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Nonmonotonicity in the Quantum-Classical Transition: Chaos Induced by Quantum Effects
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The classical-quantum transition for chaotic systems is understood to be accompanied by the
suppression of chaotic effects as the relative @ is increased. We show evidence to the contrary in the
behavior of the quantum trajectory dynamics of a dissipative quantum chaotic system, the double-well
Duffing oscillator. The classical limit in the case considered has regular behavior, but as the effective @ is
increased we see chaotic behavior. This chaos then disappears deeper into the quantum regime, which
means that the quantum-classical transition in this case is nonmonotonic in @.

DOI: 10.1103/PhysRevLett.101.074101 PACS numbers: 05.45.Mt, 03.65.Sq

Open nonlinear quantum systems are critical in under-
standing the foundations of quantum behavior, particularly
the transition from quantum to classical mechanics. For
example, it has been argued that quantum systems deco-
here rapidly when the classical counterpart is chaotic, with
the decoherence rate determined by the classical Lyapunov
exponents of the system [1]. This applies to entanglement
and fidelity as well [2–4], since decoherence amounts to
entanglement with the environment.

A powerful way of studying open quantum systems is
the quantum state diffusion (QSD) approach [5]. This
enables the resolution of the paradox that in the absence
of a QSD-like formulation, classical chaos cannot be re-
covered from quantum mechanics, indicating that the @!
0 limit is singular. Brun et al. [6] studied the convergence
towards classical trajectories for a chaotic system with
quantum Poincaré sections of the quantities hx̂i and hp̂i.
They showed that the classical chaotic attractor is recov-
ered when the system parameters were such that @ was
small relative to the system’s characteristic action. As the
relative @ increased, the attractor disappeared gradually,
suggesting a persistence of chaos into the quantum region,
consistent with later, more quantitative analyses [7,8].
Related work [9] studied a quantum system that is being
continuously weakly measured, which leads to similar
equations as those for QSD [10]. This also showed that
chaos is recovered in the classical limit, and that it persists,
albeit reduced, substantially into the quantum regime.
Another related study [11] of coupled Duffing oscillators,
showed that quantum effects, specifically entanglement,
persist in a quantum system even when the system is
classical enough to be chaotic.

The prevailing paradigm is that chaos is classical, and is
suppressed quantum mechanically. Do quantum effects
always decrease chaos, however? A closed Hamiltonian
quantum system studied within a Gaussian wave packet
(WP) approximation [12] manifested chaos absent classi-
cally. This has been understood to be an artifact of the
approximation, since the full quantum system is not cha-
otic. Follow-up work with an open system [13] also mani-
fested quantum chaos, but it is not clear if this was not due

to the approximations made. However, contrary to the
prevailing paradigm, the classical-to-quantum transition
[14] for the �-kicked rotor was shown to be nonmonotonic
in the degree of diffusion, which is related to the degree of
chaos in the problem.

In this Letter we show evidence of chaos being induced
by quantum effects. Specifically, in a QSD system with a
nonchaotic classical limit, as we increase the relative @,
chaos emerges, due to explicitly quantum effects (tunnel-
ing and zero-point energy) and as @ is increased further, the
chaos disappears. Although being reported for the first
time, this intriguing result is arguably relatively common.
Moreover, it shows that the quantum-classical transition
for nonlinear systems is in general not monotonic in @. The
QSD evolution equation for a realization j i of the system
interacting with a Markovian environment is
 

jd i � �
i
@
Ĥj idt�

X
j

�
hL̂yj iL̂j �

1

2
L̂yj L̂j

�
1

2
hL̂yj ihL̂ji

�
j idt�

X
j

�L̂j � hLji�j id�j; (1)

where Ĥ is the Hamiltonian and the Lindblad operators L̂j
model coupling to an external environment. The density
matrix is recovered as the ensemble mean M over different
realizations as �̂ � Mj ih j [5]. The d�j are independent
normalized complex differential random variables satisfy-
ing M�d�j� � 0; M�d�jd�j0 � � 0; M�d�jd�j0 � � �jj0dt.

Consider specifically the classical driven dissipative
Duffing oscillator

 �x� 2� _x� x3 � x � g cos��t�; (2)

for a particle of unit mass in a double-well potential, with
dissipation �, and driving amplitude g and frequency �.
Chaotic behavior obtains for certain ranges of �, g, � [15].
Chaos is found through Poincaré maps [obtained by re-
cording (x, p) at time intervals of 2�=�]showing a strange
attractor, or the behavior of the time series x�t�, or through
a positive Lyapunov exponent. To quantize this problem
[6,7] choose Ĥ and L̂ for Eq. (1) as Ĥ � ĤD � ĤR � Ĥex,
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After some redefinitions this reduces to the dimensionless
Hamiltonian Ĥ� and Lindblad operator L̂ given by Ĥ� �

ĤD � ĤR � Ĥex where ĤD �
1
2 P̂

2 � �2

4 Q̂
4 � 1

2 Q̂
2, ĤR �
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����
�
p
�Q̂� iP̂�,

and � � !=!0, � � �=!0. The quantity �2 � @

ml2!0
de-

termines the relative system size, and the degree to which
quantum effects influence the motion. Specifically [6,7] the
limit �! 0 yields the classical Eq. (2) while increasing �
increases quantum corrections resulting in qualitatively
different dynamics.

We have studied the quantum Duffing oscillator using
the numerical QSD library [16]. All previous studies [6,7]
changed �, with the parameters � � 0:125, g � 0:3 and
� � 1:00 held fixed so that they had the same chaotic
classical limit [15]. We have studied 9 different families of
quantum systems, each with a different classical limit, and
examined 13 different values of � from essentially classi-
cal (� � 0:01) to the deep quantum regime (� � 1:0). We
show six of these cases in the accompanying figures. Each
simulation had the same initial state j �t � 0�i—the co-
herent state j

���
2
p
�hQ̂i � ihP̂i� � �1:4� 0:4i�i—and ran

slightly over 500 periods of the external driving, yielding
500 post-transient points for the quantum Poincaré sec-
tions, shown for various� in Figs. 1(a)–1(c) as in [6,7]. We
next consider the low-frequency power spectra, shown in
Fig. 2, from the Fourier transforms ~X�$� of the time-series
hQ̂�t�i; we show plots smoothed via a cubic spline in
Fourier space to focus attention on the overall trend. We
note both the broadband contributions of the noise in
Eq. (1), and also an exponential increase in the power
distribution in the low-frequency ($� �) limit. This
low-frequency increase is characteristic of chaotic dynam-
ics, and is absent in regular motion [17]. Now consider
Figs. 3(a)–3(c), where we also show Poincaré sections, this
time for � � 0:3, g � 0:3, and � � 1:00. In marked con-
trast to the � � 0:125 situation, in this case we see the
transition fregular! chaos! regularg as � is increased.
That is, the system becomes chaotic as quantal effects are
increased, and then becomes regular again in the deep
quantal region, as also evident in the power spectra in
Fig. 4.

To understand this, note that chaos occurs in such a
system when trajectories sample the region near the un-
stable fixed point, and particularly the separatrix region,

leading to interwell transitions. Thus, classically, a mini-
mum amount of energy is needed for chaos. Compared to
1(a) the larger dissipation in 3(a) confines the system to one
well and the external driving force is insufficient to over-
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FIG. 1. Poincaré sections for � � 0:125, and � � 0:01, 0.3,
1.0 reading from top to bottom. The monotonic transition from
classical chaos to quantum regularity is to be contrasted with the
nonmonotonicity in Fig. 3. We also indicate the Planck cell with
shaded squares of unit size representing @.
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FIG. 2. Low-frequency power spectra for the 3 � values shown
in Fig. 1, offset for visual clarity. We see the characteristic rise at
low frequencies [17] for the chaotic cases, as well as the
monotonicity of the transition with �.
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come the potential barrier. Increasing �, however, in-
creases the size of the WP moving in the classical potential,
adding extra degrees of freedom (along with the ‘‘classi-
cal’’ centroid variables, there are now WP variances) and

changing the dynamics. It is useful to think of quantum
dynamics as classical behavior in an effective potential,
such that � controls the quantum effects in the effective
potential [18]. The quantum corrections effectively raise
the bottom of the well through added zero-point energy and
also modify the well barrier, providing another route be-
tween the wells (tunneling).

These effects are readily apparent in time slices of the
expectation values hĤi, hQ̂i shown in Figs. 5 and 6. In
Figs. 5(a) and 6(a) we see classical behavior: transitions
between wells only occur with positive energy. In Fig. 6(a),
the energy is always negative, confining the system in one
well. In Figs. 5(b) and 6(b) quantum effects are significant
and the barrier is softened as the zero-point energy be-
comes significant and the potential barrier at x � 0 de-
creases. Now, transitions between wells occur, and even for
negative energies, which we have indicated for 6(b) with a
line at t � 250:7: this is quantum tunneling. Figures 5(c)
and 6(c) show that in the deep quantum regime, the quan-
tum effects are so large that the system effectively sees a
single well potential leading to regular motion. The inter-
play between the localization due to the Lindblads and the
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FIG. 3. Poincaré sections for � � 0:3, and � � 0:01, 0.3, 1.0
reading from top to bottom. The nonmonotonicity of
fclassical regularity ! chaos! regularityg is to be contrasted
with the monotonicity in Fig. 1.
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FIG. 4. Low-frequency power spectra for the 3 � values shown
in Fig. 3, offset for visual clarity. We see the characteristic rise at
low frequencies for the chaotic case, as well as the nonmonoto-
nicity of the transition with �, to be contrasted with the mono-
tonicity in Fig. 2.
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. These are for � � 0:125,

showing decreasing state localization, tunneling, and the effect
of zero-point energy as � increases.
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dynamics is also illuminating. For small �, the WP is
sharply localized and essentially a point throughout, even
when near the central barrier, as intuitive for ‘‘near-
classical’’ dynamics. For the extreme quantal case, there
is almost no localization. The case of most interest (� �
0:3) lies in between. Focusing on the interwell negative
energy transitions (tunneling), there are no changes of
shape as the WP transits across the barrier. Specifically,

if visualized via the spread �
�����������������������������
�hQ̂� hQ̂i�2i�

q
as ‘‘error-

bars’’ for the position (hQ̂i), we see the WP moving as a
single coherent object between the two wells. Calculations
of the time dependence of the probability of the particle
being in a single well (not shown) are consistent with this
picture.

Classically, changing� amounts to changing the units of
measurement leaving the dynamics unchanged. Quantum
dynamics are sensitive to the absolute size of the system in
units of @. This scale dependence, rather than a variation of

the dynamical parameters of the system as in classical
chaos, leads to chaotic behavior. Thus dynamics can be
‘‘quantum’’ (as evidenced by tunneling) and ‘‘chaotic’’
simultaneously, and specifically quantum effects can in-
duce chaos. More broadly, quantum-classical transition
can be nonmonotonic [14]. It is likely that this is a generic
property of nonlinear systems described by Hilbert space
trajectories.
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FIG. 6. As in Fig. 5 except that � � 0:3, showing clearly that
tunneling and the zero-point energy lead to bistability and chaos
in this case.
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