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Abstract:

The structure of wavefunctions of quantum systems strongly depends on the un-

derlying classical dynamics. In this text a selection of articles on eigenfunctions

in systems with fully chaotic dynamics and systems with a mixed phase space is

summarized. Of particular interest are statistical properties like amplitude distri-

bution and spatial autocorrelation function and the implication of eigenfunction

structures on transport properties. For systems with a mixed phase space the

separation into regular and chaotic states does not always hold away from the

semiclassical limit, such that chaotic states may completely penetrate into the

region of the regular island. The consequences of this flooding are discussed and

universal aspects highlighted.
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[A5] Poincaré Husimi representation of eigenstates in quantum billiards 145

[A6] Flooding of regular islands by chaotic states . . . . . . . . . . . . 157

[A7] Nano-wires with surface disorder: Giant localization lengths and

quantum-to-classical crossover . . . . . . . . . . . . . . . . . . . . 163

[A8] Universality in the flooding of regular islands by chaotic states . . 169

Erklärung 183

5



6



1 Introduction

This text contains a selection of articles on the structure of eigenfunctions in

quantum systems whose classical dynamics is either fully chaotic or shows a mixed

phase space. After a brief introduction on classical chaos the main results of the

articles in the appendix are summarized and put into perspective.

Chaotic behaviour in dynamical systems is a phenomenon which has been

studied in great detail. As quantum mechanics is the more fundamental descrip-

tion of nature, one would like to understand the properties of quantum systems

whose corresponding classical dynamics is chaotic [1–6]. For investigating this

subject billiards are a particularly suited class of systems because many rigorous

mathematical results exist, see e.g. [7]. In the Euclidean case a billiard system is

given by the free motion of a point particle inside a bounded domain Ω. At the

boundary the particle is reflected specularly, i.e. angle of incidence and angle of

reflection coincide. So it is only the boundary which determines the dynamical

behaviour of the system which can range from integrable, over mixed to com-

pletely chaotic motion. Fig. 1 shows 100 successive reflections of one trajectory

for different integrable and chaotic systems. For the integrable case there is an-

(a) (b) (c)

(d) (e) (f)

Figure 1: For different billiards 100 successive reflections of one orbit are
shown. The regular dynamics for the billiard in the (a) circle, (b) square
and (c) ellipse is in contrast to chaotic dynamics for the (d) Sinai billiard,
(e) stadium billiard and (f) cardioid billiard.
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other conserved quantity besides the energy; e.g. for the billiard in a circle this

is the angular momentum such that the motion is confined to a two-dimensional

manifold in phase space.

However, in general no such additional constants of motion exist and the

resulting dynamics is much more complicated. For certain billiards it is possible

to prove that they are fully chaotic, i.e., they are ergodic, mixing and K–systems.

Ergodicity means that spatial and temporal averages agree. Considering the

trajectory (p(p0,q0)
(t), q(p0,q0)(t)) of a particle started in the point (p0, q0), the

probability to find it in a certain region D in position space is given by

lim
T→∞

1

T

T
∫

0

χD(q(p0,q0)(t)) dt =
vol(D)

vol(Ω)
(1)

for almost all initial conditions (p0, q0), where χD is the characteristic function

of D. Thus in ergodic systems the probability to find the particle inside D is just

the relative area of that region. Therefore a typical trajectory will asymptotically

fill out the accessible space in a uniform way. This is nicely seen in Fig. 1(d–f) for

the Sinai billiard [8,9], the stadium billiard [10,11], and the cardioid billiard [12–

14]. The origin of ergodicity in these systems is hyperbolicity, which means that

initially infinitesimally close trajectories separate exponentially in time. Usually

hyperbolic billiards are also mixing, i.e. correlations decay and appear as random

as a coin-toss (K–property, Bernoulli property) [15–17]. Because of these rigorous

results, chaotic billiards are an important class of model systems to investigate

the implications of classical chaos in the corresponding quantum systems.

2 Chaos in quantum systems

While classical mechanics describes macroscopic objects correctly, at small scales

a quantum mechanical description is necessary. Due to the Heisenberg uncer-

tainty principle it is no longer possible to specify both position and momentum of

a particle at the same time. Therefore, instead of considering the time-evolution,

one of the main research lines in quantum chaos concerns the statistical proper-

ties of eigenfunctions and energy levels, in particular in which way they depend

on the underlying classical dynamics.

Quantum mechanically, billiards are described by the stationary Schrödinger
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equation (in units ~ = 2m = 1)

−∆ψn(q) = Enψn(q) , q ∈ Ω (2)

with e.g. Dirichlet boundary conditions ψn(q) = 0 for q ∈ ∂Ω. Here ∆ denotes

the Laplace operator, which reads in two dimensions ∆ =
(

∂2

∂q2
1

+ ∂2

∂q2
2

)

. The

mathematical problem defined by Eq. (2) is the well–known eigenvalue problem

of the Helmholtz equation, which for example also describes the eigenfrequencies

of a vibrating membrane or of flat microwave cavities [4].

For some simple domains Ω it is possible to solve Eq. (2) analytically. For the

billiard in a rectangle with sides a and b the (non–normalized) eigenfunctions are

given by ψn1,n2
(q) = sin(πn1q1/a) sin(πn2q2/b) with corresponding eigenvalues

En1,n2
= π2(n2

1/a
2 + n2

2/b
2) and (n1, n2) ∈ N

2. For the billiard in a circle the

eigenfunctions are given in polar coordinates by ψmn(r, ϕ) = Jm(jmnr) exp(imϕ),

where jmn is the n–th zero of the Bessel function Jm(x) and m ∈ Z, n ∈ N.

However, in general no analytical solutions of Eq. (2) exist, so that numerical

methods have to be used to compute eigenvalues and eigenfunctions. Among

the many different possibilities, the boundary-integal method is widely used, see

e.g. [18–20] and [A4] for a review and further references.

2.1 Fully chaotic systems

One of the central questions in quantum chaos concerns the implications of the

underlying classical dynamical properties on the statistical behaviour of eigenval-

ues. It has been conjectured that for fully chaotic systems these are described

by the statistics of random matrices obeying appropriate symmetries [21]. For

generic integrable systems one expects that the energy–level statistics can be de-

scribed by a Poissonian random process [22]. These conjectures are supported by

semiclassical considerations and many numerical studies. However, in both cases

exceptions are known: for example, so-called arithmetic systems (see e.g. [23–27])

show Poissonian spectral statistics despite being strongly chaotic. Also quantized

cat maps show non–generic spectral statistics [28, 29]. Moreover, there are also

cases where a limit distribution of common spectral statistics does not exist [30].

In [31,32] the distribution of the normalized fluctuations of the spectral staircase

function around its mean has been proposed as a possible signature of quantum

chaos. It has been conjectured that the limit distribution should be Gaussian

for fully chaotic systems, while integrable systems should exhibit a non-Gaussian

limit distribution. This conjecture was tested successfully for several regular and
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chaotic billiard systems, see [32–37].

The main tool for analyzing spectral statistics are trace formulae [2] which

relate quantum mechanical properties, like the density of states, with purely

classical information, involving the periodic orbits and their properties. By this

a semiclassial prediction for the spectral rigidity was derived using the diagonal

approximation [38]. By including correlations between certain pairs of periodic

orbits important progress was made recently to obtain higher order corrections for

the two-point correlations [39–41]. This has been applied and extended to more

general situations, leading to a semiclassical explanation of two-point spectral

statistics in fully chaotic systems [42, 43].

Concerning the eigenfunctions of (2) one would expect that the classical dy-

namics is reflected by their structure. According to the semiclassical eigenfunc-

tion hypothesis the eigenstates should concentrate on those regions which a generic

orbit explores in the long–time limit [44–46, 1]. For integrable systems the mo-

tion is restricted to invariant tori in phase space while for ergodic systems the

whole energy surface is filled in a uniform way. In the case of ergodic systems

the semiclassical eigenfunction hypothesis is proven by the quantum ergodicity

theorem [47–52] (see [53] for an introduction), which states that almost all eigen-

functions become equidistributed in the semiclassical limit. Restricted to position

n = 100 n = 1000 n = 1500 n = 2000

(a)

(b)

Figure 2: The eigenstates of (a) the integrable circular billiard and (b) the
chaotic cardioid billiard reflect the structure of the corresponding classical
dynamics. Shown is a density plot of |ψn(q)|2 where black corresponds to
high probability.
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space this gives

lim
j→∞

∫

D

|ψnj
(q)|2 d2q =

vol(D)

vol(Ω)
(3)

for a subsequence {ψnj
} ⊂ {ψn} of density one. A subsequence of eigenfunctions

has density one if limE→∞ #{nj | Enj
≤ E}/#{n | En ≤ E} = 1. So in this sense

for almost all eigenfunctions the probability of finding a particle in a certain

region D of the position space Ω is in the semiclassical limit just the same as

for the classical system, see Eq. (1). Fig. 2 illustrates the described behaviour

qualitatively for the case of the integrable circular billiard and the chaotic cardioid

billiard. In both cases the eigenfunctions show oscillations on the scale of a

de Broglie wavelength. For the integrable system the probability is on average

restricted to subregions of the billiard. In contrast, for the ergodic system the

probability density is on average uniformly distributed over the full billiard region.

As a statistical model for the eigenfunctions of strongly chaotic systems it

has been proposed that they behave like a random superposition of plane waves

[45]. Heuristically, this is motivated by the underlying chaotic dynamics where

a typical trajectory gets close to every point in position space with apparently

random directions and random phases (corresponding to the length of trajectory

segments). In the two–dimensional Euclidean case the random superposition of

plane waves on a region Ω ⊂ R
2 may be written as

ψRWM(q) =

√

2

vol(Ω)N

N
∑

n=1

an cos(knq + φn) , (4)

where an ∈ R are assumed to be independent Gaussian random variables with

mean zero and variance one; φn are equidistributed random variables on [0, 2π[.

The factor in front of the sum ensures that ψRWM is normalized in the limit N →
∞. The momenta kn ∈ R

2 satisfy |kn| =
√
E and are randomly equidistributed

on the circle of radius
√
E.

In Fig. 3 one realization of a random wave (4) is compared with a chaotic

eigenstate in the cardioid billiard. Locally, the eigenstate nicely resembles the

random wave (ignoring the symmetry of the eigenstate and boundary effects).

Going beyond this qualitative comparison, the random wave model can be used

to obtain quantitative predictions on the statistical behaviour of wave functions

in chaotic systems. One of the simplest consequence concerns the amplitude

distribution. Using the central-limit-theorem one directly obtains that random
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ψ

P (ψ)

0.0

0.5

-3.5 0.0 3.5

Gaussian

eigenfunction

Figure 3: Example of a random wave (4) in comparison with the 6000th

eigenfunction of the cardioid billiard (of odd symmetry). For this state one
observes excellent agreement of the amplitude distribution with the expected
Gaussian.

waves show a Gaussian value distribution,

P (ψ) =
1√
2πσ

exp

(

− ψ2

2σ2

)

, (5)

where σ2 = 1/ vol(Ω). This conjecture is supported by various numerical studies,

see e.g. [54–57]. For the example shown in Fig. 3 the numerical histogram of

the amplitude distribution is (on this scale) essentially indistinguishable from the

normal distribution.

While the behaviour of expectation values for almost all eigenfunctions is

proven by the quantum ergodicity theorem, a proof of the random wave model is

an open problem. Still, both seem closely related, as exceptional (in the sense of
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Figure 4: Sequence of eigenfunctions in the cardioid billiard, ψ1800 to ψ1824

of odd symmetry.
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ψ

P (ψ)

0.0

0.5

-3.5 0.0 3.5

Gaussian

eigenfunction

Figure 5: For the scarred state ψ4042 the amplitude distribution is clearly
different from the Gaussian normal distribution (dashed curve).

quantum ergodicity) sequences of eigenfunctions also do not follow the prediction

of the random wave model. One candidate are the so-called scars [58] which are

eigenfunctions concentrating around unstable periodic orbits, see Fig. 4. For such

eigenfunctions also the value distribution clearly differs from the Gaussian, see

Fig. 5. By a semiclassical description for the eigenfunctions [59, 60] it should be

possible to use the position-space averaged density together with the restricted

random wave model [A1] (discussed in the following section) to obtain a prediction

for the observed amplitude distribution.

2.2 Systems with a mixed phase space

Systems with either regular or fully chaotic dynamics are extreme cases and

typically one has a so-called mixed phase space in which regular and chaotic

motion coexist [61]. The transition from the integrable case to mixed dynamics

under small perturbations of the system is described by KAM-theory due to

Kolmogorov [62], Arnold [64], and Moser [65] which roughly speaking states that

for small perturbations sufficiently irrational invariant tori will persist. At the

same time small stochastic regions develop, leading to a complicated structure in

phase space.

As an example let us consider the family of limaçon billiards which was in-

troduced as a deformation of the circle billiard [66], with boundary in polar

14



-1

0

1

-4 0 4s

p

Figure 6: Example of a system with a mixed phase space. Shown are several
regular orbits and one chaotic orbit in the Poincaré section of the limaçon
billiard at ε = 0.3. To the right two regular orbits and trajectories in the
surrounding are displayed in position space in comparison with a chaotic
trajectory.

coordinates given by ρ(φ) = 1+ ε cos(φ), with φ ∈ [−π, π], where ε ∈ [0, 1] is the

family parameter. For ε > 0 one gets a mixed phase space, where (some of) the

KAM curves persist until ε = 0.5 [67, 66, 68]. For stronger perturbations regular

islands become very small. However, even arbitrarily close to the fully chaotic

cardioid at ε = 1 one can find tiny regular islands [69].

To visualize the dynamics in phase space, it is convenient to introduce the

billiard boundary as a Poincaré section. As coordinates one chooses the point

of reflection, described by the arc-length s along the billiard boundary, and the

projection of the unit-velocity vector after the reflection onto the tangent in s.

The billiard flow therefore induces a two-dimensional area-preserving map of the

Poincaré section onto itself. Fig. 6 illustrates this for the limaçon billiard at

ε = 0.3 which shows a large irregular component (“chaotic sea”) intermixed

with regular islands around stable periodic orbits. An important question on the

classical dynamics is, whether the irregular component has positive measure. For

a constructed example [70] and the mushroom billiard [71] this has been proven

rigorously, however, for general systems the problem remains open (see also [72]

for a review on this coexistence problem).
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2.2.1 Structure of eigenfunctions

For systems with a mixed phase space, the semiclassical eigenfunction hypothesis

implies that the eigenstates can be classified in the semiclassical limit as either

regular or chaotic according to the phase-space region on which they concentrate.

This is supported by several studies, see e.g. [73–78] and references therein. Fig. 7

shows examples for the limaçon billiard, where in addition to a three-dimensional

visualization of |ψn(q)|2 and a density plot also a quantum Poincaré–Husimi

representation is shown [A5]. For such a representation on the billiard boundary

a natural starting point is to use the normal derivative (see [79] for a study of its

properties) of the eigenfunction and project it onto a periodized coherent state.

However, as there is no natural Hilbert space for the boundary functions, different

definitions of the scalar-product are possible [80–82]. By relating the Husimi

function in phase space with the one on the Poincaré–Husimi representation it

is possible to show that a meaningful representation can already be obtained

without further terms in the scalar product [A5]. From the relation between

the Poincaré–Husimi functions and the Husimi function in phase space also a

quantum ergodicity theorem for the Poincaré–Husimi functions in the case of

ergodic systems follows.

The statistical properties of regular eigenstates in systems with a mixed phase

space will strongly depend on the island in which they concentrate and on the

characterizing quantum numbers of a semiclassical quantization rule, as can be

seen for the moments of semiclassical wavefunctions [83]. However, for the irreg-

ular eigenstates which are concentrated on an irregular region D in phase space

the statistical properties should be described by those of a superposition of plane

waves with wave vectors of the same lengths and directions distributed uniformly

on D. We thus obtain the following restricted random wave model [A1]

ψRRWM,D(q) =

√

4π

vol(D)N

N
∑

n=1

χD(kn, q) cos(knq + εn) . (6)

In contrast to the random wave model (4) for fully chaotic systems, the charac-

teristic function χD(·) ensures the localization on the irregular region D in phase

space. Because the projection of D onto position space is in general non-uniform,

we obtain locally a Gaussian distribution

Pq(ψ) −→
√

1

2πσ2(q)
exp

(

− ψ2

2σ2(q)

)

, (7)
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Figure 7: Eigenstates in a billiard with a mixed phase space typically either
concentrate in the regular islands, or extend over the chaotic region. This is
most clearly seen in the quantum Poincaré–Husimi representation displayed
in the last column for each case.

but with a position dependent variance σ2(q). For an ergodic system σ2(q) =

1/ vol(Ω) and one recovers the result (5) of a Gaussian amplitude distribution.

However, if σ2(q) depends on q then the corresponding distribution can show

deviations from the Gaussian. Fig. 8 shows such an example for which P (ψ) is

clearly different from the normal distribution and agrees well with the prediction
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ψ

P (ψ)

0.0

0.5

-3.5 0.0 3.5

Gaussian

eigenfunction

RRWM

Figure 8: High lying eigenfunction (E = 1002754.70 . . ., approximately the
130568th state) in the limaçon billiard at ε = 0.3. The amplitude distribution
clearly differs from a normal distribution (dashed curve) expected for fully
chaotic systems and is in good agreement with the prediction of the restricted
random wave model (RRWM).

of the restricted random wave model [A1]. Such non-isotropic random wave

models are also of importance in other situations, see e.g. [84–86].

While the amplitude distribution only provides a local measure of the statis-

tical properties of eigenfunctions, the spatial autocorrelation function

C(q, δq) := 〈ψ(q − δq/2)ψ(q + δq/2)〉 (8)

measures correlations over a longer range. The average 〈·〉 in Eq. (8) is performed

over the random wave ensemble; when numerically computing the autocorrelation

function of eigenfunctions an averaging over q, sometimes with an additional

spectral averaging, is used. For ergodic systems the eigenfunctions semiclassically

concentrate on the energy shell. This implies that C(q, δq) = 1
vol(Ω)

J0(
√
E|δq|)

[45], which has been tested successfully for small correlation lengths |δq|, see

e.g. [54, 56, 57, 87, 88]. For larger |δq| deviations become visible, which can be

shown to vanish in the semiclassical limit [A2].

For the spatial autocorrelation function of irregular eigenstates in systems

with a mixed phase space, one can, similar to the case of the amplitude distri-

bution, use information about the irregular component in phase space to obtain

a semiclassical prediction which is found to be in very good agreement with nu-

merical results [A2].

Another important aspect in systems with a mixed phase space are bifur-

cations of periodic orbits under parameter variation. These have a substantial

18



influence on spectral statistics [89–92] and also on the spatial autocorrelation

function [93].

In a typical mixed phase space stable periodic orbits are not just surrounded

by invariant KAM tori, but also by broken tori, the so-called cantori [94–98].

These provide partial barriers to the dynamics and may have an important influ-

ence both classically and quantum mechanically. For example, they are responsi-

ble for a sequence of hierarchical states [99] living in the chaotic component close

to the regular regions. Such states can significantly influence the scattering sig-

natures of a corresponding open system [A3]. Here the hierarchical states lead to

additional isolated resonances in the conductance fluctuations. By a comparison

with the eigenstates of the corresponding closed system it is possible to charac-

terize the isolated resonances as hierarchical or regular, depending on where the

corresponding eigenstates concentrate in the classical phase space.

2.2.2 Flooding of regular islands

The phase-space structure of systems with a mixed phase space is typically rather

complicated because regular islands are surrounded by higher-order islands which

continues to arbitrarily fine scales. The chaotic regions also contain regular is-

lands of arbitrarily small size. This makes a treatment and understanding very

difficult. One successful approach is to consider systems for which the dynamics

can be tuned in such a way that for example only one large regular island exists

in a mainly homogeneous chaotic sea [100]. This is possible for certain area-

preserving maps on a two-torus arising from a one-dimensional kicked Hamilto-

nian H(p, q, t) = T (p) + V (q)
∑

∞

n=−∞
δ(t− n). The dynamics is fully determined

by the mapping of position and momentum (pn, qn) at times t = n+0+ just after

the kicks

qn+1 = qn + T ′(pn) , (9)

pn+1 = pn − V ′(qn+1) . (10)

We impose periodicity for p ∈ [0, 1[ and q ∈ [0,M [, where the usual case of one

unit cell corresponds to M = 1.

For such kicked systems, the quantum evolution of a state after one period

of time |ψ(t + 1)〉 = Û |ψ(t)〉 is determined by the unitary operator, see e.g.

[101, 28, 102–104],

Û = exp

(

−2πi

heff
V (q̂)

)

exp

(

−2πi

heff
T (p̂)

)

. (11)
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q
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0.0

0.5

1.0

0.0 0.5 1.0

Figure 9: Phase space structure of an area-preserving map with one large
regular island and a narrow transition region to a homogeneous chaotic sea.

Here the effective Planck’s constant heff is Planck’s constant h divided by the

size of one unit cell. The eigenstates |ψj〉 and eigenphases ϕj of this operator are

defined by

Û |ψj〉 = e2πiϕj |ψj〉 . (12)

To fulfill the periodicity of the classical dynamics in both p and q direction the

effective Planck’s constant can only be a rational number heff = M
N

.

Choosing the functions T ′(p) and V ′(q) appropriately, one can obtain a system

with a large regular island and a homogeneous chaotic sea, see Fig. 9. The

resulting eigenstates can be classified as either irregular or regular. The irregular

states mainly live outside of the regular island, see Fig. 10. The regular states

concentrate on tori which fulfill the quantization condition

∮

p dq = (m+ 1/2)heff m = 0, 1, ... (13)

m = 0 m = 1 m = 2 m = 3 m = 4

max

min

Figure 10: For M = 1 and heff = 1/30 the eigenstates are either mainly
regular (m = 0, 1, ...) or mainly chaotic.
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for the enclosed area [101].

In Ref. [A6] it was shown that Eq. (13) is not a sufficient condition for the

existence of a regular eigenstate on the m-th quantized torus. In addition one

has to fulfill

γm <
1

τH,ch

, (14)

where τH,ch = heff/∆ch is the Heisenberg time of the surrounding chaotic sea

with mean level spacing ∆ch and γm is the decay rate of the m-th regular state,

if the chaotic sea was infinite. When condition (14) is violated one observes

eigenstates which extend over the chaotic region and flood the m-th torus [A6].

For the limiting case of complete flooding of all tori, the corresponding eigenstates

were called amphibious [100]. The process of flooding is most clearly seen by

considering a sequence of systems with fixed heff but increasing Heisenberg time.

This is possible for the kicked maps by increasing M but still keeping the ratio

heff = M/N approximately constant. As the classical dynamics and heff are

unchanged, also the tunneling rates are fixed. Because of τH,ch ∼M it is possible

h

regular, m = 0

h

regular, m = 1

hh

average

Figure 11: For M = 1597 and heff = 1/20 only the regular states with m = 0
and m = 1 exist while the chaotic states flood into the phase space region
previously occupied by the regular states with m = 2 and m = 3.
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to violate condition (14) for sufficiently large M as illustrated in Fig. 11.

It is important to note that in the semiclassical limit, the tunneling rates γm

become exponentially small, i.e. the effective coupling v tends to 0, such that

for fixed system size condition (14) is fullfilled. Therefore the flooding of the

regular island observed at finite heff is not in contradiction to the semiclassical

eigenfunction hypothesis.

In Ref. [A6] the process of flooding and condition (14) was explained by scaling

arguments and demonstrated for a kicked system. In order to obtain a quanti-

tative description, in particular about the transition regime and the way how

chaotic eigenstates turn into flooding eigenstates a random matrix description is

used in Ref. [A8]. Random matrix models have been very successful for obtaining

quantitative predictions on eigenstates in both fully chaotic systems and systems

with a mixed phase space, see e.g. [73, 105–107]. For the considered situation

a model is proposed which takes regular basis states and their coupling to the

chaotic basis states into account. The only free parameters are the strength of

the coupling and the ratio of the number of regular to the number of chaotic basis

states. From this model the weight distribution for eigenstates is determined. To

compare this with numerical results for the quantum system, we determine the

weight in the m-th regular state by projecting the eigenstates onto semiclassical

regular states [108]. By considering the fraction freg of regular states for different

values of heff and system sizes M , plotted vs. the effective coupling v, a universal

0.0

0.5

1.0

0.01 0.1 1 10

freg, RMT model

heff ≈ 1/10, m = 0

heff ≈ 1/10, m = 1

heff ≈ 1/30, m = 4

heff ≈ 1/30, m = 5

v

f

Figure 12: Fraction freg of regular states vs. coupling strength v for the
random matrix model (full line) and the kicked system for various heff and
m (symbols), where the system size M is rescaled to the effective coupling
strength v.
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behaviour is obtained (see Ref. [A6] for details), which is well described by the

prediction of the random matrix model, see Fig. 12.

In [A7] it is demonstrated that the implications of flooding can also be ob-

served in the transport properties of one-sided rough nano-wires in a magnetic

field. In such a system the regular island arises from the skipping motion along

the straight wall while trajectories which are reflected at the rough wall get back-

scattered in an irregular way. As a function of the length of the wire one observes

that the total transmission decreases in a sequence of steps. Each step corre-

sponds to the disappearance of a regular state until complete flooding occurs. At

the same time this effect leads to exponentially diverging localization lengths in

the semiclassical limit, which is unexpected from a random matrix description

for systems with disorder and only understandable by taking the mixed phase

geometry of the system into account.

3 Outlook

The results summarized in the previous section also lead to several new ques-

tions: For example, in [A6] the wave-packet dynamics in systems with flooding

is briefly addressed, but a detailed understanding and quantitative description of

the temporal flooding is currently under investigation [109]. For the statistical

proporties of both flooding states and time-evolved wave-packets it has to be

investigated, whether a restricted random wave type description [A2], adapted

to the case of quantum maps [110], applies. One of the future challenges is to

observe flooding experimentally. For this one possible candidate are the previ-

ously mentioned mushroom billiards, realized as a microwave cavity. For these

the Heisenberg time may be increased by enlarging the chaotic part of phase

space, such that the dissappearance of regular states might be observable in the

structure of resonances. Another important issue is the determination of tunnel-

ing rates, which is crucial for the existence criterion (14) for regular states. For a

certain class of quantized maps important progress was made recently [111–113],

while its extension to more general systems, in particular to billiards, is an open

question.
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[69] H. R. Dullin and A. Bäcker: About ergodicity in the family of limaçon
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We study the amplitude distribution of irregular eigenfunctions in systems

with mixed classical phase space. For an appropriately restricted random

wave model a theoretical prediction for the amplitude distribution is derived

and good agreement with numerical computations for the family of limaçon

billiards is found. The natural extension of our result to more general

systems, e.g. with a potential, is also discussed.
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Abstract
We study the amplitude distribution of irregular eigenfunctions in systems with

mixed classical phase space. For an appropriately restricted random wave

model, a theoretical prediction for the amplitude distribution is derived and

a good agreement with numerical computations for the family of limaçon

billiards is found. The natural extension of our result to more general systems,

e.g. with a potential, is also discussed.

PACS numbers: 03.65.Sq, 02.50.Ey, 05.45.Mt

1. Introduction

The semiclassical behaviour of the eigenfunctions of a quantum mechanical system strongly

depends on the ergodic properties of the underlying classical system. The semiclassical

eigenfunction hypotheses [1, 2] state that the Wigner function of a semiclassical eigenstate

is concentrated on a region in phase space explored by a typical trajectory of the classical

system. In integrable systems the phase space is foliated into invariant tori, and the Wigner

functions of the quantum mechanical eigenfunctions tend to delta functions on these tori in the

semiclassical limit [3]. On the other hand, in an ergodic system almost all trajectories cover

the energy shell uniformly, and hence the Wigner functions of the eigenstates are expected to

become a delta function on the energy shell. That this actually happens for an ergodic system

for almost all eigenstates follows from the quantum ergodicity theorem, see [4–6] and [7, 8]

for billiards (the relation of the quantum ergodicity theorem with the semiclassical behaviour

of Wigner functions is explicitly derived for Hamiltonian systems in [9]). However, a generic

system is neither integrable nor ergodic [10], but has a mixed phase space in which regular

regions (e.g. islands around stable periodic orbits) and stochastic regions coexist. Whether

these numerically observed stochastic regions are ergodic and of positive measure is an open

0305-4470/02/030527+12$30.00 © 2002 IOP Publishing Ltd Printed in the UK 527
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question, see [11] for a review on the coexistence problem. The eigenfunctions in mixed

systems are expected to be separated into regular and irregular eigenfunctions according to an

early conjecture by Percival [12] which has been numerically confirmed for several systems

(see e.g. [13–16]). In addition, at finite energies there is a small (semiclassically vanishing)

fraction of ‘hierarchical states’ which are of intermediate nature, and localize in regions

bounded by cantori [17].

Besides the localization properties of the Wigner function, the local amplitude fluctuations

of the eigenfunctions also strongly depend on the classical system, as has been pointed out in

[1, 18]. The basic idea is that an eigenfunction can be represented locally as a superposition

of de Broglie waves with wavelength determined by the energy and momenta distributed

according to the semiclassical limit of the Wigner function. In a chaotic system one therefore

expects an isotropic distribution of the momenta. If one additionally assumes that the phases

are randomly distributed, one obtains locally a Gaussian amplitude distribution of a typical

eigenfunction in a quantum mechanical system with chaotic classical limit. For instance, in

a chaotic billiard a Gaussian amplitude distribution is expected, and this has been confirmed

by several numerical studies (see e.g. [19–24]). Predictions of the random wave model on

the behaviour of the maxima of eigenfunctions have been derived and successfully tested

in [22, 25]. In mixed systems the situation is more complicated; for some studies on matrix

elements and eigenfunctions in this case, see, for example [26–28]. In contrast, in an integrable

system the localization of the Wigner function on the invariant tori enforces a more coherent

superposition of the de Broglie waves, leading to a regular structure of the eigenfunction [1].

Our aim is to determine the amplitude distribution for irregular states in systems with

mixed classical dynamics. We assume that the motion on a stochastic region D in phase space

is ergodic and that the statistical properties of eigenfunctions can be described by a random

wave model restricted to D (see the following section for a precise definition). The derivation

shows that locally the fluctuations are Gaussian with a position-dependent variance which is

given by the classical probability density on position space defined by the ergodic density on D.

Thus the resulting amplitude distribution may be significantly different from a Gaussian. In

section 3 we compare the theoretical prediction of the restricted random wave model with

numerical computations.

2. Amplitude distribution for the restricted random wave model

In this section we consider a restricted random wave model for the two-dimensional Euclidean

quantum billiards in order to describe the statistical properties of irregular eigenfunctions in

systems with a mixed classical phase space. The quantum mechanical system is defined by

the Euclidean Laplacian on a compact domain � ⊂ R
2 with suitable boundary conditions on

the boundary ∂�. (Usually one chooses the Dirichlet conditions.) The quantum mechanical

eigenvalue problem is given by

�ψn(q) = Enψn(q) with ψn(q) = 0 for q ∈ ∂� (1)

and we are interested in the behaviour of the eigenfunctions ψn in the semiclassical limit

En → ∞.

The corresponding classical system is given by a free particle moving along straight lines

inside the billiard, making elastic reflections on the billiard boundary ∂�. The phase space is

T ∗� = R
2 × �, and the Hamiltonian is H(p, q) = |p|2. Since the Hamiltonian is scaled we

can restrict our attention to the equi-energyshell with energy E = 1,

S∗� := {(p, q) ∈ R
2 × � ; |p| = 1}. (2)
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Introducing polar coordinates (r, φ) for the momentum p, we can parametrize S∗� by

(φ, q) ∈ [0, 2π) × � where φ is the direction of the momentum. In these coordinates

the Liouville measure on S∗� is given by

dµ = dφ d2q (3)

which is invariant under the Hamiltonian flow on S∗�.

Now let D ⊂ S∗� be an open domain which is invariant under the classical flow, and on

which the flow is chaotic. The existence of such a domain where the flow is, for instance,

ergodic, is an open problem. But numerically one observes invariant domains on which the

flow is at least irregular in the sense that most orbits are unstable, and regular islands inside

this domain are very small. The uncertainty principle implies a finite quantum mechanical

resolution of phase space quantities at finite energies. Therefore at finite energies the small

islands of such an irregular domain are not resolved by the quantum system.

So we expect, in the spirit of [1], that the statistical properties of irregular eigenfunctions

associated with D can be described by those of a superposition of plane waves with wave

vectors of the same lengths and directions distributed uniformly on D. Furthermore if we

assume random phases, we arrive at the following restricted random wave model for real

valued functions, which is a superposition of plane waves of the form

ψRRWM,D(q) =

√
4π

vol(D)N

N∑

n=1

χD (̂kn, q) cos(kn· q + εn). (4)

Here χD(·) is the characteristic function of D, the phases εn are independent random variables

equidistributed on [0, 2π], and the momenta kn ∈ R
2 are independent random variables which

are equidistributed on the circle of radius
√
E. So the characteristic function χD(·) ensures

the localization on D. Furthermore, it is natural to take N ∼
√
E, the scaling of the number

of line segments of a typical Heisenberg-length orbit. The volume of D measured with the

Liouville measure (3) is denoted by vol(D). With this choice of normalization the expectation

value of the norm ‖ψRRWM,D‖ is 1.

Let us first consider the value distribution Pq(ψ) of ψRRWM,D(q) at a given point q ∈ �.

Our restricted random wave model (4) is a sum of identical independent random variables

which have zero mean and whose variance is given by

σ 2(q) = E

(
4π

vol(D)
(χD(k̂n, q) cos(kn · q + εn))

2

)
=

1

vol(D)

∫ 2π

0

χD(e(φ), q) dφ (5)

where e(φ) := (cos(φ), sin(φ)) denotes the unit vector in the φ-direction. So by the central

limit theorem we obtain forE → ∞, i.e.N → ∞, a Gaussian distribution ofψRRWM,D(q) at q,

Pq(ψ) −→

√
1

2πσ 2(q)
exp

(
−

ψ2

2σ 2(q)

)
(6)

with variance given by (5). If the classical dynamics on D is ergodic, then the variance σ 2(q)

is exactly the probability density of finding the particle at the point q ∈ � if it moves on a

generic trajectory in D. So σ 2(q) is the classical probability density in position space.

By integrating equation (6) over � we obtain the complete amplitude distribution as a

mean over a family of Gaussians with variances given by (5),

PRRWM,D(ψ) =
1

vol(�)

∫

�

Pq(ψ) d2q (7)

=
1

vol(�)

∫

�

√
1

2πσ 2(q)
exp

(
−

1

2σ 2(q)
ψ2

)
d2q. (8)
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So the amplitude distribution is completely determined by the classical probabality density (5),

and it will be typically non-Gaussian if σ 2(q) is not constant.

The moments of the distribution (8) can be computed directly and turn out to be

proportional to the moments of the classical probability density σ 2(q),
∫

ψ2kPRRWM,D(ψ) dψ = ρ2k

1

vol(�)

∫

�

[σ 2(q)]k dq (9)

where the factor ρ2k = (2k)!
k!2k

denotes the 2kth moment of a Gaussian. The odd moments are of

course zero. Note that the second moment is always 1/vol(�), due to the normalization of ψ .

If the system is ergodic one has σ 2(q) = 1
vol(�)

and we get the classical result that

PRRWM,D(ψ) is Gaussian with variance σ 2 = 1
vol(�)

. However, if σ 2(q) depends on q then the

corresponding distribution can show deviations from the Gaussian distribution. In particular,

if σ 2(q) = 0 for some region �′ ⊂ �, we get a contribution vol(�′)
vol(�)

δ(ψ) to the corresponding

distribution of PRRWM,D(ψ) as the integrand in (7) tends to a δ distribution as σ 2(q) → 0.

Finally, we would like to point out that the main ingredient in formula (7) is the assumption

that the local amplitude distribution of an irregular eigenfunction around a point q in position

space is Gaussian, with a variance given by the classical probability density in position space

σ 2(q), defined by the projection of the invariant measure on D in the position space. Clearly

this assumption is not restricted to billiards, but is expected to be true for arbitrary quantum

mechanical systems for which the underlying classical system contains chaotic components

in phase space. So formula (7) is expected to be valid in far more general situations, with

σ 2(q) denoting the classical probability density defined by the ergodic measure on the chaotic

component.

3. Comparison with irregular eigenfunctions

We now compare the predictions of the restricted random wave model with the results for

some numerically computed eigenfunctions. As systems to study the amplitude distribution of

irregular states in mixed systems, we have chosen the family of limaçon billiards introduced

by Robnik [29, 30] with boundary given in polar coordinates by ρ(ϕ) = 1 + ε cos(ϕ), ϕ ∈
[−π, π], with ε ∈ [0, 1] being the system parameter. We consider the case ε = 0.3, for

which the billiard has a phase space of mixed type [29], see figure 1. In [31] examples of

eigenstates far into the semiclassical regime have been studied in this system and, in particular,

the amplitude distribution has been studied numerically, but no analytical predictions have

been made.

First we have to determine the classical position space probability density σ 2(q) of the

ergodic measure on the invariant domain D. The normalized ergodic measure on D is given by

dµD(φ, q) =
1

vol(D)
χD(e(φ), q) dφ d2q

so we can express the variance σ 2(q) as a mean value

σ 2(q) =
∫

S∗�

δ(q − q′) dµD(φ
′, q′). (10)

As the motion on D is assumed to be ergodic, in order to determine σ 2(q) we could replace

the integral over S∗� by a time average over a typical trajectory of D and the δ function

by a smoothed δ function, e.g. a narrow Gaussian. However, as we will see below, the

eigenfunctions turn out not to be concentrated on the whole chaotic component, but rather on

a subset which is almost invariant in the sense that it is bounded by partial barriers in phase
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Figure 1. Plot of several stable and irregular orbits in the Poincaré section P of the limaçon billiard

for ε = 0.3. Here P is parametrized by the (rescaled) arclength coordinate s ∈ [−4, 4] along the
billiard boundary and p ∈ [−1, 1] which is the projection of the unit velocity vector on the tangent

at the point s after the reflection.

space. Since at finite energies quantum mechanics has only a finite resolution in phase space,

these partial barriers appear like real barriers. But since any classical trajectory will pass such

a barrier after a certain time, the time average is not suitable for the determination of σ 2(q) in

such a situation.

For a more direct approach to determine σ 2(q) we use the Poincaré section P =
{(s, p); s ∈ [−4, 4], p ∈ [−1, 1]}, which is parametrized by the (rescaled) arclength

coordinate s (corresponding to ϕ ∈ [−π, π]) along the boundary ∂� and the projection p

of the unit velocity vector on the tangent at the point s after the reflection. Let D ⊂ P be

the projection of the region D in the energy shell S∗� := {(p, q) ∈ R
2 × �; ‖p‖ = 1} on

the Poincaré section. This projection is defined as follows: for a point (e(φ), q) ∈ D we can

associate the trajectory which passes through q in direction e(φ), then s(φ, q) is defined as

the first intersection with the boundary ∂� when traversing the trajectory backwards from q

and p(φ, q) := e(φ)T (s(φ, q)) which is the projection of the unit velocity vector e(φ) on the

unit tangent vector T (s(φ, q)) to ∂� at s(φ, q).

For a given point q we therefore get a curve parametrized by φ

(p(φ, q), s(φ, q)) ∈ P. (11)

Since χD(e(φ), q) = χD(p(φ, q), s(φ, q)), we get

σ 2(q) =
1

vol(D)

∫ 2π

0

χD(p(φ, q), s(φ, q)) dφ (12)

and therefore we have to determine the fraction of the angular interval(s) for which the

curve (11) is in D. That is, one has to determine the angles φ
entry
i (q) and φexit

i (q) where the
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curve (11) enters or leaves the region D, i.e. the intersection points of (11) with the boundary

of D. In terms of these angles we obtain

σ 2(q) =
1

vol(D)

∑

i

φexit
i (q)− φ

entry
i (q) (13)

which is proportional to the fraction of directions in the ergodic component visible from the

point q.

With this classical probability density σ 2(q), one can compute the corresponding

amplitude distribution via equation (8). If σ 2(q) = 0 for some region, then the local

amplitude distribution (6) becomes a delta function, and it is necessary to consider for a

concrete comparison a binned distribution,

Pbinned(ψ,�ψ) :=
1

�ψ

∫ ψ+�ψ/2

ψ−�ψ/2

P(ψ ′) dψ ′ (14)

=
1

2|�|

∫

�

[
erf

(
ψ + �ψ/2√

2σ 2(q)

)
− erf

(
ψ −�ψ/2√

2σ 2(q)

)]
d2q. (15)

We now use a Husimi Poincaré section representation of the eigenstate (see e.g.

[32, 33]) to determine the boundary of the relevant component D by a spline approximation.

The Poincaré Husimi representation of an eigenfunctionψn in a billiard is defined by projecting

the normal derivative un(s) of an eigenfunction ψn(q) at the boundary onto a coherent state

on the boundary. The coherent states, semiclassically centred in (s, p) ∈ P , are defined as

c(s,p),k(s
′) :=

(
k

σπ

)1/4 ∞∑

m=−∞
exp(ipk(s′ −mL − s)) exp

(
−

k

2σ
(s′ −mL − s)2

)
(16)

where s′ ∈ [−4, 4], σ > 0 and L = 8 is the total (rescaled) length of the boundary. This

definition is just a periodized version of the standard coherent states. The Poincaré Husimi

function of a state ψn with normal derivative un(s) is then defined as

Hn(s, p) =
kn

2π

1
∫ 4

−4
|un(s)|2 ds

∣∣∣∣
∫ 4

−4

c∗
(s,p),kn

(s′) un(s
′) ds ′

∣∣∣∣
2

(17)

with kn =
√
En; the prefactor ensures the normalization

∫∫
Hn(s, p)dp ds = 1.

An example is shown in figure 2. In (a) a high-lying eigenfunction (E = 1002 754.70 . . . ,

approximately the 130 568th state of odd symmetry) in the limaçon billiard with ε = 0.3 is

shown as density plot (black corresponding to high intensity of |ψ|2). In (b) the corresponding

Husimi representation on the Poincaré section is shown. The boundary of the irregular region

D is described by a cubic spline which is shown as a full curve. With these boundary curves

we can use (13) to compute σ 2(q), which is shown in figure 2(c). Finally, in figure 2(d) the

comparison of the amplitude distribution of ψ with the prediction of the restricted random

wave model is given. Clearly, P(ψ) is non-Gaussian, and the agreement is very good. Table 1

lists the first moments and also a very good agreement of the results using (9) and the moments

of ψ is found. Both the resulting amplitude distribution PRRWM,D and the moments turn out to

be quite robust with respect to small changes of the selection of D. Note that we have rescaled

σ 2(q) such that the variance of the distributions is 1.

Another example is shown in figure 3. The eigenfunction (E = 1003 030.75 . . . ,

approximately the 130 607th state of odd symmetry) plotted in (a) has a quite large region in the

centre where it is almost vanishing. So from this alone the amplitude distribution is expected

to show a very clear deviation from the normal distribution. Using the same procedure as

in the previous case, we determine D, compute σ 2(q) and then PRRWM(ψ). The comparison
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Figure 2. In (a) a high-lying eigenfunction (E = 1002 754.70 . . ., approximately the 130 568th

state) in the limaçon is shown as a grey scale plot (black corresponding to high intensity). In (b)

the corresponding Husimi function on the Poincaré section is shown together with the boundary

(full curves) of the region on which the eigenfunction is concentrated. In (c) a density plot of

σ 2(q), computed via equation (13), is shown. In (d ) the cumulative amplitude distribution of the
eigenfunction is compared with the prediction of the RRWM; on this scale no differences are visible.

The left inset shows P (ψ), and for the right inset a logarithmic vertical scale is used to emphasize

the tails of the distribution. For comparison the normal distribution is shown as grey curve.
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Figure 3. The same plots as in the previous figure are shown for another high-lying eigenfunction

(E = 1003 030.75 . . . , approximately the 130 607th state). In this case there is a deviation of

the amplitude distribution of the eigenfunction from the prediction of the restricted random wave

model around ψ = 0. This is because σ 2(q) = 0 in the central region, whereas the eigenfunction

does not vanish there (see the text for further discussion). For the tails of the distribution, the
agreement of the two distributions is again very good.
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Figure 4. For the three domains indicated in the inset, the local amplitude distribution is shown

(for the same state as in figure 3). The dotted curves are Gaussian fits and the agreement of

the position-dependent variance for regions A and C is very good with the theoretical prediction

(equation (5)). The non-zero width of the distribution for the region B corresponds to the widening

of the δ-contribution (see figure 3).

Table 1. Comparison of the even moments for the distributions of the eigenfunction and the RRWM
(equation (9)). The last column lists, for comparison, the moments of the normal distribution.

Example 1, figure 2 Example 2, figure 3

Moment Eigenfunction RRWM Eigenfunction RRWM Normal distribution

4 4.39 4.46 3.85 3.75 3

6 45.1 47.6 26.9 25.8 15

8 819 899 269 269 105

10 2199 2501 3774 3841 945

of the prediction with P(ψ) is shown in figure 3(d). The strongest deviation occurs forψ ≈ 0.

The peak ofPRRWM(ψ) atψ = 0 is due to the fact that σ 2(q) = 0 for the region in the centre of

the billiard. The eigenfunction, however, is not exactly zero, but shows a decay in that region

and thus still fluctuates there. This causes a broadening of the δ-contribution, which is clearly

visible in the plot of P(ψ) in figure 3(d). For |ψ| > 0.25 this region is not relevant anymore,

and the agreement of P(ψ) and PRRWM(ψ) is very good. In the right inset to figure 3(d)

the distribution is shown with a logarithmic vertical scale to illustrate the agreement of the

distributions even in the tails.

The moments, computed via equation (9), are listed in table 1. The agreement of the

moments of the eigenfunction with the prediction of the restricted random wave model is quite
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good. All moments of the two examples are larger than those of a Gaussian, corresponding to

the larger tails. Compared to the moments of the restricted random wave model, those of the

eigenfunctions tend to be smaller, in particular, for the larger moments. This is reasonable, as

an actual eigenfunction is always bounded, which reduces higher moments compared to the

result of equation (9).

Furthermore, we have tested our basic assumption (6), that the local value distribution of

a sufficiently high-lying eigenfunction is Gaussian with a variance given by the local classical

probability density associated with D, more directly. To this end we have computed the value

distribution of the eigenfunction in figure 3 for three small regions on which σ 2(q) is almost

invariant, and we therefore expect a Gaussian. The results are shown in figure 4, and a good

agreement with the prediction (6) is found. Since many fewer wavelengths are contained in

these small domains than those in �, the statistics is of course not as good as that for the full

system, but the results give strong support for a local Gaussian behaviour. The variances for

the two domains A and C coincide with the expected classical one σ 2(q). But for domain B

the observed variance is larger than σ 2(q) = 0. This corresponds to the widening of the delta

peak in figure 3, and is due to the fact that the eigenfunction cannot become exactly zero on

some open set at finite energies, but instead fluctuates around zero.

4. Summary

In this paper we have extended the random wave model for eigenfunctions from the case

of chaotic systems to the case of irregular eigenfunctions in systems with mixed phase

space. Our main result is one particular prediction of this model, namely, the amplitude

distribution (7) of irregular eigenfunctions. Numerical tests have been performed for two

high-lying eigenfunctions of the limaçon billiard with ε = 0.3, and impressive agreement,

even in the tails of the distribution, with the theoretical prediction was found.

The physical picture underlying our analysis is that the local hyperbolicity in the irregular

part of the phase space forces the eigenfunctions localizing on this part of phase space to behave

locally like a Gaussian random function with a variance given by the classical probability

density in position space defined by the uniform measure on the irregular component. By

taking the mean over all these local Gaussians with varying variance, it gives our result

for the global amplitude distribution. We have tested this intuitive picture by computing

local amplitude distributions. The agreement of these with the Gaussian prediction is very

good, giving further strong support to the picture of local Gaussian fluctuations with variance

determined by the underlying classical system. A further natural question relates to the

correlations of such eigenfunctions between different points in position space; this topic is

addressed in [34].

We should point out that in view of the complicated structure of the phase space of a

mixed system, it is quite surprising that our simple model fits so well. The only additional

ingredient which appeared in the numerical tests was that the relevant irregular domains in

phase space are only slighthy invariant, even for very high-lying eigenfunctions. A detailed

understanding of these findings poses an important challenge for future research.

Although we have restricted our study to the Euclidean billiards, the general picture

of local Gaussian fluctuations is of course not limited to these special types of systems.

We therefore expect our results to be valid for irregular eigenfunctions in arbitrary systems

(e.g. systems with potential), with σ 2(q) defined as the projection of the ergodic measure on

the irregular component to the position space.
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A. Bäcker and R. Schubert

J. Phys. A 35 (2002) 539–564.

We study the autocorrelation function of different types of eigenfunctions in

quantum mechanical systems with either chaotic or mixed classical limits.

We obtain an expansion of the autocorrelation function in terms of the

correlation length. For localized states, like bouncing ball modes or states

living on tori, a simple model using only classical input gives good agreement

with the exact result. In particular, a prediction for irregular eigenfunctions

in mixed systems is derived and tested. For chaotic systems, the expansion

of the autocorrelation function can be used to test quantum ergodicity on

different length scales.
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Abstract
We study the autocorrelation function of different types of eigenfunctions in

quantum mechanical systems with either chaotic or mixed classical limits. We

obtain an expansion of the autocorrelation function in terms of the correlation

distance. For localized states in billiards, like bouncing ball modes or states

living on tori, a simple model using only classical input gives good agreement

with the exact result. In particular, a prediction for irregular eigenfunctions in

mixed systems is derived and tested. For chaotic systems, the expansion of the

autocorrelation function can be used to test quantum ergodicity on different

length scales.

PACS numbers: 05.45.Mt, 02.50.Ey, 03.65.SQ, 05.45.−a

1. Introduction

The behaviour of a quantum mechanical system in the semiclassical limit strongly depends on

the ergodic properties of the corresponding classical system. In particular, the eigenfunctions

semiclassically reflect the phase space structure of the classical system and therefore they

depend strongly on whether the classical system is chaotic or regular. In this study we

are interested in the fluctuations of the wavefunctions, and in the correlations between the

fluctuations in different regions which are induced by the classical phase space structures. In

particular, we will consider the case of quantum billiards in a domain � ⊂ R
2, which are

described by the time-independent Schrödinger equation (in units h̄ = 2m = 1)

(� + E)ψ(q) = 0 for q ∈ �\∂� (1)

with Dirichlet boundary conditions, ψ(q) = 0 for q ∈ ∂�. For compact � one obtains a

discrete spectrum {En} of eigenvalues, 0 < E1 � E2 � . . ., with associated eigenfunctions

0305-4470/02/030539+26$30.00 © 2002 IOP Publishing Ltd Printed in the UK 539
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ψn ∈ L2(�), which we assume to be normalized, i.e. ‖ψn‖ :=
∫

�
|ψn(q)|2 dq = 1. The

corresponding classical billiard is given by the free motion of a point particle inside � with

elastic reflections at the boundary ∂�.

The amplitude distribution of an eigenfunction of a quantum mechanical system whose

classical limit is chaotic is conjectured to become Gaussian in the semiclassical limit [1], and

numerical studies support this conjecture, see e.g. [2–4]. A more sensitive quantity is the

local autocorrelation function [1] which measures correlations between different points of an

eigenfunction ψ

Cloc(x, δx) := ψ∗(x − δx/2)ψ(x + δx/2). (2)

The crucial fact for the theoretical analysis of Cloc(x, δx), observed by Berry [1], is that the

autocorrelation function can be expressed as the Fourier transformation of the Wigner function

(see equation (7) below) of ψ

Cloc(x, δx) =
∫

W(p,x)e−ipδx dp. (3)

Hence information on the behaviour of the Wigner function can be used to predict the

behaviour of the autocorrelation function, and since semiclassical limits of Wigner functions

are concentrated on invariant sets in phase space, see e.g. [5], it follows that in the semiclassical

limit autocorrelation functions are determined by the classical phase space structure. For

example, if the classical system is ergodic, the quantum ergodicity theorem [6–11] (roughly

speaking) states that almost all quantum expectation values tend to the corresponding classical

limit. One can show [12] that for ergodic systems this is equivalent to the semiclassical

eigenfunction hypothesis [1, 13–15], when restricted to a subsequence of density one. Using

this result in (3) one gets Berry’s result [1] that for chaotic billiards in two dimensions

Cloc(x, δx) ∼
1

vol(�)
J0(

√
E|δx|) (4)

weakly as a function of x (for fixed δx) as E → ∞, where E denotes the energy of the

eigenstate ψ in (2). Equivalently we have

lim
E→∞

Cloc(x, δx/
√
E) =

1

vol(�)
J0(|δx|). (5)

Numerical tests of this relation have been performed for several chaotic systems [2–4] and at

finite energies show notable fluctuations of the autocorrelation function around the high energy

limit (4), especially for correlation distances larger than a few de Broglie wavelengths.These

fluctuations have been studied further in [16–19], where for a small correlation distance |δx|
a random model for the eigenfunctions of a chaotic system was used to predict the variance

of these fluctuations, and for larger |δx| a formula involving closed orbits of the system has

been derived. In [23, 24] the path correlation function, which is an average of the local

correlations along a given trajectory, has been introduced. A further study of autocorrelations

of eigenfunctions in the framework of the nonlinear σ -model has been recently conducted

in [20], and spectral averages of autocorelation functions are studied in [21, 22]. The path

correlation function is closely related to the autocorrelation function and for ergodic systems

also tends asymptotically to a Bessel function (4). This path correlation function has been

studied in [3] for a hyperbolic octagon, and an expansion in terms of Legendre functions has

been derived, which can be used to determine corrections to the leading Bessel part (4).

The autocorrelation function in nonchaotic systems has attracted very less attention. The

integrable case has already been discussed by Berry [1], and the corresponding formula has

been successfully tested for the circle billiard in [2]. For a system with mixed classical
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phase space the autocorrelation function has been studied in [25], in particular for irregular

eigenfunctions an expansion of the Wigner function in polar coordinates has been used.

In this paper we are interested in the question how the universal limit (4) is reached, and

how, in the case of mixed systems, further constraints on the classical motion are reflected

in the autocorrelation function. For instance, if an eigenfunction is concentrated on an

ergodic component, then by a generalization of the quantum ergodicity theorem [26], the

Wigner function becomes equidistributed on that component, and this will determine the

autocorrelation function.

The paper is organized as follows. In section 2 we discuss some examples of the

autocorrelation function for different eigenfunctions in systems with chaotic and mixed

classical dynamics. In section 3 a general expansion of the autocorrelation function for

eigenfunctions in billiards is derived, which allows a systematic study of their properties. It is

an expansion in the correlation distance |δx| which reflects the fact that the determination of

correlations at larger distances needs classical information on finer length scales than for short

range correlations. In section 4 it is shown that the correlation distance expansion provides

an efficient way to explain the fine structure of the autocorrelation functions of the systems

studied in the first section. Of particular interest is that for chaotic systems deviations of

the autocorrelation function from the quantum ergodic limit (4) can be related to the rate

of quantum ergodicity. In turn the autocorrelation function can be used to study the rate of

quantum ergodicity on different classical length scales.

2. Examples of autocorrelation functions

For numerical computations as well as for theoretical considerations it is much more convenient

to consider a smoothed version of the local autocorrelation function (2). Furthermore, as the

eigenfunctions oscillate on a scale proportional to 1/
√
E, we rescale the autocorrelation

function by this factor. Hence we will study the autocorrelation function in the form

Cρ(x, δx) :=
∫

�

ρ(x − q)ψ∗
(

q −
δx

2
√
E

)

ψ

(

q +
δx

2
√
E

)

dq (6)

where ρ is a positive function which determines the smoothing of the local autocorrelation

function. In the literature (see the papers mentioned in the introduction) the mean is usually

taken over a small disc, which corresponds to taking the characteristic function of a disc for ρ

in (6). However, nothing prevents one considering the case ρ ≡ 1, i.e. taking the mean value

of the local autocorrelation function (2) over the whole position space. In terms of the Wigner

function

W(p, q) :=
1

(2π)2

∫

eipq ′
ψ∗(q − q

′/2)ψ(q + q
′/2) dq ′ (7)

one obtains in this case

C(δx) :=
∫

ψ∗
(

q −
δx

2
√
E

)

ψ

(

q +
δx

2
√
E

)

dq (8)

=
∫ ∫

W(p, q)e−ipδx/
√
E dq dp =

∫

|ψ̂(p)|2e−ipδx/
√

E dp. (9)

This is a particularly good choice for the numerical computation of the autocorrelation function

in billiards because it can be reduced to boundary integrals (see the appendix). The resulting

formula reads

C(δx) =
1

8
√
E

∫ ∫

∂�×∂�

|q(s)− q(s′)+ δx| Y1(
√
E|q(s) − q(s′) + δx|)u∗(s)u(s ′) ds ds′

(10)
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Figure 1. Grey scale plot of |ψ1277(q)|2 in the cardioid billiard with odd symmetry, where black

corresponds to high intensity. To the right the autocorrelation function C(r, θ), computed using
(10), is shown for three different directions θ = 0, π/4 and π/2. For comparison the asymptotic

result C(r, θ) = J0(r) is shown as the grey line.

where u(s) is the normal derivative of the normalized eigenfunction ψ on the billiard

boundary. This relation provides a very efficient method for the numerical computation

of the autocorrelation function.

The systems for which we study the autocorrelation functions are the stadium billiard and

two members of the family of limaçon billiards, namely the cardioid billiard, and a billiard

with mixed classical phase space. The stadium billiard is proved to be strongly chaotic, i.e.

it is ergodic, mixing and a K-system [27, 28].The height of the desymmetrized billiard is

chosen to be 1, and a denotes the length of the upper horizontal line, for which we have

a = 1.8 in the following. The family of limaçon billiards is given by the simplest nontrivial

conformal mapping of the unit circle [29, 30] and can be parametrized in polar coordinates

by ρ(ϕ) = 1 + ε cos(ϕ) with ϕ ∈ [−π, π], and ε ∈ [0, 1] denotes the family parameter.

We consider the case ε = 0.3 which leads to a mixed dynamics in phase space. For ε = 1

one obtains the cardioid billiard,which is also proved to be strongly chaotic [31–33]. The

eigenvalues of the cardioid billiard have been provided by Prosen and Robnik [34] and were

calculated by means of the conformal mapping technique, see e.g. [30, 35]. For the stadium

billiard the eigenvalues and eigenfunctions have been computed using the boundary element

method, see e.g. [36, 37], and for the limaçon billiard the eigenvalues have been computed

using the conformal mapping technique and then the boundary element method has been used

to compute the eigenfunctions (see [38] for details). For the high-lying states in the limaçon

billiard the scaling method has been used [39].

First we consider a ‘typical’ eigenfunction in the cardioid billiard (figure 1). In the plots

we show

C(r, θ) = C(rê(θ)) (11)

where ê(θ) = (cos θ, sin θ), as a function of r for three different values of θ .The quantum

ergodicity theorem implies that there is a subsequence {nj} ⊂ N of density one such that

Cnj
(r, θ) → J0(r) as nj → ∞ with r fixed. This convergence is, however, not uniform in r.
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Figure 2. Autocorrelation function for the same state as figure 1, but for a larger r-interval

showing the non-universal behaviour at larger r. The inset shows a magnification and the vertical

bars indicate the places r =
√
Endiam(�, θ) from where on C(r, θ) = 0, due to the compactness

of the billiard.

For the example shown in figure 1 C (r, θ ) fluctuates, as expected for a ‘quantum ergodic’

state, around the asymptotic result

C(r, θ) ∼ J0(r). (12)

Actually, for an eigenstate with energy En we have C (r, θ ) = 0 for r >
√
Endiam(�, θ),

where diam(�, θ ) is the diameter of � in the direction θ , as follows directly from the

definition (6). This is illustrated in figure 2 which clearly shows the non-universal behaviour

for larger r.

In contrast to the case of quite uniformly distributed eigenfunctions one expects a stronger

directional dependence of the autocorrelation function for localized eigenfunctions, such as

scars [40]. One example is shown in figure 3, where the eigenfunctions shows localization

along the shortest unstable periodic orbit in the cardioid. The corresponding autocorrelation

function shows clear deviations from (12).

A class of eigenfunctions which show even stronger localization are the bouncing ball

modes in billiards with two parallel walls (see, e.g. [2, 41–44]). Figure 4 shows for the stadium

billiard an example of a bouncing ball mode, which localizes on the so-called bouncing ball

orbits having perpendicular reflections at the parallel walls and thus forming a one-parameter

family. The simplest approximation is to consider them as a product of two sines, one in the

x direction and the other in the y direction. In this case the autocorrelation function can be

computed explicitly. For the odd–odd eigenfunctions

ψnx ,ny
(x, y) =

1
√

lx ly
sin(πnxx/lx) sin(πnyy/ly) (13)

in a box B := [−lx, lx] × [−ly, ly] one gets

Cbox
nx ,ny

(r, θ) = F(r cos(θ)/
√
E, nx, lx) F (r sin(θ)/

√
E, ny, ly) (14)
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Figure 3. Grey scale plot of |ψn(q)|2 with n = 1277 in the cardioid billiard with odd symmetry.

For the autocorrelation function C(r, θ) one observes clear deviations from C(r, θ) = J0(r).
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Figure 4. For the stadium billiard with odd–odd symmetry, a = 1.8, ψ320(q) is a bouncing

ball mode. The corresponding autocorrelation function is compared with the result Cbox
1,13(r, θ),

equation (14), obtained for a box, shown as dotted curves, which follow C (r, θ ). Only for θ = 0

(full line) and θ = π/4 at r ≈ 17 are small deviations visible.

where

F(z, n, l) := χ[−l,l](z/2)
1

l

∫ l−z/2

−l+z/2

sin(πn(x − z/2)/ l) sin(πn(x + z/2)/ l) dx (15)

= χ[−l,l](z/2)

[

(

1 −
z

2l

)

cos(πnz/l) +
1

2πn
sin(πnz/l)

]

(16)

and χ[−l,l](z) denotes the characteristic function of the interval [−l, l].

In figure 4 we compare the autocorrelation C(r, θ )function for a bouncing ball mode in

the stadium billiard with Cbox
1,13(r, θ), equation (14), and observe very good agreement. Mainly
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for θ = 0 some deviations are visible; these are understandable from the fact that in this case

only correlations in the x-direction are measured, where the bouncing ball mode ‘leaks’outside

the rectangular region. To take this into account one can determine an effective leff
x > 2a, by

fitting sin2
(

πx/leff
x

)

to

ψproj
n (x) :=

∫ 1

0

|ψ(x, y)|2 dy. (17)

For the case shown in figure 4 this procedure leads to leff
x ≈ 4 (whereas 2a = 3.6) and the

corresponding autocorrelation function gives excellent agreement with the one for ψ320.

3. Expansion of the autocorrelation function

In this section we derive an expansion of the autocorrelation function which will lead to an

understanding of the directional dependence of the autocorrelation function observed in the

last section. We start from the representation of the local autocorrelation function in terms of

the Wigner function

Cρ(x, δx) =
∫ ∫

ρ(x − q)W(p, q)e−ipδx/
√
E dp dq. (18)

Since the Wigner function is concentrated around the energy shell |p| =
√
E, and is

furthermore even in p by time reversal symmetry, we get

Cρ(x, δx) =
∫ ∞

0

∫ 2π

0

∫

�

ρ(x − q)W(p, q) dq ′ e−i|δx| cos(ϕ−θ) r dϕ d r + O(|δx|E−1/2)

=
∫ ∞

0

∫ 2π

0

∫

�

ρ(x − q)W(p, q) dq cos(|δx| cos(ϕ − θ)) r dϕ dr + O(|δx|E−1/2) (19)

where we have used polar coordinates p = (|p| cos ϕ, |p| sin ϕ), δx = (|δx| cos θ,

|δx| sin θ). Because of the rescaling by
√
E the factor e−ipδx/

√
E is only slowly oscillating

for p close to the energy shell, on which the Wigner function is concentrated. Therefore

we get that the error is of order |δx|/
√
E (see appendix B for a sketch of the derivation of

this remainder estimate). If we now use that cos(r cos ϕ) is a generating function for Bessel

functions [45]

cos(|δx| cos ϕ) = J0(|δx|) + 2

∞
∑

l=1

(−1)l cos(2lϕ)J2l(|δx|) (20)

we obtain

Cρ(x, δx) = ξ0(x) J0(|δx|) + 2

∞
∑

l=1

(−1)lξ2l(x, θ) J2l(|δx|) + O(E−1/2) (21)

with (setting r = |p|)

ξ2l(x, θ) :=
∫ ∞

0

∫ 2π

0

∫

�

ρ(x − q)W(p, q) dq cos(2l(ϕ − θ)) r dϕ dr. (22)

The coefficients ξ2l(x, θ) can be further decomposed

ξ2l(x, θ) = cos(2lθ)

∫ ∞

0

∫ 2π

0

∫

�

ρ(x − q)W(p, q) dq cos(2lϕ) r dϕ dr

+ sin(2lθ)

∫ ∞

0

∫ 2π

0

∫

�

ρ(x − q)W(p, q) dq sin(2lϕ) r dϕ dr. (23)
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Recall that for an operator Â with Weyl symbol A(p, q) the expectation value 〈ψ, Âψ〉 can

be written as an integral over the phase space of the symbol multiplied by the Wigner function

of ψ , see e.g. [46],

〈ψ, Âψ〉 =
∫ ∫

W(p, q)A(p, q) dp dq. (24)

Therefore the coefficients in (23) can be interpreted as expectation values of certain operators

Â2l(x), B̂2l(x) given as the Weyl quantizations of the functions

A2l(p, q) := ρ(x − q) cos(2lϕ) B2l(p, q) = ρ(x − q) sin(2lϕ) (25)

respectively,
∫

�

∫ 2π

0

∫ ∞

0

W(p, q) ρ(x − q) cos(2lϕ) r dr dϕ dq = 〈ψ, Â2l(x)ψ〉 (26)

∫

�

∫ 2π

0

∫ ∞

0

W(p, q) ρ(x − q) sin(2lϕ) r dr dϕ dq = 〈ψ, B̂2l(x)ψ〉. (27)

Note that the operators Â2l(x) and B̂2l(x) depend on the parameter x. Since their symbols are

smooth and homogeneous of degree zero in p they are classical pseudodifferential operators

of order zero, see e.g. [46] for the definition of pseudodifferential operators. So we finally

obtain the following general expansion of the autocorrelation function

Cρ(x, δx) = 〈ψ, Â0(x)ψ〉 J0(|δx|) + 2

∞
∑

l=1

(−1)l[〈ψ, Â2l(x)ψ〉 cos(2lθ)

+ 〈ψ, B̂2l(x)ψ〉 sin(2lθ)] J2l(|δx|) + O(|δx|E−1/2) (28)

in terms of the expectation values of a sequence of bounded operators given as Weyl

quantizations of the symbols (25). Recall that the only approximation we have made was

to insert for |p| in the exponent in equation (19) the value at the energy shell
√
E.

Since the Bessel functions have the property that J2l(|δx|) ≈ 0 for |δx| ≪ 2l, this

representation is an efficient expansion for small |δx|, then only a few terms in the sum

contribute. But the larger |δx| becomes, the more terms of the sum have to be taken into

account. Therefore it is desirable to have an estimate of the number of terms which have to be

taken into account for large |δx|. The first, and largest, maximum of J2l(r) lies around r ∼ 2l,

and close to it one has the expansion [45]

J2l(2l − zl1/3) =
1

l1/3
Ai(z) + O(1/l). (29)

So the first peak becomes broader with a rate ∼l1/3 and therefore we have to take for large r

approximately

m ∼
r

2
+

z

2

( r

2

)1/3

(30)

terms in the sum over l into account; here z determines the error term. We refer to appendix C

for a more detailed discussion.

We would like to mention two papers in which related results have been obtained. For

the case of a free particle on a surface of constant negative curvature an expansion of the path

correlation function in terms of the Legendre function was derived in [3]. In the special case of

averaging over the whole billiard (i.e. ρ = 1) the path correlation function for ergodic systems

should be the same as the autocorrelation function. In [25] an expansion similar to (28) was

derived for the case when the eigenfunction is concentrated on an ergodic component of the

phase space of a classically mixed system, however, without extracting the Bessel function
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from the expectation values. To make this possible is the main reason why we have restricted

our attention here to billiards. For more general systems one could derive similar expansions

which approximate the autocorrelation function for small correlation distances using only a

few terms, but their structure becomes more complicated.

The correlation distance expansion (28) has various possible applications; some of them

will be discussed and illustrated in the next section. In particular, the expansion leads to a

prediction for the asymptotic limit of the autocorrelation function in different situations. More

precisely, consider a subsequence of eigenfunctions
{

ψnj

}

j∈N
for which the corresponding

sequence of Wigner functions converges weakly to a measure ν on phase space. Such a

measure ν is called a quantum limit, and it is an invariant measure of the classical flow [5].

If a sequence of eigenfunctions
{

ψnj

}

j∈N
converges to a quantum limit, the correlation

distance expansion for the autocorrelation function (28) shows that the corresponding sequence

of autocorrelation functions converges as well and their limit is obtained by substituting in (28)

the expectation values of Â2l(x) and B̂2l(x) by their corresponding classical limit. Explicitly,

this gives

Climit
ρ (x, δx) = Ā0J0(|δx|) + 2

∞
∑

l=1

(−1)l[Ā2l(x) cos(2lθ) + B̄2l(x) sin(2lθ)] J2l(|δx|) (31)

where

Ā :=
∫

T ∗�

A dν. (32)

As we will discuss in section 4.4, for ergodic systems almost all eigenfunctions have the

Liouville measure as the quantum limit, then the terms Ā2l and B̄2l vanish, and with Ā0 = 1

we recover (12).

4. Applications of the correlation distance expansion

4.1. Direct comparison

In the numerical examples we have studied the autocorrelation function in the case ρ = 1,

which allows for an exact computation of the autocorrelation function using the representation

(10), which is much more efficient than a direct computation of the autocorrelation function

by its definition, equation (8). In this case the general expansion (28) gives the representation

C(r, θ) = J0(r) + 2π

∞
∑

l=1

(−1)l[a2l cos(2lθ) + b2l sin(2lθ)] J2l(r) + O(rE−1/2) (33)

where the coefficients a2l and b2l are the Fourier coefficients

a2l =
1

π

∫ 2π

0

I (ϕ) cos(2lϕ) dϕ b2l =
1

π

∫ 2π

0

I (ϕ) sin(2lϕ) dϕ (34)

of the radially integrated momentum density [47, 48]

I (ϕ) :=
∫ ∞

0

|ψ̂(re(ϕ))|2r dr (35)

where e(ϕ) = (cos ϕ, sin ϕ). Also for I(ϕ) a representation in terms of a double integral of

the normal derivative function is available [48]. Taking the symmetries into account, one can

show that for the odd eigenfunctions in the limaçon billiards and the odd–odd eigenfunctions

in the stadium billiard all b2l vanish, so only the cosine terms remain in (28) and (33).
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Figure 5. Comparison of the autocorrelation function C (r, θ ) for ψ1907 in the stadium billiard

(full curve) with the expansion (33). In particular, for small r the agreement is excellent, whereas

for larger r small differences become visible.

First we will test the influence of the error termO(E−1/2) in equation (33) for computations

at finite energies. To that end we use the exact quantum I(ϕ) in equation (34). In figure 5 the

autocorrelation function C (r, θ ) for four different angles θ is compared to (33). In particular,

for r not too big the agreement is excellent. Only for larger r do small deviations become

visible, which go to zero for higher energies and r fixed. One should remark that for any r > 0

the effective integration region in equation (8) is reduced by the factor

c(r, θ) :=
vol(� ∩ �(r/

√
E, θ))

vol(�)
(36)

where �(r/
√
E, θ) is the set � shifted by the vector r/

√
E (cos θ, sin θ). Incorporating this

factor leads to an improvement in the agreement of the expansion with the exact autocorrelation

function at larger r.

Instead of looking at the dependence of the autocorrelation function C (r, θ ) for fixed

θ and varying r, it is also interesting to keep r fixed and consider the angular dependence.

For a ‘chaotic’ eigenfunction in the cardioid billiard some examples are shown in figure 6.

The result of the expansion (33) is in good agreement with the exact result. For larger r the

autocorrelation function C (r, θ ) oscillates more strongly around J0(r). For even larger r we

observe clear deviations of the expansion from the exact result (not shown). For comparison
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Figure 6. Angular dependence of the autocorrelation function C (r, θ ) for different r. Shown are

the results for ψ6000 in the cardioid billiard with odd symmetry. The full line is the result for

C (r, θ ) using (10), the dashed line shows the result of the expansion (33), the full grey line is the
value of J0 (r) and the dotted horizontal lines show the variance J0(r) ± �1/2 (see equation (37)).

the variance of the autocorrelation function around the prediction J0(r) for a random wave

model [16] in leading order

�1/2 =
(

16

3π3/2A

)1/2
1

E1/4
(37)
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is shown and good agreement is found. Note that for bounded r this error is much larger than

the additional error term O(rE−1/2) from (33).

4.2. Localized eigenfunctions

For a state strongly localized on an periodic orbit of length lγ we have (either in the semiclassical

limit, or as a crude model at finite energies)

I (ϕ) ∼
1

lγ

∑

lγi
δ(ϕ − ϕi) (38)

where lγi
are the lengths of the segments of the orbit with direction ϕi . Thus we get

a2l =
1

πlγ

∑

lγi
cos(2lϕi) b2l =

1

πlγ

∑

lγi
sin(2lϕi) (39)

which therefore using (33) gives a prediction for C(δx) for such states, namely

C(δx) ∼
1

lγ

∑

i

lγi
cos(|δx| cos(θ − ϕi)). (40)

Note that in the presence of symmetries all symmetry-related directions have to be taken into

account in equation (38). For this simple model one can determine the autocorrelation function

more directly by using (3)

C(δx) =
∫ ∫

W(p, q)eipδx dp dq =
∫

|ψ̂(p)|2eipδx dp

=
∫ 2π

0

I (ϕ) cos(|δx| cos(θ − ϕ)) dϕ + O(|δx|E−1/2) (41)

inserting (38) directly gives (40).

In figure 7 we compare the limiting behaviour (40) with the autocorrelation function of

a high-lying eigenstate in the limaçon billiard. The state localizes on the (stable) orbit of

triangular shape. Up to r ≈ 10 the agreement is very good; for larger r the autocorrelation

function of the eigenstate shows deviations from the asymptotic behaviour. Note that the

state has a much higher energy than the other examples. At lower energies the agreement

is not as good, because the region in phase space on which the state localizes is broader.

This in turn implies that its corresponding radially integrated momentum distribution I(ϕ) also

has broad peaks, which are not accounted for properly by the ansatz (38). However, when

considering states of this type with increasing energies, a clear trend to the asymptotic result

(40) is observed.

This simple model has also been tested for a scarred state in the cardioid. However, the

agreement is limited to a qualitative description for up to r ≈ 2. This is understandable in

view of the observation (see [48, figure 8(a)]) that for a scarred state the radially integrated

momentum distribution I(ϕ) shows quite large fluctuations, and also in the considered case the

direction ϕ = π/2 is not clearly pronounced. As these fluctuations essentially correspond to

the random ‘background’ fluctuations of the state, a simple ansatz to model this behaviour is

C(r, θ) = (1 − α)J0(r) + α
1

lγ

∑

i

lγi
cos(|δx| cos(θ − ϕi)). (42)

It turns out that one can vary α such that quite good agreement of this model with the

exact autocorrelation function is obtained (see figure 8 where α = 0.22 (for all directions)).

Depending on the direction θ the ‘optimal’ value for α does vary, which already indicates

the limitations of this simple model. To get a better agreement a more precise description of
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Figure 7. High-lying eigenfunction (E = 367 984.82 . . ., approx. 47 788th eigenfunction of odd

symmetry) in the limaçon billiard (ε = 0.3), which localizes on the stable orbit of triangular
shape. The autocorrelation function for three different directions is compared with the δ-model,

equation (40), shown as the dashed line using the directions of the stable orbit.

I(ϕ) for scarred states is necessary. In particular, this should also lead to an understanding of

the energy dependence of α which is expected to go to zero in the semiclassical limit. Note

that the structure of the autocorrelation function is quite similar to the one for ψ1817 shown in

figure 3.

Another case, for which we obtain much better agreement, is for an eigenfunction localized

on an invariant torus. In such a case the expectation values, equations (26), (27), tend to the

mean of the classical observable over the torus (see equations (31), (32)). Figure 9(a) shows for

the limaçon billiard the eigenfunction and the corresponding Husimi Poincaré representation

[49, 50]; see [51] for a more detailed discussion and the formula which has been used.

Also shown in the Husimi plot are the points of some orbits. Using an initial condition

on the torus we can determine the classical angular distribution I classical(ϕ). As this has a

singularity due to the caustic of the torus we show in figure 9(c) a binned distribution together

with the corresponding quantum radially integrated momentum distribution I3056(ϕ). There

is qualitative agreement between these two curves in the sense that smoothing I classical(ϕ)

describes the mean behaviour of the quantum I3056(ϕ). Of course, the classical distribution

cannot describe the (quantum) oscillations visible for I3056(ϕ). It turns out, see figures 9(d)–

(f), that already this simple model leads to surprisingly good agreement between the exact

autocorrelation function and the expansion (33) computed using I classical(ϕ).
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Figure 8. For a scarred state (ψ7147 of odd symmetry) in the cardioid billiard the autocorrelation

function is compared with the simple model (42) for α = 0.22.

4.3. Autocorrelation function of irregular states in mixed systems

In classical systems with mixed phase space regions with regular and regions with stochastic

behaviour coexist. It is conjectured [52] that correspondingly the quantum mechanical

eigenfunctions split into regular and irregular ones, respectively, living semiclassically on

the corresponding parts of phase space. This has been confirmed numerically for several

systems (see e.g. [53–57]). Consider now a sequence of eigenfunctions ψnj
which localize

on some open ergodic domain D in a system with mixed phase space, then almost all

the expectation values
〈

ψnj
Âψnj

〉

tend to the mean ĀD of the corresponding classical observable

A over this domain D [26]. Therefore using (33) we get in the limit E → ∞ for the

autocorrelation function of such a sequence

Climit
ρ (x, δx) = ĀD

0 J0(|δx|) + 2

∞
∑

l=1

(−1)l
[

ĀD
2l(x) cos(2lθ) + B̄D

2l(x) sin(2lθ)
]

J2l(|δx|).

(43)

Instead of computing ĀD
2l and B̄D

2l directly, we can also use a typical trajectory of the ergodic

component to determine the corresponding classical I classical(ϕ) via

I classical(ϕ) = lim
l→∞

1

l

∑

liδ(ϕ − ϕi) (44)

where l is the total length of the trajectory and ϕi is the direction of the ith segment having

length li. Then we use (33) to get a prediction for the autocorrelation function.
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Figure 9. Grey scale plot of ψ3056 for the limaçon billiard with ε = 0.3 together with the

corresponding Husimi plot, for which in addition some orbits are shown. In (c) the radially

integrated momentum distribution I3056(ϕ) and the corresponding classical distribution I classical(ϕ)

for the torus are shown. In (d)–(f) the exact autocorrelation function is compared with the expansion
of the autocorrelation function, equation (33), using I classical(ϕ) for different angles θ .

However, we observe that even quite high-lying states do not yet localize on the whole

chaotic component. Instead they are confined to smaller subregions due to partial barriers

in phase space. Figure 10(a) shows an example of a high-lying state in the limaçon billiard

(ε = 0.3) In figure 10(b) the corresponding Husimi function is plotted, which clearly shows

the localization on a chaotic subdomain (the whole irregular region is much larger). If D is

an open region in phase space, then the corresponding classical distribution of the momentum

directions is given by

I classical(ϕ) =
1

vol(D)

∫

χD(p(ϕ), q) dq (45)
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Figure 10. Autocorrelation function for a high-lying irregular state (E = 1002 754.70 . . . , approx.

130 516th eigenfunction of odd symmetry) in the limaçon billiard with ε = 0.3. In (b) the Husimi

representation on the boundary is shown together with an approximate boundary (full curve) of the

region D on which the state localizes. The resulting classical momentum distribution I classical(ϕ)

is shown in (c) as a full curve and compared with the radially integrated momentum distribution
I qm(ϕ) of the state in (a) and a smoothing of this, I qm,smoothed(ϕ), shown as a dashed curve. In

(d)–( f ) the autocorrelation function C (r, θ ) of the eigenfunction is compared for three different

directions with result of the expansion (43) using I classical(ϕ).

where p(ϕ) = (cosϕ, sin ϕ). One can show that in terms of the projection D of D on the

Poincaré section this equation can be reduced to

I classical(ϕ) =
∫

D
l(s, p)δ(ϕ − φ(s, p)) ds dp

∫

D
l(s, p) ds dp

(46)

=
∫

∂�′(ϕ) l(s, p(s, ϕ))
√

1 − p2(s, ϕ)χD(s, p(s, ϕ)) ds
∫

D
l(s, p) ds dp

(47)
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where l(s, p) is the length of the orbit segment starting in the point (s, p) ∈ P with direction

φ(s, p) and in the second equation p(s, ϕ) = p(ϕ)t(s), with t(s) denoting the unit tangent

vector to ∂D at the point s. Furthermore, ∂�′(ϕ) := {s ∈ ∂� | p(ϕ)n(s) � 0}, where n(s)

denotes the outer normal vector to ∂D in the point s, is the subset of ∂� where the vector p(ϕ)

points inwards. For the numerical computation we have used (47) because we just have to

deal with a one-dimensional integral to compute the ϕ dependence, and also compared to (46)

no binning of I classical(ϕ) is necessary.

After these general remarks on the computation of I classical(ϕ) let us describe how we

compute the relevant quantities to determine the autocorrelation function for the state shown

in figure 10(a). To describe the projection D of the domain D in phase space, we use an

approximation of the boundary of D by a splines, which are shown in the figure 10(b) as

full curves. Then we use equation (47) to determine the corresponding I classical(ϕ), shown in

(c) as a full curve. Of course the radially integrated momentum distribution I qm(ϕ) of the

eigenstate shows strong fluctuations, but the smoothing I qm,smoothed(ϕ) is well described by

I classical(ϕ), although the agreement is not perfect. Using I classical(ϕ) we employ the expansion

(43) to get a prediction for the autocorrelation function for states localizing on D, which is

compared in figures 10(d)–(f) with the exact autocorrelation function. Up to r ≈ 10 we get

quite good agreement, whereas for larger r deviations become more visible. This shows that

the eigenfunction has more structure than accounted for by I classical(ϕ), i.e. it is not yet far

enough in the semiclassical limit.

For higher energies the states tend to localize on the full ergodic region, and then

I classical(ϕ) can simply be computed using (44) by averaging a typical trajectory in D.

One should emphasize that the agreement has to be compared with the agreement of the

autocorrelation function for ergodic systems with (12) as the prediction equation (43) only

takes into account the classical limit. This has been studied in [25] (in the case of averaging

the local autocorrelation function over a small disc), where in particular for [25, figure 13(b)]

very good agreement has been found.

4.4. Ergodic systems and the rate of quantum ergodicity

If the classical billiard is ergodic, then by the quantum ergodicity theorem [6–11] almost all

eigenfunctions become equidistributed in the semiclassical limit. More precisely, there exists

a subsequence
{

ψnj

}

j∈N
of density one, i.e. limE→∞

#{Enj
�E}

#{En�E} = 1, such that

lim
j→∞

〈

ψnj
, Âψnj

〉

= Ā (48)

for all pseudodifferential operators Â, and Ā denotes the mean with respect to the Liouville

measure of the corresponding classical observable. The rate by which this equidistribution is

reached is called the rate of quantum ergodicity. It is an important quantity, as it determines

the practical applicability of the quantum ergodicity theorem at finite energies.

If the billiard is ergodic and ψnj
is a quantum ergodic sequence of eigenfunctions, then

for j → ∞
〈

ψnj
, Â2l(x)ψnj

〉

∼ Ā2l = δl0 (49)
〈

ψnj
, B̂2l(x)ψnj

〉

∼ B̄2l = 0. (50)

Thus using the expansion (28) we again get (12) for E → ∞. Deviations from this universal

behaviour are then determined by the rate at which the limit in (49) and (50) is reached, i.e. the
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Figure 11. Comparison of the second moment σ 2
1907(r) of the autocorrelation function, equation

(52), with the expansion (53) for the stadium billiard. The inset shows the difference for r ∈ [0, 20].

rate of quantum ergodicity. In order to exploit this it will be convenient to remove the angular

dependence by taking the mean over all angular directions in C(δx). Since by equation (33)

1

2π

∫ 2π

0

Cn(r, θ) dθ = J0(r) + O(rE−1/2) (51)

we consider the second moment

σ 2
n (r) :=

1

2π

∫ 2π

0

[Cn(r, θ) − J0(r)]
2 dθ (52)

where Cn(r, θ) denotes the autocorrelation function of ψn. Inserting the expansion (33) of

Cn(δx) leads to

σ 2
n (r) = 2π2

∞
∑

l=1

(

a2
2l,n + b2

2l,n

)

[J2l(r)]
2 (1 + O(rE−1/2)). (53)

In figure 11 we compare σ 2(r) for an eigenfunction in the stadium billiard with the expansion

(53). For small r we get excellent agreement and some deviations become visible in the plot

for r > 20. The inset shows a plot of the difference up to r = 20. It is surprising that even

though for large r the amplitudes do not match anymore, still the expansion gives the right

oscillatory structure.

If we take the mean of (53) over all eigenfunctions up to energy E, we get

σ̄ 2(E, r) :=
1

N(E)

∑

En�E

σ 2
n (r) (54)

= 2π2

∞
∑

l=1

1

N(E)

∑

En�E

(

a2
2l,n + b2

2l,n

)

[J2l(r)]
2 (1 + O(rE−1/2)). (55)

Remarkably, together with equations (28) and (53) this shows that the rate of quantum

ergodicity can be studied in terms of the autocorrelation function. Particularly interesting is
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that the observables in the expansion (28) become more and more oscillatory with increasing

l, so by varying |δx| one can determine the rate of quantum ergodicity on different length

scales.

A prediction for the behaviour of σ̄ 2(E, r) follows from [58], where it is argued that

(under suitable conditions on the system) in the mean

1

N(E)

∑

En�E

[〈

ψnj
, Âψnj

〉

− Ā
]2 ∼

4σ 2
cl(A)

vol�

1
√
E

(56)

for any pseudodifferential operator Â of order zero with symbol A. Here Ā denotes the mean

value of A, and σ 2
cl(A)/

√
T is the variance of the fluctuations of

1

T

∫ T

0

A(p(t), q(t)) dt (57)

around Ā. So if we insert (56) into (55) we obtain

σ̄ 2(E, r) ∼
8π2

vol�

∞
∑

l=1

[

σ 2
cl(A2l) + σ 2

cl(B2l)
]

[J2l(r)]
2 1

√
E

. (58)

A detailed study of the rate of quantum ergodicity in terms of the autocorrelation function, i.e.

via equation (54), and a comparison with the semiclassical expectation (58) will be given in a

separate paper.

5. Summary

We have discussed the autocorrelation function for eigenstates of quantum mechanical systems,

and its relation to the behaviour of the classical system. For billiards we have derived a formula

for the autocorrelation function of an eigenfunction in terms of the normal derivative on the

boundary (10), which enables an efficient numerical computation.

Our main result is the correlation distance expansion of the autocorrelation function (28)

for billiards, which provides an efficient expansion for small correlation distances, where only

a small number of terms enters the sum. Moreover, it provides a tool for understanding the

behaviour of the autocorrelation function for different types of eigenfunctions in terms of their

semiclassical limit.

The coefficients in the correlation distance expansion (28) can be computed in terms of

the radially integrated momentum density. Even though it is based on an approximation,

our numerical study shows very good agreement with the corresponding exact results; only

for large correlation distances do deviations become visible. As the expansion coefficients

have to be determined just once for a given eigenfunction, this is also a numerically efficient

method to compute the autocorrelation function. Similar, but more complicated, expansions

can be derived in higher dimension and for more general systems (e.g. systems with potential

and magnetic field), but then the Bessel functions have to be modified in order to reflect the

structure of the energy shell of the classical system.

We applied the expansion of the autocorrelation function to different types of

eigenfunctions, and showed that it provides a good tool for the understanding of their

autocorrelation functions. In systems with mixed phase space regular states concentrated

on tori and irregular states have been successfully treated. For chaotic system the fluctuations

of the autocorrelation functions around the leading term are shown to be connected with the

rate of quantum ergodicity. Moreover, by varying the correlation distance the autocorrelation

function is shown to be an interesting new tool to measure the rate of quantum ergodicity on

different length scales.
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Appendix A. Autocorrelation function in terms of normal derivatives on the boundary

We will give a derivation of the formula (10) which provides an expression of the

autocorrelation function C(δx) in terms of the normal derivative. Let ψ(q) be a solution

of the Helmholtz equation with Dirichlet boundary condition on ∂�,

(� + k2)ψ(q) = 0 ψ(q) = 0 for q ∈ ∂� (59)

where we have defined k =
√
E, and let

u(s) := n(s)∇ψ(q(s)) (60)

be the outer normal derivative of ψ on ∂�, where s parametrizes ∂� in arclength. It is well

known that

−
1

4

∫

∂�

Y0(k|q − q(s)|)u(s) ds =
{

ψ(q) for q ∈ �◦

0 for q /∈ �
(61)

and furthermore
∫

∂�

J0(k|q − q(s)|)u(s) ds = 0. (62)

Let ρ(t) be a smooth cut-off function with

ρ(t) =
{

1 for t � 2 diam(�)

0 for t � 3 diam(�)
(63)

where diam(�) denotes the diameter of �. Then we have for q in some neighbourhood of �

ψ(q) = −
1

4

∫

∂�

ρ(k|q − q(s)|)Y0(k|q − q(s)|)u(s) ds (64)

and obtain

C(δx) =
∫

R
2

ψ∗(q)ψ(q + δx) dq =
∫ ∫

∂�×∂�

Kρ(δx, s, s′)u∗(s)u(s ′) ds ds′ (65)

with

Kρ(δx, s, s′) =
1

16

∫

R
2

ρ(k|q − q(s)|)Y0(k|q − q(s)|)Y0(k|q − q(s′) + δx|) dq

=
1

16

∫

R
2

ρ(k|q|)Y0(k|q|)Y0(k|q + q(s) − q(s′) + δx|) dq. (66)

Due to the factor ρ(k|q − q(s)|) this integral is absolutely convergent. We now use Grafs

addition theorem [45]

Y0(k|q + �q|) =
{∑

l∈Z
Yl(k|�q|)Jl(k|q|) cos(lϕ) for |q| < |�q|

∑

l∈Z
Yl(k|q|)Jl(k|�q|) cos(lϕ) for |q| > |�q| (67)

where �q = q(s) − q(s′) + δx and ϕ is the angle between �q and q. Introducing polar

coordinates in the integral in (66) and using (67) gives
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Kρ(δx, s, s′) =
π

8

∫ |�q|

0

Y0(kr)J0(kr)r dr Y0(k|�q|)

+
π

8

∫ ∞

|�q|
ρ(kr)Y0(kr)Y0(kr)r dr J0(k|�q|) (68)

where we have furthermore used that ρ(r) = 1 for r � |�q| by (63). The first integral is
∫ |�q|

0

Y0(kr)J0(kr)r dr =
|�q|2

2
[Y0(k|�q|)J0(k|�q|) + Y1(k|�q|)J1(k|�q|)] (69)

see, e.g. [45], and for the second one partial integration gives
∫ ∞

|�q|
ρ(kr)Y0(kr)Y0(kr)r dr = −

|�q|2

2
[Y0(k|�q|)Y0(k|�q|) + Y1(k|�q|)Y1(k|�q|)]

−
k

2

∫ ∞

|�q|
ρ ′(kr)[Y0(kr)Y0(kr) + Y1(kr)Y1(kr)]r

2 dr. (70)

Note that since ρ ′ has compact support the second integral is over a finite interval, and for

s, s′ ∈ ∂�, δx ∈ � the lower limit of the integral, |�q|, is outside the support of ρ ′, hence

the second term on the right-hand side of equation (70) is constant. So we get

Kρ(δx, s, s′) = K(δx, s, s′) + Rρ(δx, s, s′) (71)

with

K(δx, s, s′) =
π |�q|2

16
[Y1(k|�q|)J1(k|�q|)Y0(k|�q|) − Y1(k|�q|)Y1(k|�q|)J0(k|�q|)]

(72)

and

Rρ(δx, s, s′) = CJ0(k|�q|) (73)

with C constant and by (62) this term gives no contribution to C(δx). Using a Wronsky

determinant of Bessel functions [45] we can simplify K(δx, s, s′) further

K(δx, s, s′) =
π |�q|2

16
Y1(k|�q|)[J1(k|�q|)Y0(k|�q|) − Y1(k|�q|)J0(k|�q|)]

=
π |�q|2

16
Y1(k|�q|)

2

πk|�q|
=

|�q|
8k

Y1(k|�q|) (74)

which gives the final result.

Appendix B. Remainder estimate

In this appendix we sketch the derivation of the remainder estimate in equation (19). We start

by representing the integral as an expectation value, see (24)
∫ ∞

0

∫ 2π

0

∫

�

ρ(x − q)W(p, q) dq ′ eir |δx| cos(ϕ−θ)/
√
E r dϕ dr = 〈ψ,Aψ〉 (75)

where A is the Weyl quantization of the symbol

a(p, q) := ρ(x − q) e
i |p|√

E
|δx| cos(ϕ−θ)

. (76)

The basic idea is to find a decomposition of the operator A

A = A0 + (
√

−� −
√
E)A1 + R (77)
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where A0 has the Weyl symbol

a0(p, q) = ρ(x − q) ei|δx| cos(ϕ−θ) (78)

and the remainder R satisfies

‖R‖ � C E−1/2. (79)

If we assume the decomposition (77) and take the expectation value of both sides, one gets

〈ψ,Aψ〉 = 〈ψ,A0ψ〉 + 〈ψ,Rψ〉 (80)

where (
√

−� −
√
E)ψ = 0 has been used. In terms of the symbols equation (80) is the

desired result, see (19)
∫ ∞

0

∫ 2π

0

∫

�

W(p, q)ρ(x − q) dq ′ eir |δx| cos(ϕ−θ)/
√
E r dϕ dr

=
∫ ∞

0

∫ 2π

0

∫

�

W(p, q)ρ(x − q) dq ′ ei|δx| cos(ϕ−θ)/ r dϕ dr + O(rE−1/2). (81)

Let us now show that the decomposition (77) is basically a quantization of the Taylor expansion

of the symbol a(p, q) around |p| =
√
E,

a(p, q) = a0(p, q) + (|p| −
√
E)a1(p, q). (82)

Quantizing this classical decomposition yields (77) with R given as the Weyl quantization of

r(p, q) = (|p| −
√
E)a1(p, q) − (|p| −

√
E)#a1(p, q) (83)

since the Weyl symbol of (
√

−�−
√
E)A1 is (|p|−

√
E)#a1(p, q) with # denoting the symbol

product (see e.g. [46]). Since E is a constant we have

r(p, q) = |p|a1(p, q) − |p|#a1(p, q) (84)

and this is a function which is bounded and of order O(|δx|E−1/2), and all its derivatives are

bounded and of order O(|δx|E−1/2), too. So by the Calderon Vallaincourt theorem [46] the

estimate (79) follows.

Appendix C. Estimating the Bessel sum

In this appendix we determine how many terms in the sum (28) have to be taken into account

such that the remainder is smaller than some given error δ. From (26) and (27) it follows that

for fixed ψ

|〈ψ, Â2l(x)ψ〉 cos(2lθ) + 〈ψ, B̂2l(x)ψ〉 sin(2lθ)| � C. (85)

Thus if we split the sum

∞
∑

l=1

(−1)l[〈ψ, Â2l(x)ψ〉 cos(2lθ) + 〈ψ, B̂2l(x)ψ〉 sin(2lθ)] J2l(|δx|)

=
m−1
∑

l=1

(−1)l[〈ψ, Â2l(x)ψ〉 cos(2lθ) + 〈ψ, B̂2l(x)ψ〉 sin(2lθ)] J2l(|δx|) + Rm(|δx|) (86)

we get for the remainder

|Rm(r)| � C

∞
∑

l=m

|J2l(r)|. (87)
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Therefore we have to estimate the sum over Bessel functions
∞

∑

l=m

|J2l(r)| (88)

and determine its dependence on m and r. The asymptotics in the transition region

J2l(2l − z(2l)1/3) ∼
1

l1/3
Ai(21/3z) (89)

gives that J2l(r) is monotonically increasing for r < 2l, such that for r < 2m

∞
∑

l=m

|J2l(r)| =
∞

∑

l=m

1

l1/3
Ai

(

2l − r

l1/3

)

+ O(m−1). (90)

Defining z by

r = 2m − zm1/3 (91)

we obtain
∞

∑

l=m

1

l1/3
Ai

(

2l − r

l1/3

)

=
∞

∑

l=m

1

l1/3
Ai

(

2(l − m)

l1/3
+ z

(

m

l

)1/3)

=
∞

∑

l=0

1

(l + m)1/3
Ai

(

2l

(l + m)1/3
+ z

(

m

l + m

)1/3)

=
∞

∑

l=0

1

m1/3
Ai

(

2l

m1/3
+ z

)

+ O(m−1/3) (92)

where we have furthermore used that for large m only the terms with l ≪ m contribute, because

the Airy function is exponentially decreasing for positive arguments. The Euler McLaurin

formula then gives

∞
∑

l=0

1

m1/3
Ai

(

2l

m1/3
+ z

)

=
∫ ∞

0

1

m1/3
Ai

(

2l

m1/3
+ z

)

dl + O(m−1/3)

=
1

2

∫ ∞

z

Ai(x) dx + O(m−1/3). (93)

And so finally we arrive at

∞
∑

l=m

|J2l(r)| =
1

2

∫ ∞

z

Ai(x) dx + O(m−1/3). (94)

The function
∫ ∞
z

Ai(x) dx is monotonically decreasing, so for a given δ > 0 we can define a

z(δ) by

1

2

∫ ∞

z(δ)

Ai(x) dx = δ (95)

and then (91) defines together with (95) a function m(r, δ) such that

∞
∑

l=[m(r,δ)+1]

|J2l(r)| = δ + O(r−1/3). (96)

By solving (91) for large r, we see that we have to take approximately

m(r, δ) ∼
r

2
+

z

2

( r

2

)1/3

(97)
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Figure 12. For the bounds δ = 10−4 and δ = 10−8 of the sum over Bessel functions (88) the result

of the exact computation of m(r, δ) (full curves) and the asymptotic result (97) are compared. The

asymptotic result approaches the exact one slowly from below with a rate O(r−1/3).

terms in the sum (28) over l into account such that the error is δ + O(r−1/3).

For instance, if we require δ = 10−4, then (95) gives z(δ) = 4.359 . . . ; for δ = 10−8 one

gets z(δ) = 7.925 . . . . In figure 12 we show for these choices of z the asymptotic result (97)

compared to the exact computation, corresponding to (88). The asymptotic result approaches

the exact one slowly from below; in the plotted region a constant offset by two compared to

(97) gives a good bound for m(r, δ).
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We study the isolated resonances occurring in conductance fluctuations of

quantum systems with a classically mixed phase space. We demonstrate

that the isolated resonances and the resonant scattering states can be as-

sociated to eigenstates of the closed system. They can all be categorized as

hierarchical or regular, depending on where the corresponding eigenstates

live in the classical phase space.
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We study the isolatedresonancesoccurringin conductancefluctuationsof quantumsystemswith a classi-
cally mixed phasespace.We demonstratethat the isolated resonancesand their scatteringstatescan be
associatedwith eigenstatesof the closed system.They can all be categorizedas hierarchicalor regular,
dependingon wherethe correspondingeigenstatesareconcentratedin the classicalphasespace.
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I. INTRODUCTION

The classicaldynamicsof a scatteringsystemis reflected
in the transportpropertiesof its quantummechanicalanalog.
A prominentexamplein quantumchaosis theuniversalcon-
ductancefluctuationsexhibitedby a scatteringsystemwith
classically completely chaotic dynamics @1#. Generic sys-
tems,however, areneithercompletelychaoticnor integrable,
but showchaoticaswell asregularmotion @2#. The chaotic
dynamicsis stronglyinfluencedby thepresenceof islandsof
regularmotion; in particular, onefinds a trappingof chaotic
trajectoriescloseto regularregionswith trappingtimesdis-
tributedaccordingto power laws @3#. A semiclassicalanaly-
sis revealedthat conductancefluctuationsof genericscatter-
ing systemshavecorrespondingpower-law correlations@4,5#
andmostinterestinglythat thegraphof conductancevs con-
trol parameteris a fractal @5#. Fractal conductancefluctua-
tions haveindeedbeenobservedexperimentallyin semicon-
ductornanostructures@6,7#, as well asnumerically@8#.

Surprisingly, for thecosinebilliard @9,10#, a systemwith a
mixed phasespaceandpower-law distributedclassicaltrap-
ping times, a recentnumericalstudy did not show fractal
conductancefluctuations@11#. Instead,sharpisolatedreso-
nanceswerefoundwith a width distributioncoveringseveral
ordersof magnitude.Only aboutone-thirdof them can be
relatedto quantumtunnelinginto the islandsof regularmo-
tion @12#, while the rest remainedunexplained.It was later
shown that conductancefluctuations for mixed systems
should in generalshow fractal fluctuationson large scales
and isolatedresonanceson smallerscales@13#. The isolated
resonancesin the scatteringsystemwere conjecturedto be
related to a subset of eigenstatesof the closed system,
namely, hierarchicalstates@14# concentratingin the chaotic
componentclose to the regular regions and regular states
concentratingwithin the islandsof regularmotion @12#. This
typeof behaviorwasobtainedfor a quantumgraphthatmod-
eledrelevantfeaturesof a mixed phasespace@13#.

Thepurposeof thepresentpaperis to establishtheorigin
of all isolatedresonancesfor a systemwith a mixed phase
space.To this end,we study the cosinebilliard for suitable
parametersin a threefold way: ~i! as a quantumscattering

system,~ii ! asa closedquantumsystem,and~iii ! its classical
phase-spacestructures.We find that the resonanceshave
scatteringstatesandcorrespondingeigenstatesof the closed
systemthat are concentratedin the hierarchicaland regular
partsof phasespace.Thenumberof resonancesof eachtype
is directly relatedto the correspondingvolumesin the clas-
sical phasespace.Each resonancewidth is quite well de-
scribedby thestrengthof thecorrespondingeigenfunctionat
thebilliard boundary. Exceptionsareshownto arisefrom the
presenceof avoided crossingsin the closed system.It is
demonstratedthat the simultaneousappearanceof fractal
conductancefluctuations and isolated resonances,as ob-
servedin a quantumgraphmodel@13#, would for our system
with a mixed phasespacerequire much higher energies.
Thesearecurrentlycomputationallyinaccessible.

In the following section,we definethe model we useto
studythe relationbetweenthe scatteringresonancesandthe
eigenstatesof the correspondingclosedsystem.Our main
resultsfor the classificationof resonantscatteringstatesand
correspondingeigenstatesof the closedsysteminto hierar-
chicalandregulararepresentedin Secs.III andIV. The role
of partial transportbarriersis analyzedin Sec.V. In Sec.VI
we discusstheeffect of avoidedcrossingson theassignment
of resonancesof theopenbilliard to eigenstatesof theclosed
systemandSec.VII givesa summaryof the results.Finally,
the Appendix containssomedetailsof the numericalmeth-
odsemployedin the presentwork.

II. THE MODEL

We study the cosinebilliard @9,10#, eitherclosedor with
semi-infinite leadsattached.The boundariesof the billiard
are hard walls ~i.e., Dirichlet boundaryconditions! at y50
and

y~x!5W1

M

2 F12cosS 2px

L D G ~1!

for 0<x<L @seeFig. 1~a!#. In the openbilliard two semi-
infinite leadsof width W are attachedat the openingsat x
50 andx5L, while in the closedbilliard the openingsare
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closedby hardwalls.Theclassicalphase-spacestructurecan
be changedby varying the ratios W/L and M /L. For M /L
50 the dynamicsis integrableand, for example,for M /L
51/2 and W/L51 the dynamicsappearsto be ergodic ~at
leasttheislandsof regularmotion,if any, arevery small! @9#.

In the presentwork, we use the sameparametersas in
Ref. @11#, namely, W/L50.18andM /L50.11,for which the
I- andM-shapedorbits depictedin Fig. 1~a! arestable.The
correspondingPoincare´ sectionis shownin Fig. 1~b!. We use
Poincare´-Birkhoff coordinates(s,p), wheres is thearclength
along the upper boundary of the billiard with length L8

'1.029L andp is theprojectionof theunit momentumvec-
tor after reflectionon the tangentat the point s.

Quantummechanically, for a given wave numberkF the
numberN of transmittingmodesin a leadof width W is the
largest integer with N<kFW/p. We measureenergies in

units of the energy E05\2p2/(2mW2) of the lowest mode
in sucha lead,i.e., E5\2kF

2 /(2mE0)5(kFW/p)2>N2. The
larger the numberN of modesis, the more details of the
classicalphasespacecanberesolvedby quantummechanics.
At the sametime the computationaleffort increasesas N4

and we compromise,as in Ref. @11#, on the caseof N545
transmittingmodesin the energy rangeEP@2026,2100#.

III. RESONANCESAND SCATTERING STATES

Resonancesin thescatteringsystem,which have beenob-
servedas isolatedfeaturesin conductancefluctuations@11#,
were identified by isolatedpeaksin the Wigner-Smith time
delayt of the system.The time delay is given by

t5

2 i\

2N
Tr~S†dS/dE!, ~2!

where2N is the dimensionof the S matrix. The calculation
of Sandt wasalreadyoutlinedin Ref. @11# andis presented
in greaterdetail in theAppendix.

In Fig. 2 we showtheWigner-Smithtime delayt @in units
of \/E052mW2/(\p2)# for EP@2026,2100#. The isolated
resonancesfound in Ref. @11# areclearlyseen.Eachisolated
resonanceEres,i hasa Breit-Wigner shape

t i~E!5t i

G i
2/4

~E2Eres,i !
2
1G i

2/4
, ~3!

with t iG i52/N. Note that theheightst i andthecorrespond-
ing widths G i of the individual resonancescoverseveralor-
ders ofmagnitude.

In order to elucidatethe nature of the resonances,we
calculatedthescatteringstatesinsidetheopenbilliard. For a
givenconfigurationof wavesincomingin both leads,knowl-
edgeof theSmatrix allowsthedeterminationof theoutgoing
wavesandhencethe wavefunction amplitudesat the open-
ings of the billiard. Since the S matrix is definedbetween
asymptotic,propagatingmodes,this procedureneglectsthe
contributionof evanescentmodesin the leadsin the vicinity
of thebilliard. Thewavefunctionamplitudesat theopenings
can thenbe usedasboundaryconditionsfor the solutionof
the Schrödinger equation inside the billiard. For the ex-
amplesof scatteringstatespresentedbelow, we occupiedthe

FIG. 1. ~a! The cosinebilliard with semi-infinite leads ~short
dashedlines! and hard walls for closing the system~dotted lines!
for W/L50.18 and M /L50.11. Also shown are the two most
prominentstableperiodicorbits for theseparameters~long dashed
lines!. ~b! Poincare´ sectionof someregularand onechaoticorbit for
the above parametersin Poincare´-Birkhoff coordinates p vs
arclengths alongtheupperboundaryof thebilliard. A major island
at (s,p)5(L8/2,0) around the elliptic I-shaped orbit and four
smallerislandssurroundingthe M-shapedorbit canbe seen.

FIG. 2. Wigner-Smith delaytime t vs energy
E. For eachresonancea correspondingeigenstate
of the closedsystemwas found and the labels
indicatewhetherit is concentratedin the regular
~r! or hierarchical~h! regionof phasespace.
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ten topmostmodesincomingfrom the left with equalampli-
tudes. Similar pictures were obtained for other boundary
conditions.

For the comparisonof the scatteringstateswith the clas-
sical phase-spacestructureswe havecalculatedHusimi pro-
jectionsHsc(s,p). Similar to thecaseof closedbilliards ~see
Sec.IV !, we definetheseby the projectionof the scattering
state onto a coherentstate on the upper boundaryof the
billiard,

Hsc~s,p!5 z^]ncufg
coherent~s,p!& z2 ~4!

5UE
0

L8
ds8]nc* ~s8!eikp(s82s)2(1/2)k(s82s)2U2

,

~5!

with k5AEp/W. Here]nc(s)5n(s)•¹c„q(s)… is the nor-
mal derivativeof the scatteringstateon the upperboundary.
n(s) is the normal vector and q(s) is the position of the
boundaryasa functionof arclengths. NotethattheseHusimi
projectionsare not normalizedand are influencedby the
openingsover a rangeof a few Fermi wavelengths.Also,

they do not include the full billiard boundaryand therefore
no periodizationof the coherentstatehasbeenused.

As a first example,we presentin Fig. 3 on the left the
scatteringstateat an energy of approximately2029.172,the
centerenergy of thesharpestobservedresonance.Obviously,
the scatteringstateis associatedwith the I-shapedperiodic
orbit. The wavefunction amplitudeis concentratednearthe
orbit and the Husimi projectionconcentratespredominantly
inside the centralstableisland of the classicalphasespace.
For comparison,we presentin Fig. 3 on the right the scat-
tering stateat energy 2041.109.The width of the resonance
at this energy is about63107 timeslarger thanthe width of
the sharpestresonance.Evidently, this resonanceis not re-
lated to the stable islands in phasespace.In contrast,by
comparing with the superimposedKolmogorov-Arnold-
Moser~KAM ! tori of thePoincare´ sectionanda partialtrans-
port barriersurroundingtheislandhierarchy~seeSec.V!, we
seethat the Husimi projectionis concentratedin the hierar-
chical regionbetweenthe islandsanda partial transportbar-
rier.

As scatteringstatesallow a greatvariability in thebound-
ary conditions,e.g.,theincomingmodes,we do not usethem
for a detailedanalysisof the isolatedresonances.Insteadwe

FIG. 3. Resonantscatteringstates~top row! and Husimi projections~bottom row! onto the classicalPoincare´ sectionwith KAM tori
~solid lines! anda partial transportbarrier~dashedline!. Two examplesat resonanceenergies2029.172~left! and2041.109~right! areshown.
They areconcentratedin the regularandthe hierarchicalregionof phasespace,respectively. For the representationof the scatteringstates
a superpositionwith equalweight’s of the tentopmostmodesincomingfrom the left is shown.

FIG. 4. Eigenfunctions ~top
row! and Husimi representations
~bottom row! of a regular state
(56862, left! and a hierarchical
state(57202, right! corresponding
to the scatteringstatesof Fig. 3.
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considerthe correspondingeigenstatesof the closedsystem
in the next section.

IV. RESONANCESAND CORRESPONDING EIGENSTATES

In this sectionwe want to demonstratethat the isolated
resonancesof the conductancefluctuationsandtheir scatter-
ing stateshavecorrespondingeigenstatesof the closedbil-
liard. In particular, we will showthatall theseeigenstatesare
concentratedin the hierarchicaland regular part of phase
space,aswasconjecturedin Ref. @13#. This allowsa labeling
of all isolatedresonancesappearingin Fig. 2.

For the closedsystemthe eigenvaluesandeigenfunctions
arecomputedusingthe boundaryelementmethod;see,e.g.,
@15# andreferencestherein.Sincethe cosinebilliard is sym-
metric with respectto the axis x5L/2, the eigenstateshave
definite parity P51,2. The actual calculationsare per-
formed for the desymmetrizedbilliard with either Dirichlet
or Neumannboundary conditions on the symmetry axis
yielding the antisymmetric(P52) and symmetric (P5

1) states,respectively. We label the nth eigenstateof parity
P by nP. Themeanlevel spacingD is determinedby thearea
A5L(W1M /2) of the billiard using Weyl’s formula D/E0
5(4p\2/2mA)/E050.176.

We presentin Fig. 4 the two eigenstatescorrespondingto
thescatteringstatesshownin Fig. 3. For eachstate,we show
the eigenfunctiondensity ucn(q)u2 and the corresponding
Husimi representationHn(s,p) ~see,e.g.,@16,17#!. Thestate
56862, displayedon the left of Fig. 4, differs in energy by
about0.01D from the sharpestobservedresonancewith en-
ergy 2029.172.Note that this energy differenceis of the
order of the accuracyto which our resonanceenergies and
eigenvaluesarecalculated.On the right handsideof Fig. 4,
a hierarchicalstateis displayed.Its energy differs from the
resonanceat energy 2041.109by about0.1D. This shift of
theresonanceenergy from theeigenenergy of theclosedsys-
tem is due to the openingof the systemby attachingthe
leads.As for the scatteringstates,we have superimposed
someKAM tori ontotheHusimi representationsof Fig. 4. In
addition, a partial transportbarrier surroundingthe island
hierarchyis shown~seenext section!.

Now we want to associateall resonancesof thescattering

systemwith width G at energy Eres with aneigenstateof the
closedbilliard with energy Eev. We usea Husimi represen-
tation Hn(s,p) on the Poincare´ sectionto determinethe re-
gion in which aneigenstatelocalizes.We introducethequan-
tity

hn5E
2W

0

dsE
21

1

dpHn~s,p!, ~6!

which integratestheHusimi distributionover the left bound-
ary of the billiard ~not shownin Fig. 4! with the normaliza-
tion of the Husimi distribution chosen such that

*
2W
L8/2ds*

21
1 dpHn(s,p)51. This quantity gives an estimate

of how strongly a stateof the closedsystemwill coupleto
the leads in the scatteringsystemand should be roughly
proportionalto G. This allowedus to find, for eachof the54
resonanceswith G<D/2, a statewith Eev'Eres and with h
'G. Figures5 and6 showthe differenceEev2Eres in units
of themeanlevel spacingD andtheapproximateproportion-
ality of h andG, respectively. Clearly, largerdifferencesap-
pearfor bigger G, but still a clear identificationis possible
~see Sec. VI !. This assignmentalso works the other way
around,as of the 46 eigenstateswith the smallestvaluesof
h, we canidentify 40 with isolatedresonances,missingonly
the six regulareigenstatesquantizedmostdeeplyin the cen-
tral islandof phasespace,asdiscussedbelow.

For the54 resonanceswith width G lessthanhalf a mean
level spacing,we analyzethe structureof the corresponding
eigenstates.We find that17statescanbecategorizedasregu-
lar states,as their Husimi representationsare concentrated
insidethe five major stableislandsin phasespace.Of these
states,sevenare associatedwith the I-shapedorbit and ten
with the M-shapedorbit. While we observeall statesin the
energy interval associatedwith the M-shapedorbit, six fur-
ther eigenstatesareconcentratednearthe centerof the cen-
tral stability islandarenot resolvedas resonances.As these
are the innermoststatesin the island, we expect them to
couplemoreweakly to the leadsandtheir resonancewidths
to be much smaller than the sharpestobservedresonance.

FIG. 5. Dif ferenceof eigenstateenergy Eev and resonanceen-
ergy Eres in units of the meanlevel spacingD vs G/D. The devia-
tions increasewith G. FIG. 6. The strengthh of an eigenstateat the left boundaryvs

theresonancewidth G of thecorrespondingresonance.An approxi-
mateproportionalitycanbe seen.
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Apparently, theseresonancesaresonarrowthatwe werenot
ableto find them,givenour currentnumericalaccuracy, even
knowing their approximateenergy from the eigenvalues.

The remaining37 resonancesare not relatedto regular
states,but the Husimi representationsof their corresponding
eigenstateshave large intensity in the region betweenthe
regular islandsand the partial transportbarrier and a much
weakerintensityin therestof thechaoticregion.It shouldbe
notedthatin thestudiedenergy rangeaccessibleto our meth-
ods the wavelengthis of the order of the distancebetween
regularislandsandthepartial transportbarrier. Thereforethe
eigenstateslook either like regularstatesconcentratedout-
side the island @18# or similar to scarredstateson a hyper-
bolic orbit closeto the island @19#. For higherenergies they
would show the true propertiesof hierarchicalstates,i.e.,
similar to a chaotic state,but restrictedto the hierarchical
region@14#. We thereforeclassifythesestatesashierarchical
states.

In Fig. 2 we havelabeledthe resonancesby r and h ac-
cordingto our classificationof thecorrespondingeigenstates
as regularand hierarchical,respectively. This demonstrates
that the origin of all isolatedresonancesis hierarchicalor
regulareigenstatesof the closedsystem.

V. PARTIAL TRANSPORT BARRIERS

Classicaltransportin the chaotic part of phasespaceis
dominatedby partial barriers@20–24#. They are formed by
cantori as well as by stableandunstablemanifolds.Sucha
partial transportbarrier coincideswith its iterate, with the
exceptionof so-calledturnstileswherephase-spacevolume
is exchangedbetweenboth sidesof the partial barrier. We
haveconstructedpartialbarriersusingthemethodsdescribed
in Ref. @20#. The fluxesF aredeterminedfrom the length l
of the maximizingandminimax orbits, accordingto

F5\kFu l maximizing2 l minimaxu ~7!

5\pAEu l maximizing2 l minimaxu/W. ~8!

Quantum mechanically, partial transport barriers with
fluxes up to the orderof \ divide the chaoticpart of phase
space into distinct regions with chaotic and hierarchical
eigenfunctionsare concentratedmainly on one or the other
side@14#. We foundthat thepartialbarrierwith smallestflux
that surroundsthe main island and the four neighboringis-
landscanbe constructedfrom the stableandunstablemani-
folds of theperiod-4hyperbolicfixed points.Eachof its two
turnstileshasfor our largestenergy E52100 a flux 1.06\.
Further outside are many other partial barriers with only
slightly biggerfluxes.As anexample,we showin Figs.3 and
4 the partial barrier constructedfrom an unstableperiodic
orbit with winding number5/23,which is anapproximantof
the mostnoble irrational betweenwinding numbers1/4 and
1/5. It hasa flux 1.65\.

A checkon thevalidity of our identificationof regularand
hierarchicalstatesis providedby a comparisonof their num-
bersto thecorrespondingrelativevolumesin phasespace.To
this end,we calculatethe volumeof the tori associatedwith
stableperiodic orbits, Vr , and the chaoticphase-spacevol-

umeinsidethe partial transportbarrier, Vh . We find Vr and
Vh to cover5.9%and8.5%of theenergy shell, respectively.
From the total numberof eigenstatesin the energy interval,
N5426, we get for 23 ~1716! regularand 37 hierarchical
statesrelative fractions of 5.4% and 8.7%, respectively, in
good agreementwith the volumesof the associatedregions
in phasespace.

The absenceof fractal conductancefluctuationsin this
systemnow hasa clearexplanation.According to Ref. @13#
for fractal fluctuationsto occur a hierarchyof partial trans-
port barrierswith fluxes larger than \ must exist. For the
energiesstudiedwe find that eventhe outermostpartial bar-
rierssurroundingthehierarchicalphase-spacestructurehave
fluxes of the order of \. This causesa quantumdynamical
decouplingof the chaoticpart connectedto the leadsfrom
the entirehierarchicalpart.As the hierarchicalregion is the
semiclassicalorigin of fractal fluctuations,they are not ob-
served.For muchhigherenergiesonly, the hierarchyof par-
tial transportbarrierswould have anouterregionwith fluxes
larger than \, leading to fractal conductancefluctuations.
The inner regionof this hierarchywith fluxessmallerthan\
hasnow a smallerphase-spacevolume.Still, togetherwith
the regular regions it will cause isolated resonanceson
smaller scalesthan the fractal fluctuations.Unfortunately,
this energy regimeis currentlycomputationallyinaccessible
for the studiedsystem.

Powerlaws in thedistributionof resonancewidthsandin
thevarianceof conductanceincrementshadbeenobservedin
Ref. @11#, apparently reflectingthe classicaldwell time ex-
ponent.Theywererelatedto the resonancesbelow themean
level spacing.For theseresonanceswe have now demon-
stratedthat they arisedue to hierarchicalandregularstates.
This allowsus to apply theargumentsof Ref. @13# aboutthe
resonancewidth distributionof hierarchicalstates.They lead
to the conclusionthat theseapparentpowerlaws comefrom
broadtransitionregionsto asymptoticdistributionsthat are
unrelatedto the classicaldwell time exponent.

VI. AVOIDED CROSSINGS

While for mostresonancesandcorrespondingeigenstates
the parametersh andG areof the sameorderof magnitude,
for somestatesh exceedsG by up to two ordersof magni-
tude. This phenomenoncan be understoodas an effect of
avoidedlevel crossingsin theclosedsystem.In Fig. 7~a! we
showasan examplethe dependenceof the energy of states
57362 and57372 asa functionof theparameterM /L for the
narrowrange0.10999<M /L<0.11001,displayingthetypi-
cal featuresof an avoided crossing.A comparisonof the
associatedHusimi representationsshows that the states
57362 and 57372 do indeedexchangetheir characterfrom
chaoticto regularand from regularto chaotic,respectively,
showing a superpositionat M /L50.11. Upon openingthe
system,the chaoticstatecouplesmuchmorestrongly to the
leadsas comparedto the regularone. Consequently, in the
complex energy plane of the scatteringsystemthere is no
longer an avoided crossing.The regular state leads to an
isolatedresonancewith an almostlinear energy dependence
on M /L and the phase-spacesignatureof the regular state
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@middle row in Fig. 7~b!#. It closely follows the expected
energy dependenceof theregularstatein theclosedsystemif
it had not madean avoidedcrossingwith the chaoticstate
@Fig. 7~a!#.

Anotherexampleof anavoidedcrossingis givenby state
58012 with aneigenvalueabout0.5D lessthantheresonance
position ~seethe lower right cornerof Fig. 5! and the state
58022, with aneigenenergy about1.4D abovetheresonance
energy. Both statesshowsimilar Husimi representationsand
haveh valuesexceedingG by abouta factor of 10.

In all thecaseswhenh drasticallyexceedsG acloserlook
at theseeigenstatesrevealsthat they are superpositionsof
regular or hierarchicalstateswith chaotic states.They are
dueto avoidedcrossingsandthechaoticpart leadsto a com-
parativelylarge value of h. In contrast,in the opensystem
no avoidedcrossingoccursin thecomplexenergy planeand
the resonancewidth G is unaffected.

VII. CONCLUSION AND OUTLOOK

We demonstratea clear correspondenceof the isolated
resonancesobservedin the transportpropertiesof the open
cosinebilliard to hierarchicaland regulareigenstatesof the
closedbilliard. We can identify all resonanceswith widths
lessthanhalf of themeanlevel spacing.Theclassificationof
resonancesinto a hierarchicalor regularorigin yields num-
bersin agreementwith therelativephase-spacevolumes.On
a quantitativelevel,we find a roughlylinearrelationbetween
the widths of the isolatedresonancesandthe weightsof the
associatedeigenstatesat the part of the boundarywherethe
leadsareattached.Stateswith unusuallylargeweightscanbe
attributedto avoidedcrossingswith chaoticeigenstates.

We find that the island hierarchy is separatedfrom the
chaoticpart of phasespaceby partial transportbarrierswith
fluxes of the order of \. This supportsthe notion that the
absenceof fractal conductancefluctuationsin the currently
accessibleenergy range is due to the quantumdynamical
decouplingof the hierarchicalpart of phasespacefrom the
chaoticpart connectedto the externalleads.

The simultaneousappearanceof isolatedresonancesand
fractalfluctuations,beyondthequantumgraphmodelstudied
in Ref. @13#, remainsto be demonstratednumericallyor ex-
perimentallyfor a systemwith a mixedphasespace.Numeri-
cally, the challengeis the observationof fractal fluctuations
of theconductance,which go beyondoneorderof magnitude
@25#. This requirescalculationswith a drastically increased
numberof modes,the useof improved techniqueslike the
modular recursiveGreen’s function method @26#, and the
searchfor suitablebilliard systemswherethe turnstilefluxes
acrosspartial barriersare particularly large. Isolated reso-
nanceswill easilyappearassoonasthe parameteris varied
on a sufficientlysmall scale.We notethatfluctuationsof the
quantumstayingprobability, which canbefractal @8#, cannot
show isolatedresonances.Similarly, we expectno appear-
ance of isolated resonanceswithin the fractal fluctuations
observedin recentstudies@27#, as they are unrelatedto a
classicalmixed phasespace.

On theexperimentalside,fractalconductancefluctuations
have beenobserved@6,7# andalso isolatedresonancescom-
ing from regular regionshave recently beenreported@28#.
The simultaneousappearanceof both types including iso-
latedresonancesfrom hierarchicalregionsrequiresoneto go
far enoughinto the semiclassicalregime, i.e., to quantum
dots with dimensionsbigger than 1 mm, as in Ref. @6#. At
the same time the phase coherencetime must be large
enoughto resolveisolatedresonancesof a given width and,
of course,the parameter, typically a magneticfield, mustbe
varied on a sufficiently fine scale.Given the experimental
limitations it would be helpful if an optimal form for sucha
quantumdot couldbeprovidedby theoreticalconsiderations.
This seemsto be quite difficult at present,sincethe differ-
encein the lithographicshapeandthe actualpotentialexpe-
riencedby electronshasdramaticconsequenceson the elec-
tron dynamicsand thus on the scalesover which fractal
fluctuationsandisolatedresonancesappear.
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FIG. 7. ~a! Energies of states57362 and 57372 ~solid lines!
showinganavoidedcrossingundervariationof M /L. Theenergy of
theonly isolatedresonancein this energy range~dotsconnectedby
a dashedline! follows the regularstateof the closedsystem.The
slight offset in the resonanceenergy is within the systematicnu-
mericalerror of the numericalmethod.~b! The Husimi representa-
tions for state57372 ~top row!, the scatteringstate~middle row!,
and eigenstate 57362 ~bottom row! are shown for M /L
50.10999,0.11,0.11001~left to right!. For the eigenstatesone
clearly seesthe typical exchangeof the structurewhile passingthe
avoidedcrossing,whereasthe scatteringstateis not affected.
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APPENDIX: HYBRID REPRESENTATION AND
RECURSIVE GREEN’S FUNCTION METHOD

In this appendixwe discussthe numericalmethodto de-
terminethe scatteringmatrix S and the time delayt. The S
matrix of a symmetricscatteringsystemcanbe expressedin
termsof the Green’s function G:

S5S r t 8

t r 8
D , ~A1!

t85tT, ~A2!

r 85r , ~A3!

tab52 i\AvavbGab~0,L !, ~A4!

r ab5dab2 iAvavbGab~0,0!, ~A5!

where

va5F 2

m S E2

\2

2mW2
a2p2D G 1/2

~A6!

is the velocity of modea and

Gab~x,x8!5E
x
dyE

x8
dy8fa* ~y;x!fb~y8;x8!

3G1~r ,r 8;E! ~A7!

is the projection of the retarded Green’s function
G1(r ,r 8;E) onto the local transversemodes

fa~y;x!5A 2

W~x!
sinS apy

W~x!
D . ~A8!

The Green’s function canbe calculatedrecursively. Expand-
ing the Hamiltonian

H5

\2

2m S ]2

]x2
1

]2

]y2D ~A9!

in termsof the local transversemodes~A8! anddiscretizing
in thex directionwith a latticeconstanta, x5ma, we obtain
the Hamiltonianin hybrid representation@29#

Hh5(
a,m

ua,m&~em
a

12Et!^a,mu2 (
a,b,m

~ tm,m11
ab ua,m&

3^b,m11u1tm11,m
ab ua,m11&^b,mu!, ~A10!

with

em
a

5S a
a

W~ma!
D 2

,

tm,m11
ab

5EtE fa* ~y;ma!fb„y;~m11!a…dy, ~A11!

and Et5\2/(2ma2). In order to recursively calculatethe
Green’s function associatedwith Hh , we split the Hamil-
tonian Hh

M11 of a systemwith m51, . . . ,M11 into two
parts,

Hh
M11

5H01U, ~A12!

H05Hh
M

1(
a

ua,M11&~eM11
a

12Et!^a,M11u,

~A13!

U52(
a,b

~ tM ,M11
ab ua,M &^b,M11u

1tM11,M
ab ua,M11&^b,M u!. ~A14!

Dyson’s equation,

GM11
5G01G0UGM11, ~A15!

then allows us to calculatethe Green’s function GM11 of
Hh

M11 from GM and

G05~E2H0!21
5GM

1(
a

ua,M11&g0
M11^a,M11u,

~A16!

g0
M11

5~E2eM11
a

22Et!
21.

We start the recursionwith M51 at the left edgeof the
closedbilliard anditerateto the right edgeat M5NL5L/a.
In order to attachthe leads,we againsplit the Hamiltonian
accordingto Eq. ~A12!, but this time H0 containstheHamil-
tonianof theclosedbilliard andthesemi-infiniteleads.In the
leads,em

a
5(aa/W)2 and tm,m11

ab
5dabEt . U is the coupling

betweenthe billiard andthe semi-infiniteleads.The Green’s
function for the leadsis known analytically @30#.

The recursionschemeis exactfor an infinite numberNL
of slicesandan infinite numberNC of transversemodes.For
numericalcalculations,both numbershaveto be kept finite.
We find that the deviationsfrom the asymptoticvaluesfor,
e.g.,the width G of a resonancescaleas

G~NC ,NL!5G1bNC
24

1cNL
22 , ~A17!

with positivenumericalcoefficientsb andc. For our choice
of parameters,N545 transmittingmodesin the leads,the
valuesNC5108 andNL512000 give an accuracyof about
1% for the resonancewidth. The correctionsto the position
of the resonancehave the samefunctional form as in Eq.
~A17!; however, they canbe eitherpositiveor negative,de-
pendingon thevaluesof NC andNL . This explainstheslight
offset of the resonanceenergieswith respectto the eigenen-
ergiesof the closedsystemseenin Fig. 7~a!.
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[A4] Numerical aspects of eigenvalues and eigenfunctions of chaotic quan-

tum systems

A. Bäcker

in: The Mathematical Aspects of Quantum Chaos I, M. Degli Esposti and S.

Graffi (Eds.), Springer Lecture Notes in Physics 618, 99–144 (2003).

We give an introduction to some of the numerical aspects in quantum chaos.

The classical dynamics of two–dimensional area–preserving maps on the

torus is illustrated using the standard map and a perturbed cat map. The

quantization of area–preserving maps given by their generating function is

discussed and for the computation of the eigenvalues a computer program in

Python is presented. We illustrate the eigenvalue distribution for two types

of perturbed cat maps, one leading to COE and the other to CUE statis-

tics. For the eigenfunctions of quantum maps we study the distribution of

the eigenvectors and compare them with the corresponding random matrix

distributions. The Husimi representation allows for a direct comparison of

the localization of the eigenstates in phase space with the corresponding

classical structures. Examples for a perturbed cat map and the standard

map with different parameters are shown. Billiard systems and the corre-

sponding quantum billiards are another important class of systems (which

are also relevant to applications, for example in mesoscopic physics). We

provide a detailed exposition of the boundary integral method, which is one

important method to determine the eigenvalues and eigenfunctions of the

Helmholtz equation. We discuss several methods to determine the eigenval-

ues from the Fredholm equation and illustrate them for the stadium billiard.

The occurrence of spurious solutions is discussed in detail and illustrated for

the circular billiard, the stadium billiard, and the annular sector billiard.

We emphasize the role of the normal derivative function to compute the

normalization of eigenfunctions, momentum representations or autocorre-

lation functions in a very efficient and direct way. Some examples for these

quantities are given and discussed.
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Summary. We give an introduction to some of the numerical aspects in quantum
chaos. The classical dynamics of two–dimensional area–preserving maps on the
torus is illustrated using the standard map and a perturbed cat map. The quanti-
zation of area–preserving maps given by their generating function is discussed and
for the computation of the eigenvalues a computer program in Python is presented.
We illustrate the eigenvalue distribution for two types of perturbed cat maps, one
leading to COE and the other to CUE statistics. For the eigenfunctions of quan-
tum maps we study the distribution of the eigenvectors and compare them with
the corresponding random matrix distributions. The Husimi representation allows
for a direct comparison of the localization of the eigenstates in phase space with
the corresponding classical structures. Examples for a perturbed cat map and the
standard map with different parameters are shown.

Billiard systems and the corresponding quantum billiards are another important
class of systems (which are also relevant to applications, for example in mesoscopic
physics). We provide a detailed exposition of the boundary integral method, which
is one important method to determine the eigenvalues and eigenfunctions of the
Helmholtz equation. We discuss several methods to determine the eigenvalues from
the Fredholm equation and illustrate them for the stadium billiard. The occurrence
of spurious solutions is discussed in detail and illustrated for the circular billiard,
the stadium billiard, and the annular sector billiard.

We emphasize the role of the normal derivative function to compute the normal-
ization of eigenfunctions, momentum representations or autocorrelation functions
in a very efficient and direct way. Some examples for these quantities are given and
discussed.

1 Introduction

In this text, which is an expanded version of lectures held at a summer school
in Bologna in 2001, we give an introduction to some of the numerical aspects
in quantum chaos; some of the sections on the boundary integral method
contain more advanced material. In quantum chaos one studies quantum sys-
tems whose classical limit is (in some sense) chaotic. In this subject computer
experiments play an important role. For integrable systems the eigenvalues
and eigenfunctions can be determined either explicitly or as solutions of sim-
ple equations. In contrast, for chaotic systems there are no explicit formulae

Mirko Degli Esposti, Sandro Graffi (Eds.): LNP 618, pp. 91–144, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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for eigenvalues and eigenfunctions such that numerical methods have to be
used. In many cases numerical observations have lead to the formulation of
important conjectures. Such numerical computations also allow us to test
analytical results which have been derived under certain assumptions or by
using approximations.

An important class of systems for the study of classical chaos are area–
preserving maps as several types of different dynamical behaviour like inte-
grable motion, mixed dynamics, ergodicity, mixing or Anosov systems can
be found. We discuss the numerics for the corresponding quantum maps and
illustrate some of the methods and results using the standard map and the
perturbed cat map as prominent examples.

Another important class of systems are classical billiards and the cor-
responding quantum billiards. In Sect. 3 we discuss in detail the boundary
integral method, which is one of the main methods for the solution of the
Helmholtz equation, which is the time–independent Schrödinger equation for
these systems.

2 Area Preserving Maps

2.1 Some Examples

We will restrict ourselves to area-preserving maps on the two-torus

P : T
2 → T

2 (1)

(q, p) �→ (q′, p′) , (2)

where T
2 ≃ R

2/Z2, i.e. the map is defined on a square with opposite sides
identified. The requirement that the map P is area–preserving is equivalent
to the condition that detDP = 1, where DP is the linearization of the map
P . The natural invariant measure on T

2 is the Lebesgue measure dµ = dqdp.
As a first example let us consider the so-called standard map, defined by

(
q′

p′

)
=

(
q + p− κ

2π sin(2πq)
p− κ

2π sin(2πq)

)
mod 1 . (3)

One easily checks that this map is area-preserving. Figure 1 shows some
orbits (i.e. for different initial points (q, p) the points (qn, pn) = Pn(q, p)
are plotted for n ≤ 1000) of the standard map for different parameters κ.
For κ = 0 an initial point (q, p) stays on the horizontal line and in q it
rotates with frequency p. So for irrational p the corresponding line is filled
densely. For κ > 0, the lines with rational p break up into an island-chain
structure composed of (initially) stable orbits and their corresponding unsta-
ble (hyperbolic) partner. For small enough perturbation there are invariant
(Kolmogorov–Arnold–Moser or short KAM) curves which are absolute barri-
ers to the motion (for a more detailed discussion of these aspects the review [1]
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κ = 0.5 κ = 1.0

κ = 1.5 κ = 3.0

Fig. 1. Examples of orbits in the standard map for different parameters κ.

is a good starting point). For stronger perturbations, e.g. κ = 1 or κ = 1.5,
the stochastic bands become larger and for even stronger perturbation (see
the picture for κ = 3.0) there appears to be just one quite big stochastic re-
gion together with the elliptic island. The elliptic islands coexist with regions
of irregular motion, therefore the standard map is an example of a so-called
system with mixed phase space or, more briefly, a mixed system. Whether
the motion in those stochastic regions is ergodic is one of the big unsolved
problems, see [2] for a review on the coexistence problem. For some recent
results on the classical dynamics of the standard map, in particular at large
parameters, see [3, 4, 5].

An alternative way to specify a map P : T
2 → T

2 is to use a generating
function S(q′, q), from which the map is obtained by

p = −∂S(q′, q)

∂q
p′ =

∂S(q′, q)

∂q′
. (4)
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One easily checks that

S(q′, q) =
1

2
(q − q′)2 +

κ

4π2
cos(2πq) , (5)

is a generating function for the standard map (3).
Another important class are perturbed cat maps [6, 7], like

(
q′

p′

)
= A

(
q
p

)
+ κG(q)

(
A12
A22

)
mod 1 , (6)

where

A =

(
A11 A12
A21 A22

)
(7)

is a matrix with integer entries (ensuring the continuity of the map), detA = 1
(area preservation) and TrA > 2 (hyperbolicity). The perturbation G(q) is
a smooth periodic function on [0, 1[. For κ = 0 the mapping is Anosov (see
e.g. [8]), in particular it is ergodic and mixing. Moreover, following from the
the Anosov theorem the map (6) is structurally stable, i.e. it stays Anosov
as long

κ ≤ κmax :=

√
(TrA)2 − 4− TrA+ 2

2maxq|G′(q)|
√
1 +A222

; (8)

in particular the orbits are topologically conjugate to those of the unper-
turbed cat map. For larger parameters there are typically elliptic islands, so
it becomes a mixed system.

A common choice for A and the perturbation is
(
q′

p′

)
=

(
2 1
3 2

) (
q
p

)
+

κ

2π
cos(2πq)

(
1
2

)
mod 1 . (9)

For κ ≤ κmax = (
√
3− 1)/

√
5 = 0.33 . . . the map is Anosov. The correspond-

ing generating function is given by

S(q′, q) = q′2 − qq′ + q2 +
κ

4π2
sin(2πq) . (10)

In Fig. 2a) one orbit for 20 000 iterations for the perturbed cat map (9) with
κ = 0.3 is shown. The orbit appears to fill the torus in a uniform way, as
it has to be asymptotically for almost all initial conditions because of the
ergodicity of the map. For κ = 6.5 Fig. 2b) shows one orbit (20 000 iterates)
in the irregular component and some orbits (1000 iterations) in the elliptic
islands.

2.2 Quantization of Area-Preserving Maps

For the quantization of area–preserving maps exist several approaches, see for
example [9,10,11,12,13,6,14,15,16]; a detailed account can be found in [17],
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a) κ = 0.3 b) κ = 6.5

Fig. 2. Examples of orbits in the perturbed cat map (9) for κ = 0.3 and κ = 6.5.

and [18] provides a pedagogical introduction to the subject. First one has
to find a suitable Hilbert space which incorporates the topology of the torus
T
2, i.e. the eigenfunctions in position and momentum have to fulfil

ψ(q + j) = e
i

�
jθ2ψ(q) ; j ∈ N (11)

ψ̂(p+ k) = e− i

�
kθ1 ψ̂(p) ; k ∈ N . (12)

These conditions imply that Planck’s constant � can only take the values
� = 1

2πN with N ∈ N. Thus the semiclassical limit � → 0 corresponds to
N → ∞. The phases (θ1, θ2) ∈ [0, 1[2 are at first arbitrary; for θ1 = θ2 = 0
one obtains periodic boundary conditions. For each N one has a Hilbert
space HN of finite dimension N . Observables f ∈ C∞(T2) can be quantized
analogous to the Weyl quantization to give an operator Op(f) onHN . Finally,
a quantum map is a sequence of unitary operators UN , N ∈ N on a Hilbert
space HN . The quantum map is a quantization of a classical map P on T

2,
if the so–called Egorov property is fulfilled, i.e.

lim
N→∞

||U−1
N Op(f)UN −Op(f ◦ P )|| = 0 ∀f ∈ C∞(T2) . (13)

This means that semiclassically quantum time evolution and classical time
evolution commute.

So the aim is to find for a given classical map a corresponding sequence
of unitary operators. Unfortunately, this is not as straight forward as the
quantization of Hamiltonian systems and a lot of information on this can be
found in the above cited literature and references therein. One of the simplest
approaches to determine UN corresponding to a given area–preserving map
uses its generating function to define
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(UN )j′,j := 〈qj′ |UN |qj〉

=
1√
N

∣∣∣∣
∂2S(q̃′, q̃)

∂q̃′∂q̃

∣∣∣∣
1/2

q̃′=qj′ ,q̃=qj

exp (2πiNS (qj′ , qj))
(14)

with qj = j/N , qj′ = j′/N , where j, j′ = 0, 1, . . . , N − 1. In the same way
one may (and for certain maps which cannot represented in terms of S(q′, q)
one has to) use other generating functions such as S(p′, p) or S(q, p); usually
these will lead to different eigenvalues and eigenfunctions. The question is
to determine conditions on the generating function S(q′, q) such that UN is
unitary and fulfils the Egorov property (13). To my knowledge this question
has not yet been fully explored, even though the quantum maps studied in
the literature provide both examples and counterexamples. We will leave this
as an interesting open question.

For the examples introduced before the quantization via (14) can be used.
For the standard map we get

(UN )j′,j =
1√
N

exp

[
iπ

N
(j′ − j)2 +

iκN

2π
cos

(
2π

N
j

)]
(15)

with j, j′ = 0, . . . , N − 1. A quantization of the standard map which takes
the symmetries into account can be found in [19]. For the perturbed cat map
(9) one gets using its generating function (10)

(UN )j′,j =
1√
N

exp

(
2πi

N
(j′2 − j′j + j2) + iN

κ

2π
sin(2πj/N)

)
. (16)

For the unitary operator one has to solve the eigenvalue problem

UNψn = λnψn with n = 0, . . . , N − 1, ψn ∈ C
N . (17)

Here λn is the n–th eigenvalue and the corresponding eigenvector ψn consists
of N complex components, where N is the size of the unitary matrix UN .
Because of the unitarity of UN the eigenvalues lie on the unit circle, i.e.
|λn| = 1.

Let us discuss some of the numerical aspects relevant for finding the so-
lutions of (17) without going into implementation specific details (see the
appendix and [20] for an implementation using Python).

Computing the eigenvalues of (17) consists of two main steps

– Setting up the matrix UN :
The computational effort increases proportional to N2 (unless each matrix
element requires further loops) as we have to fill the N2 matrix elements.
The memory requirement to store UN is 16N2 Bytes (for a IEEE-compliant
machine a double precision floating point number requires 8 Bytes; as we
have both real and imaginary part we end up with 16 Bytes per matrix
element).
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– Computing the eigenvalues:
The computational effort for the matrix diagonalization (typically) scales
like N3.
Usually one will use a black-box routine such as one from the NAG-library
[21] or from LAPACK [22]. To my knowledge there are no routines which
make use of the fact that the matrix UN is unitary so we may for example
use the NAG routine F02GBF or the LAPACK routine ZGEES (or the more
recent routine ZGEEV which is faster for larger matrices, e.g. N ≥ 500)
which compute all eigenvalues of a complex matrix.
For certain maps specific optimizations are possible, see e.g. [19] for the
standard map. For this type of mapping a different approach employing
a combination of fast Fourier transform and Lanczos method reduces the
computational effort to N2 lnN [23].

After successful compilation and running of the program it is useful to see
whether the eigenvalues really lie on the unit circle. In Fig. 3 this is illustrated
for N = 200 and the standard map with κ = 1.5. For small N the running
times of the program for setting up the matrix UN and its diagonalization is
just a matter of minutes. For example on an Intel Pentium III processor with
666 MHz one needs just 6 minutes to compute the eigenvalues of (17) when
N = 1000. However, for N = 3000 already 140 MB of RAM are required
to store UN and the computing time increases to 6 hours. Depending on

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

λn

Fig. 3. Plotting the eigenvalues of UN allows to check the numerical implementation
and the unitarity of UN ; the picture shows for N = 200 and κ = 1.5 the eigenvalues
λn for the quantized standard map (15).
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available memory, computing power, patience and motivation one may use
larger values of N .

Let us conclude this part with a more technical remark: In addition to
the choice of computer language, compiler, optimizations and algorithm there
is one very important component for achieving good performance when do-
ing numerical linear algebra computations: the BLAS (Basic Linear Alge-
bra Subprograms). Libraries such as LAPACK defer all the basics tasks like
adding vectors, vector–matrix or matrix–matrix multiplication to the BLAS
such that highly optimized (machine-specific) BLAS routines should be used.
Most hardware vendors provide these (of differing quality). Recently the soft-
ware system ATLAS (Automatically Tuned Linear Algebra Software) [24] has
been introduced which generates a machine dependent optimized BLAS li-
brary. For some computers ATLAS-based BLAS can be even faster than the
vendor supplied ones!

2.3 Eigenvalue Statistics

One central research line in quantum chaos is the investigation of spectral
statistics. It has been conjectured [25] that for generic chaotic systems the
eigenvalue statistics can be described by random matrix theory, whereas
generic integrable systems should follow Poissonian statistics [26]. To study
the eigenvalue statistics for quantum maps one considers the eigenphases
ϕn ∈ [0, 2π[, defined by λn = eiϕn (in the following we will also call ϕn levels
in analogy to the energy levels for the Schrödinger equation). The simplest
statistics is the nearest neighbour level spacing distribution P (s) which is the
distribution of the spacings

sn :=
N

2π
(ϕn+1 − ϕn) with n = 0, . . . , N − 1 and ϕN := ϕ0 .

The factor N
2π ensures that the average of all spacings sn is 1. To compute the

distribution practically one chooses a division of the interval [0, 10] (usually
this interval is sufficient, but more precisely the upper limit is determined by
the largest sn) into b bins and determines the fraction of spacings sn falling
into the corresponding bins. If N is too small it is better to consider instead
of P (s) the corresponding cumulative distribution

I(s) :=
#{n | sn ≤ s}

N
(18)

which avoids the binning and results in a smoother curve.
Fig. 4 shows for the perturbed cat map (9) with κ = 0.3 the level spac-

ing distribution P (s) and the cumulative level spacing distribution I(s) for
N = 3001. For this parameter value κ the map is still Anosov so one ex-
pects that the correlations of the eigenphases follow random matrix theory;
in particular because the perturbation should break up the number theoreti-
cal degeneracies which lead to non-generic spectral statistics for the cat maps
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Fig. 4. (a) Level spacing distribution P (s) and (b) cumulative level spacing distri-
bution I(s) for the perturbed cat map (9) with κ = 0.3 and N = 3001.
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at κ = 0 [27, 28]. In [29, 30] it is shown that for all perturbations which are
just a shear in position one of the symmetries of the cat map survives, so that
the statistics are expected to be described by the circular orthogonal ensem-
ble (COE). In the limit N → ∞ this is the same as the Gaussian orthogonal
ensemble (GOE). In Fig. 4 we show the Wigner distribution PWigner(s) which
is very close to the COE distribution,

PCOE(s) ≈ PWigner(s) =
π

2
s exp

(
−π

4
s2

)
. (19)

and for comparison the CUE distribution

PCUE(s) ≈
32

π2
s2 exp

(
− 4

π
s2

)
(20)

and the Poisson distribution (expected for generic integrable systems)

PPoisson(s) = e−s . (21)

The agreement with the expected COE distribution is very good.
A specific example, which breaks the above mentioned unitary symmetry

and thus leads to CUE statistics, uses two shears, one in position and one in
momentum [29], (

q′

p′

)
= (A ◦ Pq ◦ Pp)

(
q
p

)
, (22)

where

A =

(
12 7
41 24

)
(23)

and Pq(q, p) = (q + κqG(p), p), Pp(q, p) = (q, p + κpF (q)) with F (q) =
1
2π (sin(2πq) − sin(4πq)) and G(p) = 1

2π (sin(4πq) − sin(2πq)). For the cor-
responding quantum map with κp = κq = 0.012 and N = 3001 the level
spacing distribution is shown in Fig. 5. One observes very good agreement
with the CUE distribution.

2.4 Eigenfunctions

Another interesting question concerns the statistical behaviour of eigenfunc-
tions, and more specifically for quantum maps the eigenvector statistics and
the properties of phase space representations like the Husimi function.

Eigenvector Distributions

Consider an eigenvector ψ of a quantum map given by the N numbers cj ∈ C,
j = 0, ..., N −1. The distribution P (ψ) is given (similarly to the level spacing
distribution) by
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Fig. 5. (a) Level spacing distribution P (s) and (b) cumulative level spacing distri-
bution I(s) for the perturbed cat map (22) with κp = κq = 0.012 and N = 3001.
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1

N
#{a ≤ |cj |2 ≤ b} =

b∫

a

P (ψ)dψ . (24)

Let us first discuss the corresponding random matrix results (see e.g. [31,32]).
For the COE the eigenvectors can be chosen to be real and the coefficients
cj , j = 0, . . . , N − 1, only have to obey the normalization condition

N−1∑

j=0

c2j = 1 with cj ∈ R . (25)

Thus the joint probability for an eigenvector c = (c0, . . . , cN−1) ∈ R
N is

PCOEN (c) =
Γ (N/2)

πN/2
δ


1−

N−1∑

j=0

c2j


 , (26)

where the prefactor ensures normalization. So the probability of one compo-
nent to have a specific value y is given by integrating PCOEN (c) over all other
components,

PCOEN (y) =

∫
δ(y − c20)P

COE
N (c) dc0 · · ·dcN−1

=
1√
πy

Γ (N/2)

Γ ((N − 1)/2)
(1− y)(N−3)/2 .

(27)

The mean of PCOEN (y) is
∫ 1
0
yPCOEN (y) dy = 1/N . So using the rescaling

η = yN gives

PCOEN (η) =
1√
πNη

Γ (N/2)

Γ ((N − 1)/2)
(1− η/N)(N−3)/2 . (28)

In the limit of large N one gets the so-called Porter-Thomas distribution [33]

PCOEN (η) =
1√
2πη

exp(−η/2) , (29)

and the corresponding cumulative distribution I(y) =
y∫
0

P (y′) dy′ reads

I(η) = erf
(√

η/2
)

. (30)

Figure 6 shows an example for the eigenvector distribution of an eigenstate
of the perturbed cat map (9) with κ = 0.3 and N = 1597. There is good
agreement with the expected COE distribution, (29), shown as dashed line.

Finally, let us consider again the map (22) which shows CUE level statis-
tics. From this one would expect that also the eigenvector statistics follows
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Fig. 6. (a) Eigenvector distribution for the perturbed cat map (9) with N = 1597
and κ = 0.3. In comparison with the asymptotic COE distribution, (28), dashed
line. The inset shows the same curves in a log-normal plot. In (b) the cumulative
distribution is shown and in the inset a plot of the absolute value of the components
c
(n)
j , j = 0, . . . , N − 1 of the corresponding eigenvector ψn=20 is displayed.
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the CUE. Similar to the case of the COE one has the normalization condition

N−1∑

j=0

|cj |2 = 1 with cj ∈ C . (31)

Thus the joint probability for an eigenvector c = (c0, . . . , cN−1) ∈ C
N reads

PCUEN (c) =
Γ (N)

πN
δ


1−

N−1∑

j=0

|cj |2

 . (32)

The probability of one component to have a specific value y is given by
integrating PCUEN (c) over all other (complex) components,

PCUEN (y) =

∫
δ(y − |c0|2)PCOEN (c) d2c0 · · ·d2cN−1

= (N − 1)(1− y)N−2 .

(33)

Again as for the COE, the mean of PCUEN (y) is 1/N and the rescaling η := yN
leads to

PCUEN (η) =
N − 1

N

(
1− η

N

)N−2

(34)

which has mean 1. In the large N limit we have

PCUE(η) = exp(−η) . (35)

and the cumulative distribution simply is

ICUE(η) = 1− exp(−η) . (36)

Figure 7 shows P (η) for one eigenvector of the perturbed cat map (22). There
is good agreement with PCUE(η).

A different distribution is obtained for unperturbed cat maps: for certain
subsequences of prime numbers (which depend on the map) the distribution
of η = 1

2Reψ tends to the semicircle law,

P (ψ) =

{
2
π

√
1− η2 for η ≤ 1

0 for η > 1 ,
(37)

see [34] for details (see also [35]). In Fig. 8 we show an example of an eigenstate
with N = 1597 for the quantum map corresponding to the map (9) with
κ = 0. For this N the map fulfils the conditions of [34] and one observes
a nice semicircle distribution of the eigenvector. However, it seems that the
approach to the asymptotic distribution is slower than for the case of the
random matrix situations.
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Fig. 7. (a) Eigenvector distribution of an eigenvector for the perturbed cat map
(22) with N = 1597 and κp = κq = 0.012 is shown in comparison with the asymp-
totic CUE distribution, (35), dashed line. The inset shows the same curves in a
log-normal plot. In (b) the corresponding cumulative distributions are shown and

in the inset a plot of the absolute value of the components c
(n)
j , j = 0, . . . , N − 1 of

the corresponding eigenvector ψn=2 is displayed.
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Fig. 8. Eigenvector distribution of an eigenvector for the unperturbed (i.e. κ = 0)
cat map (9) with N = 1597. This is compared with the asymptotic semicircle law,
(37). The inset shows the corresponding eigenvector (compare with the eigenvectors
shown in the previous two figures).

Husimi Functions

A different representation of eigenstates is to consider a phase space represen-
tation, like for example the Husimi function, which allows for a more direct
comparison with the structures for the classical map. Without going into the
mathematical details, the Husimi representation is obtained by projecting
the eigenstate onto a coherent state centered in a point (q, p) ∈ T

2,

Hn(q, p) = |〈Cq,p|ψn〉|2 =

∣∣∣∣∣∣

N−1∑

j=0

〈Cq,p|qj〉〈qj |ψ〉

∣∣∣∣∣∣

2

=

∣∣∣∣∣∣

N−1∑

j=0

〈Cq,p|qj〉cj

∣∣∣∣∣∣

2

=

∣∣∣∣∣∣

N−1∑

j=0

(2N)1/4 exp
(
−πN(q2 − ipq)

)
(38)

exp(πN(−q2j + 2(q − ip)qj))ϑ3

(
iπN

(
qj −

iθ1
N

− q + ip

)∣∣∣∣ iN
)
cj

∣∣∣∣
2

.

Here qj = 1
N (θ2 + j), j = 0, . . . , N − 1 and ϑ3(Z|τ) is the Jacobi-Theta

function,

ϑ3(Z|τ) =
∑

n∈Z

eiπτn
2+2inZ , with Z, τ ∈ C, Im(τ) > 0 . (39)
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The coefficients cj are the components of the eigenvector ψn in the position
representation as obtained from the diagonalization of UN (for other gener-
ating functions than the one used in (14) one has to adapt (38)).

If one wants to compute a Husimi function on a grid of N × N points
on T

2 the computational effort grows with N3. So for computing all Husimi
function of a quantum map for a given N the computational effort grows with
N4. Already for moderateN this can be quite time-consuming, but even more
importantly, usually one also wants to store all these Husimi functions on the
hard-disk which limits the accessible range of N . Sometimes a smaller grid,
e.g. of size 10

√
N × 10

√
N can be sufficient which reduces the growth of the

computational effort to N2 for a single Husimi function and to N3 for all
Husimi functions at a given N . Even then one still needs 800N2 Bytes to
store these on the hard-disk. For example for N = 1600 this roughly leads
to 2 GB of data and for N = 3000 one needs approximately 7 GB. However,
there are also cases where a finer grid, e.g. 2N × 2N is necessary.

Theoretically one expects that for N → ∞ the Husimi functions concen-
trate on those regions in phase space which are invariant under the map (this
follows from the Egorov property). So for ergodic systems the expectation is
that (in the weak sense)

Hn(q, p) → 1 with n = 0, ..., N − 1 as the matrix size N → ∞ . (40)

The precise formulation of this statement is the contents of the quantum er-
godicity theorem for maps [36] (see [37] for the case of discontinuous maps).
The quantum ergodicity theorem only makes a statement about a subse-
quence of density one (i.e. almost all states) which for example leaves space for
scars, i.e. eigenstates localized on unstable periodic orbits. For systems with
mixed phase space one (asymptotically) expects localization in the stochastic
region(s) and on the tori in the elliptic regions.

In Fig. 9a) we show for the perturbed cat map with κ = 0.3 the Husimi
function for the same eigenstate as in Fig. 6. As expected it shows a quite
uniform distribution (of course with the usual fluctuations). In contrast for
κ = 6.5 there are eigenstates such as the one shown in Fig. 9b) which localizes
on the elliptic island (compare with Fig. 2).

In some sense more interesting are the Husimi functions for mixed systems
as the classical dynamics shows more structure. In Fig. 10 we show some
examples for the standard map with κ = 3.0. Figure 10a) shows a Husimi
function which is spread out in the irregular component. In contrast in b) the
Husimi function localizes on a torus around the elliptic fixpoint. The Husimi
function in c) shows quite strong localization around the small elliptic island
of a periodic orbit with period 4. This island is so small that it is not visible
in Fig. 1. Therefore, the Husimi function displayed in Fig. 10d) indicates
that the region of ‘influence’ of this island is much larger than the area of
the island. This region is also visible in the Husimi function in Fig. 10a), as
the irregular state has a very small probability in the regions around these
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a) κ = 0.3 b) κ = 6.5

Fig. 9. In a) a Husimi function Hn(q, p) of the perturbed cat map (9) with κ = 0.3
is plotted which shows the expected ‘uniform’ distribution. Here black corresponds
to large values of Hn(q, p). In b) for κ = 6.5 a state localizing on one of the elliptic
islands is shown (compare with Fig. 2).

a) b)

c) d)

Fig. 10. Examples of Husimi functions for the standard map with κ = 3.0 and
N = 1600.
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Fig. 11. Examples of Husimi functions Hn(q, p) for the standard map with κ = 1.5
and N = 1600 for n = 0, . . . , 19. (Compare with Fig. 1.)

islands. A longer sequence of Husimi functions for the standard map with
κ = 1.5 shown in Fig. 11 illustrates the different types of localized states
(compare with Fig. 1).

3 Billiards

3.1 Classical Billiards

A two-dimensional Euclidean billiard is given by the free motion of a point
particle in some domain Ω ⊂ R

2 with elastic reflections at the boundary
∂Ω. Depending on the boundary one obtains completely different dynamical
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Integrable systems

Chaotic systems

Fig. 12. Billiard dynamics in integrable and chaotic systems.

behaviour, see Fig. 12 where this is illustrated by showing orbits of billiards in
a circle, a square and an ellipse, which are all integrable giving rise to regular
motion. In contrast the Sinai billiard (motion in a square with a circular
scatterer), the stadium billiard (two semicircles joined by parallel straight
lines) and the cardioid billiard show strongly chaotic motion (they are all
proven to be hyperbolic, ergodic, mixing and K-systems).

As the motion inside the billiard is on straight lines it is convenient to
use the boundary to define a Poincaré section,

P := {(s, p) | s ∈ [0, |∂Ω|], p ∈ [−1, 1]} . (1)

Here s is the arclength along ∂Ω and p = 〈v,T (s)〉 is the projection of the
unit velocity vector v after the reflection on the unit tangent vector T (s) in
the point s ∈ ∂Ω. The Poincaré map is then given by

P : P → P
ξ = (s, p) �→ ξ′ = (s′, p′) ,

i.e. for a given point ξ = (s, p) one considers the ray starting at the point
r(s) ∈ ∂Ω in the direction specified by p and determines the first intersection
with the boundary, leading to the new point ξ′ = (s′, p′). Explicitly, the
Cartesian components of the unit velocity v of a point particle starting on ∂Ω
at r(s) are determined by the angle β ∈ [−π/2, π/2] measured with respect
to the inward pointing normal N = (−Ty, Tx). The velocity in the T ,N
coordinate system is denoted by (p, n) = (sinβ, cosβ), so that in Cartesian
coordinates
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v = (vx, vy) =

(
Tx Nx

Ty Ny

)
(p, n)

=
(
Txp+Nx

√
1− p2, Typ+Ny

√
1− p2

)
.

(2)

Starting in the point r(s) ∈ ∂Ω in the direction v, the ray r + tv intersects
∂Ω at some point r′ = (x′, y′). If the boundary is determined by the implicit
equation

F (x, y) = 0 , (3)

the new point r′ can be determined by solving

F (x+ tvx, y + tvy) = 0 . (4)

For non-convex billiards there are points ξ = (s, p) ∈ P for which there
is more than one solution (apart from t = 0); obviously the one with the
smallest t > 0 has to be chosen. The condition (3) can be used to remove the
t = 0 solution analytically from (4). If F is a polynomial in x and y this allows
to reduce the order of (4) by one. This approach has for example been used
for the cardioid billiard leading to a cubic equation for t, see [38] for details.
From the solution t one gets the coordinates (x′, y′) = (x, y)+ tv which have
to be converted (in a system dependent way) to the arclength coordinate
s′ (in many practical applications there is a more suitable internal variable,
for example the polar angle etc.). The corresponding new projection of the
momentum is given by p′ = −〈v,T (s′)〉.

3.2 Quantum Billiards

For a classical billiard system the associated quantum billiard is given by the
stationary Schrödinger equation (in units � = 2m = 1)

−∆ψn(q) = Enψn(q) , q ∈ Ω (5)

with (for example) Dirichlet boundary conditions, i.e. ψn(q) = 0 for q ∈ ∂Ω.
Here ∆ denotes the Laplace operator, which reads in two dimensions

∆ =

(
∂2

∂q21
+

∂2

∂q22

)
. (6)

In the Schrödinger representation the state of a particle is described in
configuration space by a wave function ψ ∈ L2(Ω), where L2(Ω) is the Hilbert
space of square integrable functions on Ω. The interpretation of ψ is that∫
D

|ψ(q)|2 d2q is the probability of finding the particle inside the domain
D ⊂ Ω.

Due to the compactness of Ω, the quantal energy spectrum {En} is purely
discrete and can be ordered as 0 < E1 ≤ E2 ≤ E3 ≤ . . .. The eigenfunctions
can be chosen to be real and to form an orthonormal basis of L2(Ω),
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〈ψn|ψm〉 :=
∫

Ω

ψn(q)ψm(q) d
2q = δmn .

The mathematical problem defined by (5) is the well-known eigenvalue
problem of the Helmholtz equation, which for example also describes a
vibrating membrane or flat microwave cavities. For some simple domains
Ω it is possible to solve (5) analytically. For example for the billiard in
a rectangle with sides a and b the (non-normalized) eigenfunctions are
given by ψn1,n2

(q) = sin(πn1q1/a) sin(πn2q2/b) with corresponding eigen-
values En1,n2

= π2(n21/a
2 + n22/b

2) and (n1, n2) ∈ N
2. For the billiard in

a circle the eigenfunctions are given in polar-coordinates by ψmn(r, ϕ) =
Jm(jmnr) exp(imϕ), where jmn is the n-th zero of the Bessel function Jm(x)
and m ∈ Z, n ∈ N. However, in general no analytical solutions of (5) ex-
ist so that numerical methods have to be used to compute eigenvalues and
eigenfunctions.

The spectral staircase function N(E) (integrated level density)

N(E) := #{n | En ≤ E} (7)

counts the number of energy levels En below a given energy E. N(E) can be
separated into a mean smooth part N(E) and a fluctuating part

N(E) = N(E) +Nfluc(E) . (8)

For two-dimensional billiards, N(E) is given by the generalized Weyl formula
[39]

N(E) =
A
4π

E − L
4π

√
E + C + . . . , (9)

where A denotes the area of the billiard, and L := L− − L+, where L−

and L+ are the lengths of the pieces of the boundary ∂Ω with Dirichlet and
Neumann boundary conditions, respectively. The constant C takes curvature
and corner corrections into account.

The simplest quantity is the δn-statistics, which is obtained from the
fluctuating part of the spectral staircase evaluated at the unfolded energy
eigenvalues xn := N(En)

δn := N0(En)−N(En) = n− 1

2
− xn , (10)

where

N0(E) := lim
ǫ→0

N(E + ǫ) +N(E − ǫ)

2
. (11)

The quantity δn is a good measure for the completeness of a given energy
spectrum. For a complete spectrum δn, or equivalently Nfluc(x), should fluc-
tuate around zero. Figure 13a) shows Nfluc(x) for the stadium billiard, which
indeed fluctuates around zero. In addition there is an overall modulation of
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Fig. 13. Plot of Nfluc(x) for the stadium billiard (a = 1.8, odd-odd symmetry)
together with the contribution from the bouncing ball orbits, dashed line, see (12).
In b) the fluctuating part after subtraction of the contribution of the bouncing ball
orbits is shown.

Nfluc(x) which is caused by the bouncing ball orbits. They form a one pa-
rameter family of periodic orbits having perpendicular reflections at the two
parallel walls (of length a, see Fig. 15) of the stadium. The contribution of
these orbits to the spectral staircase function reads [40]
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Fig. 14. Detection of missing levels using the δn-statistics.

Nbb
fluc(E) =

a

π

∞∑

n=1

√
E − Ebbn Θ

(√
E −

√
Ebbn

)
−

(
a

4π
E − 1

2π

√
E

)
(12)

=
a

2
√
π3

E
1

4

∞∑

n=1

1

n
3

2

cos

(
2an

√
E − 3π

4

)
, (13)

where Ebbn = π2n2 are the eigenvalues of a particle in a one-dimensional box
of length 1, and Θ is the Heaviside step function. Subtracting Nbb

osc(x) from
Nfluc(x) removes the additional oscillation, see Fig. 13b). If an eigenvalue
is missing this is clearly visible by a ‘jump’ of δn in comparison to points
fluctuating around 0, see Fig. 14 for an example where one eigenvalue has been
removed ‘by-hand’. Clearly, the energy interval in which a level is missing can
be estimated from the plot.

In the same way as for quantum maps one can study the level spacing
distribution and more complicated statistics, like the number variance, n-
point correlation functions etc., see for example [41, 42] for some further
examples for the cardioid billiard.

3.3 Computing Eigenvalues and Eigenfunctions

for Quantum Billiards

There exist several numerical methods to solve the Helmholtz equation inside
a domain Ω ⊂ R

2,

∆ψ(q) + k2ψ(q) = 0 , q ∈ Ω\∂Ω , (14)
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with Dirichlet boundary conditions

ψ(q) = 0 , q ∈ ∂Ω. (15)

For a good review on the determination of the eigenvalues of (14) see [43],
which however does not cover finite element methods or boundary integral
methods. Additionally, in the context of quantum chaos the plane wave de-
composition [44] (see also [45] for a detailed description of the method),
the scattering approach, see e.g. [46, 47, 48], and more recently the scaling
method [49], are commonly used.

Here I will give a sketch of the derivation of the boundary integral
method and discuss in more detail the numerical implementation. The bound-
ary integral method reduces the problem of solving the two-dimensional
Helmholtz equation (14) to a one-dimensional integral equation, see e.g.
[50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65] and references therein.
Of course, the general approach also applies to higher dimensions but we will
only discuss the two-dimensional case. For studies of three-dimensional sys-
tems by various methods see e.g. [66,67,68,69,70]. Boundary integral methods
are also used in many other areas so that it is impossible to give a full ac-
count. For example they are also commonly used in acoustics, see e.g. [71]
and the detailed list of references therein. Finally, the boundary integral
method provides a starting point to derive the Gutzwiller trace formula, see
e.g. [72, 73,74,75,64].

Boundary Integral Equation

Let G(q, q′) be a Green function of the inhomogeneous equation, i.e.

(∆+ k2)Gk(q, q
′) = δ(q − q′) . (16)

Considering the integral over Ω of the difference ψ(q′)·(16)−Gk(q, q
′)·(14)

one obtains
∫

Ω

[ψ(q′)∆′Gk(q, q
′) − Gk(q, q

′)∆′ψ(q′)] d2q′

=

∫

Ω

ψ(q′)δ(q − q′) d2q′ .

(17)

Using the second Green theorem gives the Helmholtz representation
∮

∂Ω

[
ψ(q′)

∂Gk

∂n′
(q, q′) −Gk(q, q

′)
∂ψ

∂n′
(q′)

]
ds′

=





ψ(q) ; q ∈ Ω \ ∂Ω
1
2ψ(q) ; q ∈ ∂Ω

0 ; else

.

(18)
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Here q′ ≡ q(s′) and ∂
∂n′

= n(s′)∇ with n(s) = (q′
2(s),−q′

1(s)) denoting
the outward pointing normal vector, where (q1(s), q2(s)) is a parametrization
of the billiard boundary ∂Ω in terms of the arclength s, oriented counter-
clockwise. Special care has to be taken to obtain the result for q ∈ ∂Ω, see
e.g. [51, 74]. (When q is in a corner of the billiard the factor 1

2 has to be

replaced by θ
2π , where θ is the (inner) angle of the corner.) For Dirichlet

boundary conditions one obtains

∮

∂Ω

u(s′)Gk(q, q
′) ds′ = 0 , q ∈ ∂Ω , (19)

where

u(s) :=
∂

∂n
ψ(q(s)) := n(s)∇ψ(q(s)) := n(s) lim

q
′→q(s)

q
′∈Ω\∂Ω

∇ψ(q′) (20)

is the normal derivative function of ψ.
In two dimensions a Green function for a free particle is given by the

Hankel function of first kind

Gk(q, q
′) = − i

4
H
(1)
0 (k |q − q′|)

= − i

4
[J0 (k |q − q′|) + i Y0 (k |q − q′|)] .

(21)

Since H
(1)
0 (z) ∼ i

π ln z for z → 0, the Green function Gk(q, q
′) diverges

logarithmically such that it is more convenient to derive an integral equation
whose kernel is free of this singularity. To that end one (formally) applies
the normal derivative ∂

∂n to (18). More carefully one has to consider a jump
relation for the normal derivative function, see e.g. [51, 74]. The result is

u(s) = −2
∮

∂Ω

∂

∂n
Gk (q(s), q(s

′)) u(s′) ds′ . (22)

For the derivative of the Green function one obtains

∂

∂n
Gk (q(s), q(s

′)) =
ik

4
cos(φ(s, s′)) H

(1)
1 (k τ(s, s′)) , (23)

where τ(s, s′) = |q(s) − q(s′)| is the Euclidean distance between the two
points on the boundary and

cosφ(s, s′) =
n(s) (q(s)− q(s′))

τ(s, s′)
. (24)

This gives the integral equation for the normal derivative u(s)
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u(s) =

∮

∂Ω

Qk(s, s
′) u(s′) ds′ , (25)

with integral kernel

Qk(s, s
′) = − ik

2
cosφ(s, s′) H

(1)
1 (k τ(s, s′)) . (26)

Equation (25) is a Fredholm equation of second kind which has non-trivial
solutions if the determinant

D(k) := det(1− Q̂k) (27)

vanishes. Here Q̂k is the integral operator on ∂Ω defined by

Q̂k(u(s)) =

∮

∂Ω

Qk(s, s
′) u(s′) ds′ . (28)

For eigenvalues En of the Helmholtz equation with Dirichlet boundary
conditions one has D(k) = 0 for k =

√
En, see e.g. [74] for a detailed proof.

However, for Im k < 0 there can be further zeros of D(k) which (for the
interior Dirichlet problem) correspond to the outside scattering problem with
Neumann boundary conditions [76, 77, 78] (see also [51]). Explicitly this can
be seen from the factorization D(k) = D(0)Dint(k)Dext(k), where the factors
can be written exclusively in terms of the interior and exterior problem.
More aspects concerning the additional spurious solutions will be discussed
in Sect. 3.3.

Before turning to the numerical implementation, let us discuss the be-
haviour of the integral kernel for small arguments. The Hankel function

H
(1)
1 (x) reads for small arguments

H
(1)
1 (k τ(s, s′)) ∼ − 2i

πk|s− s′| , for s− s′ → 0 . (29)

This singularity is compensated by the behaviour of

cosφ(s, s′) ∼ −1

2
κ(s) |s− s′| , for s′ → s , (30)

where κ(s) is the curvature of the boundary in the point s. Here the curvature
is defined by κ(s) = q′

1(s)q
′′
2 (s) − q′

2(s)q
′′
1 (s) such that for example κ(s) = 1

for a circle of radius one. Thus for the integral kernel we obtain

Qk(s, s
′) → 1

2π
κ(s) , for s− s′ → 0 . (31)
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Desymmetrization

For systems with symmetries the numerical effort can be reduced by con-
sidering instead of the full system the symmetry reduced system with the
corresponding Green function, see e.g. [56]. For a reflection symmetry with
respect to the q1-axis one has

G±
k (q, q

′) := Gk(|q − q′|)±Gk(|q − (q′
1,−q′

2)|) , (32)

where + applies to the case of even eigenfunctions (i.e. Neumann boundary
conditions on the symmetry axis) and − to odd eigenfunctions (i.e. Dirichlet
boundary conditions on the symmetry axis).

For a two-fold reflection symmetry (as in the case of the stadium billiard,
see Fig. 15 for a sketch of the geometry and notations) one has altogether
four different subspectra, corresponding to DD, DN, ND and DD boundary
conditions on the symmetry axes q1 and q2, respectively. For example for
Dirichlet-Dirichlet boundary conditions on the q1- and q2-axes the Green
function reads

GDDk =Gk(|q − q′|)−Gk(|q − (q′
1,−q′

2)|)
+Gk(|q − (−q′

1,−q′
2)|)−Gk(|q − (−q′

1, q
′
2)|) .

(33)

For Neuman boundary conditions on these two axes one gets

GNNk =Gk(|q − q′|) +Gk(|q − (q′
1,−q′

2)|)
+Gk(|q − (−q′

1,−q′
2)|) +Gk(|q − (−q′

1, q
′
2)|) .

(34)

The advantage of exploiting the symmetries of the system is two-fold: firstly,
we can separate the eigenvalues and eigenfunctions for the different symmetry

q2

q1

1

0
0 a a+1

Fig. 15. Geometry of the desymmetrized stadium billiard.
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classes, which is necessary for the investigation of the spectral statistics.
Secondly, the numerical effort is reduced, since the integral over the whole
boundary ∂Ω is reduced to an integral over a part of the boundary, which
in the above examples is half or a quarter of the original boundary. The
boundary along the symmetry axes need not be discretized as the boundary
condition is already fulfilled by construction. Of course, for other geometries
different choices for G can be more appropriate.

Finding the Eigenvalues

In the numerical computations the integral over the boundary is replaced
by a Riemann sum. (There also exist more refined methods using polyno-
mial approximations combined with Gauß-Legendre integration, see e.g. [60],
which allow for a less fine discretization.) Let ∆s = L/N be the discretization
length of the boundary of length L into N pieces. Then we have

u(si) = ∆s

N−1∑

j=0

Qk(si, sj)u(sj) , (35)

where si = (i + 1/2)∆s, i = 0, . . . , N − 1. Equation (35) can be written in
matrix form as

Aku = 0 , with Aij = δij −∆sQk(si, sj) . (36)

Recall that for si = sj the kernel Qk(si, sj) reduces to the result given in
(31). The solutions of this linear equation provide approximations to the
eigenvalues k2n and eigenvectors un. This leads to the problem of finding the
real zeroes of the determinant

det(Ak) = 0 (37)

as a function of k =
√
E, where Ak is a dense, complex non-Hermitean

matrix. Due to the discretization of the integral the determinant det(Ak)
will not become zero but only close to zero (actually, the discretization shifts
the zeros slightly away from the real axis, see [58,59]).

In the numerical computations it is very useful [60] to compute the sin-
gular values of the matrix A instead of its determinant. The singular value
decomposition of a complex matrix is given by the product of an unitary
matrix U , a diagonal matrix S and a second unitary matrix V

A = USV † . (38)

The diagonal matrix S contains as entries SVi the singular values of A and
we have |detA| = |∏ SVi|. Since the original integral equation has been
discretized, the smallest singular value in general never gets zero, but just
very small, see Fig. 16. Thus the minima of the smallest singular value provide
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Fig. 16. In a) the three smallest singular values are shown as a function of the
energy E = k2 for the stadium billiard with a = 1.8 and odd-odd symmetry.
The eigenvalues are located at the minima of the first singular value. The second
and third singular values allow to locate places with near degeneracies as next to
k2 = 90, which can be resolved by magnification of the corresponding region, see
Fig. 17. In b) | det(Ak)| is shown. The minima tend to be not as pronounced as
those of the singular values.

119



Numerical Aspects in Quantum Chaos 121

0.0

0.2

0.4

0.6

0.8

1.0

 80  85  90  95  100k2

SVi

Fig. 17. A magnification of Fig. 16 shows that the singular value decomposition
method easily allows to locate nearly degenerate energy levels.

approximations to the eigenvalues of the integral equation. For the numerical
computation of the singular value decomposition one may for example use the
NAG routine F02XEF or the LAPACK routines ZGESVD or ZGESDD. It turns
out that the (more recent) routine ZGESDD is significantly faster (factor 3-5,
at the expense of a higher memory consumption), in particular when also
singular vectors are computed.

The advantage of the singular value decomposition in comparison to lo-
cating the zeros of the determinant is that degeneracies of eigenvalues can
be detected by looking at the second singular value, which also gets small
when there are two nearby eigenvalues (similarly higher degeneracies can be
found by looking at the next singular values). In Fig. 16a) an example of
the behaviour of the three smallest singular values is shown in the case of
the stadium billiard (a = 1.8) with Dirichlet boundary conditions. For com-
parison a plot of |det(Ak)| is shown in Fig. 16b). One clearly sees that the
singular value decomposition provides more information. For example, next
to k2 = 90 the minimum of |det(Ak)| looks slightly broader than the others,
however, this does not give a clear indication that there might be more than
one eigenvalue. In contrast, the singular value decomposition method allows
to resolve such kind of near-degeneracies efficiently, see Fig. 17. Of course,
this information is also available via det(Ak), see Fig. 18 where its real and
imaginary part are plotted separately. Here (approximately) simultaneous
zeros correspond to minima of |det(Ak)|. However, notice that compared to
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-2.5

0.0

2.5

5.0

 80  85  90  95  100k2

Re det(Ak)
Im det(Ak)

-0.2

0.0

0.2

0.4

 90  95  100k2

Fig. 18. Plot of real and imaginary part of det(Ak) as a function of k; the evaluation
was done for 10 times as many points in k2 than for Fig. 17. Approximately simul-
taneous zeros correspond to minima of | det(Ak)|. The locations of the eigenvalues
are marked by squares.

the singular value decomposition approach much more discretization points
in E = k2 are necessary.

To determine all energy levels in a given energy interval [E1, E2] one pro-
ceeds in the following way: first one computes the singular values at equidis-
tantly chosen points k2 ∈ [E1, E2]; the energy is chosen as variable because
for two-dimensional billiards the mean distance between two energy levels is
approximately constant and according to the generalized Weyl formula (9)
given by 4π

A . The finer the step size is chosen the easier the minima can be
resolved, however, at the same time the computing time to cover a given
energy range increases correspondingly. The actual step size is a compromise
between these two aspects; good results have been achieved by using a step
size of the order of 15

4π
A (for systems with many near level degeneracies, e.g.

integrable or near-integrable systems, a smaller step size can be helpful).
The matrix size N is chosen according to N = bL

λ = bLk
2π , such that one

obtains b discretization points per units of the inverse of the de Broglie wave
length λ = 2π

k along the boundary L. Typical choices for b are between 5 and
12 depending on the system and the wanted accuracy.

From the first scan one locates all minima of the smallest singular value. If
also the second singular value has a minimum next to a minimum of the first
one, one has to use a refined discretization in E around the minimum (the
numerical implementation is a bit more sophisticated, in order to account for
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several special situations, so that only a minimal number of additional points
need to be computed). Once an isolated minimum is found, an approxima-
tion to the eigenvalue can be computed by different methods. Either one can
perform a refined computation around the minimum, which can be quite time-
consuming, or one can use a local approximation by a parabola [79]. A linear
interpolation also gives good results: From the three points 1:(k21, SV1(k

2
1)),

2:(k22, SV1(k
2
2)), 3:(k

2
3, SV1(k

2
3)), characterizing a minimum of the first singu-

lar value, one has two different lines 12 and 23 with different slopes, of which
the line with the larger slope has to be chosen. The intersection of this line
with the zero axis gives a good approximation to the eigenvalue, which one
can refine if necessary. By repeatedly applying this for all minima, all energy
levels in a given interval can be found. In fact, it is possible to develop a
computer program which takes care of all this such that all levels can be
found automatically.

A good check of the completeness is provided by considering the δn statis-
tics, see the example in Sect. 3.2. The accuracy of the computed eigenvalues
can be estimated from the bracket of the minimum given by the three points
1,2,3 if the matrix dimension N is large enough. For N too small (for a given
resolution in E) one does not obtain a peaked, but a broad minimum. This
is illustrated in Fig. 19 by magnifying Fig. 17 around the minimum with
k2 ≈ 96.5 for different N . One clearly sees the parabolic structure around

0.0000
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0.0010

0.0015

96.64 96.65 96.66 96.67k2

SV1

N=45
N=100
N=200

Fig. 19. Magnification of Fig. 17 around the minimum with k2 ≈ 96.5 for different
matrix sizes N . One nicely sees the pronounced parabolic structure for N = 45
which gets smaller for larger N .
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the minimum for smaller N and for larger N one recovers the essentially
linear behaviour of the smallest singular value.

Tests of the accuracy of the method can be obtained by considering a
system where the eigenvalues are known. For example for the circular billiard
the eigenvalues can be computed with arbitrary accuracy. Also billiards where
the eigenvalues can be computed by other methods (e.g. conformal mapping
method [80, 81]) allow a determination of the accuracy of the method. For
a study of the scaling of the error for various billiards see [63]. In addition
computations of the normal derivative function un(s) and the eigenfunction
(both inside and outside of Ω) allow to check the quality of the numerical
method and program.

Computing Eigenfunctions

From a minimum of the smallest singular value we obtain an approximation
of the eigenvalue and at the same time the corresponding singular vector
u gives an approximation to the normal derivative function u(s). The NAG
routine F02XEF scales the singular vector such that its first component is real.
Thus for a correct solution also the other components should be essentially
real, which provides another check for the implementation of the method and
the accuracy of the eigenvalues.

The eigenfunction in the interior of the domain Ω can now be calculated
from the normal derivative function,

ψ(q) = − i

4

∮

∂Ω

H
(1)
0 (k |q − q(s)|) u(s) ds , for q ∈ Ω\∂Ω . (39)

The computation of the eigenfunction can be simplified by taking into account
that ∮

∂Ω

J0 (k |q − q(s)|) u(s) ds = 0 , (40)

because the J0-part of Gk(q, q
′) is a solution of the homogeneous equation

corresponding to (16). Thus (39) is equivalent to

ψ(q) =
1

4

∮

∂Ω

Y0 (k |q − q(s)|) u(s) ds , for q ∈ Ω\∂Ω . (41)

If one uses a desymmetrization, such as (32), (33) or (34), the above formula
(41) has to be modified accordingly.

In Fig. 20 we show some examples of normal derivatives un(s) and the
corresponding eigenfunctions of the billiard, computed via (41). The imagi-
nary part of un(s) is typically 5 or more orders of magnitude smaller than
the real part. It is interesting to see that part of the structure of the eigen-
functions is also reflected in un(s). For example for eigenstates with small
probability in the region of the quarter circle also the normal derivative is
small for s < π/2.
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Fig. 20. Examples of normal derivative functions un(s) and the corresponding
eigenfunctions in the stadium billiard (odd-odd symmetry, a = 1.8). Here black
corresponds to high intensity of |ψn(q)|

2.
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Spurious Solutions I: Real Green Function Approach

In certain situations and for some numerical methods it may happen that
one obtains in addition to the true solutions of the Helmholtz equation (14)
further so-called spurious solutions. This question is discussed in some of
the papers on the boundary integral method, in particular see [50, 52, 53]
and [55, 58]. There are essentially two different situations in which they are
encountered. The first is that one uses for the Green function instead of the
Hankel function, see (21), just the real part, i.e.

Gk(q, q
′) =

1

4
Y0 (k |q − q′|) . (42)

This seems reasonable as according to (40) the J0-Bessel function does not
contribute to the eigenfunction. Moreover then one can work with an entirely
real matrix for which the singular value decomposition can be computed much
faster. However, when using this approach, there appear additional zeros (for
each correct one there is one additional one) and the singular values loose
their nice linear structure, see Fig. 21. To overcome the problem of these
additional zeros a parametrized Green function

G
(β)
k (q, q′) =

1

4
[βJ0 (k |q − q′|) + Y0 (k |q − q′|)] (43)

0.0
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Fig. 21. Using the real Green function (42) leads to spurious solutions (see the
inset) in addition to the correct eigenvalues marked by squares (compare with
Fig. 17). For each true solution there is an additional spurious one (hardly visible
at k2 ≈ 91 and k2 ≈ 96).
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is used in [58]. Thus for β = 0 we obtain (42) and for β = −i we get (21).
So using a purely real Green function means to vary β ∈ R which changes
the location of the spurious solutions but not those of the true ones. This is
illustrated in Fig. 22 around the eigenvalue k2 = 81.93 . . . with β ∈ [0, 0.1].
Clearly on this scale the true solution does not change under variation of β
(apart from the region of the avoided crossing which is due to the finite matrix
size and gets smaller for larger N) whereas the spurious solution strongly
varies with β. For β = −γi with increasing real γ the additional zeros move
away from the real axis and it seems that for β = −i they do not have any
significant influence on the real axis. Still there could be cases where also for
β = −i such a solution becomes relevant, but for convex geometries we have
not encountered this situation. For an example of a non-convex geometry see
Sect. 3.3.

As an explicit example for the influence of parameterized Green function
(43) let us consider the circular billiard with radius 1, where the Fredholm
determinant reads (see e.g. [58, 74])

D(k) =
∞∏

l=−∞

[
−iπkH(1)′

l (k)Jl(k)
]

. (44)

As this product converges absolutely in the whole complex k-plane (apart
from a cut along the negative real axis) zeros of D(k) occur when one of the
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Fig. 22. Plot of the minima of the singular values around the eigenvalue k2 =
81.93 . . . with varying β using the parametrized Green function (43). The insets
show the corresponding structure of the first singular value with a logarithmic
vertical scale (matrix size for this computation: N = 200).
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factors in the product vanishes [74]. Clearly, the real zeros of D(k) correspond
to the eigenvalues jml of the circular billiard with radius 1 and Dirichlet

boundary conditions. The further zeros stem from the functions H
(1)′

l (z)
which have only zeros with Im z < 0 [82], and do not correspond to physical
solutions of the interior problem. However, they can be related to resonances
of the exterior scattering problem, but with Neumann boundary conditions
[76, 77]. Because of the radial symmetry the S-matrix is diagonal in angular
momentum space

Sl′l = −H
(2)′

l (k)

H
(1)′

l (k)
δl′l (45)

and therefore the resonances are at those complex k for which

H
(1)′

l (k) = 0 , (46)

i.e. the same condition as implied by (44).
If one uses the parametrized Green function (43) one can show (analogous

to the derivation of (44)) that for the circular billiard

D(β)(k) =

∞∏

l=−∞

[πk (βJ ′
l (k) + Y ′

l (k))Jl(k)] . (47)

For β = 0, which corresponds to the real Green function (42), we get addi-
tional zeros of D(0)(k) when Y ′

l (k) = 0. Varying β from zero to −i these real
zeros turn complex. At first sight one might think that these are connected to

the places with H
(1)′

l (k) = 0, however numerical computations show that (for
all studied cases) these move away from the real axis with a positive imagi-

nary part and for β = −i one has H(1)′

l (k) = 0 only for Im k < 0. Thus the
spurious solutions for the real Green function are not related to resonances
of the scattering problem with Neumann boundary conditions.

These examples suggest to use the full complex Green function (21) in-
stead of the real variant (42). Even though the numerical computation is more
time-consuming for the complex case their advantages over choosing (42) are
obvious as the variation of β is time-consuming as well (and non-trivial to
implement in an automatic way).

Spurious Solutions II: Non-convex Geometries

Even when choosing the complex Green function (21) it is possible to en-
counter spurious solutions: For the circular the additional complex zeros of
D(k) are sufficiently far away from the real axis, i.e. Im k ≪ 0 so that they do
not lead to problems with the application of the boundary integral method.
However, when one considers different geometries the resonances of the cor-
responding scattering system could be closer to the real axis. This can be
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r1
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π-α

Fig. 23. Boundary of the annular sector billiard for α = 7
8
π and r1 = 0.4 and

r2 = 0.6.

nicely studied for the annular sector billiard, see Fig. 23, as the eigenvalues
and eigenfunctions can be determined numerically with arbitrary accuracy.
Using the ansatz [83, §25]

ψ(r, φ) = [Jν(kr) + cYν(kr)] sin(νφ) (48)

with ν = mπ
α , m = 0, 1, 2, ... and requiring ψ(r1, φ) = 0 and ψ(r2, φ) = 0

gives the (implicit) eigenvalue equation

Jν(kr1)Yν(kr2)− Yν(kr1)Jν(kr2) = 0 . (49)

For each m one gets a sequence of zeros kmn =
√
Emn.

Figure 24 shows for the annular sector billiard with α = 49
50π the first

three singular values as a function of k2. The solutions of (49) are marked by
triangles. Clearly, there are additional minima, which can be associated with
resonances of the dual scattering problem (for further details and examples
of this association for the annular sector billiard see [84]). In the limit of
α → π these resonances are given by the eigenvalues of the circular billiard
of radius r1 with Neumann boundary conditions. For this billiard the ansatz

ψ(r, φ) = Jm(kr) together with
∂ψ(r,φ)

∂r

∣∣∣
r=r1

= 0 gives the eigenvalue equation

mJm(kr1)− kr1Jm+1(kr1) = 0 . (50)

The circles shown in Fig. 24 correspond to the solutions of (50) and provide
a very good description of the additional minima.

Thus the question arises how to detect and distinguish these additional
solutions. First, of course their existence and relevance strongly depends on
the system one is studying. In many situations (for example convex geome-
tries) there appear to be no complex solutions coming close enough to the
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Fig. 24. First three singular values as a function of E = k2 of the annular sector
billiard for α = 49

50
π and r1 = 0.4 and r2 = 0.6. The triangles correspond to the

exact eigenvalues for the annular sector billiard, computed from (49) and the circles
correspond to the eigenvalues of the circular billiard with radius r1 and Neumann
boundary condition, determined via (50).

real axis. Intuitively this seems reasonable as long as there are no trapped
orbits outside of the billiard as these should give rise to resonances with small
imaginary part.

However, if such additional solutions exist they will show up in the δn
statistics by an offset of +1 at each additional eigenvalue (unless one by
chance misses the same number of ‘correct’ eigenvalues). If one has a sys-
tem with such additional solutions one approach is to plot the corresponding
normal derivative function u(s) and the eigenfunction. Usually they will be-
have quite differently for a correct eigenvalue and for a spurious solution.
For example for the case of the annular sector billiard the normal derivative
function for a spurious solution is discontinuous along the boundary and the
corresponding eigenfunction also has contributions outside of the billiard, see
Fig. 26. Another test would be to use the normalization condition (51) for the
normal derivative and compute the norm of the eigenfunction in the interior
of the billiard. These two are the same for proper eigenfunctions whereas for
spurious solutions they will disagree. Unfortunately, this is a highly inefficient
method as the computation of the eigenfunction inΩ is quite time-consuming.
Instead of computing the normalization for the full billiard one could restrict
to smaller subregions, e.g. for the annular sector billiard one could integrate
over the region of the circle with radius r1 and check if it is different from zero
indicating a spurious solution. For the annular sector billiard the additional
zeros of the Fredholm determinant D(k) are complex as long as α < π. Thus
for N → ∞ these minima will stay bounded away from zero in contrast to
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the minima corresponding to the eigenvalues. However, in practice it is not
possible to check this as one has to make N too large to distinguish these
from the correct eigenvalues.

More generally, spurious solutions can be understood by a second look at
the boundary integral equations. Namely, for the interior Dirichlet problem
we have the single layer equation, (19), and the double layer equation, (25).
On the other hand, the single-layer equation for the outside scattering prob-
lem with Neumann boundary conditions at ∂Ω is also given by the double
layer equation (25). (see e.g. [51,50]). As a consequence, scattering solutions
of the outside scattering problem with Neumann boundary conditions at ∂Ω
may become relevant for real k. Namely, for resonances with small imaginary
part they can lead to additional solutions for the double layer equation which
are numerically indistinguishable from the correct solutions. However, these
solutions do not correspond to solutions of the interior problem and they do
not fulfill the single layer equation. So a possibility to distinguish spurious
solutions for the interior Dirichlet problem is to check the validity of the sin-
gle layer equation as well, which is only fulfilled simultaneously for correct
solutions of the interior Dirichlet problem.

A common approach (see e.g. [50] and references therein) to incorporate
this from the beginning is by combining the single layer and double layer
equation using a linear superposition. By this the solutions of the outside
problem with Neumann boundary conditions can be removed. Because of the
singular kernel in the single layer equation special care has to be taken with
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Fig. 25. First three singular values as a function of E = k2 of the annular sector
billiard for α = 7

8
π and r1 = 0.4 and r2 = 0.6. The triangles correspond to the

exact eigenvalues for the annular sector billiard, computed from (49) and the circles
correspond to the eigenvalues of the circular billiard with radius r1 and Neumann
boundary condition, determined via (50)
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Fig. 26. Normal derivative functions un(s) corresponding to the correct eigenvalue
with E = 663.88 . . . (left) and the spurious one with E = 691.77 . . . (right). Here
l1 = r1α, l2 = r1α+r2 −r1 and l3 = r1α+r2 −r1+αr2. One clearly sees the discon-
tinuity in un(s) for the spurious solution. This is also reflected in the structure of
the eigenfunction which for the spurious solution has its main contribution outside
of the billiard. Notice that in both cases the eigenfunction has been computed ac-
cording to (40) inside and outside of Ω. The fact that for the correct eigenfunction
ψn(q) = 0 (within the numerical accuracy) for q ∈ R

2\Ω is another test of the
accuracy of the eigenvalue computations and eigenfunctions.

the implementation. For the more difficult case of billiards with magnetic
field see [65].

Derived Quantities in Terms of the Normal Derivative Function

As the normal derivative function contains all information to determine the
eigenfunction, it is interesting to see if this approach can be used to compute
other quantities of interest. For example, if one wants to calculate expecta-
tion values 〈ψ|A|ψ〉 of some operator A in the state ψ, one has to ensure that
the eigenfunction ψ is normalized, 〈ψ|ψ〉 =

∫
Ω
|ψ(q)|2 d2q = 1. In principle

this could be done by considering
(
〈ψ̃|ψ̃〉

)−1

ψ̃(q) of an unnormalized eigen-

function ψ̃. However, an accurate computation of 〈ψ̃|ψ̃〉 using (41) is quite
time consuming. Fortunately, there is a simpler way to achieve a normalized
ψ: If ψ is a normalized eigenfunction with eigenvalue E = k2 and u(s) is the
corresponding normal derivative then we have the following normalization
condition for u(s) [55,59]
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1

2

∮

∂Ω

n(s)q(s) |u(s)|2 ds = k2 . (51)

If ũ(s) is an unnormalized normal derivative, then one obtains by

u(s) =

√
2 k√ ∮

∂Ω

n(s)q(s) |ũ(s)|2 ds
ũ(s) (52)

a normalized one. Starting with a normal derivative normalized in this way,
any other quantities (e.g. expectation values) determined in terms of u(s)
have the correct normalization.

This is just the first example out of many highlighting the importance
of the normal derivative for numerical computations of quantities related to
eigenfunctions. For example, there are explicit expressions in terms of un(s)
to compute the

– normalization of ψ, (51), [55, 59]
– eigenfunction ψ, (41)
– momentum distribution

ψ̂n(p) =
1

2π

∫

Ω

e−ipqψn(q) d
2q = − i

4πp2n

∫

∂Ω

e−ipq(s)pq(s)un(s) ds , (53)

and radially integrated momentum distribution [85,86]

I(ϕ) :=

∞∫

0

∣∣∣ψ̂n(r, ϕ)
∣∣∣
2

r dr , (54)

see [86] for details.
– Husimi functions (see e.g. [87, 88])
– autocorrelation function of eigenstates [89].

In Figs. 27-29 we show for the cardioid billiard examples of eigenfunctions
in position space, the corresponding momentum distributions, the angular
momentum distributions (for further details and examples see [86]) and the
corresponding Husimi functions Hn(s, p). The first example in Fig. 27 shows
an example of a scarred state, i.e. an eigenstate which shows localization
round an unstable periodic orbit [90]. Below the three-dimensional plot of
the state is the corresponding density plot (black corresponding to high in-
tensity) in which the localization is clearly visible. Also the corresponding

three-dimensional plot of the momentum distribution ψ̂567(p) reveals en-
hanced contributions in the directions ϕ = π/2, 3π/2. This is also seen in the
plot of I567(ϕ) which shows that the probability to find the particle with mo-
mentum near π/2 is significantly enhanced compared to the mean of 1/(2π).
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n = 567, odd symmetry
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Fig. 27. Three-dimensional plots of |ψ567(q)|
2, |ψ̂567(p)|

2, their corresponding
grey-scale pictures and the plot of the radially integrated momentum distribu-
tion I567(ϕ). The momentum distribution |ψ̂567(p)|

2 is concentrated around the
energy shell, which is indicated by the inner circle. This state is localized along
the shortest unstable periodic orbit, leading to an enhancement of |ψ̂567(p)|

2 near
to ϕ = π/2, 3π/2, also seen in the plot of I567(ϕ) near to the momentum direc-
tion ϕ = π/2 (marked by a triangle). This localization is also clearly visible in the
Husimi representation.
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n = 116, odd symmetry
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Fig. 28. Same as in the previous figure but for n = 116. In this case there is no
prominent localization neither in position nor in momentum space.

Another representation is the Husimi-Poincaré representation Hn(s, p) where
s corresponds to the arclength coordinate along the billiard boundary and p
corresponds to the projection of the unit velocity vector after the reflection
on the tangent in the point s. In this picture the localization around the un-
stable orbit is maybe most clearly seen; the places of high intensity are on the
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a) n = 4042, odd symmetry b) n = 6000, odd symmetry
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Fig. 29. The eigenfunction in a) shows localization along the shortest unstable orbit
which is also reflected in the momentum distributions and in the Husimi function.
The eigenfunction in b) is an example which appears to be quite delocalized both in
position and in momentum space. The pictures look like those expected (according
to the quantum ergodicity theorem) for a ‘typical’ eigenfunction.
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line p = 0 (perpendicular reflection) and match perfectly with the position
of the orbit.

The second example shown in Fig. 28 is an ‘ergodic’ state, i.e. a state
which does not show any significant localization (as much as something like
this is possible at low energies) neither in position nor in momentum space
(apart from the localization on the energy shell). This is nicely reflected in
the various representations. Two further examples are shown in Fig. 29 where
a) is a higher lying scar and b) is another ‘typical’ state (in the sense of the
quantum ergodicity theorem).

4 Concluding Remarks – Or What’s Left ?

There are many more issues related to scientific computing in quantum chaos
which I did not mention in these notes. They for example include visualization
techniques, programming of parallel computers (e.g. using PVM or MPI), or
using vector computers etc. Also the more implementation specific aspects,
including the choice of a programming language have not been discussed. A
good starting point to learn about computing in quantum chaos are quantum
maps as their numerics is much easier (one can use a black-box routine to get
all eigenvalues at once) than for billiard systems, where more complicated
methods have to be used.
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Appendix: Computing Eigenvalues of Quantum Maps

The first thing when thinking of solving a certain problem numerically is to
decide on the programming language. There are numerous possibilities, rang-
ing from Assembler, Fortran, Pascal, C, C++, Java, etc. to using packages
like Octave, Matlab, Maple or Mathematica. Here I will use the quite recent
scripting language Python [91]. Of course it is beyond the scope of this text to
give an introduction to this language; several excellent introductions can be
found on the Python homepage. In addition to the basic Python installation
you will also need the Numeric package [92], which is also simple to install.
The following programs together with further information can be obtained
from [20]. If you have been wondering about the name - yes it originates from
Monty Python’s flying circus, and at several places the documentation refers
to more or less famous Monty Python sketches.

So here is pert cat.py (the full version can be obtained via [20]):
#!/usr/bin/env python

import cmath

from Numeric import zeros,Float,Complex

from math import sin,pi,sqrt

import LinearAlgebra

def quantum_cat(N,kappa):

"""For a given N and kappa this functions returns the

corresponding unitary matrix U of the

quantized perturbed cat map.

"""

mat=zeros((N,N), Complex) # complex matrix with NxN elements

I=1j # predefine sqrt(-1)

# now fill each matrix element

# (note: this can be done much faster, see the on-line version)

for k in range(0,N):

for l in range(0,N):

mat[k,l]=cmath.exp(2.0*I*pi/N*(k*k-k*l+l*l)+ \

I*kappa*N/2.0/pi*sin(2.0*pi/N*l))/sqrt(N)

return(mat)

def compute_evals_pcat(N,kappa):

"""For a given N and kappa this functions returns

the eigenvalues and eigenphase of the unitary matrix U

filled via quantum_cat(N,kappa).

"""

matU=quantum_cat(N,kappa) # fill matrix U_N

# determine eigenvalues of U_N:

evals=LinearAlgebra.eigenvalues(matU)

# determine phase \in [0,2\pi] from the eigenvalues

phases_N = arctan2(evals.imag,evals.real) + pi
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# useful to determine level-spacing

phases = concatenate([phases_N,[phases_N[0]+2.0*pi]])

return(evals,phases)

### Main (used if pert_cat.py is called as script)

if __name__ == ’__main__’:

from string import atoi,atof

import sys

# Determine eigenvalues and eigenphases

(evals,phases)=compute_evals_pcat(atoi(sys.argv[1]), \

atof(sys.argv[2]))

for k in range(0,N): # print eigenvalues

print("% e % e % e % e ") % \

(evals[k].real,evals[k].imag,phases[k],abs(evals[k]))

The only drawback of the above code is that the loop to fill the matrix
is slower than a corresponding code in C or Fortran (notice that there are
some very nice ways of overcoming this by inlining of code or on-the-fly
compilation which are presently being developed for example in the context
of SciPy [93]). However, as diagonalize uses the LAPACK library the most
time-consuming part (at least for larger N) is done in an efficient way (not
taking into account the possibility of using ATLAS [24] for further speed
improvements).

As a first test do (for N = 101 and κ = 0.3)

python pert_cat.py 101 0.3

It will output the (complex) eigenvalues as a sequence x, y pairs. As a
test, whether these all lie on the unit circle the third column is the absolute
value of the eigenvectors. To plot the resulting data you may use

python pert_cat.py 101 0.3 > pcat_101_0.3.dat

which redirects the output of the program to the file pcat 101 0.3.dat.
To plot the resulting file use your favourite plotting program, e.g. for gnuplot
[94] just do

plot "pcat_101_0.3.dat" using 1:2 with points

Now we would like to compute the level spacing distribution. To do this
let us use an interactive Python session in which we do

from Numeric import * # Numeric package

from pert_cat import compute_evals_pcat # above pert_cat routines

from AnalyseData import * # histogram (see below)

N=53

kappa=0.3

(evals,phases)=pert_cat.compute_evals_pcat(N,kappa);

# sort and unfold phases
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s_phases=Numeric.sort(phases)*N/(2.0*pi)

# determine Level spacing

# (by computing the difference of the shifted eigenphases)

spacings=s_phases[1:]-s_phases[0:N]

(x_histogram,y_histogram)=histogram(spacings,0.0,10.0,100)

store_histogram(x_histogram,y_histogram,"histogram.dat")

Then use your favourite plotting program to plot the level spacing distri-
bution. For gnuplot you could do

goe_approx(x)=pi/2.0*x*exp(-pi/4*x*x)

gue_approx(x)=32/pi/pi*x*x*exp(-4/pi*x*x)

plot "histogram.dat" w l,goe_approx(x),gue_approx(x),exp(-x)

Here the routines to compute and store the histogram are in
AnalyseData.py whose core reads

def histogram(data,min,max,nbins):

from Numeric import *

# first select only those which lie in the interval [min,max]

hdat=compress( ((data<max)*(data>min)),data)

bin_width=(max-min)/nbins

# define the bins

bins=min+bin_width*arange(nbins)

# determine indices

inds=searchsorted(sort(hdat),bins)

inds=concatenate([inds,[len(hdat)]])

# return bins and normalized histogram

return(bins,(inds[1:]-inds[:-1])/(bin_width*len(hdat)))

def store_histogram(x_distrib,y_distrib,outdat):

bin_width=x_distrib[1]-x_distrib[0]

f=open(outdat,"w") # open file for writing

for k in range(0,len(x_distrib)):

f.write("% e % e \n" % (x_distrib[k],y_distrib[k]))

f.write("% e % e \n" % (x_distrib[k]+bin_width, \

y_distrib[k]))

f.close()

Again, for further details and full routines see [20].
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37. S. De Bièvre and M. Degli Esposti: Egorov theorems and equidistribution of
eigenfunctions for the quantized sawtooth and baker maps, Ann. Inst. Henri
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For the representation of eigenstates on a Poincaré section at the bound-

ary of a billiard different variants have been proposed. We compare these

Poincaré Husimi functions, discuss their properties and based on this select

one particularly suited definition. For the mean behaviour of these Poincaré

Husimi functions an asymptotic expression is derived, including a uniform

approximation. We establish the relation between the Poincaré Husimi

functions and the Husimi function in phase space from which a direct phys-

ical interpretation follows. Using this, a quantum ergodicity theorem for

the Poincaré Husimi functions in the case of ergodic systems is shown.
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I. INTRODUCTION

The studyof eigenfunctionsof quantumsystems,in par-
ticular, their dependenceon the classicaldynamics,hasat-
tracteda lot of attention.A prominentclassof examplesis
provided by two-dimensionalbilliard systems,which are
classicallygivenby thefreemotionof a particleinsidesome
domainwith elastic reflectionsat the boundary. The corre-
spondingquantum system is describedby the Helmholtz
equation inside a compactdomain V,R

2 (in units "=1
=2m),

Dcnsxd + kn
2cnsxd = 0, x P V, s1d

with (for example) Dirichlet boundaryconditions

cnsxd = 0, x P ] V, s2d

wherethe eigenfunctionscnsxd arein L2sVd. Assumingthat
the eigenvalueskn

2 are orderedwith increasingvalue, the
semiclassicallimit correspondsto n→`. A detailedknowl-
edgeof the behaviorof the eigenvalueskn

2 andthe structure
of eigenstatesis relevantfor applications,for example,mi-
crowavecavitiesor mesoscopicsystems(see,e.g.,Ref. [1],
andreferencestherein).

For the descriptionof the phasespacestructureof quan-
tum systemsusuallytheWignerfunction [2] or Husimi func-
tion [3] is used.However, for a systemwith d degreesof
freedomtheseare2d-dimensionalfunctions,which arediffi-
cult to visualizefor d.1. Therefore,one usually considers
the positionrepresentation,or the momentumrepresentation
[4], or sectionsthroughthe Wigner or Husimi function,see,
e.g.,Ref. [5].

Anotherapproachis theuseof representationson thebil-
liard boundary, acting as a global Poincarésection.In the
literatureone can find severalvariantsfor theserepresenta-
tions,see,e.g.,Refs.[6–8]. The reasonis, asemphasizedin

Ref. [7], that thereis no naturaldefinitionof a scalarproduct
for functionson the billiard boundary. This raisesthe ques-
tion whetheroneof thesedefinitionshasadvantagesover the
others,which will be addressedin the following.

The representationof eigenstateson the Poincarésection
playsan importantrole in severalapplications.For example,
it is usedto definescarmeasures[8,9], or to studyconduc-
tancefluctuations,seeRef. [10], andreferencestherein.Fur-
thermore,theserepresentationsare used to determinethe
coupling of leadsin opensystems[11]. Another important
applicationis the detectionof regionswhereeigenstateslo-
calize,see,e.g.,Refs.[12,13,11] (for analternativeapproach
basedon the scatteringapproachseeRefs. [14,15]). Repre-
sentationsof eigenstateson the Poincarésectionhavealso
beenusefulto understandthe behaviorof optical microreso-
nators,see,e.g.,Ref. [16], andreferencestherein.More gen-
erally, theapproachis not just applicablefor billiard systems
but it is alsousefulfor Poincarésectionsarisingfrom Bogo-
molny’s transferoperatorapproach[17].

In this paperwe first comparetwo differentdefinitionsfor
the PoincaréHusimi representation,discusstheir properties
(Sec.II ), andbasedon this we selectoneparticulardefinition
for the following. In Sec.III we derivethebehaviorof these
PoincaréHusimi functionswhenaveragedoverseveralener-
gies. In Sec. IV we establisha relation betweenthe well-
knownHusimi function in phasespaceandthePoincaréHu-
simi function on the billiard boundary. This allows for a
direct physical interpretationof the PoincaréHusimi func-
tions. Moreover, for ergodic systemsa quantumergodicity
theoremfor the PoincaréHusimi functionsis shown.

II. HUSIMI REPRESENTATION ON THE BOUNDARY

Let us first recall the definition and somepropertiesof
Husimi functions in phasespace.For a solution cn of the
Helmholtzequation(1) with energy E=kn

2 the Husimi func-
tion Hn

Bsp ,qd is givenby its projectionontoa coherentstate,
i.e.,

Hn
Bsp,qd: = S kn

2p
D2

ukcsp,qd,kn

B ,cnlVu2. s3d

Here
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kc1,c2lV: =E
V

c̄1sqdc2sqdd2q s4d

is the scalarproductin V, and c̄1 denotesthe complexcon-
jugateof c1.

The coherentstatesaredefinedas

csp,qd,k
B sxd: = S k

p
D1/2

sdet Im Bd1/4eikfkp,x−ql+s1/2dkx−q,Bsx−qdlg,

s5d

where sp ,qdPR
23R

2 denotesthe point in phase space
aroundwhich thecoherentstateis localized,andB is a sym-
metric complex232 matrix which determinesthe shapeof
the coherentstate.For the conventionalcoherentstatesone

hasB= is100

1 d andin generalonehastheconditionIm B.0,

i.e., kv , Im B vl.0 for all vPR
2\ h0j. Notice that because

the varianceof the coherentstatesis proportionalto k, all
Husimi functions are concentratedaroundthe energy shell
upu2=1 (and not around upu2=k2). By this it is possibleto
compareHusimi functionswith differentenergieskn

2, and,for
example,considertheir mean,seeEq. (7) below.

SuchHusimi functionscan be interpretedas probability
distributionson phasespace,becausetheysatisfytherelation

kcn,AcnlV =E
R

2
E
R

2
asp,qdHn

Bsp,qdd2pd2q + Oskn
−1d,

s6d

whereasp ,qd is a functionon phasespaceandA its quanti-
zation.This relationalsoshowsthat thechoiceof thematrix
B in the definition of the coherentstatesdoesnot affect the
leadingorderbehaviorof Hn

B asa probability density, since
the left handsideof Eq. (6) doesnot dependon B.

The averageof all Husimi functionsHn
Bsp ,qd up to some

energy k2=E convergesfor k→` to thenormalizedinvariant
measureon the energy shell,

lim
k→`

1

Nskd o
knøk

Hn
Bsp,qd =

1

p A
xVsqdds1 − upu2d. s7d

Here Nskd denotesthe spectral staircasefunction, Nskd :
= #hknøkj, xV is the characteristicfunction on V, andA is
the areaof V. The meanbehavior(7) is similar to the mean
behaviorof thespectralstaircasefunction,which is givenby
theWeyl formula,i.e., for k→` onehasNskd,sA/4pdk2. A
similar asymptoticbehaviorcanbe derivedfor the meanof
normalderivativefunctions,seeRef. [19] for a detaileddis-
cussion.

For billiards an extremelyusefulapproachfor describing
thedynamicsis theuseof a PoincarésectionP togetherwith
the correspondingPoincarémappingP. Usually the section
P : =hsq,pd uqP f0,Lg ,pP f−1,1gj is parametrizedby thear-
clengthcoordinateq along the boundary]V of the billiard
and the projection p of the (unit) momentump̂ after the
reflection on the tangentt̂sqd, i.e., p=kp̂ , t̂sqdl. By this the
billiard flow induces an area-preservingmap P:P→P,
wherethe invariantmeasureis given by dm=dq dp.

In order to havethe advantagesof sucha reducedrepre-
sentationin quantummechanicsaswell, oneis interestedin
a Husimi representationhnsq,pd on the PoincarésectionP

which is associatedwith an eigenstatecn. Sucha Poincaré
Husimi function shouldhavesimilar propertiesas the ones
expressedby relations(6) and(7) for theHusimi functionsin
phasespace,and our aim is to study to what extent this is
possible.More precisely, onewould like that for the Husimi
function on the billiard boundarya spectralaverage,

Hksq,pd: =
1

Nskd o
knøk

hnsq,pd, s8d

tendsto the invariant measureon P as k→`, in the same
way asin Eq. (7).

The Husimi representationon the billiard boundary is
usuallydefinedusingthenormalderivativeof theeigenfunc-
tion (hereaftercalledthe boundaryfunction),

unssd: = kn̂ssd, = cn„xssd…l, s9d

wherexssd is a point on the boundary]V, parametrizedby
thearclengths, andn̂ssd denotestheouternormalunit vector
to ]V at xssd. The boundaryfunctionsarea naturalstarting
point for defininga Husimi representation becausethey de-
terminethe eigenfunctionsuniquely, seeEq. (30). Thus the
boundaryfunctionsform a reduced representationof thesys-
tem. If an eigenfunctioncn is normalized,then the corre-
spondingboundaryfunctionun fulfils thenormalizationcon-
dition [21]

1

2
E

]V

uunssdu2kn̂ssd,xssdlds= kn
2. s10d

For alternativederivationsof Eq. (10) and more general
boundaryconditionsseeRefs.[22,23]. Notice that while the
integranddependson the chosenorigin for the vector xssd,
the integral is independentof this choice.

Startingfrom theboundaryfunction aHusimi functionon
the Poincarésectioncan be definedby a projectiononto a
coherentstate.Therearedifferentpossibilitiesto defineco-
herentstateson theboundaryof a billiard. A naturalchoiceis
the periodization of the usual one-dimensionalcoherent
states,

csq,pd,k
b ssd: = S k

p
D1/4

sIm bd1/4o
mPZ

eikfpss−q+mLd+sb/2dss − q + mLd2g,

s11d

where sq,pdP]V3R, and L denotesthe length of the
boundary. The parameterbPC, Im b.0, determinesthe
shapeof the coherentstate.Then for an eigenstatecn with
boundary function un a Husimi function on the Poincaré
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sectionP (or more precisely, on the cylindric phasespace
]V3R) canbe definedas [6,7]

hnsq,pd =
1

2pkn
UE

]V

c̄sq,pd,kn

b ssdunssddsU2

. s12d

The completenessrelationfor the coherentstatesgives

E
]V

E
R

hnsq,pddp dq=
1

kn
2E

]V

uunssdu2ds, s13d

so in view of relation (10) the PoincaréHusimi function
hnsq,pd will in generalnot be normalized.This canbe fixed
by dividing hnsq,pd by the factor s1/kn

2de uunssdu2ds, as was
done,for instance,in Refs.[12,13]. But later on we will see
that it is morenaturalto work with the non-normalizedHu-
simi functions(12).

A differentPoincarérepresentationhasbeenproposedin
Ref. [8],

h̃nsq,pd =
1

2kn
2

UE
]V

c̄sq,pd,kn

b ssdunssdkn̂ssd,xssdldsU2

E
]V

c̄sq,pd,kn

b ssdcsq,pd,kn

b ssdkn̂ssd,xssdlds

,

s14d

wherethe inclusionof the factor kn̂ssd ,xssdl is motivatedby
its appearancein the normalizationcondition (10). In order
to comparethe two definitions,we usethe fact that for large
k the coherentstatebecomesmore and more concentrated
around s=q and so kn̂ssd ,xssdl c̄sq,pd,kn

b ssd
,kn̂sqd ,xsqdlc̄sq,pd,kn

b ssd. This leadsto the relation

h̃nsq,pd , kn̂sqd,xsqdlhnsq,pd, s15d

betweenthe two definitionsfor Husimi functions.
Let usfirst illustratethebehaviorof theHusimi represen-

tationgivenby Eq. (12). As a concreteexamplewe consider
a memberof the family of limaçon billiards introducedby
Robnik [24,25], whoseboundaryis given in polar coordi-
natesby rswd=1+« cosswd, where «P f0,1g is the family
parameter. At «=0.3 the billiard has a mixed phasespace
(seeFig. 1 in Ref. [12]) and at «=1 it turns into the fully
chaotic(i.e., ergodic, mixing, …) cardioidbilliard. Because
of thesymmetryof thebilliard we considerthehalf-limaçon
billiard with Dirichlet boundaryconditionseverywhere.The
eigenvalueshave beencomputedusing the conformalmap-
ping technique [25,26] and then the boundary element
methodhas beenusedto computethe eigenfunctions(see
Ref. [27], andreferencestherein). Figure1 showsa compari-
son of eigenstatescnsqd with their Husimi representations
hnsq,pd asgray-scaleplotswith blackcorrespondingto large
values. For the computationsb: = is−1= i was chosen.In
(a) an eigenstatewhich is localizedarounda stableperiodic
orbit with periodthreeis shownwhich is clearly reflectedin
its PoincaréHusimi function to the right. The symmetry
hnsq,pd=hnsq,−pd is due to the time-reversalsymmetryof
the system and the symmetry hnsq,pd=hnsL−q,pd stems
from the reflection symmetry of the system.The plots in

Figs.1(b) and1(c) areat «=1.0, i.e., for thecardioidbilliard.
The eigenstateshownin (b) is localizedaroundan unstable
periodicorbit of periodtwo which is alsonicely seenin the
prominent peaks for the correspondingPoincaré Husimi
function. In (c) an irregular statein the cardioid billiard is
displayedwhich is spreadout over the full billiard andalso
hnsq,pd doesnot showany prominentlocalization.

Now we turn to a comparisonof thetwo PoincaréHusimi
representationsgiven by Eqs.(12) and (14). In Fig. 2 a plot
of Hksq,pd is shownwherek=125.27.. . is chosensuchthat
the first 2000statesaretakeninto account.Both definitions,
Eqs.(12) and(14), leadto a similar nonuniformbehaviorof
Hksq,pd in p direction.We will discussthis behaviorin more
detail in the following section.In addition we observethat
Hksq,pd has a minimum at sq,pd=s0,0d and sq,pd
=s±L /2 ,0d, which is due to the desymmetrization.Figure

2(b) showsa plot of H̃ksq,pd which is definedas Hksq,pd,

but insteadof hnsq,pd the functions h̃nsq,pd are used,see
definition (14). In this casewe observein addition a clear
variationin q. Thereasonfor this is thefactor kn̂sqd ,xsqdl as
explainedby relation (15). Another important point is that
thedefinition (14) dependson thechosenorigin asthefactor
kn̂sqd ,xsqdl does,andthereforethe integralsin Eq. (14) are
not invariantundera shift of theorigin. Becauseof thevaria-

tion of h̃nsq,pd in q and the dependenceon the origin we
preferthe definition (12) andwill usethis exclusivelyin the
following.

FIG. 1. Examplesof eigenstatescnsqd, shownto the left, andto
the right their PoincaréHusimi functionshnsq,pd. In (a) an eigen-
state sn=1952d localizing arounda regular orbit for the limaçon
billiard at «=0.3 is shown.In (b) and (c) two eigenstatesfor the
cardioidbilliard areshown(n=1817andn=1277).
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III. MEAN BEHAVIOR OF BOUNDARY
HUSIMI FUNCTIONS

In this sectionwe determinethe asymptoticbehaviorof
the mean Hksq,pd of the boundaryHusimi functions for
largeenergies.To this endwe will usethemethodsfrom our
previouswork [19]. Let us introduce

grsk,s,s8d: = o
nPN

unssdūnss8d

kn
2 rsk − knd, s16d

wherer is a smoothfunction whoseFourier transformr̂ is
supportedin a neighborhoodf−h ,hg, with h smallerthanthe
lengthof the shortestperiodicorbit of the billiard flow, and
satisfiesin addition r̂s0d=1. The function grsk,s,s8d was
studiedin Ref. [19] and an asymptoticexpansionwas de-
rived. Its leadingterm reads

grsk,s,s8d =
k

2p2E
0

2p

kn̂ssd,êswdl

3kn̂ss8d,êswdleikkxssd−xss8d,êswdldwf1 + Osk−1dg,

s17d

where xssd denotesthe position vector on the boundaryat
point s, n̂ssd denotesthe outer unit normal vector to the
boundaryat s, and êswd=scosw ,sin wd is the unit vector in
direction w. In generalthe right handside of Eq. (17) is a
sumof oscillatingtermscorrespondingto reflectedorbits,the
condition on the supportof the Fourier transformof r is
necessaryin order that only oneterm contributes.

Multiplying Eq. (17) with c̄sq,pd,k
b ssd andcsq,pd,k

b ss8d andin-
tegratingover s ands8 leadsto

o
nPN

rsk − kndhnsq,pd

=
k2

4p3E
0

2p UE
]V

kn̂ssd,êswdl eikkxssd,êswdlc̄sq,pd,k
b ssddsU2

dw

3f1 + Osk−1dg, s18d

where we have used icsq,pd,k
b −csq,pd,kn

b i2øCsk−knd2/ sk+knd2

in order to obtain the left handside.The s integral can be
computedby the methodof stationaryphase,

E
]V

kn̂ssd,êswdleikkxssd,êswdlc̄sq,pd,k
b ssdds

=S k

p
D1/4

sIm bd1/4E
−`

`

kn̂ssd,êswdl

3eikfkxssd,êswdl−pss−qd−sb̄/2dss − qd2gds

= S4p

k
D1/4sIm bd1/4

fib̃g1/2
kn̂sqd,êswdl

3eikfkxsqd,êswdl+s1/2b̃dhp − kt̂sqd,êswdlj2gf1 + Osk−1/2dg,

s19d

with

b̃ = b̄ + ksqdkn̂sqd,êswdl, s20d

whereksqd is the curvatureof the boundaryat q. Inserting
this resultwe obtain

o
nPN

rsk − kndhnsq,pd

=
2k2

s2pd3S4p

k
D1/2 E

0

2p sIm bd1/2

ub̃u
ukn̂sqd,êswdlu2

3e−ksIm b/ub̃u2dfp − kt̂sqd,êswdlg2 dwf1 + Osk−1/2dg,

s21d

and for upu,1 the w integral can again be solved by the
methodof stationaryphase(noticethat therearetwo station-
ary points) which yields

FIG. 2. Plot of Hksq,pd for k=125 using the first 2000 eigen-
statesin the limaçonbilliard of odd symmetryat «=0.3. In (a) the
resultfor Hksq,pd usingdefinition (12) for hnsq,pd is shownandin

(b) a correspondingH̃ksq,pd using definition (14) is displayed.In
addition to the symmetryrelateddips at sq,pd=s0,0d and sL /2 ,0d
oneclearlyseesthevariationin p directionin bothcasesandin (b)

we, moreover, observea variation in q.
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o
nPN

rsk − kndhnsq,pd =
k

p2
Î1 − p2f1 + Osk−1/2dg. s22d

By integratingthis equation,andusinga TauberianLemma
asin proofsof theWeyl formula(see,e.g.,Ref. [28], Lemma
17.5.6), we finally obtain

Hksq,pd ;
1

Nskd o
knøk

hnsq,pd =
2

Ap
Î1 − p2 + Osk−1/2d.

s23d

In thederivationof Eq. (22) from Eq. (21) we haveassumed
that upu ,1 becausethenthestationarypointsarenondegen-

erate.For upu .1 the stationarypoints becomecomplexand
the integral is exponentiallydecreasingfor k→`.

Previously, sucha Î1−p2 behaviorappearedin the con-
text of Fredholm methodsfor PoincaréHusimi functions
[30] and was also obtainedin connectionwith the inverse
participationratio [9].

Next we want to derive a uniform approximationwhich
describesthe meanbehaviorof the Husimi functions near
upu =1 and the crossoverfrom the regime upu ,1 to the ex-
ponentialdecreasefor upu .1. We will studythe casep<1,
thecasep<−1 is completelyanalogous.Let w0 betheangle
correspondingto thedirectionof t̂sqd andexpandingtheam-
plitude andphasefunction in Eq. (21) aroundw0 leadsto

o
nPN

rsk − kndhnsq,pd =
4k2

s2pd3S4p

k
D1/2E

0

` sIm bd1/2

ub̃u
w2e−ksIm b/ub̃u2dsp − 1 + w2d2dw f1 + Osk−1/2dg

=
4k2

s2pd3S4p

k
D1/2 E

0

` sIm bd1/2

ub̃u
x1/2e−ksIm b/ub̃u2dsp − 1 + xd2dxf1 + Osk−1/2dg

=e−ksIm b/ub̃u2dsp − 1d2s2kd3/4

2p5/2 S ub̃u2

Im b
D1/4

E
0

`

x1/2e−hs2k Im bd1/2/ub̃ujsp−1dx−x2/2dxf1 + Osk−1/2dg

=
s2kd3/4

s2pd2 e−ksIm b/2ub̃u2ds1 − pd2S ub̃u2

Im b
D1/4

D−3/2S s2k Im bd1/2

ub̃u
sp − 1dDf1 + Osk−1/2dg, s24d

whereD−3/2sxd denotesthe paraboliccylinder function and
we have usedone of the standardintegral representations,
see,e.g.,Ref. [31].

This resultwasderivedunderthe assumptionp<1 such
that sp2−1d<2sp−1d. Substitutingsp−1d by sp2−1d /2 al-
lows us to combinethe resultsfor the differentp regionsin
oneformula,

o
nPN

rsk − kndhnsq,pd =
k

p2Fkspdf1 + Osk−1/2dg, s25d

where

Fkspd =
1

2s2kd1/4e−ksIm b/8ub̃u2ds1 − p2d2S ub̃u2

Im b
D1/4

3D−3/2S sk Im bd1/2

21/2ub̃u
sp2 − 1dD . s26d

For upu,1 one has Fkspd=Î1−p2+Osk−1d, since D−3/2sxd

,23/2uxu1/2ex2/4 for x→−`. Recall that b̃ is definedin Eq.
(20). In Fig. 3 we compare the expression (26) with

ub̃u2/ Im b=1 for differentvaluesof k. It is clearlyvisible that
the asymptoticresult is reachedslowly with increasingk.

IntegratingEq. (26), analogousto the transitionfrom Eq.
(22) to Eq. (23), one can comparethe uniformized mean
behaviorwith the numerical result. In Fig. 4 a sectionof

Hksq,pd at q=3.0 is shown for k=125, comparewith Fig.
2(a). The remainingdifferencesaredueto higherordercor-
rections.

In the derivation of the results (22) and (25) we have
implicitly assumedthat the boundaryof V is sufficiently
smooth,becauseonly then we can usethe stationaryphase
formula. But it is easyto extendthe resultsto the casethat
theboundaryis only piecewisesmooth.Sincewe multiply in
Eq. (18) by a coherentstatecenteredin q, all the following
computationsremainvalid if q is in the smoothpart of the
boundary, sincethecontributionsfrom thesingularpointsare
exponentiallysuppressedthen.So it could only happenthat
someadditionalmasssitsat thesingularpointsof thebound-
ary, i.e., we have

lim
k→`

1

Nskd o
knøk

hnsq,pd =
2

Ap
Î1 − p2 + mSsp,qd, s27d

wheremSsp,qddp dq is a measuresupportedon the singular
part of the boundary(i.e., if sp,qdPsuppmS thenq is in the
singularpartof theboundary). We wantto showthatmS=0 if
the billiard is star shaped.We first show that mSù0, let mS
=mS

++mS
− be thedecompositioninto its positiveandnegative

parts,andlet S± bethesupportof mS
±. We definefor any«.0

S«
− : =hz; infsPS− uz−su j, and with lim«→0eS

«
− m+dpdq=0 and

lim«→0eS
«
−Î1−p2dpdq=0 we get
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lim
«→0

lim
k→`

1

Nskd o
knøk

E
S«

−
hnsq,pddpdq=E

S−
mS

−. s28d

But theright handsideis negative,whereastheleft handside
is positive, and thereforemS

−=0 and mSù0. Now the com-
pletenessrelation for the coherentstatesand the normaliza-
tion (10) gives limkn→`

1
2 eekn̂sqd ,xsqdlhnsq,pddpdq=1, and

together with the relation 1/2eekn̂sqd ,xsqdl
3s2/ApdÎ1−p2dpdq=1 this yields

E
−1

1 E
]V

kn̂sqd,xsqdlmSsp,qddq dp= 0. s29d

But for a star-shapedbilliard onecanchoosetheorigin of the
coordinatesystemsuchthat kn̂sqd ,xsqdl.0 for all qP]V,
and so mS=0. ThereforeEqs. (22) and (25) remaintrue for
star-shapedbilliards with piecewisesmoothboundarywith
the only possiblemodificationthat the error term might de-
cay moreslowly at the singularpointsof the boundary.

IV. FROM HUSIMI FUNCTIONS IN PHASE SPACE
TO HUSIMI FUNCTIONS ON THE BOUNDARY

In this section we derive a direct relation betweenthe
Husimi function in phasespaceandthe oneon the Poincaré
section,as given by Eq. (12). By this we obtain a physical
interpretationof the PoincaréHusimi representation.For the
calculationsin this sectionwe haveto assumethat the bil-
liard domainV is convex.Let c be a solutionof the Helm-
holtz equation(1) in V which satisfiesDirichlet boundary
conditionon ]V. Any suchfunction canbe representedas

csxd = −E
]V

Gk„x − xssd…ussdds, s30d

where Gksx−yd is a free Greensfunction and ussd is the
normalderivativeof c on theboundary. Notice that theright
handsideof Eq. (30) givesan extensionof csxd to R

2 with

csxd=0 for xPR \V̄ (this follows from Green’s formula).
Let cz be a coherent state (5) centered at z=sp ,qd

PT*
R

2, for reasonsof simplicity we restrictourselvesto the

caseof a nonsqueezedsymmetricalstate,i.e., B= i s1 0

0 1d,
andomit the index B in the following. We want to compute
the overlapkc ,czl given by

kc,czlV = kc,czlR2 = −E
]V

kGk„·−xssd…,czlR2ūssdds,

s31d

wherewe haveusedtheaforementionedextensionof csxd to
R

2 given by Eq. (30). We now observethat

kGk„·−xssd…,czlR2 = Gk
†cz„xssd…, s32d

where

Gk = lim
«→0

− 1

D + k2 + i«
s33d

is the resolventoperator, whosekernel is the Greensfunc-
tion. From Eq. (32) we see that the function Gk

†cz is re-
stricted to the billiard boundary. For the resolventoperator
we usethe integral representation

Gk
† =

i

k
E

−`

0

eikt Ustddt, s34d

whereUstd=esi/kdtD is the free time evolution operatorwith
1/k playingtherole of ", andinsertingEq. (34) into Eq. (32)

we obtain

kGk„·−xssd…,czlR2 =
i

k
E

−`

0

eikt Ustdcz„xssd…dt. s35d

But the free time evolutionof a coherentstatecenteredin
z is well known (see,e.g., Refs. [32,33]) to give again a
coherentstate,centeredaroundtheimageof z undertheclas-
sical flow andwith transformedvariance,

FIG. 3. Comparisonof the uniformized asymptoticbehavior

Fkspd, seeEq. (26), with ub̃u2/ Im b=1 and for k=10,30,500. The
asymptoticsemicirclebehavioris reachedslowly.

FIG. 4. Thefull curveshowsa sectionof Hksq,pd at q=3.0with
k=125 for the desymmetrizedlimaçon billiard, seeFig. 2(a), and
the secondline is the uniformizedmeanbehavior. The remaining
deviationsarecausedby higherordercorrections.
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Ustdczsxd

= eikupu2tS k

p
D1/2 1

1 + 2it
eikfkp,x−qstdl+fi/h2s1+2itdjg„x − qstd…2g,

s36d

with qstd=q+2tp. Therefore,Gk
†czsxd hasthe structureof a

Gaussianbeamemanatingfrom the point q in direction p
backwardsin time. If we introduce anew coordinatesystem
x=sxi ,x'd centeredat q with xuu parallelto p andx' perpen-
dicular to p, we obtainby a stationaryphaseapproximation
that for x' and1− upu small (i.e., nearthe energy shell)

Gk
†czsxd =

i
Î2ks1 + ixid1/2

eikfxi+hi/„2s1+ixid…jx
'

2 +si/2ds1 − upud2g

3f1 + Osk−1/2dg s37d

holds, where we have assumedthat xi ,0. For xi <0 and
xi .0 the integral leadsto an error function which describes
the transition from the exponentiallydecayingregimewith
xi .0 to the regimexi ,0 in Eq. (37). For up u =1 the result
reads

Gk
†czsxduupu=1 =

i
Î2ks1 + ixid1/2

eikfxi+hi/„2s1+ixid…jx
'

2 g

3
1

2
erfcSÎk

2

xi

s1 + ixid1/2Df1 + Osk−1/2dg,

s38d

whereerfcszd denotesthecomplementaryerror function,and
the absolutevalueof this expressionis shownin Fig. 5.

Next we wantto evaluatethis expressionon theboundary.
To this end,let xsqd be the point of intersectionbetweenthe
boundaryandthe line from q in direction−p. (Herewe need
theassumptionthat thebilliard domainV is convex,in order

that there is only one such point.) Then we obtain with
xssd=xsqd+ t̂sqdss−qd−ksqd /2n̂sqdss−qd2+O(ss−qd3) that

xi = uq − xsqdu + pss− qd −
ksqd

2
s1 − p2d1/2ss− qd2

+ O„ss− qd3…, s39d

x' = s1 − p2d1/2ss− qd + O„ss− qd2…, s40d

wherep: =kp̂ , t̂lP f−1,1g. Insertingtheseexpressionsin Eq.
(37) gives

kGk„·−xssd…,czlR2

=
ip1/4

Î2k5/4

1

s1 − p2d1/4eikuq−xsqdu+iue−sk/2ds1 − upud2csq,pd,k
b ssd

3f1 + Osk−1/2dg, s41d

wherecsq,pd,k
b ssd is a coherentstateon the boundary, as de-

fined in Eq. (11), with varianceb= is1−p2d / f1+i uq−xsqdug
−ksqds1−p2d1/2 and eiu=fuq−xsqdu+ ig1/2/ fuq−xsqdu2+1g1/4.
Notice that althoughwe startedwith a symmetriccoherent
state in the interior, the projected coherentstate on the
boundary is no longer symmetric and has a nontrivial
squeezingparameterb which dependson the positionof the
original state,theangleof intersectionof theray in direction
−p with the boundary, andthe curvatureof the boundary.

If we insertthe expression(41) into Eq. (31) we obtaina
semiclassicalrelationbetweentheprojectionof aneigenstate
onto a coherentstatein the interior andthe projectionof the
normal derivativeon the boundaryonto a coherentstateon
the boundary,

kcn,czlV = −
ip1/4

Î2 kn
5/4

1

s1 − p2d1/4

3eiknuq−xsqdu+iue−skn/2ds1 − upud2

3kun,csq,pd,kn

b l]Vf1 + Oskn
−1/2dg. s42d

In turn from this we obtainthe centralresultof this section,
a directrelationbetweenthecorrespondingHusimi functions

Hnsp,qd = dkn
s1 − upud

1

4

hnsq,pd
Î1 − p2

f1 + Oskn
−1/2dg, s43d

with

dkn
s1 − upud: = Skn

p
D1/2

e−kns1 − upud2. s44d

Let usfirst discussthemeaningof theindividual termson
the right handsideof Eq. (43). The function dkn

s1−up u d is a
delta sequencefor kn→`, and describesthe localizationof
Hnsp ,qd aroundtheenergy shell.Thefactor1/Î1−p2 comes
from the projectionof the Gaussianbeamto the planetan-
gent to the boundary, see Fig. 5. The right hand side of
Eq.(43) hasstill a dependenceon thephasespacepoint sp ,qd
on the left handsidethroughtheparameterb in thecoherent
statein Eq. (41). But aswe will discussafterEq. (45) below
(and in more detail in the Appendix), when integratingthe

FIG. 5. Illustration of a Gaussianbeamas given by Eq. (38)

insidethe limaçonbilliard at «=0.3.
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Husimi function againstan observablethe result doesnot
dependon b in leadingorder.

As in the precedingsection we have assumedthat the
boundaryis smooth.But by the localizationof the coherent
statesthe resultscan be againextendedto the casethat the
boundaryis piecewisesmooth,thenEq. (43) remainsvalid if
q is not a singularpoint of the boundary.

ThedirectconnectionbetweentheHusimi function in the
interior and the one on the boundary, given by Eq. (43),
allowsusto deriveinterestingrelationsbetweenthetwo Hu-
simi functionsandcanbe usedto give a direct physicalin-
terpretationof the Husimi function on the boundary. From
Eq. (6) togetherwith relation (43) we obtain

kcn,AcnlV =E
−1

1 E
]V

hnsq,pd

4Î1 − p2
kalsq,pdlsq,pddq dp

+ Oskn
−1/2d, s45d

where lsq,pd denotesthe length of a ray emanatingfrom
qsqdP]V in the direction determinedby p until it hits the
boundaryagain.Furthermore,

kalsq,pd: =
1

lsq,pd
E

0

lsq,pd

a„qsqd + têsq,pd,êsq,pd…dt

s46d

is the meanvalue of the classicalobservablebetweentwo
bounces,where êsq,pd denotesthe unit vector at qsqd in
directionp. A relationof thesametypeasEq. (45) hasbeen
obtainedrecentlyby different methodsin Ref. [34] for cer-
tain localizedfunctionson the boundary. Equation(45) now
showsthat the dependenceon the parameterb in the coher-
entstatesusedto definehn canbediscardedin leadingorder,
seetheAppendixfor a detaileddiscussion.This meansthatif
we move from the pointwise relation (43) to the integral
relation(45), we gainthefreedomto definetheHusimi func-
tions on the boundarywith an arbitraryparameterb.

We concludefrom relation (45) that

hnsq,pd: =
1

4

hnsq,pd
Î1 − p2

s47d

is a reductionof the probability densitydefinedby the Hu-
simi functionon thewholephasespaceto theboundary. So if
one wantsa properrepresentationof eigenfunctionson the
Poincarésectionwhich is anapproximateprobabilitydensity,
andwhosegeneralpropertiesareindependentof the billiard
shape,thenEq. (47) seemsto bethebestchoice.Of coursea
drawbackof the function (47) is the singularityof 1/Î1−p2

at p= ±1 which is relevantat any finite energy. So for nu-
mericalcomputationsthedefinition (12) is moresuitableand
the importanceof Eq. (47) lies in thephysicalinterpretation.

In particular, relation (45) implies an asymptoticnormal-
ization conditionon hnsq,pd,

E
−1

1 E
]V

hnsq,pdlsq,pddq dp= 1 +Oskn
−1/2d. s48d

Since lsq,pddq dp is the phasespacevolume in the energy
shell correspondingto the volume element dq dp of the

Poincarésection,the factor lsq,pd can be viewed as a nor-
malizationwhich makeshnsq,pd independentof the billiard
shape, i.e., for any D,]V3 f−1,1g, we get that
eD hnsq,pdlsq,pddq dp is the probability for the particle in

the state cn to be found in the region D̂ : =P−1D on the
energy shell,wherethemapP describestheprojectionof the

domainD̂ to the boundary.
We would like to closethis sectionwith someremarkson

theimplicationsof quantumergodicity to thebehaviorof the
PoincaréHusimi functions.If theclassicalbilliard flow in V
is ergodic, thenthequantumergodicity theorem[35,36] (see
Ref. [20] for an introduction) tells us that almostall Husimi
functionsHnsp ,qd tend weakly to 1/2p A. Our result (43)

then immediatelyimplies that in the semiclassicallimit al-
most all Poincaré Husimi functions hnsq,pd tend to
f2/p AgÎ1−p2 in the weaksense.So this provesa quantum
ergodicity theoremfor the boundaryHusimi functions.Re-
cently relatedresultshave beenobtainedestablishingquan-
tum ergodicity for observableson the Poincaré section
[35,37,38]. Notice that theÎ1−p2 behavioris alsovisible in
the plot of hnsq,pd for the irregularstateshownin Fig. 1(c)

for the ergodic cardioidbilliard.

V. SUMMARY

Poincarérepresentationsof eigenstatesplay an important
role in severalareas.However, a priori there is no unique
way for their definition. In this paperwe singleout the defi-
nition given by Eq. (12) andshowthat the asymptoticmean
behaviorof theseHusimi functionsis proportionalto Î1−p2.
For this asymptoticsemicirclebehaviorwe in additionderive
a uniform asymptoticformula. Furthermorewe establisha
direct relation betweenthe Husimi function in phasespace
andthePoincaréHusimi function (12) on thebilliard bound-
ary. By this a physically meaningfulinterpretation,seeEq.
(43), of the previously ad hoc chosendefinition for the
PoincaréHusimi function is obtained.Namely, the Poincaré
Husimi functionhnsq,pd canbeviewedasa probabilityden-
sity on the Poincarésection.For ergodic systemsour result
implies a quantumergodicity theoremfor the PoincaréHu-
simi functions,i.e., almostall PoincaréHusimi functionsbe-
come equidistributedwith respectto the appropriatemea-
sure.
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APPENDIX: HUSIMI FUNCTIONS
AND EXPECTATION VALUES

In this appendixwe recall somefactsaboutHusimi func-
tions, see,e.g.,Ref. [18] and the contributionby Helffer in
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the samevolume.With this information we discussthe de-
pendenceof the Husimi functions on the parameterb, as
given in the definition (11) of the coherentstates.In the
following we will usethe notationz=sp,qd. A Husimi func-
tion is a smoothedversionof the Wigner function,

k

2p
ukcz,k

b ,ulu2 =E Wfcz,k
b gsz8dWfugsz8ddz8, sA1d

where Wfugsz8d denotesthe Wigner function of u. The
Wigner function of the coherent state cz,k

b is given by
Wfcz,k

b gsz8d=sk/pde−kkz8−z,gsz−z8dl+Ose−c/kd, where

g = S 1/Im b − Re b/Im b

− Re b/Im b Im b + sRe bd2/Im b
D . sA2d

Relation(A1) holdsaswell if b dependson z.
We will now usethefact thatif A is theWeyl quantization

of a function aszd, see, e.g., Ref. [29], then ku,Aul
=easzdWfugszddz. Using this andEq. (A1) oneobtains

E aszd
k

2p
ukcz,k

b ,ulu2dz=E E aszdWfcz,k
b gsz8dWfugsz8ddzdz8

= ku,Ãul, sA3d

whereÃ is the Weyl quantizationof the function

ãszd =E asz8dWfcz8,k
b gszddz8. sA4d

If we assumethat the matrix g is eitherconstant,or satisfies
uu]z

agszd u uøCa for all aPN
2 and zPsuppa, which is

equivalent to the requirement that bszd is smooth and
Im bszd.0 for zPsuppa, then the method of stationary
phasegives

ãszd = aszd +
1

k
Rsk,zd, sA5d

whereRsk,zd is a smoothboundedfunctionswith bounded
derivatives. Hence the Weyl quantization of Rsk,zd is
boundedby the Calderon-Vallaincourt theorem (see Ref.

[29]), so uuA−Ã u uøC/k andtherefore

UE aszd
k

2p
ukcz,k

b ,ulu2 dz− ku,AulU ø C/k. sA6d

Since ku,Aul is independentof b we havefor any smooth

bszd ,b̃szd with Im bszd.0, Imb̃szd.0 for zPsuppa the es-
timate

UE aszd
k

2p
ukcz,k

b ,ulu2 dz−E aszd
k

2p
ukcz,k

b̃ ,ulu2dzU ø C/k.

sA7d

This showsthat in the definition of the family of coherent
states we can choose any nondegenerate,possibly
z-dependent,parameterb and still get in leadingorder the
sameprobability distribution definedby the corresponding
Husimi densities.In this sensethedependenceof theHusimi
functionson b is weak.

Let us now look at relations(43) and (45) from the per-
spectiveof the precedingdiscussion.In the Husimi function
appearingon the right handsideof Eq. (43) the parameterb
is givenby b= is1−p2d / f1+i uq−xsqd u g−ksqds1−p2d1/2, so it
dependson z=sp,qd and additionally on q, and it degener-
atesfor p→ ±1. If theclassicalobservablea in relation(45)

hassupportin the interior of V, then kal is supportedaway

from p= ±1 andwe canreplaceb by anynondegenerateb̃. If
the supportof a includesthe boundary]V, then kal is not
necessarilyzeroat p= ±1 andwe canonly replaceb by one
which has the sametype of behaviorfor p→ ±1, suchas,
e.g.,bs0dsp,qd= is1−p2d−ksqds1−p2d1/2.
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mixed phase space. If this condition is not fulfilled chaotic eigenstates sub-

stantially extend into a regular island. Wave packets started in the chaotic

sea progressively flood the island. The extent of flooding by eigenstates and

wave packets increases logarithmically with the size of the chaotic sea and

the time, respectively. This new effect can be observed for island chains

with just 10 islands.
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Flooding of Chaotic Eigenstates into Regular Phase Space Islands
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We introduce a criterion for the existence of regular states in systems with a mixed phase space. If this
condition is not fulfilled chaotic eigenstates substantially extend into a regular island. Wave packets
started in the chaotic sea progressively flood the island. The extent of flooding by eigenstates and wave
packets increases logarithmically with the size of the chaotic sea and the time, respectively. This new
effect is observed for the example of island chains with just ten islands.

DOI: 10.1103/PhysRevLett.94.054102 PACS numbers: 05.45.Mt, 03.65.Sq

One of the cornerstones in the understanding of the
structure of eigenstates in quantum systems is the semi-
classical eigenfunction hypothesis [1]: in the semiclassical
limit the eigenstates concentrate on those regions in phase
space which a typical orbit explores in the long-time limit.
For integrable systems these are the invariant tori. For
ergodic dynamics the eigenstates become equidistributed
on the energy shell [2]. Typical systems have a mixed
phase space, where regular islands and chaotic regions
coexist. In this case the semiclassical eigenfunction hy-
pothesis implies that the eigenstates can be classified as
being either regular or chaotic according to the phase-
space region on which they concentrate. Note that this
may fail for an infinite phase space [3].

In this Letter we study mixed systems with a compact
phase space, but away from the semiclassical limit. Here
the properties of eigenstates depend on the size of phase-
space structures compared to Planck’s constant h. In the
case of 2D maps this can be very simply stated [4]: a
regular state with quantum number m � 0; 1; . . . will con-
centrate on a torus enclosing an area �m� 1=2�h, as can be
seen in Fig. 1(c).

We show that this WKB-type quantization rule is not a
sufficient condition. We find a second criterion for the
existence of a regular state on the mth quantized torus,

�m <
1

�H

: (1)

Here �H � h=�ch is the Heisenberg time of the chaotic sea
with mean level spacing �ch, and �m is the decay rate of
the regular state m if the chaotic sea were infinite.
Quantized tori violating this condition do not support
regular states. Instead, chaotic states flood these regions;
see Fig. 1(a). In terms of dynamics we find that wave
packets started in the chaotic sea progressively flood the
island as time evolves. Partial and even complete flooding
is possible, depending on system properties. These findings
are relevant for islands surrounded by a large chaotic sea.

We numerically demonstrate the flooding and the dis-
appearance of regular states for the important case of island
chains. In typical Hamiltonian systems they appear around
any regular island. On larger scales they are relevant for

Hamiltonian ratchets [5], the kicked rotor with accelerator
modes [6], and the experimentally [7–9] and theoretically
[10] studied kicked atom systems. The flooding of regular
islands by chaotic states is a new quantum signature of a
classically mixed phase space. This phenomenon shows
that not only local phase-space structures, but also global
properties of the phase space, determine the characteristics
of quantum states.

Before we explain the origin of Eq. (1), we numerically
study its consequences. We choose a system, where we can
change �H by increasing the system size without affecting
the rates �m. A one dimensional kicked system

H�p; x; t� � T�p� � V�x�
X

n

��t� n�; (2)

has a stroboscopic time evolution given by the mapping,
xt�1 � xt � T0�pt�; pt�1 � pt � V0�xt�1�. The phase
space is compact with periodic boundary conditions for
xt 2 �0;M	 and pt 2 ��1=2; 1=2	. Choosing the functions
V0�x� and T0�p� appropriately [11] we get a chain of M
islands, one per unit cell (see Fig. 1). The islands cover a

m = 4 m = 3 m = 2 m = 1 m = 0

max0

(a) M = 1597 (b)

(c) M = 1

FIG. 1 (color online). (a) Husimi representation of a chaotic
state flooding the regular islands. Shown are three phase-space
cells out of M � 1597. The full curves are classical tori close to
the border of the regular islands and the black dots are iterates of
a chaotic orbit. This eigenstate extends well into the islands,
while having no weight in their central region. (b) Average of the
eigenstate over all M cells. (c) For M � 1 eigenstates concen-
trate either on the chaotic component (left) or over the mth
quantized regular torus. For all plots heff 
 1=30 is used.
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relative area Areg � 0:215 and have fine structure close to

their boundary that is negligible for the quantum properties
studied here. Points inside an island are mapped one unit
cell to the right; i.e., the island chain is transporting.

The eigenstates j i of the quantum system are deter-

mined by the eigenvalue equation, Ûj i � ei’j i, where

Û is the unitary time-evolution operator over one time

period, Û � exp��2�iT�p̂�=heff	 exp��2�iV�x̂�=heff	.
The spatial periodicity after M cells requires an effective
Planck’s constant heff � M=N, with incommensurate in-
tegers M and N. We choose for M=N the rational approx-

imants of heff � 1=�d� �� with � � �
���

5
p

� 1�=2 the
golden mean and, e.g., d � 29 in Fig. 1. This ensures
that there are no undesired periodicities and that heff is
approximately constant when varying M. Moreover, the

operator Û reduces to an N � N periodic band matrix.
Using the symmetrized version of the map and making a
unitary transformation to a band matrix we are able to

calculate the eigenstates j i of Û up to N 
 105.
For M � 1, Fig. 1(c) shows a typical chaotic eigenstate

and five regular states. The chaotic state extends over the
chaotic phase-space component and the regular states con-
centrate on quantized tori. The eigenstates are represented
on the classical phase space by the Husimi distribution,
where for visualization we use tilted coherent states
adapted to the shape of the island. For larger system sizes
we find that chaotic states flood the islands of classically
regular motion. Figure 1(a) shows such a state for M �
1597 that clearly ignores the outer tori of the island, which
for M � 1 act as barriers for chaotic states [Fig. 1(c), left].
In the central part of the island, however, this state has
essentially no weight. This partial flooding of the island is
observed even better in Fig. 1(b), where an average of the
Husimi function of this state is taken over all M unit cells.
The almost constant value in the chaotic component ex-
tends well into the island. Inside the island, clearly away
from its outer boundary, the Husimi function sharply drops
to zero.

For a quantitative description of this flooding we now
analyze the weight W of each eigenstate inside the islands.
We determine this weight by integrating the normalized
Husimi function (calculated on a 30� 30 grid per unit cell)
over the islands. In the semiclassical limit, heff ! 0, regu-
lar states have W � 1, while chaotic states have W � 0.
The distribution P�W� of these weights for all eigenstates is
shown in Fig. 2 for various system sizes and heff 
 1=10
[12]. ForM � 1 we observe, as expected, a main peak near
W � 0 coming from the chaotic eigenstates and two dis-
tinct peaks at larger W from the two regular states; see

M

(b)

10946

6765

4181

2584

1597

987

610

377

233
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1

> 5

0

m = 0m = 1

P (W ) (a)

0

10

P (W )

W

(c)

0

40

0.0 Areg 0.5 1.0

FIG. 2 (color online). Distribution P�W� of the weights W of
the eigenstates in the regular islands for heff 
 1=10. (a) M � 1:
the main peak near W � 0 is due to chaotic states and two
further peaks are due to regular states m � 0; 1 (see the insets).
(b) For increasing M the main peak shifts to larger values of W
(white line) and the two peaks from the regular states disappear
sequentially. (c) M � 10 946: a narrow peak remains around
W � Areg. Three phase-space cells of an eigenstate show a

complete flooding of the islands.
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FIG. 3. Fraction freg of regular states vs system size M for
heff 
 1=5 (triangles), 1=10 (circles), and 1=20 (squares). An
approximately linear decrease with lnM to freg � 0 can be seen

(lines are a guide to the eye). Already for small system sizes
M 
 10 and small heff a significant reduction of regular states is
observed.

PRL 94, 054102 (2005)
P H Y S I C A L R E V I E W L E T T E R S week ending

11 FEBRUARY 2005

054102-2

159



Fig. 2(a). A remarkable shift of the main peak of P�W� to
larger values ofW can be observed in Fig. 2(b). This shows
that by enlarging the system size M all chaotic states
continuously increase their weight inside the regular is-
lands. This increase stops when the center of the main peak
reaches W � 0:22, which corresponds to the area Areg of

the island. For these system sizes all states completely
flood the island [Fig. 2(c), inset], as observed in Ref. [3].

What happens to the regular states as M is increased?
Figure 2(b) shows that the corresponding peaks in the
distribution P�W� disappear. Notably, the peak for m � 0
is much longer visible than the peak for m � 1. The
nemesis of the regular states can be quantified by deter-
mining their fraction freg as a function ofM. To this end we

define a state to be regular when its weight W inside the
islands exceeds 50%, where the exact criterion does not
affect our analysis. Figure 3 shows that the fraction freg
decreases from approximately Areg all the way to zero. The

decay is slower for smaller heff .
Remarkably, in Fig. 3 we see strong signatures of the

decrease of freg already for small system sizes M 
 10.

This holds even for small values of heff , where the com-
plete flooding of the island is numerically not accessible.
Similarly, a shift of the main peak in Fig. 2(b) is clearly
detectable for such small systems. We thus find that partial
flooding of regular islands is easily observable.

Why do chaotic states flood the islands of regular mo-
tion, and why do regular states disappear as the system size
is increased? Let us consider a single regular island
coupled by tunneling to a chaotic sea. If the chaotic sea
is infinite, its states form a continuum. A regular state on
the mth quantized torus has a decay rate �m to the con-

tinuum [13]. Thus, it is not an eigenstate, but it is dissolved
into chaotic states. As a consequence, the chaotic states
occupy the mth quantized torus of the island. If the chaotic
sea is finite, but large enough, this decay of the mth regular
state may still take place. The condition for the decay is
that during the time 1=�m the discrete chaotic spectrum is
not resolved, leading to 1=�m � h=�ch � �H [15]. On the
other hand, if the chaotic sea is so small that during the
time 1=�m the chaotic spectrum is well resolved, then the
regular state m does not decay, yielding Eq. (1). Note that
�m increases monotonically with m; as for larger m, the
mth torus is closer to the boundary of the island.

The quantized tori of an island can thus be grouped into
two classes: (i) the inner tori, m � 0; . . . ; m� � 1, where
condition (1) is fulfilled and regular states exist and (ii) the
outer tori,m � m�; . . . ; mmax � 1, where Eq. (1) is violated
and which is flooded by chaotic states. Here mmax is the
number of quantized tori at a given heff . We find for the
fraction freg of regular states and the weight Wch of chaotic

states inside the island

freg � Areg

m�

mmax

; Wch � Areg

�

1� m�

mmax

�

: (3)

Variation of the system size M in our example allows us
to change the Heisenberg time �H �M, while keeping the
rates �m fixed. Enlarging M leads via Eq. (1) to a decrease
ofm�, starting fromm� � mmax � 1 all the way tom� � 0.
Together with Eq. (3) this explains Fig. 2(b), where the
regular state with m � 1 disappears before the m � 0 state
and the weight Wch grows until Wch � Areg, where the

island is completely flooded; see Fig. 2(c). This also ex-
plains the decrease of freg from Areg to 0, as observed in

Fig. 3. This decrease occurs over an exponentially large
range in M, due to the roughly exponential dependence of
�m on m. A quantitative understanding requires a theory
for the decay rates �m, which is the subject of current
research on dynamical tunneling [16,17]. Note that in the
case of chaos-assisted tunneling the splitting of symmetry
related regular states fluctuates strongly, depending on
individual chaotic states. In contrast, the decay rate �m
describes an average tunneling to a continuum of chaotic
states.

Variation of heff affects both �m and �H in Eq. (1). While
�H �M=heff , one expects in analogy to WKB theory that
�m � exp��g�m=mmax�=heff	, where the system specific
function g decreases monotonically to g�1� � 0. From the
definition of m� follows m�=mmax � g�1�heff ln�M=heff�	,
where g�1 decreases monotonically. Decreasing heff re-
duces the argument of g�1 such that m�=mmax increases.
Equation (3) implies that freg grows and Wch decreases.

Note that in the semiclassical limit, heff ! 0, we obtain
m�=mmax ! 1. This is in agreement with the semiclassical
eigenfunction hypothesis, namely, freg � Areg and there is

no flooding. In contrast, if the system size is infinite, we
have an infinite �H and our argument leads to m� � 0, i.e.,
complete flooding, for any heff . This coincides with the

W

t

0.0

0.1

0.2

Areg

1 10 100 1000 10000 100000

1

13

144

1597

FIG. 4 (color online). Weight W in the island vs time t for a
wave packet initially started as a coherent state in the chaotic sea
at �x; p� � �0:4;�0:2� for system sizes M � 1; 13; 144; 1597
and heff 
 1=30. The thick (green) line guides the eye to the
linear increase with lnt until W � Areg. The insets show the time-

evolved wave packet averaged over all cells for the case M �
1597, demonstrating the progressive flooding of the island.
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considerations of [3] implying a failure of the semiclassical
eigenfunction hypothesis.

Our explanation is complete for systems without local-
ization. For example, this is the case if the average classical
drift of a unit cell is nonzero, as in atom optic experiments
in the presence of gravity [9,10]. Localization, however,
sets a lower bound to the effective mean level spacing,
�ch � 1= , where  is the localization length. For M>  ,
this leads to �H �  and m� stays at its value for M �  .
According to Eq. (3) the same holds for freg and Wch. This

applies, e.g., to dynamical localization in the kicked rotor.
For transporting islands, as in the model studied here,  �
1=�0 is unusually large [3,14,18], such that already for
M �  one has m� � 0, freg � 0, and Wch � Areg. In this

case, localization has no consequences [19].
We generalize our analysis to the dynamics of wave

packets, which is experimentally of great relevance [9].
A wave packet started on the mth torus is restricted to that
region if condition (1) is fulfilled; i.e., m<m�. If m>m�,
however, the wave packet decays into the chaotic sea.
Particularly interesting is the case of a wave packet started
inside the chaotic sea. The island is progressively flooded;
i.e., the mth torus at time tm � 1=�m for m>m�. For t >
�H the weight W�t� saturates at Wch [Eq. (3)]. This is
confirmed in Fig. 4, for increasing values of M.

Our results have consequences for spectral statistics in
mixed systems which go well beyond the previously
studied effects of dynamical tunneling (see, e.g.,
[16,20]). The effective size of the regular region, freg, in

Eq. (3), entering the Berry-Robnik formula [21] is drasti-
cally reduced.

Our analysis applies as well to hierarchical states [22],
which are confined by partial transport barriers with turn-
stile areas smaller than h. We predict the additional con-
dition � < 1=�H for their existence, where � describes the
decay through these partial barriers. For regular states on
island chains within that hierarchical region, condition (1)
applies, with �H given by the mean level spacing of the
surrounding hierarchical states.

Finally, we emphasize that the time periodicity of the
system (2) and the restriction of our discussion to maps is
not crucial and that we expect flooding of islands for any
Hamiltonian with a mixed phase space. We stress that this
new quantum signature of chaos for eigenstates and wave
packet dynamics already appears for small system sizes,
e.g., island chains of length 10. This makes numerical
explorations very feasible and should lead to experimental
observations, for example, using optical lattices [7–9].

We thank Holger Schanz for discussions and the DFG
for support under Contract No. KE 537/3-2.
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We investigate electronic quantum transport through nanowires with one-sided surface roughness. A
magnetic field perpendicular to the scattering region is shown to lead to exponentially diverging
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accounted for by tunneling between the regular and the chaotic components of the underlying mixed
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Transport through a disordered medium is a key issue in
solid state physics which comprises countless applications
in (micro-) electronics and optics [1]. The ubiquitous
presence of disorder plays a prominent role for the behav-
ior of transport coefficients governing, e.g., the metal-
insulator transition [2]. The interest in disordered media
has recently witnessed a revival due to new experimental
possibilities to study the ‘‘mesoscopic’’ regime of transport
where a quantum-to-classical crossover gives rise to a host
of interesting phenomena [3].

In most investigations a static disorder is assumed to be
present in the bulk of a material. The strength and distri-
bution of the disorder potential determine whether trans-
port will be ballistic, diffusive, or suppressed in the
localization regime [1,3]. In nanodevices the reduction of
system sizes leads, however, to an increased surface-to-
volume ratio, for which surface roughness can represent
the dominant source of disorder scattering. While random
matrix theory (RMT) is successful in describing bulk dis-
ordered systems [4], its application to wires with surface
disorder is not straightforward [5].

In the present Letter we study electronic quantum trans-
port through a nanowire in the presence of one-sided
surface disorder and a magnetic field. We show both nu-
merically and analytically that by increasing the number of
open channels N in the wire, or equivalently, by increasing
the wave number kF, the localization length � increases
exponentially. Using a numerical approach that allows to
study extremely long wires we show an increase by a factor
107 (Fig. 1). Such a giant localization length falls outside
the scope of RMT predictions, � / N, previously studied
for this system [6]. Instead it can be understood in terms of
the underlying mixed regular-chaotic classical motion in
the wire. We find that the conductance through the wire is
controlled by tunneling from the regular to the chaotic part
of phase space. This process, often referred to as ‘‘dynami-
cal tunneling’’ [7], has been actively studied in quantum

chaos and plays an important role in the context of classi-
cally transporting phase-space structures [8–12]. Here we
establish a direct quantitative link between the exponential
increase of the localization length in mesoscopic systems
and the suppression of tunneling from the regular to the
chaotic part of phase space in the semiclassical limit.

We consider a 2D wire with surface disorder to which
two leads of width W are attached (Fig. 1, inset), with a
homogeneous magnetic field B perpendicular to the wire
present throughout the system. We simulate the disorder by
a random sequence of vertical steps. The wire can thus be
assembled from rectangular elements, referred to in the
following as modules, with equal width l, but random

10
9

10
7

10
5

10
3

10

 2  4  6  8  10  12  14

kFW/π

ξ

W

δ

B

l

(b)

(a)

(c)

FIG. 1 (color online). Localization length � for a wire with

surface roughness vs kFW=� � 1=heff . Results are compared for
wires with (a) one-sided disorder (OSD) with B � 0 (red �),
(b) OSD with B � 0 (green �), and (c) two-sided disorder with

B � 0 (blue �). In (a) an exponential increase of � is observed
in excellent agreement with Eq. (8) which has no adjustable
parameters (dashed line).
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heights h, uniformly distributed in the interval �W �
�=2; W � �=2�. This particular representation of disorder

allows for an efficient numerical computation of quantum
transport for remarkably long wires L ! 1 by employing

the modular recursive Green’s function method [13]. We
first calculate the Green’s functions for M � 20 rectangu-
lar modules with different heights. A random sequence of

these modules is connected by means of a matrix Dyson
equation. Extremely long wires can be reached by imple-

menting an ‘‘exponentiation’’ algorithm [14]: Instead of
connecting the modules individually, we iteratively con-
struct different generations of ‘‘supermodules’’, each con-

sisting of a randomly permuted sequence of M modules of
the previous generation. Repeating this process leads to the

construction of wires whose length increases exponentially
with the number of generations [15].

The transmission (tmn) and reflection amplitudes (rmn)
for an electron injected from the left are evaluated by

projecting the Green’s function at the Fermi energy EF

onto all lead modes m, n 2 f1; . . . ; Ng in the entrance and

exit lead, respectively. Here N � bkFW=�c is the number
of open lead modes and kF the Fermi wave number. We

obtain the localization length � in a wire composed of L
modules (i.e., length Ll) by analyzing the dimensionless
conductance g � Tr�tyt� in the regime g � 1, extracting �
from hlngi 	 �L=�. The brackets h
 
 
i indicate the en-
semble average over 20 different realizations of disorder

and 3 neighboring values of wave numbers kF.
For increasing kF, we adjust the magnetic field B such

that the cyclotron radius rc � @kF=�eB� remains constant.
This leaves the classical dynamics invariant and allows for

probing the quantum-to-classical crossover as kF ! 1.
We choose rc � 3W and a disorder amplitude � �
�2=3�W such that we obtain a large regular region in phase
space (see below) and use a module width l � W=5. We

find for one-sided disorder an exponential increase of the
localization length � (Fig. 1), while � remains almost
constant when either (i) the magnetic field is switched off

or (ii) a two-sided disorder is considered. The latter clearly
rules out that the observed giant localization length is due

to edge states of the quantum Hall effect [3].
Before giving an analytic determination of the exponen-

tially increasing localization length, we provide an expla-
nation invoking the mixed classical phase-space structure

which captures the essential features of this increase.
The classical dynamics inside the disordered wire is

displayed by a Poincaré section in Fig. 2(b), for a vertical

cut at the wire entrance (x � 0) with periodic boundary
conditions in the x direction. The resulting section (y, py)

for px > 0 shows a large regular region with invariant
curves corresponding to skipping motion along the lower

straight boundary of the wire. Close to the upper disordered
boundary (y >W � �=2) the motion appears to be chaotic
for all py. A corresponding Poincaré section for px < 0

(not shown) is globally chaotic. The lowest transverse

modes [Fig. 2(a)] of the incoming scattering wave func-
tions overlap primarily with the regular island [Fig. 2(b)].
Only their exponential tunneling tail through the diamag-
netic potential barrier (in Landau gauge)

 V�y� � 1
2
me!

2
c�y� y0�2 � EF (1)

touches the upper disordered surface at y >W � �=2. In
Eq. (1), me is the electron mass, !c the cyclotron fre-
quency, and y0 the guiding center coordinate. These regular
modes can be semiclassically quantized as [16,17]

 

A

h
� BA

h=e
� �m� 1=4� with m � 1; 2; . . . ; (2)

where A is the area in the Poincaré section enclosed by a
quantized torus and A � rcA=pF is the area in position
space enclosed by a segment of a skipping orbit. One finds

A�pFrc�arccos�1�����1���
������������������������

1��1���2
p

� for 0 �
� � �max � 1, where �rc is the y position at the top of
the cyclotron orbit. The size Areg of the regular island is

found for � � �max � �W � �=2�=rc. The Poincaré-
Husimi projections (i.e., projections onto coherent states
of the transverse eigenfunctions) show, indeed, a density
concentration near the quantized tori residing in the regular
region of phase space [Fig. 2(c)].

The lowest mode m � 1 in the center of the island has
the smallest tunneling rate [8,18,19]

 �1 	 exp

�

�C
Areg

h

�

(3)

to the chaotic sea with some constant C (see below). Its
temporal decay exp���1t� together with its velocity v1 �
@kx=me lead to an exponential decay as a function of
propagation length x, exp���1x=v1�. This gives a local-
ization length �	 ��1

1 [10]. When increasing kF, while

keeping the cyclotron radius rc fixed, the classical dynam-
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FIG. 2 (color online). (a) Nanowire with the regular transverse
modes (green) m � 4, 3, 2, 1 for kFW=� � 14:6. The gray
shaded part indicates the y range affected by disorder.

(b) Poincaré section showing a large regular island with outer-
most torus (dashed), a chaotic sea (blue dots), and quantized tori
corresponding to the regular modes (green). (c) Poincaré-Husimi
functions of these modes and their quantizing tori.

PRL 97, 116804 (2006)
P H Y S I C A L R E V I E W L E T T E R S week ending

15 SEPTEMBER 2006

116804-2

165



ics remains invariant while the island area scales as Areg �
aregAPS. Here APS � 2pFW is the area of the Poincaré

section and areg is the relative size of the island. This

semiclassical limit is thus equivalent to decreasing the
effective Planck’s constant heff :� h=APS � �kFW=���1

and results in an exponential increase of the localization
length

 �	 exp

�

C
areg

heff

�

; (4)

for heff ! 0, qualitatively explaining Fig. 1(a). Moreover,
this exponential increase should set in when the first mode
fits into the island, i.e., for Areg=h � 1. For the parameters

of Fig. 1(a) we have �max � 2=9, resulting in the critical
value kFW=� � 3:5, which is in very good agreement with
the numerical result. By contrast, for two-sided disorder or
for B � 0 no regular island with skipping orbits exists and
� shows no exponential increase; see Fig. 1.

We now turn to an analytical derivation of the localiza-
tion length using the specifics of the scattering geometry
(Fig. 1 inset). To this end we first calculate the transmission
amplitude t11 of the transverse regular mode m � 1 by
considering its consecutive projections from one module to
the next

 t11 �
YL�1

j�1

Z W��=2

0

�h�j��y��h�j�1��y�dy; (5)

where �h�j��y� is the mode wave function in module j with

height h�j�. Equation (5) amounts to a sequence of sudden

approximations for the transition amplitude between adja-
cent surface steps. As the wave function is exponentially
suppressed at the upper boundary, the scale lkF introduced
by the corners drops out of the calculation. For simplicity, a
few technical approximations have been invoked, whose
accuracy can be checked numerically: (i) terms in the
transmission from one module to the next that involve
reflection coefficients and are typically smaller by a factor
of 5 are neglected, (ii) contributions from direct coupling
between different island modes are neglected, and (iii) the
factor �2y� y0h�j� � y0h�j�1�� from the orthonormality rela-

tion for the � functions [13] is omitted in the above integral
as its contribution is negligible.

The modes pertaining to different heights h can be
written as �h�y� � ��1�y� � "h�y��=Nh, where �1�y� is
the mode wave function if there was no upper boundary,
"h�y� is the correction that is largest at the upper boundary
[where �h�h� � 0], and Nh is a normalization factor.
Keeping only terms of order O�"h� and using a WKB
approximation for "h�y� around y � hmin � W � �=2
leads to

 t11 � �1� ��2L=M with � � �2
1�hmin�

kF
������������������������

V�hmin�=EF

p : (6)

According to Eq. (6) the coupling strength is quantitatively

determined by the tunneling electron density at y � hmin in
the classically forbidden region of the 1D diamagnetic
potential, Eq. (1). The conductance in the regime g � 1

is now given by

 g � jt11j2 � exp��4�L=M�; (7)

resulting in a localization length � � M=�4��. Using a
WKB approximation for �1�y� we find

 ��heff� � �ah�2=3
eff � b� exp�ch�1

eff �1� dh2=3eff �3=2�; (8)

with coefficients a � �16�5�1=3�M	
�1=3, b �
�2�z0�M, c � ��32=9�1=2	3=2
�1=2�1� �3=20�	
�1�,
d � �z0


1=3=�21=3�2=3	�. Here z0 � �2:338 is the first
zero of the Airy function Ai�z�, � � R1

z0
Ai�z�2dz, 	 �

hmin=W, and 
 � rc=W are dimensionless parameters
[20]. Equation (8) is in very good quantitative agreement
with the numerically determined localization length
[Fig. 1(a)]. We conclude that tunneling from the regular
phase-space island is primarily due to interaction of each
regular mode with the rough surface rather than via suc-
cessive transitions from inner to outer island modes.

We note that the constant C in Eqs. (3) and (4) is found
to be C � 2��1� �289=960�	
�1�, which differs from
C � 2� [19] and C � 3� ln4 [18] derived for other ex-
amples of dynamical tunneling from a resonance-free
regular island to a chaotic sea. We also note that the scaling
behavior of � in Eq. (8) is reminiscent of previously
obtained results for diffusive 2D systems (see [1]).

For the case of a constant magnetic field B, increasing kF
increases the cyclotron radius, rc / kF, and the classical
dynamics is no longer invariant. In particular, the area of
the regular island Areg 	

������
kF

p
shrinks compared to APS 	

kF as skipping motion is increasingly suppressed.
Nevertheless, the arguments leading to Eqs. (4) and (8)
remain applicable and yield a localization length that in-
creases dramatically as �	 exp�const ������

kF
p � in agreement

with numerical observations (not shown).
Now we turn to the behavior of the conductance for

wires of lengths smaller than the localization length.
Modes with larger m have larger amplitudes near the rough
surface and thus couple more strongly to the chaotic part of
phase space. They have, consequently, larger tunneling
rates �m and smaller localization lengths �m 	 ��1

m . The
successive elimination of modes as a function of the length
L of the wire results in a sequence of plateaus [Fig. 3(a)].
For L > �m the mode m no longer contributes to transport,
as can be seen by its individual contribution to the trans-
mission in Fig. 3(b). This disappearance of regular modes
is reflected in the averaged Poincaré-Husimi distributions
calculated from incoherent superpositions of all modes
entering from the left and scattering to the right. Also
shown are the complementary distributions obtained for
backscattering from right to right. For small L these
Poincaré-Husimi functions are outside the regular island,
while with increasing L they begin to ‘‘flood’’ it [11]. This
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process is complete for lengths L 
 �. The complemen-
tarity of the Husimi distributions illustrates that tunneling
between the regular island and the chaotic sea proceeds
symmetrically in both directions, as required by the uni-
tarity of the scattering matrix.

Summarizing, we have presented a numerical computa-
tion and an analytical derivation for the exponential in-
crease of the localization length in a two-dimensional
system of a quantum wire with one-sided surface disorder.
Our approach, based on a mixed phase-space analysis, also
explains the increase of � over 1 order of magnitude under
increase of the magnetic field observed in Ref. [6]. It sets in
for a magnetic field for which the regular island is large
enough to accommodate at least one quantum mechanical
mode. Clearly, the RMT result, � / N, which ignores the
mixed phase-space structure, no longer applies. Instead, we
find that the giant localization length (Fig. 1) in this dis-
ordered mesoscopic device is determined by the tunneling
from the regular to the chaotic region, the rate of which is
exponentially suppressed in the semiclassical regime.
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[14] J. Skjånes, E. H. Hauge, and G. Schön, Phys. Rev. B 50,

8636 (1994).
[15] With this approach we can study wires with up to 	1012

modules, beyond which numerical unitarity deficiencies
set in. For wires with up to 105 modules we can compare

this supermodule technique containing pseudorandom se-
quences with truly random sequences of modules. For
configuration-averaged transport quantities the results

are indistinguishable from each other.
[16] A. M. Kosevich and I. M. Lifshitz, Zh. Eksp. Teor. Fiz.

29, 743 (1955) [Sov. Phys. JETP 2, 646 (1956)].

[17] C. W. J. Beenakker and H. van Houten, Phys. Rev. Lett.
60, 2406 (1988).

[18] V. A. Podolskiy and E. E. Narimanov, Phys. Rev. Lett. 91,
263601 (2003); P. Schlagheck, C. Eltschka, and D. Ullmo,

nlin.CD/0508024; M. Sheinman, Masters thesis,
Technion, 2005.

[19] M. Sheinman, S. Fishman, I. Guarneri, and L. Rebuzzini,

Phys. Rev. A 73, 052110 (2006).
[20] Setting d � 0 corresponds to a quantization at the mini-

mum of the diamagnetic potential V�y� in Eq. (1). This

produces the correct leading order, but for our largest
1=heff � 14:6 the result would be wrong by a factor 105.

0

1

2

3

4

g

(a)

0

1

1 103 106 109 1012

Tm

L

(b)
m = 4 3 2 1

FIG. 3 (color online). (a) Averaged conductance hgi vs length
L of the wire. The stepwise decrease is accompanied by the
disappearance of the regular modes and the flooding of the island
region by chaotic states. The Poincaré-Husimi distributions to

the left (right) of the curve correspond to scattering from left to
right (backscattering from right to right). (b) Transmission hTmi
of the incoming mode m vs L.
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[A8] Universality in the flooding of regular islands by chaotic states
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We investigate the structure of eigenstates in systems with a mixed phase

space in terms of their projection onto individual regular tori. Depending on

dynamical tunneling rates and the Heisenberg time, regular states disappear

and chaotic states flood the regular tori. For a quantitative understanding

we introduce a random matrix model. The resulting statistical properties

of eigenstates as a function of an effective coupling strength are in very

good agreement with numerical results for a kicked system. We discuss

the implications of these results for the applicability of the semiclassical

eigenfunction hypothesis.
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Universality in the 
ooding of regular islands by 
haoti
 statesArnd B�a
ker1, Roland Ketzmeri
k1, and Alejandro G. Monastra1;21Institut f�ur Theoretis
he Physik, Te
hnis
he Universit�at Dresden, 01062 Dresden, Germany2Departamento de F��si
a, Comisi�on Na
ional de Energ��a At�omi
a,Av. del Libertador 8250, 1429 Buenos Aires, Argentina(Dated: 05.01.2007)We investigate the stru
ture of eigenstates in systems with a mixed phase spa
e in terms of theirproje
tion onto individual regular tori. Depending on dynami
al tunneling rates and the Heisenbergtime, regular states disappear and 
haoti
 states 
ood the regular tori. For a quantitative under-standing we introdu
e a random matrix model. The resulting statisti
al properties of eigenstates asa fun
tion of an e�e
tive 
oupling strength are in very good agreement with numeri
al results for aki
ked system. We dis
uss the impli
ations of these results for the appli
ability of the semi
lassi
aleigenfun
tion hypothesis.PACS numbers: 05.45.Mt, 03.65.SqI. INTRODUCTIONThe 
lassi
al dynami
s in Hamiltonian systems showsa ri
h behaviour ranging from integrable to fully 
haoti
motion. In 
haoti
 systems nearby traje
tories separateexponentially in time and ergodi
ity implies that a typ-i
al traje
tory �lls out the energy-surfa
e in a uniformway. However, integrable and fully 
haoti
 dynami
s areex
eptional [1℄ as typi
al Hamiltonian systems show amixed phase spa
e in whi
h regions of regular motion,the so-
alled regular islands around stable periodi
 orbits,and 
haoti
 dynami
s, the so-
alled 
haoti
 sea, 
oexist.For quantized Hamiltonian systems the fundamentalquestions 
on
ern the behaviour of the eigenvalues andthe properties of eigenfun
tions, espe
ially in the semi-
lassi
al regime. From the semi
lassi
al eigenfun
tion hy-pothesis [2, 3, 4, 5, 6℄ one expe
ts that in the semi
las-si
al limit the eigenstates 
on
entrate on those regionsin phase spa
e whi
h a typi
al orbit explores in the long-time limit. For integrable systems these are the invarianttori. In 
ontrast, for ergodi
 systems almost all orbits�ll the energy shell in a uniform way. For this situa-tion the semi
lassi
al eigenfun
tion hypothesis is provenby the quantum ergodi
ity theorem whi
h shows thatalmost all eigenstates be
ome equidistributed on the en-ergy shell [7℄.For systems with a mixed phase spa
e, in the semi-
lassi
al limit (h ! 0), the semi
lassi
al eigenfun
tionhypothesis implies that the eigenstates 
an be 
lassi�edas being either regular or 
haoti
 a

ording to the phase-spa
e region on whi
h they 
on
entrate. This is sup-ported by several studies, see e.g. [8, 9, 10, 11, 12, 13℄.It is also possible, that the in
uen
e of a regular islandquantum me
hani
ally extends beyond the outermost in-variant 
urve due to partial barriers like 
antori and thatquantization 
onditions remain approximately appli
ableeven outside of the island [8℄. However, it was re
entlyshown that the 
lassi�
ation into regular and 
haoti
states does not hold when the phase spa
e has an in�nitevolume [14℄. In this 
ase eigenstates may 
ompletely ig-nore the 
lassi
al phase spa
e boundaries between regular

and 
haoti
 regions.In order to understand the behaviour of eigenstatesaway from the semi
lassi
al limit, i.e. at �nite values ofthe Plan
k 
onstant h, one has to 
ompare the size ofphase-spa
e stru
tures with h. Let us 
onsider for sim-pli
ity the 
ase of two-dimensional area preserving mapsand their quantizations. Regular states of an island 
on-
entrate on tori whi
h ful�ll the EBK-type quantization
ondition I p dq = (m+ 1=2)h m = 0; 1; ::: (1)for the en
losed area [15℄. This quantization rule expli
-itly shows that regular eigenstates only appear if h=2 issmaller than the area Areg of that island.Another 
onsequen
e of �nite h in systems with amixed phase spa
e is dynami
al tunneling [16℄, i.e. tun-neling through dynami
ally generated barriers in phasespa
e, in 
ontrast to the usual tunneling under a poten-tial barrier. Dynami
al tunneling 
ouples the subspa
espanned by the regular basis states, 
orresponding to thequantization 
ondition (1), with the 
omplementary sub-spa
e [17℄ 
omposed of 
haoti
 basis states. This raisesthe question whether the eigenstates of su
h a quantumsystem 
an still be 
alled regular or 
haoti
.In Ref. [18℄ it was shown that (1) is not a suÆ
ient
ondition for the existen
e of a regular eigenstate on them-th quantized torus. In addition one has to ful�ll
m < 1�H,
h ; (2)where �H,
h = h=�
h is the Heisenberg time of the sur-rounding 
haoti
 sea with mean level spa
ing �
h and 
mis the de
ay rate of the m-th regular state, if the 
haoti
sea were in�nite. When 
ondition (2) is violated one ob-serves eigenstates whi
h extend over the 
haoti
 regionand 
ood the m-th torus [18℄. To distinguish them fromthe 
haoti
 eigenstates that do not 
ood the torus, theyare referred to as 
ooding eigenstates. For the limiting
ase of 
omplete 
ooding of all tori, the 
orrespondingeigenstates were 
alled amphibious [14℄. Re
ently, the
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2
onsequen
es of 
ooding for the transport properties inrough nano-wires were studied [19℄.The pro
ess of 
ooding was explained and demon-strated for a ki
ked system in Ref. [18℄. Condition (2)was obtained by s
aling arguments, whi
h 
annot pro-vide a prefa
tor. Moreover, for an ensemble of systems,one would like to know the probability for the existen
eof a regular eigenstate. In parti
ular, when varying theHeisenberg time, how broad is the transition regime dur-ing whi
h this probability goes from 1 to 0? Anotherquestion is, how do the 
haoti
 eigenstates turn into
ooding eigenstates for a given torus?In this paper we give quantitative answers to thesequestions. We study the 
ooding of regular tori in termsof the weight of eigenstates inside the regular regionand devise a random matrix model whi
h allows for de-s
ribing the statisti
s of these weights in detail. Ran-dom matrix models have been very su

essful for obtain-ing quantitative predi
tions on eigenstates in both fully
haoti
 systems and systems with a mixed phase spa
e,see e.g. [8, 20, 21, 22, 23, 24℄. For the present situationwe propose a random matrix model whi
h takes regularbasis states and their 
oupling to the 
haoti
 basis statesinto a

ount. The only free parameters are the strengthof the 
oupling and the ratio of the number of regular tothe number of 
haoti
 basis states. From this model theweight distribution for eigenstates is determined.For a ki
ked system we de�ne the weight by the proje
-tion of the eigenstates onto regular basis states lo
alizedon a given torusm. The distribution of the weights allowsfor studying the 
ooding of ea
h torus separately. Theresulting distributions are 
ompared with the predi
tionof the random matrix model and, after an appropriateres
aling, very good agreement is observed. This agree-ment shows expli
itly the universal features underlyingthe pro
ess of 
ooding, giving a pre
ise 
riterion for theexisten
e or non{existen
e of regular, 
haoti
, and 
ood-ing eigenstates in mixed systems.The text is organized as follows. In se
tion II we in-trodu
e the ki
ked system used for the numeri
al illus-trations, both 
lassi
ally (part A) and quantum me
han-i
ally (part B). In se
tion II C we de�ne the weight of aneigenstate by its proje
tion onto regular basis states andinvestigate the distribution of the weights for the ki
kedsystem. In se
tion III we introdu
e the random matrixmodel and determine the 
orresponding weight distribu-tion as a fun
tion of the 
oupling strength. In se
tionIV the relation between parameters of the ki
ked systemand the random matrix model is derived. This allows fora dire
t 
omparison of the distributions. In se
tion V we
onsider the fra
tion of regular eigenstates, both for anindividual torus and for the entire island. In se
tion VIwe brie
y dis
uss the 
onsequen
es of the random matrixmodel on the number of 
ooding eigenstates. A summaryand dis
ussion of the eigenfun
tion stru
ture in generi
systems with a mixed phase spa
e is given in se
tion VII.

II. THE KICKED SYSTEMA. Classi
al dynami
sFor a general one-dimensional ki
ked HamiltonianH(p; q; t) = T (p) + V (q) 1Xn=�1 Æ(t� n) ; (3)the dynami
s is fully determined by the mapping of po-sition and momentum (qn; pn) at times t = n + 0+ justafter the ki
ks qn+1 = qn + T 0(pn) ; (4)pn+1 = pn � V 0(qn+1) : (5)Choosing the fun
tions T 0(p) and V 0(q) appropriately,one 
an obtain a system with a large regular island anda homogeneous 
haoti
 sea. For the system 
onsidered in[18℄, �rst introdu
ed in [14℄, one starts with the pie
ewiselinear fun
tions (see Fig. 1b)t0(p) = 12 +�12 � sp� sign (p� bp+ 1=2
) ; (6)v0(q) = �rq � (1� r)bq + 1=2
 ; (7)
× 2000
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FIG. 1: (
olor online) (a) Classi
al dynami
s of the ki
kedsystem given by Eqs. (4) and (5). Invariant tori of the regularisland are shown (red 
urves) and the transport to the rightis indi
ated by the arrows. The blue dots 
orrespond to one
haoti
 orbit. The magni�
ation shows that the boundary ofthe island to the 
haoti
 sea is rather sharp with only verysmall se
ondary islands. (b) Smoothed fun
tions T 0(p) andV 0(q) (blue lines) and dis
ontinuous fun
tions t0(p) and v0(q)(red lines) a

ording to Eqs. (6-9).
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3where bx
 is the 
oor fun
tion, and s and r are twoparameters determining the properties of the regular is-land and the 
haoti
 sea. Using a Gaussian smoothingwith G"(z) = exp(�z2=2"2)=p2�"2, one obtains analyti
fun
tions T 0(p) = Z 1�1 dz t0(p+ z) G"(z) ; (8)V 0(q) = Z 1�1 dz v0(q + z) G"(z) : (9)By 
onstru
tion, these fun
tions have the periodi
ityproperties T 0(p+ k) = T 0(p) ; (10)V 0(q + k) = V 0(q)� k ; (11)for any integer k. We 
onsider p 2 [�1=2; 1=2[ andq 2 [�1=2;�1=2+M [ with periodi
 boundary 
onditions.The phase spa
e is 
omposed of a 
hain of transportingislands 
entered at (�q; �p) = (k; 1=4) with 0 � k �M � 1that are mapped one unit 
ell to the right (see Fig. 1a).The surrounding 
haoti
 sea has an average drift to theleft as the overall transport is zero [25, 26℄. The �ne s
alestru
ture at the boundary of the island to the 
haoti
 seahas a very small area (see the magni�
ation in Fig. 1a).Resonan
es in this layer are irrelevant in the h regimestudied here. For s = 2, r = 0:65 and " = 0:015 theregular island has a relative area Areg � 0:215.B. QuantizationIn ki
ked systems, the quantum evolution of a stateafter one period of timej (t+ 1)i = Û j (t)i ; (12)is fully determined by the unitary operator, see e.g. [15,27, 28, 29, 30℄,Û = exp�� 2�ihe�V (q̂)� exp�� 2�ihe�T (p̂)� : (13)Here the e�e
tive Plan
k's 
onstant he� is Plan
k's 
on-stant h divided by the size of one unit 
ell. The eigen-states of this operator are de�ned byÛ j ji = e2�i'j j ji ; (14)where the eigenphase 'j is the quasienergy divided by~!. In order to ful�ll the periodi
ity of the 
lassi
al dy-nami
s in p dire
tion, the quantum states have to obeythe quasi-periodi
ity 
onditionhp+ 1j i = e�2�i�phpj i : (15)One 
an show that this leads to quantum states that are alinear 
ombination of the dis
retized position states jqji,with qj = he�(j+�p). Additionally, imposing periodi
ity
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FIG. 2: (
olor online) (a) Eigenphases of the ki
ked systemvs �q for he� = 1=10. The pattern of straight lines (inter-rupted by avoided 
rossings) with negative slope 
orrespondsto regular eigenstates with m = 0 and m = 1 whose Husimifun
tions are shown to the right. The other eigenstates are
haoti
 and live outside of the regular region, as 
an be seenfrom the Husimi representation. (b) WeightsW0 andW1 of alleigenstates vs �q (left). Distribution P (W ) of these weightsin a log-linear representation (right).after M unit 
ells in q dire
tion, quantum states have toful�ll the propertyhq +M j i = e2�i�q hqj i : (16)Be
ause of the required periodi
ity the phase spa
e is
ompa
t and the e�e
tive Plan
k's 
onstant 
an only bea rational number he� = MN : (17)We 
onsider the 
ase of in
ommensurate M and N , sothat the quantum system is not e�e
tively redu
ed toless than M 
ells.
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4The properties (10), (11) of T 0(p) and V 0(q) imply fortheir integralsT (p+ k) = T (p) ; (18)V (q + k) = V (q)� kq � k22 : (19)From this one �nds that the propagator Û is 
onsistentwith the periodi
ity 
onditions (15) and (16) if and onlyif M ��p + N2 � 2 Z : (20)For given M and N , this 
ondition limits the possiblevalues of the phase �p, while �q remains arbitrary. Thus,in the basis given by the position states jqji, with 0 � j �N�1, where N is the dimension of the Hilbert spa
e, thepropagator Û is represented by the �nite N �N unitarymatrixUkl = 1N N�1Xj=0 e� i~eff [V (qk)+T (pj )+pj(ql�qk)℄ ; (21)where 0 � k; l � N � 1 and pj = (j + �q)=N . Findingthe solution of (14), i.e. the eigenphases and eigenstatesof the system, therefore redu
es to the numeri
al diag-onalization of the matrix (21). The result is illustratedin Fig. 2(a) for he� = 1=10, where the eigenphases areplotted as a fun
tion of �q . The straight lines with neg-ative slope 
orrespond to the regular eigenstates [25, 26℄,whose Husimi distributions are shown to the right inFig. 2(a). Lines with an average positive slope 
orre-spond to 
haoti
 eigenstates.When the system 
onsists of M unit 
ells one has Mregular basis states lo
alized on the m-th torus. TheirEBK eigenphases are equispa
ed with a distan
e 1=M[31℄. C. Proje
tion onto regular basis statesIn order to investigate the amount of 
ooding we usethe proje
tion of the eigenstates onto regular basis statesof the island region. For the 
onsidered ki
ked systemregular basis states 
an be 
onstru
ted from harmoni
os
illator eigenstates, as the invariant tori are a

uratelyapproximated by ellipses [31℄. The expression for the m-th harmoni
 os
illator state, 
entered in a phase spa
epoint (�q; �p), ishqj'm�q;�pi = 1p2mm! �Re ��~eff �1=4Hm �qRe �~eff (q � �q)�� exp�� �2~eff (q � �q)2 + i~eff �p(q � �q=2)� (22)where Hm is the Hermite polynomial of degree m. The
omplex 
onstant � takes into a

ount the squeezing and

rotation of the state. From the linearized map at thestable �xed point of the island one �nds � = (p351 �13 i)=40.For a 
hain withM identi
al 
ells, a regular basis stateis a linear 
ombination of the harmoni
 os
illator statesj'mk;1=4i, 
entered in the k-th island for 0 � k � M � 1and properly normalized and periodized in the q and pdire
tions [31℄. The subspa
e spanned by theseM regularbasis states is the same as the one spanned by the Mharmoni
 os
illator states j'mk;1=4i. Therefore, we de�nethe weightWm of a normalized state j	i by its proje
tiononto this subspa
e 
orresponding to the m-th quantizedtorus Wm = M�1Xk=0 jh	j'mk;1=4ij2 : (23)By means of the weight Wm for all eigenstates ofEq. (21) we 
an study the pro
ess of 
ooding for ea
htorus separately. This allows for a detailed analysis anda quantitative 
omparison with a random matrix model.Therefore this is a 
onsiderable improvement 
omparedto our previous analysis [18℄, where the weight was de-�ned as the integral of the Husimi distribution of aneigenstate over the whole region of the island, whi
hmeans that the information on individual tori is not a
-
essible.In Fig. 2(b) we show the weights W0 and W1 of all theeigenstates as a fun
tion of �q . For W0 we observe thatfor almost all �q the weights are essentially zero or one.Only at avoided 
rossings of regular and 
haoti
 eigen-states their weights have intermediate values. For m = 1
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tive Plan
k's 
onstant he� � 1=10.the avoided 
rossings are mu
h broader due to the larger
oupling and the value W = 1 is not rea
hed betweenseveral avoided 
rossings. This is also seen in the weightdistributions shown to the right in Fig. 2(b), where thetwo peaks from the 
haoti
 eigenstates (at W = 1) andfrom the regular eigenstates (at W = 0) are broader form = 1 in 
omparison withm = 0. Note, that in the situa-tion of isolated avoided 
rossings the involved eigenstatesare often referred to as hybrid states.The distribution of the weightsWm allows for studyingthe pro
ess of 
ooding in a quantitative way. To violate
ondition (2) we need to in
rease the Heisenberg time,while keeping the tunneling rates 
m 
onstant. We 
ana
hieve this by 
hoosing a sequen
e of rational approx-imants M=N of he� = 1=(d + g), with d 2 N and thegolden mean g = (p5� 1)=2 � 0:618. This ensures that,while the system size M is in
reased, he� is essentiallykept at a �xed value, and therefore the tunneling rates
m are independent of M . Simultaneously, the dimen-sionless Heisenberg time �H,
h = 1=�
h in
reases linearlywith M , �H,
h = N
h = � 1he� �mmax�M ; (24)where we used �
h = 1=N
h and N
h = N �mmaxM isthe number of 
haoti
 states. Here mmax is the maxi-mal number of regular states in a single island a

ord-ing to the EBK quantization 
ondition (1), mmax =bAreg=he� + 1=2
. As dis
ussed in Ref. [18℄, �H,
h may bebounded, due to lo
alization e�e
ts: For M larger thanthe lo
alization length � the e�e
tive mean level spa
ing�
h � (�N
h=M)�1 leads to �H,
h � �N
h=M � �he�,

where � is measured in multiples of a unit 
ell andN
h=Mis the number of 
haoti
 states per unit 
ell. For trans-porting islands, like in the model studied here, � � 1=
0is unusually large [14, 32, 33℄, leading to a maximal value�H,
h � he�=
0.In Figs. 3 and 4 we show the distribution ofW0 andW1for d = 9 (giving approximants he� = 1=10, 2=19, 3=29,5=48, : : :) for in
reasing system sizeM . For small systemsizes we in
reased the statisti
s by varying the phase �qin the quantization, as it was shown in Fig. 2(b). Topresent the results in a 
ompa
t form ea
h histogramis shown using a 
olor s
ale. The horizontal strips forM = 1 in Fig. 3 and Fig. 4 
orrespond to the histogramspreviously shown in Fig. 2(b).In Fig. 3 one 
learly observes for smallM two separatepeaks 
orresponding to 
haoti
 eigenstates atW = 0 [34℄and regular eigenstates with m = 0 at W = 1. Within
reasing system size these regular eigenstates disappearwhile the weight W0 of the 
haoti
 eigenstates starts toin
rease and they turn into 
ooding eigenstates.Comparing Fig. 4 for W1 with Fig. 3 for W0 one ob-serves a qualitatively similar behavior. The di�eren
e isthat the regular eigenstates with m = 1 disappear formu
h smaller system size M � 100 than the eigenstateswith m = 0, as expe
ted from Eq. (2) and their ratio oftunneling rates, 
0=
1 � 1.For the largest values of M only 
ooding eigenstatesare left whi
h fully extend over the 
haoti
 sea and theregular island. The 
ooding is 
omplete and the N eigen-states are equally distributed in the Hilbert spa
e. Pro-je
ting them onto theM regular basis states leads to theaverage value Weq = M=N = he� � 1=10, in agreementwith the observed position of the peaks in Figs. 3 and 4and the �ndings in Ref. [14℄.III. RANDOM MATRIX MODELIn order to �nd universality in the pro
ess of 
oodingwe 
onsider a random matrix model. Su
h models forthe 
ase of mixed systems have su

essfully been usedfor the des
ription of the level splitting in the 
ontextof 
haos assisted tunneling, see e.g. [8, 22, 35, 36℄. In
ontrast, we have to des
ribe the statisti
s of eigenve
torsfor the situation of a 
hain of Nreg regular islands. In this
ase one has equispa
ed regular levels 
orresponding tothe m-th quantized torus and GOE distributed 
haoti
levels 
oupled by dynami
al tunneling, see Fig. 5. Forthis situation we propose a random matrix model withthe following blo
k stru
tureH = 0B� Hreg VV T H
h 1CA : (25)This matrix is real symmetri
 be
ause the ki
ked systemunder 
onsideration obeys time reversal symmetry.
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6The �rst blo
k Hreg models the regular basis statesasso
iated with one spe
i�
 torus, while for simpli
ity wenegle
t the regular basis states quantized on other tori.As dis
ussed at the end of Se
. II B, in the 
onsideredki
ked system, the EBK eigenphases of the Nreg regularbasis states are equispa
ed. To mimi
 this behavior we
onsider for Hreg a diagonal matrix with elements (k +�)=Nreg, k = 0; 1; : : : ; Nreg � 1. The parameter � 
an be
hosen from a uniform distribution between zero and one.The energies lie in the interval [0,1℄ with �xed spa
ing�reg = 1=Nreg.The blo
k H
h models the N
h 
haoti
 basis states,where we assumeN
h > Nreg. It is also a diagonal matrixwhose elements fElg are the eigenphases of an N
h �N
h matrix of the Cir
ular Orthogonal Ensemble (COE).These energies fElg lie in the interval [0,1℄ with a uniformaverage density and show the typi
al level repulsion of
haoti
 systems. The mean level spa
ing of these basisstates is �
h = 1=N
h. Note, that a GOE matrix forthis blo
k would have been less 
onvenient as it leadsto a non-uniform density of levels a

ording to Wigner'ssemi
ir
le law.The o�-diagonal blo
k V a

ounts for the 
ouplingbetween the regular and 
haoti
 basis states. It is aNreg � N
h re
tangular matrix, where ea
h element isa random Gaussian variable with zero mean and vari-an
e (v�
h)2. The positive parameter v is the 
ouplingstrength in units of the 
haoti
 mean level spa
ing �
h.Thereby the results be
ome asymptoti
ally independentof the dimension Ntot = Nreg + N
h of the matrix for�xed v and Nreg=N
h.We identify the regular region with the subspa
espanned by the �rst Nreg 
omponents. Therefore, for anynormalized ve
tor (	0; : : : ;	Nreg�1;	Nreg ; : : : ;	Ntot�1)we de�ne the weight W inside the regular region asW = Nreg�1Xj=0 j	j j2 : (26)For a parti
ular realization of the ensemble through thenumbers fElg, �, and the blo
k V , we 
ompute theweights W of the eigenve
tors. We take for the statis-ti
s only those eigenve
tors whose eigenenergies are in
∆reg

v∆ch

∆chFIG. 5: S
hemati
al plot of the regular levels with spa
ing�reg 
oupled with strength v�
h to the GOE distributed
haoti
 levels with mean spa
ing �
h.

the interval [0.1, 0.9℄ to avoid possible border e�e
ts.We determine the distribution of W by averaging overmany di�erent realizations. In
reasing the matrix sizeNtot for a �xed ratio Nreg=N
h we �nd that the distribu-tion 
onverges. Considering a ratio Nreg=N
h = 1=(8+g)and a small 
oupling strength v � 0:1 the distribution
onverges around Ntot = 200. For v � 1 bigger matri-
es of Ntot � 1000 are ne
essary. For v � 10, we usedNtot � 10000. The limiting distributions depend sensi-tively on the 
oupling strength v.In Fig. 6 we plot the distribution of W for di�erentvalues of v. We have to distinguish between the un-
oupled regular and 
haoti
 basis states of our modeland the resulting eigenstates in the presen
e of the 
ou-pling. The eigenstates fall into three 
lasses: a) Regu-lar eigenstates (W > 0:5), whi
h predominantly live inthe regular subspa
e. The remaining states, whi
h pre-dominantly live in the 
haoti
 subspa
e, are divided intotwo 
lasses, depending on the strength of their proje
tiononto the regular subspa
e 
ompared to the equilibriumvalue Weq = Nreg=Ntot. This leads to b) 
ooding eigen-states (0:5Weq < W < 0:5), and 
) 
haoti
 eigenstates(W < 0:5Weq). Note, that the 
onstants 0.5 in thesede�nitions are arbitrary.From the energy s
ales in the random matrix model,see Fig. 5, we expe
t three qualitatively di�erent situa-tions for the distribution of W :i) v � 1, regular and 
haoti
 eigenstates: In thisregime the regular and 
haoti
 blo
ks are pra
ti
ally de-
oupled as the 
oupling v�
h is mu
h smaller than the
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7mean spa
ing of the 
haoti
 basis states, v�
h � �
h.Two sharp peaks are observable, one at W � 0 due tothe 
haoti
 eigenstates, and the other at W � 1 due tothe regular eigenstates. The latter peak has a smallerweight as the density of regular basis states is smaller.ii) v � 1, 
haoti
 and 
ooding eigenstates: Here the
oupling v�
h is approximately of the same order asthe mean 
haoti
 spa
ing �
h. All regular basis statesare strongly 
oupled to several 
haoti
 basis states andnone of the eigenstates is predominantly regular. Onthe other hand one has di�erent types of eigenstates asv�
h < �reg: Chaoti
 basis states, whi
h are 
lose in en-ergy to a regular basis state, strongly 
ouple and thusturn into 
ooding eigenstates. In 
ontrast, there aremany 
haoti
 basis states whi
h are far away from anyregular basis state and only 
ouple weakly. These leadto 
haoti
 eigenstates whi
h show essentially no 
ooding(W < 0:5Weq).iii) v � N
h=Nreg, 
ooding eigenstates: All 
haoti
 ba-sis states are strongly 
oupled to the regular basis states,v�
h � �reg. The resulting eigenstates equally 
ood theregular subspa
e. The distribution of W gets a Gaussianshape with mean valueWeq = Nreg=Ntot and a de
reasingwidth.In the transition from situation i) to ii) the two peaksof P (W ) near W = 0 and W = 1 broaden and move tothe 
enter. The regular peak broadens faster, and at v �0:25 its maximum disappears. At v � 1 pra
ti
ally noeigenstates are lo
alized in the regular subspa
e. Whenmoving from situation ii) to iii) the di�erent types of
haoti
 and 
ooding eigenstates transform into a singletype of 
ooding eigenstates with a similar weight W =Weq in the regular subspa
e.How do the resulting distributions depend on the ra-tio Nreg=N
h? First, the average of P (W ) is given byWeq = Nreg=Ntot = 1=(1 + N
h=Nreg). Se
ondly, theregular peak in situation i) is independent of Nreg=N
hapart from a trivial s
aling of the normalization withNreg=N
h. Numeri
ally we 
he
ked that this is even trueup to v � 1 for the distribution with W > 0:5 andNreg=N
h � 1=(8 + g). De
reasing Nreg=N
h enlarges thesize of the transition regime between ii) and iii). In par-ti
ular, the peak near W = 0 should stay there up tolarger values of v.IV. COMPARISONThe distribution of weights for the random matrixmodel, Fig. 6, shows a 
lear similarity to the results ob-tained for the ki
ked system, Figs. 3 and 4. In order toobtain a quantitative 
omparison one has to determinethe relation between the 
oupling strength v of the ran-dom matrix model and the system size M of the ki
kedsystem. This 
an be dedu
ed from Fermi's golden rule indimensionless form 
 = (2�)2 hV 2i� ; (27)

where the de
ay rate 
 of a regular state to a 
ontin-uum of states with mean level spa
ing � is given bythe varian
e of the 
oupling matrix elements V . Inthe random matrix model we have hV 2i = (v�
h)2,� = �
h = 1=N
h, and therefore (27) impliesv = p
N
h2� : (28)Applying this relation to the ki
ked system, we �rstnote that the tunnelling rate 
m for ea
h torus 
an be de-termined numeri
ally [31℄ (for re
ent theoreti
al resultssee [37, 38, 39, 40, 41, 42℄). The determination of the 
or-re
t value N
h for the ki
ked system requires a detaileddis
ussion: A regular basis state on them-th torus, in the
ase where the tori m�;m� + 1; :::;mmax � 1 are already
ooded, will 
ouple e�e
tively to N � m�M states forhe� = M=N . A 
hange of m� a�e
ts N
h and thereforev. This dependen
e, however, 
an be negle
ted for thenumeri
al 
omparison in our 
ase: The ratio of the max-imal and minimal possible values of v is approximatelyp(1� he�)=(1�Areg). For he� � 1=10 and Areg = 0:215this gives a di�eren
e of less than 7%. Therefore we sim-ply use the maximal value N
h = N�M in the following.For these values of 
 and N
h in Eq. (28) the m-thtorus of the ki
ked system has a 
oupling strengthv = p
m(1=he� � 1)2� pM : (29)This allows for res
aling the results of the ki
ked systemshown in Figs. 3 and 4 from M to v using the values
0 = 0:0015 and 
1 = 0:030 [31℄. The 
omparison withthe results from the random matrix model is shown inFig. 7. The agreement is very good for both tori over awide range of 
oupling strengths v showing the univer-sality of the 
ooding pro
ess. For v > 5, however, thedistribution rea
hes a 
onstant width in Fig. 7(b), whilethe varian
e de
reases for the random matrix model,Fig. 7(
). We attribute this dis
repan
y to the lo
al-ization of eigenstates in the ki
ked system for M > 1000[14℄. As a 
onsequen
e, the e�e
tive number of 
haoti
basis states near an island saturates (see the dis
ussionafter Eq. (24)), leading to an e�e
tive saturation of v.In Figs. 8 and 9 we 
ompare individual histograms forthe weights W0 for m = 0. To visualize the low valuesof the distributions we 
hoose a logarithmi
-linear repre-sentation in Figs. 8(a) and 9(a). For M = 144 one 
andistinguish the peak near W = 0, due to 
haoti
 eigen-states, from the se
ond peak 
aused by regular eigen-states. For M = 1597 these two peaks have merged andonly a very small fra
tion of regular eigenstates is left.In both 
ases the distributions agree very well with thepredi
tion of the random matrix model using v a

ordingto Eq. (29). To resolve the peak near W = 0 we showin Figs. 8(b) and 9(b) the distributions of lnW0. Againvery good agreement with the predi
tions of the randommatrix model is observed.Fig. 10 shows the distribution of lnW1 for m = 1 ofall eigenstates for he� = 13=125. We observe dis
repan-
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FIG. 7: (
olor online) Distributions of the weights (a) W0 and (b)W1, taken from Figs. 3 and 4, withM res
aled to v a

ordingto (29). (
) Result for the random matrix model from Fig. 6 on the same s
ale for a better 
omparison.
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FIG. 8: (
olor online) Distribution of (a) W0 and (b) lnW0for he� = 144=1385 (dark lines). Results of random matrixmodel for v = 0:218 and Nreg=N
h = 1=8:618 (light lines).
ies at weights smaller than 10�3 in 
omparison to therandom matrix model. This di�eren
e 
an be explainedas follows: Among all the eigenstates of the ki
ked sys-tem there are regular eigenstates lo
alized on the torusm = 0 whi
h are not 
onsidered in the random matrixmodel for m = 1. These eigenstates have a negligibleoverlap with the regular basis states with m = 1 be
ausethey are pra
ti
ally de
oupled and only in
uen
e the his-togram at very small weights. This is 
on�rmed by 
om-
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FIG. 9: (
olor online) Distribution of (a) W0 and (b) lnW0for he� = 1597=15360 (dark lines). Results of random matrixmodel for v = 0:726 and Nreg=N
h = 1=8:618 (light lines).
puting the distribution, under ex
lusion of all eigenstateswith W0 > 0:5. The resulting distribution mat
hes re-markably well with the predi
tion of our random matrixmodel.
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FIG. 10: (
olor online) Distribution of lnW1 of all eigenstates(thin line) for he� = 13=125. After ex
luding states withW0 > 0:5 (thi
k dark line) mu
h better agreement with therandom matrix model (light line) is found.V. FRACTION OF REGULAR EIGENSTATESA more global quantity than the individual distribu-tions P (W ) is the fra
tion of regular eigenstates. Thishas been studied in Ref. [18℄ for the total number of reg-ular eigenstates as a fun
tion of the system size. Withthe proje
tion onto individual regular basis states we arenow able to study this fra
tion for ea
h torus m sepa-rately. For the ki
ked system with M 
ells there are atmost M regular eigenstates lo
alized on the m-th torus.However, during the pro
ess of 
ooding, some of theseeigenstates disappear. Thus, we de�ne the fra
tion fregof regular eigenstates on the m-th torus as the numberof eigenstates with weight Wm > 0:5 divided by M . Forsmall system sizes this fra
tion is averaged over severaldi�erent phases �q . To 
ompare the resulting dependen
eon M for di�erent values of m and he� we determine the
oupling strength v using Eq. (29). These results areshown in Fig. 11.For the random matrix model we 
ompute freg as thenumber of eigenstates withW > 0:5 divided by the num-ber of regular basis states Nreg, averaged over many re-alizations of the ensemble. As dis
ussed at the end ofse
tion III, the distribution P (W ) for W > 0:5 is in-dependent of Nreg=N
h, apart from a trivial res
aling.Therefore the resulting 
urve freg(v) is independent ofthe ratio Nreg=N
h in 
ontrast to the individual distribu-tions. The agreement of the fra
tions determined for theki
ked system with the random matrix 
urve in Fig. 11is very good. This shows that freg(v) is a universal 
urvedes
ribing the disappearan
e of regular eigenstates. Forv � 0:1 the fra
tion of regular eigenstates is larger than98%. For v � 1 the fra
tion of regular eigenstates isless than 1% and the 
orresponding regular torus is 
om-pletely 
ooded.The 
riterion (2) for the existen
e of a regular eigen-state, expressed in terms of tunneling rate and Heisen-berg time, 
an be transformed using Eqs. (28) and (24),

into the 
ondition v < 12� : (30)The position of v = 1=(2�) is indi
ated in Fig. 11 androughly 
orresponds to 93% of regular eigenstates stillexisting (by the W > 0:5 
riterion). While in Ref. [18℄
ondition (2) for the existen
e of regular eigenstates wasobtained from a s
aling argument whi
h does not providea prefa
tor, our random matrix model analysis showsthat it is quite 
lose to 1.For the transition regime 1=2� < v < 1 this modelshows a de
reasing probability for the existen
e of a reg-ular eigenstate. For v > 1, whi
h implies
m > (2�)2 1�H,
h ; (31)we �nd that almost no regular eigenstate exists on them-th torus. Thus v = 1 de�nes a 
riti
al system sizeMmasso
iated with ea
h quantized torusMm = 4�2he�
m(1� he�) : (32)With the knowledge about the 
ooding of individualtori we 
an now 
onsider the total fra
tion of regulareigenstates. The regular tori with larger m have typi-
ally a larger tunneling rate, 
0 � 
1 � : : :� 
mmax�1.Therefore the 
ooding of the regular tori happens sequen-tially from the outside of the island as the system sizein
reases, as found in [18℄. The total fra
tion of regulareigenstates Freg is de�ned as the number of eigenstateswith weights Wm > 0:5 for any m, divided by the to-tal number of eigenstates N . With Eq. (32) we get the
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2πFIG. 11: (
olor online) Fra
tion of regular states freg vs 
ou-pling strength v for random matrix model (full line) andki
ked system for various he� and m (symbols), where thesystem size M is res
aled to v a

ording to Eq. (29). Fra
tionof 
ooding eigenstates ffl(v) for the random matrix model(dashed line) for Nreg=N
h = 1=(8 + g) showing a broadertransition.
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FIG. 12: Total fra
tion of regular states Freg vs system sizeM a

ording to the predi
tion Eq. (33), (lines) in agreementwith the data for the ki
ked system for he� � 1=10 (
ir
les)and he� � 1=30 (squares). The arrows indi
ate the 
riti
alsystem sizes Mm a

ording to Eq. (32).predi
tionFreg(M) = MN mmax�1Xm=0 freg r MMm ! ; (33)where freg(v) is the universal 
urve from the random ma-trix model. For small system sizes M < Mm for all mthe total fra
tion of regular eigenstates is Freg(M) =Mmmax=N � Areg, as expe
ted from the semi
lassi
aleigenfun
tion hypothesis. Fig. 12 shows Freg(M) with asu

ession of plateaus and drops before ea
h 
riti
al sizeMm. Considering that the ratio of su

essive Mm onlyvaries moderately, the overall behavior of Freg is an ap-proximately linear de
rease on a logarithmi
 s
ale in M ,explaining the observations of Ref. [18℄. The agreementof Eq. (33) with the fra
tion of regular eigenstates forthe ki
ked system for di�erent he� as seen in Fig. 12 isremarkably good.We 
on
lude this se
tion with the remark that due tothe independen
e of freg(v) on the ratio Nreg=N
h one
an obtain this universal 
urve by 
onsidering a simplerrandom matrix model, where only one regular basis stateis 
oupled to an in�nite number of 
haoti
 basis states[35℄. For this simpler model it might be possible to obtainanalyti
al expressions for freg(v).VI. FRACTION OF FLOODING EIGENSTATESThe random matrix model also allows for investigatingthe fra
tion of 
ooding eigenstates. While the regulareigenstates disappear with in
reasing 
oupling strengthv, more eigenstates turn into 
ooding eigenstates with0:5Weq < W < 0:5. Fig. 11 shows the in
reasing fra
-tion of these states for the random matrix model withNreg=N
h = 1=(8 + g). Note, that this fra
tion is de-�ned as the number of 
ooding eigenstates divided by

the number Ntot of all eigenstates. At v = 1 all regu-lar eigenstates have disappeared, however, the fra
tionof 
ooding eigenstates is just 70%. The remaining eigen-states are 
haoti
, whi
h have no substantial weight inthe regular subspa
e. For larger values of v they turninto 
ooding eigenstates. This roughly happens whenea
h 
haoti
 basis state is 
oupled to at least one regularbasis state, i.e. when v�
h = �reg=2, see Fig. 5. Thisgives v = N
h=(2Nreg) � 4:8 whi
h is in good agreementwith the saturation observed in Fig. 11. This shows thatthe fra
tion of 
ooding eigenstates expli
itly depends onthe parameterNreg=N
h in 
ontrast to the fra
tion of reg-ular states freg(v).Applying this result of the random matrix model tothe ki
ked system where v = N
h=(2Nreg) � N=(2M),we �nd using Eqs. (28) and (24), that the fra
tion of
ooding eigenstates is saturated at ffl = 1 for
m > � �he��2 1�H,
h (34)Note, that this prefa
tor in
reases in the semi
lassiallimit leading to a broader transition to 
ooding eigen-states.VII. SUMMARY AND DISCUSSIONWe provide a detailed quantitative des
ription of the
ooding of regular islands. By using the proje
tion ofeigenstates onto regular basis states, whi
h de�nes theweightsWm, the pro
ess of 
ooding 
an be des
ribed sep-arately for ea
h torus. The distribution of these weightsin the ki
ked system agrees a

urately with the distri-bution obtained by the proposed random matrix model.This model depends on two parameters only: the 
ou-pling strength v between regular and 
haoti
 basis statesand the ratio of the number of those statesNreg=N
h. The
onne
tion of this 
oupling strength with the parametersof the ki
ked system is given by Eq. (29).From the random matrix model we gain the followinggeneral insights into the 
ooding of the m-th torus interms of its tunneling rate 
m and the Heisenberg time�H,
h:i) 
m < 1�H,
h : All regular eigenstates on them-th torusexist. None of the eigenstates predominantly extendingover the 
haoti
 region has substantially 
ooded them-thtorus.ii) 
m = (2�)2 1�H,
h : No regular eigenstates on them-thtorus exist. Some of the eigenstates predominantly ex-tending over the 
haoti
 region have substantially 
oodedthe m-th torus.iii) 
m > � �heff �2 1�H,
h : All of the eigenstates predom-inantly extending over the 
haoti
 region have substan-tially 
ooded the m-th torus.What do these results imply for the appli
ability ofthe semi
lassi
al eigenfun
tion hypothesis? For a �xed
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11system size in the semi
lassi
al limit he� ! 0, whi
h im-plies a roughly exponential de
rease of 
m, one ends upin regime i), in agreement with the semi
lassi
al eigen-fun
tion hypothesis. In 
ontrast, for small he� 6= 0 �xedand systems with M 
ells and M ! 1, one obtains alarge value for �H,
h /M , limited by dynami
al lo
aliza-tion only. Depending on the lo
alization length one endsup in regime iii) for some or all tori m. As in our 
aseone has �H,
h � he�=
0, regime iii) is realized for all tori,i.e. 
omplete 
ooding of the island [14℄.The universality in the transition from i) to ii) 
an beseen for the fra
tion of regular states freg(v) lo
alized ona given torus. For the random matrix model this fra
tiondoes not depend on the ratioNreg=N
h and the agreementwith the results for the ki
ked system is remarkably goodfor di�erent quantized tori and values of he�. In 
ontrastto the disappearan
e of regular eigenstates on the m-thtorus, the transition to 
ooding eigenstates on this torusis mu
h broader and extends to regime iii).It is also important to dis
uss, what these resultsimply for the 
ase of a single island in a 
haoti
 sea(M = 1). Most 
ommonly one is in regime i), i.e. regularand 
haoti
 eigenstates exist and only mix at a

identalavoided 
rossings. For a suÆ
iently small island, 
om-pared to the size of the 
haoti
 region, regime ii) 
an berea
hed. Here he� is small enough to quantum me
hani-
ally resolve the small regular island, but a 
orrespondingregular state does not exist. It is not possible, however, toget into regime iii) where all eigenstates would be 
ood-ing eigenstates: In Eq. (34) we have he� = 1=N and�H,
h = N
h � N su
h that the right hand side is approx-imately �2N , whi
h is always larger than the tunnelingrates 
m < 1.In the 
ase of an island 
hain of period p embeddedin a 
haoti
 sea it might be possible to get into regimeiii): In the derivation of Eq. (34) we now have to use

v = N
h=(2Nreg) � N=(2p) = 1=(2phe�), leading withEqs. (28) and N
h � N = 1=he� to 
 > �2=(p2he�). Theright hand side 
an be smaller than 1 if p is suÆ
ientlylarge while he� is small enough to resolve the individualislands of the 
hain. Whether this is indeed possible intypi
al systems requires further investigations.This dis
ussion shows that the semi
lassi
al limit ingeneri
 systems with a mixed phase spa
e, where islandsof arbitrarily small size exist, is rather 
ompli
ated. Forexample one 
an ask how small does he� have to be su
hthat at least one regular state exists on a small islandof size Areg? Let us de�ne the ratio r = he�=Areg Thequantization 
ondition Eq. (1) implies that r < 2 is ne
-essary to quantum me
hani
ally resolve the island. How-ever, we �nd that the ne
essary ratio r be
omes arbi-trarily small for small islands: Regime i) for m = 0requires 
0 < 1=�H,
h � he�. The tunneling rate 
0is an approximately exponentially de
reasing fun
tion
0 � exp(�C=r) with C of the order of 1 [19, 32℄. Thuswe have to ful�ll exp(�C=r)=r < Areg, whi
h for de
reas-ing Areg is only possible if r is suÆ
iently small.We 
on
lude by emphasizing that the universalitygiven by the random matrix model not only holds for theki
ked system studied here, but is appli
able to any sys-tem with a mixed phase spa
e. The 
onsequen
es for thesemi
lassi
al limit in the hierar
hi
al phase{spa
e stru
-ture of generi
 systems needs mu
h further investigation.A
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