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Active Set Support Vector Regression
David R. Musicant and Alexander Feinberg

Abstract— We present ASVR, a new active set strategy to solve
a straightforward reformulation of the standard support vector
regression problem. This new algorithm is based on the successful
ASVM algorithm for classification problems, and consists of
solving a finite number of linear equations with a typically large
dimensionality equal to the number of points to be approximated.
However, by making use of the Sherman-Morrison-Woodbury
formula, a much smaller matrix of the order of the original
input space is inverted at each step. The algorithm requires no
specialized quadratic or linear programming code, but merely
a linear equation solver which is publicly available. ASVR is
extremely fast, produces comparable generalization error to other
popular algorithms, and is available on the web for download.

Index Terms— regression, active set, support vector.

I. INTRODUCTION

SUPPORT vector regression (SVR) is a powerful technique
for predictive data analysis [1], [2] with many applications

to varied areas of study. For example, regression is used in
biological contexts to model disease onset and intensity as
influenced by various behaviors and environmental conditions
[3]. Support vector regression has been used for diverse appli-
cation areas such as drug discovery [4], civil engineering [5],
and sunspot frequency prediction [6]. In this work, we present
a new active set strategy to solve a straightforward reformu-
lation of the standard support vector regression problem. This
new algorithm, based on the successful ASVM algorithm for
classification problems [7], consists of solving a finite number
of linear equations with a typically large dimensionality equal
to the number of points to be approximated. However, by
making use of the Sherman-Morrison-Woodbury formula, a
much smaller matrix of the order of the original input space
is inverted at each step. The algorithm requires no specialized
quadratic or linear programming code, but merely a linear
equation solver which is publicly available.

Key to our approach are the following two changes to the
standard linear SVR problem:
� Regularize the regression plane with respect to both

orientation ( � ) and location relative to the origin (
�
). See

(6) below. Such an approach has been successfully used in
a number of classification methodologies, such as ASVM
[7], LSVM [8], and SSVM [9].� Minimize the regression error ( � and �� ) using the 2-norm
squared instead of the conventional 1-norm. See (6). Such
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an approach is common in the context of traditional least
squares regression [10].

These simple, but fundamental changes, lead to a consider-
ably simpler dual problem with only nonnegativity constraints
and a simple complementarity condition.

In Section II of the paper we begin with the standard SVR
formulation and its dual and then give our formulation and
its simpler dual. We corroborate with solid computational
evidence that our simpler formulation does not compromise
on generalization ability as evidenced by numerical tests in
Section IV on public datasets. See Table I. Section III gives
our active set support vector regression (ASVR) Algorithm 1
which consists of repeatedly solving systems of linear equa-
tions. By invoking the Sherman-Morrison-Woodbury (SMW)
formula (1) we need only invert an ���
	���������
	��� matrix
where � is the dimensionality of the input space. This is a
key feature of our approach that allows us to solve problems
with millions of points by merely inverting much smaller
matrices of the order of � . Section IV describes our numerical
results which indicate that the ASVR formulation has a ten-
fold testing correctness that is as good as the ordinary SVR
formulation, and has the capability of quickly and accurately
solving massive problems with millions of points that are
difficult to solve with standard SVR methods.

There is a considerable amount of previous literature re-
lated to our work. Numerous software packages available to
the community do support vector regression [6], [11]–[15].
The Sherman-Morrison-Woodbury formula has been used by
many support vector machine approaches, such as ASVM [7],
LSVM [8], and PSVM [16], as well as in an interior point
approach by Ferris and Munson [17]. Williams and Seeger
make use of the SMW formula in applying the Nyström
method to Gaussian process classification and regression [18].
In addition to our own previous work on active set methods
[7], Burges has also used an active set method for the support
vector classification problem [19]. We note that an active set
computational strategy bears no relation to active learning.
Evgeniou, Pontil, and Poggio [20] provide a general theory
for considering different support vector machine formulations.
Within this framework, our approach can be seen to contain
elements of both standard support vector regression and reg-
ularization networks.

The support vector machine regression problem differs from
the support vector machine classification problem in a few
fundamental ways [2], [21]. The goal of the classification
problem is to make a binary decision, i.e. to choose in which
of two classes a given point should be classified. The goal of
the regression problem, on the other hand, is to approximate a
function. The solution to a support vector regression problem
is a function that accepts a data point and returns a continuous

1045-9227/04$20.00 c
�

2004 IEEE



MUSICANT AND FEINBERG: ACTIVE SET SUPPORT VECTOR REGRESSION 269

value. The support vector regression problem also allows for
a “zone of insensitivity” defined typically by a parameter � .
Suykens and Vandewalle [22] have considered an approach
to support vector classification by treating it as a regression
problem, where the function to be approximated takes on
the value 1 for one class and -1 for the other. As with
our approach, Suykens and Vandewalle use a quadratic loss
function.

We now describe our notation and provide some background
material. All vectors will be column vectors unless transposed
to a row vector by a prime

�
. For a vector ������� , �
	 denotes

the vector in � � with all of its negative components set to zero.
The notation �������� � will signify a real � � � matrix. For
such a matrix � � will denote the transpose of � and ��� will
denote the � -th row of � . A vector of ones or zeroes in a
real space of arbitrary dimension will be denoted by � or � ,
respectively. The identity matrix of arbitrary dimension will be
denoted by � . We shall employ the MATLAB “dot” notation
[23] to signify application of a function to all components
of a matrix or a vector. For example if �������� � , then
��� � ������ � will denote the matrix obtained by squaring each
element of � . For two vectors � and � in ��� , ��� � denotes
orthogonality, that is � � �"!#� . For $%�&�� , '(������) and*,+.- �0/213/5464547/8�%9 , $;: denotes $ �=< : , '�: denotes ' �>< : and
' :?: denotes a principal submatrix of ' with rows �@� *
and columns AB� * . The notation arg CEDGF
HI<KJ(L �=�  denotes
the set of minimizers in the set M of the real-valued function
L defined on M . The 2-norm of a matrix ' will be denoted
by N6'@N � . A special case of the Sherman-Morrison-Woodbury
(SMW) formula [24] will be utilized:

� �O 	QP�P � 7RTSU! O �=��VWP � �O 	XP � P YRZS7P � 7/ (1)

where
O

is a positive number and P is an arbitrary � �\[
matrix. This formula enables us to invert a large � �]� matrix
by merely inverting a smaller [ ��[ matrix.

II. LINEAR SUPPORT VECTOR REGRESSION

We consider a given dataset of � points in � -dimensional
real space, represented by the � � � matrix �^�_���� � .
Associated with each point ��� is a given observation, a real
number �K�`/8�a! �0/64b4G4b/c� . We wish to approximate ������ by
a function of � of the form:

�Ed.� � 	 � �e/ (2)

where � ����� and
� ��� S are parameters to be determined by

minimizing some error criterion. For this problem the standard
� -loss insensitive support vector regression problem (SVR)
with a linear kernel [1], [2] is given by the following quadratic
program with parameters

Ogf �3/`� f � :
ChDGFikj l8j mnjpom S� N

� N5�� 	
O �q� � � 	X� � �� 

s.t. � � 	 � �UV\�@rs�I��	 �
�tVW� � V � ��rs�I��	 ��

�Euv�w/ ��tuv�
(3)

The regression surface, which determines approximate values
for � , is then given as:

��h! �
� � 	 �

(4)

The objective function in (3) contains two competing goals.
The linear term � � � 	x� � �� represents the error made in not
fitting some of the data exactly. The quadratic term S� N

� N5�� is a
regularization term, and is present to help avoid overfitting [2].
Since these two terms cannot typically both be simultaneously
minimized, the parameter

O
indicates how much emphasis is

to be placed on one goal versus the other.

The dual to the standard quadratic linear SVR (3) is the
following [21]:

ChDGFy)j oy S� � �
z V z  � ��� � � �z V z {V\�

� � �z V z  	W�I�
� � �z 	 z 

s.t. � � � �z V z |!.��Er �z / z r O
(5)

� and
�

in the primal formulation can be expressed easily
in terms of z and �z . This dual formulation is the one most
commonly used by currently available software [6], [15]. How-
ever, our alternative formulation to this problem is simpler,
which leads to the ASVR algorithm which is able to solve
the problem considerably faster. To arrive at our formulation,
we make two modifications to (3). First, we change the error
terms to be quadratic. This is a similar approach to that
taken by traditional least-squares methods, and also has been
used both in the context of support vector regression [21]
and classification [22]. Second, we add

� � to the objective
as well. This approach has often been used successfully in
classification problems [8], [16], [25], and results in a much
more straightforward dual problem that can be solved by our
ASVR algorithm. Our new formulation is thus given as:

ChDGFikj l8j mnj om S� N
� Nn�� 	 S�

O �cN �wNn�� 	}N ��wNn��  	 S�
� �

s.t. � � 	 � �UV%�"rX�I��	 �
�tV\� � V � ��rX�I� 	 ��

(6)

Note that since the objective now contains quadratic loss terms
for � and �� , the nonnegativity constraints on � and �� are no
longer necessary. To see this, suppose that a given component
of the optimal values for � or �� were negative. Setting this
component to zero would result in a better (smaller) objective
value, and would only increase the right hand side of the
constraints in (6). Therefore none of the components of � or ��
can be negative at optimality, and the nonnegativity constraints
are unnecessary.

Observe that this ASVR formulation differs noticeably from
traditional least-squares regression. The regularization term
S� N
� N5�� in the objective and the � insensitivity term in the

constraints capture the essence of the traditional support vector
regression formulation.

The dual to (6) is:

CEDGFy)j oy S� � �
z V z  � �=��� � 	X�~� �  � �z V z {V%�

� � �z V z 
	���� � � �z 	 z  	�S�2� � �

z � �z 	 z
� z 

s.t. �z / z u��
(7)
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The dual formulation (7) is significantly more straightfor-
ward than (5) as it is missing both the upper bounds on the
variables and the equality constraint. It is these simplifications
that allow us to obtain the high speed and simplicity of the
ASVR algorithm.

The variables � � / �  of the primal problem which determine
the regression surface (4) can be obtained from the solution
of the dual problem as:

� ! � � � �z V z 7/ � ! � � � �z V z  (8)

The objective of formulation (7) can be simplified further by
observing that �z

� z !�� at optimality. To verify this, suppose
that for an optimal choice of �z and z there exists an index �
such that �z � f � and z � f � . Then define

� !#��� � � �z � / z �  ,
and redefine �z � ! �z � V �

and z � ! z � V � . All of the � �z Vz  terms in the objective of (7) remain unchanged, but the
� �z 	 z  and � �z

�
�z 	 z

� z  terms are reduced. This contradicts
the supposition that �z and z are optimal. Therefore, we add
to (7) the complementarity constraint �z � z . With this added
constraint, we can safely add V�1 �z

� z to the last term of the
objective in (7):

ChDGFy3j oy S� � �
z V z  � �q��� � 	X� � �  � �z V z {V\�

� � �z V z 
	��I� � � �z 	 z  	 S�c� � �

z � �z VB1 �z
� z 	 z � z 

s.t. �hr �z � z u��
(9)

This simplifies to:

ChDbFy3j oy S� � �
z V z  � �=�]� � 	Q�~� � 	���  � �z V z 
V � � � �z V z  	W�I�

� � �z 	 z 
s.t. �tr �z � z uv�

(10)

We immediately note that the matrix �]� � 	 � � � 	���appearing in the dual objective function is positive definite.
This fact, combined with the facts that there is no equality
constraint and no upper bound on the dual variables z and �z ,
lead us to our simple finite active set algorithm which requires
nothing more sophisticated than inverting an ��� 	��� � ��� 	���
matrix at each iteration in order to solve the dual problem
(10).

III. ASVR (ACTIVE SET SUPPORT VECTOR REGRESSION)
ALGORITHM

The algorithm consists of partitioning the dual variables

�z and z into nonbasic and basic variables. The nonbasic
variables are those which are set to zero. The values of the
basic variables are determined by finding the gradient of the
objective function of (10) with respect to these variables,
setting this gradient equal to zero, and solving the resulting
linear equations for the basic variables. If any basic variable
takes on a negative value after solving the linear equations, it
is set to zero and becomes nonbasic. This is the essence of
the algorithm.

With that in mind, we define a combined dual variable $
as:

$"! �z V z (11)

At the beginning of each iteration of the ASVR algorithm, we
consider as nonbasic all variables that are set equal to 0. We

then consider the basic set as two subsets: one corresponding
to the positive �z values, and one corresponding to the positivez values.

�* ! - ��� $ � f �)9* ! - ��� $ ��� �)9	 ! - ��� $ � !.�)9 (12)

Finally, we define the entire basic set as those corresponding
to both positive �z and z :
 ! 
 � �* / * |! �*���*

(13)

The crux of the algorithm consists of optimizing only over
those variables which are basic. We therefore make the fol-
lowing simplifying definitions:

P !� � ���p/ �^! �� 	QP�P � /��� j �?!
�� � V �0� 	B�I� D��W�|� �*
V �0�;V%�I� D��W�|� *
� ����� ��!�" D$#%�

(14)

With these definitions, we can rewrite (10), holding the non-
basic variables fixed at zero, as:

ChDbF&(' L � �>$ � a! �
1 $
�� � �)� $ � 	 � �� $ �

s.t. $ o: u��3/{$ : rv�
(15)

Note that the complementarity constraint in (10) has not been
written explicitly in (15). This is because our choices for �*
and
*

always ensure that this condition holds true implicitly.
More specifically, as seen in Algorithm 1:
� We initialize �* ! - �0/54G4G4b/c�&9 and

* !+* . This corre-
sponds to assuming that z !�� initially, and hence the
complementarity condition holds.� At every “regular” step of the algorithm (see (A) and
(B) in Algorithm 1) the cardinality of



is reduced by

moving indices to the nonbasic set. Each regular ASVR
step therefore preserves the complementarity condition.

� When progress can no longer be made via the regular
ASVR approach, a gradient projection step is taken. This
step does not preserve the complementarity condition, but
complementarity can be immediately restored afterwards
via a shift.

The basic ASVR approach is to find the global uncon-
strained minimum for the objective function of (15), and then
to project the solution back onto the feasible region. This can
be formalized as: ,

$ � ! V-� RTS�)� ���
$ o: ! �

,
$ o: `	

$ :Q! �`V
,
$;: 8	

$/..! � (16)

Now that we have a new value for the variable $ , we determine
the new basic set and repeat.

In order to ensure that the algorithm converges and termi-
nates, a few additional safeguards need to be put in place in
order to allow us to invoke the Moré-Toraldo finite termination
result [26]. These safeguards can be found in Algorithm 1.
Specifically, if the “regular” ASVR step as described above
does not make any progress towards the objective, we use a
line search step. If the line search fails as well, we free all
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nonbasic variables and do a gradient projection step which is
guaranteed to improve the objective. In order to do so, we
define the following notation:�$�! �

�zz�� / �� ! � V � 	B���
� 	B��� �

'#!
� � V-�
V-� � � (17)

With these definitions the dual problem (10) becomes

ChDbF�����& <
	��� L � �$ a! �
1
�$ � ' �$ 	 �� � �$

s.t. �Er �z � z uv�
(18)

It is on this formulation of the problem that we use a gradient
projection step. See Algorithm 1 for details. As noted earlier,
this step does not necessarily preserve complementarity. We
can restore complementarity, however, with a shift as follows.
If there exists an ��� - �0/64b4G4b/c�&9 such that

�$;� f � and�$ � 	  f � (i.e., such that �z � f � and z � f � ), we define� ! ��� � � �$ � / �$ � 	   and then redefine�$;� ! �$;�;V � / �$ � 	  ! �$;� 	  V � (19)

As described following (8), this process simultaneously re-
stores the complementarity condition and improves the objec-
tive function.

Another key feature of the algorithm is a computational one
that makes use of the SMW formula. This feature allows us to
invert an ��� 	 �� � ��� 	
�� matrix at each step instead of a much
bigger matrix of order � �&� . It should be understood that
whenever Algorithm 1 refers to inverting a matrix, it should be
done with the SMW formula and hence only an ��� 	 �� � ��� 	 ��
matrix is inverted. (For simplicity we speak of “inverting” a
matrix whereas in fact we are only solving a system of � 	 �
linear equations in � 	 � unknowns which take less time to
solve.)

Algorithm 1: ASVR (Active Set Support Vector Regres-
sion)
Initialize �* ! 
 ! - �0/64b4G4G/8�%9 , * ! - 9 .
Initialize

	 ! - � 	 �0/54G4G4b/Y1��%9 .
Initialize done = false.
Initialize $ o: ! �`V-� RTS�)� � � `	 /\$/.}! �w4
Initialize

�$�!� $;	�� �`V $ `	 � .
While (not done)

Set
�$���������! �$ .

Define �* ! - � �I$ � f �)9e/ * ! - � ��$;� � �)9 .
Define

	 ! - � �~$ � !.�)9K/ 
 ! �* ��* 4
// Try heuristic step (A).
Set

,
$ � ! V-� RTS�)� ��� / $ o: ! �

,
$ o:  	 .

Set $ : ! �8V
,
$ :  	 / $ . ! �w4

Set
�$�!� $ 	 � �`V $  	 � .

If L � �$  u L � �$ �������  , then

// Try line search step (B).
Set

�$�! �$ ������� .

Set $�! �$�� S j������ j �� V �$ �  	 S j������ j �2�� .
Set $ � ! arg !#"%$'& �)(
�+* - L � �=$ � 	-, � ,$ � V%$ �   �

$ o: 	-, � ,$ o: V\$ o:  us�/.0$21
$;: 	-, � ,$;:BV\$ :� rs�)9e4

Set $/.}! � .
Set

�$�!� $;	�� �`V $ `	 � .
If L � �$  u L � �$ �������  , then

// Do gradient projection step, freeing up all
// variables (C).
Set

�$�! �$ ������� .
Repeat

Set
�$�! arg !3"%$ & �)(
�4* L � �$ V5, � �$"V �p' �$ 	 ��   	 

until L � �$  � L � �$ �������  .
// Adjust

�$ to preserve complementarity (D).
For all ��rX�|rv� where

�$ � f � and
�$ � 	  f �

Set
� ! �"� � � �$ � / �$ � 	   .

Set
�$;� ! �$ �TV � .

Set
�$;� 	  ! �$ � 	  V � .

End for

End if

End if

// Test for global optimality (E).
If �hr �$��}' �$ 	 �� u�� (within a tolerance)

Set done = true.
End if

End while

The heuristic step (A) in Algorithm 1, while not guaranteed
to improve the objective, often works well. Since we use the
SMW formula to invert the matrix � �)� , we only handle a
system with � 	 � columns where � is the number of features
(columns) in the original dataset. The inversion thus takes a
fixed amount of time at each iteration. Furthermore, we note
that if the heuristic step were not used we would need to invert
the matrix anyway for the line search step (B). Therefore, the
time spent on inverting the matrix should really be thought of
as “shared” between these two steps. The only other work
done by the heuristic step (A) is in checking to see if it
actually succeeded in improving the objective, which consists
of evaluating the objective at the heuristic solution.

The line search step (B) is the traditional active set ap-
proach, designed to move one constraint at a time from the
basic set to the nonbasic set. It is invoked when the heuristic
in step (A) fails to improve the objective. Since step (B) can
leverage the matrix inverse computed for step (A), the only
additional work necessary is to solve an equation for a single
variable. This, like the rest of step (A) apart from the inverse, is
considerably faster than computing the inverse itself. However,
the line search step (B) only eliminates one index at a time
from the basic set. After this index has been removed from the
basic set, another iteration and thus another inverse is required.
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When the heuristic step (A) works well, on the other hand, it
may remove a considerable number of indices from the basic
set in one single heuristic step.

Finally, the gradient projection iteration (C) is guaranteed
to converge to the global solution of (18) [27, pp 223-225]
and is placed here to ensure that the strict inequality L � �$  �
L � �$ �������  eventually holds as required in [26]. Similarly, the
gradient projection step ensures that the function value does
not increase when it remains on the same face, in compliance
with [26, Algorithm BCQP(b)]. In our implementation we
first do a variant of (C) where we do not yet free all the
variables, in an attempt to make further progress on the face
at hand. If no progress can be made, then we invoke step (C)
as shown in Algorithm 1. Each individual gradient projection
step (C) involves repeatedly solving an equation for a single
variable until progress on the objective has been made. Each
individual equation solution, therefore, takes approximately
the same time as a single line search step (B). However, the
number of iterations required in (C) may be many, and is not
easily predictable. Step (C) also does not require the matrix
inverse that was computed for steps (A) and (B). However,
we only invoke this step after the other two have failed, so
this particular advantage is not realized. Attempting step (C)
before the other two could theoretically negate the need to
compute an inverse in rare circumstances, but most of the
time the number of iterations that step (C) needs to make is
large enough that it makes sense to try the other approaches
first.

The test for global optimality (E) is a direct application
of the KKT optimality conditions [28] for (10) with the
complementarity condition �}r �z � z u � relaxed. Note
that this extra complementarity condition is initialized to be
true, and is never violated throughout the algorithm except
via the gradient projection step (C). If the gradient projection
step does cause a violation of this condition, it is immediately
corrected in the adjustment step (D).

ASVR is extended to solve regression problems with pos-
itive semidefinite nonlinear kernels in the same manner as
LSVM. [8]. For � � ���� � and

* � � � ��� , the kernel� �=� / *  maps ���� � �\� � ��� into ������ . A typical kernel
is the polynomial kernel

� �=� / * t! �=� * ��� , where d is an
integer greater than or equal to 1. We therefore substitute a
kernel in the definition for � in (14) to obtain

� ! �O 	 � �=P�/cP �  (20)

Everything else in Algorithm 1 remains identical, apart from
actually classifying points once z and �z have been determined.
The parameters � and

�
no longer exist. Instead, we use an

analogous approach to classification kernels [8] and predict
the regression value associated with a particular point � to be

��h! � �% � ��� /cP �  � �z V z  (21)

The price paid for this extension is that large datasets can
be handled with the efficiency of the linear case only if
the inner product terms of the kernel [29, Equation (3)] are
explicitly known, which in general they are not. Reduced
kernel techniques [30], [31] can be beneficial here. Regardless,

ASVR may be a useful tool for regression with nonlinear
kernels because of its simplicity. ASVR does not require any
specialized quadratic or linear programming code, but merely
a linear equation solver which is publicly available.

IV. NUMERICAL IMPLEMENTATION AND COMPARISONS

We implemented ASVR in C++. The GNU g++-2.91.66
compiler under Red Hat Linux 6.2 [32] was used for all
experiments, on a machine containing four 700 MHz Pentium
III Xeon processors and a maximum of 2 gigabytes of memory
available per process. We ensured that all experiments were
isolated, i.e. no other users were using the machine at the
same time. Our software does not make any use of parallel
processing capabilities. We wrote all the code ourselves except
for the linear equation solver, for which we used CLAPACK
[33], [34].

Our stopping condition for ASVR comes directly from
the test for global optimality (E) in Algorithm 1. Since
this optimality condition really consists of three simultaneous
checks (

�$ u � , �$ � ' �$ 	 �� , ' �$�	 �� u � ), we need a
convenient metric of how much this condition is violated for
a particular choice of

�$ . We therefore use the error bound
residual N �$"V � �$"VX' �$ V �� 8	�N . This residual is explained in
more detail by Mangasarian and Ren [35], but can intuitively
be seen to be zero when global optimality condition (E) is
satisfied. We choose to terminate our algorithm when this error
bound residual goes below �w4 � . We also used a tolerance of
�6� R � to determine at each iteration which points remained in
the basic set. Any point with a dual variable less than this
tolerance was moved to the nonbasic set.

The first set of experiments is designed to show that our
reformulation of the SVR problem (6) and its associated
algorithm ASVR yield similar performance to standard SVR
techniques (3). For four publicly available datasets, we per-
formed ten-fold cross-validation in order to compare test set
errors between our formulation as implemented via ASVR,
and the standard formulation as implemented via SVMTorch
[6]. We initially tried comparing to mySVM [15] as well, but
we quickly discovered that mySVM ran considerably more
slowly than SVMTorch and so we abandoned the mySVM
experiments apart from the smallest dataset. In all cases we
normalized the data, as this generally seems to help the
algorithms converge more quickly. We chose to use the default
termination error criteria in SVMTorch of � � �6� R � and
mySVM of � � �6� R � , since these were less stringent criteria
for large datasets than the one we used for ASVR. This is
because the criterion we used for ASVR is an aggregate over
the errors for all points, whereas the SVMTorch and mySVM
criteria reflect a minimum error threshold for each point. In
all experiments, we measured generalization capability of the
algorithm by measuring relative error. For an actual vector
of values � and a predicted vector �� , the relative error as a
percentage was determined as:

N �� V\�ZN �Nn�TN �
���6�K� (22)

The training and test set errors that we report are averages
over ten-fold cross-validation of this relative error. Likewise,
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the CPU time and iteration counts that we present are ten-fold
averages as well.

We also used ten-fold cross-validation with a hold-out
tuning set in order to find optimal parameter settings for

O
and � . For each of the ten folds for a given dataset, 10%
of the data was removed as a test set and not used again
until after optimal choices for

O
and � were determined.

From the other 90%, we removed 10% of that for use as a
hold-out tuning set. We then tried a variety of choices forO

and � , training on our ten training sets and averaging our
error rates on the ten tuning sets. We chose

O
and � to

maximize average performance on the tuning sets.
O

and �
were then fixed, and used to present the training and test results
shown. It should be noted that we conducted this process
independently for each algorithm. Since ASVR is based on
a different formulation than the other methods, the optimal
choices of

O
and � are in general different than the optimal

choices for the other algorithms. Likewise, since mySVM and
SVMTorch both obtain approximate solutions using different
algorithms, and since a range of

O
and � values tend to

give approximately the same “best” results, the experimental
optimal values of these parameters are often different between
mySVM and SVMTorch.

For each algorithm and for each dataset we optimized
O

and � by starting with an exponential grid search, exhaustively
trying all combinations of

O
from

- �6� R�� / �6� R � / �6� R � /54G4G4b/ �6� � 9
and � from

- �34 �0/ �K/ � �)9 . Once optimal choices for
O

and �
were found by measuring average performance on hold-out
tuning sets, we used the optimal combination of

O
and �

as a starting seed for the MATLAB [23] optimization tool
fminsearch. This MATLAB function attempts to minimize a
nonlinear multidimensional function by using a Nelder-Mead
simplex method [36]. This only guarantees that we find a local
minimum error, but finding a global minimum for

O
and � is

intractable given the complexity of the formulations. We note
that the same optimization methodology was consistently used
for all algorithms.

Four datasets were used for the first round of experiments.
The first dataset, Boston Housing, is a fairly standard dataset
used for testing regression problems. It contains 506 data
points with 12 numeric attributes, and one binary categorical
attribute. The goal is to determine median home values, based
on various census attributes. This dataset is available at the
UCI repository [37]. The second dataset, Comp-Activ, was
obtained from the Delve website [38]. This dataset contains
8192 data points and 25 numeric attributes. We implemented
the “cpu prototask”, which involves using 21 of these attributes
to predict what fraction of a CPU’s processing time is devoted
to a specific mode (“user mode”). The third dataset, Census
30k, is a version of the US Census Bureau “Adult” dataset,
which is publicly available from Silicon Graphics’ website
[39]. This “Adult” dataset contains nearly 300,000 data points
with 11 numeric attributes, and is used for predicting income
levels based on census attributes. We used a subset of 30,000
points to run these experiments. The fourth dataset, Census-
House, was also obtained from the Delve website [38]. This
dataset, also derived from US Census Bureau data, is used for
predicting median home prices based on other demographic

information. We used Census-House to evaluate ASVR on
a dataset with considerably more features than the others.
The original version of this dataset contained 137 features,
although some of these features had constant values. We
removed these features, leaving 121 of them remaining. We
used a random subset of 5000 points so that we could run our
experiments in a reasonable period of time.

The results from these experiments are shown in Table
I. For the Housing dataset, ASVR generalizes similarly to
SVMTorch and runs in comparable time. For the Comp-
Activ dataset, ASVR generalizes better than SVMTorch but
runs noticeably slower. We point out that with non-optimal
parameter settings ASVR achieves generalization performance
comparable with SVMTorch with running time faster than
SVMTorch. Both sets of parameters for the Comp-Activ
dataset are shown in Table I. On the Census 30k dataset, ASVR
generalizes better than SVMTorch in faster time. Finally,
on the Census-House dataset, we do see that ASVR runs
considerably more slowly than SVMTorch. This is due to the
relatively high dimensionality of this dataset.

Our second experiment shows that ASVR has the potential
to perform well on massive datasets. We created an “easy-to-
fit” synthetic dataset of 2 million points in ten dimensions by
starting off with an exact linear fit, then adding Gaussian noise
to the observations. The optimal error rate on this dataset was
known, since we generated the dataset ourselves from a known
regression function. ASVR achieved a close approximation to
this error rate in about 60 seconds with a single iteration.
SVMTorch, however, did not terminate on this simple dataset
for a variety of parameter settings, even after running for
several hours. For a simple but large dataset such as this one,
the heuristics that ASVR uses are particularly well suited. The
decomposition approach that SVMTorch uses, however, seems
to have considerable difficulty.

We next examine how the running time for ASVR depends
on the dimensionality of the dataset. Since we make use of the
Sherman-Morrison-Woodbury identity repeatedly throughout
the algorithm (step A, Algorithm 1), we expect that perfor-
mance will slow significantly as dimensionality grows. We
tested this in a straightforward manner by creating a series of
synthetic datasets in the same manner described above, each
with 1000 rows and varied numbers of features. As with the
earlier experiments, we optimized

O
and � via performance on

a tuning set. The results for these experiments on our synthetic
data are shown in Table II. As expected, and as confirmed
further by the results seen in Table I, ASVR performs at its
best on datasets with lower dimensionality. Likewise, ASVR
performs quite well on datasets with large numbers of points.
We additionally point out that use of the SMW identity is not
required for our algorithm. If a dataset contains more columns
than rows, it would make sense to avoid the SMW identity and
invert the matrix directly.

Finally, we implemented a rough prototype in MATLAB
[23] of ASVR with kernels using the techniques described at
the end of Section III. Table III shows accuracy and running
time for the Boston Housing dataset for both a linear and a
quadratic kernel.

O
and � were again optimized through the

use of a hold-out tuning set. We have re-run the linear results
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TABLE I

ASVR COMPARED WITH CONVENTIONAL SVMTORCH ON PUBLICLY AVAILABLE DATASETS.

Dataset Algorithm C � Train Test CPU Time Iters

Error Error (secs)

Housing SVMTorch 1 0.01 20.48% 19.80% 0.19 3840.7

(506 x 12) ASVR 0.25 0.015 19.28% 19.44% 0.50 96.5

mySVM 1.6 0.014 20.45% 19.77% 2.22

Comp-Activ SVMTorch 0.099 10 12.07% 11.97% 3.55 2905.9

(8192 x 21) ASVR 0.004 0.1 11.76% 11.86% 2.41 18.9

ASVR 1 0.1 11.15% 11.27% 31.9 329.5

Census 30k SVMTorch 1000 0.1 27.77% 27.36% 5021.0 1271250.0

(30k x 10) ASVR 0.017 0.19 25.16% 24.99% 4345.9 7748.3

Census-House SVMTorch 1000 0.1 8.96% 9.12% 792.3 4422460.7

(5k x 121) ASVR 0.1 0.1 8.03% 9.03% 3308.5 3095.4

ASVR error rates are comparable to SVMTorch in these examples. mySVM performance is shown for the first experiment as well (though

mySVM did not output an iteration count). Iterations have significantly different meanings in each algorithm, and are provided here for reference

only. Train error, test error, CPU time, and iteration counts are averages over ten-fold cross-validation. For the Comp-Activ dataset, we show

ASVR twice, with different parameter settings. The first row shows comparable error rates to SVMTorch, with faster running time. The second

row shows improved error rates, at the expense of running time. ASVR is thus seen in these examples to be comparable to or better than

SVMTorch in running time and accuracy, with the exception of the Census-House high dimensional dataset shown at the bottom.

TABLE II

PERFORMANCE OF ASVR ON SYNTHETIC DATASETS WITH 1000 ROWS, WITH INCREASING DIMENSIONALITY.

number of C � Train Test CPU Time Iters

features Error Error (secs)

10 0.19 0 23.06% 23.70% 0.83 77.3

50 0.10 0.10 23.02% 24.68% 2.58 96.2

100 0.11 0.10 8.48% 9.75% 25.3 231.1

200 0.10 0.11 9.00% 11.63% 117.8 220.2

500 0.10 0.10 11.63% 27.90% 531.3 67.5

The use of the Sherman-Morrison-Woodbury identity in computing inverses is evident in the running time as the dimensionality increases. These

results, and the ones in the previous table, suggest that ASVR is a superior algorithm on datasets with smaller dimensionality.

here using our MATLAB prototype code so that timing can be
properly compared. We note that this prototype code does not
use the SMW identity for computing inverses, is not optimized,
and does not implement all heuristics in precisely the same
detail as the earlier C++ code. Despite these caveats, these
results suggest that ASVR can be successfully used with a
nonlinear kernel.

V. CONCLUSION

We have demonstrated that an active set algorithm can be
used effectively for the support vector regression problem.
ASVR is fast, finite, simple, and capable of performing support
vector regression on datasets with millions of points. ASVR
requires nothing more complex than a commonly available
linear equation solver for solving small systems with few
variables even for massive datasets. Future work includes

implementing kernel reduction techniques [30], [31] to allow
ASVR to be used efficiently with nonlinear kernels.

ASVR can be downloaded from http://www.mathcs.
carleton.edu/faculty/dmusican/asvr, and is free
for research and academic purposes.
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