PUBLISHED BY THE INSTITUTE OF THE EARTH'S CRUST SIBERIAN BRANCH OF RUSSIAN ACADEMY OF SCIENCES

2012 VOLUME 3 ISSUE 2 PAGES 129-166

http://dx.doi.org/10.5800/GT-2012-3-2-0067

ISSN 2078-502X

NEAR-ABSOLUTE EQUATIONS OF STATE OF DIAMOND, Ag, Al, Au, Cu, Mo, Nb, Pt, Ta, AND W FOR QUASI-HYDROSTATIC CONDITIONS

P. I. Dorogokupets¹, T. S. Sokolova¹, B. S. Danilov¹, K. D. Litasov²

¹Institute of the Earth's Crust, SB RAS, Irkutsk, Russia

²V.S. Sobolev Institute of Geology and Mineralogy, SB RAS, Novosibirsk, Russia

Abstract: Using the modified formalism of [*Dorogokupets, Oganov, 2005, 2007*], equations of state are developed for diamond, Ag, Al, Au, Cu, Mo, Nb, Pt, Ta, and W by simultaneous optimization of shock-wave data, ultrasonic, X-ray, dilatometric and thermochemical measurements in the temperature range from ~100 K to the melting temperature and pressures up to several Mbar, depending on the substance. The room-temperature isotherm is given in two forms: (1) the equation from [*Holzapfel, 2001, 2010*] which is the interpolation between the low pressure ($x \ge 1$) and the pressure at infinite compression (x=0); it corresponds to the Thomas-Fermi model, and (2) the equation from [*Vinet et al., 1987*]. The volume dependence of the Grüneisen parameter is calculated according to equations from [*Zharkov, Kalinin, 1971; Burakovsky, Preston, 2004*] with adjustable parameters, t and δ , and K_0 is calculated from ultrasonic measurements. In our study, reasonably accurate descriptions of all of the basic thermodynamic functions of metals are derived from a simple equation of state with a minimal set of adjustable parameters.

The pressure calculated from room-temperature isotherms can be correlated with a shift of the ruby R1 line. Simultaneous measurements of the shift and unit cell parameters of metals are conducted in mediums containing helium [*Dewaele et al., 2004b; 2008; Takemura, Dewaele, 2008; Takemura, Singh, 2006*], hydrogen [*Chijioke et al., 2005*] and argon [*Tang et al., 2010*]. According to [*Takemura, 2001*], the helium medium in diamond anvil cells provides for quasi-hydrostatic conditions; therefore, the ruby pressure scale, that is calibrated for the ten substances, can be considered close to equilibrium or almost absolute. The ruby pressure scale is given as $P(GPa)=1870\cdot\Delta\lambda/\lambda_0\cdot(1+6\cdot\Delta\lambda/\lambda_0)$. The room-temperature isotherms corrected with regard to the ruby scale can also be considered close to equilibrium or almost absolute. Therefore, the equations of state of the nine metals and diamond, which are developed in our study, can be viewed as almost absolute equations of state for the quasi-hydrostatic conditions. In other words, these equations agree with each other, with the ruby pressure scale, and they are close to equilibrium in terms of thermodynamics. The *PVT* relations derived from these equations can be used as mutually agreed pressure scales for diamond anvil cells in studies of *PVT* properties of minerals in a wide range of temperatures and pressures. The error of the recommended equations of the state of substances and the ruby pressure scale is about 2 or 3 per cent. Calculated *PVT* relations and thermodynamics data are available at http://labpet.crust.irk.ru.

Key words: equations of state, pressure scales, ruby pressure scale, diamond, Ag, Al, Au, Cu, Mo, Nb, Pt, Ta, W, hcp-Fe.

Recommended by D.P. Gladkochub 24 April 2012

Citation: *Dorogokupets P.I., Sokolova T.S., Danilov B.S., Litasov K.D.,* 2012. Near-absolute equations of state of diamond, Ag, Al, Au, Cu, Mo, Nb, Pt, Ta, and W for quasi-hydrostatic conditions. *Geodynamics & Tectonophysics* 3 (2), 129–166. doi:10.5800/GT-2012-3-2-0067.

ПОЧТИ АБСОЛЮТНЫЕ УРАВНЕНИЯ СОСТОЯНИЯ АЛМАЗА, Ag, Al, Au, Cu, Mo, Nb, Pt, Ta, W ДЛЯ КВАЗИГИДРОСТАТИЧЕСКИХ УСЛОВИЙ

П. И. Дорогокупец¹, Т. С. Соколова¹, Б. С. Данилов¹, К. Д. Литасов²

¹Институт земной коры СО РАН, Иркутск, Россия

²Институт геологии и минералогии им. В.С. Соболева СО РАН, Новосибирск, Россия

Аннотация: По единой схеме с использованием модифицированного формализма из [Dorogokupets, Oganov, 2005, 2007] построены уравнения состояния алмаза, Ag, Al, Au, Cu, Mo, Nb, Pt, Ta, W путем одновременной оптимизации ударных данных, ультразвуковых, рентгеновских, дилатометрических и термохимических измерений в диапазоне температур от ~100 K до температуры плавления и до давлений несколько Mbar в зависимости от вещества. Комнатная изотерма была задана двумя формами: уравнением В. Хольцапфеля [Holzapfel, 2001, 2010], которое является интерполяционным между низкими давлениями ($x \ge 1$) и давлением при бесконечном сжатии (x = 0), соответствующим модели Томаса-Ферми, и уравнением П. Вине [Vinet et al., 1987]. Объемная зависимость параметра Грюнейзена рассчитана по соотношениям из [Zharkov, Kalinin, 1971; Burakovsky, Preston, 2004], в которых параметры t и δ являются подгоночными. Комнатная изотерма и давление на ударной адиабате определяются тремя параметры K', t и δ , а параметр K_0 рассчитывается из ультразвуковых измерений. В результате нам удалось с разумной точностью описать все основные термодинамические функции металлов в рамках простого уравнения состояния с минимальным набором подгоночных параметров.

Рассчитанное по комнатным изотермам давление можно сопоставить со сдвигом линии R1 люминесценции рубина, одновременные измерения которого и параметров ячейки металлов проведены в гелиевой [*Dewaele et al., 2004b, 2008; Takemura, Dewaele, 2008; Takemura, Singh, 2006*], водородной [*Chijioke et al., 2005*] и аргоновой средах [*Tang et al., 2010*]. Показано [*Takemura, 2001*], что гелиевая среда в алмазных наковальнях обеспечивает квазигидростатические условия, поэтому рубиновую шкалу, откалиброванную по десяти веществам, можно считать близкой к равновесной или почти абсолютной. Она имеет вид $P(GPa)=1870\cdot\Delta\lambda/\lambda_0\cdot(1+6\cdot\Delta\lambda/\lambda_0)$. Откорректированные по полученной рубиновой шкале комнатные изотермы других веществ также можно считать близкими к равновесным или почти абсолютным, поэтому построенные нами уравнения состояния девяти металлов и алмаза можно отнести к почти абсолютным усторенные нами уравнения состояния девяти металлов и алмаза можно отнести к почти абсолютным усторенные нами уравнения состояния девяти металлов и алмаза можно отнести к почти абсолютным усторенные нами уравнения состояния девяти металлов и алмаза можно отнести к почти абсолютным устории для квазигидростатических условий. Другими словами, они являются взаимосогласованными между собой, с рубиновой шкалой давлений и близки к равновесным в термодинамическом смысле. Рассчитанные по ним *P*–*V*–*T* соотношения могут быть использованы в качестве взаимосогласованных шкал давления в алмазных наковальнях при изучении *P*–*V*–*T* свойств минералов в широкой области температур и давлений. Погрешность рекомендуемых уравнений состояния веществ и рубиновой шкалы составляет порядка 2–3 %. Расчет *P*–*V*–*T* соотношений и термодинамики доступен по адресу http://labpet.crust.irk.ru.

Ключевые слова: уравнения состояния, шкалы давлений, рубиновая шкала давлений, алмаз, Ag, Al, Au, Cu, Mo, Nb, Pt, Ta, W, hcp-Fe.

1. Введение

В настоящее время достигнуты большие успехи в изучении P-V-T свойств минералов и веществ в алмазных наковальнях и многопуансонных аппаратах в приложении к изучению мантии и ядра Земли [Bassett, 2009; Hemley, 2010; Liebermann, 2011]. В таких исследованиях одной из важнейших проблем является корректное измерение давления. К сожалению, в области таких давлений (1–3 Mbar) не существует прямых барометров, поэтому давление в алмазных наковальнях измеряется с помощью специальных шкал, которые представляют собой уравнения состояния веществ с известной зависимостью давления от объема и температуры. Обычно это уравнения состояния Au, Pt, W, Ag, W и других веществ.

Большинство ранних уравнений состояния Au, Pt, W, Mo, Ag и других металлов, которые используются как шкалы давления, были разработаны на основе ударных данных [*Carter et al.*, 1971; Jamieson et al., 1982; Al'tshuler et al., 1987; Holmes et al., 1989; Hixson, Fritz, 1992] с использованием формализма Ми-Грюнайзена-Дебая. Различия в давлениях по разным шкалам достигают 10 GPa в области давлений свыше 100 GPa при температурах порядка 2000 K [Shim et al., 2002; Dorogokupets, Oganov, 2007; Fei et al., 2007; Hiгоse et al., 2008]. Их выбор в качестве шкал давления зависит от технических условий эксперимента и определяется индивидуальными предпочтениями исследовательских групп. Возникает вопрос, как выбрать такие уравнения состояния веществ, которые с той ли иной степенью приближения можно отнести к почти абсолютным или взаимосогласованным.

Что может быть основой для получения абсолютных уравнений состояния? В мегабарной области давлений это ударные адиабаты металлов, из которых с помощью тех или иных приближений можно рассчитать нулевую или комнатную изотермы. При более низких давлениях абсолютное давление можно рассчитать из одновременного измерения скоростей звука и рентгеновских измерений объема. Такие измерения проведены для MgO на комнатной изотерме [*Li et al.,* 2006] и при повышенных температурах [*Kono et al.,* 2010]. К сожалению, для металлов, которые обычно используются в качестве шкал давления, такие измерения отсутствуют.

Наиболее логичный путь получения абсолютных шкал давления состоит в расчете комнатных изотерм металлов из ударно-волновых измерений и сравнении их с независимыми измерениями в алмазных наковальнях в такой же области давлений, хотя существует противоположная точка зрения [*Holzapfel*, 2010]. Однако следует обратить внимание на то, что такие уравнения состояния являются комбинацией ударно-волновых данных и равновесных (термодинамических) данных, к которым можно отнести C_P , ΔH , V(T), α при атмосферном давлении, ультразвуковые измерения в гидростатических условиях при повышенных давлениях и температурах, рентгеновские измерения в квазигидростатических условиях при высоких давлениях (аргоновая, неоновая, гелиевая и другие среды). Но, как отмечали авторы работы [McQeen et al., 1965], «...кривые Гюгонио не соответствуют каким-либо термодинамическим кривым или процессам, а являются геометрическим местом точек, соответствующих конечным состояниям, которые могут быть получены из данного начального состояния при прохождении одиночной ударной волны». «... Hugoniot curves do not represent thermodynamic paths or processes but are the loci of final states attainable from some given initial state by a single shock process» [McQeen et al., 1963]. Однако при расчете нулевых или комнатных изотерм из ударных данных используется классический термодинамический подход: тепловое давление при заданном объеме пропорционально тепловой части внутренней энергии и рассчитывается по соотношению Ми-Грюнейзена. Следовательно, если кривые Гюгонио не соответствуют каким-либо термодинамическим процессам, то редуцированные из ударных данных комнатные изотермы (RSW isotherms) также нельзя считать термодинамическими.

Такие изотермы, взятые отдельно, не решают проблемы абсолютных шкал давления. Прежде всего, их надо сопоставить друг с другом хотя бы на комнатной изотерме, как это было сделано ранее [Dewaele et al., 2004b, 2008; Chijioke et al., 2005b; Dorogokupets, Oganov, 2003, 2005, 2006, 2007], и набрать достаточную статистику. Кроме того, мы показали [Sokolova, Dorogokupets, 2011], что по одним и тем же ударным данным [Yokoo et al., 2008, 2009] можно получить несколько уравнений состояния золота, которые почти не различаются по формальным признакам, но дают разные давления на изотермах.

Мы предлагаем следующую схему получения почти абсолютных шкал давления. 1. По термохимическим, ультразвуковым и рентгеновским измерениям при нулевом давлении и ударным данным при высоких давлениях строим уравнения состояния алмаза, Al, Cu, Nb, Mo, Ag, Ta, W, Pt и Au с минимальным набором подгоночных параметров. 2. Используя полученные комнатные изотермы по измерениям [Dewaele et al., 2004a, 2004b, 2008; Occelli et al., 2003; Takemura, Dewaele, 2008; Takemura, Singh, 2006; Tang et al., 2010], получаем зависимость сдвига R1 линии люминесценции рубина от давления. 3. Используя полученную рубиновую калибровку, исправляем комнатные изотермы веществ. 4. По исправленным комнатным изотермам снова строим уравнения состояния веществ.

Нас будет интересовать область температур выше комнатной до температуры плавления и область давлений до 4 Mbar (400 GPa), поэтому мы модифицируем и упростим формализм из наших прежних работ [Dorogokupets, Oganov, 2003, 2005, 2006, 2007]. Далее будем использовать упрощенную форму для учета внутренней ангармоничности [Dorogokupets, Oganov, 2004], исключим из свободной энергии Гельмгольца вклады тепловых дефектов, введем физически корректную зависимость параметра Грюнейзена от объема и будем использовать физически корректное при бесконечном сжатии уравнение для расчета отсчетного давления. Все это позволит нам описать термодинамику рассматриваемых веществ с минимальным набором подгоночных параметров.

2. Термодинамическая модель

Свободную энергию Гельмгольца металлов запишем в классическом виде [Zharkov, Kalinin, 1971]:

$$F = U_r + E_r(V) + F_{th}(V,T) - F_{th}(V,T_r) + F_e(V,T) - F_e(V,T_r) + F_{anh}(V,T) - F_{anh}(V,T_r),$$
(1)

где U_r – отсчетная энергия, $E_r(V)$ – потенциальная (холодная) часть свободной энергии на отсчетной изотерме T_r , которая зависит только от объема V, $F_{th}(V,T)$ – тепловая часть свободной энергии Гельмгольца, которая зависит от объема и температуры, $F_e(V,T)$ и $F_{anh}(V,T)$ – вклады свободных электронов и внутренней ангармоничности в свободную энергию, которые зависят от V и T.

Давление на комнатной изотерме определим из уравнения [Holzapfel, 2001, 2010] в форме AP2:

$$P_r(V) = 3K_0 X^{-5} (1 - X) \exp[c_0 (1 - X)] \cdot [1 + c_2 \cdot X (1 - X)],$$
⁽²⁾

где $X=(V/V_0)^{1/3}$, $c_0=-\ln(3K_0/P_{FG0})$; $P_{FG0}=1003.6(nZ/V_0)^{5/3}$, $K'=3+2(c_0+c_2)/3$, V – объем в сm³/mol, V_0 – объем при стандартных условиях (T=298.15 K, P=1 бар), $K_0=-V(\partial P/\partial V)_T$ – изотермический модуль сжатия в GPa при стандартных условиях, $K'=dK_0/dP$, Z – атомный номер, n – число атомов в химической формуле вещества.

Атомный номер для соединений будем определять из соотношения [Knopoff, 1965]:

$$Z^{2/3} = \frac{\sum n_i Z_i^{5/3}}{\sum n_i Z_i},$$
(3)

где n_i – количество атомов *i* с атомным номером Z_i в соответствии с химической формулой.

Уравнение (2) используется из тех соображений, что оно является интерполяционным между низкими давлениями ($x \ge 1$) и давлением при бесконечном сжатии (x=0), соответствующим модели Томаса-Ферми. Можно сказать, что оно является аналогом моделям Дебая или Эйнштейна, которые интерполируют термодинамические функции от 0 К до высоких температур. Дифференцируя (2) по объему, получаем изотермический модуль сжатия $K_T = -V(\partial P/\partial V)_T$. Интегрирование (2) по объему (численными методами) дает нам энергию $E_r(V)$ в уравнении (1).

В физике металлов большое распространение получило уравнение [Vinet et al., 1987], которое определяет $E_r(V)$, $P_r(V)$, $K_{Tr}(V)$ и K' в виде:

$$E_r(V) = 9K_0 V_0 \eta^{-2} \{1 - [1 - \eta(1 - y)] \exp[(1 - y)\eta]\},$$
(4.1)

$$P_r(V) = 3K_0 y^{-2} (1 - y) \exp[(1 - y)\eta], \qquad (4.2)$$

$$K_{Tr}(V) = K_0 y^{-2} [1 + (\eta y + 1)(1 - y)] \exp[(1 - y)\eta],$$
(4.3)

$$K' = \frac{1}{3} \left[2 + y\eta + \frac{y(1-\eta) + 2y^2\eta}{1 + (1-y)(1+y\eta)} \right],$$
(4.4)

где *у*=*х*^{1/3} и η=1.5(*K*'-1).

Paнee [Dorogokupets, Dewaele, 2007; Dorogokupets, 2010] для расчета термодинамических функций при температурах выше комнатной были использованы модели Дебая и Эйнштейна. Здесь мы воспользуемся моделью Эйнштейна с двумя характеристическими температурами и запишем тепловую часть свободной энергии Гельмгольца в виде:

$$F_{th}(V,T) = m_1 RT \ln\left(1 - \exp\frac{-\Theta_1}{T}\right) + m_2 RT \ln\left(1 - \exp\frac{-\Theta_2}{T}\right) - \frac{3}{2}nRe_0 x^g T^2,$$
(5)

где Θ_1 и Θ_2 – характеристические температуры, которые зависят от объема и температуры, что позволяет учесть внутреннюю ангармоничность, $x=V/V_0$, n равно числу атомов в химической формуле соединения, $m_1+m_2=3n$, e_0 определяет вклад электронов в свободную энергию, g – электронный аналог параметра Грюнейзена, R – газовая константа. Как будет показано ниже, такое приближение обеспечивает хорошее согласие рассчитанной стандартной энтропии со справочными величинами.

Зависимость характеристических температур от объема и температуры запишем в виде [Dorogokupets, Oganov, 2004]:

$$\Theta = \Theta(V,T) = \Theta(V) \exp\left(\frac{1}{2}aT\right) = \Theta(V) \exp\left(\frac{1}{2}a_0x^mT\right),\tag{6}$$

где $a = \left(\frac{\partial \ln \Theta(V,T)}{\partial T}\right)_V, \ m = \frac{d \ln a}{d \ln V}.$

Далее для простоты изложения ограничимся одной характеристической температурой, тогда, дифференцируя (5) по температуре при постоянном объеме, получаем энтропию и тепловую часть свободной энергии:

$$S = -\left(\frac{\partial F}{\partial T}\right)_{V} = 3nR\left[-\ln\left(1 - \exp\frac{-\Theta}{T}\right) + \frac{\Theta/T}{\exp(\Theta/T) - 1} \times \left(1 - \frac{1}{2}a_{0}x^{m}T\right)\right] + 3nRe_{0}x^{g}T,\tag{7}$$

$$E_{th} = F_{th} + TS = 3nR\left[\frac{\Theta}{\exp(\Theta/T) - 1} \times \left(1 - \frac{1}{2}a_0 x^m T\right)\right] + \frac{3}{2}nRe_0 x^g T^2.$$
(8)

Дифференцируя (5) по объему при постоянной температуре, получаем тепловое давление:

$$P_{th} = -\left(\frac{\partial F_{th}}{\partial V}\right)_T = 3nR \frac{\left(\gamma - \frac{m}{2}a_0 x^m T\right)}{V} \left[\frac{\Theta}{\exp(\Theta/T) - 1}\right] + \frac{3}{2}nRe_0 x^g T^2 \frac{g}{V}.$$
(9)

Таким образом, используя только первые производные, мы получили давление и энтропию. Дифференцируя (8) по температуре при постоянном объеме и (9) по объему при постоянной температуре, получаем изохорную теплоемкость и изотермический модуль сжатия:

$$C_{V} = \left(\frac{\partial E}{\partial T}\right)_{V} = 3nR\left[\left(\frac{\Theta}{T}\right)^{2} \frac{\exp(\Theta/T)}{\left[\exp(\Theta/T) - 1\right]^{2}} \times \left(1 - \frac{1}{2}a_{0}x^{m}T\right) - \frac{\frac{1}{4}(a_{0}x^{m})^{2}T\Theta}{\exp(\Theta/T) - 1}\right] + 3nRe_{0}x^{g}T,$$
(10)

$$K_{Tih} = -V \left(\frac{\partial P_{th}}{\partial V} \right)_{T} = -3nR \left\{ \begin{array}{l} \frac{\Theta}{\exp(\Theta/T) - 1} \times \frac{q\gamma - \gamma}{V} \\ -\frac{\gamma\Theta}{V(\exp(\Theta/T) - 1)} (\gamma - \frac{m}{2} a_{0} x^{m} T) \\ +\frac{\gamma\Theta^{2} \exp(\Theta/T)}{VT(\exp(\Theta/T) - 1)^{2}} (\gamma - \frac{m}{2} a_{0} x^{m} T) \\ +\frac{m}{2} a_{0} x^{m} T \frac{\Theta}{V(\exp(\Theta/T) - 1)} (\gamma - \frac{m}{2} a_{0} x^{m} T) \\ -\frac{m}{2} a_{0} x^{m} \frac{\Theta^{2} \exp(\Theta/T)}{V(\exp(\Theta/T) - 1)^{2}} (\gamma - \frac{m}{2} a_{0} x^{m} T) \\ -\frac{m}{2} a_{0} x^{m} T \frac{\Theta(m - 1)}{V(\exp(\Theta/T) - 1)} \\ -\frac{1}{2} e_{0} x^{g} T^{2} (1 - g) \frac{g}{V} \end{array} \right\}$$
(11)

Дифференцируя (11) по температуре при постоянном объеме, получаем

$$(\partial P/\partial T)_{V} = 3nR \begin{bmatrix} \frac{\frac{1}{2}a_{0}x^{m}\Theta(\gamma - m - \frac{1}{2}a_{0}x^{m}mT)}{V(\exp(\Theta/T) - 1)} \\ + \frac{\Theta^{2}(\gamma - \frac{1}{2}a_{0}x^{m}mT)(1 - \frac{1}{2}a_{0}x^{m}T)\exp(\Theta/T)}{T^{2}V(\exp(\Theta/T) - 1)^{2}} \\ + e_{0}x^{g}T\frac{g}{V} \end{bmatrix}.$$
(12)

Теперь легко рассчитывается коэффициент термического расширения $\alpha = (\partial P/\partial T)_V/K_T$, теплоемкость при постоянном давлении $C_P = C_V + \alpha^2 TVK_T$ и адиабатический модуль сжатия $K_S = K_T + VT(\alpha K_T)^2/C_V$, которые могут быть получены прямыми экспериментальными методами. Энтальпия и энергия Гиббса находятся из соотношений H=E+PV, G=F+PV.

Давление на ударной адиабате определяется по уравнению из [Zharkov, Kalinin, 1971]:

$$P_{H} = \frac{P(V) - \frac{\gamma}{V} [E(V) - E(V_{0})]}{1 - \gamma (1 - x) / (2x)}.$$
(13)

Как видим, в уравнениях (9), (11), (12) и (13) появились две функции: $\gamma = -\left(\frac{\partial \ln \Theta}{\partial \ln V}\right)_T$ и $q = \left(\frac{\partial \ln \gamma}{\partial \ln V}\right)_T$, объемная

зависимость которых еще не определена. Ранее [Dorogokupets, 2002, 2010; Dorogokupets, Oganov, 2003, 2005, 2006; 2007; Dorogokupets, Dewaele, 2007] мы использовали зависимость $\gamma = \gamma_{\infty} + (\gamma_0 - \gamma_{\infty})x^{\beta}$ [Al'tshuler et al., 1987], где γ_0 – параметр Грюнейзена при стандартных условиях, γ_{∞} – параметр Грюнейзена при бесконечном сжатии (x=0), β – подгоночный параметр.

Однако это уравнение слишком гибкое, между тем известны прямые соотношения, связывающие объем и параметр Грюнейзена на нулевой или комнатной изотерме. Согласно [Zharkov, Kalinin, 1971; Burakovsky, Preston, 2004], зависимость параметра Грюнейзена от объема на нулевой изотерме можно записать в виде:

$$\gamma = \frac{\frac{K'}{2} - \frac{1}{6} - \frac{t}{3} \left(1 - \frac{P}{2K} \right)}{1 - \frac{2tP}{3K}} + \delta,$$
(14)

где параметр *t* может принимать три значения: 0, 1 и 2, что соответствует моделям Слейтера, Дугдала–Мак-Дональда и Зубарева–Ващенко, δ – аддитивная нормировочная постоянная.

В.Н. Жарков и В.А. Калинин [*Zharkov, Kalinin, 1971*] получили три варианта уравнений состояния металлов и веществ с тремя фиксированными значениями параметра *t*, однако наш подход заключается в том, что мы будем использовать параметры *t* и δ в качестве подгоночных. Если параметр *t* не зависит от объема и δ =0, тогда характеристическая температура в зависимости от объема может быть рассчитана по очень простому уравнению:

$$\Theta = \Theta_0 x^{1/6} K_0^{-1/2} (K - 2tP/3)^{1/2}$$
(15)

или численным интегрированием (14), если параметр δ не равен нулю. Таким образом, мы определили все термодинамические функции, необходимые для построения уравнений состояния веществ. Процедура определения подгоночных параметров описана в наших предыдущих работах [Dorogokupets, Oganov, 2005, 2007].

Далее необходимо более подробно рассмотреть связь полученных соотношений с ударными данными. Классические методы расчета нулевых или комнатных изотерм и нормальных адиабат (изоэнтроп) из ударно-волновых данных хорошо известны [Ruoff, 1967; Zharkov, Kalinin, 1971; Al'tshuler et al., 1987; Fortov, Lomonosov, 2010]. Скорость ударной волны U_S (km/s) и массовая скорость вещества за ударным фронтом U_P (km/s) связаны линейными или квадратичными соотношениями:

$$U_S = a_0 + a_1 U_P$$
 или $U_S = a_0 + a_1 U_P + a_2 U_P^2$. (16)

Давление (размерность в GPa) и объем на ударной адиабате определяются из соотношений (размерность р и р₀ в g/cm³):

$$P_{H} = \rho_{0} U_{P} U_{S}, \quad x = \rho_{0} / \rho = V / V_{0} = (U_{S} - U_{P}) / U_{S}.$$
(17)

Известна связь коэффициентов α_0 и α_1 в (16) с адиабатическим модулем сжатия K_{S_0} и его производной по давлению [*Ruoff*, 1967; Zharkov, Kalinin, 1971; Al'tshuler et al., 1987]:

$$K_{so} = \rho_0 a_0^2, \ (\partial K_s / \partial P)_s = 4\alpha_1 - 1.$$
(18)

Теперь возникает задача: как из параметров ударной адиабаты, которые известны при стандартных условиях (уравнение 16), найти параметры K_0 и K', которые определяют комнатную изотерму. Параметры K_0 и K_{So} связаны соотношением $K_S = K_T + VT(\alpha K_T)^2/C_V$, которое может быть записано в виде $\frac{1}{K_S} = \frac{1}{K_T} - \frac{\alpha^2 VT}{C_P}$. Коэффициент терми-

ческого расширения, объем и теплоемкость при постоянном давлении при стандартных условиях обычно хорошо известны, поэтому нет никаких сложностей в расчете K_0 из K_{So} , которое может быть получено из ультразвуковых измерений.

Для того чтобы получить K', согласованное с $(\partial K_S / \partial P)_S$ из ударных данных, воспользуемся соотношением [*Ruoff*, 1967]:

$$(\partial K_S / \partial P)_S = (\partial K_S / \partial P)_T + \gamma (\partial \ln K_S / \partial \ln T)_P.$$
⁽¹⁹⁾

Все эти соотношения могут быть легко рассчитаны в нашем уравнении состояния. Ранее [Dorogokupets, Sokolova, 2011; Sokolova, Dorogokupets, 2011] мы оптимизировали рассмотренную выше систему уравнений таким образом, чтобы ударное давление и расчетная величина $(\partial K_S / \partial P)_S$ были согласованы с ударной адиабатой (13) и уравнениями (16), (17) и (18). Однако это приближение является слишком строгим, вследствие того что ударная адиабата может быть записана и через квадратичную форму (16), поэтому в настоящей работе мы от него отказались и в процессе оптимизации использовали гладкую адиабату, рассчитанную из соотношений (16), (17), и ударное давление из уравнения (13).

3. УРАВНЕНИЯ СОСТОЯНИЯ ВЕЩЕСТВ НА ОСНОВЕ ТЕРМОХИМИЧЕСКИХ, УЛЬТРАЗВУКОВЫХ, РЕНТГЕНОВСКИХ ИЗМЕРЕНИЙ И УДАРНЫХ ДАННЫХ

Параметр a_0 в уравнении (16) был рассчитан на основе наиболее надежных или общепринятых значений K_{50} , полученных в результате ультразвуковых измерений (табл. 1), что позволило согласовать эти измерения с ударными данными при стандартных условиях. Далее, используя базу данных по ударным измерениям [Levashov et al., 2004] и современные измерения [Yokoo et al., 2008, 2009], мы заново рассчитали параметр a_1 в уравнении (16). По этим параметрам были рассчитаны гладкие адиабаты, которые использовались в процеду-

ре оптимизации. Принятые параметры ударной адиабаты (a_0 и a_1), адиабатического модуля сжатия и его производной по давлению, а также справочные значения объема, плотности и атомного номера приведены в табл. 1.

В табл. 2 и 3 приведены параметры уравнений состояния веществ, которые оптимизируют термохимические, ультразвуковые, рентгеновские измерения и ударные данные. Оптимизация была проведена по двум моделям. В первой модели комнатная изотерма была задана уравнением (2) [Holzapfel, 2001, 2010] (табл. 2), во второй модели использовалось уравнение (4.2) [Vinet et al., 1987] (табл. 3). Принципиальных расхождений между этими моделями нет, но во второй модели получены более высокие значения параметра

Таблица 1. Параметры ударных адиабат веществ

T a b l e 1. Shock-wave adiabat parameters

Параметры	С	MgO	Al	Cu	Nb	Мо	Ag	Та	W	Pt	Au
V ₀ , см ³ /моль ρ ₀ , г/см ³	3.414 3.518	11.248 3.583	9.98 2.704	7.112 8.935	10.828 8.58	9.369 10.240	10.25 10.524	10.861 16.66	9.552 19.25	9.091 21.46	10.215 19.282
a_0 a_1	11.21 1.20	6.733 1.30	5.295 1.361	3.923 1.506	4.48 1.18	5.05 1.27	3.14 1.645	3.40 1.25	4.01 1.262	3.62 1.543	2.995 1.653
a_2 K_{s0} , GPa $(\partial K / \partial P)$	442.0	162.5	75.9	137.4	172.1	261.7	103.9	193.0	309.7	281.2	-0.013 173.0 5.61
Z	6	4.2 10.34	4.44 13	29	41	42	47	4.0 73	4.05 74	78	79

Таблица 2. Параметры уравнений состояния веществ с использованием уравнения (2) [Holzapfel, 2001, 2010]

T a b l e 2. EoS parameters determined from equation (2) [Holzapfel, 2001, 2010]

Параметры	С	MgO	Al	Cu	Nb	Mo	Ag	Та	W	Pt	Au
K ₀ , GPa	441.5	160.3	72.8	133.5	170.5	260.0	100.0	191.0	308.0	275.3	167.0
Κ'	3.98	4.23	4.56	5.27	3.63	4.17	6.16	3.91	4.10	5.21	5.79
$(\partial K_S / \partial P)_T$	3.977	4.20	4.40	5.24	3.61	4.15	6.12	3.89	4.08	5.15	5.67
$(\partial K_S / \partial P)_S$	3.973	4.16	4.26	5.14	3.58	4.12	5.97	3.86	4.06	5.07	5.54
Θ_{10} , K	1560	749	381	298	296	369	197	235	310	163	176
m_1	2.437	3	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Θ ₂₀ , K	684	401	202	168	136	213	115	109	172	153	84.5
m_2	0.563	3	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Т	1.140	0.555	-0.861	1.417	-0.829	-0.655	2.253	-0.279	-0.564	-0.890	-0.512
δ	-0.537	-0.226	-0.247		-0.354	-0.686	0.175	-0.205	-0.642		
$a_0 (10^{-6} \mathrm{K}^{-1})$		14.6									
m		5.3									
$e_0 (10^{-6} \mathrm{K}^{-1})$			64.1	27.7	114.6	143.1	17.6	80.7	100.3	75.5	
g			0.66	0.66	0.98	2.65	0.62	0.2	2.70	0.32	

Параметры	С	MgO	Al	Cu	Nb	Мо	Ag	Ta	W	Pt	Au
<i>K</i> ₀ , GPa	441.5	160.3	72.8	133.5	170.5	260.0	100.0	191.0	308.0	275.3	167.0
K'	4.00	4.38	4.70	5.44	3.77	4.32	6.02	4.08	4.25	5.28	5.81
$(\partial K_S / \partial P)_T$	3.99	4.35	4.55	5.41	3.75	4.29	5.99	4.06	4.23	5.23	5.71
$(\partial K_S / \partial P)_S$	3.99	4.31	4.40	5.31	3.72	4.26	5.86	4.03	4.21	5.16	5.58
Θ ₁₀ , Κ	1549	747	380	297	305	419	201	247	313	169	179
m_1	2.468	3	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Θ ₂₀ , K	669	401	202	168	132	190	116	104	169	150	83.5
m_2	0.532	3	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
t	1.367	1.064	-0.451	2.172	-0.171	-0.342	2.722	0.330	-0.259	-0.102	0.164
δ	-0.470	-0.165	-0.182	0.136	-0.183	-0.512	0.442	-0.073	-0.557	0.278	0.254
$a_0 (10^{-6} \text{K}^{-1})$		16.5									
т		4.96									
$e_0 (10^{-6} \mathrm{K}^{-1})$			64.1	27.7	116.5	150.4	19.2	82.1	104.3	78.5	
g			0.61	2.27	0.89	1.94	0.56	0.100	2.29	0.26	

Таблица 3. **Параметры уравнений состояния веществ с использованием уравнения (4.2)** [Vinet et al., 1987] Таble 3. EoS parameters determined from equation (4.2) [Vinet et al., 1987]

К'. Обе модели хорошо сглаживают измеренную изобарную теплоемкость при температурах примерно от 100 К, в результате рассчитанная стандартная энтропия оказалась близкой к справочным величинам. Интересно, что одна из характеристических температур оказалась близка к значениям температуры Дебая, тогда как вторая обычно в два раза меньше ее. Здесь же приведены значения параметров $(\partial K_S/\partial P)_T$ и $(\partial K_S/\partial P)_S$, рассчитанные из наших уравнений состояния. Как видно из табл. 2 и 3, рассчитанные $(\partial K_S / \partial P)_S$ не всегда близки к значениям, полученным из ударных данных (см. табл. 1). Это свидетельствует только о том, что связи между скоростями в большинстве случаев должны быть описаны квадратичными соотношениями вместо линейных. Уровень согласованности рассчитанных термодинамических функций и экспериментальных данных по первой модели с использованием уравнения (2) [Holzapfel, 2001, 2010] показан ниже на рисунках. Вторая модель с использованием уравнения (4.2) [Vinet et al., 1987] дает практически такой же уровень согласованности рассчитанных термодинамических функций и экспериментальных данных и здесь не приводится.

Рисунки 1–10 приведены в порядке возрастания атомного номера вещества и построены по следующему принципу. На левом верхнем рисунке приведена рассчитанная теплоемкость (изобарная и изохорная) в сравнении с избранными справочными и первичными данными. Левый нижний рисунок показывает рассчитанный коэффициент объемного термического расширения и экспериментальные данные. На правом верхнем рисунке изображены рассчитанные модули сжатия (изотермический и адиабатический) в сравнении с полученными из ультразвуковых измерений. Наконец, правый нижний рисунок позволяет сравнить рассчитанную ударную адиабату (красная жирная линия) с экспериментальной. Здесь же приведена рассчитанная комнатная изотерма по параметрам из табл. 2. Литературные источники на рисунках приведены в списке литературы.

Рис. 11 показывает полученную нами зависимость параметра Грюнейзена $\gamma = -(\partial \ln \Theta / \partial \ln V)_T$ от сжатия по первой модели с использованием уравнения (2) [Holzapfel, 2001, 2010]. На рис. 12 приведено то же самое по второй модели с использованием уравнения (4) [Vinet et al., 1987]. Разница между моделями не принципиальная.

Как видно из рисунков, нам удалось с разумной точностью описать все основные термодинамические функции в рамках простого уравнения состояния с минимальным набором подгоночных параметров. Теперь надо привести к единому знаменателю уравнения состояния металлов и соединений, иначе любое из них можно объявить абсолютным. Сначала сделаем это на комнатной изотерме путем калибровки рубиновой шкалы давлений по комнатным изотермам из табл. 2 и 3.

4. КАЛИБРОВКА РУБИНОВОЙ ШКАЛЫ ДАВЛЕНИЙ ПО УРАВНЕНИЯМ СОСТОЯНИЯ ВЕЩЕСТВ

В течение последних десяти лет были проведены одновременные измерения параметров ячейки рассмотренных веществ и сдвига линии R1 люминесценции рубина в алмазных наковальнях в гелиевой среде. Показано [*Takemura*, 2001], что использование гелия в качестве среды, передающей давление в алмазных наковальнях, обеспечивает гидростатическое давление по крайней мере до 50 GPa, при более высоких давлениях гелий обеспечивает квазигидростатические условия [*Occelli et al.*, 2003; *Dewaele et al.*, 2004a, 2004b, 2008; *Klotz et al.*, 2009]. Квалифицированный обзор этой проблемы можно найти в работе [*Syassen*, 2008].

Fig. 1. Diamond (C).

Рис. 2. Алюминий (Al).

Fig. 2. Aluminum (Al).

Рис. З. Медь (Cu).

Fig. 3. Copper (Cu).

Рис. 4. Ниобий (Nb).

Fig. 4. Niobium (Nb).

Рис. 5. Молибден (Мо).

Fig. 5. Molybdenum (Mo).

Рис. 6. Серебро (Ag).

Fig. 6. Silver (Ag).

Рис. 7. Тантал (Та).

Fig. 7. Tantalum (Ta).

Рис. 8. Вольфрам (W).

Fig. 8. Tungsten (W).

Рис. 9. Платина (Pt).

Fig. 9. Platinum (Pt).

Рис. 10. Золото (Au).

Fig. 10. Gold (Au).

Рис. 11. Рассчитанная зависимость параметра Грюнейзена $\gamma = = -(\partial \ln \Theta / \partial \ln V)_T$ от сжатия с использованием уравнения (2) [*Holzapfel*, 2001, 2010].

Рис. 12. Рассчитанная зависимость параметра Грюнейзена $\gamma = -(\partial \ln \Theta / \partial \ln V)_T$ от сжатия с использованием уравнения (4) [*Vinet et al.*, 1987].

Fig. 12. Calculated volume dependence of Grüneisen parameter, $\gamma = -(\partial \ln \Theta / \partial \ln V)_T$, using equation (4) [*Vinet et al.*, 1987].

Калибровка рубиновой шкалы уже неоднократно проводилась в негидростатических условиях [Mao et al., 1978], в аргоновой [Mao et al., 1986] и гелиевой [Aleksandrov et al., 1986; Zha et al., 2000; Holzapfel, 2003; Dewaele et al., 2004b, 2008; Dorogokupets, Oganov, 2003, 2005, 2006, 2007; Chijioke et al., 2005b; Silvera et al., 2007; Jacobsen et al., 2008; Syassen, 2008] средах. Наша новая калибровка рубиновой шкалы давлений основана на уравнениях состояния 10 веществ, которые построены по единому формализму с использованием термохимических, ультразвуковых и рентгеновских измерений при нулевом давлении и по ударным данным при высоких давлениях. На рис. 13 показано соотношение между давлением на комнатной изотерме, рассчитанным по параметрам из табл. 2 (первая модель), и сдвигом линии люминесценции R1 рубина, измеренным в указанных работах.

Обработка этих соотношений методом наименьших квадратов приводит к следующей зависимости давления от сдвига линии люминесценции R1 рубина:

$$P(\text{GPa}) = A \frac{\Delta \lambda}{\lambda_0} \left(1 + m \frac{\Delta \lambda}{\lambda_0} \right), \tag{20}$$

где λ_0 =694.24 nm, *A*=1876±6 GPa, *m*=5.88±0.12. Это уравнение практически совпадает с рекомендациями [*Syassen*, 2008], дает чуть более высокие давления по сравнению с уравнением, полученным ранее [*Dorogokupets*, *Oganov*, 2005, 2006, 2007; Silvera et al., 2007; Dewaele et al., 2008], и более низкие по сравнению с оценками [*Holzapfel*, 2005, 2010] в диапазоне до 150 GPa.

Нижняя часть рис. 13 показывает разницу между давлениями, рассчитанными по рубиновой шкале (20), и давлениями, рассчитанными по уравнениям состояния веществ (см. табл. 2). Отклонения в комнатных изотермах металлов, алмаза и периклаза от рубиновой шкалы практически не превышают ± 3 %.

На рис. 14 показано соотношение между давлением на комнатной изотерме, рассчитанным по параметрам из табл. 3 (вторая модель), и сдвигом линии люминесценции R1 рубина, измеренным в указанных работах, что приводит к следующей зависимости:

$$P(\text{GPa}) = 1882(\pm 6) \frac{\Delta \lambda}{\lambda_0} \left(1 + 5.82(\pm 0.15) \frac{\Delta \lambda}{\lambda_0} \right).$$
(21)

Нижняя часть рис. 14 показывает разницу между давлениями, рассчитанными по рубиновой шкале (21), и давлениями, рассчитанными по уравнениям состояния веществ (табл. 3). Отклонения в комнатных изотермах металлов, алмаза и периклаза от рубиновой шкалы здесь чуть выше, чем на рис. 13, но и эти отклонения можно свести к минимуму, если откорректировать уравнения состояния из ударных данных по полученной рубиновой шкале.

Здесь заметим, что обе полученные нами рубиновые шкалы давлений различаются не более чем на 0.2 GPa при давлениях до 160 GPa, несмотря на немного отличающиеся комнатные изотермы веществ. Если принять A=1870 GPa [Syassen, 2008], тогда по первой модели получаем m=5.97, по второй модели получаем m=6.00. С учетом ошибок аппроксимации откорректированную рубиновую шкалу можно принять в виде:

Рис. 13. Верхняя панель. Калибровочная кривая сдвига по давлению линии люминесценции R1 рубина. Нижняя панель. Разница между давлениями [Occelli at el., 2003; Dewaele et al., 2004b, 2008; Takemura, Singh, 2006; Speziale et al., 2001; Jacobsen et al.; 2008; Takemura, Dewaele, 2008; Tang et al., 2010], рассчитанными по рубиновой шкале, и давлениями, рассчитанными по комнатным изотермам C, Al, Cu, W, Au, Pt, Ta, Ag, Mo, Nb (табл. 2).

Fig. 13. The upper panel. The calibration curve of the pressure shift for the ruby R1 luminescent line. Lower panel. Differences between the pressures calculated using the ruby pressure scale [*Occelli at el., 2003; Dewaele et al., 2004b, 2008; Takemura, Singh, 2006; Speziale et al., 2001; Jacobsen et al.; 2008; Takemura, Dewaele, 2008; Tang et al., 2010*] and the pressures calculated in this study from room-temperature isotherms for C, Al, Cu, W, Au, Pt, Ta, Ag, Mo, Nb (Table 2).

$$P(\text{GPa}) = 1870 \frac{\Delta \lambda}{\lambda_0} \left(1 + 6.0 \frac{\Delta \lambda}{\lambda_0} \right), \qquad (22)$$

и использовать в последующем анализе.

Рис. 15 показывает соотношение между современными рубиновыми шкалами и шкалой [*Mao et al.*, 1986]. Из рис. 15 видно, что шкала [*Mao et al.*, 1986] недооценивает давление на 10–15 GPa при давлении 150 GPa. С учетом рисунков 13 и 14 погрешность предлагаемой рубиновой шкалы давлений составляет порядка 3 %.

Далее мы откорректируем комнатные изотермы по рубиновой шкале и снова рассмотрим уравнения ме-

Рис. 14. Верхняя панель. Калибровочная кривая сдвига по давлению линии люминесценции R1 рубина. Нижняя панель. Разница между давлениями [Occelli et al., 2003; Dewaele et al., 2004b, 2008; Takemura, 2006; Speziale, 2001; Jacobsen et al., 2008; Takemura, Dewaele, 2008; Tang et al., 2010], рассчитанными по рубиновой шкале, и давлениями, рассчитанными по комнатным изотермам C, Al, Cu, W, Au, Pt, Ta, Ag, Mo, Nb (табл. 3).

Fig. 14. The upper panel. The calibration curve of the pressure shift for the ruby R1 luminescent line. The lower panel. Differences between the pressures calculated using the ruby pressure scale [*Occelli et al., 2003; Dewaele, 2004b, 2008; Takemura, 2006; Speziale, 2001; Jacobsen et al., 2008; Takemura, Dewaele, 2008; Tang et al., 2010*] and the pressures calculated in this study from room-temperature isotherms for C, Al, Cu, W, Au, Pt, Ta, Ag, Mo, Nb (Table 3).

таллов и алмаза. Основания для корректировки комнатных изотерм веществ по рубиновой шкале (22) возникают хотя бы потому, что ударная адиабата не является равновесной термодинамической функцией [*Zharkov*, *Kalinin*, 1971; *Holzapfel*, 2010]. Полученные из ударных данных комнатные изотермы из табл. 2 и 3 являются только некоторым приближением к равновесным или абсолютным изотермам. Среди полученных нами изотерм, вероятно, есть почти равновесные и есть также неравновесные, поэтому рубиновая шкала давлений является тем знаменателем, к которому можно привести уравнения состояния веществ, получен-

Рис. 15. Разница между современными калибровками рубиновой шкалы [*Holzapfel, 2003, 2005, 2010; Dorogokupets, Oganov, 2003, 2007; Dewaele et al., 2004b, 2008; Chijioke et al., 2005; Syassen, 2008*] и классической рубиновой шкалой [*Mao et al., 1986*].

Fig. 15. Differences between recent calibrations of the ruby scale by [*Holzapfel*, 2003, 2005, 2010; *Dorogokupets*, *Oganov*, 2003, 2007; *Dewaele et al.*, 2004b, 2008; *Chijioke et al.*, 2005; *Syassen*, 2008] and the classical ruby pressure scale proposed by [*Mao et al.*, 1986].

ные на основе термохимических, ультразвуковых и рентгеновских измерений при нулевом давлении и по ударным данным при высоких давлениях.

5. ПОЧТИ АБСОЛЮТНЫЕ УРАВНЕНИЯ СОСТОЯНИЯ ВЕЩЕСТВ ДЛЯ КВАЗИГИДРОСТАТИЧЕСКИХ УСЛОВИЙ

В табл. 4 представлены параметры почти абсолютных уравнений состояния веществ. Они были построены следующим образом. Сначала были откорректированы комнатные изотермы по рубиновой шкале (22), затем с фиксированными комнатными изотермами (K_0 и K' для уравнения (2) [Holzapfel, 2001, 2010] была проведена повторная оптимизация термохимических, ультразвуковых, рентгеновских измерений, но без учета ударных данных. Такая процедура была проведена для всех веществ, но уравнения состояния Au, Pt и MgO требуют отдельного рассмотрения, поскольку они являются наиболее востребованными шкалами давлений в алмазных наковальнях и многопуансонных аппаратах высокого давления, что будет сделано в отдельной работе.

На рис. 16–19 показана разница между рубиновой

шкалой (22) и откорректированными комнатными изотермами веществ. Штриховая линия показывает 2-процентное отклонение. Как видно из сравнения, комнатные изотермы практически всех рассмотренных веществ имеют отклонения не более 1 % в области квазигидростатического сжатия. Исключение составляет золото, которое не укладывается в 2-процентное отклонение. В области гидростатического сжатия (ниже 50 GPa) отклонения чаще всего превышают 2 %. Настораживают отклонения до 1.5 GPa в области давления около 30 GPa для алюминия, молибдена и тантала, что требует тщательного экспериментального анализа.

В Приложении (Appendix) приведены таблицы с термодинамическими функциями веществ, которые были рассчитаны по параметрам из табл. 4. Для каждого вещества приведены две таблицы, построенные по следующему принципу. В таблицах с индексом А термодинамические функции табулированы по температуре при нулевом давлении, при давлении 100 GPa и при сжатии $x=V/V_0$ от 0.7 до 0.5. В таблицах приведены рассчитанные коэффициент объемного термического расширения (α), энтропия (S), теплоемкость при постоянном давлении (C_P) и постоянном объеме (C_V), изотермический (K_T) и адиабатический (K_S) модули

Таблии	ц а	4. Параметры почти абсолютных уравнений состояния веществ с использованием	з уравнения (2) [Holzap	ofel, 2001, 201	[0]
Table	4. N	odified EoSs parameters determined from equation (2) [Holzapfel, 2001, 2010]			

	С	Al	Cu	Nb	Mo	Ag	Ta	W	Pt	Au
<i>K</i> ₀ , GPa	441.5	72.8	133.5	170.5	260.0	100.0	191.0	308.0	275.0	167.0
Κ'	3.90	4.51	5.32	3.65	4.20	6.15	3.83	4.12	5.35	5.90
$(\partial K_S / \partial P)_T$	3.90	4.35	5.28	3.62	4.17	6.10	3.81	4.10	5.29	5.81
$(\partial K_S / \partial P)_S$	3.89	4.21	5.18	3.60	4.15	5.96	3.79	4.08	5.22	5.68
Θ ₁₀ , Κ	1561	381	296	302	353	199	254	309	177	179.5
m_1	2.436	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Θ ₂₀ , Κ	684	202	169	134	222	115	101	172	143	83.0
m_2	0.564	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
t	1.085	-0.958	1.401	-0.763	-0.791	2.210	-0.148	-0.591	-0.343	0.087
δ	-0.506	-0.242	-0.07	-0.326	-0.802	0.178	-0.101	-0.686	0.167	0.134
$e_0 (10^{-6} \mathrm{K}^{-1})$		64.1	27.7	115.9	143.2	22.1	82.3	100.1	80.6	
g		0.33	2.18	0.90	2.66	0.19	0.12	2.77	0.06	

сжатия, термодинамический параметр Грюнейзена ($\gamma_{th} = \frac{\alpha V K_T}{C_V} = \frac{\alpha V K_S}{C_P}$), параметр *K*' из уравнения (4.4) и

приращение энергии Гиббса от стандартных условий до заданной температуры и давления, которое при прочих равных условиях совпадает с приращением энергии Гиббса из известной термодинамической базы данных [Holland, Powell, 1998, 2011]. В таблицах с индексом В приведено давление в зависимости от температуры и сжатия, а также параметр Грюнейзена, γ= =-(∂lnΘ/∂lnV)_T, в зависимости от объема.

Рис. 16. Разница между рубиновой шкалой (22) и комнатными изотермами алюминия, меди, вольфрама и алмаза (табл. 4).

Fig. 16. Differences between the ruby scale (22) and room-temperature isotherms of aluminum, copper, tungsten, and diamond (Table 4).

Рис. 17. Разница между рубиновой шкалой (22) и комнатными изотермами платины, золота (табл. 4). Объем золота был рассчитан из параметра ячейки *a*, определенной по межплоскостному параметру d111 (обозначено как Au, a111 [*Takemura, Dewaele, 2008*]), и по среднему значению параметра *a*, определенному по межплоскостным параметрам d111, d200, d220, d311, d222 (обозначено как Au [*Takemura, Dewaele, 2008*]).

Fig. 17. Differences between present calibration of the ruby scale (22) and room-temperature isotherms of gold and platinum (Table 4). The volume of Au is calculated from *a*-value derived from *d*-value of 111 plane (Au, a111, [*Takemura*, *Dewaele*, 2008]) and from the average *a*-value, derived from *d*-values of 111, 200, 220, 311, and 222 planes (Au [*Takemura*, *Dewaele*, 2008]).

6. КОМНАТНАЯ ИЗОТЕРМА hcp-Fe

Мы откорректировали комнатную изотерму hcp-Fe, которая была определена в работе [*Dewaele et al.*, 2006] в гелиевой и неоновой средах с использованием рубиновой шкалы и вольфрама (рис. 20). Рис. 21 пока-

Рис. 18. Разница между рубиновой шкалой (22) и комнатными изотермами тантала (табл. 4).

Fig. 18. Differences between the ruby scale (22) and room-temperature isotherms of tantalum (Table 4).

зывает разницу между сглаженной комнатной изотермой hcp-Fe с первичными экспериментальными данными и другими уравнениями состояния. Измерения [*Mao et al.*, 1990] не использовались, поскольку в них не было лазерного нагрева для снятия стрессовых напряжений. В докладе [*Hirao et al.*, 2009] сообщалось, что были проведены измерения объема hcp-Fe, Ni, Mo,

Рис. 19. Разница между рубиновой шкалой (22) и комнатными изотермами серебра, молибдена и ниобия (табл. 4).

Fig. 19. Differences between the ruby scale (22) and room-temperature isotherms of silver, molybdenum, and niobium (Table 4). Рt до давления примерно 400 GPa. Эти измерения проводились без лазерного нагрева, и из доклада можно было увидеть, что они согласуются с измерениями [*Mao et al.*, 1990; Dubrovinsky et al., 2000].

7. Сравнение с другими уравнениями состояния

Недавно были проведены новые измерения ударной адиабаты золота в интервале давлений от 190 до 580 GPa, которая аппроксимирована соотношением $U_{\rm S}$ = 2.995 +1.621 U_P [Yokoo et al., 2008]. Позже М. Йоко и др. [Yokoo et al., 2009] представили ударную адиабату квадратичным уравнением $U_{\rm S}$ =2.995+1.653 U_{P} – $-0.013 U_P^2$ и построили уравнение состояния золота по методике [Tange et al., 2009]. В этой же работе было построено уравнение состояния платины. Сравнение этих уравнений состояния с нашими показано на рис. 22, из которого видно, что уравнение состояния платины [Yokoo et al., 2009] до 1 % занижает давление по сравнению с нашими изотермами. В то же время уравнение состояния золота [Yokoo et al., 2009] до 200 GPa очень хорошо согласуется с нашими изотермами, выше дает более высокие давления, но расхождение не превышает 1.5 %.

Дж.С. Боттгер и др. [Boettger et al., 2012] разработали новое уравнение состояния золота, пригодное для гидродинамических расчетов. Они определили комнатную изотерму, основываясь на работе [*Takemura*, Dewaele, 2008], где она была задана уравнением П. Вине и др. [Vinet et al., 1987] с параметрами: K₀=167 GPa, *K*′=5.9, которые ранее были рекомендованы в работе [Dorogokupets, Dewaele, 2007]. Следует заметить, что эта изотерма была определена по рубиновой шкале из [Dorogokupets, Oganov, 2007], которая занижает давления по сравнению с уравнением (22). Кроме того, в нашем анализе комнатная изотерма задана уравнением В. Хольцапфеля [Holzapfel, 2001, 2010], которое дает более высокое давление по сравнению с уравнением [Vinet et al., 1987] при одинаковых К₀ и К', что хорошо видно на рис. 22.

К. Джин и др. предложили свою методику обработки ударных данных [*Jin et al.*, 2009, 2011] и построили уравнения состояния золота и платины по тем же исходным данным, что и в работе [*Yokoo et al.*, 2009, 2011]. Рис. 23 показывает, что Au и Pt изотермы из работы [*Jin et al.*, 2011] занижают давление до 2 % для платины и до 5 % для золота по сравнению с нашими. Рис. 24 позволяет сравнить уравнения состояния платины из работ [*Sun et al.*, 2008; *Matsui et al.*, 2009; *Ono et al.*, 2011], которые базируются на различных методиках *ab initio* расчетов, с нашим уравнением состояния платины на изотермах 300, 1000, 2000 и 3000 К.

Рис. 20. Зависимость атомного объема hcp-Fe от давления. Сплошная линия (*V*₀=18.60 Å³, *K*₀=164.0 GPa, *K*'=5.60) – результат подгонки методом наименьших квадратов по уравнению Хольцапфеля данных [*Dewaele et al., 2006*], полученных в алмазной ячейке с гелиевой средой. Давление рассчитано по рубиновой шкале (22), комнатной изотерме W (табл. 4).

Fig. 20. Pressure dependence of atomic volume, hcp-Fe. The solid line (V_0 =18.60 Å³, K_0 =164.0 GPa, K'=5.60) shows the least-squares fit of the Holzapfel equation to the data obtained using DAC in helium pressure medium [*Dewaele et al.*, 2006]. The pressure is calculated using the ruby scale (22) and the room-temperature isotherm of tungsten (Table 4).

Рис. 21. Разница в давлении между сглаженной комнатной изотермой hcp-Fe (рис. 20), комнатной изотермой вольфрама и опубликованными уравнениями состояния hcp-Fe.

Fig. 21. Pressure differences between the fitted room-temperature isotherm, hcp-Fe (see Fig. 20), the volume compression measurements of W and the previous equations of state, hcp-Fe.

Рис. 22. Разница между давлениями по нашему расчету и изотермами 300, 1000, 2000, 3000 К для Рt и Au из работ [Yokoo et al., 2009 (Y); Dorogokupets, Oganov, 2007 (DO); Dorogokupets, Dewaele, 2007 (B); Takemura, Dewaele, 2008 (B); Boettger et al., 2012 (B)].

Fig. 22. Pressure differences between our calculations and 300, 1000, 2000, and 3000 K isotherms of Pt and Au [Yokoo et al., 2009 (Y); Dorogokupets, Oganov, 2007 (DO); Dorogokupets, Dewaele, 2007 (B); Takemura, Dewaele, 2008 (B); Boettger et al., 2012 (B)].

Рис. 23. Разница между давлениями по нашему расчету и изотермами 300, 1000, 2000, 3000 К для Рt и Au из работы [*Jin et al.*, 2011].
Fig. 23. Pressure differences between our calculations and 300, 1000, 2000, and 3000 K isotherms of Pt and Au [*Jin et al.*, 2011].

Рис. 24. Разница между давлениями по нашему расчету и изотермами 300, 1000, 2000, 3000 К для Pt из работ [Sun et al., 2008; Matsui et al., 2009; Ono et al., 2011].

Fig. 24. Pressure differences between our calculations and 300, 1000, 2000, and 3000 K isotherms of Pt [*Sun et al., 2008; Matsui et al., 2009; Ono et al., 2011*].

8. ЗАКЛЮЧЕНИЕ

Мы построили уравнения состояния девяти металлов и алмаза и имеем основание утверждать, что их можно отнести к почти абсолютным уравнениям состояния для квазигидростатических условий. Основания, на которых сделано это утверждение, следующие.

Все рассмотренные уравнения состояния были построены по единой схеме путем одновременной оптимизации ударных данных, ультразвуковых, рентгеновских, дилатометрических и термохимических измерений в диапазоне температур от ~100 К до температуры плавления и до давлений несколько Mbar в зависимости от вещества, с использованием модифицированного формализма из [Dorogokupets, Oganov, 2005, 2007]. Комнатная изотерма была задана двумя формами: уравнением [Holzapfel, 2001, 2010], которое является интерполяционным между низкими давлениями $(x \ge 1)$ и давлением при бесконечном сжатии (x=0), соответствующим модели Томаса-Ферми, и уравнением [Vinet et al., 1987]. Объемная зависимость параметра Грюнейзена была рассчитана по соотношениям из [Zharkov, Kalinin, 1971; Burakovsky, Preston, 2004], в которых параметры t и δ являются подгоночными. Комнатная изотерма и давление на ударной адиабате определяются тремя параметрами: Κ', t и δ, а

параметр K_0 рассчитывается из ультразвуковых измерений. В результате нам удалось с разумной точностью описать все основные термодинамические функции металлов в рамках простого уравнения состояния с минимальным набором подгоночных параметров.

Рассчитанное давление на комнатной изотерме можно сопоставить со сдвигом линии R1 люминесценции рубина, одновременные измерения которого и параметров ячейки металлов проведены в гелиевой [Dewaele et al., 2004b, 2008; Takemura, Dewaele, 2008; Takemura, Singh, 2006], водородной [Chijioke et al., 2005b] и аргоновой средах [Tang et al., 2010]. Показано [Takemura, 2001], что гелиевая среда в алмазных наковальнях обеспечивает квазигидростатические условия, поэтому рубиновую шкалу, откалиброванную по десяти веществам, можно считать близкой к равновесной или почти абсолютной. Откорректированные по полученной рубиновой шкале комнатные изотермы также можно считать близкими к равновесным или почти абсолютным, поэтому построенные нами уравнения состояния девяти металлов и алмаза можно отнести к почти абсолютным уравнениям состояния для квазигидростатических условий. Другими словами, они являются взаимосогласованными между собой, с рубиновой шкалой давлений и близки к равновесным в термодинамическом смысле. Рассчитанные по ним

P-V-T соотношения могут быть использованы в качестве взаимосогласованных шкал давления в алмазных наковальнях при изучении свойств минералов в широкой области температур и давлений. Погрешность рекомендуемых уравнений состояния веществ и рубиновой шкалы составляет порядка 2–3 %. Расчет P-V-T соотношений и термодинамики по предложенным уравнениям состояния доступен по адресу http://labpet. crust.irk.ru/.

10. Приложения Арреndix

Таблица 1А. С. Термодинамические функции алмаза Table 1A. C. Thermodynamic functions of diamond

ов в широ- Авторы

9. БЛАГОДАРНОСТИ

Авторы выражают искреннюю благодарность А.Р. Оганову и А.Б. Белоношко за рецензирование работы и ценные замечания. Работа выполнена при поддержке РФФИ (проект № 12-05-00758-а) и междисциплинарного интеграционного проекта СО РАН № 97 (2012-2014).

Р	Т	$x=V/V_0$	αE-6	S	C_P	C_V	K_T	K_S	γ_{th}	Κ'	ΔG
GPa	К		K^{-1}		$J \text{ mol}^{-1} \text{ K}^{-1}$	-	G	Pa			$\rm KJ~mol^{-1}$
0	298.15	1	3.68	2.38	6.07	6.07	441.50	441.94	0.916	3.90	0.000
0	500	1.00124	8.30	7.41	13.61	13.56	438.44	440.11	0.917	3.91	-0.965
0	1000	1.00693	13.34	19.87	21.41	21.15	426.48	431.73	0.924	3.93	-7.920
0	2000	1.02220	16.29	36.01	24.68	23.94	397.70	409.94	0.944	4.01	-36.605
0	3000	1.04001	18.25	46.25	25.81	24.51	366.22	385.64	0.969	4.11	-78.044
100	298.15	0.84795	1.47	1.66	4.54	4.53	796.07	796.33	0.748	3.31	312.221
100	500	0.84840	3.75	5.70	11.53	11.51	794.10	795.21	0.748	3.31	311.505
100	1000	0.85072	6.61	16.98	20.20	20.10	785.57	789.47	0.751	3.32	305.763
100	2000	0.85710	7.98	32.48	23.89	23.61	764.71	773.96	0.757	3.34	280.351
100	3000	0.86420	8.49	42.37	24.82	24.34	742.60	757.04	0.764	3.36	242.621
100	4000	0.87173	8.86	49.58	25.28	24.61	719.86	739.53	0.771	3.38	196.483
309.605	298.15	0.7	0.61	1.15	3.35	3.35	1439.90	1440.07	0.621	2.91	859.226
309.940	500	0.7	1.72	4.32	9.54	9.53	1439.55	1440.32	0.621	2.91	859.503
311.899	1000	0.7	3.41	14.39	18.92	18.88	1438.75	1441.80	0.621	2.91	859.489
317.533	2000	0.7	4.19	29.24	23.32	23.20	1438.58	1446.07	0.621	2.91	850.532
323.712	3000	0.7	4.36	38.86	24.34	24.15	1439.05	1450.76	0.621	2.91	830.956
330.041	4000	0.7	4.42	45.86	24.76	24.49	1439.72	1455.55	0.621	2.91	803.561

Таблица 1В. С. Параметр Грюнейзена и давление (GPa) при разных объемах и температурах

T a b l e 1B. C. Grüneisen parameter and pressure (GPa) as function of volume and temperature

$x = V/V_0$	γ	Temperature (K)											
		0	298.15	500	1000	1500	2000	2500	3000	3500			
1	0.916	-0.142	0.000	0.543	2.987	5.977	9.137	12.369	15.638	18.928			
0.98	0.891	9.143	9.277	9.802	12.203	15.159	18.289	21.493	24.735	27.999			
0.96	0.867	19.383	19.511	20.018	22.377	25.301	28.404	31.583	34.801	38.041			
0.94	0.844	30.680	30.801	31.292	33.611	36.506	39.584	42.740	45.936	49.155			
0.92	0.821	43.146	43.262	43.737	46.018	48.885	51.941	55.076	58.253	61.454			
0.9	0.800	56.911	57.021	57.480	59.725	62.567	65.602	68.719	71.879	75.064			
0.88	0.780	72.116	72.221	72.665	74.875	77.694	80.710	83.812	86.958	90.129			
0.86	0.760	88.924	89.024	89.454	91.631	94.428	97.429	100.517	103.650	106.810			
0.84	0.740	107.519	107.614	108.031	110.177	112.954	115.940	119.017	122.140	125.291			
0.82	0.722	128.109	128.200	128.604	130.719	133.478	136.453	139.520	142.636	145.780			
0.8	0.704	150.932	151.019	151.410	153.496	156.239	159.204	162.264	165.375	168.514			
0.78	0.686	176.259	176.341	176.721	178.779	181.507	184.464	187.520	190.627	193.765			
0.76	0.669	204.398	204.477	204.845	206.876	209.592	212.543	215.597	218.703	221.841			
0.74	0.653	235.707	235.783	236.139	238.145	240.850	243.797	246.850	249.959	253.099			
0.72	0.637	270.595	270.667	271.013	272.995	275.690	278.636	281.691	284.804	287.950			
0.7	0.621	309.536	309.605	309.940	311.899	314.587	317.533	320.593	323.712	326.865			
0.68	0.606	353.079	353.145	353.470	355.406	358.088	361.037	364.104	367.232	370.397			
0.66	0.592	401.863	401.926	402.242	404.157	406.835	409.789	412.865	416.006	419.183			

Р	Т	$x = V/V_0$	αE-6	S	C_P	C_V	K_T	K_S	γ_{th}	K'	ΔG
GPa	K		K^{-1}		J mol ⁻¹ K	-1	(GPa			$\mathrm{KJ}\ \mathrm{mol}^{-1}$
0	298	1	68.51	28.29	24.41	23.39	72.80	75.97	2.128	4.51	0.000
0	500	1.01525	81.11	41.65	27.25	25.04	66.37	72.23	2.178	4.60	-7.150
0	1000	1.06802	131.41	62.50	34.81	26.44	45.47	59.87	2.409	4.98	-33.582
100	298	0.61839	8.30	12.68	18.00	17.95	420.09	421.33	1.199	3.11	741.538
100	500	0.61958	10.42	23.31	22.66	22.52	417.42	420.02	1.194	3.11	737.853
100	1000	0.62308	11.76	40.24	25.84	25.48	410.47	416.15	1.178	3.12	721.568
100	2000	0.63075	12.63	58.97	28.28	27.49	396.21	407.67	1.146	3.14	671.026
225.09	298	0.5	3.97	8.73	14.91	14.90	790.86	791.85	1.052	2.86	1429.329
225.87	500	0.5	5.52	18.07	20.86	20.80	790.73	793.02	1.048	2.86	1430.480
228.3	1000	0.5	6.50	34.09	25.03	24.87	791.35	796.66	1.033	2.86	1429.236
233.64	2000	0.5	6.86	52.14	27.52	27.14	793.57	804.47	1.001	2.86	1411.817

Таблица 2А. **Аl. Термодинамические функции алюминия** Таble 2А. **Al. Thermodynamic functions of aluminum**

Таблица 2В. Аl. Параметр Грюнейзена и давление (GPa) при разных объемах и температурах

T a b l e 2B. Al. Grüneisen parameter and pressure (GPa) as function of volume and temperature

$x = V/V_0$	γ	Temperature (K)							
		0	298.15	500	1000	1500	2000		
1	2.166	-0.965	0.000	1.042	3.727	6.452	9.198		
0.98	2.077	0.617	1.539	2.555	5.179	7.845	10.533		
0.96	1.996	2.374	3.258	4.249	6.820	9.436	12.073		
0.94	1.921	4.329	5.176	6.146	8.671	11.242	13.836		
0.92	1.853	6.504	7.318	8.269	10.753	13.287	15.843		
0.9	1.790	8.928	9.710	10.644	13.093	15.594	18.119		
0.88	1.731	11.630	12.384	13.302	15.721	18.194	20.692		
0.86	1.676	14.647	15.374	16.278	18.671	21.121	23.596		
0.84	1.625	18.018	18.719	19.610	21.981	24.412	26.870		
0.82	1.578	21.789	22.465	23.345	25.697	28.114	30.558		
0.8	1.533	26.012	26.665	27.535	29.872	32.277	34.711		
0.78	1.491	30.748	31.379	32.239	34.564	36.962	39.390		
0.76	1.451	36.067	36.676	37.528	39.844	42.238	44.662		
0.74	1.413	42.049	42.638	43.481	45.792	48.184	50.610		
0.72	1.377	48.788	49.357	50.194	52.502	54.896	57.325		
0.7	1.343	56.395	56.945	57.775	60.082	62.482	64.918		
0.68	1.311	64.998	65.529	66.353	68.662	71.070	73.516		
0.66	1.280	74.747	75.260	76.078	78.391	80.811	83.271		
0.64	1.250	85.822	86.316	87.129	89.449	91.883	94.360		
0.62	1.221	98.433	98.909	99.717	102.047	104.498	106.995		
0.6	1.194	112.832	113.291	114.094	116.435	118.908	121.429		
0.58	1.168	129.321	129.763	130.562	132.917	135.414	137.962		
0.56	1.142	148.264	148.689	149.483	151.854	154.379	156.959		
0.54	1.118	170.101	170.508	171.298	173.687	176.244	178.860		
0.52	1.094	195.366	195.757	196.542	198.952	201.544	204.200		
0.5	1.071	224.720	225.092	225.871	228.304	230.935	233.635		

Р	Т	$x=V/V_0$	αE-6	S	C_P	C_V	K_T	K_S	γ_{th}	K'	ΔG
GPa	K		K^{-1}		$\rm J~mol^{-1}~K^{-1}$	1	(GPa			$\rm KJ~mol^{-1}$
0	298	1	49.19	33.00	24.53	23.85	133.50	137.33	1.958	5.32	0.000
0	500	1.01054	54.44	46.13	26.18	24.84	125.85	132.64	1.982	5.41	-8.086
0	1000	1.04161	67.45	65.16	29.14	25.60	105.24	119.83	2.054	5.70	-36.369
0	2000	1.14696	156.00	88.78	46.33	26.79	49.21	85.11	2.338	7.16	-113.855
100	298	0.72353	11.24	20.41	21.52	21.41	562.01	564.86	1.518	3.85	585.432
100	500	0.72529	12.57	32.25	23.96	23.73	556.93	562.26	1.522	3.86	580.036
100	1000	0.73007	13.53	49.43	25.46	24.94	544.03	555.31	1.532	3.88	559.166
100	2000	0.74041	14.58	67.49	26.74	25.58	517.46	540.91	1.554	3.91	499.741
100	3000	0.75169	15.67	78.56	27.95	26.02	489.85	526.17	1.577	3.96	426.383
251.867	298	0.6	5.58	14.90	19.29	19.25	1113.32	1115.87	1.377	3.48	1290.608
253.259	500	0.6	6.60	25.86	22.84	22.74	1113.48	1118.54	1.378	3.48	1292.370
257.127	1000	0.6	7.13	42.37	24.80	24.56	1114.98	1125.97	1.382	3.48	1291.394
265.236	2000	0.6	7.34	59.66	25.76	25.24	1118.78	1141.60	1.389	3.48	1274.025
273.526	3000	0.6	7.45	69.96	26.35	25.55	1122.66	1157.66	1.396	3.48	1244.256

Таблица ЗА. **Си. Термодинамические функции меди**

T a b l e 3A. Cu. Thermodynamic functions of copper

Таблица 3В. **Си. Параметр Грюнейзена и давление (GPa) при разных объемах и температурах**

T a b l e 3B. Cu. Grüneisen parameter and pressure (GPa) as function of volume and temperature

$x = V/V_0$	γ	Temperature (K)								
		0	298.15	500	1000	1500	2000	2500	3000	
1	1.956	-1.368	0.000	1.358	4.836	8.388	11.999	15.665	19.385	
0.98	1.915	1.503	2.846	4.198	7.667	11.211	14.812	18.468	22.177	
0.96	1.875	4.754	6.073	7.421	10.884	14.423	18.018	21.667	25.368	
0.94	1.838	8.435	9.730	11.075	14.535	18.073	21.666	25.312	29.008	
0.92	1.802	12.602	13.875	15.217	18.678	22.217	25.812	29.457	33.152	
0.9	1.767	17.321	18.572	19.913	23.377	26.921	30.520	34.168	37.866	
0.88	1.734	22.666	23.895	25.235	28.706	32.258	35.864	39.519	43.222	
0.86	1.702	28.722	29.929	31.270	34.751	38.314	41.931	45.596	49.307	
0.84	1.672	35.589	36.775	38.117	41.610	45.187	48.818	52.496	56.220	
0.82	1.643	43.381	44.546	45.889	49.397	52.992	56.640	60.335	64.074	
0.8	1.614	52.231	53.374	54.720	58.246	61.862	65.531	69.245	73.003	
0.78	1.587	62.294	63.415	64.764	68.311	71.950	75.643	79.381	83.161	
0.76	1.561	73.749	74.849	76.201	79.771	83.438	87.159	90.924	94.730	
0.74	1.535	86.807	87.886	89.242	92.839	96.537	100.288	104.083	107.919	
0.72	1.51	101.718	102.774	104.135	107.761	111.494	115.280	119.110	122.979	
0.7	1.486	118.774	119.807	121.172	124.831	128.602	132.427	136.295	140.201	
0.68	1.463	138.320	139.330	140.701	144.395	148.208	152.076	155.986	159.934	
0.66	1.44	160.770	161.756	163.131	166.864	170.723	174.638	178.595	182.589	
0.64	1.418	186.613	187.574	188.955	192.730	196.639	200.606	204.614	208.660	
0.62	1.396	216.439	217.374	218.761	222.581	226.545	230.568	234.633	238.735	
0.6	1.374	250.958	251.867	253.259	257.127	261.151	265.236	269.363	273.526	
0.58	1.353	291.029	291.911	293.308	297.228	301.316	305.469	309.664	313.894	
0.56	1.333	337.699	338.553	339.955	343.930	348.088	352.314	356.583	360.887	
0.54	1.313	392.251	393.075	394.481	398.515	402.749	407.055	411.405	415.790	
0.52	1.293	456.266	457.058	458.466	462.563	466.879	471.272	475.710	480.184	
0.5	1.273	531.703	532.463	533.874	538.038	542.444	546.932	551.466	556.037	

Р	Т	$x = V/V_0$	αE-6	S	C_P	C_V	K_T	K_S	γ_{th}	K'	ΔG
GPa	K		K^{-1}		$J \text{ mol}^{-1} \text{ K}^{-1}$	1	C	3Pa			$\rm KJ~mol^{-1}$
0	298	1	20.82	36.29	24.82	24.59	170.50	172.15	1.563	3.65	0.000
0	500	1.00437	22.28	49.55	26.41	25.95	167.15	170.05	1.561	3.67	-8.765
0	1000	1.01628	24.83	68.63	28.84	27.77	158.28	164.40	1.557	3.71	-38.787
0	2000	1.04486	31.07	90.12	33.94	30.93	137.78	151.19	1.566	3.82	-119.102
0	3000	1.08308	42.07	105.14	41.19	34.25	111.40	133.97	1.605	3.99	-216.996
100	298	0.72256	6.43	26.45	22.98	22.93	489.19	490.20	1.073	2.96	898.993
100	500	0.72355	7.03	38.94	25.12	25.02	487.27	489.10	1.072	2.96	892.303
100	1000	0.72620	7.56	57.03	27.07	26.86	482.30	486.19	1.068	2.97	867.846
100	2000	0.73199	8.30	76.64	29.76	29.25	471.72	480.03	1.061	2.98	800.037
100	3000	0.73836	9.04	89.21	32.42	31.52	460.30	473.48	1.055	2.99	716.776
100	4000	0.74536	9.83	98.92	35.21	33.81	448.02	466.54	1.051	3.00	622.546
220.3766	298	0.6	3.85	22.25	21.80	21.78	832.95	833.87	0.957	2.78	1751.430
221.0705	500	0.6	4.31	34.27	24.47	24.42	833.16	834.88	0.956	2.78	1750.152
222.9504	1000	0.6	4.65	51.92	26.51	26.40	833.93	837.63	0.954	2.78	1740.368
226.9805	2000	0.6	4.99	70.90	28.77	28.50	835.69	843.62	0.950	2.78	1704.175
231.2814	3000	0.6	5.29	82.81	30.84	30.38	837.52	850.11	0.947	2.78	1654.926
235.8396	4000	0.6	5.58	91.81	32.91	32.23	839.38	857.08	0.944	2.78	1597.060

Таблица 4А. **Nb. Термодинамические функции ниобия** Таble 4А. **Nb. Thermodynamic functions of niobium**

Таблица 4В. **Nb. Параметр Грюнейзена и давление (GPa) при разных объемах и температурах**

T a b l e 4B. Nb. Grüneisen parameter and pressure (GPa) as function of volume and temperature

$x = V/V_0$	γ	Temperatu	re (K)							
		0	298.15	500	1000	1500	2000	2500	3000	3500
1	1.587	-0.758	0.000	0.736	2.637	4.610	6.645	8.741	10.898	13.115
0.98	1.533	2.836	3.574	4.297	6.172	8.117	10.125	12.195	14.325	16.516
0.96	1.482	6.779	7.498	8.211	10.061	11.983	13.968	16.015	18.122	20.290
0.94	1.434	11.107	11.809	12.513	14.342	16.244	18.210	20.237	22.325	24.473
0.92	1.390	15.862	16.549	17.245	19.056	20.941	22.890	24.901	26.972	29.105
0.9	1.349	21.092	21.764	22.453	24.249	26.121	28.056	30.053	32.111	34.231
0.88	1.311	26.848	27.507	28.190	29.975	31.835	33.759	35.745	37.793	39.902
0.86	1.275	33.191	33.838	34.516	36.291	38.143	40.059	42.038	44.078	46.179
0.84	1.241	40.190	40.825	41.499	43.267	45.113	47.024	48.997	51.032	53.129
0.82	1.209	47.920	48.545	49.216	50.980	52.822	54.730	56.701	58.734	60.828
0.8	1.179	56.471	57.087	57.756	59.518	61.359	63.267	65.237	67.270	69.365
0.78	1.151	65.945	66.552	67.219	68.982	70.825	72.735	74.708	76.743	78.841
0.76	1.124	76.458	77.057	77.724	79.489	81.336	83.251	85.229	87.269	89.372
0.74	1.099	88.144	88.735	89.403	91.173	93.027	94.949	96.935	98.983	101.094
0.72	1.076	101.160	101.744	102.413	104.191	106.055	107.986	109.982	112.041	114.162
0.7	1.053	115.687	116.264	116.935	118.723	120.599	122.543	124.551	126.624	128.758
0.68	1.032	131.935	132.507	133.180	134.982	136.872	138.831	140.855	142.943	145.094
0.66	1.012	150.153	150.720	151.397	153.213	155.121	157.099	159.142	161.248	163.419
0.64	0.993	170.632	171.195	171.876	173.711	175.639	177.638	179.703	181.832	184.024
0.62	0.975	193.719	194.277	194.964	196.820	198.772	200.795	202.884	205.039	207.257
0.6	0.958	219.823	220.377	221.071	222.950	224.929	226.980	229.098	231.281	233.529
0.58	0.942	249.435	249.986	250.687	252.594	254.604	256.687	258.837	261.052	263.332
0.56	0.927	283.147	283.695	284.404	286.343	288.387	290.505	292.691	294.943	297.260
0.54	0.913	321.674	322.218	322.937	324.911	326.993	329.152	331.379	333.672	336.030
0.52	0.899	365.887	366.429	367.158	369.170	371.296	373.499	375.772	378.111	380.515
0.5	0.887	416.855	417.395	418.137	420.192	422.366	424.619	426.942	429.332	431.788

Р	Т	$x = V/V_0$	αE-6	S	C_P	C_V	K_T	K_S	γ_{th}	Κ'	ΔG
GPa	K		K^{-1}		$J \text{ mol}^{-1} \text{ K}^{-1}$	L	(GPa			$\mathrm{KJ}\ \mathrm{mol}^{-1}$
0	298	1	14.49	28.57	24.24	24.09	260.00	261.64	1.465	4.20	0.000
0	500	1.00313	16.36	41.68	26.36	26.04	255.23	258.37	1.507	4.21	-7.186
0	1000	1.01229	20.01	60.92	29.38	28.46	241.65	249.45	1.611	4.26	-33.302
0	2000	1.03737	29.82	83.25	36.34	32.78	206.06	228.45	1.822	4.39	-106.274
0	3000	1.07823	51.01	100.15	50.03	38.02	152.25	200.31	2.063	4.62	-198.101
100	298	0.79042	4.46	22.22	22.43	22.40	633.54	634.33	0.934	3.47	820.660
100	500	0.79119	5.07	34.49	24.79	24.73	630.94	632.48	0.959	3.47	814.850
100	1000	0.79337	5.86	52.37	26.73	26.57	623.65	627.39	1.023	3.48	792.677
100	2000	0.79859	7.26	71.69	29.27	28.79	606.01	616.08	1.143	3.49	729.685
100	3000	0.80501	8.81	84.05	31.95	30.92	584.22	603.59	1.255	3.51	651.488
100	4000	0.81285	10.61	93.66	35.06	33.15	557.91	590.10	1.360	3.53	562.478
195.253	298	0.7	2.73	19.93	21.65	21.63	952.84	953.45	0.787	3.26	1482.156
195.821	500	0.7	3.12	31.86	24.24	24.21	952.55	953.74	0.806	3.26	1480.575
197.418	1000	0.7	3.55	49.30	26.04	25.96	951.76	954.64	0.853	3.26	1470.307
201.095	2000	0.7	4.18	67.83	27.83	27.61	949.57	957.05	0.942	3.26	1434.884
205.346	3000	0.7	4.79	79.30	29.47	29.05	946.46	960.39	1.024	3.26	1388.860
210.162	4000	0.7	5.41	87.85	31.17	30.44	942.42	964.81	1.098	3.26	1336.697

Таблица 5А. Мо. Термодинамические функции молибдена Таble 5А. Мо. Thermodynamic functions of molybdenum

Таблица 5В. **Мо. Параметр Грюнейзена и давление (GPa) при разных объемах и температурах**

Τal	b 1	l e	5B.	Mo.	Grüneisen	parameter	and	pressure	(GPa)) as i	function of	E vo	lume and	l temperature
-----	-----	-----	-----	-----	-----------	-----------	-----	----------	-------	--------	-------------	------	----------	---------------

$x = V/V_0$	γ	Temperature (K)								
		0	298.15	500	1000	1500	2000	2500	3000	3500
1	1.409	-0.714	0.000	0.804	3.034	5.536	8.296	11.311	14.582	18.107
0.98	1.341	4.797	5.480	6.258	8.420	10.845	13.520	16.443	19.612	23.027
0.96	1.277	10.908	11.563	12.317	14.416	16.770	19.366	22.202	25.275	28.586
0.94	1.219	17.689	18.317	19.050	21.090	23.378	25.901	28.654	31.637	34.850
0.92	1.164	25.217	25.821	26.533	28.520	30.747	33.200	35.876	38.773	41.893
0.9	1.114	33.581	34.163	34.857	36.793	38.963	41.351	43.954	46.771	49.801
0.88	1.067	42.884	43.444	44.121	46.011	48.127	50.454	52.987	55.728	58.674
0.86	1.023	53.238	53.780	54.441	56.288	58.353	60.622	63.091	65.758	68.623
0.84	0.981	64.778	65.302	65.947	67.754	69.773	71.988	74.394	76.992	79.780
0.82	0.943	77.653	78.160	78.792	80.562	82.536	84.700	87.047	89.579	92.294
0.8	0.906	92.037	92.528	93.147	94.883	96.816	98.931	101.223	103.692	106.336
0.78	0.872	108.130	108.607	109.214	110.917	112.812	114.881	117.121	119.530	122.107
0.76	0.839	126.164	126.627	127.223	128.897	130.756	132.782	134.971	137.323	139.836
0.74	0.808	146.408	146.857	147.443	149.089	150.915	152.900	155.042	157.339	159.791
0.72	0.779	169.173	169.610	170.187	171.808	173.602	175.549	177.647	179.892	182.285
0.7	0.751	194.827	195.253	195.821	197.418	199.183	201.095	203.149	205.346	207.684
0.68	0.724	223.799	224.213	224.773	226.349	228.087	229.965	231.980	234.130	236.415
0.66	0.699	256.593	256.998	257.551	259.107	260.820	262.667	264.644	266.751	268.985
0.64	0.675	293.811	294.205	294.752	296.290	297.980	299.799	301.741	303.806	305.992
0.62	0.651	336.163	336.549	337.089	338.612	340.281	342.072	343.982	346.008	348.149
0.6	0.629	384.502	384.878	385.414	386.922	388.573	390.340	392.219	394.208	396.307

Р	Т	$x = V/V_0$	αE-6	S	C_P	C_V	K_T	K_S	γ_{th}	K'	ΔG
GPa	K		K^{-1}		$J \text{ mol}^{-1} \text{ K}$	-1		GPa			$\mathrm{KJ}~\mathrm{mol}^{-1}$
0	298	1	55.82	42.37	25.45	24.50	100.00	103.89	2.335	6.15	0.001
0	500	1.01190	61.30	55.88	26.82	25.01	92.70	99.39	2.356	6.30	-10.020
0	1000	1.04755	78.89	75.46	30.33	25.46	73.01	87.00	2.430	6.80	-43.317
0	1300	1.07539	97.70	83.81	33.78	25.65	59.48	78.35	2.498	7.29	-67.240
100	298	0.70218	10.00	25.38	22.81	22.69	564.71	567.73	1.790	4.12	822.981
100	500	0.70367	10.75	37.68	24.54	24.31	560.11	565.49	1.786	4.13	816.524
100	1000	0.70757	11.26	55.14	25.74	25.24	548.66	559.63	1.776	4.14	792.852
100	2000	0.71578	11.80	73.38	27.00	25.92	525.65	547.43	1.756	4.18	727.618
100	3000	0.72446	12.32	84.55	28.17	26.47	502.48	534.74	1.737	4.21	648.315
223.399	298	0.6	5.45	19.43	21.21	21.16	1046.15	1048.97	1.658	3.74	1638.244
224.632	500	0.6	6.08	31.10	23.79	23.67	1046.43	1051.68	1.653	3.74	1640.645
227.915	1000	0.6	6.37	48.06	25.31	25.05	1047.92	1058.85	1.639	3.74	1640.601
234.651	2000	0.6	6.44	65.70	26.38	25.84	1051.50	1073.31	1.611	3.74	1624.177
241.437	3000	0.6	6.44	76.29	27.20	26.39	1055.23	1087.56	1.585	3.74	1594.584

T а б л и ц а 6A. Ag. Термодинамические функции серебра T а b l е 6A. Ag. Thermodynamic functions of silver

Таблица 6В. Ад. Параметр Грюнейзена и давление (GPa) при разных объемах и температурах

T a b l e 6B. Ag. Grüneisen parameter and pressure (GPa) as function of volume and temperature

$x = V/V_0$	γ	Temperature (K)								
		0	298.15	500	1000	1500	2000	2500	3000	
1	2.350	-1.299	0.000	1.138	3.989	6.850	9.716	12.585	15.458	
0.98	2.300	0.869	2.149	3.285	6.131	8.989	11.852	14.718	17.588	
0.96	2.253	3.363	4.625	5.759	8.604	11.461	14.324	17.191	20.060	
0.94	2.209	6.228	7.472	8.605	11.452	14.312	17.178	20.048	22.921	
0.92	2.166	9.517	10.745	11.878	14.729	17.595	20.467	23.343	26.222	
0.9	2.126	13.290	14.502	15.636	18.495	21.369	24.250	27.135	30.023	
0.88	2.087	17.619	18.814	19.951	22.819	25.705	28.597	31.494	34.395	
0.86	2.050	22.585	23.764	24.903	27.784	30.684	33.591	36.502	39.418	
0.84	2.015	28.281	29.445	30.588	33.483	36.400	39.324	42.253	45.186	
0.82	1.980	34.819	35.967	37.114	40.027	42.964	45.908	48.858	51.811	
0.8	1.948	42.327	43.459	44.611	47.545	50.503	53.471	56.444	59.421	
0.78	1.916	50.956	52.071	53.229	56.185	59.169	62.163	65.162	68.165	
0.76	1.885	60.882	61.980	63.145	66.126	69.139	72.161	75.189	78.222	
0.74	1.855	72.314	73.395	74.567	77.576	80.619	83.674	86.734	89.800	
0.72	1.826	85.498	86.561	87.741	90.781	93.858	96.948	100.044	103.146	
0.7	1.798	100.727	101.771	102.959	106.032	109.147	112.276	115.411	118.552	
0.68	1.771	118.348	119.373	120.569	123.679	126.835	130.005	133.184	136.368	
0.66	1.744	138.779	139.783	140.988	144.137	147.337	150.554	153.778	157.009	
0.64	1.718	162.518	163.501	164.715	167.906	171.154	174.420	177.696	180.978	
0.62	1.693	190.169	191.129	192.353	195.588	198.889	202.209	205.539	208.876	
0.6	1.668	222.464	223.399	224.632	227.915	231.272	234.651	238.040	241.437	
0.58	1.644	260.290	261.200	262.442	265.777	269.194	272.636	276.090	279.553	
0.56	1.620	304.740	305.622	306.873	310.263	313.746	317.256	320.780	324.313	
0.54	1.596	357.158	358.011	359.269	362.717	366.271	369.856	373.455	377.065	
0.52	1.573	419.210	420.031	421.297	424.806	428.436	432.101	435.783	439.476	
0.5	1.550	492.977	493.764	495.036	498.609	502.322	506.074	509.845	513.628	

Р	Т	$x=V/V_0$	αE-6	S	C_P	C_V	K_T	K_S	γ_{th}	K'	ΔG
GPa	К		K^{-1}		$J \text{ mol}^{-1} \text{ K}^{-1}$	1	(GPa			$\mathrm{KJ} \ \mathrm{mol}^{-1}$
0	298.15	1	19.74	41.50	24.95	24.71	191.00	192.86	1.658	3.830	0.001
0	500	1.00409	20.61	54.71	26.10	25.67	187.63	190.81	1.643	3.848	-9.813
0	1000	1.01485	21.97	73.37	27.88	26.93	179.00	185.33	1.610	3.898	-42.315
0	2000	1.03890	25.03	93.73	31.32	29.05	160.32	172.84	1.559	4.015	-126.832
0	298.15	1.06746	29.56	107.16	35.37	31.14	138.99	157.83	1.529	4.167	-227.593
100	298	0.74191	6.96	31.30	23.68	23.62	520.51	521.85	1.236	3.024	916.325
100	500	0.74299	7.36	44.01	25.34	25.22	518.40	520.73	1.221	3.026	908.629
100	1000	0.74579	7.62	62.14	26.99	26.75	513.10	517.73	1.183	3.032	881.621
100	2000	0.75158	7.86	81.59	29.38	28.87	502.39	511.20	1.116	3.045	808.777
100	298.15	0.75759	8.08	93.94	31.68	30.89	491.52	504.11	1.057	3.058	720.671
253.161	298	0.6	3.98	25.59	22.51	22.48	960.97	962.23	1.108	2.779	2016.347
253.974	500	0.6	4.32	37.86	24.80	24.74	961.33	963.61	1.095	2.779	2015.156
256.106	1000	0.6	4.49	55.67	26.71	26.58	962.54	967.12	1.060	2.779	2005.213
260.474	2000	0.6	4.56	74.78	29.00	28.74	965.19	973.97	0.997	2.779	1967.482
264.894	3000	0.6	4.59	86.81	31.12	30.72	967.93	980.48	0.942	2.779	1915.151

Таблица 7А. **Та. Термодинамические функции тантала**

T a b l e 7A. Ta. Thermodynamic functions of tantalum

Таблица 7В. **Та. Параметр Грюнейзена и давление (GPa) при разных объемах и температурах**

T a b l e 7B. Ta. Grüneisen parameter and pressure (GPa) as function of volume and temperature

$x = V/V_0$	γ	Temperature (K)									
		0	298.15	500	1000	1500	2000	2500	3000	3500	
1	1.697	-0.857	0.000	0.772	2.717	4.675	6.640	8.612	10.589	12.572	
0.98	1.650	3.169	4.011	4.776	6.705	8.647	10.598	12.554	14.517	16.486	
0.96	1.606	7.602	8.429	9.188	11.104	13.035	14.973	16.918	18.869	20.826	
0.94	1.565	12.485	13.298	14.053	15.958	17.879	19.808	21.744	23.686	25.634	
0.92	1.526	17.865	18.667	19.417	21.315	23.229	25.152	27.081	29.017	30.959	
0.9	1.489	23.798	24.589	25.336	27.229	29.139	31.057	32.983	34.915	36.853	
0.88	1.455	30.346	31.126	31.871	33.761	35.669	37.586	39.511	41.442	43.379	
0.86	1.423	37.577	38.347	39.091	40.982	42.890	44.809	46.734	48.667	50.606	
0.84	1.392	45.571	46.332	47.076	48.969	50.881	52.803	54.732	56.669	58.612	
0.82	1.363	54.417	55.171	55.915	57.813	59.731	61.659	63.595	65.538	67.488	
0.8	1.336	64.219	64.965	65.711	67.616	69.542	71.479	73.424	75.376	77.336	
0.78	1.310	75.093	75.833	76.581	78.495	80.432	82.381	84.337	86.302	88.273	
0.76	1.286	87.175	87.908	88.660	90.586	92.537	94.500	96.471	98.450	100.436	
0.74	1.263	100.619	101.347	102.103	104.044	106.011	107.991	109.979	111.975	113.980	
0.72	1.241	115.605	116.328	117.089	119.048	121.035	123.034	125.043	127.060	129.085	
0.7	1.220	132.343	133.061	133.828	135.808	137.817	139.839	141.871	143.912	145.961	
0.68	1.201	151.074	151.789	152.563	154.566	156.601	158.649	160.708	162.776	164.852	
0.66	1.183	172.084	172.796	173.578	175.608	177.672	179.750	181.839	183.938	186.045	
0.64	1.166	195.708	196.417	197.208	199.268	201.365	203.478	205.601	207.734	209.876	
0.62	1.150	222.342	223.048	223.850	225.944	228.078	230.228	232.390	234.562	236.743	
0.6	1.135	252.457	253.161	253.974	256.106	258.282	260.474	262.679	264.894	267.119	
0.58	1.121	286.615	287.317	288.143	290.318	292.540	294.780	297.033	299.296	301.570	
0.56	1.108	325.495	326.195	327.035	329.258	331.531	333.824	336.130	338.447	340.775	
0.54	1.096	369.914	370.614	371.469	373.744	376.075	378.426	380.792	383.170	385.558	
0.52	1.085	420.873	421.572	422.444	424.778	427.172	429.589	432.021	434.466	436.921	
0.5	1.075	479.599	480.297	481.188	483.586	486.052	488.542	491.048	493.567	496.098	

Р	Т	$x = V/V_0$	αE-6	S	C_P	C_V	K_T	K_S	γ_{th}	Κ'	ΔG
GPa	Κ		K^{-1}		$J \text{ mol}^{-1} \text{ K}^{-1}$	-1	(GPa			$\rm KJ~mol^{-1}$
0	298.15	1	11.94	32.82	24.41	24.29	308.00	309.59	1.446	4.12	0.000
0	500	1.00254	13.07	45.86	25.94	25.69	303.69	306.62	1.479	4.13	-8.041
0	1000	1.00965	15.19	64.52	28.03	27.38	291.80	298.72	1.561	4.17	-36.111
0	2000	1.02755	20.27	85.22	32.41	30.29	262.59	280.94	1.724	4.25	-111.916
0	3000	1.05241	28.28	99.49	38.95	33.56	223.75	259.74	1.896	4.39	-204.533
100	298.15	0.8099	4.40	26.86	23.18	23.15	678.01	678.90	0.997	3.45	849.515
100	500	0.81066	4.82	39.34	24.88	24.82	675.45	677.11	1.016	3.45	842.741
100	1000	0.81273	5.37	57.08	26.29	26.14	668.51	672.33	1.066	3.46	818.168
100	2000	0.8175	6.33	75.89	28.16	27.75	652.36	661.95	1.162	3.47	750.712
100	3000	0.82311	7.37	87.66	30.10	29.29	633.13	650.67	1.253	3.49	668.605
100	4000	0.82968	8.55	96.62	32.30	30.88	610.62	638.59	1.340	3.50	576.304
227.536	298.15	0.7	2.54	23.84	22.43	22.42	1099.62	1100.32	0.833	3.20	1762.227
228.133	500	0.7	2.80	36.00	24.38	24.35	1099.48	1100.78	0.846	3.20	1760.094
229.753	1000	0.7	3.06	53.35	25.67	25.60	1099.10	1102.06	0.880	3.20	1748.125
233.330	2000	0.7	3.44	71.47	26.91	26.73	1097.90	1105.04	0.945	3.20	1708.657
237.302	3000	0.7	3.80	82.49	28.02	27.70	1096.04	1108.61	1.006	3.20	1657.900
241.662	4000	0.7	4.16	90.59	29.15	28.64	1093.50	1112.86	1.063	3.20	1600.342

Таблица 8А. **W. Термодинамические функции вольфрама** Таble 8А. **W. Thermodynamic functions of tungsten**

Таблица 8В. **W. Параметр Грюнейзена и давление (GPa) при разных объемах и температурах** Таble 8В. **W. Grüneisen parameter and pressure (GPa) as function of volume and temperature**

$x = V/V_0$	γ	Temperatu	re (K)							
		0	298.15	500	1000	1500	2000	2500	3000	3500
1	1.404	-0.748	0.000	0.773	2.859	5.139	7.602	10.248	13.075	16.084
0.98	1.342	5.766	6.487	7.239	9.270	11.488	13.885	16.457	19.204	22.126
0.96	1.285	12.979	13.675	14.408	16.388	18.550	20.884	23.387	26.060	28.901
0.94	1.232	20.971	21.643	22.359	24.293	26.403	28.678	31.118	33.720	36.484
0.92	1.183	29.829	30.480	31.180	33.072	35.134	37.355	39.735	42.271	44.963
0.9	1.137	39.657	40.288	40.973	42.826	44.844	47.015	49.338	51.812	54.437
0.88	1.094	50.568	51.181	51.853	53.670	55.647	57.772	60.042	62.458	65.018
0.86	1.054	62.694	63.290	63.950	65.734	67.673	69.755	71.976	74.337	76.837
0.84	1.017	76.184	76.764	77.413	79.168	81.072	83.113	85.289	87.599	90.042
0.82	0.981	91.209	91.775	92.413	94.142	96.014	98.018	100.151	102.412	104.802
0.8	0.948	107.966	108.518	109.148	110.852	112.695	114.665	116.758	118.974	121.313
0.78	0.917	126.681	127.221	127.842	129.524	131.341	133.280	135.336	137.510	139.801
0.76	0.887	147.616	148.144	148.758	150.421	152.215	154.124	156.147	158.282	160.529
0.74	0.860	171.075	171.592	172.200	173.846	175.618	177.502	179.493	181.592	183.797
0.72	0.833	197.411	197.918	198.521	200.152	201.906	203.766	205.729	207.794	209.962
0.7	0.808	227.038	227.536	228.133	229.753	231.490	233.330	235.267	237.302	239.434
0.68	0.785	260.439	260.929	261.523	263.133	264.857	266.678	268.593	270.600	272.700
0.66	0.762	298.188	298.670	299.261	300.864	302.577	304.382	306.277	308.260	310.330
0.64	0.741	340.961	341.435	342.024	343.622	345.327	347.120	348.998	350.959	353.003
0.62	0.721	389.562	390.030	390.618	392.213	393.912	395.696	397.560	399.502	401.523
0.6	0.702	444.955	445.417	446.004	447.600	449.297	451.074	452.926	454.854	456.855

Р	Т	$x = V/V_0$	αE-6	S	C_P	C_V	K_T	K_S	γ_{th}	K'	ΔG
GPa	K		K^{-1}		$\rm J~mol^{-1}~H$	ζ^{-1}		GPa			$\mathrm{KJ}\ \mathrm{mol}^{-1}$
0	298	1.00000	27.18	41.52	25.50	24.95	275.00	281.07	2.724	5.35	0.000
0	500	1.00567	28.73	55.02	26.74	25.74	265.54	275.87	2.709	5.40	-9.848
0	1000	1.02110	32.31	74.32	29.24	26.91	240.68	261.54	2.683	5.53	-42.666
0	2000	1.06022	44.71	96.43	35.95	28.97	181.29	225.00	2.697	5.92	-128.935
100	298	0.81119	9.32	29.33	24.07	23.93	738.61	742.97	2.121	4.25	806.567
100	500	0.81276	9.81	42.20	25.61	25.35	732.50	740.02	2.094	4.26	799.249
100	1000	0.81685	10.20	60.54	27.34	26.78	717.26	732.11	2.029	4.28	773.089
100	2000	0.82544	10.72	80.33	30.06	28.88	686.34	714.47	1.912	4.31	701.677
100	3000	0.83456	11.26	93.03	32.78	30.89	654.74	694.78	1.811	4.35	614.659
249.495	298	0.7	5.07	22.42	22.75	22.68	1338.68	1342.54	1.905	3.84	1824.198
250.935	500	0.7	5.48	34.77	24.99	24.86	1338.84	1345.74	1.879	3.84	1827.495
254.688	1000	0.7	5.67	52.64	26.91	26.64	1339.98	1353.75	1.814	3.84	1829.063
262.332	2000	0.7	5.72	71.80	29.36	28.81	1342.78	1368.81	1.695	3.84	1814.514
270.023	3000	0.7	5.73	83.86	31.65	30.81	1345.73	1382.52	1.592	3.84	1785.294

Таблица 9А. **Рt. Термодинамические функции платины**

T a b l e 9A. Pt. Thermodynamic functions of platinum

Таблица 9В. **Р**. Параметр Грюнейзена и давление (GPa) при разных объемах и температурах

 $T\ a\ b\ l\ e\ \ 9B.$ Pt. Grüneisen parameter and pressure (GPa) as function of volume and temperature

$x = V/V_0$	γ	Temperatur	re (K)						
		0	298.15	500	1000	1500	2000	2500	3000
1	2.790	-1.726	0.000	1.524	5.340	9.170	13.007	16.848	20.693
0.98	2.700	4.188	5.864	7.366	11.133	14.915	18.704	22.497	26.294
0.96	2.618	10.888	12.518	14.002	17.728	21.471	25.221	28.976	32.736
0.94	2.542	18.478	20.066	21.535	25.229	28.941	32.661	36.386	40.115
0.92	2.473	27.079	28.627	30.084	33.753	37.442	41.138	44.841	48.547
0.9	2.409	36.827	38.337	39.784	43.435	47.107	50.788	54.475	58.166
0.88	2.349	47.879	49.353	50.793	54.432	58.094	61.765	65.443	69.125
0.86	2.294	60.418	61.858	63.292	66.924	70.582	74.250	77.924	81.603
0.84	2.242	74.653	76.059	77.489	81.120	84.780	88.450	92.126	95.808
0.82	2.194	90.828	92.201	93.629	97.264	100.930	104.608	108.292	111.983
0.8	2.148	109.225	110.566	111.993	115.637	119.315	123.006	126.704	130.407
0.78	2.105	130.175	131.484	132.912	136.568	140.264	143.972	147.689	151.411
0.76	2.064	154.064	155.341	156.770	160.445	164.162	167.894	171.634	175.380
0.74	2.025	181.345	182.590	184.021	187.718	191.462	195.222	198.991	202.766
0.72	1.989	212.552	213.764	215.199	218.922	222.698	226.491	230.294	234.104
0.7	1.953	248.317	249.495	250.935	254.688	258.501	262.332	266.174	270.023
0.68	1.920	289.389	290.532	291.976	295.764	299.618	303.494	307.380	311.274
0.66	1.888	336.660	337.768	339.217	343.043	346.944	350.869	354.805	358.750
0.64	1.857	391.201	392.271	393.725	397.594	401.548	405.526	409.519	413.520
0.62	1.828	454.297	455.328	456.787	460.702	464.713	468.753	472.807	476.871
0.6	1.799	527.502	528.492	529.955	533.921	537.996	542.102	546.224	550.358

Р	Т	$x = V/V_0$	αE-6	S	C_P	C_V	K_T	K_S	γ_{th}	K'	ΔG
GPa	K		K^{-1}	$J \text{ mol}^{-1} \text{ K}^{-1}$		GPa				$\mathrm{KJ}~\mathrm{mol}^{-1}$	
0	298	1	41.47	47.43	25.37	24.49	167.00	172.96	2.888	5.90	0.000
0	500	1.00875	44.84	60.81	26.42	24.79	157.36	167.71	2.933	5.99	-11.030
0	1000	1.03410	55.35	79.90	29.15	24.91	130.97	153.25	3.074	6.28	-46.676
0	1300	1.05293	65.77	87.84	31.73	24.93	112.46	143.15	3.192	6.53	-71.872
100	298	0.76118	9.83	31.47	23.46	23.31	647.67	651.70	2.122	4.33	867.871
100	500	0.76274	10.35	43.94	24.61	24.35	642.04	649.10	2.126	4.34	860.161
100	1000	0.76678	10.76	61.28	25.36	24.80	628.03	642.45	2.134	4.35	833.379
100	2000	0.77528	11.29	79.11	26.12	24.91	599.73	628.89	2.153	4.39	762.206
100	3000	0.78430	11.84	89.83	26.85	24.93	571.00	615.07	2.173	4.43	677.398
165.157	298	0.7	6.90	27.50	22.79	22.69	921.04	924.83	2.002	4.08	1352.660
166.489	500	0.7	7.32	39.65	24.28	24.10	921.22	927.98	2.002	4.08	1355.311
169.920	1000	0.7	7.51	56.62	25.10	24.73	922.22	936.07	2.002	4.08	1355.311
176.873	2000	0.7	7.54	73.83	25.64	24.89	924.58	952.48	2.002	4.08	1338.820
183.845	3000	0.7	7.53	83.93	26.05	24.92	927.04	968.93	2.002	4.08	1309.458

Таблица 10А. **Аu. Термодинамические функции золота** Таble 10А. **Au. Thermodynamic functions of gold**

T a f л и ц a 10B. Au. Параметр Грюнейзена и давление (GPa) при разных объемах и температурах T a b l e 10B. Au. Grüneisen parameter and pressure (GPa) as function of volume and temperature

$x = V/V_0$	γ	Temperature (K)									
		0	298.15	500	1000	1500	2000	2500	3000		
1	2.888	-1.678	0.000	1.408	4.923	8.445	11.970	15.495	19.020		
0.98	2.793	1.947	3.581	4.968	8.435	11.911	15.389	18.867	22.346		
0.96	2.706	6.093	7.686	9.057	12.485	15.922	19.362	22.802	26.243		
0.94	2.627	10.834	12.390	13.746	17.143	20.549	23.959	27.369	30.780		
0.92	2.554	16.254	17.775	19.120	22.492	25.875	29.261	32.648	36.036		
0.9	2.486	22.451	23.939	25.275	28.628	31.994	35.363	38.733	42.104		
0.88	2.423	29.536	30.994	32.322	35.662	39.017	42.375	45.734	49.095		
0.86	2.364	37.639	39.068	40.392	43.724	47.073	50.426	53.780	57.135		
0.84	2.309	46.913	48.314	49.634	52.964	56.312	59.664	63.018	66.373		
0.82	2.258	57.533	58.907	60.225	63.557	66.909	70.266	73.624	76.984		
0.8	2.209	69.704	71.053	72.370	75.708	79.069	82.435	85.803	89.173		
0.78	2.163	83.668	84.991	86.309	89.658	93.032	96.412	99.794	103.178		
0.76	2.120	99.707	101.005	102.325	105.689	109.080	112.479	115.880	119.283		
0.74	2.079	118.156	119.428	120.751	124.134	127.547	130.969	134.394	137.820		
0.72	2.039	139.409	140.656	141.983	145.388	148.828	152.277	155.730	159.185		
0.7	2.002	163.936	165.157	166.489	169.920	173.392	176.873	180.358	183.845		
0.68	1.966	192.295	193.490	194.827	198.289	201.796	205.314	208.837	212.362		
0.66	1.931	225.157	226.325	227.669	231.165	234.711	238.271	241.836	245.403		
0.64	1.898	263.327	264.467	265.817	269.350	272.942	276.548	280.160	283.775		
0.62	1.866	307.777	308.888	310.244	313.820	317.461	321.119	324.784	328.452		
0.6	1.835	359.688	360.768	362.131	365.752	369.448	373.163	376.886	380.613		

10. ЛИТЕРАТУРА

- Aleksandrov I.V., Goncharov A.F., Zisman A.N., Stishov S.M., 1987. Diamond at high pressures: Raman scattering of light, equation of state, and high-pressure scale. Soviet Physics Journal of Experimental and Theoretical Physics 66 (2), 384–390.
- Al'tshuler L.V., Bakanova A.A., Dudoladov I.P., Dunin E.A., Trunin R.F., Chekin B.S., 1981. Shock adiabats for metals. New data, statistical analysis and general regularities. Journal of Applied Mechanics and Technical Physics 2, 3–34.
- Al'tshuler L.V., Brusnikin S.E., Kuz'menkov E.A., 1987. Isotherms and Grüneisen functions for 25 metals. Journal of Applied Mechanics and Technical Physics 28 (1), 129–141.
- Armstrong P.E., Dickinson J.M., Brown M.K., 1966. Temperature dependence of the elastic stiffness coefficients of niobium (columbium). Transactions of the metallurgical society of AIME 236, 1404–1408.
- Bassett W.A., 2009. Diamond anvil cell, 50th birthday. *High Pressure Research* 29 (2), 163–186. http://dx.doi.org/10.1080/08957950802597239.
- Bernstein B.T., 1962. Elastic properties of polycrystalline tungsten at elevated temperatures. Journal of Applied Physics 33 (6), 2140. http://dx.doi.org/10.1063/1.1728910.
- Boettger J.C., Honnell K.G., Peterson J.H., Greef C., Crockett S., 2012. Tabular equation of state for gold. AIP Conference Proceedings 1426, 812–815. http://dx.doi.org/10.1063/1.3686402.
- *Bolef D.I.*, 1961. Elastic constants of single crystals of the bcc transition elements V, Nb, and Ta. *Journal of Applied Physics* 32 (1), 100–105. http://dx.doi.org/10.1063/1.1735933.
- Bradley D.K., Eggert J.H., Smith R.F., Prisbrey S.T., Hicks D.G., Braun D.G., Biener J., Hamza A.V., Rudd R.E., Collins G.W., 2009. Diamond at 800 GPa. Physical Review Letters 102 (7), 075503. http://dx.doi.org/10.1103/PhysRevLett. 102.075503.
- Brooks C.R., Bungham R.E., 1968. The specific heat of aluminum from 330 to 890 °K and contributions from the formation of vacancies and anharmonic effects. Journal of Physics and Chemistry of Solids 29 (9), 1553–1560. http://dx.doi.org/ 10.1016/0022-3697(68)90097-8.
- Burakovsky L., Preston D.L., 2004. Analytic model of the Grüneisen parameter all densities. Journal of Physics and Chemistry of Solids 65 (8–9), 1581–1587. http://dx.doi.org/10.1016/j.jpcs.2003.10.076.
- Carroll K.J., 1965. Elastic Constants of Niobium from 4.2° to 300°K. Journal of Applied Physics 36 (11), 3689–3690. http://dx.doi.org/10.1063/1.1703072.
- Carter W.J., Marsh S.P., Fritz J.N., McQueen R.G., 1971. The equation of state of selected materials for high-pressure references. In: Lloyd E.C. (Ed.), Accurate characterization of the high pressure environment (National Bureau of Standards, Washington, DC). National Bureau of Standards special publication, V. 326, p. 147–158.
- *Chang Y.A., Himmel L.,* 1966. Temperature dependence of the elastic constants of Cu, Ag, and Au above room temperature. *Journal of Applied Physics* 37 (9), 3567–3573. http://dx.doi.org/10.1063/1.1708903.
- *Chang Y.A., Hultgren R.,* 1965. The dilation contribution to the heat capacity of copper and α-brass at elevated temperatures. *Journal of Physical Chemistry* 69 (12), 4162–4165. http://dx.doi.org/10.1021/j100782a017.
- Chase M.W., Jr., 1998. NIST-JANAF Thermochemical Tables. Fourth Edition. Journal of Physical and Chemical Reference Data. Monograph 9. 1963 p.
- *Chijioke D., Nellis W.J., Soldatov A., Silvera I.F.,* 2005. The ruby pressure standard to 150 GPa. *Journal of Applied Physics* 98 (11), 114905. http://dx.doi.org/10.1063/1.2135877.
- Choudhury A., Brooks C.R., 1984. Contributions to the heat capacity of solid molybdenum in the range 300–2890 K. International Journal of Thermophysics 5 (4), 403–429. http://dx.doi.org/10.1007/BF00500869.
- Collard S.M., McLellan R.B., 1991. High-temperature elastic constants of gold single-crystals. Acta Metallurgica Materialia 39 (12), 3143–3151. http://dx.doi.org/10.1016/0956-7151(91)90048-6.
- Collard S.M., McLellan R.B., 1992. High-temperature elastic constants of platinum single crystals. Acta Metallurgica Materialia 40 (4), 699–702. http://dx.doi.org/10.1016/0956-7151(92)90011-3.
- Dewaele A., Loubeyre P., Mezouar M., 2004a. Refinement of the equation of state of tantalum. Physical Review B 69 (9), 092106. http://dx.doi.org/10.1103/PhysRevB.69.092106.
- Dewaele A., Loubeyre P., Mezouar M., 2004b. Equations of state of six metals above 94 GPa. Physical Review B 70 (9), 094112. http://dx.doi.org/10.1103/PhysRevB.70.094112.
- Dewaele A., Loubeyre P., Occelli F., Mezouar M., Dorogokupets P.I., Torrent M., 2006. Hydrostatic equation of state of iron up to 205 GPa. Implications for the Earth's core. *Physical Review Letters* 97 (21), 215504. http://dx.doi.org/10.1103/ PhysRevLett.97.215504.
- *Dewaele A., Torrent M., Loubeyre P., Mezouar M.,* 2008. Compression curves of transition metals in the Mbar range: Experiments and projector augmented-wave calculations. *Physical Review B* 78 (10), 104102. http://dx.doi.org/10.1103/ PhysRevB.78.104102.
- Dorogokupets P.I., 2002. Critical analysis of equations of state for NaCl. Geochemistry International 40. Supplement 1, S132–S144.

P.I. Dorogokupets et al.: Near-absolute equations of state...

- Dorogokupets P.I., 2007. Equation of state of magnesite for the conditions of the Earth's lower mantle. *Geochemistry International* 45 (6), 561–568. http://dx.doi.org/10.1134/S0016702907060043.
- Dorogokupets P.I., 2010. P–V–T equations of state of MgO and thermodynamics. *Physics and Chemistry of Minerals* 37 (9), 677–684. http://dx.doi.org/10.1007/s00269-010-0367-2.
- Dorogokupets P.I., Dewaele A., 2007. Equations of state of MgO, Au, Pt, NaCl-B1, and NaCl-B2: Internally consistent high-temperature pressure scales. *High Pressure Research* 27 (4), 431–446. http://dx.doi.org/10.1080/08957950701659700.
- *Dorogokupets P.I., Oganov A.R.,* 2003. Equations of State of Cu and Ag and Revised Ruby Pressure Scale. *Doklady Earth Sciences* 391A (6), 854–857.
- Dorogokupets P.I., Oganov A.R., 2004. Intrinsic anharmonicity in equations of state of solids and minerals. Doklady Earth Sciences 395 (2), 238–241.
- Dorogokupets P.I., Oganov A.R., 2005. Ruby pressure scale: revision and alternatives. In: Proceedings Joint 20th AIRAPT and 43th EHPRG International Conference on High Pressure Science and Technology, June 27 to July 1, 2005, Karlsruhe, Germany. http://deposit.ddb.de/ep/netpub/10/83/76/978768310/_data_stat/Posters/P133.pdf.
- Dorogokupets P.I., Oganov A.R. 2006. Equations of state of Al, Au, Cu, Pt, Ta, and W and revised ruby pressure scale. Doklady Earth Sciences 410 (1), 1091–1095. http://dx.doi.org/10.1134/S1028334X06070208.
- *Dorogokupets P.I., Oganov A.R.,* 2007. Ruby, metals, and MgO as alternative pressure scales: A semiempirical description of shockwave, ultrasonic, X-ray, and thermochemical data at high temperatures and pressures. *Physical Review B* 75 (2), 024115. http://dx.doi.org/10.1103/PhysRevB.75.024115.
- Dorogokupets P.I., Sokolova T.S., 2011. Almost absolute equations of state of metals. Fazovyye perekhody, uporyadochenпууе sostoyaniya i novyye materialy 5 (in Russian) [Дорогокупец П.И., Соколова Т.С. Почти абсолютные уравнения состояния металлов // Фазовые переходы, упорядоченные состояния и новые материалы. 2011. № 5]. http://ptosnm.ru/catalog/i/667.
- *Dubrovinsky L.S., Saxena S.K.*, 1997. Thermal expansion of periclase (MgO) and tungsten (W) to melting temperatures. *Physics and Chemistry of Minerals* 24 (8), 547–550. http://dx.doi.org/10.1007/s002690050070.
- Dubrovinsky L.S., Saxena S.K., Tutti F., Rekhi S., 2000. In situ X-Ray study of thermal expansion and phase transition of iron at multimegabar pressure. Physical Review Letters 84 (8), 1720–1723. http://dx.doi.org/10.1103/PhysRevLett.84.1720.
- *Featherston F.H., Neighbours J.R.*, 1963. Elastic constants of tantalum, tungsten, and molybdenum. *Physical Review* 130 (4), 1324–1333. http://dx.doi.org/10.1103/PhysRev.130.1324.
- Fei Y., Ricolleau A., Frank M., Mibe K., Shen G., Prakapenka V., 2007. Toward an internally consistent pressure scale. Proceedings of the National Academy of Sciences 104 (22), 9182–9186. http://dx.doi.org/10.1073/pnas.0609013104.
- Fortov V.E., Lomonosov I.V. 2010. Shock waves and equations of state of matter. Shock Waves 20 (1), 53–71. http://dx.doi. org/10.1007/s00193-009-0224-8.
- *Gerlich D., Fisher E.S.,* 1969. The high temperature elastic moduli of aluminum. *Journal of Physics and Chemistry of Solids* 30 (5), 1197–1205. http://dx.doi.org/10.1016/0022-3697(69)90377-1.
- *Giauque W.F., Meads P.F.,* 1941. The heat capacities and entropies of aluminum and copper from 15 to 300 K. *Journal of the American Chemical Society* 63 (7), 1897–1901. http://dx.doi.org/10.1021/ja01852a027.
- *Gulseren O., Cohen R.E.*, 2002. High-pressure thermoelasticity of body-centered-cubic tantalum. *Physical Review B* 65 (6), 064103. http://dx.doi.org/10.1103/PhysRevB.65.064103.
- Gurvich L.V., Veiz I.V., Medvedev V.V. et al., 1979. Thermodynamic properties of individual substances. Vol. 2, Book 2. Nauka, Moscow, 344 p. (in Russian) [Гурвич Л.В., Вейц И.В., Медведев В.А. и др. Термодинамические свойства индивидуальных веществ. М.: Наука, 1979. Т. 2. Кн. 2. 344 с.].
- Gurvich L.V., Veiz I.V., Medvedev V.V. et al., 1981. Thermodynamic properties of individual substances. Vol. 3, Book 2. Nauka, Moscow, 400 p. (in Russian) [Гурвич Л.В., Вейц И.В., Медведев В.А. и др. Термодинамические свойства индивидуальных веществ. М.: Наука, 1981. Т. 3. Кн. 2. 400 с.].
- Gurvich L.V., Veiz I.V., Medvedev V.V. et al., 1982. Thermodynamic properties of individual substances. Vol. 4, Book 2. Nauka, Moscow, 560 p. (in Russian) [Гурвич Л.В., Вейц И.В., Медведев В.А. и др. Термодинамические свойства индивидуальных веществ. М.: Наука, 1982. Т. 4. Кн. 2. 560 с.].
- *Hemley R.J., Percy W.,* 2010. Bridgman's second century. *High Pressure Research* 30 (4), 581–619. http://dx.doi.org/ 10.1080/08957959.2010.538974.
- *Hirao N., Akahama Y., Ohishi Y., Kawamura H.,* 2009. In situ X-ray study at multimegabar pressures and the diamond anvil Raman gauge. In: P-V-T equations of state of materials, G-COE International Summer School, 3-5 August, 2009, Geodynamic Research Center, Ehime University, Ehime, Japan.
- *Hirose K., Sata N., Komabayashi Y., Ohishi Y.,* 2008. Simultaneous volume measurements of Au and MgO to 140 GPa and thermal equation of state of Au based on the MgO pressure scale. *Physics of the Earth and Planetary Interiors* 167 (3–4), 149–154. http://dx.doi.org/10.1016/j.pepi.2008.03.002.
- Hixson R.S., Fritz J.N., 1992. Shock compression of tungsten and molybdenum. Journal of Applied Physics 71 (4), 1721– 1728. http://dx.doi.org/10.1063/1.351203.
- Ho P.S., Ruoff A.L., 1969. Pressure Dependence of the Elastic Constants for Aluminum from 77° to 300°K. Journal of Applied Physics 40 (8), 3151–3156. http://dx.doi.org/10.1063/1.1658157.

- *Holland T.J.B., Powell R.,* 1998. An internally-consistent thermodynamic dataset for phases of petrological interest. *Journal of Metamorphic Geology* 16 (3), 309–343. http://dx.doi.org/10.1111/j.1525-1314.1998.00140.x.
- *Holland T.J.B., Powell R.,* 2011. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. *Journal of Metamorphic Geology* 29 (3), 333–383. http://dx.doi.org/10.1111/j.1525-1314.2010.00923.x.
- Holmes N., Moriarty J., Gather G., Nellis W., 1989. The equation of state of platinum to 660 GPa (6.6 Mbar). Journal of Applied Physics 66 (7), 2962–2967. http://dx.doi.org/10.1063/1.344177.
- Holzapfel W.B., 2001. Equations of state for solids under strong compression. Zeitschrift f
 ür Kristallographie 216 (9), 473– 488. http://dx.doi.org/10.1524/zkri.216.9.473.20346.
- Holzapfel W.B., 2003. Refinement of ruby luminescence pressure scale. Journal of Applied Physics 93 (3), 1813–1818. http://dx.doi.org/10.1063/1.1525856.
- *Holzapfel W.B.*, 2005. Progress in the realization of a practical pressure scale for the range 1–300 GPa. *High Pressure Research* 25 (2), 87–96. http://dx.doi.org/10.1080/09511920500147501.
- Holzapfel W.B., 2010. Equations of state for Cu, Ag, and Au and problems with shock wave reduced isotherms. *High Pressure Research* 30 (3), 372–394. http://dx.doi.org/10.1080/08957959.2010.494845.
- Holzapfel W.B., Hartwig M., Sievers W., 2001. Equations of state for Cu, Ag, and Au for wide ranges in temperature and pressure up to 500 GPa and above. Journal of Physical and Chemical Reference Data 30 (2), 515–529. http://dx.doi.org/10.1063/1.1370170.
- Jacobsen S.D., Holl C.M., Adams K.A., Fischer R.A., Martin E.S., Bina C.R., Lin J.F., Prakapenka V.B., Kubo A., Dera P., 2008. Compression of single-crystal magnesium oxide to 118 GPa and a ruby pressure gauge for helium pressure media. *American Mineralogist* 93 (11–12), 1823–1828. http://dx.doi.org/10.2138/am.2008.2988.
- *Jamieson J.C., Fritz J.N., Manghnani M.H.*, 1982. Pressure measurement at high temperature in X-ray diffractions studies: Gold as a primary standard. In: Akimoto S., Manghani M.H. (Eds.), High-Pressure Research in Geophysics. Center for Academic Publications, Tokyo, p. 27–48.
- Jin K., Wu Q., Geng H., Li X., Cai L., Zhou X., 2011. Pressure–volume–temperature equations of state of Au and Pt up to 300 GPa and 3000 K: internally consistent pressure scales. *High Pressure Research* 31 (4), 560–580. http://dx.doi.org/ 10.1080/08957959.2011.611469.
- *Jin K., Wu Q., Jing F., Li X.,* 2009. Simple method for reducing shock wave equation of state to zero Kelvin isotherm for metals. *Journal of Applied Physics* 105 (4), 043510. http://dx.doi.org/10.1063/1.3078804.
- Jones A.H., Isbell W.H., Maiden C.J., 1966. Measurements of the very high-pressure properties of materials using a light-gas gun. Journal of Applied Physics 37 (9), 3493–3499. http://dx.doi.org/10.1063/1.1708887.
- *Kamm G.N., Alers G.A.,* 1964. Low-temperature elastic moduli of aluminum. *Journal of Applied Physics* 35 (2), 327–330. http://dx.doi.org/10.1063/1.1713309.
- Kirby K.K., 1991. Platinum A thermal expansion reference material. International Journal of Thermophysics 12 (4), 679– 685. http://dx.doi.org/10.1007/BF00534223.
- Klotz S., Chervin J.-C., Munsch P., Le Marchand G., 2009. Hydrostatic limits of 11 pressure transmitting media. Journal of Physics D: Applied Physics 42 (7), 075413. http://dx.doi.org/10.1088/0022-3727/42/7/075413.
- *Knopoff I.*, 1965. Approximate compressibility of elements and compounds. *Physical Review* 138 (5A), A1445–A1447. http://dx.doi.org/10.1103/PhysRev.138.A1445.
- Knudson M.D., Lemke R.W., Hayes D.B., Hall C.A., Deeney C., Asay J.R., 2003. Near-absolute Hugoniot measurements in aluminum to 500 GPa using a magnetically accelerated flyer plate technique. Journal of Applied Physics 94 (7), 4420– 4431. http://dx.doi.org/10.1063/1.1604967.
- Kono Y., Irifune T., Higo Y., Inoue T., Barnhoorn A., 2010. P–V–T relation of MgO derived by simultaneous elastic wave velocity and in situ X-ray measurements: A new pressure scale for the mantle transition region. *Physics of the Earth and Planetary Interiors* 183 (1–2), 196–211. http://dx.doi.org/10.1016/j.pepi.2010.03.010.
- Leisure R.G., Hsu D.K., Seiber B.A., 1973. Elastic properties of tantalum over the temperature range 4-300 K. Journal of Applied Physics 44 (8), 3394–3397. http://dx.doi.org/10.1063/1.1662772.
- Levashov P.R., Khishchenko K.V., Lomonosov I.V., Fortov V.E., 2004. Database on shock-wave experiments and equations of state available via Internet. AIP Conference Proceedings 706, 87–90. http://dx.doi.org/10.1063/1.1780190. (Available from http://teos.ficp.ac.ru/rusbank/, http://www.ihed.ras.ru/rusbank/).
- *Li B.S., Woody K., Kung J.,* 2006. Elasticity of MgO to 11 GPa with an independent absolute pressure scale: Implications for pressure calibration. *Journal of Geophysical Research* 111 (B11), B11206. http://dx.doi.org/10.1029/2005JB004251.
- *Liebermann R.C.*, 2011. Multi-anvil, high pressure apparatus: a half-century of development and progress. *High Pressure Research* 31 (4), 493–532. http://dx.doi.org/10.1080/08957959.2011.618698.
- Lowrie R., Gonas A.M., 1965. Dynamic elastic properties of polycrystalline tungsten, 24–1800 °C. Journal of Applied Physics 36 (7), 2189–2192. http://dx.doi.org/10.1063/1.1714447.
- Maglic K.D., 2003. Recommended specific heat capacity functions of group VA elements. International Journal of Thermophysics 24 (2), 489–500. http://dx.doi.org/10.1023/A:1022976122789.

- Mao H.K., Bell P.M., Shaner J.W., Steinberg D.J., 1978. Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar. Journal of Applied Physics 49 (6), 3276–3283. http://dx.doi.org/10.1063/1.325277.
- Mao H.K., Wu Y., Chen L.C., Shu J.F., Jephcoat A.P., 1990. Static compression of iron to 300 GPa and Fe_{0.8}Ni_{0.2} alloy to 260 GPa: Implications for composition of the core. Journal of Geophysical Research 95 (B13), 21737–21742. http://dx.doi.org/10.1029/JB095iB13p21737.
- Mao H.K., Xu J., Bell P.M., 1986. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. Journal of Geophysical Research 91 (B5), 4673–4676. http://dx.doi.org/10.1029/JB091iB05p04673.
- Marsh S.P. (Ed.), 1980. LASL Shock Hugoniot Data. University of California Press, Berkeley, 658 p. (Available from http://teos.ficp.ac.ru/rusbank).
- Matsui M., Ito E., Katsura T., Yamazaki D., Yoshino T., Yokoyama A., Funakoshi K., 2009. The temperature-pressure-volume equation of state of platinum. Journal of Applied Physics 105 (1), 013505. http://dx.doi.org/10.1063/1.3054331.
- McLellan R.B., Ishikawan T., 1987. The elastic properties of aluminum at high temperatures. Journal of Physics and Chemistry of Solids 48 (7), 603–606. http://dx.doi.org/10.1016/0022-3697(87)90147-8.
- *McQueen R.G., Fritz J.N., Marsh S.P.*, 1963. On the equation of state of stishovite. *Journal of Geophysical Research* 68 (8), 2319–2322. http://dx.doi.org/10.1029/JZ068i008p02319.
- *McQueen R.G., Fritz J.N., Marsh S.P.,* 1965. On the equation of state of stishovite. In: Zharkov V.N. (Ed.), Dynamical research of solids at high pressures. Mir, Moscow, p. 194–203. (in Russian) [*Мак-Куин Р., Фритц Дж., Марш С.* Об уравнении состояния стишовита // Динамические исследования твердых тел при высоких давлениях / Под ред. В.Н. Жаркова. М.: Мир, 1965. С. 194–203].
- *McSkimin H.J., Andreatch P.,* 1972. Elastic moduli of diamond as a function of pressure and temperature. *Journal of Applied Physics* 43 (7), 2944–2948. http://dx.doi.org/10.1063/1.1661636.
- McSkimin H.J., Bond W.L., 1957. Elastic moduli of diamond. Physical Review 105 (1), 116–121. http://dx.doi.org/10.1103/ PhysRev.105.116.
- *Mitchell A.C., Nellis W.J.*, 1981. Shock compression of aluminum, copper and tantalum. *Journal of Applied Physics* 52 (5), 3363–3374. http://dx.doi.org/10.1063/1.329160.
- Mitchell A.C., Nellis W.J., Moriarty J.A., Heinle R.A., Holmes N.C., Tipton R.E., Repp G.W., 1991. Equation of state of Al, Cu, Mo, and Pb at shock pressures up to 2.4 TPa (24 Mbar). Journal of Applied Physics 69 (5), 2981–2986. http://dx.doi.org/10.1063/1.348611.
- Morgan J.A., 1974. The equation of state of platinum to 680 GPa. High Temperatures High Pressures 6 (2), 195–202.
- Neighbours J.R., Alers G.A., 1958. Elastic Constants of Silver and Gold. Physical Review 111 (3), 707–712. http://dx.doi.org/ 10.1103/PhysRev.111.707.
- Nellis W.J., Moriarty J.A., Mitchell A.C., Ross M., Dandrea R.G., Ashcroft N.W., Holmes N.C., Gathers G.R., 1988. Metals physics at ultrahigh pressure: Aluminum, Copper and Lead as Prototypes. Physical Review Letters 60 (14), 1414–1417. http://dx.doi.org/10.1103/PhysRevLett. 60.1414.
- Novikova S.I., 1974. Thermal expansion of solids. Nauka, Moscow, 291 p. (in Russian) [Новикова С.И. Тепловое расширение твердых тел. М.: Наука, 1974. 291 с.].
- Occelli F., Loubeyre P., Letoullec R., 2003. Properties of diamond under hydrostatic pressures up to 140 GPa. Nature Materials 2 (3), 151–154. http://dx.doi.org/10.1038/nmat831.
- Ono S., Brodholt J.P., Price G.D., 2011. Elastic, thermal and structural properties of platinum. Journal of Physics and Chemistry of Solids 72 (3), 169–175. http://dx.doi.org/10.1016/j.jpcs.2010.12.004.
- Overton W.C., Gaffney J., 1955. Temperature variation of the elastic constants of cubic elements. I. Copper. Physical Review 98 (4), 969–977. http://dx.doi.org/10.1103/PhysRev.98.969.
- Pavlovskii M.N., 1971. Shock compression of diamond. Soviet Physics Solid State 13 (3), 741–742.
- *Reeber R.R., Wang K.,* 1996. Thermal expansion, molar volume and specific heat of diamond from 0 to 3000 K. *Journal of Electronic Materials* 25 (1), 63–67. http://dx.doi.org/10.1007/BF02666175.
- Robie R.A., Hemingway B.S., Fisher J.R., 1978. Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (10⁵ Pascals) pressure and at high temperatures. United States Geological Survey Bulletin 1452. 456 p.
- Ruoff A.L., 1967. Linear shock-velocity-particle-velocity relationship. Journal of Applied Physics 38 (13), 4976–4980. http://dx.doi.org/10.1063/1.1709263.
- Ruoff A.L., Xia H., Xia Q., 1992. The effect of a tapered aperture on X-ray diffraction from a sample with a pressure gradient: Studies on three samples with a maximum pressure of 560 GPa. *Review of Scientific Instruments* 63 (10), 4342–4348. http://dx.doi.org/10.1063/1.1143734.
- Sabbah R., An X.W., Chickos J.S., Leitao M.L.P., Roux M.V., Torres L.A., 1999. Reference materials for calorimetry and differential thermal analysis. Thermochimica Acta 331 (2), 93–204. http://dx.doi.org/10.1016/S0040-6031(99)00009-X.
- Shim S.H., Duffy T.S., Kenichi T., 2002. Equation of state of gold and its application to the phase boundaries near 660 km depth in Earth's mantle. *Earth and Planetary Science Letters* 203 (2), 729–739. http://dx.doi.org/10.1016/S0012-821X(02)00917-2.

- Silvera I.F., Chijioke A.D., Nellis W.J., Soldatov A., Tempere J., 2007. Calibration of the ruby pressure scale to 150 GPa. Physica Status Solidi 244 (1), 460–467. http://dx.doi.org/10.1002/pssb.200672587.
- *Soga N.*, 1966. Comparison of measured and predicted bulk moduli of tantalum and tungsten at high temperatures. *Journal of Applied Physics* 37 (9), 3416–3420. http://dx.doi.org/10.1063/1.1708873.
- Sokolova T.S., Dorogokupets P.I., 2011. EoS for gold. Fazovyye perekhody, uporyadochennyye sostoyaniya i novyye materialy 5 (in Russian) [Соколова Т.С., Дорогокупец П.И. Уравнение состояния золота // Фазовые переходы, упорядоченные состояния и новые материалы. 2011. № 5]. http://ptosnm.ru/catalog/i/671.
- Speziale S., Zha C-S., Duffy T., Hemley R., Mao H., 2001. Quasi-hydrostatic compression of magnesium oxide to 52 GPa: Implications for the pressure-volume-temperature equation of state. *Journal of Geophysical Research* 106 (B1), 512–528. http://dx.doi.org/10.1029/2000JB900318.
- Sun T., Umemoto K., Wu Z., Zheng J.-C., Wentzcovitch R.M., 2008. Lattice dynamics and thermal equation of state of platinum. Physical Review B 78 (2), 024304. http://dx.doi.org/10.1103/PhysRevB.78.024304.
- Syassen K., 2008. Ruby under pressure. High Pressure Research 28 (2), 75–126. http://dx.doi.org/10.1080/0895795080223 5640.
- *Takemura K.*, 2001. Evaluation of the hydrostaticity of a helium-pressure medium with powder X-ray diffraction techniques. *Journal of Applied Physics* 89 (1), 662–668. http://dx.doi.org/10.1063/1.1328410.
- *Takemura K., Dewaele A.,* 2008. Isothermal equation of state for gold with a He-pressure medium. *Physical Review B* 78 (10), 104119. http://dx.doi.org/10.1103/PhysRevB.78.104119.
- Takemura K., Singh A.K., 2006. High-pressure equation of state for Nb with a helium-pressure medium: Powder x-ray diffraction experiments. *Physical Review B* 73 (22), 224119. http://dx.doi.org/10.1103/PhysRevB.73.224119.
- Tallon J.L., Wolfenden A., 1979. Temperature dependence of the elastic constants of aluminum. Journal of Physics and Chemistry of Solids 40 (11), 831–837. http://dx.doi.org/10.1016/0022-3697(79)90037-4.
- Talmor Y., Walker E., 1977. Elastic constants of niobium up to the melting point. Solid State Communications 23 (9), 649– 651. http://dx.doi.org/10.1016/0038-1098(77)90541-5.
- Tang L.-Y., Liu L., Liu J., XiaoW., Li Y.-C., Li X.-D., Bi Y., 2010. Equation of state of tantalum up to 133 GPa. Chinese Physics Letters 27 (1), 016402. http://dx.doi.org/10.1088/0256-307X/27/1/016402.
- Tange Y., Nishihara Y., Tsuchiya T., 2009. Unified analyses for P-V-T equation of state of MgO: A solution for pressurescale problems in high P-T experiments. *Journal of Geophysical Research* 114 (B3), B03208. http://dx.doi.org/10.1029/ 2008JB005813.
- *Touloukian Y.S., Buico E.H.*, 1970. Specific heat: metallic elements and alloys. Thermophysical Properties of Matter, vol. 4. IFI/Plenum Press, New York.
- Touloukian Y.S., Kirby R.K., Taylor R.E., Desai P.D., 1975. Thermal expansion: metallic elements and alloys. Thermophysical properties of matter, vol. 12. IFI/Plenum Press, New York, 1348 p.
- Touloukian Y.S., Kirby R.K., Taylor R.E., Desai P.D., 1977. Thermal expansion: nonmetallic solids. Thermophysical Properties of Matter, vol. 13. IFI/Plenum Press, New York, 1486 p.
- Victor A.C., 1962. Heat capacity of diamond at high temperatures. Journal of Chemical Physics 36 (7), 1903–1911. http://dx.doi.org/10.1063/1.1701288.
- Vinet P., Ferrante J., Rose J.H., Smith J.R., 1987. Compressibility of solids. Journal of Geophysical Research 92 (B9), 9319–9325. http://dx.doi.org/ 10.1029/JB092iB09p09319.
- Wang K., Reeber R.R., 1998. The role of defects on thermophysical properties: thermal expansion of V, Nb, Ta, Mo and W. Materials Science and Engineering 23 (3), 101–137. http://dx.doi.org/10.1016/S0927-796X(98)00011-4.
- Wang K., Reeber R.R., 2000. The perfect crystal, thermal vacancies and the thermal expansion coefficient of aluminum. *Philosophical Magazine A* 80 (7), 1629–1643. http://dx.doi.org/10.1080/01418610008212140.
- White G.K, Collocott S.J., 1984. Heat capacities of reference materials: Cu and W. Journal of Physical and Chemical Reference Data 13 (4), 1251–1257. http://dx.doi.org/10.1063/1.555728.
- Wilthan B., Cagran C., Brunner C., Pottlacher G., 2004. Thermophysical properties of solid and liquid platinum. Thermochimica Acta 415 (1–2), 47–54. http://dx.doi.org/10.1016/j.tca.2003.06.003.
- Yokoo M., Kawai N., Nakamura K.G., Kondo K., 2008. Hugoniot measurement of gold at high pressures of up to 580 GPa. Applied Physics Letters 92 (5), 051901. http://dx.doi.org/10.1063/1.2840189.
- Yokoo M., Kawai N., Nakamura K.G., Kondo K., Tange Y., Tsuchiya T., 2009. Ultrahigh-pressure scales for gold and platinum at pressures up to 550 GPa. *Physical Review B* 80 (10), 104114. http://dx.doi.org/10.1103/PhysRevB.80.104114.
- Zha C.-S., Mao H.K., Hemley R.J., 2000. Elasticity of MgO and a primary pressure scale to 55 GPa. Proceedings of the National Academy of Sciences 97 (25), 13494–13499. http://dx.doi.org/10.1073/pnas.240466697.
- *Zharkov V.N., Kalinin V.A.*, 1971. Equations of state for solids at high pressures and temperatures. Consultants Bureau, New York, 257 p.
- Zouboulis E.S., Grimsditch M., Ramdas A.K., Rodriges S., 1998. Temperature dependence of the elastic moduli of diamond: A Brillouin-scattering study. *Physical Review B* 57 (5), 2889–2896. http://dx.doi.org/10.1103/PhysRevB.57.2889.

Дорогокупец Петр Иванович, докт. геол.-мин. наук, зав. лабораторией петрологии, геохимии и рудогенеза Институт земной коры СО РАН 664033, Иркутск, ул. Лермонтова, 128, Россия ⊠ e-mail: dor@crust.irk.ru

Dorogokupets, Peter I., Doctor of Geology and Mineralogy, Head of Laboratory of Petrology, Geochemistry and Ore Genesis Institute of the Earth's Crust, Siberian Branch of RAS 664033, Irkutsk, Lermontov street, 128, Russia ⊠ e-mail: dor@crust.irk.ru

Соколова Татьяна Сергеевна, аспирант Институт земной коры СО РАН 664033, Иркутск, ул. Лермонтова, 128, Россия e-mail: sokolovats@crust.irk.ru

Sokolova, Tatiana, S., Ph.D. student Institute of the Earth's Crust, Siberian Branch of RAS 664033, Irkutsk, Lermontov street, 128, Russia e-mail: sokolovats@crust.irk.ru

Данилов Борис Станиславович, канд. геол.-мин. наук, н.с. Институт земной коры СО РАН 664033, Иркутск, ул. Лермонтова, 128, Россия e-mail: boris@crust.irk.ru

Danilov, Boris S., Candidate of Geology and Mineralogy, Researcher Institute of the Earth's Crust, Siberian Branch of RAS 664033, Irkutsk, Lermontov street, 128, Russia e-mail: boris@crust.irk.ru

Литасов Константин Дмитриевич, докт. геол.-мин. наук, с.н.с. Институт геологии и минералогии им. В.С. Соболева СО РАН 630090, г. Новосибирск, просп. академика Коптюга, 3, Россия e-mail: klitasov@yahoo.com

Litasov, Konstantin D., Doctor of Geology and Mineralogy, Senior Researcher V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of RAS 630090, Novosibirsk, Koptyuga Ave., 3, Russia e-mail: klitasov@yahoo.com