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Abstract

We consider a M/M/1 queue in which the average reward for servicing a job is an exponentially decaying function
of the job’s sojourn time. The maximum reward and mean service times of a job are i.i.d. and chosen from arbitrary
distributions. The scheduler is assumed to know the maximum reward, service rate, and age of each job. We prove
that the scheduling policy that maximizes average reward serves the customer with the highest product of potential
reward and service rate.
© 2004 Elsevier B.V. All rights reserved.

Keywords:Queuing theory; Reward; Scheduling

1. Introduction

We are concerned here with optimal scheduling in queues with customers who have limits on their
queueing or sojourn times. Such time limits have been previously used to model transmission of real-time
packets over a packet-switched network[1–3], overload control in call processing systems[4,5], and call
handoff in cellular networks[6]. We consider in this paper a queue with Poisson arrivals and exponential
service times, in which the average reward for servicing a job is an exponentially decaying function of the
job’s sojourn time. The maximum rewards (defined as the reward that would be earned if a job’s sojourn
time is zero) of the jobs are i.i.d. and chosen from an arbitrary distribution. Similarly, the mean service
times, or equivalently the service rates, of jobs are i.i.d. and chosen from an arbitrary distribution. The
scheduler is assumed to know the maximum reward, service rate, and age of each job.
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Much prior work has considered queues with impatient users with identical maximum rewards and
service rates. Early papers modeled such queues under a first in first out (FIFO) scheduling policy,
and derived various performance measures[7]. Later papers have focused on characterizing the optimal
scheduling policy. The literature on such systems splits into two categories, depending on whether the
deadlines of individual customers are known by the server.

If the deadlines of individual customers are known by the server, it has been shown that shortest
time to extinction with idling (STEI) is often optimal. In[2], Panwar et. al. consider a M/G/1 queue
in which customers have deadlines on queueing time and will drop out of the queue if service is not
started before the deadline (called “expired jobs dropped”). They prove that STEI minimizes the average
number of dropped jobs among the class of non-preemptive scheduling policies. In[3], Bhattacharya
and Emphremides consider a G/M/1 queue in which customers have deadlines on queueing time or on
sojourn time with expired jobs dropped, and prove that STEI minimizes dropped jobs (in the sense of
stochastic ordering) among the class of non-preemptive policies. In[8], Bhattacharya and Emphremides
consider two queues sharing a single server, with geometric arrivals and service, in which customers
have deadlines on sojourn times but will not drop out of the queue when the deadline passes. The server
accumulates a penalty for tardy customers, which is linear in the tardiness. They prove that the scheduling
policy that minimizes average and discounted penalty is preemptive STEI, with an optimal switch-over
policy among the two queues.

If the deadlines of individual customers are not known by the server, then the scheduling policy must
base its decision on the distribution of deadlines and the age of the customer, rather than the customer’s
actual deadline. The literature on such queues typically assumes that expired jobs are not dropped, i.e.
the server must serve all jobs. In[9], Doshi and Lipper consider a M/G/1 queue in which customers
have deadlines on queueing time and expired jobs are not dropped. A reward is earned for each served
job, but the reward depends on the customer’s queueing time. They prove that if the reward function
is convex decreasing, then last in first out (LIFO) maximizes average reward among work-conserving
non-preemptive scheduling policies. Similarly, they also show that if the reward function is concave, then
the optimal policy is first in first out (FIFO). In[10], Kallmes et al. consider a G/G/1 queue in which
customers have deadlines on sojourn times and expired jobs are not dropped. They prove that if the
distribution function of deadlines is concave, then LIFO maximizes the probability that the sojourn time
is less than the deadline among work-conserving, non-preemptive scheduling policies. They also show
that in a M/G/1 queue under similar conditions, last in first out preemptive resume (LIFO-PR) is optimal
among work-conserving scheduling policies.

Several other optimization metrics have been considered in the literature. In[4,11], customer rejection
mechanisms are considered in conjunction with scheduling in order to maximize the number of customers
served before their deadlines in finite queues. In[12–14], optimal scheduling policies in queues with
constraints on average or maximum delays are analyzed.

In this paper, we consider a queue with differentiated impatient users in which deadlines are not known
and expired jobs are not dropped. In addition to knowing the age of each customer, in the differentiated
customer model the scheduler is also presumed to know the maximum reward and service rate of each
customer. The literature on queues with impatient users in which deadlines are not known, outlined above,
provides a starting point for our work. In addition, there is extensive literature on scheduling inmulticlass
queueswithout impatient users. A common form for optimal policies in such systems is to service the
job (or queue) that maximizes some index, often the product of a reward and service rate (thecµ rule)
[15–19].
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Specifically, we consider a queue with Poisson arrivals and exponential service times, in which the
average reward for servicing a job is an exponentially decaying function of the job’s sojourn time. The
maximum reward and mean service times of a job are i.i.d. and chosen from arbitrary distributions. The
scheduler is assumed to know the maximum reward, service rate, and age of each job. We prove that
the scheduling policy that maximizes average reward serves the customer with the highest product of
potential rewardand service rate, where the potential reward is defined as the reward function evaluated
at the customer’s current age. For a queue in which all customers have identical maximum rewards and
service rates, such a greedy policy reduces to LIFO-PR. If we interpret the reward as the probability that
a job is served before its deadline, then this result is consistent with previous results in the literature.

The rest of this paper is structured as follows. InSection 2, we introduce the model. InSection 3, we
derive the optimal scheduling policy. InSection 4, we illustrate the behavior of the optimal policy versus
simpler policies. Finally, inSection 5, we briefly compare various scheduling policies under overload
conditions.

2. Model

We consider a single server queue with Poisson arrivals. The service time of jobi is assumed to have an
exponential distribution with rateµi, whereµi are i.i.d. random variables with an arbitrary distribution.
The service times of jobs are assumed to be independent. Once a job has entered the system, it does not
leave until it completes service. We assume that swap times are negligible.

Let xi denote the arrival time of jobi at the queue andDi,p denote the departure time of jobi under
policy p. Then jobi has asojourn timeunder a policyp equal toDi,p − xi. When jobi departs from the
queue, we assume that the server earns an expected reward equal togi(Di,p) = Cie−c(Di,p−xi), whereCi

are i.i.d. random variables with an arbitrary distribution.
The queue can be analyzed by considering a single cycle consisting of a busy period and an idle

period. By the Renewal Reward Theorem[20], the average reward per unit time earned by the server
under policyp is

Vp =
E
[∑N

i=1 gi(Di,p)
]

EZ
(2.1)

whereN is the number of jobs served in the first busy period andZ is the length of the first cycle. An
optimal server policy satisfiesV = maxp Vp.

Denote byS all scheduling policies that choose which job to serve (if any) based solely on the set
of ages, maximum rewards, and service rates of jobs in the queue, namely{t − xi, Ci, µi}. The setS
therefore includes preemptive policies, processor-sharing policies, and non work-conserving policies.

3. Optimal scheduling policy

Our derivation of an optimal scheduling policy proceeds by showing that an optimal policy can be
found in a subset ofS containing only work-conserving, non processor-sharing, Markov policies that
switch jobs in service only when jobs arrive or depart the system. A characterization of an optimal policy
is then identified within this smaller class.
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Our first lemma excludes from the set of optimal policies those in which the server may remain idle
when jobs are in the queue.

Lemma 3.1. Any optimal scheduling policy in S is work-conserving.

Outline of proof. The proof is by contradiction. Suppose there exists a policyp that is not work-
conserving and that achieves a higher average reward than any work-conserving policy. We construct
a modified policyp′ by swapping an interval when (underp) the server is idle and the queue is not empty
with a later interval when the server is busy. The key idea is the identification of the time intervals. The
two time intervals are chosen as consecutive infinitesimal periods from the same busy period, intersecting
when the server switches from idle to busy. It can be shown that under the modified policy there is a
nonzero probability that a job completes at an earlier time, and therefore achieves a higher reward. This
portion of the proof is similar toLemma 3.2and is omitted here. (The full proof can be found in[21].) It
follows thatp cannot achieve the maximum average reward. �

Our next lemma further restricts the set in which optimal policies may be found.

Lemma 3.2. Any optimal scheduling policy in S switches between jobs in service only upon an arrival
to or departure from the queue.

Proof. The proof is by contradiction. Suppose there exists an optimal policyp which switches between
jobs in service at some time other than a departure time or arrival time over some interval of a sample
path in the first busy period. At some time interval [a1 − dl, a1) during this busy period, the server works
on job k. At time a1, the server switches to jobk + 1, and processes that job for at least the interval
[a1, a1 + dl). We definea1 to be a time at which no arrivals to or departures from the system occur. At
some future timea2, the server switches back to serving jobk. We make no assumptions as to the jobs
served in the interval [a1 + dl, a2). Under this policy, jobk cannot depart the system earlier than time
a2 + dl, and likewise jobk + 1 cannot depart the system earlier than timea1 + dl. The server can only
earn a reward once a job departs the system; thus, under policyp, the server can collect a reward for jobs
k andk + 1 no earlier than at timesa2 + dl anda1 + dl, respectively.

We establish a contradiction by demonstrating that there exists at least one modified policy with
different potential completion times for requestsk and k + 1 that earns the server a higher expected
reward than that earned under policyp. This modified policy,p′, is identical to policyp in the intervals
[0, a1 − dl) and [a1 + dl, ∞), and swaps the order of jobsk andk + 1 in [a1 − dl, a1 + dl).

Note that the earliest departure time for jobk under policyp′ is the same as it is under policyp. The
earliest departure time for jobk + 1 underp′ is a1, while under underp it is a1 + dl. The difference in
expected reward earned under the two policies is thus simply the expected reward earned by policyp′ if
job k + 1 departs the system at timea1, which occurs with probabilityµk+1dl, minus the expected reward
earned by policyp if job k + 1 departs the system at timea1 + dl, also with probabilityµk+1dl:

E

[
N∑

i=0

gi(Di,p′)

]
− E

[
N∑

i=0

gi(Di,p)

]
= E[gk+1(a1) + gk(a1 + dl)] − E[gk(a1) + gk+1(a1 + dl)]

= µk+1dl[gk+1(a1)] − µk+1dl[gk+1(a1 + dl)]

= µk+1dl Ck+1e
−c(a1−xk+1)(1 − e−c dl)

which is a positive quantity.
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We have shown that with some nonzero probability,Vp′ > Vp, and thereforep cannot be an optimal
policy. �

Our next lemma states that an optimal policy can always be found among the class of policies that
work on at most one job at a time, which we denote asnon processor-sharing policies.

Lemma 3.3. An optimal policy in S can be found in the class of non processor-sharing policies.

Proof. Suppose there exists a generalized processor-sharing policy PS that generates a higher reward than
the best non processor-sharing policy NPS. Then under policy PS, over some interval [a,b], the server
splits its resources between at least two jobs. We consider here the case in which PS splits its service rate
between two jobs, with a constant proportion to each job, until the first job departs, and then devotes all
of its service capacity to the second job until it departs. The general case follows in a similar fashion.

Suppose the server devotes a proportionq of its service rateµ to job 1 and the remainder to job 2.
Denote byτi the time jobi has spent in the queue prior to timea, and denote byTi,PS the remaining time
job i will spent in the system after timea until the job’s departure. The expected total reward that will be
gained from jobs 1 and 2 under policy PS is thus:

ERPS = E[C1e
−c(τ1+T1,PS) + C2e−c(τ2+T2,PS)].

Let J1 denote the event that job 1 completes service before job 2, under policy PS, and J2 denote the event
that job 2 completes service before job 1. Conditioning on J1 gives

ERPS = P(J1)E[RPS|J1]+ P(J2)E[RPS|J2]. (3.1)

Using classic results from the multiplexing of Poisson processes,P(J1)= qµ1/µ and P(J2)=
1 − P(J1), whereµ ≡ qµ1 + (1 − q)µ2. Furthermore, (T1,PS|J1)∼ exp(µ), and (T2,PS|J1)= T1,PS+ Z,
whereZ ∼ exp(µ2).

Now consider the best non processor-sharing policy NPS. This policy must either serve job 1 to com-
pletion and then serve job 2 (denoted NPS1), or vice-versa (denoted NPS2). Under NPS1, the remaining
sojourn times areT1,NPS1∼ exp(µ1) andT2,NPS1= T1,NPS1+ Z, whereZ ∼ exp(µ2).

If µ1 = µ2 = µ, then it follows thatT1,NPS1∼ (T1,PS|J1) andT2,NPS1∼ (T2,PS|J1). Therefore, the ex-
pected total reward that will be gained from jobs 1 and 2 under policy NPS1, denoted ERNPS1 is equal
to E[RPS|J1]. Similarly, ERNPS2= E[RPS|J2]. Note that both ERNPS1and ERNPS2are independent ofq.
Eq. (3.1)can thus be written as ERPS = qERNPS1+ (1 − q)ERNPS2. Since the expected revenue under
policy PS is a linear weighted sum of the expected revenues under policies NPS1 and NPS2, it follows
that max(ERNPS1, ERNPS2) ≥ ERPS.

If, however,µ1 
= µ2, then the distribution ofT1,NPS1is different than that of (T1,PS|J1). We can explicitly
evaluate the expected reward from serving jobs 1 and 2 under each policy:

ERNPS1= g1(a)
µ1

c + µ1
+ g2(a)

µ1

c + µ1

µ2

c + µ2
, ERNPS1= g1(a)

µ1

c + µ1

µ2

c + µ2
+ g2(a)

µ2

c + µ2
,

ERPS = P(J1)
[
g1(a)

µ

c + µ
+ g2(a)

µ

c + µ

µ2

c + µ2

]
+ P(J2)

[
g1(a)

µ

c + µ

µ1

c + µ1
+ g2(a)

µ2

c + µ2

]

It can be shown after simplification of the above expression that ERPS > ERNPS1iff g1(a)µ1 < g2(a)µ2,
and that ERPS > ERNPS2 iff g1(a)µ1 > g2(a)µ2. It follows that max(ERNPS1, ERNPS2) ≥ ERPS. �
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The scheduler is assumed to know the set of ages, maximum rewards, and service rates of jobs in the
queue, namely{t − xi, Ci, µi}. Since interarrival times and service times are memoryless, it suffices to
keep track solely of the set of potential rewards (under policyp) and service rates,{gi(t), µi}.
Lemma 3.4. An optimal policy in S can be found in the class of Markov policies.

Outline of proof. Since interarrival and service times are independent and exponentially distributed,
knowledge of past arrival times, past service times, or the current service time so far does not help to
predict future arrivals or future service times. In addition, rewards are solely a function of sojourn times,
and therefore given knowledge of the current potential reward for jobi, gi(t), it is not useful to know past
history of job arrivals to estimate future rewards. Finally, knowledge of past rewards or service times (or
even the distribution ofCi or of µi) is not useful, since preemption is allowed. �

We can now state the form of the optimal policy:

Definition 3.5. Denote the job with the highest product of current potential reward and service rate as
i∗(t), namelyi∗(t) = arg maxi gi(t)µi. The greedy scheduling policyp∗ serves at timet job i∗(t).

Theorem 3.6. The greedy policyp∗ maximizes the average reward among all scheduling policies in the
class S.

Proof. By Lemmas 3.1–3.4, it suffices to consider scheduling policies in a smaller classS′, defined as
policies inS that are work-conserving, non processor-sharing, Markov and only switch between jobs at
jobs’ arrivals or departures. Assume that there exists a policyp ∈ S′ that achieves a higher average reward
than doesp∗. Then, infinitely often,pconsecutively serves two jobs for which product of potential reward
and service rate of the first job is less than that of the second. Consider one such time,t0, and one such
pair of jobs,i and j. Denote the remaining sojourn times, after timet0, for jobs i and j asTi,p andTj,p.
The revenue from these two jobs under policyp is

Rp ≡ gi(t0)e−cTi,p + gj(t0)e−cTj,p .

Now consider an alternate scheduling policyp′ that interchanges the order of jobsi andj. The revenue
from these two jobs under policyp′ is similarly:

Rp′ ≡ gj(t0)e−cTj,p′ + gi(t0)e−cTi,p′ .

SinceTi,p + Tj,p ∼ Ti,p′ + Tj,p′ , the average reward during the remainder of the busy cycle and the length
of the busy cycle are identical underp andp′. The difference in average revenue in this busy cycle can
thus be explicitly expressed as:

ERp′ − ERp = gj(t0)µj

c + µj

(
1 − µi

c + µi

)
− gi(t0)µi

c + µi

(
1 − µj

c + µj

)

= c

(c + µi)(c + µj)

(
gj(t0)µj − gi(t0)µi

)
. (3.2)

Each term is positive, so ERp′ > ERp. Since such interchanges can occur infinitely often,Vp′ > Vp and
hencep cannot be optimal. �

We note that in the case in whichCi = C, ∀i andµi = µ, ∀i, the optimal policy reduces to LIFO-PR.
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4. Simulation results

To illustrate the differences in average reward under various circumstances, we present a set of simu-
lation results. Using the BONeS simulation software, we implemented the scheduler under four policies:
the greedy policy, LIFO-PR, FIFO, and PS. For each policy, we measure the average reward per unit time
and the variance of the sojourn time. Jobs arrive at the queue as a Poisson process with rateλ = 50. We
vary the service rateµ so that the loadλ/µ varies from zero to near one. (Loads greater than one are
considered inSection 5.) The simulation times were chosen to include many busy cycles in each case, so
that the confidence intervals for each plotted quantity are relatively small.

We first consider a system in whichCi = 1, ∀i andµi = µ, ∀i. The greedy policy therefore reduces
to LIFO-PR. InFig. 1awe plot the average reward divided byλ versus the load. At low loads, the sojourn
time is only slightly greater than the service time, and there is not much difference among the service
policies in terms of the average reward. As the load increases, the differences in average reward become
more pronounced, and for loads close to one the average reward for FIFO and PS drop much more quickly
than the average reward for LIFO-PR.

The increase in the difference in average reward between various policies can be explained in part by
the high variances of the LIFO-PR sojourn times as compared to the sojourn time variances under FIFO
and PS. The measured sojourn time variances for each policy are plotted inFig. 1b. It is known that
among scheduling policies inS, FIFO attains the smallest sojourn time variance and LIFO-PR attains the
largest[22]. Since the reward function is decreasing convex, an increase in sojourn time variance results
in an increase in average reward. In particular, at high loads, the average reward under LIFO-PR will be
dominated by jobs with small service times which earn high rewards, while the average reward under
FIFO will drop quickly due to long average sojourn times.

Fig. 1. Equal maximum reward model: (a) normalized average reward as a function of load and (b) sojourn time variance as a
function of load.
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Fig. 2. Differentiated maximum reward model: (a) normalized average reward as a function of load and (b) sojourn time variance
as a function of load.

We now consider a system in which the maximum rewardCi are i.i.d. and drawn from a uniform
distribution on [0, 1), andµi = µ, ∀i. In Fig. 2awe again plot the average reward divided byλ versus
the load. (The maximum average reward is now ECi = 0.5.) Since FIFO, PS, and LIFO-PR serve jobs
independent ofCi, the average rewards earned by these scheduling policies are identical to those inFig. 1a,
scaled by 0.5. The greedy policy, however, earns a slightly larger average revenue than LIFO-PR. The
corresponding sojourn time variances for each policy are plotted inFig. 2b. The greedy policy results in
small increases in sojourn time variance above that achieved by LIFO-PR when the offered load is very
high (above 0.95, not shown on the plot). In addition, the differences in average revenue will increase
with the variance ofCi.

Finally, we consider a system in which the maximum rewards are set toCi = 1, ∀i, and the service rates
are independently drawn from a set{K, K/7, K/50} with probabilities{0.2, 0.7, 0.1}, with K chosen so
that the loadλ/µ varies from zero to near one. The service time is thus drawn from a hyperexponential
distribution, and the queue is M/H/1. InFig. 3awe plot the average reward divided byλ versus the load,
and inFig. 3bwe plot the corresponding sojourn time variances.

The difference in average reward between PS and FIFO is greater in the differentiated service time
simulation than it was in the differentiated reward simulation, due to a significant decrease in FIFO’s
average reward. The difference in average reward between the greedy policy and LIFO-PR is also smaller.
Even though the greedy policy uses additional information (service rate) in choosing which request to
service, the fact that the majority of the rates are chosen from the same distribution means that this
policy will behave similarly to the LIFO-PR policy, which solely considers reward and not service
rate.
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Fig. 3. Differentiated service rate model: (a) normalized average reward as a function of load and (b) sojourn time variance as a
function of load.

5. Optimal policy under overload conditions

The simulation results presented inSection 4demonstrate that at low system loads, FIFO, LIFO-PR,
and PS generate almost the same average reward as the optimal policy. The differences in average reward
among the policies increase as the system load increases towards one. In this section, we consider the
performance of these policies under overload conditions, when the load exceeds one.

At loads above one, the queue becomes unstable and the average queue length and the average sojourn
time will grow without bound. As a result, the average reward earned under FIFO will be zero, since the
oldest customer’s sojourn times will tend to infinity. Similarly, the average reward earned under PS will
be zero. In contrast, the average rewards under LIFO-PR and the greedy policy will remain positive, since
they serve recently arriving customers.

We can analyze this degradation of FIFO and PS by considering the average revenue per unit time over
a finite period of time, starting with an empty queue. We consider the queue with homogeneous users,
i.e.Ci = 1, ∀i andµi = µ, ∀i. In the simulation results presented here,µ = 100. InFig. 4, we plot the
normalized average reward per unit time earned by FIFO, PS, and LIFO-PR (the optimal policy) at loads
of 1.0, 1.01, and 1.1, for time windows ranging from 10 s to 30 min.

The average reward under FIFO and PS must fall to zero as the length of the time window increases.
Indeed, they also drop off more quickly as the load increases. In contrast, the average reward under
LIFO-PR will converge to a positive value as the time window increases.

In Fig. 5, we plot the normalized average reward per unit time under LIFO-PR for loads ranging from
one to two and for time windows ranging from 30 s to 30 min. We observe that the normalized average
reward per unit time increases as the load increases.
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Fig. 4. Average reward earned by LIFO-PR and other service orders under overload conditions.

Indeed, we can analyze the limiting average revenue per unit time earned under LIFO-PR as the
load tends to infinity. At arbitrarily high loads, LIFO-PR will almost always be serving the newest
job. It will complete service for this job with probabilityµ/λ + µ. Conditioned on service completion,
the sojourn time has an exponentially distributed distribution with rateλ + µ, so the expected reward

Fig. 5. Average reward at various stages of overload, LIFO-PR only.
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per service completion will be ECi(λ + µ)/(c + λ + µ). The expected reward per arrival will thus be
(µ/(λ + µ))ECi((λ + µ)/(c + λ + µ)) = ECi(µ/(c + λ + µ)), and the average reward per unit time will
thus be ECi(λµ/(c + λ + µ)). As the load tends to infinity, the average reward per unit time tends to ECiµ.

6. Conclusions

This paper discusses optimal scheduling policies for single-server queues with Poisson arrivals and
exponential service times, where the average reward for servicing a job is an exponentially decaying
function of the job’s sojourn time. The scheduling policy that maximizes average reward serves the
customer with the highest product ofpotential rewardand service rate, where potential reward is defined
as the reward function evaluated at the customer’s current age. When maximum rewards are equal and
service times are drawn from a single exponential distribution, this policy defaults to LIFO-PR. We
have demonstrated via simulation the difference in average reward generated by the scheduler per unit
time under the optimal scheduling policy and other policies such as FIFO and processor-sharing. As the
offered load approaches one, the differences in average reward become more pronounced, and the optimal
policy significantly outperforms both FIFO and processor-sharing policies. Finally, we have shown via
simulation that the optimal policy continues to generate a high average reward even when the system is
overloaded for a significant time period.
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