fig. 10. The regular states
concentrate on tori which fulfill the quantization condition

fpdq:(mﬂ/z)hcﬂ m=0,1,.. (13)

min

Figure 10: For M = 1 and heg = 1/30 the eigenstates are either mainly
regular (m = 0,1,...) or mainly chaotic.

20



for the enclosed area [101].

In Ref. [A6] it was shown that Eq. (13) is not a sufficient condition for the
existence of a regular eigenstate on the m-th quantized torus. In addition one
has to fulfill

1
Vm < ) 14
TH,ch ( )
where 7y, = heg/Aa, is the Heisenberg time of the surrounding chaotic sea

with mean level spacing Ay, and 7, is the decay rate of the m-th regular state,
if the chaotic sea was infinite. When condition (14) is violated one observes
eigenstates which extend over the chaotic region and flood the m-th torus [A6].
For the limiting case of complete flooding of all tori, the corresponding eigenstates
were called amphibious [100]. The process of flooding is most clearly seen by
considering a sequence of systems with fixed hqg but increasing Heisenberg time.
This is possible for the kicked maps by increasing M but still keeping the ratio
hegt = M/N approximately constant. As the classical dynamics and heg are
unchanged, also the tunneling rates are fixed. Because of 7, ~ M it is possible

regular, m =0

regular, m =1

A

average

.

— " _ a8 P

. ) i 5
o Al ..

3 - h P

. o o 2

© "' - o
P

’.-.'

Figure 11: For M = 1597 and heg = 1/20 only the regular states with m = 0
and m = 1 exist while the chaotic states flood into the phase space region
previously occupied by the regular states with m = 2 and m = 3.
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to violate condition (14) for sufficiently large M as illustrated in Fig. 11.

It is important to note that in the semiclassical limit, the tunneling rates ~,,
become exponentially small, i.e. the effective coupling v tends to 0, such that
for fixed system size condition (14) is fullfilled. Therefore the flooding of the
regular island observed at finite heg is not in contradiction to the semiclassical
eigenfunction hypothesis.

In Ref. [A6] the process of flooding and condition (14) was explained by scaling
arguments and demonstrated for a kicked system. In order to obtain a quanti-
tative description, in particular about the transition regime and the way how
chaotic eigenstates turn into flooding eigenstates a random matrix description is
used in Ref. [A8]. Random matrix models have been very successful for obtaining
quantitative predictions on eigenstates in both fully chaotic systems and systems
with a mixed phase space, see e.g. [73,105-107]. For the considered situation
a model is proposed which takes regular basis states and their coupling to the
chaotic basis states into account. The only free parameters are the strength of
the coupling and the ratio of the number of regular to the number of chaotic basis
states. From this model the weight distribution for eigenstates is determined. To
compare this with numerical results for the quantum system, we determine the
weight in the m-th regular state by projecting the eigenstates onto semiclassical
regular states [108]. By considering the fraction f,e, of regular states for different
values of h.g and system sizes M, plotted vs. the effective coupling v, a universal

NS
1.0 o DS IA A
/\

= freg; RMT model
O hetr ~ 1/10, m = 0
O het ~1/10, m =1
0.5 F& her ~1/30, m = 4
A heg ~ 1/30, m =5

0.0 L l““i“‘:‘r S

0.01 0.1 1 v 10

Figure 12: Fraction fies of regular states vs. coupling strength v for the
random matrix model (full line) and the kicked system for various heg and
m (symbols), where the system size M is rescaled to the effective coupling
strength v.
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behaviour is obtained (see Ref. [A6] for details), which is well described by the
prediction of the random matrix model, see Fig. 12.

In [A7] it is demonstrated that the implications of flooding can also be ob-
served in the transport properties of one-sided rough nano-wires in a magnetic
field. In such a system the regular island arises from the skipping motion along
the straight wall while trajectories which are reflected at the rough wall get back-
scattered in an irregular way. As a function of the length of the wire one observes
that the total transmission decreases in a sequence of steps. Each step corre-
sponds to the disappearance of a regular state until complete flooding occurs. At
the same time this effect leads to exponentially diverging localization lengths in
the semiclassical limit, which is unexpected from a random matrix description
for systems with disorder and only understandable by taking the mixed phase
geometry of the system into account.

3 Outlook

The results summarized in the previous section also lead to several new ques-
tions: For example, in [A6] the wave-packet dynamics in systems with flooding
is briefly addressed, but a detailed understanding and quantitative description of
the temporal flooding is currently under investigation [109]. For the statistical
proporties of both flooding states and time-evolved wave-packets it has to be
investigated, whether a restricted random wave type description [A2], adapted
to the case of quantum maps [110], applies. One of the future challenges is to
observe flooding experimentally. For this one possible candidate are the previ-
ously mentioned mushroom billiards, realized as a microwave cavity. For these
the Heisenberg time may be increased by enlarging the chaotic part of phase
space, such that the dissappearance of regular states might be observable in the
structure of resonances. Another important issue is the determination of tunnel-
ing rates, which is crucial for the existence criterion (14) for regular states. For a
certain class of quantized maps important progress was made recently [111-113],
while its extension to more general systems, in particular to billiards, is an open
question.
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Abstract

We study the amplitude distribution of irregular eigenfunctions in systems with
mixed classical phase space. For an appropriately restricted random wave
model, a theoretical prediction for the amplitude distribution is derived and
a good agreement with numerical computations for the family of limagon
billiards is found. The natural extension of our result to more general systems,
e.g. with a potential, is also discussed.

PACS numbers: 03.65.Sq, 02.50.Ey, 05.45.Mt

1. Introduction

The semiclassical behaviour of the eigenfunctions of a quantum mechanical system strongly
depends on the ergodic properties of the underlying classical system. The semiclassical
eigenfunction hypotheses [1, 2] state that the Wigner function of a semiclassical eigenstate
is concentrated on a region in phase space explored by a typical trajectory of the classical
system. In integrable systems the phase space is foliated into invariant tori, and the Wigner
functions of the quantum mechanical eigenfunctions tend to delta functions on these tori in the
semiclassical limit [3]. On the other hand, in an ergodic system almost all trajectories cover
the energy shell uniformly, and hence the Wigner functions of the eigenstates are expected to
become a delta function on the energy shell. That this actually happens for an ergodic system
for almost all eigenstates follows from the quantum ergodicity theorem, see [4-6] and [7, 8]
for billiards (the relation of the quantum ergodicity theorem with the semiclassical behaviour
of Wigner functions is explicitly derived for Hamiltonian systems in [9]). However, a generic
system is neither integrable nor ergodic [10], but has a mixed phase space in which regular
regions (e.g. islands around stable periodic orbits) and stochastic regions coexist. Whether
these numerically observed stochastic regions are ergodic and of positive measure is an open
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question, see [11] for a review on the coexistence problem. The eigenfunctions in mixed
systems are expected to be separated into regular and irregular eigenfunctions according to an
early conjecture by Percival [12] which has been numerically confirmed for several systems
(see e.g. [13-16]). In addition, at finite energies there is a small (semiclassically vanishing)
fraction of ‘hierarchical states’ which are of intermediate nature, and localize in regions
bounded by cantori [17].

Besides the localization properties of the Wigner function, the local amplitude fluctuations
of the eigenfunctions also strongly depend on the classical system, as has been pointed out in
[1, 18]. The basic idea is that an eigenfunction can be represented locally as a superposition
of de Broglie waves with wavelength determined by the energy and momenta distributed
according to the semiclassical limit of the Wigner function. In a chaotic system one therefore
expects an isotropic distribution of the momenta. If one additionally assumes that the phases
are randomly distributed, one obtains locally a Gaussian amplitude distribution of a typical
eigenfunction in a quantum mechanical system with chaotic classical limit. For instance, in
a chaotic billiard a Gaussian amplitude distribution is expected, and this has been confirmed
by several numerical studies (see e.g. [19-24]). Predictions of the random wave model on
the behaviour of the maxima of eigenfunctions have been derived and successfully tested
in [22, 25]. In mixed systems the situation is more complicated; for some studies on matrix
elements and eigenfunctionsin this case, see, for example [26-28]. In contrast, in an integrable
system the localization of the Wigner function on the invariant tori enforces a more coherent
superposition of the de Broglie waves, leading to a regular structure of the eigenfunction [1].

Our aim is to determine the amplitude distribution for irregular states in systems with
mixed classical dynamics. We assume that the motion on a stochastic region D in phase space
is ergodic and that the statistical properties of eigenfunctions can be described by a random
wave model restricted to D (see the following section for a precise definition). The derivation
shows that locally the fluctuations are Gaussian with a position-dependent variance which is
given by the classical probability density on position space defined by the ergodic density on D.
Thus the resulting amplitude distribution may be significantly different from a Gaussian. In
section 3 we compare the theoretical prediction of the restricted random wave model with
numerical computations.

2. Amplitude distribution for the restricted random wave model

In this section we consider a restricted random wave model for the two-dimensional Euclidean
quantum billiards in order to describe the statistical properties of irregular eigenfunctions in
systems with a mixed classical phase space. The quantum mechanical system is defined by
the Euclidean Laplacian on a compact domain  C R? with suitable boundary conditions on
the boundary 2. (Usually one chooses the Dirichlet conditions.) The quantum mechanical
eigenvalue problem is given by

AV (@) = E¥u(q) with  4,(q) =0 for qedQ (D

and we are interested in the behaviour of the eigenfunctions v, in the semiclassical limit
E, — oo.

The corresponding classical system is given by a free particle moving along straight lines
inside the billiard, making elastic reflections on the billiard boundary d<2. The phase space is
T*Q = R? x €, and the Hamiltonian is H (p, @) = |p|*. Since the Hamiltonian is scaled we
can restrict our attention to the equi-energyshell with energy £ = 1,

5*Qi={(p.q) e R* x Q; |p| = 1}. 2
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Introducing polar coordinates (r, ¢) for the momentum p, we can parametrize S*Q by
(p,q) € [0,2m) x Q2 where ¢ is the direction of the momentum. In these coordinates
the Liouville measure on $*<2 is given by

du = d¢ d’q 3)
which is invariant under the Hamiltonian flow on S*Q.

Now let D C S*Q2 be an open domain which is invariant under the classical flow, and on
which the flow is chaotic. The existence of such a domain where the flow is, for instance,
ergodic, is an open problem. But numerically one observes invariant domains on which the
flow is at least irregular in the sense that most orbits are unstable, and regular islands inside
this domain are very small. The uncertainty principle implies a finite quantum mechanical
resolution of phase space quantities at finite energies. Therefore at finite energies the small
islands of such an irregular domain are not resolved by the quantum system.

So we expect, in the spirit of [1], that the statistical properties of irregular eigenfunctions
associated with D can be described by those of a superposition of plane waves with wave
vectors of the same lengths and directions distributed uniformly on D. Furthermore if we
assume random phases, we arrive at the following restricted random wave model for real
valued functions, which is a superposition of plane waves of the form

N

47 ~
Vrewn.0(@) =y ; x0(Kn, @) cos(k,- q +&,). 4)

Here xp(-) is the characteristic function of D, the phases ¢, are independent random variables
equidistributed on [0, 277 ], and the momenta k,, € R? are independent random variables which
are equidistributed on the circle of radius VE. So the characteristic function xp(-) ensures
the localization on D. Furthermore, it is natural to take N ~ «/E, the scaling of the number
of line segments of a typical Heisenberg-length orbit. The volume of D measured with the
Liouville measure (3) is denoted by vol(D). With this choice of normalization the expectation
value of the norm || Yrrwm, p || is 1.

Let us first consider the value distribution Pg (1) of Yrrwm,p(q) at a given point q € Q.
Our restricted random wave model (4) is a sum of identical independent random variables
which have zero mean and whose variance is given by

5 _ 4 N ] 2\ 1 ke
o’ (q)=E <—V01(D) (xp(ky, q) cos(k, - q +¢&,)) ) = Yol(D) [0 xp(e(9), g)d¢ (5

where e(¢) := (cos(¢), sin(¢)) denotes the unit vector in the ¢-direction. So by the central
limit theorem we obtain for £ — o0,i.e. N — 00, a Gaussian distribution of Yrrwm. p (@) at q,

P, 71 —1//2 6
W= e e"p(_za%q)) ©

with variance given by (5). If the classical dynamics on D is ergodic, then the variance o>(q)
is exactly the probability density of finding the particle at the point g € € if it moves on a
generic trajectory in D. So o%(q) is the classical probability density in position space.

By integrating equation (6) over €2 we obtain the complete amplitude distribution as a
mean over a family of Gaussians with variances given by (5),

1
Prrwm,p () = oI /Q Py(y) d’q (7

1 1 R A
‘vol<sz>/9v2n62(q> P ( w(q)‘”)dq' ®
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So the amplitude distribution is completely determined by the classical probabality density (5),
and it will be typically non-Gaussian if o2 (q) is not constant.

The moments of the distribution (8) can be computed directly and turn out to be
proportional to the moments of the classical probability density o%(g),

1
[ v Prso v = pu i [ 10 @ g ©)
vol(R2) Jq
where the factor py; = (kz'/;' denotes the 2kth moment of a Gaussian. The odd moments are of

course zero. Note that the second moment is always 1/vol(£2), due to the normalization of .
If the system is ergodic one has o2(q) = #(ﬂ) and we get the classical result that
Prrwm, p (¥) is Gaussian with variance 0% = VO+(Q) However, if 0?(g) depends on q then the
corresponding distribution can show deviations from the Gaussian distribution. In particular,
if 02(g) = 0 for some region Q' C 2, we get a contribution Y/‘(’)ll((%)) 8(y) to the corresponding
distribution of Prrwm.p (1) as the integrand in (7) tends to a § distribution as o>(q) — 0.
Finally, we would like to point out that the main ingredient in formula (7) is the assumption
that the local amplitude distribution of an irregular eigenfunction around a point g in position
space is Gaussian, with a variance given by the classical probability density in position space
o%(q), defined by the projection of the invariant measure on D in the position space. Clearly
this assumption is not restricted to billiards, but is expected to be true for arbitrary quantum
mechanical systems for which the underlying classical system contains chaotic components
in phase space. So formula (7) is expected to be valid in far more general situations, with
o%(q) denoting the classical probability density defined by the ergodic measure on the chaotic

component.

3. Comparison with irregular eigenfunctions

We now compare the predictions of the restricted random wave model with the results for
some numerically computed eigenfunctions. As systems to study the amplitude distribution of
irregular states in mixed systems, we have chosen the family of limagon billiards introduced
by Robnik [29, 30] with boundary given in polar coordinates by p(¢) = 1 + ecos(p), ¢ €
[—m, ], with ¢ € [0, 1] being the system parameter. We consider the case ¢ = 0.3, for
which the billiard has a phase space of mixed type [29], see figure 1. In [31] examples of
eigenstates far into the semiclassical regime have been studied in this system and, in particular,
the amplitude distribution has been studied numerically, but no analytical predictions have
been made.

First we have to determine the classical position space probability density o%(q) of the
ergodic measure on the invariant domain D. The normalized ergodic measure on D is given by

1
dup(9,q) = mm(fi@% @) dp d’q

so we can express the variance o%(q) as a mean value
o*(q) = / (g —q)dun(¢', 4. (10)
50

As the motion on D is assumed to be ergodic, in order to determine o->(q) we could replace
the integral over S*Q by a time average over a typical trajectory of D and the § function
by a smoothed § function, e.g. a narrow Gaussian. However, as we will see below, the
eigenfunctions turn out not to be concentrated on the whole chaotic component, but rather on
a subset which is almost invariant in the sense that it is bounded by partial barriers in phase
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1.0

P

0.5

0.0

Figure 1. Plot of several stable and irregular orbits in the Poincaré section P of the limagon billiard
for ¢ = 0.3. Here P is parametrized by the (rescaled) arclength coordinate s € [—4, 4] along the
billiard boundary and p € [—1, 1] which is the projection of the unit velocity vector on the tangent
at the point s after the reflection.

space. Since at finite energies quantum mechanics has only a finite resolution in phase space,
these partial barriers appear like real barriers. But since any classical trajectory will pass such
a barrier after a certain time, the time average is not suitable for the determination of o-2(q) in
such a situation.

For a more direct approach to determine o%(q) we use the Poincaré section P =
{(s, p);s € [—4,4],p € [—1,1]}, which is parametrized by the (rescaled) arclength
coordinate s (corresponding to ¢ € [—m, 7]) along the boundary €2 and the projection p
of the unit velocity vector on the tangent at the point s after the reflection. Let D C P be
the projection of the region D in the energy shell S*Q := {(p, q) € R? x ; lpll = 1} on
the Poincaré section. This projection is defined as follows: for a point (e(¢), q) € D we can
associate the trajectory which passes through g in direction e(¢), then s(¢, q) is defined as
the first intersection with the boundary 92 when traversing the trajectory backwards from g
and p(¢, q) := e(¢)T'(s(¢, g)) which is the projection of the unit velocity vector e(¢) on the
unit tangent vector T'(s(¢, q)) to 2 at s(¢, q).

For a given point g we therefore get a curve parametrized by ¢

(p(9. @), 5(d. @) €P. (an
Since xp(e(9), @) = xo(p(¢, @), 5(¢, @), we get

) _ 1 27
oX(q) = Vol—(D)/o Ko (p(@. @), 56, @) do (12)

and therefore we have to determine the fraction of the angular interval(s) for which the
curve(11) is in D. That is, one has to determine the angles ¢,emry (@) and ¢ (g) where the
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curve (11) enters or leaves the region D, i.e. the intersection points of (11) with the boundary
of D. In terms of these angles we obtain

o*(g) = > o) — ¢ (@) (13)

1
vol(D)

which is proportional to the fraction of directions in the ergodic component visible from the
point q.

With this classical probability density o>(q), one can compute the corresponding
amplitude distribution via equation (8). If 0>(q) = O for some region, then the local
amplitude distribution (6) becomes a delta function, and it is necessary to consider for a
concrete comparison a binned distribution,

Y+AY/2

1
Poimnea (¥, AY) = TS P dy’ 14)

v+ AY/2 Vv —AY/2)\ | ,
of | ——2= ) | d%g. 15
2|9|/[ ( z«ﬂ(q)) ’ (JW)} ! "

We now use a Husimi Poincaré section representation of the eigenstate (see e.g.
[32, 33]) to determine the boundary of the relevant component D by a spline approximation.
The Poincaré Husimi representation of an eigenfunction v, in a billiard is defined by projecting
the normal derivative u, (s) of an eigenfunction v,,(q) at the boundary onto a coherent state
on the boundary. The coherent states, semiclassically centred in (s, p) € P, are defined as

R\ = X
Cis k(s = (;) Z exp(ipk(s' — mL — s)) exp(—g(s/ —mL — s)2> (16)

where 5" € [—4,4],0 > 0 and L = 8 is the total (rescaled) length of the boundary. This
definition is just a periodized version of the standard coherent states. The Poincaré Husimi
function of a state 1, with normal derivative u, (s) is then defined as

k, 1 4 , ,
/ Cz(s,p),k,, (s up(s)ds
4

27 [y (5) P ds
with k, = «/E,; the prefactor ensures the normalization [ H,(s, p)dp ds = 1.

An example is shown in figure 2. In (a) a high-lying eigenfunction (E = 1002 754.70.. . .,
approximately the 130 568th state of odd symmetry) in the limagon billiard with ¢ = 0.3 is
shown as density plot (black corresponding to high intensity of |1/|?). In (b) the corresponding
Husimi representation on the Poincaré section is shown. The boundary of the irregular region
D is described by a cubic spline which is shown as a full curve. With these boundary curves
we can use (13) to compute o>(q), which is shown in figure 2(c). Finally, in figure 2(d) the
comparison of the amplitude distribution of i with the prediction of the restricted random
wave model is given. Clearly, P () is non-Gaussian, and the agreement is very good. Table 1
lists the first moments and also a very good agreement of the results using (9) and the moments
of ¢ is found. Both the resulting amplitude distribution Prrwwm,p and the moments turn out to
be quite robust with respect to small changes of the selection of D. Note that we have rescaled
o2(q) such that the variance of the distributions is 1.

Another example is shown in figure 3. The eigenfunction (E = 1003 030.75...,
approximately the 130 607th state of odd symmetry) plotted in (@) has a quite large region in the
centre where it is almost vanishing. So from this alone the amplitude distribution is expected
to show a very clear deviation from the normal distribution. Using the same procedure as
in the previous case, we determine D, compute crz(q) and then Prrwm (). The comparison

2

H,(s, p) = an
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Figure 2. In (@) a high-lying eigenfunction (E = 1002754.70. .., approximately the 130 568th
state) in the limagon is shown as a grey scale plot (black corresponding to high intensity). In (b)
the corresponding Husimi function on the Poincaré section is shown together with the boundary
(full curves) of the region on which the eigenfunction is concentrated. In (¢) a density plot of
o2(q), computed via equation (13), is shown. In (d) the cumulative amplitude distribution of the
eigenfunction is compared with the prediction of the RRWM; on this scale no differences are visible.
The left inset shows P (), and for the right inset a logarithmic vertical scale is used to emphasize
the tails of the distribution. For comparison the normal distribution is shown as grey curve.
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Figure 3. The same plots as in the previous figure are shown for another high-lying eigenfunction
(E = 1003 030.75 ..., approximately the 130 607th state). In this case there is a deviation of
the amplitude distribution of the eigenfunction from the prediction of the restricted random wave
model around ¥ = 0. This is because 02(q) = 0 in the central region, whereas the eigenfunction
does not vanish there (see the text for further discussion). For the tails of the distribution, the
agreement of the two distributions is again very good.
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Figure 4. For the three domains indicated in the inset, the local amplitude distribution is shown
(for the same state as in figure 3). The dotted curves are Gaussian fits and the agreement of
the position-dependent variance for regions A and C is very good with the theoretical prediction
(equation (5)). The non-zero width of the distribution for the region B corresponds to the widening
of the §-contribution (see figure 3).

Table 1. Comparison of the even moments for the distributions of the eigenfunction and the RRWM
(equation (9)). The last column lists, for comparison, the moments of the normal distribution.

Example 1, figure 2 Example 2, figure 3

Moment  Eigenfunction ~RRWM  Eigenfunction =~ RRWM  Normal distribution

4 4.39 4.46 3.85 3.75 3
6 45.1 47.6 26.9 25.8 15
8 819 899 269 269 105
10 2199 2501 3774 3841 945

of the prediction with P () is shown in figure 3(d). The strongest deviation occurs for ¢ & 0.
The peak of Prrwm () at ¢y = 0 is due to the fact that o2(q) = 0 forthe region in the centre of
the billiard. The eigenfunction, however, is not exactly zero, but shows a decay in that region
and thus still fluctuates there. This causes a broadening of the §-contribution, which is clearly
visible in the plot of P () in figure 3(d). For || > 0.25 this region is not relevant anymore,
and the agreement of P(y) and Prrwm(¥) is very good. In the right inset to figure 3(d)
the distribution is shown with a logarithmic vertical scale to illustrate the agreement of the
distributions even in the tails.

The moments, computed via equation (9), are listed in table 1. The agreement of the
moments of the eigenfunction with the prediction of the restricted random wave model is quite
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good. All moments of the two examples are larger than those of a Gaussian, corresponding to
the larger tails. Compared to the moments of the restricted random wave model, those of the
eigenfunctions tend to be smaller, in particular, for the larger moments. This is reasonable, as
an actual eigenfunction is always bounded, which reduces higher moments compared to the
result of equation (9).

Furthermore, we have tested our basic assumption (6), that the local value distribution of
a sufficiently high-lying eigenfunction is Gaussian with a variance given by the local classical
probability density associated with D, more directly. To this end we have computed the value
distribution of the eigenfunction in figure 3 for three small regions on which o-2(g) is almost
invariant, and we therefore expect a Gaussian. The results are shown in figure 4, and a good
agreement with the prediction (6) is found. Since many fewer wavelengths are contained in
these small domains than those in €2, the statistics is of course not as good as that for the full
system, but the results give strong support for a local Gaussian behaviour. The variances for
the two domains A and C coincide with the expected classical one o>(q). But for domain B
the observed variance is larger than o%(g) = 0. This corresponds to the widening of the delta
peak in figure 3, and is due to the fact that the eigenfunction cannot become exactly zero on
some open set at finite energies, but instead fluctuates around zero.

4. Summary

In this paper we have extended the random wave model for eigenfunctions from the case
of chaotic systems to the case of irregular eigenfunctions in systems with mixed phase
space. Our main result is one particular prediction of this model, namely, the amplitude
distribution (7) of irregular eigenfunctions. Numerical tests have been performed for two
high-lying eigenfunctions of the limacon billiard with ¢ = 0.3, and impressive agreement,
even in the tails of the distribution, with the theoretical prediction was found.

The physical picture underlying our analysis is that the local hyperbolicity in the irregular
part of the phase space forces the eigenfunctions localizing on this part of phase space to behave
locally like a Gaussian random function with a variance given by the classical probability
density in position space defined by the uniform measure on the irregular component. By
taking the mean over all these local Gaussians with varying variance, it gives our result
for the global amplitude distribution. We have tested this intuitive picture by computing
local amplitude distributions. The agreement of these with the Gaussian prediction is very
good, giving further strong support to the picture of local Gaussian fluctuations with variance
determined by the underlying classical system. A further natural question relates to the
correlations of such eigenfunctions between different points in position space; this topic is
addressed in [34].

We should point out that in view of the complicated structure of the phase space of a
mixed system, it is quite surprising that our simple model fits so well. The only additional
ingredient which appeared in the numerical tests was that the relevant irregular domains in
phase space are only slighthy invariant, even for very high-lying eigenfunctions. A detailed
understanding of these findings poses an important challenge for future research.

Although we have restricted our study to the Euclidean billiards, the general picture
of local Gaussian fluctuations is of course not limited to these special types of systems.
We therefore expect our results to be valid for irregular eigenfunctions in arbitrary systems
(e.g. systems with potential), with o(q) defined as the projection of the ergodic measure on
the irregular component to the position space.
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with the exact result. In particular, a prediction for irregular eigenfunctions
in mixed systems is derived and tested. For chaotic systems, the expansion
of the autocorrelation function can be used to test quantum ergodicity on
different length scales.
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Abstract

We study the autocorrelation function of different types of eigenfunctions in
quantum mechanical systems with either chaotic or mixed classical limits. We
obtain an expansion of the autocorrelation function in terms of the correlation
distance. For localized states in billiards, like bouncing ball modes or states
living on tori, a simple model using only classical input gives good agreement
with the exact result. In particular, a prediction for irregular eigenfunctions in
mixed systems is derived and tested. For chaotic systems, the expansion of the
autocorrelation function can be used to test quantum ergodicity on different
length scales.

PACS numbers: 05.45.Mt, 02.50.Ey, 03.65.5Q, 05.45.—a

1. Introduction

The behaviour of a quantum mechanical system in the semiclassical limit strongly depends on
the ergodic properties of the corresponding classical system. In particular, the eigenfunctions
semiclassically reflect the phase space structure of the classical system and therefore they
depend strongly on whether the classical system is chaotic or regular. In this study we
are interested in the fluctuations of the wavefunctions, and in the correlations between the
fluctuations in different regions which are induced by the classical phase space structures. In
particular, we will consider the case of quantum billiards in a domain Q C R?, which are
described by the time-independent Schrodinger equation (in units 7 = 2m = 1)

(A+E)y(q) =0 for qe Q\IQ (1)

with Dirichlet boundary conditions, ¥(q) = 0 for g € 9<2. For compact 2 one obtains a
discrete spectrum {E,} of eigenvalues, 0 < E; < E» < ..., with associated eigenfunctions
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Y, € L*(Q), which we assume to be normalized, i.e. ||y, | := /Q W (@))? dg = 1. The
corresponding classical billiard is given by the free motion of a point particle inside 2 with
elastic reflections at the boundary 9€2.

The amplitude distribution of an eigenfunction of a quantum mechanical system whose
classical limit is chaotic is conjectured to become Gaussian in the semiclassical limit [1], and
numerical studies support this conjecture, see e.g. [2—4]. A more sensitive quantity is the
local autocorrelation function [1] which measures correlations between different points of an
eigenfunction Y

C(x, 8x) = Y*(x — 8x/2) Y (x + 8x/2). )

The crucial fact for the theoretical analysis of C loc (g, 8a), observed by Berry [1], is that the
autocorrelation function can be expressed as the Fourier transformation of the Wigner function
(see equation (7) below) of v

C(x, sx) = / W(p, z)e % dp. 3)

Hence information on the behaviour of the Wigner function can be used to predict the
behaviour of the autocorrelation function, and since semiclassical limits of Wigner functions
are concentrated on invariant sets in phase space, see e.g. [5], it follows that in the semiclassical
limit autocorrelation functions are determined by the classical phase space structure. For
example, if the classical system is ergodic, the quantum ergodicity theorem [6—11] (roughly
speaking) states that almost all quantum expectation values tend to the corresponding classical
limit. One can show [12] that for ergodic systems this is equivalent to the semiclassical
eigenfunction hypothesis [1, 13—15], when restricted to a subsequence of density one. Using
this result in (3) one gets Berry’s result [1] that for chaotic billiards in two dimensions

1
C*(z, 8x) ~ ———— Jo(VE|S 4
(@ 82) ~ s Jo(VE|Szl) @
weakly as a function of x (for fixed §x) as E — oo, where E denotes the energy of the
eigenstate ¥ in (2). Equivalently we have

1
: loc
Jim €. 82/VE) = s (i), ®)
Numerical tests of this relation have been performed for several chaotic systems [2—4] and at
finite energies show notable fluctuations of the autocorrelation function around the high energy
limit (4), especially for correlation distances larger than a few de Broglie wavelengths.These
fluctuations have been studied further in [16—-19], where for a small correlation distance |§|
a random model for the eigenfunctions of a chaotic system was used to predict the variance
of these fluctuations, and for larger || a formula involving closed orbits of the system has
been derived. In [23, 24] the path correlation function, which is an average of the local
correlations along a given trajectory, has been introduced. A further study of autocorrelations
of eigenfunctions in the framework of the nonlinear o0-model has been recently conducted
in [20], and spectral averages of autocorelation functions are studied in [21, 22]. The path
correlation function is closely related to the autocorrelation function and for ergodic systems
also tends asymptotically to a Bessel function (4). This path correlation function has been
studied in [3] for a hyperbolic octagon, and an expansion in terms of Legendre functions has
been derived, which can be used to determine corrections to the leading Bessel part (4).

The autocorrelation function in nonchaotic systems has attracted very less attention. The
integrable case has already been discussed by Berry [1], and the corresponding formula has
been successfully tested for the circle billiard in [2]. For a system with mixed classical
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phase space the autocorrelation function has been studied in [25], in particular for irregular
eigenfunctions an expansion of the Wigner function in polar coordinates has been used.

In this paper we are interested in the question how the universal limit (4) is reached, and
how, in the case of mixed systems, further constraints on the classical motion are reflected
in the autocorrelation function. For instance, if an eigenfunction is concentrated on an
ergodic component, then by a generalization of the quantum ergodicity theorem [26], the
Wigner function becomes equidistributed on that component, and this will determine the
autocorrelation function.

The paper is organized as follows. In section 2 we discuss some examples of the
autocorrelation function for different eigenfunctions in systems with chaotic and mixed
classical dynamics. In section 3 a general expansion of the autocorrelation function for
eigenfunctions in billiards is derived, which allows a systematic study of their properties. It is
an expansion in the correlation distance |§a| which reflects the fact that the determination of
correlations at larger distances needs classical information on finer length scales than for short
range correlations. In section 4 it is shown that the correlation distance expansion provides
an efficient way to explain the fine structure of the autocorrelation functions of the systems
studied in the first section. Of particular interest is that for chaotic systems deviations of
the autocorrelation function from the quantum ergodic limit (4) can be related to the rate
of quantum ergodicity. In turn the autocorrelation function can be used to study the rate of
quantum ergodicity on different classical length scales.

2. Examples of autocorrelation functions

For numerical computations as well as for theoretical considerations it is much more convenient
to consider a smoothed version of the local autocorrelation function (2). Furthermore, as the
eigenfunctions oscillate on a scale proportional to 1/+/E, we rescale the autocorrelation
function by this factor. Hence we will study the autocorrelation function in the form

C,(x, ) -—/ (@— W( —‘S—m)w( +5—‘”)d 6)
p L, = QP q q 2@ q 2@ q

where p is a positive function which determines the smoothing of the local autocorrelation
function. In the literature (see the papers mentioned in the introduction) the mean is usually
taken over a small disc, which corresponds to taking the characteristic function of a disc for p
in (6). However, nothing prevents one considering the case p = 1, i.e. taking the mean value
of the local autocorrelation function (2) over the whole position space. In terms of the Wigner
function

1 L
W(p. @) = —— fe""’ Vi (a—4q'/2)¥(a+4q/2) dg’ @)
(2m)

one obtains in this case
Cow) = fw( —‘3—””)1//( +5—m) d ®)
= 175E) "\ o E)
= // W(p, @ P*/VE dg dp:/h/?(p)lze‘im/ﬁ dp. )

This is a particularly good choice for the numerical computation of the autocorrelation function
in billiards because it can be reduced to boundary integrals (see the appendix). The resulting
formula reads

C(dx) = ﬁ //mxm lq(s) — q(s") + 82| Y (VE|q(s) — q(s') + sz))u*(s)u(s') ds ds’
(10)
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Figure 1. Grey scale plot of |¥1277 (g)|? in the cardioid billiard with odd symmetry, where black
corresponds to high intensity. To the right the autocorrelation function C(r, #), computed using
(10), is shown for three different directions 6 = 0, 7 /4 and 7 /2. For comparison the asymptotic
result C(r,0) = Jo(r) is shown as the grey line.

where u(s) is the normal derivative of the normalized eigenfunction i on the billiard
boundary. This relation provides a very efficient method for the numerical computation
of the autocorrelation function.

The systems for which we study the autocorrelation functions are the stadium billiard and
two members of the family of limacon billiards, namely the cardioid billiard, and a billiard
with mixed classical phase space. The stadium billiard is proved to be strongly chaotic, i.e.
it is ergodic, mixing and a K-system [27, 28].The height of the desymmetrized billiard is
chosen to be 1, and a denotes the length of the upper horizontal line, for which we have
a = 1.8 in the following. The family of limagon billiards is given by the simplest nontrivial
conformal mapping of the unit circle [29, 30] and can be parametrized in polar coordinates
by p(¢) = 1+ ecos(p) with ¢ € [—m, ], and ¢ € [0, 1] denotes the family parameter.
We consider the case ¢ = 0.3 which leads to a mixed dynamics in phase space. For ¢ = 1
one obtains the cardioid billiard,which is also proved to be strongly chaotic [31-33]. The
eigenvalues of the cardioid billiard have been provided by Prosen and Robnik [34] and were
calculated by means of the conformal mapping technique, see e.g. [30, 35]. For the stadium
billiard the eigenvalues and eigenfunctions have been computed using the boundary element
method, see e.g. [36, 37], and for the limagon billiard the eigenvalues have been computed
using the conformal mapping technique and then the boundary element method has been used
to compute the eigenfunctions (see [38] for details). For the high-lying states in the limagon
billiard the scaling method has been used [39].

First we consider a ‘typical’ eigenfunction in the cardioid billiard (figure 1). In the plots
we show

C(r,0) = C(ré)) (11)

where é(6) = (cos 6, sin 0), as a function of r for three different values of 8 .The quantum
ergodicity theorem implies that there is a subsequence {n;} C N of density one such that
Cy,(r,0) = Jo(r) as n; — oo with r fixed. This convergence is, however, not uniform in r.
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Figure 2. Autocorrelation function for the same state as figure 1, but for a larger r-interval
showing the non-universal behaviour at larger r. The inset shows a magnification and the vertical
bars indicate the places r = /E, diam(2, 8) from where on C(r, #) = 0, due to the compactness
of the billiard.

For the example shown in figure 1 C (r, ) fluctuates, as expected for a ‘quantum ergodic’
state, around the asymptotic result

C(r,0) ~ Jo(r). (12)

Actually, for an eigenstate with energy E, we have C (r, 8) = 0 for r > /E,diam(, ),
where diam(€2, 6) is the diameter of 2 in the direction 6, as follows directly from the
definition (6). This is illustrated in figure 2 which clearly shows the non-universal behaviour
for larger r.

In contrast to the case of quite uniformly distributed eigenfunctions one expects a stronger
directional dependence of the autocorrelation function for localized eigenfunctions, such as
scars [40]. One example is shown in figure 3, where the eigenfunctions shows localization
along the shortest unstable periodic orbit in the cardioid. The corresponding autocorrelation
function shows clear deviations from (12).

A class of eigenfunctions which show even stronger localization are the bouncing ball
modes in billiards with two parallel walls (see, e.g. [2, 41-44]). Figure 4 shows for the stadium
billiard an example of a bouncing ball mode, which localizes on the so-called bouncing ball
orbits having perpendicular reflections at the parallel walls and thus forming a one-parameter
family. The simplest approximation is to consider them as a product of two sines, one in the
x direction and the other in the y direction. In this case the autocorrelation function can be
computed explicitly. For the odd—odd eigenfunctions

Vn,n, (X, y) = sin(mmx/1y) sin(ny y/1y) 13)

1
VL,

inabox B :=[—I,,[,] x [-],,[,] one gets

CP™, (r,0) = F(r cos(0)/VE, n, 1) F(rsin(0)/VE, ny, 1) (14)
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Figure 3. Grey scale plot of |1, (g)|> with n = 1277 in the cardioid billiard with odd symmetry.
For the autocorrelation function C(r, 6) one observes clear deviations from C(r, 0) = Jo(r).

Figure 4. For the stadium billiard with odd—odd symmetry, a = 1.8, ¥320(q) is a bouncing
ball mode. The corresponding autocorrelation function is compared with the result CE’."[’g(r, 0),
equation (14), obtained for a box, shown as dotted curves, which follow C (r, 8). Only for § =0
(full line) and @ = /4 at r ~ 17 are small deviations visible.

where
1 -2
F(z,n,l) = )([4_1](1/2)7/ sin(mn(x — z/2)/1) sin(zm(x +z/2)/1) dx (15)
—l+z/2
= | (1-2 D+ i ! 16
= x1-1.n(z/ )|:( — 5) cos(mnz/l) + Tmn sin(zmz/ )] (16)

and x;_;,1(2) denotes the characteristic function of the interval [—/, [].
In figure 4 we compare the autocorrelation C(r, 8)function for a bouncing ball mode in
the stadium billiard with C ?°|"3 (r, ), equation (14), and observe very good agreement. Mainly
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for & = 0 some deviations are visible; these are understandable from the fact that in this case
only correlations in the x-direction are measured, where the bouncing ball mode ‘leaks’outside
the rectangular region. To take this into account one can determine an effective [T > 2a, by
fitting sin® (o / 15) to

1
Yol (x) = fo [ (x, y)I* dy. a

For the case shown in figure 4 this procedure leads to I &~ 4 (whereas 2a = 3.6) and the
corresponding autocorrelation function gives excellent agreement with the one for vr35.

3. Expansion of the autocorrelation function

In this section we derive an expansion of the autocorrelation function which will lead to an
understanding of the directional dependence of the autocorrelation function observed in the
last section. We start from the representation of the local autocorrelation function in terms of
the Wigner function

Cp(x, Sz) = f ] p(@ — QW (p, @e P*VE dpdg. (18)

Since the Wigner function is concentrated around the energy shell |p| = +E, and is
furthermore even in p by time reversal symmetry, we get

oo p2m
C,(@. 5z) = f f f p@ — QW (p, @) dg'e 5596 1 dgdr + 0 (52| 1)
0 0 Q

0o p2mw
= / / / p(@ — @ W(p, q) dg cos(|8z| cos(p — 0)) r dp dr + O(|8z|E~"/?) (19)
0 0 Q

where we have used polar coordinates p = (|p|cos ¢, |p|sin ¢),dx = (|dx|cos 0,
|32z| sin 0). Because of the rescaling by +/E the factor e~ P*/¥E is only slowly oscillating
for p close to the energy shell, on which the Wigner function is concentrated. Therefore
we get that the error is of order |8z|/+/E (see appendix B for a sketch of the derivation of
this remainder estimate). If we now use that cos(r cos ¢) is a generating function for Bessel
functions [45]

(o]
cos(|dx| cos @) = Jo(|6x|) + 22(—1)’ cos(2lp) Jy (|6x]) (20)
I=1
we obtain

Cp(@, 8z) = (@) Jo(lsz)) +2 ) (—D'éu(a, 0) Ju(lsz) + O(E™'/%) @n
=1
with (setting r = |p|)

oo p2m
&(x, 0) :=/0 /0 /Qp(w—q)W(p, q) dgcos2l(p — 0)) r dpdr.  (22)

The coefficients &y (x, ) can be further decomposed

oo p2m
& (x, 0) = cos(210) / / / p(x—q@W(p, q) dg cos2ly) r dpdr
0 0 Q

oo p2m
+ sin(216) / [ / p(x —q)W(p, q) dg sin(2lp) r dp dr. (23)
o Jo Ja

o8




546 A Bicker and R Schubert

Recall that for an operator A with Weyl symbol A(p, q) the expectation value (i, Ay) can
be written as an integral over the phase space of the symbol multiplied by the Wigner function
of Y, see e.g. [46],

(W, Ay) = / W(p. @)A(p. q) dpdgq. (24)

Therefore the coefficients in (23) can be interpreted as expectation values of certain operators
Ay (x), By () given as the Weyl quantizations of the functions

Axu(p, @) = p(x — q) cos(2lp) By (p, @) = p(x — q) sin2lp)  (25)

respectively,

21 poo
f / W(p, q) p(x — q) cos(lp)r drdpdg = (y, Ay (z)¥) (26)
QJ0 0

2r poo
f fo fo W(p. q) pla — q) sin@lg) r drdpdg = (¢, Bu(@)y).  (@27)
Q

Note that the operators Ay () and 1§21 (x) depend on the parameter x. Since their symbols are
smooth and homogeneous of degree zero in p they are classical pseudodifferential operators
of order zero, see e.g. [46] for the definition of pseudodifferential operators. So we finally
obtain the following general expansion of the autocorrelation function

Cya, 82) = (¥, Ao(@)y) Jo(18x)) +2 Y (= D)'[(¥, Au () V) cos(216)

=1
+ (Y, By()y) sin(210)] Jy(|8z|) + O(|8z|E~'/?) (28)

in terms of the expectation values of a sequence of bounded operators given as Weyl
quantizations of the symbols (25). Recall that the only approximation we have made was
to insert for |p| in the exponent in equation (19) the value at the energy shell JE.

Since the Bessel functions have the property that Jy(|dz|) ~ 0 for |§x| <« 21, this
representation is an efficient expansion for small [§x|, then only a few terms in the sum
contribute. But the larger [6x| becomes, the more terms of the sum have to be taken into
account. Therefore it is desirable to have an estimate of the number of terms which have to be
taken into account for large |§x|. The first, and largest, maximum of Jy(7) lies around r ~ 21/,
and close to it one has the expansion [45]

Ju 2l — 7'y = ll%Ai(z) +0(1/D. (29)

So the first peak becomes broader with a rate ~/'/3 and therefore we have to take for large r
approximately
rooz r\!/3
m~Ll+% ( —) (30)
2 21\2
terms in the sum over / into account; here z determines the error term. We refer to appendix C
for a more detailed discussion.

We would like to mention two papers in which related results have been obtained. For
the case of a free particle on a surface of constant negative curvature an expansion of the path
correlation function in terms of the Legendre function was derived in [3]. In the special case of
averaging over the whole billiard (i.e. p = 1) the path correlation function for ergodic systems
should be the same as the autocorrelation function. In [25] an expansion similar to (28) was
derived for the case when the eigenfunction is concentrated on an ergodic component of the
phase space of a classically mixed system, however, without extracting the Bessel function
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from the expectation values. To make this possible is the main reason why we have restricted
our attention here to billiards. For more general systems one could derive similar expansions
which approximate the autocorrelation function for small correlation distances using only a
few terms, but their structure becomes more complicated.

The correlation distance expansion (28) has various possible applications; some of them
will be discussed and illustrated in the next section. In particular, the expansion leads to a
prediction for the asymptotic limit of the autocorrelation function in different situations. More
precisely, consider a subsequence of eigenfunctions {tﬁ,,j }jeN for which the corresponding
sequence of Wigner functions converges weakly to a measure v on phase space. Such a
measure v is called a quantum limit, and it is an invariant measure of the classical flow [5].

If a sequence of eigenfunctions {Wn, },.EN converges to a quantum limit, the correlation
distance expansion for the autocorrelation function (28) shows that the corresponding sequence
of autocorrelation functions converges as well and their limit is obtained by substituting in (28)
the expectation values of Ay(:c) and éz[(ic) by their corresponding classical limit. Explicitly,
this gives

C}jm“(m, Sx) = AgJo(|8z]) + 22(—1)’[Azl(m) cos(210) + By (z) sin(2160)] Jy(|8z]) (31)
I=1

where
A :=[ Adv. (32)
*Q

As we will discuss in section 4.4, for ergodic systems almost all eigenfunctions have the
Liouville measure as the quantum limit, then the terms Ay and By vanish, and with Ay = 1
we recover (12).

4. Applications of the correlation distance expansion

4.1. Direct comparison

In the numerical examples we have studied the autocorrelation function in the case p = 1,
which allows for an exact computation of the autocorrelation function using the representation
(10), which is much more efficient than a direct computation of the autocorrelation function
by its definition, equation (8). In this case the general expansion (28) gives the representation

o0

C(r.0) = Jo(r) + 2 Y _(—1)'[ay cos(216) + by sin(210)] Joy (r) + O(rE~'/%) (33)
I=1

where the coefficients a,; and b,; are the Fourier coefficients

1 21 1 2 )
ay = — / 1(p) cos2ly) dg by =— f I(p)sin2le)dp  (34)
T Jo T Jo

of the radially integrated momentum density [47, 48]

1(p) = /0 [ (re(e))|*r dr (35)

where e(p) = (cos ¢, sin ¢). Also for /(¢) a representation in terms of a double integral of
the normal derivative function is available [48]. Taking the symmetries into account, one can
show that for the odd eigenfunctions in the limagon billiards and the odd—odd eigenfunctions
in the stadium billiard all by, vanish, so only the cosine terms remain in (28) and (33).
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Figure 5. Comparison of the autocorrelation function C (r, 8) for 11907 in the stadium billiard
(full curve) with the expansion (33). In particular, for small  the agreement is excellent, whereas
for larger 7 small differences become visible.

First we will test the influence of the error term O (E~'/?) in equation (33) for computations
at finite energies. To that end we use the exact quantum /(¢) in equation (34). In figure 5 the
autocorrelation function C (r, 0) for four different angles 6 is compared to (33). In particular,
for r not too big the agreement is excellent. Only for larger  do small deviations become
visible, which go to zero for higher energies and r fixed. One should remark that for any r > 0
the effective integration region in equation (8) is reduced by the factor

. 8) = vol(Q N Q(r/VE, ) 36)
T vol()

where Q (r/ VE, 0) is the set 2 shifted by the vector r/ VE (cos 0, sin 6). Incorporating this
factor leads to an improvementin the agreement of the expansion with the exact autocorrelation
function at larger r.

Instead of looking at the dependence of the autocorrelation function C (r, 8) for fixed
0 and varying r, it is also interesting to keep r fixed and consider the angular dependence.
For a ‘chaotic’ eigenfunction in the cardioid billiard some examples are shown in figure 6.
The result of the expansion (33) is in good agreement with the exact result. For larger r the
autocorrelation function C (r, 6) oscillates more strongly around Jo(r). For even larger r we
observe clear deviations of the expansion from the exact result (not shown). For comparison
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Figure 6. Angular dependence of the autocorrelation function C (r, 0) for different . Shown are
the results for Yoo in the cardioid billiard with odd symmetry. The full line is the result for
C (r, 0) using (10), the dashed line shows the result of the expansion (33), the full grey line is the
value of Jo () and the dotted horizontal lines show the variance Jo(r) £ A'/2 (see equation (37)).

the variance of the autocorrelation function around the prediction Jo(r) for a random wave

model [16] in leading order

A (16 N
T \37324) EVA

(37
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is shown and good agreement is found. Note that for bounded r this error is much larger than
the additional error term O (r E~'/?) from (33).

4.2. Localized eigenfunctions

For a state strongly localized on an periodic orbit of length /,, we have (either in the semiclassical
limit, or as a crude model at finite energies)

1
1(p) ~ EZZ“S(WW (38)
where [,, are the lengths of the segments of the orbit with direction ¢;. Thus we get
1 1 .
an = D by cos@o)  bu= -3 by sinle) (39)
which therefore using (33) gives a prediction for C(§x) for such states, namely

C(Sx) ~ ZLZIV, cos(|dx| cos(0 — ¢i)). (40)
v

Note that in the presence of symmetries all symmetry-related directions have to be taken into
account in equation (38). For this simple model one can determine the autocorrelation function
more directly by using (3)

C(bx) = // W (p, q)eip‘” dpdg :/|1ﬁ(p)|2eip6w dp

21
= / 1(@) cos(|8x| cos(6 — @) dg + O(|8x| E~'/?) (41)
0

inserting (38) directly gives (40).

In figure 7 we compare the limiting behaviour (40) with the autocorrelation function of
a high-lying eigenstate in the limagon billiard. The state localizes on the (stable) orbit of
triangular shape. Up to r ~ 10 the agreement is very good; for larger r the autocorrelation
function of the eigenstate shows deviations from the asymptotic behaviour. Note that the
state has a much higher energy than the other examples. At lower energies the agreement
is not as good, because the region in phase space on which the state localizes is broader.
This in turn implies that its corresponding radially integrated momentum distribution /(¢) also
has broad peaks, which are not accounted for properly by the ansatz (38). However, when
considering states of this type with increasing energies, a clear trend to the asymptotic result
(40) is observed.

This simple model has also been tested for a scarred state in the cardioid. However, the
agreement is limited to a qualitative description for up to r ~ 2. This is understandable in
view of the observation (see [48, figure 8(a)]) that for a scarred state the radially integrated
momentum distribution /(¢) shows quite large fluctuations, and also in the considered case the
direction ¢ = 7/2 is not clearly pronounced. As these fluctuations essentially correspond to
the random ‘background’ fluctuations of the state, a simple ansatz to model this behaviour is

C(r,0) = (1 —a)Jo(r) +a% Zl% cos(|dx| cos(@ — ¢;)). 42)

It turns out that one can vary « such that quite good agreement of this model with the
exact autocorrelation function is obtained (see figure 8 where o = 0.22 (for all directions)).
Depending on the direction 6 the ‘optimal’ value for « does vary, which already indicates
the limitations of this simple model. To get a better agreement a more precise description of
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Figure 7. High-lying eigenfunction (E = 367 984.82 ..., approx. 47 788th eigenfunction of odd
symmetry) in the limagon billiard (¢ = 0.3), which localizes on the stable orbit of triangular
shape. The autocorrelation function for three different directions is compared with the §-model,
equation (40), shown as the dashed line using the directions of the stable orbit.

I(¢) for scarred states is necessary. In particular, this should also lead to an understanding of
the energy dependence of « which is expected to go to zero in the semiclassical limit. Note
that the structure of the autocorrelation function is quite similar to the one for 13,7 shown in
figure 3.

Another case, for which we obtain much better agreement, is for an eigenfunction localized
on an invariant torus. In such a case the expectation values, equations (26), (27), tend to the
mean of the classical observable over the torus (see equations (31), (32)). Figure 9(a) shows for
the limacon billiard the eigenfunction and the corresponding Husimi Poincaré representation
[49, 50]; see [51] for a more detailed discussion and the formula which has been used.
Also shown in the Husimi plot are the points of some orbits. Using an initial condition
on the torus we can determine the classical angular distribution / classical () - As this has a
singularity due to the caustic of the torus we show in figure 9(c) a binned distribution together
with the corresponding quantum radially integrated momentum distribution /305¢(¢). There
is qualitative agreement between these two curves in the sense that smoothing 7¢1%¢!()
describes the mean behaviour of the quantum /3ps¢(¢). Of course, the classical distribution
cannot describe the (quantum) oscillations visible for /3056(¢). It turns out, see figures 9(d)—
(f), that already this simple model leads to surprisingly good agreement between the exact
autocorrelation function and the expansion (33) computed using / classical (¢
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Figure 8. For a scarred state (/7147 of odd symmetry) in the cardioid billiard the autocorrelation
function is compared with the simple model (42) for « = 0.22.

4.3. Autocorrelation function of irregular states in mixed systems

In classical systems with mixed phase space regions with regular and regions with stochastic
behaviour coexist. It is conjectured [52] that correspondingly the quantum mechanical
eigenfunctions split into regular and irregular ones, respectively, living semiclassically on
the corresponding parts of phase space. This has been confirmed numerically for several
systems (see e.g. [53-57]). Consider now a sequence of eigenfunctions v/, which localize
on some open ergodic domain D in a system with mixed phase space, then almost all
the expectation values <1//,,/ Al//,,j ) tend to the mean AP of the corresponding classical observable
A over this domain D [26]. Therefore using (33) we get in the limit £ — oo for the
autocorrelation function of such a sequence

Ch™(x, 8x) = A Jo(|8|) +2 Z(—l)’[Ag(m) cos(210) + BY)(z) sin(210) ] Jx (|8]).
=1
(43)

Instead of computing A% and B directly, we can also use a typical trajectory of the ergodic
component to determine the corresponding classical 794! () via

) 1
Iclasswal((p) = []_1)120 7 Zl,ﬁ((p — i) (44)

where [ is the total length of the trajectory and g; is the direction of the ith segment having
length /;. Then we use (33) to get a prediction for the autocorrelation function.
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Figure 9. Grey scale plot of 13056 for the limacon billiard with &
corresponding Husimi plot, for which in addition some orbits are shown.

= 0.3 together with the

In (c¢) the radially

integrated momentum distribution /356(¢) and the corresponding classical distribution 7¢125%¢a! (¢
for the torus are shown. In (d)—(f) the exact autocorrelation function is compared with the expansion
of the autocorrelation function, equation (33), using 7 °25%¢?(¢) for different angles 6.

However, we observe that even quite high-lying states do not yet localize on the whole
chaotic component. Instead they are confined to smaller subregions due to partial barriers
in phase space. Figure 10(a) shows an example of a high-lying state in the limacon billiard
(¢ = 0.3) In figure 10(b) the corresponding Husimi function is plotted, which clearly shows
the localization on a chaotic subdomain (the whole irregular region is much larger). If D is
an open region in phase space, then the corresponding classical distribution of the momentum

directions is given by

) 1
Iclassmal((p) — m / XD(p«O)v q) dq

45)
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Figure 10. Autocorrelation function for a high-lying irregular state (E = 1002 754.70 .. ., approx.
130 516th eigenfunction of odd symmetry) in the limagon billiard with ¢ = 0.3. In () the Husimi
representation on the boundary is shown together with an approximate boundary (full curve) of the
region D on which the state localizes. The resulting classical momentum distribution 7¢2ssical (¢)
is shown in (c) as a full curve and compared with the radially integrated momentum distribution
19™(¢) of the state in (a) and a smoothing of this, 79™smo0thed () “shown as a dashed curve. In
(d)—(f) the autocorrelation function C (r, 0) of the eigenfunction is compared for three different
directions with result of the expansion (43) using 7¢8sical (),

where p(¢) = (cos ¢, sing). One can show that in terms of the projection D of D on the
Poincaré section this equation can be reduced to

_ JplG. 03w —¢Gs. p)) dsdp 46)
- fDl(s, p) dsdp
Sy 162 ps. @)V 1 = p*(s. @) xo(s. p(s. 9)) ds

fD I(s, p) dsdp

[Classical((p)

(47)
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where [(s, p) is the length of the orbit segment starting in the point (s, p) € P with direction
¢ (s, p) and in the second equation p(s, ¢) = p(p)t(s), with t(s) denoting the unit tangent
vector to dD at the point s. Furthermore, 0Q'(¢) := {s € 3Q | p(¢)n(s) < 0}, where n(s)
denotes the outer normal vector to dD in the point s, is the subset of 92 where the vector p(¢)
points inwards. For the numerical computation we have used (47) because we just have to
deal with a one-dimensional integral to compute the ¢ dependence, and also compared to (46)
no binning of 7¢#%@ (¢) is necessary.

After these general remarks on the computation of 7°#@ () let us describe how we
compute the relevant quantities to determine the autocorrelation function for the state shown
in figure 10(a). To describe the projection D of the domain D in phase space, we use an
approximation of the boundary of D by a splines, which are shown in the figure 10(b) as
full curves. Then we use equation (47) to determine the corresponding 725 (¢), shown in
(c) as a full curve. Of course the radially integrated momentum distribution /9" (¢) of the
eigenstate shows strong fluctuations, but the smoothing 79™sm°ohed ;) j5 well described by
1¢lassicdl () although the agreement is not perfect. Using 7<% (¢) we employ the expansion
(43) to get a prediction for the autocorrelation function for states localizing on D, which is
compared in figures 10(d)—(f) with the exact autocorrelation function. Up to r &~ 10 we get
quite good agreement, whereas for larger r deviations become more visible. This shows that
the eigenfunction has more structure than accounted for by 7 (p) je. it is not yet far
enough in the semiclassical limit.

For higher energies the states tend to localize on the full ergodic region, and then
7sical(4) can simply be computed using (44) by averaging a typical trajectory in D.
One should emphasize that the agreement has to be compared with the agreement of the
autocorrelation function for ergodic systems with (12) as the prediction equation (43) only
takes into account the classical limit. This has been studied in [25] (in the case of averaging
the local autocorrelation function over a small disc), where in particular for [25, figure 13(b)]
very good agreement has been found.

4.4. Ergodic systems and the rate of quantum ergodicity

If the classical billiard is ergodic, then by the quantum ergodicity theorem [6—11] almost all
eigenfunctions become equidistributed in the semiclassical limit. More precisely, there exists

. R #E, <E
a subsequence {Wn, }ieN of density one, i.e. limg_, ﬁ = 1, such that
lim (¢, Ay,,) = A (48)
J*}Oo

for all pseudodifferential operators A, and A denotes the mean with respect to the Liouville
measure of the corresponding classical observable. The rate by which this equidistribution is
reached is called the rate of quantum ergodicity. It is an important quantity, as it determines
the practical applicability of the quantum ergodicity theorem at finite energies.

If the billiard is ergodic and v,; is a quantum ergodic sequence of eigenfunctions, then
for j — oo

(Vn,» A (@)W,) ~ Ay = 80 (49)
(Yn,» Ba(@)yn,) ~ Boy =0. (50)

Thus using the expansion (28) we again get (12) for E — oo. Deviations from this universal
behaviour are then determined by the rate at which the limit in (49) and (50) is reached, i.e. the
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Figure 11. Comparison of the second moment o21907(r) of the autocorrelation function, equation
(52), with the expansion (53) for the stadium billiard. The inset shows the difference for r € [0, 20].

rate of quantum ergodicity. In order to exploit this it will be convenient to remove the angular
dependence by taking the mean over all angular directions in C(8x). Since by equation (33)

27

— Cu(r,0) do = Jo(r) + O(rE~'/?) (51)
2 0

we consider the second moment
1 27
0y (r) = 5= / [Cu(r, 0) — Jo(r))* d6 (52)
27 0

where C, (r, #) denotes the autocorrelation function of ,,. Inserting the expansion (33) of
C, (6x) leads to

o0
op(r) =21y (a3, +b3,,) [Ju@)P (1 + OE™'). (53)
I=1
In figure 11 we compare o>(r) for an eigenfunction in the stadium billiard with the expansion
(53). For small r we get excellent agreement and some deviations become visible in the plot
for r > 20. The inset shows a plot of the difference up to » = 20. It is surprising that even
though for large r the amplitudes do not match anymore, still the expansion gives the right
oscillatory structure.
If we take the mean of (53) over all eigenfunctions up to energy E, we get

62(E r) = ; az(r) (54)
’ N(E) vt "
o] 1 -
=272 v EZ<E (a3, +b3,,) [P (1+ O(rE'). (55)

Remarkably, together with equations (28) and (53) this shows that the rate of quantum
ergodicity can be studied in terms of the autocorrelation function. Particularly interesting is
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that the observables in the expansion (28) become more and more oscillatory with increasing
1, so by varying |§x| one can determine the rate of quantum ergodicity on different length
scales.

A prediction for the behaviour of G2(E, r) follows from [58], where it is argued that
(under suitable conditions on the system) in the mean

1 A _ 4do3(A) 1
—— > [, Ay,) — A] ~ == — (56)

N(E) i volQ JE
for any pseudodifferential operator A of order zero with symbol A. Here A denotes the mean
value of A, and aczl (A)/ /T is the variance of the fluctuations of

1 T
- / Ap(0). 1)) di 57)
0

around A. So if we insert (56) into (55) we obtain
oo

) 87 2 2 2
G (E,r)~ —— [O'Cl(AZI) + Ucl(le)] [Ju ()]

58
vol P (58)

1
VE
A detailed study of the rate of quantum ergodicity in terms of the autocorrelation function, i.e.
via equation (54), and a comparison with the semiclassical expectation (58) will be given in a
separate paper.

5. Summary

We have discussed the autocorrelation function for eigenstates of quantum mechanical systems,
and its relation to the behaviour of the classical system. For billiards we have derived a formula
for the autocorrelation function of an eigenfunction in terms of the normal derivative on the
boundary (10), which enables an efficient numerical computation.

Our main result is the correlation distance expansion of the autocorrelation function (28)
for billiards, which provides an efficient expansion for small correlation distances, where only
a small number of terms enters the sum. Moreover, it provides a tool for understanding the
behaviour of the autocorrelation function for different types of eigenfunctions in terms of their
semiclassical limit.

The coefficients in the correlation distance expansion (28) can be computed in terms of
the radially integrated momentum density. Even though it is based on an approximation,
our numerical study shows very good agreement with the corresponding exact results; only
for large correlation distances do deviations become visible. As the expansion coefficients
have to be determined just once for a given eigenfunction, this is also a numerically efficient
method to compute the autocorrelation function. Similar, but more complicated, expansions
can be derived in higher dimension and for more general systems (e.g. systems with potential
and magnetic field), but then the Bessel functions have to be modified in order to reflect the
structure of the energy shell of the classical system.

We applied the expansion of the autocorrelation function to different types of
eigenfunctions, and showed that it provides a good tool for the understanding of their
autocorrelation functions. In systems with mixed phase space regular states concentrated
on tori and irregular states have been successfully treated. For chaotic system the fluctuations
of the autocorrelation functions around the leading term are shown to be connected with the
rate of quantum ergodicity. Moreover, by varying the correlation distance the autocorrelation
function is shown to be an interesting new tool to measure the rate of quantum ergodicity on
different length scales.
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Appendix A. Autocorrelation function in terms of normal derivatives on the boundary

We will give a derivation of the formula (10) which provides an expression of the
autocorrelation function C(§x) in terms of the normal derivative. Let (q) be a solution
of the Helmholtz equation with Dirichlet boundary condition on 9£2,

(A+kHY(q) =0 v(g) =0 for qedQ (59)
where we have defined k = +E, and let
u(s) :==n(s)Vy(q(s)) (60)

be the outer normal derivative of ¥ on 0€2, where s parametrizes 92 in arclength. It is well
known that

1 _|v@ for q e Q°

‘Z[m Yo(klg = q(s)Du(s) ds = {0 for g0 (61)
and furthermore

/ Jo(klg — g(s)Du(s)ds = 0. (62)

aQ
Let p(¢) be a smooth cut-off function with
1 for ¢ < 2diam(R2)
p) = :0 for ¢ > 3diam(Q) (63)

where diam(£2) denotes the diameter of 2. Then we have for g in some neighbourhood of €

1
Y(q) = 7 /Qp(qu —q@)DYo(klg — g(s)Du(s)ds (64)
3
and obtain
C(x) :/ Y (@) (q +dx) dg = /f K,(8z, s, s u*(s)u(s") dsds’ (65)
R? QX IQ
with
1

K,(8x,s,5") = T6 /Rz plklg — q(s)DYo(klg — q(s)))Yo(klq — q(s") + Sx|) dg

=% |, p(klg)Yo(klg)Yo(klg +q(s) — q(s") + 8x|) dg. (66)

B2

Due to the factor p(k|q — q(s)|) this integral is absolutely convergent. We now use Grafs
addition theorem [45]

> 1ez Yitk| AgD) Ji(klql) cos(lp) for |q| < [Aq|
> 1ez Yi(klgD Ji(k| Aql) cos(lp) for |q| > [Aq]

where Aq = q(s) — q(s') + S« and ¢ is the angle between Agand q. Introducing polar
coordinates in the integral in (66) and using (67) gives

Yo(klg+ Aql) = (67)
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£ pladl
K,(x, s, s = §/ Yo(kr)Jo(kr)r dr Yo(k|Aql)
0

+ T p(kr)Yo(kr)Yo(kr)r dr Jo(k|Aq]) (68)
8 Jiagl

where we have furthermore used that p(r) = 1 for r < |Aq| by (63). The first integral is
a1 |AqP
/ Yo(kr)Jo(kr)r dr = T[Yo(kIAQI)Jo(kIAQI) +Yi(klAgD)Ji(k|Agl)] (69)
0
see, e.g. [45], and for the second one partial integration gives

o) A 2
/ p(kr)Yo(kr)Yo(kr)r dr = —%[Yo(klAql)Yo(klAqD +Yi(k|AgDY (k| Ag])]
|Aq]

k o0

-3 / o' (kr)[Yo(kr)Yo(kr) + Y1 (kr)Y; (kr)]r2 dr. (70)
|1Ag]

Note that since p’ has compact support the second integral is over a finite interval, and for

5,8 € 02, 8z € Q the lower limit of the integral, |Aq|, is outside the support of p’, hence

the second term on the right-hand side of equation (70) is constant. So we get

K,(8xz,s,s") = K@z, s,s)+ R,(8z, s, 5") (71)
with
_ TlAgl
K@z, s,s") = 6 [Y1(k|Ag)Ji(k|Ag)Yo(k|Agl) — Yi(k|Ag)Yi(k|Agl) Jo(k|Agl)]
(72)
and
R,(8z,s,s") = CJo(k|Aql) (73)

with C constant and by (62) this term gives no contribution to C(éx). Using a Wronsky
determinant of Bessel functions [45] we can simplify K (8, s, s) further

A 2
Kz, s,s") = ﬂ|16q| Yi(kIAgD[Ji (k] AgD Yo (k| Aql) — Yi(k|AgD) Jo(k|Ag])]

| Aql? 2 [Aq|
= Yy (k|A =2V kA 74
T 1 (k| ql)ﬂkmq| Sk 1(k|Aq) 74)

which gives the final result.

Appendix B. Remainder estimate

In this appendix we sketch the derivation of the remainder estimate in equation (19). We start
by representing the integral as an expectation value, see (24)

o] 2w
/o /0 /Qp(fﬂ — QW (D, g) dg' P WDVE Ly dr = (yr, Ay) (75)

where A is the Weyl quantization of the symbol

a(p. q) = pla — q)e Ve I w0), (76)

The basic idea is to find a decomposition of the operator A

A=Ay+(~V—A—+vE)A +R 7
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where Ag has the Weyl symbol

ao(p, q) = p(x — q) 1@ (78)
and the remainder R satisfies
IR| < CE™'2 (79)

If we assume the decomposition (77) and take the expectation value of both sides, one gets

(. AYr) = (¥, Ao) + (¥, RY) (80)

where (v/—A — vE)¥ = 0 has been used. In terms of the symbols equation (80) is the
desired result, see (19)

[e'S) 2
/ / / WD, @)p(x — q) dg’ "1 e=ONE 1 4g dr
0 0 Q

00 2
_ f / f W, @)p(a — q)dg' €100 1 dgdr + OGE).  81)
0 0 Q

Let us now show that the decomposition (77) is basically a quantization of the Taylor expansion
of the symbol a(p, q) around |p| = VE,

a(p.q) = a(p. q) + (Ipl = VE)ai(p. @). (82)
Quantizing this classical decomposition yields (77) with R given as the Weyl quantization of
r(p. ) = (Ipl = VE)ai(p. @) — (Ip| = VE)#ar(p. @) (83)

since the Weyl symbol of (/—A — VE)A,is (Ipl— VE)#a, (p, q@) with # denoting the symbol
product (see e.g. [46]). Since E is a constant we have

r(p, @) = |plai(p, @) — Ipl#a1(p, @) (84)

and this is a function which is bounded and of order O (|8x|E~"/?), and all its derivatives are
bounded and of order O (|| E~!/?), too. So by the Calderon Vallaincourt theorem [46] the
estimate (79) follows.

Appendix C. Estimating the Bessel sum

In this appendix we determine how many terms in the sum (28) have to be taken into account
such that the remainder is smaller than some given error §. From (26) and (27) it follows that
for fixed ¥

(¥, Az (@) ) cos(216) + (¥, Boy(a)yr) sin(216)| < C. (85)

Thus if we split the sum

D D', Au(@)y) cos(216) + (, Bu(@)yr) sin(210)] J(|5))
=1

m—1

=Y (='[{, Ay(@)y) cos(20) + (W, Bu(@)yr) sin(216)] Ju (1)) + Ry (I8) (86)

=1

we get for the remainder

|Rn()] < C Y| Ju(r)]. 87

I=m
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Therefore we have to estimate the sum over Bessel functions
o0

> 1) (88)

I=m

and determine its dependence on m and r. The asymptotics in the transition region

T2l —z(2D)'?) ~ Al(zmz) (89)
gives that Jy;(r) is monotonically increasing for r < 2/, such that for r < 2m
= =1 20 —r
[Z [T ()] = [Z i Al (W) +0(m™). (90)
Defining z by
r=2m—zm'’? o1
we obtain

Ng

=1 2 —r =1 20-m)  (m\'?
YAl T ) = XAl T e T
I=m I=m
_i . A (om 173
T emy B ey s T Urm
l —-1/3
_me ——+z)+0m'") (92)

where we have furthermore used that for large m only the terms with [ < m contribute, because
the Airy function is exponentially decreasing for positive arguments. The Euler McLaurin
formula then gives

oo

> Loai( 2L /oo Loai( s 2) @+ o
—= Al ——= = ——= Al —= m- "
L s it y mi3 mis e
1 o0
:5/ Ai(x)dx + O(m~'73). (93)

And so finally we arrive at

o0 1 o0

Z|121(r)|:§[ Ai(x) dx + O(m™'?). (94)

I=m z

The function L * Ai(x) dx is monotonically decreasing, so for a given § > 0 we can define a
z(8) by
1 o0
—/ Ai(x) dx =46 (95)
2 Jzo
and then (91) defines together with (95) a function m (r, §) such that

o0

> 1l =8+00""). (96)

I=[m(r,8)+1]

By solving (91) for large r, we see that we have to take approximately

m(r.8) ~ 2 ;(2)1/3 ©7)
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Figure 12. For the bounds § = 10~*and § = 1078 of the sum over Bessel functions (88) the result
of the exact computation of m(r, §) (full curves) and the asymptotic result (97) are compared. The
asymptotic result approaches the exact one slowly from below with a rate O(-—'/3).

terms in the sum (28) over [ into account such that the error is § + O (r~1/3).

For instance, if we require § = 107*, then (95) gives z(8) = 4.359...; ford = 1078 one

gets z(8) = 7.925. ... In figure 12 we show for these choices of z the asymptotic result (97)
compared to the exact computation, corresponding to (88). The asymptotic result approaches
the exact one slowly from below; in the plotted region a constant offset by two compared to
(97) gives a good bound for m(r, §).

References

[1]
[2]

[3]

[4]
[5]

(6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]

[14]
[15]

[16]

Berry M V 1977 Regular and irregular semiclassical wavefunctions J. Phys. A: Math. Gen. 10 2083

McDonald S W and Kaufmann A N 1988 Wave chaos in the stadium: statistical properties of short-wave
solutions of the Helmholtz equation Phys. Rev. A 37 3067

Aurich R and Steiner F 1993 Statistical properties of highly excited quantum eigenstates of a strongly chaotic
system Physica D 64 185

Li B and Robnik M 1994 Statistical properties of high-lying chaotic eigenstates J. Phys. A: Math. Gen. 27 5509

Robert D 1998 Semi-classical approximation in quantum mechanics. A survey of old and recent mathematical
results Helv. Phys. Acta 71 44

Shnirelman A I 1974 Ergodic properties of eigenfunctions Usp. Math. Nauk 29 181 (in Russian)

Zelditch S 1987 Uniform distribution of eigenfunctions on compact hyperbolic surfaces Duke. Math. J. 55 919

Colin de Verdiére Y 1985 Ergodicité et fonctions propres du laplacien Commun. Math. Phys. 102 497 (in French)

Helffer B, Martinez A and Robert D 1987 Ergodicité et limite semi-classique Commun. Math. Phys. 109 313
(in French)

Gérard P and Leichtnam E 1993 Ergodic properties of eigenfunctions for the Dirichlet problem Duke Math. J.
71 559

Zelditch S and Zworski M 1996 Ergodicity of eigenfunctions for ergodic billiards Commun. Math. Phys. 175
673

Biicker A, Schubert R and Stifter P 1998 Rate of quantum ergodicity in Euclidean billiards Phys. Rev. E 57 5425

Bicker A, Schubert R and Stifter P 1998 Phys. Rev. E 58 5192 (erratum)

Voros A 1976 Semi—classical approximations Ann. Inst. H Poincaré A 24 31

Voros A 1977 Asymptotic i—expansions of stationary quantum states Ann. Inst. H Poincaré A 26 343

Berry MV 1983 Semiclassical mechanics of regular and irregular motion Comportement Chaotique des Systémes
Déterministes—Chaotic Behaviour of Deterministic Systems ed G Iooss, R H G Hellemann and R Stora
(Amsterdam: North-Holland) pp 171-271

Srednicki M and Stiernelof F 1996 Gaussian fluctuations in chaotic eigenstates J. Phys. A: Math. Gen. 29 5817

75




Autocorrelation function of eigenstates in chaotic and mixed systems 563

[17]
[18]
[19]
[20]
[21]
[22]

[23]
[24]

[25]
[26]

[27]
[28]

[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]

[37]
[38]

[39]
[40]

[41]
[42]

[43]
[44]

[45]
[46]
[47]

[48]
[49]

[50]

Srednicki M 1996 Gaussian random eigenfunctions and spatial correlations in quantum dots Phys. Rev. E 54
954

Hortikar S and Srednicki M 1998 Correlations in chaotic eigenfunctions at large separation Phys. Rev. Lett. 80
1646

Hortikar S and Srednicki M 1998 Random matrix elements and eigenfunctions in chaotic systems Phys. Rev.
E 577313

Gornyi I V and Mirlin A D 2001 Wave function correlations on the ballistic scale: Exploring quantum chaos by
quantum disorder Preprint cond-mat/0105103

Li B and Rouben D C 2001 Correlations of chaotic eigenfunctions: a semiclassical analysis J. Phys. A: Math.
Gen. 34 7381

Toscano F and Lewenkopf C H 2001 Semiclassical spatial correlations in chaotic wave functions Preprint
nlin.CD/0108032

Shapiro M and Goelman G 1984 Onset of chaos in an isolated energy eigenstate Phys. Rev. Lett. 53 1714

Shapiro M, Ronkin J and Brumer P 1988 Scaling laws and correlation length of quantum and classical ergodic
states Chem. Phys. Lett. 148 177

Veble G, Robnik M and Liu J 1999 Study of regular and irregular states in generic systems J. Phys. A: Math.
Gen. 32 6423

Schubert R 2001 Semiclassical localization in phase space PhD Thesis Abteilung Theoretische Physik,
Universitidt Ulm

Bunimovich L A 1974 On ergodic properties of certain billiards Funct. Anal. Appl. 8 254

Bunimovich L A 1979 On the ergodic properties of nowhere dispersing billiards Commun. Math. Phys. 65
295

Robnik M 1983 Classical dynamics of a family of billiards with analytic boundaries J. Phys. A: Math. Gen. 16
3971

Robnik M 1984 Quantising a generic family of billiards with analytic boundaries J. Phys. A: Math. Gen. 17
1049

Wojtkowski M 1986 Principles for the design of billiards with nonvanishing Lyapunov exponents Commun.
Math. Phys. 105 391

Szdsz D 1992 On the K-property of some planar hyperbolic billiards Commun. Math. Phys. 145 595

Markarian R 1993 New ergodic billiards: exact results Nonlinearity 6 819

Prosen T and Robnik M Private communication

Prosen T and Robnik M 1993 Energy level statistics in the transition region between integrability and chaos
J. Phys. A: Math. Gen. 26 2371

Riddel R J Jr 1979 Boundary-distribution solution of the Helmholtz equation for a region with corners J. Comput.
Phys. 3121

Berry M V and Wilkinson M 1984 Diabolical points in the spectra of triangles Proc. R. Soc. A 392 15

Biicker A 1998 Classical and quantum chaos in billiards PhD Thesis Abteilung Theoretische Physik, Universitit
Ulm

Vergini E and Saraceno M 1995 Calculation of highly excited states of billiards Phys. Rev. E 52 2204

Heller E J 1984 Bound-state eigenfunctions of classically chaotic Hamiltonian systems: scars of periodic orbits
Phys. Rev. Lett. 53 1515

Bai Y Y, Hose G, Stefanski K and Taylor H S 1985 Born—Oppenheimer adiabatic mechanism for regularity of
states in the quantum stadium billiard Phys. Rev. A 31 2821

O’Connor P W and Heller E J 1988 Quantum localization for a strongly classically chaotic system Phys. Rev.
Lett. 61 2288

Tanner G 1997 How chaotic is the stadium billiard? A semiclassical analysis J. Phys. A: Math. Gen. 30 2863

Bicker A, Schubert R and Stifter P 1997 On the number of bouncing-ball modes in billiards J. Phys. A: Math.
Gen. 30 6783

Abramowitz M and Stegun I A (eds) 1984 Pocketbook of Mathematical Functions (Thun—Frankfurt/Main:
Deutsch) abridged edition

Folland G B 1989 Harmonic Analysis in Phase Space (Annals of Mathematics Studies vol 122) (Princeton:
Princeton University Press)

Zyczkowski K 1992 Classical and quantum billiards, integrable, nonintegrable, and pseudo-integrable Acta
Phys. Pol. B 23 245

Bicker A and Schubert R 1999 Chaotic eigenfunctions in momentum space J. Phys. A: Math. Gen. 32 4795

Tualle J M and Voros A 1995 Normal modes of billiards portrayed in the stellar (or nodal) representation,
Chaos, Solitons Fractals 5 1085

Simonotti F P, Vergini E and Saraceno M 1997 Quantitative study of scars in the boundary section of the stadium
billiard Phys. Rev. E 56 3859

76




564

A Bicker and R Schubert

[51]

[52]
[53]

[54

[55

[56]
[571

[58]

Bicker A and Schubert R 2002 Amplitude distribution of eigenfunctions in mixed systems J. Phys. A: Math.
Gen. 35 527 (preceding paper) (nlin.CD/0106017)

Percival I C 1973 Regular and irregular spectra J. Phys. B: At. Mol. Phys. 6 L229

Bohigas O, Tomsovic S and Ullmo D 1990 Dynamical quasidegeneracies and separation of regular and irregular
quantum levels Phys. Rev. Lett. 64 1479

Prosen T and Robnik M 1993 Survey of the eigenfunctions of a billiard system between integrability and chaos
J. Phys. A: Math. Gen. 26 5365

Li B and Robnik M 1995 Separating the regular and irregular energy levels and their statistics in a Hamiltonian
system with mixed classical dynamics J. Phys. A: Math. Gen. 28 4843

Li B and Robnik M 1995 Geometry of high-lying eigenfunctions in a plane billiard system having mixed-type
classical dynamics J. Phys. A: Math. Gen. 28 2799

Carlo G, Vergini E and Fendrik A 1998 Numerical verification of Percival’s conjecture in a quantum billiard
Phys. Rev. E 57 5397 (chao-dyn/9804016)

Eckhardt B, Fishman S, Keating J, Agam O, Main J and Miiller K 1995 Approach to ergodicity in quantum
wave functions Phys. Rev. E 52 5893

7




78



[A3] Isolated resonances in conductance fluctuations and hierarchical

states
A. Backer, A. Manze, B. Huckestein, and R. Ketzmerick

Phys. Rev. E 66 (2002) 016211 (8 pages).

We study the isolated resonances occurring in conductance fluctuations of
quantum systems with a classically mixed phase space. We demonstrate
that the isolated resonances and the resonant scattering states can be as-
sociated to eigenstates of the closed system. They can all be categorized as
hierarchical or regular, depending on where the corresponding eigenstates
live in the classical phase space.
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I. INTRODUCTION

The classicaldynamicsof a scatteringsystemis reflected
in the transportpropertiesof its quantummechanicabnalog.
A prominentexamplein quantumchaosis the universalcon-
ductancefluctuationsexhibited by a scatteringsystemwith
classically completely chaotic dynamics[1]. Generic sys-
tems,however areneithercompletelychaoticnor integrable,
but show chaoticaswell asregularmotion [2]. The chaotic
dynamicsis stronglyinfluencedby the presencef islandsof
regularmotion; in particular onefinds a trappingof chaotic
trajectoriescloseto regularregionswith trappingtimesdis-
tributed accordingto powerlaws [3]. A semiclassicahnaly-
sis revealedthat conductanceéluctuationsof genericscatter
ing systemshavecorrespondingowerlaw correlationg4,5]
andmostinterestinglythatthe graphof conductancers con-
trol parameteiis a fractal [5]. Fractal conductanceluctua-
tions haveindeedbeenobservedexperimentallyin semicon-
ductornanostructure§s, 7], as well asnumerically[8].

Surprisingly for the cosinebilliard [9,10], a systemwith a
mixed phasespaceand powerlaw distributedclassicaltrap-
ping times, a recentnumerical study did not show fractal
conductancdluctuations[11]. Instead,sharpisolatedreso-
nancesverefoundwith awidth distributioncoveringseveral
ordersof magnitude.Only aboutone-third of them can be
relatedto quantumtunnelinginto the islandsof regularmo-
tion [12], while the restremainedunexplainedlt was later
shown that conductancefluctuations for mixed systems
shouldin generalshow fractal fluctuationson large scales
andisolatedresonancesn smallerscaleq 13]. The isolated
resonancedn the scatteringsystemwere conjecturedto be
related to a subsetof eigenstatesof the closed system,
namely hierarchicalstates[14] concentratingn the chaotic
componentclose to the regular regions and regular states
concentratingvithin theislandsof regularmotion[12]. This
type of behaviorwasobtainedfor a quantumgraphthatmod-
eledrelevantfeaturesof a mixed phasespace[13].

The purposeof the presentpaperis to establishthe origin
of all isolatedresonancesor a systemwith a mixed phase
space.To this end, we study the cosinebilliard for suitable
parametersn a threefoldway: (i) as a quantumscattering
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system|ii) asa closedquantumsystemand(iii ) its classical
phase-spacetructures.We find that the resonanceshave
scatteringstatesand correspondingeigenstatesf the closed
systemthat are concentratedn the hierarchicaland regular
partsof phasespace The numberof resonancesf eachtype
is directly relatedto the corresponding/olumesin the clas-
sical phasespace.Each resonancewidth is quite well de-
scribedby the strengthof the correspondingigenfunctionat
thebilliard boundary Exceptionsareshownto arisefrom the
presenceof avoided crossingsin the closed system.lt is
demonstratedhat the simultaneousappearanceof fractal
conductancefluctuations and isolated resonancesas ob-
servedin a quantumgraphmodel[13], would for our system
with a mixed phasespacerequire much higher enepgies.
Theseare currently computationallyinaccessible.

In the following section,we definethe modelwe useto
study the relation betweenthe scatteringresonanceandthe
eigenstatef the correspondingclosed system.Our main
resultsfor the classificationof resonanscatteringstatesand
correspondingeigenstate®f the closedsysteminto hierar
chicalandregulararepresentedn Secs.lll andIV. Therole
of partial transportbarriersis analyzedin Sec.V. In Sec.VI
we discusshe effect of avoidedcrossingn the assignment
of resonancesf the openbilliard to eigenstatesf the closed
systemand Sec.VIl givesa summaryof the results.Finally,
the Appendix containssomedetails of the numericalmeth-
odsemployedin the presentwork.

Il. THE MODEL

We study the cosinebilliard [9,10], either closedor with
semi-infinite leads attached.The boundariesof the billiard
are hard walls (i.e., Dirichlet boundaryconditions at y=0
and

M 27TX)
y(x):W+7 l—COE{T 1

for 0=x=L [seeFig. 1(@)]. In the openbilliard two semi-
infinite leadsof width W are attachedat the openingsat x
=0 andx=L, while in the closedbilliard the openingsare

©2002 The AmericanPhysicalSociety
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FIG. 1. (a) The cosinebilliard with semi-infinite leads (short
dashedines) and hardwalls for closing the system(dottedlines)
for W/L=0.18 and M/L=0.11. Also shown are the two most
prominentstableperiodic orbits for theseparameterglong dashed
lines). (b) Poincaresectionof someregularand onechaoticorbit for
the above parametersin PoincareBirkhoff coordinatesp vs
arclengths alongthe upperboundaryof the billiard. A major island
at (s,p)=(L'/2,0) around the elliptic I-shapedorbit and four
smallerislandssurroundingthe M-shapedorbit canbe seen.

closedby hardwalls. The classicalphase-spacstructurecan
be changedby varying the ratios W/L and M/L. For M/L
=0 the dynamicsis integrableand, for example,for M/L
=1/2 and W/L=1 the dynamicsappearsto be ergodic (at
leasttheislandsof regularmotion, if any, arevery small [9].
In the presentwork, we use the sameparametersas in
Ref.[11], namely W/L=0.18andM/L =0.11,for which the
|- and M-shapedorbits depictedin Fig. 1(a) are stable.The
correspondingPoincaresectionis shownin Fig. 1(b). We use
PoincareBirkhoff coordinatess, p), wheres is thearclength
along the upper boundary of the billiard with length L’
~1.029L andp is the projectionof the unit momentunmvec-
tor after reflectionon the tangentat the point s.
Quantummechanicallyfor a given wave numberkg the
numberN of transmittingmodesin a lead of width W is the
largest integer with N<kW/7. We measureenegies in

PHYSICAL REVIEW E 66, 016211 (2002

units of the enegy Eq=%27%/(2mW?) of the lowestmode
in sucha lead,i.e., E=#2k2/(2mE,) = (ke W/ 7)2=N2. The
larger the numberN of modesis, the more details of the
classicalphasespacecanberesolvedby quantummechanics.
At the sametime the computationaleffort increasesas N*
and we compromiseasin Ref.[11], on the caseof N=45
transmittingmodesin the enegy rangeE e[2026,2100.

IIl. RESONANCESAND SCATTERING STATES

Resonancem the scatteringsystemwhich have beermb-
servedasisolatedfeaturesin conductancdluctuations[11],
were identified by isolatedpeaksin the WignerSmith time
delay = of the system.The time delayis given by

— F
7= 5 T(S'dSdE), @

where2N is the dimensionof the S matrix. The calculation
of Sand 7 wasalreadyoutlinedin Ref.[11] andis presented
in greaterdetail in the Appendix.

In Fig. 2 we showthe WignerSmithtime delay 7 [in units
of #/Eq=2mW?/(A7?)] for E<[2026,2100. The isolated
resonancefoundin Ref.[11] areclearly seen Eachisolated
resonancé,.; hasa Breit-Wigner shape

/4

7(E)=r, —m—————,
i(E) (E=Epee)) 2+ 24

(€]

with 7;I";=2/N. Notethatthe heights7; andthe correspond-
ing widths I'; of the individual resonancesover severalor-
ders ofmagnitude.

In order to elucidatethe nature of the resonanceswe
calculatedthe scatteringstatesinsidethe openbilliard. For a
given configurationof wavesincomingin bothleads knowl-
edgeof the Smatrix allowsthe determinatiorof the outgoing
wavesand hencethe wave function amplitudesat the open-
ings of the billiard. Sincethe S matrix is definedbetween
asymptotic,propagatingmodes,this procedureneglectsthe
contributionof evanescenmodesin the leadsin the vicinity
of thebilliard. The wavefunctionamplitudesat the openings
canthenbe usedas boundaryconditionsfor the solution of
the Schralinger equationinside the billiard. For the ex-
amplesof scatteringstatespresentedelow we occupiedthe

108
T
106 -

FIG. 2. WignerSmith delaytime 7 vs enegy
E. For eachresonance correspondingigenstate
of the closed systemwas found and the labels
indicatewhetherit is concentratedn the regular
(r) or hierarchical(h) regionof phasespace.
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FIG. 3. Resonanscatteringstates(top row) and Husimi projections(bottom row) onto the classicalPoincaresectionwith KAM tori
(solid lines) anda partialtransportbarrier(dashedine). Two examplesatresonancenegies2029.172left) and2041.109right) areshown.
They areconcentratedn the regularandthe hierarchicalregion of phasespace respectively For the representationf the scatteringstates
a superpositiorwith equalweight’s of the tentopmostmodesincoming from the left is shown.

tentopmostmodesincomingfrom the left with equalampli-
tudes. Similar pictures were obtained for other boundary
conditions.

For the comparisorof the scatteringstateswith the clas-
sical phase-spacstructureswve havecalculatedHusimi pro-
jectionsH®Ys,p). Similar to the caseof closedbilliards (see
Sec.1V), we definetheseby the projectionof the scattering
state onto a coherentstate on the upper boundaryof the
billiard,

H(s,p) = (ant] 65" s, p)) 2 (4)

, 2
:UL ds/(?n./l*(Sr)eikp(s'—s)—(uz)k(s'—s)2 i
0
(5

with k= VE#x/W. Here d,i(s)=n(s)- V(q(s)) is the nor
mal derivativeof the scatteringstateon the upperboundary
n(s) is the normal vector and q(s) is the position of the
boundaryasa functionof arclengths. Note thattheseHusimi
projectionsare not normalizedand are influencedby the
openingsover a rangeof a few Fermi wavelengthsAlso,

they do not include the full billiard boundaryand therefore
no periodizationof the coherentstatehasbeenused.

As a first example,we presentin Fig. 3 on the left the
scatteringstateat an enegy of approximately2029.172 the
centerenegy of the sharpesbbservedesonanceObviously
the scatteringstateis associatedvith the I-shapedperiodic
orbit. The wave function amplitudeis concentratechearthe
orbit and the Husimi projectionconcentratepredominantly
inside the centralstableisland of the classicalphasespace.
For comparisonwe presentin Fig. 3 on the right the scat-
tering stateat enegy 2041.109.The width of the resonance
at this enepy is about6x 10’ timeslarger thanthe width of
the sharpestesonanceEvidently, this resonances not re-
lated to the stableislandsin phasespace.In contrast,by
comparing with the superimposedKolmogorov-Arnold-
Moser(KAM ) tori of the Poincaresectionanda partialtrans-
portbarriersurroundingheislandhierarchy(seeSec.V), we
seethat the Husimi projectionis concentratedn the hierar
chicalregionbetweerthe islandsanda partial transportbar
rier.

As scatteringstatesallow a greatvariability in the bound-
ary conditions,e.g.,theincomingmodeswe do notusethem
for a detailedanalysisof the isolatedresonancednsteadwe

FIG. 4. Eigenfunctions (top
row) and Husimi representations
(bottom row) of a regular state
(5686, left) and a hierarchical
state(5720°, right) corresponding
to the scatteringstatesof Fig. 3.
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FIG. 5. Differenceof eigenstateenegy E,, and resonanceen-
ey Eesin units of the meanlevel spacingA vs I'/A. The devia-
tionsincreasewith I'.

considerthe correspondingigenstatesf the closedsystem
in the next section.

IV. RESONANCESAND CORRESPONDING EIGENSTATES

In this sectionwe want to demonstratehat the isolated
resonancesf the conductancdluctuationsandtheir scatter
ing stateshave correspondingeigenstate®f the closedbil-
liard. In particular we will showthatall theseeigenstateare
concentratedn the hierarchicaland regular part of phase
spaceaswasconjecturedn Ref.[13]. Thisallowsalabeling
of all isolatedresonanceappearingn Fig. 2.

For the closedsystemthe eigenvaluesand eigenfunctions
are computedusing the boundaryelementmethod;see,e.g.,
[15] andreferencegherein.Sincethe cosinebilliard is sym-
metric with respectto the axis x=L/2, the eigenstatehave
definite parity P=+,—. The actual calculationsare per
formed for the desymmetrizedilliard with either Dirichlet
or Neumannboundary conditions on the symmetry axis
yielding the antisymmetric(P=—) and symmetric (P=
+) statesrespectivelyWe label the nth eigenstatef parity
P by n?. Themeanlevel spacingA is determinecby thearea
A=L(W+M/2) of the billiard using Weyl's formula A/E,
=(47h?2mA)/Ey=0.176.

We presentn Fig. 4 thetwo eigenstatesorrespondingo
the scatteringstatesshownin Fig. 3. For eachstate,we show
the eigenfunctiondensity | ,(q)|> and the corresponding
Husimi representatioi ,(s,p) (see,e.g.,[16,17). The state
5686, displayedon the left of Fig. 4, differsin enegy by
about0.01A from the sharpesbbservedresonancevith en-
ergy 2029.172.Note that this enegy differenceis of the
order of the accuracyto which our resonanceenegies and
eigenvaluesre calculated On the right handside of Fig. 4,
a hierarchicalstateis displayed.lts enegy differs from the
resonancet enegy 2041.109by about0.1A. This shift of
theresonancenegy from the eigenenagy of the closedsys-
tem is due to the openingof the systemby attachingthe
leads.As for the scatteringstates,we have superimposed
someKAM tori ontothe Husimirepresentationsf Fig. 4. In
addition, a partial transportbarrier surroundingthe island
hierarchyis shown(seenext section.

Now we wantto associatall resonancesf the scattering
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FIG. 6. The strength» of an eigenstateat the left boundaryvs
theresonancevidth I' of the correspondingesonanceAn approxi-
mateproportionalitycan be seen.

systemwith width I" at enegy E . with an eigenstatef the

closedbilliard with enegy E,,. We usea Husimi represen-
tation H,,(s,p) on the Poincaresectionto determinethe re-

gionin which aneigenstatdocalizes We introducethe quan-

tity

0 1
7,"=f dsf dpHn(s,p), (6)
-W -1

which integrateghe Husimi distributionover the left bound-
ary of the billiard (not shownin Fig. 4) with the normaliza-
tion of the Husimi distribution chosen such that
SY2ds dpH,(s,p) = 1. This quantity gives an estimate
of how strongly a stateof the closedsystemwill coupleto
the leadsin the scatteringsystemand should be roughly
proportionalto I'. This allowedusto find, for eachof the 54
resonancesvith '<A/2, a statewith Eq~E,sandwith 7
~TI". Figures5 and 6 showthe differenceEg,— E s in units
of themeanlevel spacingA andthe approximateproportion-
ality of » and[", respectivelyClearly, larger differencesap-
pearfor biggerI", but still a clearidentificationis possible
(see Sec. VI). This assignmentalso works the other way
around,as ofthe 46 eigenstatesvith the smallestvaluesof
7, we canidentify 40 with isolatedresonancesnissingonly
the six regulareigenstatesjuantizedmostdeeplyin the cen-
tral island of phasespace asdiscussedelow

For the 54 resonancewith width I' lessthanhalf a mean
level spacing,we analyzethe structureof the corresponding
eigenstatedNVe find that 17 statescanbe categorizedsregu-
lar states,as their Husimi representationsire concentrated
inside the five major stableislandsin phasespace Of these
states,sevenare associatedvith the I-shapedorbit and ten
with the M-shapedorbit. While we observeall statesin the
enegy interval associatedvith the M-shapedorbit, six fur-
ther eigenstatesre concentratedearthe centerof the cen-
tral stability island are not resolvedas resonancesAs these
are the innermoststatesin the island, we expectthem to
couplemoreweakly to the leadsandtheir resonancevidths
to be much smaller than the sharpestobservedresonance.

01621-4
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Apparently theseresonanceare so narrowthat we werenot
ableto find them,givenour currentnumericalaccuracyeven
knowing their approximateenegy from the eigenvalues.

The remaining 37 resonancesre not relatedto regular
states put the Husimi representationsf their corresponding
eigenstateshave large intensity in the region betweenthe
regularislandsand the partial transportbarrier and a much
weakerintensityin therestof the chaoticregion.It shouldbe
notedthatin the studiedenegy rangeaccessibl¢o our meth-
ods the wavelengthis of the order of the distancebetween
regularislandsandthe partial transportbarrier Thereforethe
eigenstatedook either like regular statesconcentratecut-
side the island [18] or similar to scarredstateson a hyper
bolic orbit closeto the island[19]. For higherenegiesthey
would show the true propertiesof hierarchicalstates,i.e.,
similar to a chaotic state, but restrictedto the hierarchical
region[14]. We thereforeclassifythesestatesashierarchical
states.

In Fig. 2 we havelabeledthe resonancedy r andh ac-
cordingto our classificationof the correspondingigenstates
as regularand hierarchical,respectively This demonstrates
that the origin of all isolatedresonancess hierarchicalor
regulareigenstatesf the closedsystem.

V. PARTIAL TRANSPORT BARRIERS

Classicaltransportin the chaotic part of phasespaceis
dominatedby partial barriers[20—24]. They are formed by
cantorias well asby stableand unstablemanifolds.Sucha
partial transportbarrier coincideswith its iterate, with the
exceptionof so-calledturnstileswhere phase-spacgolume
is exchangedetweenboth sidesof the partial barrier We
haveconstructegartial barriersusingthe methodsdescribed
in Ref.[20]. The fluxes® are determinedrom the lengthl
of the maximizingand minimax orbits, accordingto

@)

b= hkF‘ | maximizing | m|n|ma>J

=hw \/El I maximizing I minima)J/W- (8)

Quantum mechanically partial transport barriers with
fluxesup to the order of 7 divide the chaoticpart of phase
spaceinto distinct regions with chaotic and hierarchical
eigenfunctionsare concentratednainly on one or the other
side[14]. We found thatthe partial barrierwith smallestflux
that surroundsthe main island and the four neighboringis-
landscanbe constructedrom the stableand unstablemani-
folds of the period-4hyperbolicfixed points.Eachof its two
turnstileshasfor our largestenegy E=2100a flux 1.06%.
Further outside are many other partial barriers with only
slightly biggerfluxes.As anexamplewe showin Figs.3 and
4 the partial barrier constructedfrom an unstableperiodic
orbit with winding number5/23, which is an approximanof
the mostnobleirrational betweenwinding numbersl/4 and
1/5. 1t hasaflux 1.65:.

A checkon thevalidity of ouridentificationof regularand
hierarchicalstatess providedby a comparisorof their num-
bersto the correspondingelativevolumesin phasespaceTo
this end, we calculatethe volume of the tori associatedvith
stableperiodic orbits, V,, andthe chaotic phase-spaceol-
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umeinside the partial transportbarrier Vy,. We find V, and
V,, to cover5.9%and8.5% of the enegy shell, respectively
From the total numberof eigenstatesn the enepgy interval,
N=426, we get for 23 (17+6) regularand 37 hierarchical
statesrelative fractions of 5.4% and 8.7%, respectively in
good agreementvith the volumesof the associatedegions
in phasespace.

The absenceof fractal conductancefluctuationsin this
systemnow hasa clearexplanation Accordingto Ref.[13]
for fractal fluctuationsto occura hierarchyof partial trans-
port barrierswith fluxes larger than # must exist. For the
enegiesstudiedwe find that eventhe outermostpartial bar
riers surroundingthe hierarchicalphase-spacstructurehave
fluxes of the order of #. This causesa quantumdynamical
decouplingof the chaotic part connectedo the leadsfrom
the entire hierarchicalpart. As the hierarchicalregionis the
semiclassicabrigin of fractal fluctuations,they are not ob-
served.For muchhigherenegiesonly, the hierarchyof par
tial transportbarrierswould have anouterregionwith fluxes
larger than 7%, leading to fractal conductancefluctuations.
Theinnerregionof this hierarchywith fluxessmallerthan
hasnow a smallerphase-spacgolume. Still, togetherwith
the regular regions it will causeisolated resonanceson
smaller scalesthan the fractal fluctuations. Unfortunately
this enegy regimeis currently computationallyinaccessible
for the studiedsystem.

Powerlawsin the distributionof resonancevidths andin
thevarianceof conductancéncrementshadbeenobservedn
Ref. [11], apparently reflectinghe classicaldwell time ex-
ponent.They wererelatedto the resonancebelow the mean
level spacing.For theseresonancesve have now demon-
stratedthat they arisedue to hierarchicaland regularstates.
This allows usto apply the agumentsof Ref.[13] aboutthe
resonancevidth distributionof hierarchicalstatesThey lead
to the conclusionthat theseapparenpowerlaws comefrom
broadtransitionregionsto asymptoticdistributionsthat are
unrelatedto the classicaldwell time exponent.

VI. AVOIDED CROSSINGS

While for mostresonanceand correspondingigenstates
the parametersy andI” areof the sameorderof magnitude,
for somestatesyn exceedd" by up to two ordersof magni-
tude. This phenomenorcan be understoodas an effect of
avoidedlevel crossingsn the closedsystem.In Fig. 7(a) we
show as an examplethe dependencef the enegy of states
5736 and5737 asa functionof the parameteM/L for the
narrowrange0.10999< M/L=<0.11001, displayingthe typi-
cal featuresof an avoided crossing.A comparisonof the
associatedHusimi representationsshows that the states
5736 and5737 do indeedexchangetheir characterfrom
chaoticto regularand from regularto chaotic,respectively
showing a superpositionat M/L=0.11. Upon openingthe
system the chaoticstatecouplesmuch more strongly to the
leadsas comparedto the regularone. Consequentlyin the
complexenegy plane of the scatteringsystemthereis no
longer an avoided crossing. The regular state leadsto an
isolatedresonancevith an almostlinear enegy dependence
on M/L and the phase-spacsignatureof the regular state

01621-5
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FIG. 7. (a) Enegies of states5736 and 5737 (solid lines)
showinganavoidedcrossingundervariationof M/L. Theenegy of
the only isolatedresonancén this enegy range(dotsconnectedy
a dashedine) follows the regularstateof the closedsystem.The
slight offset in the resonanceenegy is within the systematicnu-
mericalerror of the numericalmethod.(b) The Husimi representa-
tions for state5737 (top row), the scatteringstate (middle row),
and eigenstate 5736  (bottom row) are shown for M/L
=0.10999,0.11,0.11001left to right). For the eigenstatesone
clearly seesthe typical exchangeof the structurewhile passingthe
avoidedcrossing,whereashe scatteringstateis not affected.

[middle row in Fig. 7(b)]. It closely follows the expected
enegy dependencef theregularstatein the closedsystemif
it had not madean avoidedcrossingwith the chaotic state
[Fig. 7(a)].

Anotherexampleof an avoidedcrossingis given by state
5801 with aneigenvalueabout0.5A lessthantheresonance
position (seethe lower right cornerof Fig. 5) andthe state
5802, with aneigenenagy about1.4A abovetheresonance
enepgy. Both statesshowsimilar Husimi representationand
have » valuesexceedindl’ by abouta factor of 10.

In all thecasesvhen 7 drasticallyexceedd™ acloserlook
at theseeigenstategevealsthat they are superpositionf
regular or hierarchicalstateswith chaotic states.They are
dueto avoidedcrossingsandthe chaoticpartleadsto a com-
parativelylarge value of #. In contrast,in the opensystem
no avoidedcrossingoccursin the complexenegy planeand
the resonancevidth I' is unafected.

PHYSICAL REVIEW E 66, 016211 (2002

VII. CONCLUSION AND OUTLOOK

We demonstratea clear correspondencef the isolated
resonance®bservedn the transportpropertiesof the open
cosinebilliard to hierarchicaland regulareigenstate®f the
closedbilliard. We can identify all resonancesvith widths
lessthanhalf of the meanlevel spacing.The classificationof
resonance@to a hierarchicalor regularorigin yields num-
bersin agreementith the relative phase-spaceolumes.On
aquantitativelevel, we find aroughlylinearrelationbetween
the widths of the isolatedresonanceandthe weightsof the
associatectigenstatesit the part of the boundarywherethe
leadsareattachedStateswith unusuallylarge weightscanbe
attributedto avoidedcrossingswith chaoticeigenstates.

We find that the island hierarchyis separatedrom the
chaoticpart of phasespaceby partial transportbarrierswith
fluxes of the order of 7. This supportsthe notion that the
absenceof fractal conductancdluctuationsin the currently
accessibleenegy rangeis due to the quantumdynamical
decouplingof the hierarchicalpart of phasespacefrom the
chaoticpart connectedo the externalleads.

The simultaneousappearancef isolatedresonancesind
fractalfluctuations beyondthe quantumgraphmodelstudied
in Ref. [13], remainsto be demonstratechumericallyor ex-
perimentallyfor a systemwith a mixed phasespace Numeri-
cally, the challengeis the observationof fractal fluctuations
of the conductanceyhich go beyondoneorderof magnitude
[25]. This requirescalculationswith a drasticallyincreased
numberof modes,the use of improvedtechniquedike the
modular recursive Greens function method[26], and the
searchfor suitablebilliard systemsvherethe turnstilefluxes
acrosspartial barriers are particularly large. Isolated reso-
nanceswill easilyappearas soonasthe parameteis varied
on a sufficiently small scale.We notethat fluctuationsof the
quantumstayingprobability, which canbe fractal[8], cannot
show isolatedresonancesSimilarly, we expectno appear
ance of isolated resonanceswithin the fractal fluctuations
observedin recentstudies[27], as they are unrelatedto a
classicalmixed phasespace.

On the experimentakide, fractal conductancéluctuations
have beerobserved6,7] andalsoisolatedresonancesom-
ing from regular regionshave recently beenreported[28].
The simultaneousappearancef both types including iso-
latedresonancefrom hierarchicaregionsrequiresoneto go
far enoughinto the semiclassicaregime, i.e., to quantum
dotswith dimensionsbiggerthanl um, asin Ref.[6]. At
the sametime the phase coherencetime must be large
enoughto resolveisolatedresonancesf a given width and,
of course the parametertypically a magneticfield, mustbe
varied on a sufficiently fine scale.Given the experimental
limitations it would be helpful if anoptimal form for sucha
quantumdot could be providedby theoreticalconsiderations.
This seemsto be quite difficult at present,sincethe differ-
encein the lithographicshapeandthe actualpotentialexpe-
riencedby electronshasdramaticconsequencesn the elec-
tron dynamicsand thus on the scalesover which fractal
fluctuationsandisolatedresonanceappear
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APPENDIX: HYBRID REPRESENTATION AND
RECURSIVE GREEN’S FUNCTION METHOD

In this appendixwe discussthe numericalmethodto de-
terminethe scatteringmatrix S and the time delay 7. The S
matrix of a symmetricscatteringsystemcanbe expressedn
termsof the Greens function G:

rot
S:(t r’)' (A1)
t=t", (A2)
r'=r, (A3)
top=— 17\ ,0G,p(0L), (Ad)
Fap=Oup— I U 0 4G os(0,0), (A5)
where
V.= E(th—zazwz)rz (A6)
“m 2mw?
is the velocity of mode« and
G,m(x,X'):LdyL,dy’¢Z(y:><)¢ﬁ(y’:><’)
XGH(r,r";E) (A7)

is the projection of the retarded Greens function
G*(r,r’;E) ontothelocal transversenodes

]2 .(aﬂ'y)
DY X)= Wsmm.

The Greens function canbe calculatedrecursively Expand-
ing the Hamiltonian

(A8)

w2 P
H:ﬁ(i W

+ A9
x> ay? (A9

in termsof the local transversenodes(A8) anddiscretizing
in the x directionwith a lattice constanta, x=ma, we obtain
the Hamiltonianin hybrid representatiofi29]

Hh=25 aum)(ep+ 2E)Caml= 3, (t ol osm)

X(Bm+ 1|+t ) |, m+1)(8,ml), (A10)

witl
m ( §
W(ma)
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time1=Ee f #E(y:ma) pp(y;(m+Daydy, (ALL)

and E;=#2/(2ma?). In order to recursively calculatethe
Greens function associatedvith Hy,, we split the Hamil-
tonian HY'** of a systemwith m=1,... M+1 into two
parts,

HY*1=Hy+U, (A12)

Ho=HNM+> |a,M+1)(ef.,+2E)(a,M+1],
m

(A13)
U= *ZB (tim 1l e MY(BM+1]
*tﬁ+1,M|avM+1><ﬁvM|)- (A14)
Dyson’s equation,
GM*1=Gy+GoUGM T, (A15)

then allows us to calculatethe Greens function GM** of
HM** from GM and

Go=(E—Ho) 1=GM+> |a,M+1)g) " Ya,M+1],
(A16)

9 = (E- €. —2E)

We start the recursionwith M=1 at the left edgeof the
closedbilliard anditerateto the right edgeat M =N_=L/a.
In orderto attachthe leads,we againsplit the Hamiltonian
accordingto Eq. (A12), but this time Hy containsthe Hamil-
tonianof the closedbilliard andthe semi-infiniteleads.In the
leads, %= (aa/W)? andts . 1= 5,4E,. U is the coupling
betweenthe billiard andthe semi-infiniteleads.The Greens
function for the leadsis known analytically[30].

The recursionschemes exactfor an infinite numberN,_
of slicesandaninfinite numberN of transversenodes.For
numericalcalculations both numbershaveto be kept finite.
We find that the deviationsfrom the asymptoticvaluesfor,
e.g.,thewidth I' of aresonancescaleas

I'(Ng,N)=T+bNg*+cN 2, (A17)
with positive numericalcoefficientsb andc. For our choice
of parametersN=45 transmittingmodesin the leads,the
valuesNc=108 and N, = 12000 give an accuracyof about
1% for the resonancevidth. The correctionsto the position
of the resonancehave the samefunctional form asin Eq.
(A17); however they canbe either positive or negative de-
pendingonthevaluesof N¢ andN . This explainsthe slight
offset of the resonancenegieswith respecto the eigenen-
ergiesof the closedsystemseenin Fig. 7(a).
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[A4] Numerical aspects of eigenvalues and eigenfunctions of chaotic quan-
tum systems

A. Bécker

in:  The Mathematical Aspects of Quantum Chaos I, M. Degli Esposti and S.

Graffi (Eds.), Springer Lecture Notes in Physics 618, 99-144 (2003).

We give an introduction to some of the numerical aspects in quantum chaos.
The classical dynamics of two—dimensional area—preserving maps on the
torus is illustrated using the standard map and a perturbed cat map. The
quantization of area—preserving maps given by their generating function is
discussed and for the computation of the eigenvalues a computer program in
Python is presented. We illustrate the eigenvalue distribution for two types
of perturbed cat maps, one leading to COE and the other to CUE statis-
tics. For the eigenfunctions of quantum maps we study the distribution of
the eigenvectors and compare them with the corresponding random matrix
distributions. The Husimi representation allows for a direct comparison of
the localization of the eigenstates in phase space with the corresponding
classical structures. Examples for a perturbed cat map and the standard
map with different parameters are shown. Billiard systems and the corre-
sponding quantum billiards are another important class of systems (which
are also relevant to applications, for example in mesoscopic physics). We
provide a detailed exposition of the boundary integral method, which is one
important method to determine the eigenvalues and eigenfunctions of the
Helmholtz equation. We discuss several methods to determine the eigenval-
ues from the Fredholm equation and illustrate them for the stadium billiard.
The occurrence of spurious solutions is discussed in detail and illustrated for
the circular billiard, the stadium billiard, and the annular sector billiard.
We emphasize the role of the normal derivative function to compute the
normalization of eigenfunctions, momentum representations or autocorre-
lation functions in a very efficient and direct way. Some examples for these
quantities are given and discussed.
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Numerical Aspects of Eigenvalue
and Eigenfunction Computations
for Chaotic Quantum Systems

Arnd Backer

Abteilung Theoretische Physik Universitdt Ulm, Albert-Einstein-Allee 11,
D-89081 Ulm, Germany, arnd.baecker@physik.uni-ulm.de

Summary. We give an introduction to some of the numerical aspects in quantum
chaos. The classical dynamics of two—dimensional area—preserving maps on the
torus is illustrated using the standard map and a perturbed cat map. The quanti-
zation of area—preserving maps given by their generating function is discussed and
for the computation of the eigenvalues a computer program in Python is presented.
We illustrate the eigenvalue distribution for two types of perturbed cat maps, one
leading to COE and the other to CUE statistics. For the eigenfunctions of quan-
tum maps we study the distribution of the eigenvectors and compare them with
the corresponding random matrix distributions. The Husimi representation allows
for a direct comparison of the localization of the eigenstates in phase space with
the corresponding classical structures. Examples for a perturbed cat map and the
standard map with different parameters are shown.

Billiard systems and the corresponding quantum billiards are another important
class of systems (which are also relevant to applications, for example in mesoscopic
physics). We provide a detailed exposition of the boundary integral method, which
is one important method to determine the eigenvalues and eigenfunctions of the
Helmholtz equation. We discuss several methods to determine the eigenvalues from
the Fredholm equation and illustrate them for the stadium billiard. The occurrence
of spurious solutions is discussed in detail and illustrated for the circular billiard,
the stadium billiard, and the annular sector billiard.

We emphasize the role of the normal derivative function to compute the normal-
ization of eigenfunctions, momentum representations or autocorrelation functions
in a very efficient and direct way. Some examples for these quantities are given and
discussed.

1 Introduction

In this text, which is an expanded version of lectures held at a summer school
in Bologna in 2001, we give an introduction to some of the numerical aspects
in quantum chaos; some of the sections on the boundary integral method
contain more advanced material. In quantum chaos one studies quantum sys-
tems whose classical limit is (in some sense) chaotic. In this subject computer
experiments play an important role. For integrable systems the eigenvalues
and eigenfunctions can be determined either explicitly or as solutions of sim-
ple equations. In contrast, for chaotic systems there are no explicit formulae

Mirko Degli Esposti, Sandro Graffi (Eds.): LNP 618, pp. 91-144, 2003.
© Springer-Verlag Berlin Heidelberg 2003
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for eigenvalues and eigenfunctions such that numerical methods have to be
used. In many cases numerical observations have lead to the formulation of
important conjectures. Such numerical computations also allow us to test
analytical results which have been derived under certain assumptions or by
using approximations.

An important class of systems for the study of classical chaos are area—
preserving maps as several types of different dynamical behaviour like inte-
grable motion, mixed dynamics, ergodicity, mixing or Anosov systems can
be found. We discuss the numerics for the corresponding quantum maps and
illustrate some of the methods and results using the standard map and the
perturbed cat map as prominent examples.

Another important class of systems are classical billiards and the cor-
responding quantum billiards. In Sect. 3 we discuss in detail the boundary
integral method, which is one of the main methods for the solution of the
Helmholtz equation, which is the time—independent Schrodinger equation for
these systems.

2 Area Preserving Maps

2.1 Some Examples

We will restrict ourselves to area-preserving maps on the two-torus
P:T? T2 (1)
(¢:p) = (d,p) (2)

where T? ~ R2/Z?2, i.e. the map is defined on a square with opposite sides
identified. The requirement that the map P is area—preserving is equivalent
to the condition that det DP = 1, where DP is the linearization of the map
P. The natural invariant measure on T? is the Lebesgue measure dy = dgdp.

As a first example let us consider the so-called standard map, defined by

(1) = (757 a1 o
p p — 35 sin(2mq)

One easily checks that this map is area-preserving. Figure 1 shows some
orbits (i.e. for different initial points (q,p) the points (gn,pn) = P"(q,p)
are plotted for n < 1000) of the standard map for different parameters x.
For k = 0 an initial point (¢,p) stays on the horizontal line and in ¢ it
rotates with frequency p. So for irrational p the corresponding line is filled
densely. For x > 0, the lines with rational p break up into an island-chain
structure composed of (initially) stable orbits and their corresponding unsta-
ble (hyperbolic) partner. For small enough perturbation there are invariant
(Kolmogorov—Arnold—Moser or short KAM) curves which are absolute barri-
ers to the motion (for a more detailed discussion of these aspects the review [1]
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0.0 @ .

00 05 ¢ Lo oo 0.5 g Lo

Fig. 1. Examples of orbits in the standard map for different parameters «.

is a good starting point). For stronger perturbations, e.g. k = 1 or k = 1.5,
the stochastic bands become larger and for even stronger perturbation (see
the picture for k£ = 3.0) there appears to be just one quite big stochastic re-
gion together with the elliptic island. The elliptic islands coexist with regions
of irregular motion, therefore the standard map is an example of a so-called
system with mixed phase space or, more briefly, a mized system. Whether
the motion in those stochastic regions is ergodic is one of the big unsolved
problems, see [2] for a review on the coexistence problem. For some recent
results on the classical dynamics of the standard map, in particular at large
parameters, see [3,4,5].

An alternative way to specify a map P : T? — T2 is to use a generating
function S(¢’, ¢), from which the map is obtained by

95(4',9) ,_ 095, q)

= 224 St L VA 4
P oq P o0 (4)
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One easily checks that

K

1
S(q' ) = 5(a—d)+ 13 cos(2ma) (5)
is a generating function for the standard map (3).

Another important class are perturbed cat maps [6, 7], like

(Z,) "y (Z) + kG(q) <ﬁ;§) mod 1 (6)

A1 Az
A= 7
<A21 Ay @
is a matrix with integer entries (ensuring the continuity of the map), det A = 1
(area preservation) and Tr A > 2 (hyperbolicity). The perturbation G(q) is
a smooth periodic function on [0, 1[. For x = 0 the mapping is Anosov (see

e.g. [8]), in particular it is ergodic and mixing. Moreover, following from the
the Anosov theorem the map (6) is structurally stable, i.e. it stays Anosov

as long
< \/(TrA)2—4—TrA+2
R S Rmax ‘= 5
2max, |G’ (q)|\/1 + A3,

in particular the orbits are topologically conjugate to those of the unper-
turbed cat map. For larger parameters there are typically elliptic islands, so
it becomes a mixed system.

A common choice for A and the perturbation is

(1) =) (1) # fewom (1) moar

For k < Kpax = (\/g— 1)/\/5 =0.33... the map is Anosov. The correspond-
ing generating function is given by

where

(®)

K
472

In Fig. 2a) one orbit for 20000 iterations for the perturbed cat map (9) with
k = 0.3 is shown. The orbit appears to fill the torus in a uniform way, as
it has to be asymptotically for almost all initial conditions because of the
ergodicity of the map. For k = 6.5 Fig. 2b) shows one orbit (20000 iterates)
in the irregular component and some orbits (1000 iterations) in the elliptic
islands.

S(dq) =4 —qd + ¢ + sin(2mq) . (10)

2.2 Quantization of Area-Preserving Maps

For the quantization of area—preserving maps exist several approaches, see for
example [9,10,11,12,13,6,14,15,16]; a detailed account can be found in [17],
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a) k=0.3 b) k =6.5

035 % 0.3

00 - 0.0
00 0.5 ] Lo 00 0.5 4 L0y

Fig. 2. Examples of orbits in the perturbed cat map (9) for k = 0.3 and k = 6.5.

and [18] provides a pedagogical introduction to the subject. First one has
to find a suitable Hilbert space which incorporates the topology of the torus
T2, i.e. the eigenfunctions in position and momentum have to fulfil

W(q+j) =et%y(q) 5 jeN (11)
bp+k)=e T9p) ; keN . (12)

These conditions imply that Planck’s constant i can only take the values
h = ﬁ with N € N. Thus the semiclassical limit &~ — 0 corresponds to
N — oo. The phases (01,02) € [0,1[? are at first arbitrary; for 6; = 6, = 0
one obtains periodic boundary conditions. For each N one has a Hilbert
space Hy of finite dimension N. Observables f € C*°(T?) can be quantized
analogous to the Weyl quantization to give an operator Op(f) on H . Finally,
a quantum map is a sequence of unitary operators Uy, N € N on a Hilbert
space H . The quantum map is a quantization of a classical map P on T2,
if the so—called Egorov property is fulfilled, i.e.

Jim |[UNOp(f)Un = Op(fo P)[[ =0 VfeC™(T%) . (13)

This means that semiclassically quantum time evolution and classical time
evolution commute.

So the aim is to find for a given classical map a corresponding sequence
of unitary operators. Unfortunately, this is not as straight forward as the
quantization of Hamiltonian systems and a lot of information on this can be
found in the above cited literature and references therein. One of the simplest
approaches to determine Uy corresponding to a given area—preserving map
uses its generating function to define
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(Un)jrj = <Qj'|UN|qj>
0%8(7, q)

‘ 1/2 (14)
T VN| 979q

exp (2miNS (g5, q5))
q'=q;1,4=4;

with ¢; = j/N, g = j'/N, where j,j5 = 0,1,...,N — 1. In the same way
one may (and for certain maps which cannot represented in terms of S(¢’, q)
one has to) use other generating functions such as S(p’, p) or S(q,p); usually
these will lead to different eigenvalues and eigenfunctions. The question is
to determine conditions on the generating function S(q’,¢q) such that Uy is
unitary and fulfils the Egorov property (13). To my knowledge this question
has not yet been fully explored, even though the quantum maps studied in
the literature provide both examples and counterexamples. We will leave this
as an interesting open question.

For the examples introduced before the quantization via (14) can be used.
For the standard map we get

1 i, . . ik N 2 .
(UN)jr g = N exp [N(J/ —J)?+ o5 08 (N])} (15)

with 7,7/ = 0,..., N — 1. A quantization of the standard map which takes
the symmetries into account can be found in [19]. For the perturbed cat map
(9) one gets using its generating function (10)

1 2mi
Ux)ys = e (567 = 734 %) + N - sinemi/N)) (9
For the unitary operator one has to solve the eigenvalue problem

Uan:)\n’(/)n Wlthnio,,N*]-y wnE(CN . (17)

Here )\, is the n—th eigenvalue and the corresponding eigenvector 1),, consists
of N complex components, where N is the size of the unitary matrix Uy.
Because of the unitarity of Uy the eigenvalues lie on the unit circle, i.e.
|/\n| =1

Let us discuss some of the numerical aspects relevant for finding the so-
lutions of (17) without going into implementation specific details (see the
appendix and [20] for an implementation using Python).

Computing the eigenvalues of (17) consists of two main steps

— Setting up the matrix Uy:
The computational effort increases proportional to N2 (unless each matrix
element requires further loops) as we have to fill the N? matrix elements.
The memory requirement to store Uy is 16 N2 Bytes (for a IEEE-compliant
machine a double precision floating point number requires 8 Bytes; as we
have both real and imaginary part we end up with 16 Bytes per matrix
element).
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— Computing the eigenvalues:
The computational effort for the matrix diagonalization (typically) scales
like N3.
Usually one will use a black-box routine such as one from the NAG-library
[21] or from LAPACK [22]. To my knowledge there are no routines which
make use of the fact that the matrix Uy is unitary so we may for example
use the NAG routine FO2GBF or the LAPACK routine ZGEES (or the more
recent routine ZGEEV which is faster for larger matrices, e.g. N > 500)
which compute all eigenvalues of a complex matrix.
For certain maps specific optimizations are possible, see e.g. [19] for the
standard map. For this type of mapping a different approach employing
a combination of fast Fourier transform and Lanczos method reduces the
computational effort to N2In N [23].

After successful compilation and running of the program it is useful to see
whether the eigenvalues really lie on the unit circle. In Fig. 3 this is illustrated
for N = 200 and the standard map with x = 1.5. For small N the running
times of the program for setting up the matrix Uy and its diagonalization is
just a matter of minutes. For example on an Intel Pentium III processor with
666 MHz one needs just 6 minutes to compute the eigenvalues of (17) when
N = 1000. However, for N = 3000 already 140 MB of RAM are required
to store Uy and the computing time increases to 6 hours. Depending on
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Fig. 3. Plotting the eigenvalues of Uy allows to check the numerical implementation
and the unitarity of Un; the picture shows for N = 200 and x = 1.5 the eigenvalues
An for the quantized standard map (15).
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available memory, computing power, patience and motivation one may use
larger values of N.

Let us conclude this part with a more technical remark: In addition to
the choice of computer language, compiler, optimizations and algorithm there
is one very important component for achieving good performance when do-
ing numerical linear algebra computations: the BLAS (Basic Linear Alge-
bra Subprograms). Libraries such as LAPACK defer all the basics tasks like
adding vectors, vector—matrix or matrix—matrix multiplication to the BLAS
such that highly optimized (machine-specific) BLAS routines should be used.
Most hardware vendors provide these (of differing quality). Recently the soft-
ware system ATLAS (Automatically Tuned Linear Algebra Software) [24] has
been introduced which generates a machine dependent optimized BLAS li-
brary. For some computers ATLAS-based BLAS can be even faster than the
vendor supplied ones!

2.3 Eigenvalue Statistics

One central research line in quantum chaos is the investigation of spectral
statistics. It has been conjectured [25] that for generic chaotic systems the
eigenvalue statistics can be described by random matrix theory, whereas
generic integrable systems should follow Poissonian statistics [26]. To study
the eigenvalue statistics for quantum maps one considers the eigenphases
©n € [0,27[, defined by \,, = e¥» (in the following we will also call ¢,, levels
in analogy to the energy levels for the Schrodinger equation). The simplest
statistics is the nearest neighbour level spacing distribution P(s) which is the
distribution of the spacings

N :
Sn 1= %(‘Pnﬂ‘@n) withn =0,...,N -1 and ¢y :=¢q .

The factor % ensures that the average of all spacings s,, is 1. To compute the
distribution practically one chooses a division of the interval [0, 10] (usually
this interval is sufficient, but more precisely the upper limit is determined by
the largest s,,) into b bins and determines the fraction of spacings s, falling
into the corresponding bins. If IV is too small it is better to consider instead

of P(s) the corresponding cumulative distribution

_#{n | sn < s}
=

which avoids the binning and results in a smoother curve.

Fig. 4 shows for the perturbed cat map (9) with x = 0.3 the level spac-
ing distribution P(s) and the cumulative level spacing distribution I(s) for
N = 3001. For this parameter value x the map is still Anosov so one ex-
pects that the correlations of the eigenphases follow random matrix theory;
in particular because the perturbation should break up the number theoreti-
cal degeneracies which lead to non-generic spectral statistics for the cat maps

I(s): (18)
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Fig. 4. (a) Level spacing distribution P(s) and (b) cumulative level spacing distri-
bution I(s) for the perturbed cat map (9) with x = 0.3 and N = 3001.
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at k = 0 [27,28]. In [29,30] it is shown that for all perturbations which are
just a shear in position one of the symmetries of the cat map survives, so that
the statistics are expected to be described by the circular orthogonal ensem-
ble (COE). In the limit N — oo this is the same as the Gaussian orthogonal
ensemble (GOE). In Fig. 4 we show the Wigner distribution Pyigner(s) which
is very close to the COE distribution,

m ™
PCOE(S) ~ PWigner(S) = §S€Xp (72 2) . (19)

and for comparison the CUE distribution

32 4
Pcug(s) ~ ;sQ exp <_7r82> (20)

and the Poisson distribution (expected for generic integrable systems)

PPoisson(s) =e ° . (21)

The agreement with the expected COE distribution is very good.
A specific example, which breaks the above mentioned unitary symmetry
and thus leads to CUE statistics, uses two shears, one in position and one in

momentum [29],
(g) = (Ao P,oP,) (Z) , (22)

a=(i1a1) 2

and Fy(q,p) = (¢ + £qG(p),p), Bpla,p) = (¢,p + kpF(q)) with F(q) =
5(sin(2mq) — sin(4mq)) and G(p) = 5= (sin(4mq) — sin(2mq)). For the cor-
responding quantum map with k, = x; = 0.012 and N = 3001 the level
spacing distribution is shown in Fig. 5. One observes very good agreement
with the CUE distribution.

where

2.4 Eigenfunctions

Another interesting question concerns the statistical behaviour of eigenfunc-
tions, and more specifically for quantum maps the eigenvector statistics and
the properties of phase space representations like the Husimi function.

Eigenvector Distributions

Consider an eigenvector 1) of a quantum map given by the N numbers ¢; € C,
j=0,..., N —1. The distribution P(¢) is given (similarly to the level spacing
distribution) by
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Fig. 5. (a) Level spacing distribution P(s) and (b) cumulative level spacing distri-
bution I(s) for the perturbed cat map (22) with kp, = kg = 0.012 and N = 3001.
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b
%#{a <lej* <b} = /P(w)dw - (24)

Let us first discuss the corresponding random matrix results (see e.g. [31,32]).
For the COE the eigenvectors can be chosen to be real and the coefficients

¢j, 5=0,...,N —1, only have to obey the normalization condition
N—-1
=1 withc; € R . (25)
7=0
Thus the joint probability for an eigenvector ¢ = (cg,...,cn_1) € RV is
N-1
I'(N/2)
PSOE(c) = Nz 01 S|, (26)
j=0

where the prefactor ensures normalization. So the probability of one compo-
nent to have a specific value y is given by integrating P](\?OE(C) over all other
components,

PSOR(y) = / 5y — 2)PSOE(e) dep -+ dew
1 v
= A TN - 1D/2)

The mean of P{E(y) is fol yPSOE(y) dy = 1/N. So using the rescaling
n =yN gives

(L =y V=92 0

PEOP) = e g (2

In the limit of large N one gets the so-called Porter-Thomas distribution [33]

PSOR(y) = ﬁ%exp(—”/” 7 (20)

y
and the corresponding cumulative distribution I(y) = [ P(y’) dy’ reads
0

1(n) =exf (Vn/2) . (30)

Figure 6 shows an example for the eigenvector distribution of an eigenstate
of the perturbed cat map (9) with k = 0.3 and N = 1597. There is good
agreement with the expected COE distribution, (29), shown as dashed line.

Finally, let us consider again the map (22) which shows CUE level statis-
tics. From this one would expect that also the eigenvector statistics follows
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Fig. 6. (a) Eigenvector distribution for the perturbed cat map (9) with N = 1597
and k = 0.3. In comparison with the asymptotic COE distribution, (28), dashed
line. The inset shows the same curves in a log-normal plot. In (b) the cumulative
distribution is shown and in the inset a plot of the absolute value of the components
cﬁn), j=0,...,N —1 of the corresponding eigenvector t,=20 is displayed.
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the CUE. Similar to the case of the COE one has the normalization condition

N-1
‘Cj|2 =1 with cj € C . (31)
j=0
Thus the joint probability for an eigenvector ¢ = (co,...,cn_1) € CV reads
N-1
I'(N)
PGVE(e) = o1 > el - (32)
j=0

The probability of one component to have a specific value y is given by
integrating P§UE(c) over all other (complex) components,

PGUE(y) = / 5(y — leof?) PSOF(€) d2cp - dPen—y

=(N-11 -y

(33)

Again as for the COE, the mean of PSVE(y) is 1/N and the rescaling n := yN
leads to

PR = Yo (1= T (31)
which has mean 1. In the large N limit we have
PCYE (1) = exp(—n) . (35)
and the cumulative distribution simply is
I9YE(n) =1 — exp(—n) . (36)

Figure 7 shows P(n) for one eigenvector of the perturbed cat map (22). There
is good agreement with PCUE ().

A different distribution is obtained for unperturbed cat maps: for certain
subsequences of prime numbers (which depend on the map) the distribution
of n = %Rew tends to the semicircle law,

21 —n? forn <1
P =] - 37
@) {0 forn>1, (87)

see [34] for details (see also [35]). In Fig. 8 we show an example of an eigenstate
with N = 1597 for the quantum map corresponding to the map (9) with
k = 0. For this N the map fulfils the conditions of [34] and one observes
a nice semicircle distribution of the eigenvector. However, it seems that the
approach to the asymptotic distribution is slower than for the case of the
random matrix situations.

103




105

(@)

Numerical Aspects in Quantum Chaos

1.0
P(n)
0.5
0.0
(b)
1.0 . I
1(n)
COE 10 ' |
// |Cj|2
05 I~ /// |
// 5+ j
[/ cuE \
I 1
4 n 6

0.0
0 2

Fig. 7. (a) Eigenvector distribution of an eigenvector for the perturbed cat map
(22) with N = 1597 and kp = Kkq = 0.012 is shown in comparison with the asymp-

totic CUE distribution, (35), dashed line. The inset shows the same curves in a
log-normal plot. In (b) the corresponding cumulative distributions are shown and

in the inset a plot of the absolute value of the components cg-”), 7j=0,...,N—1of

the corresponding eigenvector 1,—2 is displayed.
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Fig. 8. Eigenvector distribution of an eigenvector for the unperturbed (i.e. x = 0)
cat map (9) with NV = 1597. This is compared with the asymptotic semicircle law,
(37). The inset shows the corresponding eigenvector (compare with the eigenvectors
shown in the previous two figures).

Husimi Functions

A different representation of eigenstates is to consider a phase space represen-
tation, like for example the Husimi function, which allows for a more direct
comparison with the structures for the classical map. Without going into the
mathematical details, the Husimi representation is obtained by projecting
the eigenstate onto a coherent state centered in a point (q,p) € T2,

N-1 > Na1 2
H,(q,p) = { qun Z Cyplaj)a;lv) Z Caplaj)e;
J=0 Jj=0
N—-1
Z (2N)1/4 exp (— TN (q? —ipq)) (38)
7=0

2

. . i0 _
exp(nN(—¢q; + 2(q — ip)q;))ds (mN (qj - Wl —q+ 1p)

iN)c

Here ¢; = % (02 +j), j = 0,...,N — 1 and 95(Z|r) is the Jacobi-Theta
function,

I3(Z|r) =Y elmrni AN with Z,7 € C, Im(7) >0 . (39)

nez
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The coefficients c; are the components of the eigenvector 1),, in the position
representation as obtained from the diagonalization of Uy (for other gener-
ating functions than the one used in (14) one has to adapt (38)).

If one wants to compute a Husimi function on a grid of N x N points
on T? the computational effort grows with N3. So for computing all Husimi
function of a quantum map for a given N the computational effort grows with
N*. Already for moderate N this can be quite time-consuming, but even more
importantly, usually one also wants to store all these Husimi functions on the
hard-disk which limits the accessible range of N. Sometimes a smaller grid,
e.g. of size 10/N x 10v/N can be sufficient which reduces the growth of the
computational effort to N? for a single Husimi function and to N3 for all
Husimi functions at a given N. Even then one still needs 800 N? Bytes to
store these on the hard-disk. For example for N = 1600 this roughly leads
to 2 GB of data and for N = 3000 one needs approximately 7 GB. However,
there are also cases where a finer grid, e.g. 2IV x 2N is necessary.

Theoretically one expects that for N — oo the Husimi functions concen-
trate on those regions in phase space which are invariant under the map (this
follows from the Egorov property). So for ergodic systems the expectation is
that (in the weak sense)

H,(¢,p) 1 withn=0,...,N —1 as the matrix size N - 00 .  (40)

The precise formulation of this statement is the contents of the quantum er-
godicity theorem for maps [36] (see [37] for the case of discontinuous maps).
The quantum ergodicity theorem only makes a statement about a subse-
quence of density one (i.e. almost all states) which for example leaves space for
scars, i.e. eigenstates localized on unstable periodic orbits. For systems with
mixed phase space one (asymptotically) expects localization in the stochastic
region(s) and on the tori in the elliptic regions.

In Fig. 9a) we show for the perturbed cat map with x = 0.3 the Husimi
function for the same eigenstate as in Fig. 6. As expected it shows a quite
uniform distribution (of course with the usual fluctuations). In contrast for
k = 6.5 there are eigenstates such as the one shown in Fig. 9b) which localizes
on the elliptic island (compare with Fig. 2).

In some sense more interesting are the Husimi functions for mixed systems
as the classical dynamics shows more structure. In Fig. 10 we show some
examples for the standard map with x = 3.0. Figure 10a) shows a Husimi
function which is spread out in the irregular component. In contrast in b) the
Husimi function localizes on a torus around the elliptic fixpoint. The Husimi
function in ¢) shows quite strong localization around the small elliptic island
of a periodic orbit with period 4. This island is so small that it is not visible
in Fig. 1. Therefore, the Husimi function displayed in Fig. 10d) indicates
that the region of ‘influence’ of this island is much larger than the area of
the island. This region is also visible in the Husimi function in Fig. 10a), as
the irregular state has a very small probability in the regions around these
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Fig. 9. In a) a Husimi function Hy,(q, p) of the perturbed cat map (9) with k = 0.3
is plotted which shows the expected ‘uniform’ distribution. Here black corresponds
to large values of Hy(g,p). In b) for k = 6.5 a state localizing on one of the elliptic
islands is shown (compare with Fig. 2).
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Fig. 10. Examples of Husimi functions for the standard map with x = 3.0 and
N = 1600.
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Fig. 11. Examples of Husimi functions Hy (g, p) for the standard map with k = 1.5

and N = 1600 for n = 0,...,19. (Compare with Fig. 1.)

islands. A longer sequence of Husimi functions for the standard map with
k = 1.5 shown in Fig. 11 illustrates the different types of localized states
(compare with Fig. 1).

3 Billiards

3.1 Classical Billiards

A two-dimensional Euclidean billiard is given by the free motion of a point
particle in some domain 2 C R? with elastic reflections at the boundary
0f2. Depending on the boundary one obtains completely different dynamical
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Integrable systems

Fig. 12. Billiard dynamics in integrable and chaotic systems.

behaviour, see Fig. 12 where this is illustrated by showing orbits of billiards in
a circle, a square and an ellipse, which are all integrable giving rise to regular
motion. In contrast the Sinai billiard (motion in a square with a circular
scatterer), the stadium billiard (two semicircles joined by parallel straight
lines) and the cardioid billiard show strongly chaotic motion (they are all
proven to be hyperbolic, ergodic, mixing and K-systems).

As the motion inside the billiard is on straight lines it is convenient to
use the boundary to define a Poincaré section,

Pi=A{(s,p) | s €[0,109]], p € [-1,1]} . (1)

Here s is the arclength along 92 and p = (v, T(s)) is the projection of the
unit velocity vector v after the reflection on the unit tangent vector T'(s) in
the point s € 0f2. The Poincaré map is then given by

P:P—-P
£=(s,p) = & =(sp) ,

i.e. for a given point £ = (s,p) one considers the ray starting at the point
r(s) € 912 in the direction specified by p and determines the first intersection
with the boundary, leading to the new point £ = (s',p’). Explicitly, the
Cartesian components of the unit velocity v of a point particle starting on 92
at r(s) are determined by the angle 5 € [—7/2,7/2] measured with respect
to the inward pointing normal N = (=T, T;). The velocity in the T',IN
coordinate system is denoted by (p,n) = (sin 3, cos §), so that in Cartesian
coordinates
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v = (Ug, Uy) ( > (p,m)
(2)
= (Top+ NoV/T= 2. Typ+ NV 1= 17 2

Starting in the pomt r(s) € 042 in the direction v, the ray r + tv intersects
012 at some point r’ = (2/,y’). If the boundary is determined by the implicit
equation

Flz,y) =0, ®3)

the new point 7’ can be determined by solving
F(x + tvg,y+tvy) =0 . (4)

For non-convex billiards there are points & = (s,p) € P for which there
is more than one solution (apart from ¢ = 0); obviously the one with the
smallest ¢ > 0 has to be chosen. The condition (3) can be used to remove the
t = 0 solution analytically from (4). If F’ is a polynomial in = and y this allows
to reduce the order of (4) by one. This approach has for example been used
for the cardioid billiard leading to a cubic equation for ¢, see [38] for details.
From the solution ¢ one gets the coordinates (z’,y) = (x,y) + tv which have
to be converted (in a system dependent way) to the arclength coordinate
s’ (in many practical applications there is a more suitable internal variable,
for example the polar angle etc.). The corresponding new projection of the
momentum is given by p’ = —(v, T'(s')).

3.2 Quantum Billiards

For a classical billiard system the associated quantum billiard is given by the
stationary Schrodinger equation (in units & =2m = 1)

7A"/)n(q) = End’n(q) , g€ (5)

with (for example) Dirichlet boundary conditions, i.e. 1,(q) = 0 for g € 912.
Here A denotes the Laplace operator, which reads in two dimensions

0? 0?
A= (82+8q2) . (©)
In the Schrodinger representation the state of a particle is described in
configuration space by a wave function ¢ € L?(§2), where L?(£2) is the Hilbert
space of square integrable functions on {2. The interpretation of v is that
I} »lY(q )2 d?q is the probability of finding the particle inside the domain
D c .
Due to the compactness of {2, the quantal energy spectrum {E,, } is purely
discrete and can be ordered as 0 < F; < Fy < F3 < .... The eigenfunctions
can be chosen to be real and to form an orthonormal basis of L2({2),
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(nltm) = / Un(@) (@) g = Gy -
N

The mathematical problem defined by (5) is the well-known eigenvalue
problem of the Helmholtz equation, which for example also describes a
vibrating membrane or flat microwave cavities. For some simple domains
£2 it is possible to solve (5) analytically. For example for the billiard in
a rectangle with sides a and b the (non-normalized) eigenfunctions are
given by ¥n, n,(q) = sin(mniqi/a)sin(mnaga/b) with corresponding eigen-
values E,, n, = 72(n?/a®> + n3/b?) and (ny,ny) € N2, For the billiard in
a circle the eigenfunctions are given in polar-coordinates by ., (r,¢) =
I (JmnT) exp(ime), where jom, is the n-th zero of the Bessel function J,, (x)
and m € Z, n € N. However, in general no analytical solutions of (5) ex-
ist so that numerical methods have to be used to compute eigenvalues and
eigenfunctions.

The spectral staircase function N(FE) (integrated level density)

N(E) :=#{n| E, < E} (7)

counts the number of energy levels E,, below a given energy £. N(E) can be
separated into a mean smooth part N(E) and a fluctuating part

N(E) = N(E) + Nau.(E) . (8)

For two-dimensional billiards, N (E) is given by the generalized Weyl formula
39]
N(E):ﬁE—ﬁx/E+c+... , (9)
4 47

where A denotes the area of the billiard, and £ := £~ — £*, where £~
and LT are the lengths of the pieces of the boundary 92 with Dirichlet and
Neumann boundary conditions, respectively. The constant C takes curvature
and corner corrections into account.

The simplest quantity is the &,-statistics, which is obtained from the
fluctuating part of the spectral staircase evaluated at the unfolded energy
eigenvalues x, := N(E,)

1

8p = No(E,) — N(E,) =n — 3 Tn s (10)

where N(E N(E
( + 6) + ( - 6) ) (11)
2
The quantity J,, is a good measure for the completeness of a given energy
spectrum. For a complete spectrum d,,, or equivalently Nay.(x), should fluc-
tuate around zero. Figure 13a) shows Ny, () for the stadium billiard, which
indeed fluctuates around zero. In addition there is an overall modulation of

No(E) := lim

e—0
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Fig. 13. Plot of Nauc(z) for the stadium billiard (a = 1.8, odd-odd symmetry)
together with the contribution from the bouncing ball orbits, dashed line, see (12).
In b) the fluctuating part after subtraction of the contribution of the bouncing ball
orbits is shown.

Nauc(x) which is caused by the bouncing ball orbits. They form a one pa-
rameter family of periodic orbits having perpendicular reflections at the two
parallel walls (of length a, see Fig. 15) of the stadium. The contribution of
these orbits to the spectral staircase function reads [40]
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Fig. 14. Detection of missing levels using the d,-statistics.

NEP (B = % i \/E—iEBb o (x/E— Egb) - (;E - ;ﬂ@) (12)

a e 1 3m
= 7 Ex ; —g cos (2anx/>— 4> , (13)

273 nz

where EPP = 72n? are the eigenvalues of a particle in a one-dimensional box
of length 1, and © is the Heaviside step function. Subtracting N2 (z) from
Naue(z) removes the additional oscillation, see Fig. 13b). If an eigenvalue
is missing this is clearly visible by a ‘jump’ of §,, in comparison to points
fluctuating around 0, see Fig. 14 for an example where one eigenvalue has been
removed ‘by-hand’. Clearly, the energy interval in which a level is missing can
be estimated from the plot.

In the same way as for quantum maps one can study the level spacing
distribution and more complicated statistics, like the number variance, n-
point correlation functions etc., see for example [41,42] for some further
examples for the cardioid billiard.

3.3 Computing Eigenvalues and Eigenfunctions
for Quantum Billiards

There exist several numerical methods to solve the Helmholtz equation inside
a domain {2 C R?,

Ap(q) + K p(q) =0,  qe2\oR , (14)
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with Dirichlet boundary conditions

¥(g) =0, q € 012. (15)

For a good review on the determination of the eigenvalues of (14) see [43],
which however does not cover finite element methods or boundary integral
methods. Additionally, in the context of quantum chaos the plane wave de-
composition [44] (see also [45] for a detailed description of the method),
the scattering approach, see e.g. [46,47,48], and more recently the scaling
method [49], are commonly used.

Here I will give a sketch of the derivation of the boundary integral
method and discuss in more detail the numerical implementation. The bound-
ary integral method reduces the problem of solving the two-dimensional
Helmbholtz equation (14) to a one-dimensional integral equation, see e.g.
[50,51,52, 53,54, 55,56,57,58,59,60, 61, 62,63,64,65] and references therein.
Of course, the general approach also applies to higher dimensions but we will
only discuss the two-dimensional case. For studies of three-dimensional sys-
tems by various methods see e.g. [66,67,68,69,70]. Boundary integral methods
are also used in many other areas so that it is impossible to give a full ac-
count. For example they are also commonly used in acoustics, see e.g. [71]
and the detailed list of references therein. Finally, the boundary integral
method provides a starting point to derive the Gutzwiller trace formula, see
e.g. [72,73,74,75,64].

Boundary Integral Equation
Let G(q,q’) be a Green function of the inhomogeneous equation, i.e.

(A+k)Gr(q,q')=6(qg—4q') . (16)

Considering the integral over 2 of the difference v (q’)-(16)—Gx(q,q’)-(14)
one obtains

/W@%M%WAU—GM%JM%@Wd%’

? (17)
= /w(q’)ﬁ(q—q/) d’q .
Q
Using the second Green theorem gives the Helmholtz representation
0Gy, oY
/ AN / / /
f @) @) ~Gutad) G @) as
a0
bla) i qe2\02 (18)
=1 3¥(e); qedn
0 ; else
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Here ¢’ = q(s') and 52, = n(s')V with n(s) = (g5(s), —q{(s)) denoting
the outward pointing normal vector, where (¢1(s), g2(s)) is a parametrization
of the billiard boundary 0f2 in terms of the arclength s, oriented counter-
clockwise. Special care has to be taken to obtain the result for g € 92, see
e.g. [51,74]. (When g is in a corner of the billiard the factor 3 has to be
replaced by %, where 6 is the (inner) angle of the corner.) For Dirichlet

boundary conditions one obtains

f W(s)Cilq,q)ds' =0 ,  qeon | (19)
o0

where

u(s)i= ovla(s) = n(s)V0a() = nls) Jim V@) (20)
qq’e.Qq\aQ

is the normal derivative function of 1.
In two dimensions a Green function for a free particle is given by the
Hankel function of first kind

i
Gr(q,q') = ~1 2 (kg - ¢'|) o

_ _i o (klg—q'|) +iYo (klg—q'))] -

Since Hél)(z) ~ Llnz for z — 0, the Green function Gy(g,q’) diverges
logarithmically such that it is more convenient to derive an integral equation
whose kernel is free of this singularity. To that end one (formally) applies
the normal derivative % to (18). More carefully one has to consider a jump
relation for the normal derivative function, see e.g. [51,74]. The result is

0
u(s) = =2 § 5LGia(o).a(s) uls) ds (22)
o9
For the derivative of the Green function one obtains
0 ik
5 G (a(s),a(s) = 7 cos(o(s, ) H (k7(s.8)) . (23)
where 7(s,s") = |q(s) — q(s’)| is the Euclidean distance between the two
points on the boundary and
_ ’
s i(s. ) _ P (@) —a() -

7(s,8)

This gives the integral equation for the normal derivative u(s)
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u(s) = %Qk(& s u(s') ds’ (25)
o

with integral kernel

ik
Quls,s') = =5 cos d(s,s') HV (kr(s,s')) . (26)
Equation (25) is a Fredholm equation of second kind which has non-trivial
solutions if the determinant

D(k) := det(1 — Q) (27)

vanishes. Here @k is the integral operator on 02 defined by
Qr(u(s)) = 7{ Qu(s,s") u(s') ds’ . (28)
o9

For eigenvalues F,, of the Helmholtz equation with Dirichlet boundary
conditions one has D(k) = 0 for k = \/E,, see e.g. [74] for a detailed proof.
However, for Imk < 0 there can be further zeros of D(k) which (for the
interior Dirichlet problem) correspond to the outside scattering problem with
Neumann boundary conditions [76,77,78] (see also [51]). Explicitly this can
be seen from the factorization D (k) = D(0)Dint (k) Dext (k), where the factors
can be written exclusively in terms of the interior and exterior problem.
More aspects concerning the additional spurious solutions will be discussed
in Sect. 3.3.

Before turning to the numerical implementation, let us discuss the be-
haviour of the integral kernel for small arguments. The Hankel function

H fl)(x) reads for small arguments

2i

1
Y (kr(s, ) ~

fors—s —0 . (29)
This singularity is compensated by the behaviour of

cos ¢(s,s’) ~ —%m(s) s —s'| for s’ — s | (30)
where k(s) is the curvature of the boundary in the point s. Here the curvature
is defined by k(s) = ¢1(s)d5 (s) — ¢5(s)q{ (s) such that for example k(s) =1

for a circle of radius one. Thus for the integral kernel we obtain

Qr(s, ") — %ka(s) , fors—s —0 . (31)
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Desymmetrization

For systems with symmetries the numerical effort can be reduced by con-
sidering instead of the full system the symmetry reduced system with the
corresponding Green function, see e.g. [56]. For a reflection symmetry with
respect to the ¢-axis one has

Gii(a.q) == Grllg— ') £ Gr(la — (i, —d)) (32)

where + applies to the case of even eigenfunctions (i.e. Neumann boundary
conditions on the symmetry axis) and — to odd eigenfunctions (i.e. Dirichlet
boundary conditions on the symmetry axis).

For a two-fold reflection symmetry (as in the case of the stadium billiard,
see Fig. 15 for a sketch of the geometry and notations) one has altogether
four different subspectra, corresponding to DD, DN, ND and DD boundary
conditions on the symmetry axes ¢; and ¢s, respectively. For example for
Dirichlet-Dirichlet boundary conditions on the ¢;- and ¢o-axes the Green
function reads

GPP =Gi(lq — 4'|) — Gr(lg — (¢}, —5)])

(33)
+Gi(lg = (=41, —a))) - Gilla - (—a1, @)]) -
For Neuman boundary conditions on these two axes one gets
GyY =Gr(la — d') + Gr(la — (41, —a3)]) (34)

+Gr(lg — (—aq1, —@)]) + Grlg — (a1, )) -

The advantage of exploiting the symmetries of the system is two-fold: firstly,
we can separate the eigenvalues and eigenfunctions for the different symmetry

4z

0 T 1
0 a atl %1

Fig. 15. Geometry of the desymmetrized stadium billiard.
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classes, which is necessary for the investigation of the spectral statistics.
Secondly, the numerical effort is reduced, since the integral over the whole
boundary 02 is reduced to an integral over a part of the boundary, which
in the above examples is half or a quarter of the original boundary. The
boundary along the symmetry axes need not be discretized as the boundary
condition is already fulfilled by construction. Of course, for other geometries
different choices for G can be more appropriate.

Finding the Eigenvalues

In the numerical computations the integral over the boundary is replaced
by a Riemann sum. (There also exist more refined methods using polyno-
mial approximations combined with Gaufl-Legendre integration, see e.g. [60],
which allow for a less fine discretization.) Let As = £/N be the discretization
length of the boundary of length £ into N pieces. Then we have

u(s) = As 3 Qulsinsy) ulsy) - (35)

Jj=0

where s; = (i + 1/2)As, i = 0,...,N — 1. Equation (35) can be written in
matrix form as

Aku =0 s with Aij = 6ij — As Qk(si, Sj) . (36)

Recall that for s; = s; the kernel Qj(s;,s;) reduces to the result given in
(31). The solutions of this linear equation provide approximations to the
eigenvalues k2 and eigenvectors wu,,. This leads to the problem of finding the
real zeroes of the determinant

det(Ay) =0 (37)

as a function of k = VE, where A, is a dense, complex non-Hermitean
matrix. Due to the discretization of the integral the determinant det(Ay)
will not become zero but only close to zero (actually, the discretization shifts
the zeros slightly away from the real axis, see [58,59]).

In the numerical computations it is very useful [60] to compute the sin-
gular values of the matrix A instead of its determinant. The singular value
decomposition of a complex matrix is given by the product of an unitary
matrix U, a diagonal matrix S and a second unitary matrix V

A=USVT . (38)

The diagonal matrix S contains as entries SV; the singular values of A and
we have |det A| = |[]SV;]|. Since the original integral equation has been
discretized, the smallest singular value in general never gets zero, but just
very small, see Fig. 16. Thus the minima of the smallest singular value provide

118




120 Arnd Béicker

1.0 T T T
(@)
x x5 ,X'XXXXVXxxx,xxx'xx‘xxx(xxx S0
P X X xXx

0.8 L : X x . X -
. ' : x X0 ; Cox

0.0 i N L - i i

40 60 80 100 K 120
10 T T T
(b)
|det@y)| i
5 L x X ,*X‘:‘ i
o % x X i XI % . H x K XX{.X' [ *
40 60 80 100 K 120

Fig. 16. In a) the three smallest singular values are shown as a function of the
energy £ = k? for the stadium billiard with @ = 1.8 and odd-odd symmetry.
The eigenvalues are located at the minima of the first singular value. The second
and third singular values allow to locate places with near degeneracies as next to
k? = 90, which can be resolved by magnification of the corresponding region, see
Fig. 17. In b) | det(Ax)| is shown. The minima tend to be not as pronounced as
those of the singular values.
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Fig. 17. A magnification of Fig. 16 shows that the singular value decomposition
method easily allows to locate nearly degenerate energy levels.

approximations to the eigenvalues of the integral equation. For the numerical
computation of the singular value decomposition one may for example use the
NAG routine FO2XEF or the LAPACK routines ZGESVD or ZGESDD. It turns
out that the (more recent) routine ZGESDD is significantly faster (factor 3-5,
at the expense of a higher memory consumption), in particular when also
singular vectors are computed.

The advantage of the singular value decomposition in comparison to lo-
cating the zeros of the determinant is that degeneracies of eigenvalues can
be detected by looking at the second singular value, which also gets small
when there are two nearby eigenvalues (similarly higher degeneracies can be
found by looking at the next singular values). In Fig. 16a) an example of
the behaviour of the three smallest singular values is shown in the case of
the stadium billiard (a = 1.8) with Dirichlet boundary conditions. For com-
parison a plot of |det(Ay)| is shown in Fig. 16b). One clearly sees that the
singular value decomposition provides more information. For example, next
to k% = 90 the minimum of | det(Ay)| looks slightly broader than the others,
however, this does not give a clear indication that there might be more than
one eigenvalue. In contrast, the singular value decomposition method allows
to resolve such kind of near-degeneracies efficiently, see Fig. 17. Of course,
this information is also available via det(Ay), see Fig. 18 where its real and
imaginary part are plotted separately. Here (approximately) simultaneous
zeros correspond to minima of | det(Ay)|. However, notice that compared to
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Fig. 18. Plot of real and imaginary part of det(Ay) as a function of k; the evaluation
was done for 10 times as many points in k? than for Fig. 17. Approximately simul-

taneous zeros correspond to minima of | det(Ax)|. The locations of the eigenvalues
are marked by squares.

the singular value decomposition approach much more discretization points
in F = k? are necessary.

To determine all energy levels in a given energy interval [Ey, Fs] one pro-
ceeds in the following way: first one computes the singular values at equidis-
tantly chosen points k? € [Ey, Es]; the energy is chosen as variable because
for two-dimensional billiards the mean distance between two energy levels is
approximately constant and according to the generalized Weyl formula (9)
given by 47”. The finer the step size is chosen the easier the minima can be
resolved, however, at the same time the computing time to cover a given
energy range increases correspondingly. The actual step size is a compromise

between these two aspects; good results have been achieved by using a step
size of the order of % 47’7 (for systems with many near level degeneracies, e.g.

integrable or near-integrable systems, a smaller step size can be helpful).

The matrix size N is chosen according to N = b§ = b%, such that one
obtains b discretization points per units of the inverse of the de Broglie wave
length A = 27“ along the boundary L. Typical choices for b are between 5 and
12 depending on the system and the wanted accuracy.

From the first scan one locates all minima of the smallest singular value. If
also the second singular value has a minimum next to a minimum of the first
one, one has to use a refined discretization in E around the minimum (the
numerical implementation is a bit more sophisticated, in order to account for
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several special situations, so that only a minimal number of additional points
need to be computed). Once an isolated minimum is found, an approxima-
tion to the eigenvalue can be computed by different methods. Either one can
perform a refined computation around the minimum, which can be quite time-
consuming, or one can use a local approximation by a parabola [79]. A linear
interpolation also gives good results: From the three points 1:(k%, SV (k?)),
2:(k3,SVi(k3)), 3:(k3, SV1(k2)), characterizing a minimum of the first singu-
lar value, one has two different lines 12 and 23 with different slopes, of which
the line with the larger slope has to be chosen. The intersection of this line
with the zero axis gives a good approximation to the eigenvalue, which one
can refine if necessary. By repeatedly applying this for all minima, all energy
levels in a given interval can be found. In fact, it is possible to develop a
computer program which takes care of all this such that all levels can be
found automatically.

A good check of the completeness is provided by considering the d,, statis-
tics, see the example in Sect. 3.2. The accuracy of the computed eigenvalues
can be estimated from the bracket of the minimum given by the three points
1,2,3 if the matrix dimension N is large enough. For N too small (for a given
resolution in E) one does not obtain a peaked, but a broad minimum. This
is illustrated in Fig. 19 by magnifying Fig. 17 around the minimum with
k? ~ 96.5 for different N. One clearly sees the parabolic structure around

0.0015

VA

0.0010

0.0005

0.0000
96.64 96.65 96.66 k2 96.67

Fig. 19. Magnification of Fig. 17 around the minimum with k% ~ 96.5 for different
matrix sizes N. One nicely sees the pronounced parabolic structure for N = 45
which gets smaller for larger N.
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the minimum for smaller N and for larger N one recovers the essentially
linear behaviour of the smallest singular value.

Tests of the accuracy of the method can be obtained by considering a
system where the eigenvalues are known. For example for the circular billiard
the eigenvalues can be computed with arbitrary accuracy. Also billiards where
the eigenvalues can be computed by other methods (e.g. conformal mapping
method [80,81]) allow a determination of the accuracy of the method. For
a study of the scaling of the error for various billiards see [63]. In addition
computations of the normal derivative function w,(s) and the eigenfunction
(both inside and outside of {2) allow to check the quality of the numerical
method and program.

Computing Eigenfunctions

From a minimum of the smallest singular value we obtain an approximation
of the eigenvalue and at the same time the corresponding singular vector
u gives an approximation to the normal derivative function u(s). The NAG
routine FO2XEF scales the singular vector such that its first component is real.
Thus for a correct solution also the other components should be essentially
real, which provides another check for the implementation of the method and
the accuracy of the eigenvalues.

The eigenfunction in the interior of the domain {2 can now be calculated
from the normal derivative function,

vla) =~ $ P (klg—a@) ulw)ds . forge 202 . (3)
on

The computation of the eigenfunction can be simplified by taking into account
that

f Jo (kg — a(s)]) u(s) ds =0 , (40)
a0

because the Jy-part of G(q,q’) is a solution of the homogeneous equation
corresponding to (16). Thus (39) is equivalent to

vla) = f Yolkla-a@h uls)ds . forqe 02 . (1)
o

If one uses a desymmetrization, such as (32), (33) or (34), the above formula
(41) has to be modified accordingly.

In Fig. 20 we show some examples of normal derivatives u,(s) and the
corresponding eigenfunctions of the billiard, computed via (41). The imagi-
nary part of u,(s) is typically 5 or more orders of magnitude smaller than
the real part. It is interesting to see that part of the structure of the eigen-
functions is also reflected in u,(s). For example for eigenstates with small
probability in the region of the quarter circle also the normal derivative is
small for s < /2.
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Spurious Solutions I: Real Green Function Approach

In certain situations and for some numerical methods it may happen that
one obtains in addition to the true solutions of the Helmholtz equation (14)
further so-called spurious solutions. This question is discussed in some of
the papers on the boundary integral method, in particular see [50,52, 53]
and [55,58]. There are essentially two different situations in which they are
encountered. The first is that one uses for the Green function instead of the
Hankel function, see (21), just the real part, i.e.

Gila.a) = (Yo (Kla —d) - (42)

This seems reasonable as according to (40) the Jp-Bessel function does not
contribute to the eigenfunction. Moreover then one can work with an entirely
real matrix for which the singular value decomposition can be computed much
faster. However, when using this approach, there appear additional zeros (for
each correct one there is one additional one) and the singular values loose
their nice linear structure, see Fig. 21. To overcome the problem of these
additional zeros a parametrized Green function

1
G (a.q) = 180 (klg —q'l) + Yo (klg - q')) (43)
0.6 T
" " 0.002 :
SVif
\ /’ ‘\ SVI
ot
/N . 0.001} .
04F 7/ .
/
/
/
K 100
02+ y
/
\\//
0.0 = )
80 90 K¥ 100

Fig. 21. Using the real Green function (42) leads to spurious solutions (see the
inset) in addition to the correct eigenvalues marked by squares (compare with
Fig. 17). For each true solution there is an additional spurious one (hardly visible
at k% ~ 91 and k% ~ 96).
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is used in [58]. Thus for = 0 we obtain (42) and for 8 = —i we get (21).
So using a purely real Green function means to vary 8 € R which changes
the location of the spurious solutions but not those of the true ones. This is
illustrated in Fig. 22 around the eigenvalue k% = 81.93... with 8 € [0,0.1].
Clearly on this scale the true solution does not change under variation of 3
(apart from the region of the avoided crossing which is due to the finite matrix
size and gets smaller for larger N) whereas the spurious solution strongly
varies with 3. For 8 = —~i with increasing real v the additional zeros move
away from the real axis and it seems that for § = —i they do not have any
significant influence on the real axis. Still there could be cases where also for
(8 = —i such a solution becomes relevant, but for convex geometries we have
not encountered this situation. For an example of a non-convex geometry see
Sect. 3.3.

As an explicit example for the influence of parameterized Green function
(43) let us consider the circular billiard with radius 1, where the Fredholm
determinant reads (see e.g. [58,74])

k)= [] {fiwk:Hl(l)/(k:)Jl(k) . (44)

l=—00
As this product converges absolutely in the whole complex k-plane (apart
from a cut along the negative real axis) zeros of D(k) occur when one of the

82.6
E
82.2
81.8
) 10°
815 E 826 815 E 82
81.4 : : : :
0.00 0.02 0.04 0.06 0.08 B 0.10

Fig. 22. Plot of the minima of the singular values around the eigenvalue k> =
81.93... with varying [ using the parametrized Green function (43). The insets
show the corresponding structure of the first singular value with a logarithmic
vertical scale (matrix size for this computation: N = 200).
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factors in the product vanishes [74]. Clearly, the real zeros of D(k) correspond
to the eigenvalues j,,; of the circular billiard with radius 1 and Dirichlet
boundary conditions. The further zeros stem from the functions Hl(l)/(z)
which have only zeros with Im z < 0 [82], and do not correspond to physical
solutions of the interior problem. However, they can be related to resonances
of the exterior scattering problem, but with Neumann boundary conditions
[76,77]. Because of the radial symmetry the S-matrix is diagonal in angular
momentum space

HP (k)
Y (k)

and therefore the resonances are at those complex k for which

Sl’l = — 6l’l (45)

HY (k) =0 | (46)

i.e. the same condition as implied by (44).
If one uses the parametrized Green function (43) one can show (analogous
to the derivation of (44)) that for the circular billiard

DO (k)= T [k (8J/(k) + Y/ (k) Ju(k)] . (47)

l=—o00

For 8 = 0, which corresponds to the real Green function (42), we get addi-
tional zeros of D) (k) when Y; (k) = 0. Varying (3 from zero to —i these real
zeros turn complex. At first sight one might think that these are connected to

the places with H l(l) (k) = 0, however numerical computations show that (for
all studied cases) these move away from the real axis with a positive imagi-

nary part and for 3 = —i one has Hl(l)/(k) = 0 only for Imk < 0. Thus the
spurious solutions for the real Green function are not related to resonances
of the scattering problem with Neumann boundary conditions.

These examples suggest to use the full complex Green function (21) in-
stead of the real variant (42). Even though the numerical computation is more
time-consuming for the complex case their advantages over choosing (42) are
obvious as the variation of 3 is time-consuming as well (and non-trivial to
implement in an automatic way).

Spurious Solutions II: Non-convex Geometries

Even when choosing the complex Green function (21) it is possible to en-
counter spurious solutions: For the circular the additional complex zeros of
D(k) are sufficiently far away from the real axis, i.e. Im k < 0 so that they do
not lead to problems with the application of the boundary integral method.
However, when one considers different geometries the resonances of the cor-
responding scattering system could be closer to the real axis. This can be
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Fig. 23. Boundary of the annular sector billiard for &« = Z7 and 1 = 0.4 and

8
T2 = 0.6.

nicely studied for the annular sector billiard, see Fig. 23, as the eigenvalues
and eigenfunctions can be determined numerically with arbitrary accuracy.
Using the ansatz [83, §25]

P(r, @) = [ (kr) + Y, (kr)] sin(v¢) (48)

with v = mZ, m = 0,1,2,... and requiring ¥ (r1,¢) = 0 and ¢ (r2,¢) = 0
gives the (implicit) eigenvalue equation

Jy(krl)yl,(kﬂ”g) - Yy(le)Jy(kTQ) =0 . (49)

For each m one gets a sequence of zeros ki = v Emn-

Figure 24 shows for the annular sector billiard with o = %W the first
three singular values as a function of k2. The solutions of (49) are marked by
triangles. Clearly, there are additional minima, which can be associated with
resonances of the dual scattering problem (for further details and examples
of this association for the annular sector billiard see [84]). In the limit of
«a — 7 these resonances are given by the eigenvalues of the circular billiard

of radius ;1 with Neumann boundary conditions. For this billiard the ansatz
U(r, @) = Jm(kr) together with W ’ = 0 gives the eigenvalue equation

me(k}T1> — leJm+1(kT1) =0 . (50)

The circles shown in Fig. 24 correspond to the solutions of (50) and provide
a very good description of the additional minima.

Thus the question arises how to detect and distinguish these additional
solutions. First, of course their existence and relevance strongly depends on
the system one is studying. In many situations (for example convex geome-
tries) there appear to be no complex solutions coming close enough to the
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Fig. 24. First three singular values as a function of E = k2 of the annular sector
billiard for o = %ﬂ' and r1 = 0.4 and r2 = 0.6. The triangles correspond to the
exact eigenvalues for the annular sector billiard, computed from (49) and the circles
correspond to the eigenvalues of the circular billiard with radius 1 and Neumann

boundary condition, determined via (50).

real axis. Intuitively this seems reasonable as long as there are no trapped
orbits outside of the billiard as these should give rise to resonances with small
imaginary part.

However, if such additional solutions exist they will show up in the &,
statistics by an offset of +1 at each additional eigenvalue (unless one by
chance misses the same number of ‘correct’ eigenvalues). If one has a sys-
tem with such additional solutions one approach is to plot the corresponding
normal derivative function u(s) and the eigenfunction. Usually they will be-
have quite differently for a correct eigenvalue and for a spurious solution.
For example for the case of the annular sector billiard the normal derivative
function for a spurious solution is discontinuous along the boundary and the
corresponding eigenfunction also has contributions outside of the billiard, see
Fig. 26. Another test would be to use the normalization condition (51) for the
normal derivative and compute the norm of the eigenfunction in the interior
of the billiard. These two are the same for proper eigenfunctions whereas for
spurious solutions they will disagree. Unfortunately, this is a highly inefficient
method as the computation of the eigenfunction in {2 is quite time-consuming.
Instead of computing the normalization for the full billiard one could restrict
to smaller subregions, e.g. for the annular sector billiard one could integrate
over the region of the circle with radius r; and check if it is different from zero
indicating a spurious solution. For the annular sector billiard the additional
zeros of the Fredholm determinant D(k) are complex as long as a < m. Thus
for N — oo these minima will stay bounded away from zero in contrast to
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the minima corresponding to the eigenvalues. However, in practice it is not
possible to check this as one has to make IV too large to distinguish these
from the correct eigenvalues.

More generally, spurious solutions can be understood by a second look at
the boundary integral equations. Namely, for the interior Dirichlet problem
we have the single layer equation, (19), and the double layer equation, (25).
On the other hand, the single-layer equation for the outside scattering prob-
lem with Neumann boundary conditions at 942 is also given by the double
layer equation (25). (see e.g. [51,50]). As a consequence, scattering solutions
of the outside scattering problem with Neumann boundary conditions at 02
may become relevant for real k. Namely, for resonances with small imaginary
part they can lead to additional solutions for the double layer equation which
are numerically indistinguishable from the correct solutions. However, these
solutions do not correspond to solutions of the interior problem and they do
not fulfill the single layer equation. So a possibility to distinguish spurious
solutions for the interior Dirichlet problem is to check the validity of the sin-
gle layer equation as well, which is only fulfilled simultaneously for correct
solutions of the interior Dirichlet problem.

A common approach (see e.g. [50] and references therein) to incorporate
this from the beginning is by combining the single layer and double layer
equation using a linear superposition. By this the solutions of the outside
problem with Neumann boundary conditions can be removed. Because of the
singular kernel in the single layer equation special care has to be taken with
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Fig. 25. First three singular values as a function of E = k2 of the annular sector
billiard for @ = %71 and r1 = 0.4 and r2 = 0.6. The triangles correspond to the
exact eigenvalues for the annular sector billiard, computed from (49) and the circles
correspond to the eigenvalues of the circular billiard with radius r1 and Neumann

boundary condition, determined via (50)
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Fig. 26. Normal derivative functions u, (s) corresponding to the correct eigenvalue
with £ = 663.88... (left) and the spurious one with E = 691.77... (right). Here
li =7ra,la =ria+ra—ry and ls = ria+ra —r1+ars. One clearly sees the discon-
tinuity in wun(s) for the spurious solution. This is also reflected in the structure of
the eigenfunction which for the spurious solution has its main contribution outside
of the billiard. Notice that in both cases the eigenfunction has been computed ac-
cording to (40) inside and outside of 2. The fact that for the correct eigenfunction
¥n(q) = 0 (within the numerical accuracy) for ¢ € R*\{2 is another test of the
accuracy of the eigenvalue computations and eigenfunctions.

the implementation. For the more difficult case of billiards with magnetic
field see [65].

Derived Quantities in Terms of the Normal Derivative Function

As the normal derivative function contains all information to determine the
eigenfunction, it is interesting to see if this approach can be used to compute
other quantities of interest. For example, if one wants to calculate expecta-
tion values (¢|A|1)) of some operator A in the state 1, one has to ensure that
the eigenfunction ¢ is normalized, (¢[y) = [, [¢(q)|? d?¢ = 1. In principle

SO
this could be done by considering ((z/;|z/)>) ¥(q) of an unnormalized eigen-

function 1Z However, an accurate computation of (J\J) using (41) is quite
time consuming. Fortunately, there is a simpler way to achieve a normalized
t: If 1 is a normalized eigenfunction with eigenvalue E = k? and u(s) is the
corresponding normal derivative then we have the following normalization
condition for u(s) [55,59]
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1
5§ e () ds =k (51)
o0

If @(s) is an unnormalized normal derivative, then one obtains by

s) = V2k — u(s)
¢ § n(s)q(s) |a(s)|>ds
o1

u(

a normalized one. Starting with a normal derivative normalized in this way,
any other quantities (e.g. expectation values) determined in terms of u(s)
have the correct normalization.

This is just the first example out of many highlighting the importance
of the normal derivative for numerical computations of quantities related to
eigenfunctions. For example, there are explicit expressions in terms of u,(s)
to compute the

— normalization of 1, (51), [55,59]
— eigenfunction ¢, (41)
— momentum distribution

% /e_ipqwn(q) d2q = _47Tp% /e_ipq(S)pq(S)un(s) dS, (53)

2 on

i

Vn(p) =

and radially integrated momentum distribution [85, 86]

[ee]

1)~ [

0

Bulr.)| v ar | (54)

see [86] for details.
— Husimi functions (see e.g. [87,88])
— autocorrelation function of eigenstates [89].

In Figs. 27-29 we show for the cardioid billiard examples of eigenfunctions
in position space, the corresponding momentum distributions, the angular
momentum distributions (for further details and examples see [86]) and the
corresponding Husimi functions H, (s, p). The first example in Fig. 27 shows
an example of a scarred state, i.e. an eigenstate which shows localization
round an unstable periodic orbit [90]. Below the three-dimensional plot of
the state is the corresponding density plot (black corresponding to high in-
tensity) in which the localization is clearly visible. Also the corresponding
three-dimensional plot of the momentum distribution 1//;567([)) reveals en-
hanced contributions in the directions ¢ = /2, 37 /2. This is also seen in the
plot of Isg7(¢) which shows that the probability to find the particle with mo-
mentum near 7/2 is significantly enhanced compared to the mean of 1/(2w).
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n = 567, odd symmetry
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Fig. 27. Three-dimensional plots of |s67(q)|?, |7Z567(p)|2, their corresponding
grey-scale pictures and the plot of the radially integrated momentum distribu-
tion Is67(). The momentum distribution |¢se7(p)|? is concentrated around the
energy shell, which is indicated by the inner circle. This state is localized along
the shortest unstable periodic orbit, leading to an enhancement of |¢ss7(p)|> near
to ¢ = 7/2,3m/2, also seen in the plot of I567(p) near to the momentum direc-
tion ¢ = 7/2 (marked by a triangle). This localization is also clearly visible in the
Husimi representation.
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n = 116, odd symmetry
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Fig. 28. Same as in the previous figure but for n = 116. In this case there is no
prominent localization neither in position nor in momentum space.

Another representation is the Husimi-Poincaré representation H, (s, p) where
s corresponds to the arclength coordinate along the billiard boundary and p
corresponds to the projection of the unit velocity vector after the reflection
on the tangent in the point s. In this picture the localization around the un-
stable orbit is maybe most clearly seen; the places of high intensity are on the
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a) n = 4042, odd symmetry b) n = 6000, odd symmetry
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Fig. 29. The eigenfunction in a) shows localization along the shortest unstable orbit
which is also reflected in the momentum distributions and in the Husimi function.
The eigenfunction in b) is an example which appears to be quite delocalized both in
position and in momentum space. The pictures look like those expected (according
to the quantum ergodicity theorem) for a ‘typical’ eigenfunction.
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line p = 0 (perpendicular reflection) and match perfectly with the position
of the orbit.

The second example shown in Fig. 28 is an ‘ergodic’ state, i.e. a state
which does not show any significant localization (as much as something like
this is possible at low energies) neither in position nor in momentum space
(apart from the localization on the energy shell). This is nicely reflected in
the various representations. Two further examples are shown in Fig. 29 where
a) is a higher lying scar and b) is another ‘typical’ state (in the sense of the
quantum ergodicity theorem).

4 Concluding Remarks — Or What’s Left 7

There are many more issues related to scientific computing in quantum chaos
which I did not mention in these notes. They for example include visualization
techniques, programming of parallel computers (e.g. using PVM or MPI), or
using vector computers etc. Also the more implementation specific aspects,
including the choice of a programming language have not been discussed. A
good starting point to learn about computing in quantum chaos are quantum
maps as their numerics is much easier (one can use a black-box routine to get
all eigenvalues at once) than for billiard systems, where more complicated
methods have to be used.
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Appendix: Computing Eigenvalues of Quantum Maps

The first thing when thinking of solving a certain problem numerically is to
decide on the programming language. There are numerous possibilities, rang-
ing from Assembler, Fortran, Pascal, C, C++, Java, etc. to using packages
like Octave, Matlab, Maple or Mathematica. Here I will use the quite recent
scripting language Python [91]. Of course it is beyond the scope of this text to
give an introduction to this language; several excellent introductions can be
found on the Python homepage. In addition to the basic Python installation
you will also need the Numeric package [92], which is also simple to install.
The following programs together with further information can be obtained
from [20]. If you have been wondering about the name - yes it originates from
Monty Python’s flying circus, and at several places the documentation refers
to more or less famous Monty Python sketches.

So here is pert_cat.py (the full version can be obtained via [20]):
#!/usr/bin/env python

import cmath

from Numeric import zeros,Float,Complex
from math import sin,pi,sqrt

import LinearAlgebra

def quantum_cat(N,kappa) :

"""For a given N and kappa this functions returns the
corresponding unitary matrix U of the

quantized perturbed cat map.

nnn

mat=zeros((N,N), Complex) # complex matrix with NxN elements
I=1j # predefine sqrt(-1)

# now fill each matrix element

# (note: this can be done much faster, see the on-line version)
for k in range(O,N):

for 1 in range(O,N):

mat [k,1]=cmath.exp(2.0*I*pi/N* (kxk-k+x1+1*1)+ \
Ixkappa*N/2.0/pi*sin(2.0*pi/N*1))/sqrt (N)

return(mat)

def compute_evals_pcat(N,kappa):

"""For a given N and kappa this functions returns

the eigenvalues and eigenphase of the unitary matrix U
filled via quantum_cat (N,kappa).

matU=quantum_cat (N,kappa) # fill matrix U_N

# determine eigenvalues of U_N:
evals=LinearAlgebra.eigenvalues (matU)

# determine phase \in [0,2\pi] from the eigenvalues
phases_N = arctan2(evals.imag,evals.real) + pi
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# useful to determine level-spacing
phases = concatenate([phases_N, [phases_N[0]+2.0x*pi]l])
return(evals,phases)

### Main (used if pert_cat.py is called as script)
if __name__ == ’__main__’:

from string import atoi,atof

import sys

# Determine eigenvalues and eigenphases
(evals,phases)=compute_evals_pcat(atoi(sys.argv[1]), \
atof (sys.argv[2]))

for k in range(O,N): # print eigenvalues
print(", e % el ehe™ %\
(evals[k] .real,evals[k].imag,phases[k],abs(evals[k]))

The only drawback of the above code is that the loop to fill the matrix
is slower than a corresponding code in C or Fortran (notice that there are
some very nice ways of overcoming this by inlining of code or on-the-fly
compilation which are presently being developed for example in the context
of SciPy [93]). However, as diagonalize uses the LAPACK library the most
time-consuming part (at least for larger N) is done in an efficient way (not
taking into account the possibility of using ATLAS [24] for further speed
improvements).

As a first test do (for N =101 and x = 0.3)

python pert_cat.py 101 0.3

It will output the (complex) eigenvalues as a sequence z,y pairs. As a
test, whether these all lie on the unit circle the third column is the absolute
value of the eigenvectors. To plot the resulting data you may use

python pert_cat.py 101 0.3 > pcat_101_0.3.dat

which redirects the output of the program to the file pcat_101.0.3.dat.
To plot the resulting file use your favourite plotting program, e.g. for gnuplot
[94] just do

plot "pcat_101_0.3.dat" using 1:2 with points

Now we would like to compute the level spacing distribution. To do this
let us use an interactive Python session in which we do

from Numeric import * # Numeric package
from pert_cat import compute_evals_pcat # above pert_cat routines
from AnalyseData import * # histogram (see below)

N=53

kappa=0.3
(evals,phases)=pert_cat.compute_evals_pcat (N,kappa) ;
# sort and unfold phases
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s_phases=Numeric.sort (phases)*N/(2.0%pi)

# determine Level spacing
# (by computing the difference of the shifted eigenphases)
spacings=s_phases[1:]-s_phases[0:N]

(x_histogram,y_histogram)=histogram(spacings,0.0,10.0,100)
store_histogram(x_histogram,y_histogram,"histogram.dat")

Then use your favourite plotting program to plot the level spacing distri-
bution. For gnuplot you could do

goe_approx(x)=pi/2.0*x*exp (-pi/4*x*x)
gue_approx(x)=32/pi/pi*x*x*exp(-4/pi*x*x)
plot "histogram.dat" w 1,goe_approx(x),gue_approx(x),exp(-x)

Here the routines to compute and store the histogram are in
AnalyseData.py whose core reads

def histogram(data,min,max,nbins):

from Numeric import *

# first select only those which lie in the interval [min,max]
hdat=compress( ((data<max)*(data>min)),data)
bin_width=(max-min) /nbins

# define the bins

bins=min+bin_width*arange (nbins)

# determine indices

inds=searchsorted(sort(hdat) ,bins)
inds=concatenate([inds, [1len(hdat)]])

# return bins and normalized histogram

return(bins, (inds[1:]-inds[:-1])/(bin_width*len(hdat)))

def store_histogram(x_distrib,y_distrib,outdat):
bin_width=x_distrib[1]-x_distrib[0]
f=open(outdat,"w") # open file for writing

for k in range(0,len(x_distrib)):

f.write("% e % e \n" % (x_distrib[k],y_distribl[k]))
f.write("% e % e \n" % (x_distrib[k]+bin_width, \
y_distribl[k]))

f.close()

Again, for further details and full routines see [20].
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[A5] Poincaré Husimi representation of eigenstates in quantum billiards

A. Backer, S. Fiirstberger, R. Schubert
Phys. Rev. E 70 (2004) 036204 (10 pages)

For the representation of eigenstates on a Poincaré section at the bound-
ary of a billiard different variants have been proposed. We compare these
Poincaré Husimi functions, discuss their properties and based on this select
one particularly suited definition. For the mean behaviour of these Poincaré
Husimi functions an asymptotic expression is derived, including a uniform
approximation. We establish the relation between the Poincaré Husimi
functions and the Husimi function in phase space from which a direct phys-
ical interpretation follows. Using this, a quantum ergodicity theorem for
the Poincaré Husimi functions in the case of ergodic systems is shown.
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For the representationf eigenstate®n a Poincarésectionat the boundaryof a billiard differentvariants
have beerproposedWe comparethesePoincaréHusimi functions,discusstheir propertiesand basedon this
select one particularly suited definition. For the mean behavior of these PoincaréHusimi functions an
asymptoticexpressioris derived,including a uniform approximation.We establishthe relation betweenthe
PoincaréHusimi functionsandthe Husimi functionin phasespacefrom which a direct physicalinterpretation
follows. Using this, a quantumergodicity theoremfor the PoincaréHusimi functionsin the caseof ergodic

systemss shown.
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I. INTRODUCTION

The study of eigenfunctionf quantumsystemsjn par
ticular, their dependencen the classicaldynamics,has at-
tracteda lot of attention.A prominentclassof examplesis
provided by two-dimensionalbilliard systems,which are
classicallygiven by the free motion of a particleinsidesome
domainwith elasticreflectionsat the boundary The corre-
sponding quantum systemis describedby the Helmholtz
equationinside a compactdomain Q CR? (in units A=1
=2m),

Ay + K =0, x € Q, (6]
with (for examplg Dirichlet boundaryconditions
Un(x)=0, xedQ, (2)

wherethe eigenfunctionsy,(x) arein L%(2). Assumingthat
the eigenvalueskﬁ are orderedwith increasingvalue, the
semiclassicalimit corresponddo n— . A detailedknowl-
edgeof the behaviorof the eigenvalueskﬁ andthe structure
of eigenstatess relevantfor applicationsfor example,mi-
crowavecavitiesor mesoscopicsystemssee,e.g., Ref. [1],
andreferencegherein.

For the descriptionof the phasespacestructureof quan-
tum systemsausuallythe Wignerfunction[2] or Husimi func-
tion [3] is used.However for a systemwith d degreesof
freedomtheseare 2d-dimensionafunctions,which arediffi-
cult to visualizefor d> 1. Therefore,one usually considers
the positionrepresentationpr the momentunmrepresentation
[4], or sectionsthroughthe Wigner or Husimi function, see,
e.g.,Ref. [5].

Anotherapproachis the useof representationsn the bil-
liard boundary acting as a global Poincarésection.In the
literature one canfind severalvariantsfor theserepresenta-
tions, see,e.g.,Refs.[6—8]. The reasonis, asemphasizedn
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Ref. [7], thatthereis no naturaldefinition of a scalarproduct
for functionson the billiard boundary This raisesthe ques-
tion whetheroneof thesedefinitionshasadvantagesverthe
others,which will be addressedh the following.

The representationf eigenstatesn the Poincarésection
playsanimportantrole in severalapplications For example,
it is usedto definescarmeasure$8,9], or to study conduc-
tancefluctuations,seeRef. [10], andreferencesherein.Fur
thermore, these representationsre usedto determinethe
coupling of leadsin opensystems[11]. Another important
applicationis the detectionof regionswhereeigenstate$o-
calize,seee.g.,Refs.[12,13,1] (for analternativeapproach
basedon the scatteringapproachseeRefs.[14,15). Repre-
sentationsof eigenstate®n the Poincarésectionhave also
beenusefulto understandhe behaviorof optical microreso-
nators,see.e.g.,Ref.[16], andreferencesherein.More gen-
erally, the approachis not just applicablefor billiard systems
butit is alsousefulfor Poincarésectionsarisingfrom Bogo-
molny’s transferoperatorapproach17].

In this paperwe first comparetwo differentdefinitionsfor
the PoincaréHusimi representationdiscusstheir properties
(Sec.ll), andbasedn this we selectoneparticulardefinition
for the following. In Sec.lll we derivethe behaviorof these
PoincaréHusimi functionswhenaveragedver severalener
gies.In Sec.IV we establisha relation betweenthe well-
known Husimi functionin phasespaceandthe PoincaréHu-
simi function on the billiard boundary This allows for a
direct physicalinterpretationof the PoincaréHusimi func-
tions. Moreover for ergodic systemsa quantumergodicity
theoremfor the PoincaréHusimi functionsis shown.

Il. HUSIMI REPRESENTATION ON THE BOUNDARY

Let us first recall the definition and some propertiesof
Husimi functionsin phasespace.For a solution ¢, of the
Helmholtzequation(1) with enegy E:kﬁ the Husimi func-
tion Hﬁ(p,q) is given by its projectiononto a coherentstate,
ie.,

K\
Hg(piq) = (Z) |<w:3pq)k"!l//n>ﬂ‘z (3
Here

©2004 The AmericanPhysicalSociety
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(W ido: = fn PACIACILE )

is the scalarproductin Q, andJ1 denoteghe complexcon-
jugateof .
The coherentstatesare definedas

12
11)3 k(X): - (5) (detIm B)1/4eik[<p,x—q>+(1/2)<><-q.B(><-q)>]’
(p.a), -

(5

where (p,q) e R2X R? denotesthe point in phase space
aroundwhich the coherentstateis localized,andB is a sym-
metric complex2 X 2 matrix which determineghe shapeof
the coherentstate.For the conventionalcoherentstatesone
32 andin generalonehasthe conditionim B> 0,
i.e., (v,ImBv)>0 for all v e R2\{0}. Notice that because
the varianceof the coherentstatesis proportionalto k, all
Husimi functions are concentratecaroundthe enegy shell
|p|?=1 (and not around |p|>=k?). By this it is possibleto
compareHusimi functionswith differentenegieskﬁ, and,for
example,considertheir mean,seeEq. (7) below
SuchHusimi functions can be interpretedas probability
distributionson phasespacepecauséehey satisfytherelation

hasB=i

(At = f f a(p, ) HR(p,a)d?pcPq + O(k; ),
RZ JR?

(6

wherea(p,q) is a functionon phasespaceandA its quanti-
zation.This relationalsoshowsthatthe choiceof the matrix
B in the definition of the coherentstatesdoesnot affect the
leadingorder behaviorof HE as a probability density since
the left handside of Eq. (6) doesnot dependon B.

The averageof all Husimi functionsHﬁ(p,q) up to some
enepy k?=E convegesfor k— o to thenormalizednvariant
measureon the enegy shell,

. 1 B, - 1 2

M N 2P ) = Taxal@o el ()
Here N(k) denotesthe spectral staircasefunction, N(k):
=#{k, =<k}, xq is the characteristidunction on Q, andA is
the areaof (). The meanbehavior(7) is similar to the mean
behaviorof the spectralstaircasdunction, which is given by
the Weyl formula, i.e., for k— o onehasN(k) ~ (A/4m)k?. A
similar asymptoticbehaviorcan be derivedfor the meanof
normalderivativefunctions,seeRef. [19] for a detaileddis-
cussion.

For billiards an extremelyuseful approachor describing
thedynamicsis the useof a PoincarésectionP togetherwith
the correspondind?oincarémappingP. Usually the section
P:={(q,p)|qe[0,L],pe[-1,1]} is parametrizedy the ar
clength coordinateq along the boundaryd€) of the billiard
and the projection p of the (unity momentump after the
reflection on the tangenti(q), i.e., p=(p,i(q)). By this the
billiard flow induces an area-preservingmap P:P— P,
wherethe invariantmeasures given by du=dq dp

PHYSICAL REVIEW E 70, 036204(2004)

In orderto havethe advantage®f sucha reducedrepre-
sentationin quantummechanicsaswell, oneis interestedn
a Husimi representatiorn,(q,p) on the Poincarésection’P
which is associatedvith an eigenstate/,. Sucha Poincaré
Husimi function should have similar propertiesas the ones
expressedby relations(6) and(7) for the Husimi functionsin
phasespace,and our aim is to study to what extentthis is
possible.More precisely onewould like thatfor the Husimi
function on the billiard boundarya spectralaverage,

P = @kzkhnm,m, ®

tendsto the invariant measureon P ask— «, in the same
way asin Eq. (7).

The Husimi representatioron the billiard boundaryis
usuallydefinedusingthe normalderivativeof the eigenfunc-
tion (hereaftercalled the boundaryfunction),

Un(9): =(A(9), V ¢ (x(9))), 9

wherex(s) is a point on the boundaryd(), parametrizecby
thearclengths, andfi(s) denoteshe outernormalunit vector
to 9Q at x(s). The boundaryfunctionsare a naturalstarting
point for defininga Husimi representation becausieey de-
terminethe eigenfunctionsuniquely seeEg. (30). Thusthe
boundaryfunctionsform areduced representatiarf the sys-
tem. If an eigenfunctiony, is normalized,then the corre-
spondingboundaryfunction u,, fulfils the normalizationcon-
dition [21]

: f (SRS X(9)dls= . 10
193

2)

For alternative derivationsof Eq. (10) and more general
boundaryconditionsseeRefs.[22,23. Notice thatwhile the
integranddependson the chosenorigin for the vector x(s),
theintegralis independenbf this choice.

Startingfrom the boundaryfunction aHusimi functionon
the Poincarésectioncan be definedby a projectiononto a
coherentstate. Thereare different possibilitiesto defineco-
herentstateson the boundaryof abilliard. A naturalchoiceis
the periodization of the usual one-dimensionalcoherent
states,

1/4
C?q‘p),k(s): - (E) (Im b)1/42 eik[p(s—q+mL)+(b/2)(s— q+ mL)ZJ'
m meZ

(11)

where (g,p) e 9AX R, and L denotesthe length of the
boundary The parameterbe C, Im b>0, determinesthe
shapeof the coherentstate.Thenfor an eigenstate, with
boundary function u, a Husimi function on the Poincaré
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section” (or more precisely on the cylindric phasespace
dQ X R) canbe definedas[6,7]

2

1
hy(a.p) = -— (12

27K,

f E?q‘p),kn(s)un(s)ds
N

The completenesselationfor the coherentstatesgives

1
f fhn(q,mdp dq=7f |un(s)[ds, (19
o Jr ks Jaa

so in view of relation (10) the PoincaréHusimi function
h,(g,p) will in generalnot be normalized.This canbe fixed
by dividing hy(q,p) by the factor (1/K2) [ |u,(s)|’ds, & wes
done,for instancejn Refs.[12,13. But later on we will see
thatit is more naturalto work with the non-normalizedHu-
simi functions(12).

A different Poincarérepresentatiomasbeenproposedn
Ref. [8],

2

‘ f gk, (SUn(SHA(S),X(9))ds
~ 1 a0
ha(a,p) = P

. ,
L . a1k, (9l i (9(A(S),X(5))ds

(14

wherethe inclusionof the factor (fi(s),x(s)) is motivatedby
its appearancén the normalizationcondition (10). In order
to comparethe two definitions,we usethe fact thatfor large
k the coherentstate becomesmore and more concentrated
around s=q and ) (A(s),x(s)) E?q,p),k"(s)
~(A(q) ,x(q))?(’qvp)vkn(s). This leadsto the relation

hn(a,p) ~ (A(), X(@)Nn(d,P),

betweenthe two definitionsfor Husimi functions.

Let usfirst illustratethe behaviorof the Husimi represen-
tationgivenby Eqg. (12). As a concreteexamplewe consider
a memberof the family of limagon billiards introducedby
Robnik [24,25, whoseboundaryis given in polar coordi-
natesby p(¢)=1+e coq¢), where e € [0,1] is the family
parameterAt £=0.3 the billiard hasa mixed phasespace
(seeFig. 1 in Ref. [12]) and at e=1 it turnsinto the fully
chaotic(i.e., ergodic, mixing, ...) cardioid billiard. Because
of the symmetryof the billiard we considerthe half-limagon
billiard with Dirichlet boundaryconditionseverywhereThe
eigenvalueshave beercomputedusing the conformalmap-
ping technique [25,2§ and then the boundary element
method has beenusedto computethe eigenfunctions(see
Ref.[27], andreferencesherein. Figure1 showsa compari-
son of eigenstatesy,(q) with their Husimi representations
hn(q, p) asgray-scaleplotswith black correspondingo large
values. For the computationsb: =ic™*=i was chosen.In
(a) an eigenstatavhich is localizedarounda stableperiodic
orbit with periodthreeis shownwhich is clearly reflectedin
its PoincaréHusimi function to the right. The symmetry
hn(a,p)=hn(q,-p) is dueto the time-reversalsymmetry of
the systemand the symmetry h,(q,p)=h,(L—q,p) stems
from the reflection symmetry of the system.The plots in

(15
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FIG. 1. Examplesof eigenstates),(q), shownto the left, andto
the right their PoincaréHusimi functionsh,(q, p). In (a) an eigen-
state (n=1952 localizing arounda regular orbit for the limagon
billiard at £=0.3 is shown.In (b) and (c) two eigenstatedor the
cardioidbilliard are shown(n=1817andn=1277.

Figs.1(b) and1(c) areate=1.0,i.e., for the cardioidbilliard.

The eigenstateshownin (b) is localizedaroundan unstable
periodicorbit of periodtwo which is alsonicely seenin the
prominent peaks for the correspondingPoincaré Husimi

function. In (c) an irregular statein the cardioid billiard is

displayedwhich is spreadout over the full billiard andalso
hn(q,p) doesnot showany prominentlocalization.

Now we turn to a comparisorof the two PoincaréHusimi
representationgiven by Eqgs.(12) and(14). In Fig. 2 a plot
of Hy(q,p) is shownwherek=125.27.. is chosensuchthat
the first 2000 statesare takeninto account.Both definitions,
Eqgs.(12) and(14), leadto a similar nonuniformbehaviorof
‘H(q,p) in p direction.We will discusshis behaviorin more
detail in the following section.In addition we observethat
‘H(g,p) has a minimum at (q,p)=(0,00 and (q,p)
=(+£/2,0), which is due to the desymmetrizationFigure
2(b) showsa plot of Hy(q,p) which is definedas H,(q,p),
but insteadof h,(q,p) the functionsh,(q,p) are used,see
definition (14). In this casewe observein addition a clear
variationin g. Thereasorfor thisis thefactor(fi(q),x(q)) as
explainedby relation (15). Another importantpoint is that
the definition (14) dependson the choserorigin asthe factor
(f(g),x(q)) does,andthereforethe integralsin Eq. (14) are
notinvariantundera shift of the origin. Becausef thevaria-
tion of h,(q,p) in g and the dependencen the origin we
preferthe definition (12) andwill usethis exclusivelyin the
following.

036204-3

148




BACKER, FURSTBERGERAND SCHUBER"

-
-

02
Hi(a,p)

00

(a)

_ 03
Hila,p)
0.2

0.0 -

q
L2
0.0
50
L
q
L2
L5
0.0
P50
FIG. 2. Plot of H,(q,p) for k=125 using the first 2000 eigen-
statesin the limaconbilliard of odd symmetryat £=0.3.n (a) the
resultfor H,(q, p) usingdefinition(12) for h,(q,p) is shownandin
(b) a correspondingH(q,p) using definition (14) is displayed.In
additionto the symmetryrelateddips at (q,p)=(0,0) and(L/2,0)

oneclearly seesthe variationin p directionin both casesandin (b)
we, moreover observea variationin g.

(b)

. MEAN BEHAVIOR OF BOUNDARY
HUSIMI FUNCTIONS

In this sectionwe determinethe asymptoticbehaviorof
the mean H,(q,p) of the boundaryHusimi functions for
large enegies.To this endwe will usethe methodsfrom our
previouswork [19]. Let usintroduce

g’(k,s,s'): = E %@n(s,)p(k_ ko),

nelN

(16)

wherep is a smoothfunction whoseFourier transformp is
supportedn a neighborhood-7, %], with » smallerthanthe
length of the shortestperiodicorbit of the billiard flow, and
satisfiesin addition p(0)=1. The function g°(k,s,s’) was
studiedin Ref. [19] and an asymptoticexpansionwas de-
rived. Its leadingterm reads

PHYSICAL REVIEW E 70, 036204(2004)

27
Pikss) =55 | @680
0

><<ﬁ(sy)’é(¢)>eik<x(s)—x(s’).é(w))d(P[l + O(k_l)],
17)
where x(s) denotesthe position vector on the boundaryat
point s, fi(s) denotesthe outer unit normal vector to the
boundaryat s, and&(¢)=(cos ¢, sin ¢) is the unit vectorin
direction ¢. In generalthe right handside of Eq. (17) is a
sumof oscillatingtermscorrespondingo reflectedorbits, the
condition on the supportof the Fourier transformof p is
necessaryn orderthat only oneterm contributes.
Multiplying Eq. (17) with €, ; () andcf, ; (s') andin-
tegratingover s ands’ leadsto

> p(k=k)hn(q,p)

k2 J~2n
1.3
4 Jo )

x[1+0(k™], (18

where we have used||cfy o)~ Cly p i [P = Clk—kn)?/ (K +ky)?
in orderto obtainthe left handside. The s integral can be
computedby the methodof stationaryphase,

2
(A(9),8(¢)) ORI (S)ds| dep

Jn (A(), &) HO&I, | ()ds
S

k 1/4 &g
=<;) (Im b)mj_ (A(s),&(¢))

 @k(X(9).&(e)-pls-0)-(b2)(s - 2]y g

At 1/4(|m b)1/4 . .
= (7) —— —(A(0),&e))
[Ib]uz
x K@ e+ p - (@) &)1 4+ O(k12)],
(19

with

b=b+x(@)(A(@),&¢)), (20
where k(q) is the curvatureof the boundaryat g. Inserting
this resultwe obtain

> pk=kyhy(a.p)

nen
2= Zﬂ“mT:)m\m(q),éw»F
x g KIm bbp - G4 g 1 + O],

(21)

and for |p|<1 the ¢ integral can again be solved by the

methodof stationaryphase(noticethattherearetwo station-
ary points which yields

T (em)?
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S p(k=k)hy(a,p) = ﬂle 1-p1+0(K™ D). (22

neN
By integratingthis equation,and using a TauberianLemma
asin proofsof the Weyl formula(see,e.g.,Ref.[28], Lemma
17.5.6, we finally obtain

Eh (a,p) =

—xl +0(k™).
N, P

H(a,p) =

(23)

In thederivationof Eq. (22) from Eq. (21) we haveassumed
that|p| <1 becausghenthe stationarypointsarenondegen-

g (47,77_)1/2fjc (|m b)l/Z
2m)°3\ k o [o]
4k?

_ (4777)1/2 fx (Im b)llz
(2m®\ k o [o]

- 34 (B2
—gkm b/b)(p - 1220 Jbl
- 2,”5/2

> pk=kphy(a.p) =

nelN

B (2k)3/4

- ~erkim 21 - p)2<
(2m)

where D_3/,(X) denotesthe paraboliccylinder function and

we have usedone of the standardintegral representations,

see.e.g.,Ref. [31].

This resultwas derivedunderthe assumptiorp= 1 such
that (p?-1)=~2(p-1). Substituting(p—1) by (p?-1)/2 al-
lows us to combinethe resultsfor the differentp regionsin
oneformula,

k
2, p(k=kn)hn(@,p) = ZFUPIL+OK™], (25
where
~ 1/4
_ 1 ~k(Im b/gjbj?)(1 - 2?(%)
P = 5 e "Nimb
(k Im b)12

XDfsxz(T%l(Pz- 1))- (26)

For |p|<1 one has F(p)=y1-p?+0(k™), since D_g(x)
~ 2812|1264 for x— —o0. Recallthat b is definedin Eq.
(20). In Fig. 3 we compare the expression(26) with
[b|?/1m b=1 for differentvaluesof k. It is clearly visible that
the asymptoticresultis reachedslowly with increasingk.
IntegratingEq. (26), analogoudo the transitionfrom Eq.
(22) to Eq. (23), one can comparethe uniformized mean
behaviorwith the numericalresult. In Fig. 4 a sectionof

PPerkim bibA(p-1+ ¢2>zd¢ [1+0f
1/2gK(m bijb)(p -
Im b

fbf?
Im b

PHYSICAL REVIEW E 70, 036204(2004)

erate.For |p| > 1 the stationarypoints becomeomplexand
theintegralis exponentiallydecreasindgor k— oo.

Previously sucha y1-p? behaviorappearedn the con-
text of Fredholm methodsfor PoincaréHusimi functions
[30] and was also obtainedin connectionwith the inverse
participationratio [9].

Next we want to derive a uniform approximationwhich
describesthe meanbehaviorof the Husimi functions near
|p| =1 andthe crossoveifrom the regime|p| <1 to the ex-
ponentialdecreasdor |p| > 1. We will studythe casep=1,
the casep~—1 is completelyanalogousLet ¢, be the angle
correspondingo the directionof t(q) andexpandinghe am-
plitude and phasefunctionin Eq. (21) aroundg, leadsto

(k)]

1% 1+ O(k )]

1/4
) f xL/2g-{(2k Im b)“zl\hl;\}(pfl)xfxz/Zd){l +O(k’1/2)]
0

1/4 12
) D—3/2<MP 1>)[1+o<k-“%]

(29
[bl

‘Hy(q,p) at q=3.0 is shownfor k=125, comparewith Fig.
2(a). The remainingdifferencesare dueto higherordercor
rections.

In the derivation of the results(22) and (25) we have
implicitly assumedthat the boundaryof  is sufficiently
smooth,becauseonly thenwe can usethe stationaryphase
formula. But it is easyto extendthe resultsto the casethat
the boundaryis only piecewisesmooth.Sincewe multiply in
Eq. (18) by a coherentstatecenteredn g, all the following
computationgemainvalid if q is in the smoothpart of the
boundarysincethe contributionsfrom the singularpointsare
exponentiallysuppressethen. Soit could only happenthat
someadditionalmasssits at the singularpointsof the bound-
ary, i.e., we have

lim —— 2 hn(q p)=

ks N(K) @

*xl p*+ us(p,q),

where ug(p,q)dp dgis a measuresupportedon the singular
partof the boundary(i.e., if (p,q) e suppusthenqisin the
singularpartof the boundary. We wantto showthat us=0 if
the billiard is star shapedWe first showthat us=0, let ug
=us+ug bethe decomposition’nto its positiveandnegative
parts andlet S* bethe supportof s. We definefor anye >0

S ={ziinfscs | |z-s|}, and with lim,_ofs wtdpdg=0 and
Ilmbofg\l p’dpdg=0 we get
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FIG. 3. Comparisonof the uniformized asymptotic behavior
Fu(p), seeEq. (26), with |b|2/Im b=1 and for k=10,30,500. The
asymptoticsemicirclebehavioris reachedslowly.

o1 -
fim lim N(k)%k JS; hn(q,p)dpdg= L ps (29
But theright handsideis negative whereagheleft handside
is positive, and thereforeug=0 and us=0. Now the com-
pletenesselation for the coherentstatesand the normaliza-
tion (10 giveslimkwx%fﬂﬁ(q),x(q))hn(q,p)dpdq=1, and
together  with the relation 1/2f f(A(a),x(q))
X (2/1Am)y1-pZdpdg=1 this yields

1
f f (A(a),x(@)us(p,a)dg dp=0. (29)
-1 Jao

But for a starshapedbilliard onecanchoosetheorigin of the
coordinatesystemsuchthat (Ai(q),x(q)) >0 for all g e J1,
andso us=0. ThereforeEqgs. (22) and (25) remaintrue for
starshapedbilliards with piecewisesmoothboundarywith
the only possiblemodificationthat the error term might de-
cay moreslowly at the singularpoints of the boundary

IV. FROM HUSIMI FUNCTIONS IN PHASE SPACE
TO HUSIMI FUNCTIONS ON THE BOUNDARY

In this sectionwe derive a direct relation betweenthe
Husimi functionin phasespaceandthe one on the Poincaré
section,as given by Eq. (12). By this we obtaina physical
interpretationof the PoincaréHusimi representatiorf-or the
calculationsin this sectionwe haveto assumethat the bil-
liard domain() is convex.Let ¢ be a solutionof the Helm-
holtz equation(1) in Q which satisfiesDirichlet boundary
conditionon d€). Any suchfunction canbe represente@s

h(x) =~ f Gy(x = x(s)u(s)ds, (30
)

where G (x-Y) is a free Greensfunction and u(s) is the

normalderivativeof  on the boundary Notice thatthe right

handside of Eq. (30) givesan extensionof #(x) to R? with

PHYSICAL REVIEW E 70, 036204(2004)

y(x)=0 for x e R\Q (this follows from Greens formula).

Let ¢, be a coherentstate (5) centeredat z=(p,q)
e T'R?, for reasonf simplicity we restrictourselvego the
caseof a nonsqueezedymmetricalstate,i.e., B=i 0 1)
andomit the index B in the following. We wantto compute
the overlap(y, ¢,) given by

(o= Ppe=— JQ (G- =x(9)), p2u(9)ds,

(3D
wherewe haveusedthe aforementione@xtensionof ¢(x) to
R? given by Eq. (30). We now observethat

(G- =X(9)), P2 = GyX(9)), (32

where

Gy = lim——— 33

KT oA +IC +ie @3
is the resolventoperator whosekernelis the Greensfunc-
tion. From Eq. (32) we seethat the function GL//Z is re-
stricted to the billiard boundary For the resolventoperator
we usethe integral representation

A 0
Gl= ITJ e U,

(39

where U(t)=€M* is the free time evolution operatorwith
1/k playingtherole of #, andinsertingEq. (34) into Eq. (32
we obtain

o
<Gk(--X(S))yt//z>J42=lkf UMY x©)dt.  (35)

But the free time evolutionof a coherentstatecenteredn
z is well known (see,e.g., Refs. [32,33) to give againa
coherenstate centeredaroundtheimageof z undertheclas-
sical flow andwith transformedvariance,

0.15

_0I0F
=
=
z

0.05 |-

0.00
-L.5 -1.0 0.5 0.0 0.5 Lo L5

FIG. 4. Thefull curveshowsa sectionof Hy(q,p) atq=3.0with
k=125 for the desymmetrizedimacon billiard, seeFig. 2(a), and
the secondline is the uniformized meanbehavior The remaining
deviationsare causedby higherordercorrections.
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x(q)

FIG. 5. lllustration of a Gaussianbeamas given by Eq. (38)
insidethe limaconbilliard at £=0.3.

U(t)i(x)

- ék\p\zt<5)w
a

with q(t)=q+2tp. Therefore,GL//z(x) hasthe structureof a
Gaussianbeamemanatingfrom the point g in direction p

backwardsn time. If we introduce anew coordinatesystem
x=(x,X,) centeredat q with x| parallelto p andx, perpen-
dicularto p, we obtainby a stationaryphaseapproximation
thatfor x, and1-|p| small(i.e., nearthe enegy shel)

L gk x-a) iR +a0 o - gt
1+2it '

(36)

i 2 2
Gliy(x) = il DA 7211 - )]
KR k(L +ix)

X[1+0(k™?)] (37

holds, where we have assumedhat x;<0. For x;=0 and
x>0 the integralleadsto an error function which describes
the transitionfrom the exponentiallydecayingregime with
X,>0 to the regimex, <0 in Eq. (37). For |p| =1 the result
reads

i v ) 2
Gl 0y = — kX214 bE ]
el = 5

1 k_ % -
X 2erfc( \/;(1 ; ixH)“Z)[l +0(k13)],
(39)

whereerfc(z) denoteghe complementargerror function,and
the absolutevalue of this expressioris shownin Fig. 5.
Nextwe wantto evaluatethis expressioron the boundary
To this end, let x(q) bethe point of intersectiorbetweenthe
boundaryandtheline from q in direction—p. (Herewe need
the assumptiorthatthe billiard domain(} is convex,in order
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that there is only one such point) Then we obtain with
x(9)=x(q) +(q)(s~0) - x(q)/2A(q) (s~ ) >+ O((s-@)*) that

X =la=x(@)] +p(s-q) - @(1 -p?)*(s-q)?
+0((s-9)%), (39)
X, =(1-p)¥s-q) +O((s- )9, (40)

wherep: =(p,1) e[-1,1]. Insertingtheseexpressionsn Eq.
(37) gives

(Gu(- = X(8)), x>
it 1 " : 2
_ - ~(k2)(1 - [p)2 b
N Wme‘ lax(@isifg(42)1 = o) Clapk(d

X[1+0(k™*?)], (41)

where c:’q‘p)yk(s) is a coherentstateon the boundary as de-
fined in Eq. (11), with varianceb=i(1-p?)/[1+i|q-x(q)[]
~x(@)(1-p)Y? and &’=[|q-x(q)|+i]V2/[|q—x(o)|>+ L]
Notice that althoughwe startedwith a symmetriccoherent
state in the interior, the projected coherentstate on the
boundary is no longer symmetric and has a nontrivial
squeezingparameteb which dependn the position of the
original state the angleof intersectionof theray in direction
-p with the boundary andthe curvatureof the boundary

If we insertthe expression(41) into Eq. (31) we obtaina
semiclassicalelationbetweerthe projectionof an eigenstate
onto a coherentstatein the interior andthe projectionof the
normal derivative on the boundaryonto a coherentstateon
the boundary

i 1/4 1
xi kﬁ"‘(l _ p2)1/4
x gknlax(@)|+i6g-(y2)(1 - [pl)?
X(Un, a0 L + O],

In turn from this we obtainthe centralresultof this section,
adirectrelationbetweerthe correspondinddusimi functions

<‘~/’nv ¢’Z>Q ==

(42

1hy(q, i
Hup) = 3 L -IpD 3 01 s 0], (43
V1-p
with
kn 12 )
'5kn(1—\p\):=(;> ek~ Ip?, I

Let usfirst discusghe meaningof theindividual termson
theright handsideof Eq. (43). The function & (1-|p|) is a
delta sequencdor k,— <, and describeghe localizationof
H,(p,q) aroundthe enegy shell. Thefactor 1/1-p? comes
from the projectionof the Gaussiarbeamto the planetan-
gent to the boundary see Fig. 5. The right hand side of
Eq(43) hasstill adependencen the phasespacepoint (p,q)
ontheleft handsidethroughthe parameteb in the coherent
statein Eq. (41). But aswe will discussafter Eq. (45) below
(andin more detail in the Appendi®, when integratingthe
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Husimi function againstan observablethe result does not
dependon b in leadingorder

As in the precedingsectionwe have assumedthat the
boundaryis smooth.But by the localizationof the coherent
statesthe resultscan be againextendedo the casethat the
boundaryis piecewisesmooth thenEq. (43) remainsvalid if
q is not a singularpoint of the boundary

The directconnectiorbetweerthe Husimi functionin the
interior and the one on the boundary given by Eq. (43),
allows usto deriveinterestingrelationsbetweerthe two Hu-
simi functionsand can be usedto give a direct physicalin-
terpretationof the Husimi function on the boundary From
Eq. (6) togetherwith relation (43) we obtain

(W Atho = f f no(.P) <a> a,p)l(g,p)dg dp
a0 41—

+0(kM), (45)

wherel(q,p) denotesthe length of a ray emanatingfrom
q(g) € 4Q in the direction determinedby p until it hits the
boundaryagain.Furthermore,

1 1(a.p) R R
(@(q,p): = @p fo a(q(q) +t&(a,p), &g, p))dt

(46)

is the meanvalue of the classicalobservablebetweentwo
bounces,where &(q,p) denotesthe unit vector at q(q) in

directionp. A relationof the sametype asEq. (45) hasbeen
obtainedrecently by differentmethodsin Ref. [34] for cer

tain localizedfunctionson the boundary Equation(45) now
showsthat the dependencen the parameteb in the coher

entstatesusedto defineh,, canbe discardedn leadingorder
seetheAppendixfor a detaileddiscussionThis meanghatif

we move from the pointwise relation (43) to the integral
relation(45), we gainthe freedomto definethe Husimi func-
tions on the boundarywith an arbitrary parameteb.

We concludefrom relation (45) that

_1hy(a.p)
hn<q,p).—4v“l_p2

(47

is a reductionof the probability density definedby the Hu-
simi functionon thewhole phasespaceto the boundary So if
one wantsa properrepresentatiorof eigenfunctionson the
Poincarésectionwhich is anapproximateprobability density
andwhosegeneralpropertiesare independenof the billiard
shapethenEg. (47) seemdo be the bestchoice.Of coursea
drawbackof the function (47) is the singularity of 1/\1-p? p?
at p==1 which is relevantat any finite enegy. So for nu-
mericalcomputationghe definition (12) is moresuitableand
theimportanceof Eq. (47) liesin the physicalinterpretation.

In particulay relation (45) implies an asymptoticnormal-
ization conditionon b,(q,p),

1
f ba(0.p)I(a,p)dg dp=1+0("3.  (48)
- a0

Sincel(q,p)dq dpis the phasespacevolumein the enegy
shell correspondingto the volume elementdq dp of the

PHYSICAL REVIEW E 70, 036204(2004)

Poincarésection,the factor I(q,p) canbe viewed asa nor
malizationwhich makesh,(q,p) independenbf the billiard
shape, i.e., for any DCaQx[-1,1], we get that
I ba(a,p)l(g,p)dqg dpis the probability for the particle in

the state ¢, to be found in the region D: =I1"*D on the
enepgy shell,wherethemapIl describeshe projectionof the
domainD to the boundary

We would like to closethis sectionwith someremarkson
theimplicationsof quantumergodicity to the behaviorof the
PoincaréHusimi functions.If the classicalbilliard flow in Q
is emgodic, thenthe quantumergodicity theorem[35,3§ (see
Ref. [20] for anintroduction) tells us thatalmostall Husimi
functionsH,(p,q) tend weakly to 1/27 A. Our result (43)
thenimmediatelyimplies that in the semiclassicalimit al-
most all Poincaré Husimi functions h,(q,p) tend to
[2/7 AlV1-p? in the weak sense So this provesa guantum
ergodicity theoremfor the boundaryHusimi functions. Re-
cently relatedresultshave beerobtainedestablishingquan-
tum emgodicity for observableson the Poincaré section
[35,37,38. Notice thatthe 1 -p? behavioris alsovisible in
the plot of h,(q,p) for theirregularstateshownin Fig. 1(c)
for the ergodic cardioid billiard.

V. SUMMARY

Poincarérepresentationsf eigenstateglay animportant
role in severalareas.However a priori thereis no unique
way for their definition. In this paperwe single out the defi-
nition given by Eq. (12) and showthat the asymptoticmean
behaviorof theseHusimi functionsis proportionalto \1-p?.
For this asymptoticsemicirclebehavionwe in additionderive
a uniform asymptoticformula. Furthermorewe establisha
direct relation betweenthe Husimi function in phasespace
andthe PoincaréHusimi function (12) on the billiard bound-
ary. By this a physically meaningfulinterpretation seeEq.
(43), of the previously ad hoc chosendefinition for the
PoincaréHusimi function is obtained.Namely the Poincaré
Husimi functionb,(q,p) canbe viewedasa probability den-
sity on the Poincarésection.For ergodic systemsour result
implies a quantumergodicity theoremfor the PoincaréHu-
simi functions,i.e., almostall PoincaréHusimi functionsbe-
come equidistributedwith respectto the appropriatemea-
sure.
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APPENDIX: HUSIMI FUNCTIONS
AND EXPECTATION VALUES

In this appendixwe recall somefactsaboutHusimi func-
tions, see,e.g., Ref. [18] andthe contributionby Helffer in
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the samevolume. With this information we discussthe de-
pendenceof the Husimi functions on the parameterb, as
given in the definition (11) of the coherentstates.In the
following we will usethe notationz=(p,q). A Husimi func-
tion is a smoothedversionof the Wigner function,

k
gl<c§’,k,u>lz= f W J@WulZ)dz, (A1)

where W[u](z') denotesthe Wigner function of u. The
Wigner function of the coherent state cgk is given by
WCR,1(2) = (kI m)e k& -29@20) + O(e7%¥), where

1/Imb -Reb/Imb

= .(A2
9 (—Reb/lmb Imb+(Reb)2/Imb) (A2)
Relation(A1) holdsaswell if b dependon z.

We will now usethefactthatif A is theWeyl quantization
of a function a(z), see, e.g., Ref. [29], then (u,Au)
=Ja(zWu](2dz Using this andEq. (A1) oneobtains

fa(Z)ZL:T\(CEk,U)lZdefa(Z)VV[CQk](Z’)VV[U](Z’)dZdZ

= (u,Au), (A3)
whereA is the Weyl quantizationof the function
A(2) = f aZ)Wc) J@)dz . (A4)

If we assumethatthe matrix g is eitherconstantor satisfies
|le¢g(2)||<C, for all aeN? and zesuppa, which is
equivalent to the requirementthat b(z) is smooth and
Im b(z) >0 for ze suppa, then the method of stationary
phasegives

PHYSICAL REVIEW E 70, 036204(2004)

1
Az =a(@+ ER(k'Z)' (A5)
whereR(k,2) is a smoothboundedfunctionswith bounded
derivatives. Hence the Weyl quantization of R(k,2) is
boundedby the Calderon-\dllaincourt theorem (see Ref.

[29]), 0 ||[A-A||=<C/k andtherefore

<Clk. (A6)

’ f a(z)z—:\<c';,k,u>\2 dz- (u,Au)

Since(u,Au) is independenbf b we havefor any smooth

b(2) ,B(z) with Im b(z)>0, ImE(z) >0 for ze suppa the es-
timate

=< Clk.

k k T
‘ f a(2),[(cgjo Wl dz- f a2, (e )z
(A7)

This showsthat in the definition of the family of coherent
states we can choose any nondegenerate,possibly
z-dependentparameterb and still getin leading order the
sameprobability distribution definedby the corresponding
Husimi densitiesIn this sensethe dependencef the Husimi
functionson b is weak.

Let us now look at relations(43) and (45) from the per
spectiveof the precedingdiscussionin the Husimi function
appearingon the right handside of Eq. (43) the parameteb
is givenby b=i(1-p?)/[1+i[q-x(q)|]- x(q)(L-pI)*2 o it
dependson z=(p,q) and additionally on g, and it degener
atesfor p— £ 1. If the classicalobservable in relation(45)
hassupportin the interior of Q, then(a) is supportedaway
from p=+1 andwe canreplaceb by anynondegenerate. If
the supportof a includesthe boundaryd(, then(a) is not
necessarilyeroat p=+1 andwe canonly replaceb by one
which hasthe sametype of behaviorfor p— %1, suchas,
.9.,b%(p,q)=i(1-p?) - k(@) (1-pHY2
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[A6] Flooding of regular islands by chaotic states

A. Backer, R. Ketzmerick, and A. Monastra
Phys. Rev. Lett. 94 (2005) 054102 (4 pages)

We introduce a criterion for the existence of regular states in systems with a
mixed phase space. If this condition is not fulfilled chaotic eigenstates sub-
stantially extend into a regular island. Wave packets started in the chaotic
sea progressively flood the island. The extent of flooding by eigenstates and
wave packets increases logarithmically with the size of the chaotic sea and
the time, respectively. This new effect can be observed for island chains
with just 10 islands.
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Flooding of Chaotic Eigenstates into Regular Phase Space Islands
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We introduce a criterion for the existence of regular states in systems with a mixed phase space. If this
condition is not fulfilled chaotic eigenstates substantially extend into a regular island. Wave packets
started in the chaotic sea progressively flood the island. The extent of flooding by eigenstates and wave
packets increases logarithmically with the size of the chaotic sea and the time, respectively. This new
effect is observed for the example of island chains with just ten islands.

DOI: 10.1103/PhysRevLett.94.054102

One of the cornerstones in the understanding of the
structure of eigenstates in quantum systems is the semi-
classical eigenfunction hypothesis [1]: in the semiclassical
limit the eigenstates concentrate on those regions in phase
space which a typical orbit explores in the long-time limit.
For integrable systems these are the invariant tori. For
ergodic dynamics the eigenstates become equidistributed
on the energy shell [2]. Typical systems have a mixed
phase space, where regular islands and chaotic regions
coexist. In this case the semiclassical eigenfunction hy-
pothesis implies that the eigenstates can be classified as
being either regular or chaotic according to the phase-
space region on which they concentrate. Note that this
may fail for an infinite phase space [3].

In this Letter we study mixed systems with a compact
phase space, but away from the semiclassical limit. Here
the properties of eigenstates depend on the size of phase-
space structures compared to Planck’s constant A. In the
case of 2D maps this can be very simply stated [4]: a
regular state with quantum number m = 0, 1, ... will con-
centrate on a torus enclosing an area (m + 1/2)h, as can be
seen in Fig. 1(c).

We show that this WKB-type quantization rule is not a
sufficient condition. We find a second criterion for the
existence of a regular state on the mth quantized torus,

Ym < = 1

Tn

Here 7, = h/A, is the Heisenberg time of the chaotic sea
with mean level spacing Ay, and y,, is the decay rate of
the regular state m if the chaotic sea were infinite.
Quantized tori violating this condition do not support
regular states. Instead, chaotic states flood these regions;
see Fig. 1(a). In terms of dynamics we find that wave
packets started in the chaotic sea progressively flood the
island as time evolves. Partial and even complete flooding
is possible, depending on system properties. These findings
are relevant for islands surrounded by a large chaotic sea.

We numerically demonstrate the flooding and the dis-
appearance of regular states for the important case of island
chains. In typical Hamiltonian systems they appear around
any regular island. On larger scales they are relevant for

0031-9007/05 /94(5)/054102(4)$23.00
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Hamiltonian ratchets [5], the kicked rotor with accelerator
modes [6], and the experimentally [7—9] and theoretically
[10] studied kicked atom systems. The flooding of regular
islands by chaotic states is a new quantum signature of a
classically mixed phase space. This phenomenon shows
that not only local phase-space structures, but also global
properties of the phase space, determine the characteristics
of quantum states.

Before we explain the origin of Eq. (1), we numerically
study its consequences. We choose a system, where we can
change 7, by increasing the system size without affecting
the rates vy,,. A one dimensional kicked system

H(p,x,1) =T(p) + V(x> 8(t — n), @

has a stroboscopic time evolution given by the mapping,
Xe1 = % + T(p,), prs1 = py = V/(x,41).  The  phase
space is compact with periodic boundary conditions for
x, €0, M]and p, € [—1/2, 1/2]. Choosing the functions
V'(x) and T'(p) appropriately [11] we get a chain of M
islands, one per unit cell (see Fig. 1). The islands cover a

(b)

FIG. 1 (color online). (a) Husimi representation of a chaotic
state flooding the regular islands. Shown are three phase-space
cells out of M = 1597. The full curves are classical tori close to
the border of the regular islands and the black dots are iterates of
a chaotic orbit. This eigenstate extends well into the islands,
while having no weight in their central region. (b) Average of the
eigenstate over all M cells. (c) For M = 1 eigenstates concen-
trate either on the chaotic component (left) or over the mth
quantized regular torus. For all plots ke = 1/30 is used.

© 2005 The American Physical Society
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relative area Ay, = 0.215 and have fine structure close to
their boundary that is negligible for the quantum properties
studied here. Points inside an island are mapped one unit
cell to the right; i.e., the island chain is transporting.

The eigenstates |i) of the quantum system are deter-
mined by the eigenvalue equation, U|y) = ¢/¢|i), where
U is the unitary time-evolution operator over one time
period, U = exp[—2miT(p)/her] expl—27iV(8)/ hesc ).
The spatial periodicity after M cells requires an effective
Planck’s constant h.;; = M/N, with incommensurate in-
tegers M and N. We choose for M/N the rational approx-
imants of hey = 1/(d + o) with o= (/5—1)/2 the
golden mean and, e.g., d =29 in Fig. 1. This ensures
that there are no undesired periodicities and that heg is
approximately constant when varying M. Moreover, the

P(W)

“1 Q
e

(a)

10946

40

P(W)

FIG. 2 (color online). Distribution P(W) of the weights W of
the eigenstates in the regular islands for ¢ = 1/10. (a) M = 1:
the main peak near W = 0 is due to chaotic states and two
further peaks are due to regular states m = 0, 1 (see the insets).
(b) For increasing M the main peak shifts to larger values of W
(white line) and the two peaks from the regular states disappear
sequentially. (c) M = 10946: a narrow peak remains around
W = A,. Three phase-space cells of an eigenstate show a
complete flooding of the islands.

operator U reduces to an N X N periodic band matrix.
Using the symmetrized version of the map and making a
unitary transformation to a band matrix we are able to
calculate the eigenstates |¢) of U up to N =~ 10°.

For M = 1, Fig. 1(c) shows a typical chaotic eigenstate
and five regular states. The chaotic state extends over the
chaotic phase-space component and the regular states con-
centrate on quantized tori. The eigenstates are represented
on the classical phase space by the Husimi distribution,
where for visualization we use tilted coherent states
adapted to the shape of the island. For larger system sizes
we find that chaotic states flood the islands of classically
regular motion. Figure 1(a) shows such a state for M =
1597 that clearly ignores the outer tori of the island, which
for M = 1 act as barriers for chaotic states [Fig. 1(c), left].
In the central part of the island, however, this state has
essentially no weight. This partial flooding of the island is
observed even better in Fig. 1(b), where an average of the
Husimi function of this state is taken over all M unit cells.
The almost constant value in the chaotic component ex-
tends well into the island. Inside the island, clearly away
from its outer boundary, the Husimi function sharply drops
to zero.

For a quantitative description of this flooding we now
analyze the weight W of each eigenstate inside the islands.
We determine this weight by integrating the normalized
Husimi function (calculated on a 30 X 30 grid per unit cell)
over the islands. In the semiclassical limit, A.; — 0O, regu-
lar states have W = 1, while chaotic states have W = 0.
The distribution P(W) of these weights for all eigenstates is
shown in Fig. 2 for various system sizes and h.; = 1/10
[12]. For M = 1 we observe, as expected, a main peak near
W = 0 coming from the chaotic eigenstates and two dis-
tinct peaks at larger W from the two regular states; see

0.2

1
Jreg

0.1

FIG. 3. Fraction f, of regular states vs system size M for
her = 1/5 (triangles), 1/10 (circles), and 1/20 (squares). An
approximately linear decrease with InM to f., = 0 can be seen
(lines are a guide to the eye). Already for small system sizes
M = 10 and small & a significant reduction of regular states is
observed.
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FIG. 4 (color online). Weight W in the island vs time ¢ for a
wave packet initially started as a coherent state in the chaotic sea
at (x, p) = (0.4, —0.2) for system sizes M = 1, 13, 144, 1597
and A = 1/30. The thick (green) line guides the eye to the
linear increase with Inz until W = A,,. The insets show the time-
evolved wave packet averaged over all cells for the case M =
1597, demonstrating the progressive flooding of the island.

Fig. 2(a). A remarkable shift of the main peak of P(W) to
larger values of W can be observed in Fig. 2(b). This shows
that by enlarging the system size M all chaotic states
continuously increase their weight inside the regular is-
lands. This increase stops when the center of the main peak
reaches W = 0.22, which corresponds to the area A, of
the island. For these system sizes all states completely
flood the island [Fig. 2(c), inset], as observed in Ref. [3].

What happens to the regular states as M is increased?
Figure 2(b) shows that the corresponding peaks in the
distribution P(W) disappear. Notably, the peak for m = 0
is much longer visible than the peak for m = 1. The
nemesis of the regular states can be quantified by deter-
mining their fraction f., as a function of M. To this end we
define a state to be regular when its weight W inside the
islands exceeds 50%, where the exact criterion does not
affect our analysis. Figure 3 shows that the fraction f.,
decreases from approximately Ay, all the way to zero. The
decay is slower for smaller /.

Remarkably, in Fig. 3 we see strong signatures of the
decrease of f, already for small system sizes M =~ 10.
This holds even for small values of &, where the com-
plete flooding of the island is numerically not accessible.
Similarly, a shift of the main peak in Fig. 2(b) is clearly
detectable for such small systems. We thus find that partial
flooding of regular islands is easily observable.

Why do chaotic states flood the islands of regular mo-
tion, and why do regular states disappear as the system size
is increased? Let us consider a single regular island
coupled by tunneling to a chaotic sea. If the chaotic sea
is infinite, its states form a continuum. A regular state on
the mth quantized torus has a decay rate vy,, to the con-

tinuum [13]. Thus, it is not an eigenstate, but it is dissolved
into chaotic states. As a consequence, the chaotic states
occupy the mth quantized torus of the island. If the chaotic
sea is finite, but large enough, this decay of the mth regular
state may still take place. The condition for the decay is
that during the time 1/7,, the discrete chaotic spectrum is
not resolved, leading to 1/y,, < h/Ay, = 7 [15]. On the
other hand, if the chaotic sea is so small that during the
time 1/7,, the chaotic spectrum is well resolved, then the
regular state m does not decay, yielding Eq. (1). Note that
7Y,, increases monotonically with m; as for larger m, the
mth torus is closer to the boundary of the island.

The quantized tori of an island can thus be grouped into
two classes: (i) the inner tori, m =0, ..., m* — 1, where
condition (1) is fulfilled and regular states exist and (ii) the
outer tori, m = m", ..., my, — 1, where Eq. (1) is violated
and which is flooded by chaotic states. Here m,, is the
number of quantized tori at a given h.. We find for the
fraction f, of regular states and the weight Wy, of chaotic
states inside the island

. m"
freg = Areg i
mmax

%

)

Mimax

Wen = Areg<l -

Variation of the system size M in our example allows us
to change the Heisenberg time 7, ~ M, while keeping the
rates 7y, fixed. Enlarging M leads via Eq. (1) to a decrease
of m*, starting from m* = m,,,, — 1 all the way to m* = 0.
Together with Eq. (3) this explains Fig. 2(b), where the
regular state with m = 1 disappears before the m = 0 state
and the weight W, grows until W, = A,, where the
island is completely flooded; see Fig. 2(c). This also ex-
plains the decrease of fy., from A, to 0, as observed in
Fig. 3. This decrease occurs over an exponentially large
range in M, due to the roughly exponential dependence of
Y, on m. A quantitative understanding requires a theory
for the decay rates 7,,, which is the subject of current
research on dynamical tunneling [16,17]. Note that in the
case of chaos-assisted tunneling the splitting of symmetry
related regular states fluctuates strongly, depending on
individual chaotic states. In contrast, the decay rate vy,
describes an average tunneling to a continuum of chaotic
states.

Variation of h. affects both y,, and 7, in Eq. (1). While
Ty ~ M/ hey, one expects in analogy to WKB theory that
Yo ~ €xpl—g(m/mupay)/ hese), Where the system specific
function g decreases monotonically to g(1) = 0. From the
definition of m* follows m*/muyay = g~ [hers In(M/ hegp) ],
where g~! decreases monotonically. Decreasing heg; re-
duces the argument of g~! such that m*/m,,,, increases.
Equation (3) implies that f,., grows and W, decreases.
Note that in the semiclassical limit, k. — 0, we obtain
m*/mp, — 1. This is in agreement with the semiclassical
eigenfunction hypothesis, namely, fi, = A and there is
no flooding. In contrast, if the system size is infinite, we
have an infinite 7,; and our argument leads to m* = 0, i.e.,
complete flooding, for any h.y. This coincides with the
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considerations of [3] implying a failure of the semiclassical
eigenfunction hypothesis.

Our explanation is complete for systems without local-
ization. For example, this is the case if the average classical
drift of a unit cell is nonzero, as in atom optic experiments
in the presence of gravity [9,10]. Localization, however,
sets a lower bound to the effective mean level spacing,
A, ~ 1/A, where A is the localization length. For M > A,
this leads to 7, ~ A and m" stays at its value for M = A.
According to Eq. (3) the same holds for f., and W,. This
applies, e.g., to dynamical localization in the kicked rotor.
For transporting islands, as in the model studied here, A ~
1/, is unusually large [3,14,18], such that already for
M = X one has m* =0, fi, =0, and W, = A,. In this
case, localization has no consequences [19].

We generalize our analysis to the dynamics of wave
packets, which is experimentally of great relevance [9].
A wave packet started on the mth torus is restricted to that
region if condition (1) is fulfilled; i.e., m < m*. If m > m",
however, the wave packet decays into the chaotic sea.
Particularly interesting is the case of a wave packet started
inside the chaotic sea. The island is progressively flooded;
i.e., the mth torus at time t,, ~ 1/v,, for m > m*. For t >
7y the weight W(r) saturates at W, [Eq. (3)]. This is
confirmed in Fig. 4, for increasing values of M.

Our results have consequences for spectral statistics in
mixed systems which go well beyond the previously
studied effects of dynamical tunneling (see, e.g.,
[16,20]). The effective size of the regular region, fy,, in
Eq. (3), entering the Berry-Robnik formula [21] is drasti-
cally reduced.

Our analysis applies as well to hierarchical states [22],
which are confined by partial transport barriers with turn-
stile areas smaller than 4. We predict the additional con-
dition y < 1/, for their existence, where 7y describes the
decay through these partial barriers. For regular states on
island chains within that hierarchical region, condition (1)
applies, with 7, given by the mean level spacing of the
surrounding hierarchical states.

Finally, we emphasize that the time periodicity of the
system (2) and the restriction of our discussion to maps is
not crucial and that we expect flooding of islands for any
Hamiltonian with a mixed phase space. We stress that this
new quantum signature of chaos for eigenstates and wave
packet dynamics already appears for small system sizes,
e.g., island chains of length 10. This makes numerical
explorations very feasible and should lead to experimental
observations, for example, using optical lattices [7-9].

We thank Holger Schanz for discussions and the DFG
for support under Contract No. KE 537/3-2.
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We investigate electronic quantum transport through nanowires with one-sided surface roughness. A
magnetic field perpendicular to the scattering region is shown to lead to exponentially diverging
localization lengths in the quantum-to-classical crossover regime. This effect can be quantitatively
accounted for by tunneling between the regular and the chaotic components of the underlying mixed
classical phase space.
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Transport through a disordered medium is a key issue in
solid state physics which comprises countless applications
in (micro-) electronics and optics [1]. The ubiquitous
presence of disorder plays a prominent role for the behav-
ior of transport coefficients governing, e.g., the metal-
insulator transition [2]. The interest in disordered media
has recently witnessed a revival due to new experimental
possibilities to study the “mesoscopic” regime of transport
where a quantum-to-classical crossover gives rise to a host
of interesting phenomena [3].

In most investigations a static disorder is assumed to be
present in the bulk of a material. The strength and distri-
bution of the disorder potential determine whether trans-
port will be ballistic, diffusive, or suppressed in the
localization regime [1,3]. In nanodevices the reduction of
system sizes leads, however, to an increased surface-to-
volume ratio, for which surface roughness can represent
the dominant source of disorder scattering. While random
matrix theory (RMT) is successful in describing bulk dis-
ordered systems [4], its application to wires with surface
disorder is not straightforward [5].

In the present Letter we study electronic quantum trans-
port through a nanowire in the presence of one-sided
surface disorder and a magnetic field. We show both nu-
merically and analytically that by increasing the number of
open channels N in the wire, or equivalently, by increasing
the wave number kg, the localization length ¢ increases
exponentially. Using a numerical approach that allows to
study extremely long wires we show an increase by a factor
107 (Fig. 1). Such a giant localization length falls outside
the scope of RMT predictions, £ = N, previously studied
for this system [6]. Instead it can be understood in terms of
the underlying mixed regular-chaotic classical motion in
the wire. We find that the conductance through the wire is
controlled by tunneling from the regular to the chaotic part
of phase space. This process, often referred to as ‘““‘dynami-
cal tunneling” [7], has been actively studied in quantum
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chaos and plays an important role in the context of classi-
cally transporting phase-space structures [8—12]. Here we
establish a direct quantitative link between the exponential
increase of the localization length in mesoscopic systems
and the suppression of tunneling from the regular to the
chaotic part of phase space in the semiclassical limit.

We consider a 2D wire with surface disorder to which
two leads of width W are attached (Fig. 1, inset), with a
homogeneous magnetic field B perpendicular to the wire
present throughout the system. We simulate the disorder by
a random sequence of vertical steps. The wire can thus be
assembled from rectangular elements, referred to in the
following as modules, with equal width [/, but random

10} N

2 4 6 8 10 12 14
kpW/n

FIG. 1 (color online). Localization length ¢ for a wire with
surface roughness vs kp W/ = 1/heg. Results are compared for
wires with (a) one-sided disorder (OSD) with B # 0 (red W),
(b) OSD with B = 0 (green @), and (c) two-sided disorder with
B # 0 (blue A). In (a) an exponential increase of ¢ is observed
in excellent agreement with Eq. (8) which has no adjustable
parameters (dashed line).

© 2006 The American Physical Society
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heights A, uniformly distributed in the interval [W —
8/2, W + 8/2]. This particular representation of disorder
allows for an efficient numerical computation of quantum
transport for remarkably long wires L — oo by employing
the modular recursive Green’s function method [13]. We
first calculate the Green’s functions for M = 20 rectangu-
lar modules with different heights. A random sequence of
these modules is connected by means of a matrix Dyson
equation. Extremely long wires can be reached by imple-
menting an ‘“‘exponentiation” algorithm [14]: Instead of
connecting the modules individually, we iteratively con-
struct different generations of “‘supermodules”, each con-
sisting of a randomly permuted sequence of M modules of
the previous generation. Repeating this process leads to the
construction of wires whose length increases exponentially
with the number of generations [15].

The transmission (7,,,) and reflection amplitudes (r,,,)
for an electron injected from the left are evaluated by
projecting the Green’s function at the Fermi energy Ep
onto all lead modes m, n € {1, ..., N} in the entrance and
exit lead, respectively. Here N = |kzW /| is the number
of open lead modes and k. the Fermi wave number. We
obtain the localization length ¢ in a wire composed of L
modules (i.e., length L/) by analyzing the dimensionless
conductance g = Tr(!7) in the regime g << 1, extracting ¢
from (Ing) ~ —L/£. The brackets (- - -) indicate the en-
semble average over 20 different realizations of disorder
and 3 neighboring values of wave numbers k.

For increasing ky, we adjust the magnetic field B such
that the cyclotron radius r, = hky/(eB) remains constant.
This leaves the classical dynamics invariant and allows for
probing the quantum-to-classical crossover as kp — o0.
We choose r, =3W and a disorder amplitude & =
(2/3)W such that we obtain a large regular region in phase
space (see below) and use a module width [ = W/5. We
find for one-sided disorder an exponential increase of the
localization length ¢ (Fig. 1), while ¢ remains almost
constant when either (i) the magnetic field is switched off
or (ii) a two-sided disorder is considered. The latter clearly
rules out that the observed giant localization length is due
to edge states of the quantum Hall effect [3].

Before giving an analytic determination of the exponen-
tially increasing localization length, we provide an expla-
nation invoking the mixed classical phase-space structure
which captures the essential features of this increase.

The classical dynamics inside the disordered wire is
displayed by a Poincaré section in Fig. 2(b), for a vertical
cut at the wire entrance (x = 0) with periodic boundary
conditions in the x direction. The resulting section (y, p,)
for p, >0 shows a large regular region with invariant
curves corresponding to skipping motion along the lower
straight boundary of the wire. Close to the upper disordered
boundary (y > W — §/2) the motion appears to be chaotic
for all p,. A corresponding Poincaré section for p, <0
(not shown) is globally chaotic. The lowest transverse

(b)

FIG. 2 (color online). (a) Nanowire with the regular transverse
modes (green) m =4, 3, 2, 1 for kyW/m = 14.6. The gray
shaded part indicates the y range affected by disorder.
(b) Poincaré section showing a large regular island with outer-
most torus (dashed), a chaotic sea (blue dots), and quantized tori
corresponding to the regular modes (green). (¢) Poincaré-Husimi
functions of these modes and their quantizing tori.

modes [Fig. 2(a)] of the incoming scattering wave func-
tions overlap primarily with the regular island [Fig. 2(b)].
Only their exponential tunneling tail through the diamag-
netic potential barrier (in Landau gauge)

V(y) =m0y — ) — Ep m

touches the upper disordered surface at y > W — §/2. In
Eq. (1), m, is the electron mass, w, the cyclotron fre-
quency, and y° the guiding center coordinate. These regular
modes can be semiclassically quantized as [16,17]

Z:W:(m_l/4) with m=12..., (2)
where A is the area in the Poincaré section enclosed by a
quantized torus and A = r.A/py is the area in position
space enclosed by a segment of a skipping orbit. One finds
A=ppgrarccos(1—») — (1—v)\/1—(1—»)?] for 0=
V = vpna = 1, where vr. is the y position at the top of
the cyclotron orbit. The size A, of the regular island is
found for v = vy, = (W —8/2)/r.. The Poincaré-
Husimi projections (i.e., projections onto coherent states
of the transverse eigenfunctions) show, indeed, a density
concentration near the quantized tori residing in the regular
region of phase space [Fig. 2(c)].

The lowest mode m = 1 in the center of the island has
the smallest tunneling rate [8,18,19]

Areg
Y1 ~exv(—C W ) 3)

to the chaotic sea with some constant C (see below). Its
temporal decay exp(—1y,7) together with its velocity v; =
hk,/m, lead to an exponential decay as a function of
propagation length x, exp(—v,x/v,). This gives a local-
ization length & ~ yl’l [10]. When increasing kp, while
keeping the cyclotron radius r, fixed, the classical dynam-
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ics remains invariant while the island area scales as A, =
AregAps. Here Apg = 2ppW is the area of the Poincaré
section and ay, is the relative size of the island. This
semiclassical limit is thus equivalent to decreasing the
effective Planck’s constant he := h/Apg = (kpW/m)~!
and results in an exponential increase of the localization
length

£~ exp(cﬁ), “
het
for hey — 0, qualitatively explaining Fig. 1(a). Moreover,
this exponential increase should set in when the first mode
fits into the island, i.e., for A,eg/ h = 1. For the parameters
of Fig. 1(a) we have v, = 2/9, resulting in the critical
value kW /7 =~ 3.5, which is in very good agreement with
the numerical result. By contrast, for two-sided disorder or
for B = 0 no regular island with skipping orbits exists and
£ shows no exponential increase; see Fig. 1.

We now turn to an analytical derivation of the localiza-
tion length using the specifics of the scattering geometry
(Fig. 1 inset). To this end we first calculate the transmission
amplitude #,; of the transverse regular mode m = 1 by
considering its consecutive projections from one module to
the next

L=l rwis/2
tyy = I—[ ﬁ Xn()y ) Xn(i+ )y, (5)
i1

where x;,(;(y) is the mode wave function in module j with
height A(j). Equation (5) amounts to a sequence of sudden
approximations for the transition amplitude between adja-
cent surface steps. As the wave function is exponentially
suppressed at the upper boundary, the scale /k; introduced
by the corners drops out of the calculation. For simplicity, a
few technical approximations have been invoked, whose
accuracy can be checked numerically: (i) terms in the
transmission from one module to the next that involve
reflection coefficients and are typically smaller by a factor
of 5 are neglected, (ii) contributions from direct coupling
between different island modes are neglected, and (iii) the
factor (2y — y?,m - y?x(j +1)) from the orthonormality rela-
tion for the y functions [13] is omitted in the above integral
as its contribution is negligible.

The modes pertaining to different heights /4 can be
written as x;,(y) = [Xeo(y) = £4(1)]/ N, Where xoo(y) is
the mode wave function if there was no upper boundary,
g,,(y) is the correction that is largest at the upper boundary
[where x,(h) = 0], and N, is a normalization factor.
Keeping only terms of order O(e,) and using a WKB
approximation for g,(y) around y = hyy, = W — §/2
leads to

X2 Utmin) '
AV (hsin) / EF

According to Eq. (6) the coupling strength is quantitatively

(6)

th=~0— )M with o=

determined by the tunneling electron density at y = A, in
the classically forbidden region of the 1D diamagnetic
potential, Eq. (1). The conductance in the regime g < 1
is now given by

g =l * = exp(—4aL/M), @)

resulting in a localization length ¢ = M/(40). Using a
WKB approximation for y(y) we find

) = (ah? — b)explehgh(1 — A2, (8)

with  coefficients a = (167°)/3¢Mnp~'3, b=
2770l M, ¢ = w(32/9)\232p~ V21 + (3/20)np '],
d = —zyp'?/(2"37*3n). Here zy ~ —2.338 is the first
zero of the Airy function Ai(z), { = [2 Ai(z)*dz, 1 =
hin/W, and p = r./W are dimensionless parameters
[20]. Equation (8) is in very good quantitative agreement
with the numerically determined localization length
[Fig. 1(a)]. We conclude that tunneling from the regular
phase-space island is primarily due to interaction of each
regular mode with the rough surface rather than via suc-
cessive transitions from inner to outer island modes.

‘We note that the constant C in Eqgs. (3) and (4) is found
to be C =21 + (289/960)np '], which differs from
C =27 [19] and C = 3 — In4 [18] derived for other ex-
amples of dynamical tunneling from a resonance-free
regular island to a chaotic sea. We also note that the scaling
behavior of ¢ in Eq. (8) is reminiscent of previously
obtained results for diffusive 2D systems (see [1]).

For the case of a constant magnetic field B, increasing kp
increases the cyclotron radius, r. « kg, and the classical
dynamics is no longer invariant. In particular, the area of
the regular island A, ~ kg shrinks compared to Apg ~
kr as skipping motion is increasingly suppressed.
Nevertheless, the arguments leading to Egs. (4) and (8)
remain applicable and yield a localization length that in-
creases dramatically as ¢ ~ exp(consty/ky) in agreement
with numerical observations (not shown).

Now we turn to the behavior of the conductance for
wires of lengths smaller than the localization length.
Modes with larger m have larger amplitudes near the rough
surface and thus couple more strongly to the chaotic part of
phase space. They have, consequently, larger tunneling
rates 7y, and smaller localization lengths £,, ~ v;,'. The
successive elimination of modes as a function of the length
L of the wire results in a sequence of plateaus [Fig. 3(a)].
For L > £, the mode m no longer contributes to transport,
as can be seen by its individual contribution to the trans-
mission in Fig. 3(b). This disappearance of regular modes
is reflected in the averaged Poincaré-Husimi distributions
calculated from incoherent superpositions of all modes
entering from the left and scattering to the right. Also
shown are the complementary distributions obtained for
backscattering from right to right. For small L these
Poincaré-Husimi functions are outside the regular island,
while with increasing L they begin to “flood™ it [11]. This
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FIG. 3 (color online). (a) Averaged conductance (g) vs length
L of the wire. The stepwise decrease is accompanied by the
disappearance of the regular modes and the flooding of the island
region by chaotic states. The Poincaré-Husimi distributions to
the left (right) of the curve correspond to scattering from left to
right (backscattering from right to right). (b) Transmission (T,,)
of the incoming mode m vs L.

process is complete for lengths L >> ¢£. The complemen-
tarity of the Husimi distributions illustrates that tunneling
between the regular island and the chaotic sea proceeds
symmetrically in both directions, as required by the uni-
tarity of the scattering matrix.

Summarizing, we have presented a numerical computa-
tion and an analytical derivation for the exponential in-
crease of the localization length in a two-dimensional
system of a quantum wire with one-sided surface disorder.
Our approach, based on a mixed phase-space analysis, also
explains the increase of ¢ over 1 order of magnitude under
increase of the magnetic field observed in Ref. [6]. It sets in
for a magnetic field for which the regular island is large
enough to accommodate at least one quantum mechanical
mode. Clearly, the RMT result, ¢ < N, which ignores the
mixed phase-space structure, no longer applies. Instead, we
find that the giant localization length (Fig. 1) in this dis-
ordered mesoscopic device is determined by the tunneling
from the regular to the chaotic region, the rate of which is
exponentially suppressed in the semiclassical regime.
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[A8] Universality in the flooding of regular islands by chaotic states
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We investigate the structure of eigenstates in systems with a mixed phase
space in terms of their projection onto individual regular tori. Depending on
dynamical tunneling rates and the Heisenberg time, regular states disappear
and chaotic states flood the regular tori. For a quantitative understanding
we introduce a random matrix model. The resulting statistical properties
of eigenstates as a function of an effective coupling strength are in very
good agreement with numerical results for a kicked system. We discuss
the implications of these results for the applicability of the semiclassical
eigenfunction hypothesis.
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We investigate the structure of eigenstates in systems with a mixed phase space in terms of their
projection onto individual regular tori. Depending on dynamical tunneling rates and the Heisenberg
time, regular states disappear and chaotic states flood the regular tori. For a quantitative under-
standing we introduce a random matrix model. The resulting statistical properties of eigenstates as
a function of an effective coupling strength are in very good agreement with numerical results for a
kicked system. We discuss the implications of these results for the applicability of the semiclassical
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I. INTRODUCTION

The classical dynamics in Hamiltonian systems shows
a rich behaviour ranging from integrable to fully chaotic
motion. In chaotic systems nearby trajectories separate
exponentially in time and ergodicity implies that a typ-
ical trajectory fills out the energy-surface in a uniform
way. However, integrable and fully chaotic dynamics are
exceptional [1] as typical Hamiltonian systems show a
mixed phase space in which regions of regular motion,
the so-called regular islands around stable periodic orbits,
and chaotic dynamics, the so-called chaotic sea, coexist.

For quantized Hamiltonian systems the fundamental
questions concern the behaviour of the eigenvalues and
the properties of eigenfunctions, especially in the semi-
classical regime. From the semiclassical eigenfunction hy-
pothesis [2, 3, 4, 5, 6] one expects that in the semiclas-
sical limit the eigenstates concentrate on those regions
in phase space which a typical orbit explores in the long-
time limit. For integrable systems these are the invariant
tori. In contrast, for ergodic systems almost all orbits
fill the energy shell in a uniform way. For this situa-
tion the semiclassical eigenfunction hypothesis is proven
by the quantum ergodicity theorem which shows that
almost all eigenstates become equidistributed on the en-
ergy shell [7].

For systems with a mixed phase space, in the semi-
classical limit (h — 0), the semiclassical eigenfunction
hypothesis implies that the eigenstates can be classified
as being either regular or chaotic according to the phase-
space region on which they concentrate. This is sup-
ported by several studies, see e.g. [8, 9, 10, 11, 12, 13].
Tt is also possible, that the influence of a regular island
quantum mechanically extends beyond the outermost in-
variant curve due to partial barriers like cantori and that
quantization conditions remain approximately applicable
even outside of the island [8]. However, it was recently
shown that the classification into regular and chaotic
states does not hold when the phase space has an infinite
volume [14]. Tn this case eigenstates may completely ig-
nore the classical phase space boundaries between regular

and chaotic regions.

In order to understand the behaviour of eigenstates
away from the semiclassical limit, i.e. at finite values of
the Planck constant h, one has to compare the size of
phase-space structures with h. Let us consider for sim-
plicity the case of two-dimensional area preserving maps
and their quantizations. Regular states of an island con-
centrate on tori which fulfill the EBK-type quantization
condition

fpdq: (m+1/2)h  m=0,1,.. (1)

for the enclosed area [15]. This quantization rule explic-
itly shows that regular eigenstates only appear if h/2 is
smaller than the area A, of that island.

Another consequence of finite h in systems with a
mixed phase space is dynamical tunneling [16], i.e. tun-
neling through dynamically generated barriers in phase
space, in contrast to the usual tunneling under a poten-
tial barrier. Dynamical tunneling couples the subspace
spanned by the regular basis states, corresponding to the
quantization condition (1), with the complementary sub-
space [17] composed of chaotic basis states. This raises
the question whether the eigenstates of such a quantum
system can still be called regular or chaotic.

In Ref. [18] it was shown that (1) is not a sufficient
condition for the existence of a regular eigenstate on the
m-th quantized torus. In addition one has to fulfill

< ?)

TH ch

where 7., = h/Aq, is the Heisenberg time of the sur-
rounding chaotic sea with mean level spacing A, and 7,
is the decay rate of the m-th regular state, if the chaotic
sea were infinite. When condition (2) is violated one ob-
serves eigenstates which extend over the chaotic region
and flood the m-th torus [18]. To distinguish them from
the chaotic eigenstates that do not flood the torus, they
are referred to as flooding eigenstates. For the limiting
case of complete flooding of all tori, the corresponding
eigenstates were called amphibious [14]. Recently, the
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consequences of flooding for the transport properties in
rough nano-wires were studied [19].

The process of flooding was explained and demon-
strated for a kicked system in Ref. [18]. Condition (2)
was obtained by scaling arguments, which cannot pro-
vide a prefactor. Moreover, for an ensemble of systems,
one would like to know the probability for the existence
of a regular eigenstate. In particular, when varying the
Heisenberg time, how broad is the transition regime dur-
ing which this probability goes from 1 to 07 Another
question is, how do the chaotic eigenstates turn into
flooding eigenstates for a given torus?

In this paper we give quantitative answers to these
questions. We study the flooding of regular tori in terms
of the weight of eigenstates inside the regular region
and devise a random matrix model which allows for de-
scribing the statistics of these weights in detail. Ran-
dom matrix models have been very successful for obtain-
ing quantitative predictions on eigenstates in both fully
chaotic systems and systems with a mixed phase space,
see e.g. [8, 20, 21, 22, 23, 24]. For the present situation
we propose a random matrix model which takes regular
basis states and their coupling to the chaotic basis states
into account. The only free parameters are the strength
of the coupling and the ratio of the number of regular to
the number of chaotic basis states. From this model the
weight distribution for eigenstates is determined.

For a kicked system we define the weight by the projec-
tion of the eigenstates onto regular basis states localized
on a given torus m. The distribution of the weights allows
for studying the flooding of each torus separately. The
resulting distributions are compared with the prediction
of the random matrix model and, after an appropriate
rescaling, very good agreement is observed. This agree-
ment shows explicitly the universal features underlying
the process of flooding, giving a precise criterion for the
existence or non—existence of regular, chaotic, and flood-
ing eigenstates in mixed systems.

The text is organized as follows. In section IT we in-
troduce the kicked system used for the numerical illus-
trations, both classically (part A) and quantum mechan-
ically (part B). In section I C we define the weight of an
eigenstate by its projection onto regular basis states and
investigate the distribution of the weights for the kicked
system. In section III we introduce the random matrix
model and determine the corresponding weight distribu-
tion as a function of the coupling strength. In section
IV the relation between parameters of the kicked system
and the random matrix model is derived. This allows for
a direct comparison of the distributions. In section V we
consider the fraction of regular eigenstates, both for an
individual torus and for the entire island. In section VI
we briefly discuss the consequences of the random matrix
model on the number of flooding eigenstates. A summary
and discussion of the eigenfunction structure in generic
systems with a mixed phase space is given in section VII.

II. THE KICKED SYSTEM
A. Classical dynamics

For a general one-dimensional kicked Hamiltonian

Hip,q.) =T(®) + V() D> d6(t-n).  (3)

n=-—oc

the dynamics is fully determined by the mapping of po-
sition and momentum (gn,pn) at times t = n + 0T just
after the kicks

1 = G+ T'(pn) (4)
Purt = Pu = V' (qus1) - (5)

Choosing the functions T'(p) and V'(q) appropriately,
one can obtain a system with a large regular island and
a homogeneous chaotic sea. For the system considered in
[18], first introduced in [14], one starts with the piecewise
linear functions (see Fig. 1b)

1) = 3+ (3-o) G-+ 1/2) . ©)

—rq—(1-r)lg+1/2], (7)

C\
S
I

(2)

(b)

—0.5 00 p 05 -0.5 0.0 qg 05

FIG. 1: (color online) (a) Classical dynamics of the kicked
system given by Eqgs. (4) and (5). Invariant tori of the regular
island are shown (red curves) and the transport to the right
is indicated by the arrows. The blue dots correspond to one
chaotic orbit. The magnification shows that the boundary of
the island to the chaotic sea is rather sharp with only very
small secondary islands. (b) Smoothed functions 7"(p) and
V'(q) (blue lines) and discontinuous functions ¢ (p) and v'(q)
(red lines) according to Egs. (6-9).
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where |z| is the floor function, and s and r are two
parameters determining the properties of the regular is-
land and the chaotlc sea. Using a Gaussian smoothing
with G- (2) = exp(—z?/2¢?)/v/2me2, one obtains analytic
functions

o) = [ a2 6.0, ®)

oo
V'(g) = / dz v'(g+2) G-(2) . 9)
—oc
By construction, these functions have the periodicity
properties

T'(p+k) = T, (10)
Vig+k) = V(g -k, (1)

for any integer k. We consider p € [-1/2,1/2[ and
q € [-1/2,—1/2+ M| with periodic boundary conditions.
The phase space is composed of a chain of transporting
islands centered at (g,p) = (k,1/4) with0 < k< M —1
that are mapped one unit cell to the right (see Fig. 1a).
The surrounding chaotic sea has an average drift to the
left as the overall transport is zero [25, 26]. The fine scale
structure at the boundary of the island to the chaotic sea
has a very small area (see the magnification in Fig. 1a).
Resonances in this layer are irrelevant in the h regime
studied here. For s = 2, r = 0.65 and € = 0.015 the
regular island has a relative area Areg & 0.215.

B. Quantization

In kicked systems, the quantum evolution of a state
after one period of time
l(t+1)) = Ulp(®) (12)

is fully determined by the unitary operator, see e.g. [15,
27, 28, 29, 30],

U =exp (—%V((j)) exp (—%T(ﬁ)) . (13)

Here the effective Planck’s constant heg is Planck’s con-

stant A divided by the size of one unit cell. The eigen-
states of this operator are defined by
Ulwj) = €79]0;) . (14)

where the eigenphase ¢; is the quasienergy divided by
hw. In order to fulfill the periodicity of the classical dy-
namics in p direction, the quantum states have to obey
the quasi-periodicity condition

(0 + 1) = e * X (ply) . (15)

One can show that this leads to quantum states that are a
linear combination of the discretized position states |g;),
with g; = heg(j+xp). Additionally, imposing periodicity
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FIG. 2: (color online) (a) Eigenphases of the kicked system

vs Xq for heg = 1/10. The pattern of straight lines (inter-
rupted by avoided crossings) with negative slope corresponds
to regular eigenstates with m = 0 and m = 1 whose Husimi
functions are shown to the right. The other eigenstates are
chaotic and live outside of the regular region, as can be seen
from the Husimi representation. (b) Weights Wy and W5 of all
eigenstates vs X, (left). Distribution P(W) of these weights
in a log-linear representation (right).

after M unit cells in ¢ direction, quantum states have to
fulfill the property

(q+ Mly) = e>™ (qlyp) . (16)

Because of the required periodicity the phase space is
compact and the effective Planck’s constant can only be
a rational number

M
hegt = a (17)

We consider the case of incommensurate M and N, so
that the quantum system is not effectively reduced to
less than M cells.
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The properties (10), (11) of T'(p) and V'(q) imply for
their integrals

Tp+k) =Tk, (18)
, , K
V@g+k) = Vie) —ka— . (19)
From this one finds that the propagator U is consistent
with the periodicity conditions (15) and (16) if and only
if

M (x,, + %) €Z. (20)

For given M and N, this condition limits the possible
values of the phase x,, while x, remains arbitrary. Thus,
in the basis given by the position states |¢;), with 0 < j <
N —1, where N is the dimension of the Hilbert space, the
propagator U is represented by the finite N x N unitary
matrix

N-1
1 i ) B
U = N E :e Frog |V (00)+T(pj)+p; (a1—an)] 7 (21)
j=0

where 0 < k,I < N —1 and p; = (j + x,)/N. Finding
the solution of (14), i.e. the eigenphases and eigenstates
of the system, therefore reduces to the numerical diag-
onalization of the matrix (21). The result is illustrated
in Fig. 2(a) for heg = 1/10, where the eigenphases are
plotted as a function of x,. The straight lines with neg-
ative slope correspond to the regular eigenstates [25, 26],
whose Husimi distributions are shown to the right in
Fig. 2(a). Lines with an average positive slope corre-
spond to chaotic eigenstates.

When the system consists of M unit cells one has M
regular basis states localized on the m-th torus. Their
EBK eigenphases are equispaced with a distance 1/M
[31].

C. Projection onto regular basis states

In order to investigate the amount of flooding we use
the projection of the eigenstates onto regular basis states
of the island region. For the considered kicked system
regular basis states can be constructed from harmonic
oscillator eigenstates, as the invariant tori are accurately
approximated by ellipses [31]. The expression for the m-
th harmonic oscillator state, centered in a phase space
point (. p), is

1 Re o /4 Re o 7
(ol = e () o (V70— 0)
xexp (~ainla— 0+ i5pla—a/2)  (22)

where H,, is the Hermite polynomial of degree m. The
complex constant o takes into account the squeezing and

rotation of the state. From the linearized map at the
stable fixed point of the island one finds o = (v/351 —
131)/40.

For a chain with M identical cells, a regular basis state
is a linear combination of the harmonic oscillator states
\cp;::'l/A), centered in the k-th island for 0 < k < M — 1
and properly normalized and periodized in the ¢ and p
directions [31]. The subspace spanned by these M regular
basis states is the same as the one spanned by the M
harmonic oscillator states ‘Ap;:l//l). Therefore, we define
the weight W, of a normalized state |¥) by its projection
onto this subspace corresponding to the m-th quantized
torus

M—-1

Wi = Z ‘(‘I’|‘151?,L1/4)

k=0

2. (23)

By means of the weight W,, for all eigenstates of
Eq. (21) we can study the process of flooding for each
torus separately. This allows for a detailed analysis and
a quantitative comparison with a random matrix model.
Therefore this is a considerable improvement compared
to our previous analysis [18], where the weight was de-
fined as the integral of the Husimi distribution of an
eigenstate over the whole region of the island, which
means that the information on individual tori is not ac-
cessible.

In Fig. 2(b) we show the weights Wy and W; of all the
eigenstates as a function of x,. For Wy we observe that
for almost all x, the weights are essentially zero or one.
Only at avoided crossings of regular and chaotic eigen-
states their weights have intermediate values. For m =1

M °

89 4
144
233 4
377 A
610 4
987 4

1597 4
2584 -
4181 4
6765
10946

0.0 Weq 0.5 W, 1.0

FIG. 3: (color online) Distribution of Wy (Eq. (23)) vs system
size M for effective Planck’s constant heg =~ 1/10.
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FIG. 4: (color online) Distribution of Wi (Eq. (23)) vs system
size M for effective Planck’s constant heg & 1/10.

the avoided crossings are much broader due to the larger
coupling and the value W = 1 is not reached between
several avoided crossings. This is also seen in the weight
distributions shown to the right in Fig. 2(b), where the
two peaks from the chaotic eigenstates (at W = 1) and
from the regular eigenstates (at W = 0) are broader for
m = 1in comparison with m = 0. Note, that in the situa-
tion of isolated avoided crossings the involved eigenstates
are often referred to as hybrid states.

The distribution of the weights W,,, allows for studying
the process of flooding in a quantitative way. To violate
condition (2) we need to increase the Heisenberg time,
while keeping the tunneling rates 7, constant. We can
achieve this by choosing a sequence of rational approx-
imants M/N of heg = 1/(d + g), with d € N and the
golden mean g = (v/5 —1)/2 ~ 0.618. This ensures that,
while the system size M is increased, heq is essentially
kept at a fixed value, and therefore the tunneling rates
Ym are independent of M. Simultaneously, the dimen-
sionless Heisenberg time 7, ., = 1/Aq, increases linearly
with M,

1
TH,eh = Nep = (E — TIImax> M, (24)

where we used Ac, = 1/Nep and Nep = N — mumax M s
the number of chaotic states. Here mpay is the maxi-
mal number of regular states in a single island accord-
ing to the EBK quantization condition (1), muyax =
|Areg/hesr + 1/2]. As discussed in Ref. [18], 74 ., may be
bounded, due to localization effects: For M larger than
the localization length A the effective mean level spacing
Ach ~ (ANew/M) ! leads to Tum ~ ANew/M =~ Mheg,

[

where ) is measured in multiples of a unit cell and N, /M
is the number of chaotic states per unit cell. For trans-
porting islands, like in the model studied here, A ~ 1/
is unusually large [14, 32, 33], leading to a maximal value
Ta,cn ™ heﬁ'/’YO-

In Figs. 3 and 4 we show the distribution of W, and Wy
for d = 9 (giving approximants heg = 1/10, 2/19, 3/29,
5/48, ...) for increasing system size M. For small system
sizes we increased the statistics by varying the phase x,
in the quantization, as it was shown in Fig. 2(b). To
present the results in a compact form each histogram
is shown using a color scale. The horizontal strips for
M = 11in Fig. 3 and Fig. 4 correspond to the histograms
previously shown in Fig. 2(b).

In Fig. 3 one clearly observes for small M two separate
peaks corresponding to chaotic eigenstates at W = 0 [34]
and regular eigenstates with m = 0 at W = 1. With
increasing system size these regular eigenstates disappear
while the weight W, of the chaotic eigenstates starts to
increase and they turn into flooding eigenstates.

Comparing Fig. 4 for W7 with Fig. 3 for W, one ob-
serves a qualitatively similar behavior. The difference is
that the regular eigenstates with m = 1 disappear for
much smaller system size M a 100 than the eigenstates
with m = 0, as expected from Eq. (2) and their ratio of
tunneling rates, vo/v1 < 1.

For the largest values of M only flooding eigenstates
are left which fully extend over the chaotic sea and the
regular island. The flooding is complete and the N eigen-
states are equally distributed in the Hilbert space. Pro-
jecting them onto the M regular basis states leads to the
average value Weq = M/N = heg ~ 1/10, in agreement
with the observed position of the peaks in Figs. 3 and 4
and the findings in Ref. [14].

III. RANDOM MATRIX MODEL

In order to find universality in the process of flooding
we consider a random matrix model. Such models for
the case of mixed systems have successfully been used
for the description of the level splitting in the context
of chaos assisted tunneling, see e.g. [8, 22, 35, 36]. In
contrast, we have to describe the statistics of eigenvectors
for the situation of a chain of N, regular islands. Tn this
case one has equispaced regular levels corresponding to
the m-th quantized torus and GOE distributed chaotic
levels coupled by dynamical tunneling, see Fig. 5. For
this situation we propose a random matrix model with
the following block structure

Heg | V

This matrix is real symmetric because the kicked system
under consideration obeys time reversal symmetry.
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The first block H;eg models the regular basis states
associated with one specific torus, while for simplicity we
neglect the regular basis states quantized on other tori.
As discussed at the end of Sec. IT B, in the considered
kicked system, the EBK eigenphases of the Nyqg regular
basis states are equispaced. To mimic this behavior we
consider for Hye; a diagonal matrix with elements (k +
X)/Nreg. K =0,1,..., Nieg — 1. The parameter x can be
chosen from a uniform distribution between zero and one.
The energies lie in the interval [0,1] with fixed spacing
Aveg = 1/Nreg.

The block Hc, models the N, chaotic basis states,
where we assume Nep > Npeg. It is also a diagonal matrix
whose elements {E)} are the eigenphases of an N, X
Ny, matrix of the Circular Orthogonal Ensemble (COE).
These energies { E; } lie in the interval [0,1] with a uniform
average density and show the typical level repulsion of
chaotic systems. The mean level spacing of these basis
states is Agn = 1/New. Note, that a GOE matrix for
this block would have been less convenient as it leads
to a non-uniform density of levels according to Wigner’s
semicircle law.

The off-diagonal block V' accounts for the coupling
between the regular and chaotic basis states. Tt is a
Nieg X Nep rectangular matrix, where each element is
a random Gaussian variable with zero mean and vari-
ance (vAen)2. The positive parameter v is the coupling
strength in units of the chaotic mean level spacing Agy,.
Thereby the results become asymptotically independent
of the dimension Ny = Nyeg + Nep of the matrix for
fixed v and Nyeg/Nen.

We identify the regular region with the subspace
spanned by the first N,., components. Therefore, for any
normalized vector (¥o,..., ¥N, 1, N, UN 1)
we define the weight W inside the regular region as

Neeg—1

W= > T, (26)

=0

For a particular realization of the ensemble through the
numbers {F;}, x, and the block V, we compute the
weights W of the eigenvectors. We take for the statis-
tics only those eigenvectors whose eigenenergies are in

‘ Arcg ‘ ‘
-
UACh
—

-
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FIG. 5: Schematical plot of the regular levels with spacing
Areg coupled with strength vAq, to the GOE distributed
chaotic levels with mean spacing Acy.

the interval [0.1, 0.9] to avoid possible border effects.
We determine the distribution of W by averaging over
many different realizations. Increasing the matrix size
Niot for a fixed ratio Nyeg/Nen we find that the distribu-
tion converges. Considering a ratio Nyeg/Nen = 1/(8+ g)
and a small coupling strength v = 0.1 the distribution
converges around Ny, = 200. For v & 1 bigger matri-
ces of Nioy =~ 1000 are necessary. For v ~ 10, we used
Niot = 10000. The limiting distributions depend sensi-
tively on the coupling strength v.

In Fig. 6 we plot the distribution of W for different
values of v. We have to distinguish between the un-
coupled regular and chaotic basis states of our model
and the resulting eigenstates in the presence of the cou-
pling. The eigenstates fall into three classes: a) Regu-
lar eigenstates (W > 0.5), which predominantly live in
the regular subspace. The remaining states, which pre-
dominantly live in the chaotic subspace, are divided into
two classes, depending on the strength of their projection
onto the regular subspace compared to the equilibrium
value Weq = Nyeg/Niot- This leads to b) floading eigen-
states (0.5Weq < W < 0.5), and ¢) chaotic eigenstates
(W < 0.5Weq). Note, that the constants 0.5 in these
definitions are arbitrary.

From the energy scales in the random matrix model,
see Fig. 5, we expect three qualitatively different situa-
tions for the distribution of W:

i) v < 1, regular and chaotic eigenstates: In this
regime the regular and chaotic blocks are practically de-
coupled as the coupling vAg, is much smaller than the
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FIG. 6: (color online) Distribution of weights in the random
matrix model vs coupling strength v. The ratio Nyeg/Nen
approximates the value 1/(8+g). The dashed lines at W = 0.5
and W = 0.5Weq = 0.052 separate chaotic, flooding, and
regular eigenstates.
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mean spacing of the chaotic basis states, vAq, <€ Ach.
Two sharp peaks are observable, one at W =~ 0 due to
the chaotic eigenstates, and the other at W =~ 1 due to
the regular eigenstates. The latter peak has a smaller
weight as the density of regular basis states is smaller.

ii) v & 1, chaotic and flooding eigenstates: Here the
coupling vA., is approximately of the same order as
the mean chaotic spacing Ag,. All regular basis states
are strongly coupled to several chaotic basis states and
none of the eigenstates is predominantly regular. On
the other hand one has different types of eigenstates as
VA < Areg: Chaotic basis states, which are close in en-
ergy to a regular basis state, strongly couple and thus
turn into flooding eigenstates. In contrast, there are
many chaotic basis states which are far away from any
regular basis state and only couple weakly. These lead
to chaotic eigenstates which show essentially no flooding
(W < 0.5Weq).

ili) © 3> Nen/Nreg, flooding eigenstates: All chaotic ba-
sis states are strongly coupled to the regular basis states,
VAch > Apeg. The resulting eigenstates equally flood the
regular subspace. The distribution of W gets a Gaussian
shape with mean value Weq = Nyeg /Nyot and a decreasing
width.

In the transition from situation i) to ii) the two peaks
of P(W) near W = 0 and W = 1 broaden and move to
the center. The regular peak broadens faster, and at v &
0.25 its maximum disappears. At v = 1 practically no
eigenstates are localized in the regular subspace. When
moving from situation ii) to iii) the different types of
chaotic and flooding eigenstates transform into a single
type of flooding eigenstates with a similar weight W =
Weq in the regular subspace.

How do the resulting distributions depend on the ra-
tio Nyeg/Nen? First, the average of P(W) is given by
Weq = Nieg/Ntot = 1/(1 + Nen/Nieg). Secondly, the
regular peak in situation i) is independent of ng/N(h
apart from a trivial scaling of the normalization with
Nieg/Nen. Numerically we checked that this is even true
up to v ~ 1 for the distribution with W > 0.5 and
Nieg/Nen < 1/(8 + g). Decreasing Niez/Nep, enlarges the
size of the transition regime between ii) and iii). In par-
ticular, the peak near W = 0 should stay there up to
larger values of v.

IV. COMPARISON

The distribution of weights for the random matrix
model, Fig. 6, shows a clear similarity to the results ob-
tained for the kicked system, Figs. 3 and 4. In order to
obtain a quantitative comparison one has to determine
the relation between the coupling strength v of the ran-
dom matrix model and the system size M of the kicked
system. This can be deduced from Fermi’s golden rule in
dimensionless form

7= (21)

where the decay rate v of a regular state to a contin-
uum of states with mean level spacing A is given by
the variance of the coupling matrix elements V. 1In
the random matrix model we have (V) = (vAq)?,
A = Aey, = 1/Nen, and therefore (27) implies
vz YN (28)
2n

Applying this relation to the kicked system, we first
note that the tunnelling rate +,, for each torus can be de-
termined numerically [31] (for recent theoretical results
see [37, 38, 39, 40, 41, 42]). The determination of the cor-
rect value N, for the kicked system requires a detailed
discussion: A regular basis state on the m-th torus, in the
case where the tori m*, m* + 1, ..., mmax — 1 are already
flooded, will couple effectively to N — m*M states for
het = M/N. A change of m* affects N, and therefore
v. This dependence, however, can be neglected for the
numerical comparison in our case: The ratio of the max-
imal and minimal possible values of v is approximately
T— Aveg). For heg &~ 1/10 and Ayeq = 0.215
this gives a difference of less than 7%. Therefore we sim-
ply use the maximal value N, = N — M in the following.
For these values of v and N, in Eq. (28) the m-th

torus of the kicked system has a coupling strength

_ v7m(12/::eﬂ*1)m_ (29)

v

This allows for rescaling the results of the kicked system
shown in Figs. 3 and 4 from M to v using the values
Y = 0.0015 and v; = 0.030 [31]. The comparison with
the results from the random matrix model is shown in
Fig. 7. The agreement is very good for both tori over a
wide range of coupling strengths v showing the univer-
sality of the flooding process. For v > 5, however, the
distribution reaches a constant width in Fig. 7(b), while
the variance decreases for the random matrix model,
Fig. 7(c). We attribute this discrepancy to the local-
ization of eigenstates in the kicked system for M > 1000
[14]. As a consequence, the effective number of chaotic
basis states near an island saturates (see the discussion
after Eq. (24)), leading to an effective saturation of v.

In Figs. 8 and 9 we compare individual histograms for
the weights Wy for m = 0. To visualize the low values
of the distributions we choose a logarithmic-linear repre-
sentation in Figs. 8(a) and 9(a). For M = 144 one can
distinguish the peak near W = 0, due to chaotic eigen-
states, from the second peak caused by regular eigen-
states. For M = 1597 these two peaks have merged and
only a very small fraction of regular eigenstates is left.
In both cases the distributions agree very well with the
prediction of the random matrix model using v according
to Eq. (29). To resolve the peak near W = 0 we show
in Figs. 8(b) and 9(b) the distributions of In ;. Again
very good agreement with the predictions of the random
matrix model is observed.

Fig. 10 shows the distribution of InW; for m = 1 of
all eigenstates for heg = 13/125. We observe discrepan-
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FIG. 7: (color online) Distributions of the weights (a) Wy and (b) W1, taken from Figs. 3 and 4, with M rescaled to v according
to (29). (c) Result for the random matrix model from Fig. 6 on the same scale for a better comparison.
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FIG. 8: (color online) Distribution of (a) Wy and (b) In W,y
for hes = 144/1385 (dark lines). Results of random matrix
model for v = 0.218 and Nieg/Nenw = 1/8.618 (light lines).

cies at weights smaller than 1072 in comparison to the
random matrix model. This difference can be explained
as follows: Among all the eigenstates of the kicked sys-
tem there are regular eigenstates localized on the torus
m = 0 which are not considered in the random matrix
model for m = 1. These eigenstates have a negligible
overlap with the regular basis states with m = 1 because
they are practically decoupled and only influence the his-
togram at very small weights. This is confirmed by com-
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FIG. 9: (color online) Distribution of (a) Wy and (b) In W,
for hes = 1597/15360 (dark lines). Results of random matrix
model for v = 0.726 and Nieg/Nenw = 1/8.618 (light lines).

puting the distribution, under exclusion of all eigenstates
with Wy > 0.5. The resulting distribution matches re-
markably well with the prediction of our random matrix
model.
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FIG. 10: (color online) Distribution of In W of all eigenstates
(thin line) for hes = 13/125. After excluding states with
Wo > 0.5 (thick dark line) much better agreement with the
random matrix model (light line) is found.

V. FRACTION OF REGULAR EIGENSTATES

A more global quantity than the individual distribu-
tions P(W) is the fraction of regular eigenstates. This
has been studied in Ref. [18] for the total number of reg-
ular eigenstates as a function of the system size. With
the projection onto individual regular basis states we are
now able to study this fraction for each torus m sepa-
rately. For the kicked system with M cells there are at
most M regular eigenstates localized on the m-th torus.
However, during the process of flooding, some of these
eigenstates disappear. Thus, we define the fraction fieg
of regular eigenstates on the m-th torus as the number
of eigenstates with weight W,, > 0.5 divided by M. For
small system sizes this fraction is averaged over several
different phases x,. To compare the resulting dependence
on M for different values of m and heg we determine the
coupling strength v using Eq. (29). These results are
shown in Fig. 11.

For the random matrix model we compute fie, as the
number of eigenstates with W > 0.5 divided by the num-
ber of regular basis states Nyeg, averaged over many re-
alizations of the ensemble. As discussed at the end of
section TIT, the distribution P(W) for W > 0.5 is in-
dependent of Nyeg/Neh, apart from a trivial rescaling.
Therefore the resulting curve freg(v) is independent of
the ratio Nreg/NC,, in contrast to the individual distribu-
tions. The agreement of the fractions determined for the
kicked system with the random matrix curve in Fig. 11
is very good. This shows that freg(v) is a universal curve
describing the disappearance of regular eigenstates. For
v < 0.1 the fraction of regular eigenstates is larger than
98%. For v > 1 the fraction of regular eigenstates is
less than 1% and the corresponding regular torus is com-
pletely flooded.

The criterion (2) for the existence of a regular eigen-
state, expressed in terms of tunneling rate and Heisen-
berg time, can be transformed using Eqs. (28) and (24),

into the condition

1
V<5 (30)
The position of v = 1/(2m) is indicated in Fig. 11 and
roughly corresponds to 93% of regular eigenstates still
existing (by the W > 0.5 criterion). While in Ref. [18]
condition (2) for the existence of regular eigenstates was
obtained from a scaling argument which does not provide
a prefactor, our random matrix model analysis shows
that it is quite close to 1.
For the transition regime 1/27 < v < 1 this model
shows a decreasing probability for the existence of a reg-
ular eigenstate. For v > 1, which implies

Ym > (27r)2 ! : (31)

TH,ch

we find that almost no regular eigenstate exists on the
m-th torus. Thus v = 1 defines a critical system size M,
associated with each quantized torus

472 e

M, = —— .
" Y (1= herr)

(32)

With the knowledge about the flooding of individual
tori we can now consider the total fraction of regular
eigenstates. The regular tori with larger m have typi-
cally a larger tunneling rate, 0 € 71 < ... € VYmpo—1-
Therefore the flooding of the regular tori happens sequen-
tially from the outside of the island as the system size
increases, as found in [18]. The total fraction of regular
eigenstates Freg is defined as the number of eigenstates
with weights W,, > 0.5 for any m, divided by the to-
tal number of eigenstates N. With Eq. (32) we get the

1.0 S S-0845]

= freg: RMT model
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FIG. 11: (color online) Fraction of regular states freg vs cou-
pling strength v for random matrix model (full line) and
kicked system for various heg and m (symbols), where the
system size M is rescaled to v according to Eq. (29). Fraction
of flooding eigenstates fr(v) for the random matrix model
(dashed line) for Nieg/New = 1/(8 + g) showing a broader
transition.
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FIG. 12: Total fraction of regular states Freg vs system size
M according to the prediction Eq. (33), (lines) in agreement
with the data for the kicked system for heg =~ 1/10 (circles)
and heg = 1/30 (squares). The arrows indicate the critical
system sizes M,, according to Eq. (32).

prediction

Mmax—1 y
FesM) = 55" s (,/%) )

where freg(v) is the universal curve from the random ma-
trix model. For small system sizes M < M,, for all m
the total fraction of regular eigenstates is Freg(M) =
Mmpmax/N & A, as expected from the semiclassical
eigenfunction hypothesis. Fig. 12 shows Freg(M) with a
succession of plateaus and drops before each critical size
M,,. Considering that the ratio of successive M,, only
varies moderately, the overall behavior of Freg is an ap-
proximately linear decrease on a logarithmic scale in M,
explaining the observations of Ref. [18]. The agreement
of Eq. (33) with the fraction of regular eigenstates for
the kicked system for different heg as seen in Fig. 12 is
remarkably good.

We conclude this section with the remark that due to
the independence of freg(v) on the ratio Nieg/Nen one
can obtain this universal curve by considering a simpler
random matrix model, where only one regular basis state
is coupled to an infinite number of chaotic basis states
[35]. For this simpler model it might be possible to obtain
analytical expressions for freg(v).

VI. FRACTION OF FLOODING EIGENSTATES

The random matrix model also allows for investigating
the fraction of flooding eigenstates. While the regular
eigenstates disappear with increasing coupling strength
v, more eigenstates turn into flooding eigenstates with
0.5Weq < W < 0.5. Fig. 11 shows the increasing frac-
tion of these states for the random matrix model with
Nieg/New = 1/(8 + g). Note, that this fraction is de-
fined as the number of flooding eigenstates divided by

10

the number N of all eigenstates. At v = 1 all regu-
lar eigenstates have disappeared, however, the fraction
of flooding eigenstates is just 70%. The remaining eigen-
states are chaotic, which have no substantial weight in
the regular subspace. For larger values of v they turn
into flooding eigenstates. This roughly happens when
each chaotic basis state is coupled to at least one regular
basis state, i.e. when vAc, = Ayeg/2, see Fig. 5. This
gives v = Nen/(2Nreg) & 4.8 which is in good agreement
with the saturation observed in Fig. 11. This shows that
the fraction of flooding eigenstates explicitly depends on
the parameter ng/th in contrast to the fraction of reg-
ular states frog(v).

Applying this result of the random matrix model to
the kicked system where v = Ne/(2Nreg) = N/(2M),
we find using Eqs. (28) and (24), that the fraction of
flooding eigenstates is saturated at fp = 1 for

\? 1
m — 34
T > (’hﬂ") TH,ch ( )

Note, that this prefactor increases in the semiclassial
limit leading to a broader transition to flooding eigen-
states.

VII. SUMMARY AND DISCUSSION

We provide a detailed quantitative description of the
flooding of regular islands. By using the projection of
eigenstates onto regular basis states, which defines the
weights W, the process of flooding can be described sep-
arately for each torus. The distribution of these weights
in the kicked system agrees accurately with the distri-
bution obtained by the proposed random matrix model.
This model depends on two parameters only: the cou-
pling strength v between regular and chaotic basis states
and the ratio of the number of those states Nyeg/Necn. The
connection of this coupling strength with the parameters
of the kicked system is given by Eq. (29).

From the random matrix model we gain the following
general insights into the flooding of the m-th torus in
terms of its tunneling rate 7, and the Heisenberg time

TH.ch'

1) Ym < THI o All regular eigenstates on the m-th torus
exist. None of the eigenstates predominantly extending
over the chaotic region has substantially flooded the m-th

torus.
i) ym = (2m)°

TH,ch
torus exist. Some of the eigenstates predominantly ex-
tending over the chaotic region have substantially flooded

the m-th torus.

: No regular eigenstates on the m-th

i) "y, > (hL“) == All of the eigenstates predom-
inantly extending over the chaotic region have substan-
tially flooded the m-th torus.

What do these results imply for the applicability of

the semiclassical eigenfunction hypothesis? For a fixed
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system size in the semiclassical limit heg — 0, which im-
plies a roughly exponential decrease of 7,,, one ends up
in regime i), in agreement with the semiclassical eigen-
function hypothesis. In contrast, for small heg # 0 fixed
and systems with M cells and M — oo, one obtains a
large value for 74 ., o< M, limited by dynamical localiza-
tion only. Depending on the localization length one ends
up in regime iii) for some or all tori . As in our case
one has 7y ., ~ het/70, regime iii) is realized for all tori,
i.e. complete flooding of the island [14].

The universality in the transition from i) to ii) can be
seen for the fraction of regular states freg(v) localized on
a given torus. For the random matrix model this fraction
does not depend on the ratio Nyeg /Neh and the agreement
with the results for the kicked system is remarkably good
for different quantized tori and values of hes. In contrast
to the disappearance of regular eigenstates on the m-th
torus, the transition to flooding eigenstates on this torus
is much broader and extends to regime iii).

It is also important to discuss, what these results
imply for the case of a single island in a chaotic sea
(M =1). Most commonly one is in regime i), i.e. regular
and chaotic eigenstates exist and only mix at accidental
avoided crossings. For a sufficiently small island, com-
pared to the size of the chaotic region, regime ii) can be
reached. Here heg is small enough to quantum mechani-
cally resolve the small regular island, but a corresponding
regular state does not exist. Tt is not possible, however, to
get into regime iii) where all eigenstates would be flood-
ing eigenstates: In Eq. (34) we have heg = 1/N and
Tua = New & N such that the right hand side is approx-
imately 72N, which is always larger than the tunneling
rates v, < 1.

In the case of an island chain of period p embedded
in a chaotic sea it might be possible to get into regime
iii): In the derivation of Eq. (34) we now have to use

11

v = Nun/(2Nreg) = N/(2p) = 1/(2phex), leading with
Egs. (28) and Ngp & N = 1/heg to ¥ > 72/ (p*hegr). The
right hand side can be smaller than 1 if p is sufficiently
large while heg is small enough to resolve the individual
islands of the chain. Whether this is indeed possible in
typical systems requires further investigations.

This discussion shows that the semiclassical limit in
generic systems with a mixed phase space, where islands
of arbitrarily small size exist, is rather complicated. For
example one can ask how small does heg have to be such
that at least one regular state exists on a small island
of size Aeg? Let us define the ratio r = heg/Areg The
quantization condition Eq. (1) implies that r < 2 is nec-
essary to quantum mechanically resolve the island. How-
ever, we find that the necessary ratio r becomes arbi-
trarily small for small islands: Regime i) for m = 0
requires 79 < 1/Twa & hes. The tunneling rate 7o
is an approximately exponentially decreasing function
70 ~ exp(—C/r) with C of the order of 1 [19, 32]. Thus
we have to fulfill exp(—C/7)/r < Apeg, which for decreas-
ing Aeg is only possible if r is sufficiently small.

We conclude by emphasizing that the universality
given by the random matrix model not only holds for the
kicked system studied here, but is applicable to any sys-
tem with a mixed phase space. The consequences for the
semiclassical limit in the hierarchical phase space struc-
ture of generic systems needs much further investigation.
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