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Abstract: The 2008 Wenchuan Mg8.0 earthquake occurred on Longmenshan fault zone (LMSF), which is at the eastern mar-
gin of the Tibetan plateau. The epicenter is near the Shuimogou earthquake swarm, which was thought to be triggered by the
Zipingpu reservoir after its impounding in 2004. People have speculated that the large earthquake was triggered by the water
filling of the reservoir. To figure out the role of the Zipingpu reservoir on the earthquake, the local seismicity recorded by the
Zipingpu local seismic network during the period from 31 July 2004 to 11 May 2008 were analyzed in detail. The distribu-
tion of hypocenters showed that most earthquakes occurred on Yingxiu-Beichuan fault (YBF) in the reservoir area with hy-
pocenters depth less than 10 km, which is a major source fault of the Wenchuan earthquake. Useful information on fault ge-
ometry in the depth was also obtained. The spatial-temporal distribution of hypocenters demonstrated clear migration pattern
that indicated pore-pressure diffusion, it also showed a hydraulic diffusivity (D) of 0.7 m%s. Previous experiments show the
existence of the synergism process of the fault under a meta-instability state before fault sliding. It enhances the stress on the
stronger portion of the fault and the synergism degree by reducing strength of the weak portions and by increasing the total
length of weak portions. According to this view, the pore pressure diffusion by water filling of Zipingpu reservoir increased
the total length of weak portions and enhanced the stress at the focal.
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AHAN3 CEICMUYHOCTHU B PAVOHE BOJJOXPAHWINITIA 3UTTHIITY
TIIEPE]] BEHUYAHLCKIM 3EMJIETPSICEHUEM (M5 8.0)

Jhu FOamkenr” %, Ma ,U;3mﬂ,1, JxviaHb Tonr?

! T'ocydapcmeenHas aabopamopust ouHamuku 3emaempsiceHutl, Mhcmumym 2eosoeuu, AOMuHucCmpayus
no 3emnempsiceusim Kumas, ITexun, Kumati

2 dakyabmem npupoOHbix pecypcos u okpyxcarowjell cpedbt, Cegepo-kumaticKuli yHugepcumem
B00HBIX pecypcos U 3nekmpo3sHepauu, IlekuH, Kumati

Annorarpsi: BeHuyaHbckoe 3emreTpsiceHre (Mg 8.0) mpousomnuio B 2008 r. B pa3jioMHOM 30He JIOHTMeHIIaH, PacIio/IoXKeH-
HOM Ha BOCTOUHOH oKpanHe TubeTckoro miaro. Ero smuueHTp Haxofu/cs psioM C poeM 3emnerpsiceHuii IIlynmory, Bo3-
HMKHOBEHHE KOTOPBIX CBSI3bIBAIOT C BJIMSTHUEM BOJOXPaHW/IMILA 3UTIMHITIY TI0C/Ie ero 3aro/HeHus B 2004 r. Cunrasnock, 4To
IJIaBHOY MPUYMHOM CHJILHOTO 3eMJIeTPsiCeHHsi ObLIO 3arosiHeHHe BOJOXPaHWIUILA BOAOH. [I/1s BHISSCHEHHUS POJI BOZOXPaHHU-
JiMILa 3UMWHITLY B MHULMMPOBaHUM BeHuyaHbCKOTO 3emiieTpsiceHust ObUT TIPOBe/IEH JleTalbHbIN aHa/IU3 JaHHBIX, HAKOTIIeH-
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HBIX MECTHOM CeThr0 ceHCMHYeCcKrX HabmoieHuid B palioHe 3UnuHrIy B niepuoz ¢ 31 utons 2004 r. o 11 mas 2008 r. Cygst
TI0 pacrpe/ie/IeHHI0 TUIOLIeHTPOB, GO/IBIIMHCTBO 3eMJIETPSICEHUH MPOU30LIIM Ha pasioMe VIHKcro-beliuyaH B paiioHe Bozi0-
XPaHW/IMILIA, TIPY 3TOM IIyOMHa TMIOLIEHTPOB He mpeBblnana 10 KM, ¥ 3T0 OCHOBHOM pa3/ioM, MHULIMMPOBaBLIMI BeHuyaHb-
cKkoe 3emsieTpsiceHre. Kpome Toro, Obl/i MosiydeHs! 110J1e3Hble [laHHble TI0 IlyOMHHOM reomerpuu pasnoma. ITo mpoctpas-
CTBEHHO-BpPEMEHHOMY pacIpe/le/IeHUI0 THUITOLIEHTPOB YCTAHOB/IEH XapaKTep MUIPALiH C pacCerBaHHUeM MOPOBOTO JIaB/IeHMs],
a TaKKe orpeziesieH Ko3(QdurpenT rupasmiueckoil muddysuu (D=0.7 m%/c). [To pe3y/nbTaTaM NpebLIYILUX SKCIIEPUMEHTOB
YCTaHOBJIEHO Ha/MuKMe CHHEepreTHUYeCKoro MpoLecca Ha U3yyaeMOM pa3jioMe B MeTacTabW/IbHOM COCTOSHUM Tiepe[] CMellje-
HHMEM TI0 pPa3/ioOMy, UTO NPHUBEJIO K YCUIEHHI0 HAmpsDKeHWH Ha MPOYHOM YUacCTKe pa3/ioMa MU CMHEepruu IpU YMeHbLIeHUH
MPOYHOCTH OC/1ab/eHHbIX yYacTKOB, a TakXe yBelWueHHH OOLell MPOTsHKeHHOCTH Oc/abyieHHbIX y4acTKOB passioma. I1o
HallleMy MHEHHIO, pacCedBaHKe TIOPOBOTrO JaB/ieHHs TIPU 3arl0JIHEHUH BOZOW BOZIOXPaHM/INIIA 3UMUHITLY TIPUBEJIO K YBe/IU-
YyeHHI0 00111ei nMHBI 0cnab/ieHHbIX YYacTKOB Pa3/ioMa M YBe/IMUEHHIO HalpsDKeHUH B 04aroBoii 30He.

Kntouesble cnoea: BeHuyaHbckoe 3eMeTpsiCeHHe, BOJOXPaHWIHILe 3UMUHITY, K03(GhHULMeHT ruapaBandeckoit quddysun,
MeTacTabUIbHOe COCTOSIHUE.

1. INTRODUCTION

The Zipingpu reservoir may have hastened the occur-
rence of the Wenchuan Mgs8.0 earthquake, which was
pointed out soon after the earthquake occurred [Lei et al.,
2008]. Study of the changes of Coulomb failure stress
(ACFS) on Longmenshan fault zone (LMSF) has pervaded
discussions based on the above-mentioned viewpoint
[Deng et al., 2010; Gahalaut K., Gahalaut V.K., 2010; Ge
et al., 2009; Lei, 2011; Sun et al., 2012]. However, a key
unsolved issue is regarding the factors that should be
adopted for modeling to calculate ACFS. There are two
main factors controlling ACFS results: the fault geometry
and the hydraulic diffusivity. Using different factors, pre-
vious study yielded conflicting results. In this study, these
factors of LMSF were evaluated based on pre-earthquake
data recorded by a local seismic network firstly. The role
of water filling of Zipingpu reservoir on the Wenchuan
earthquake is discussed according to viewpoint that fault
exists a meta-instability state before sliding [Ma et al.,
2012; Ren et al., 2013; Zhuo et al., 2013].

2. FAULT GEOMETRY

A digital seismic network was operated in the Zipingpu
reservoir region for recording micro earthquakes since July
2004. For making out what had happened on LMSF before
the Wenchuan Mg 8.0 earthquake, earthquakes from July
2004 to 11 May 2008 were examined and 1772 earth-
quakes whose magnitudes were between M; —0.2 and 4.4
were found. Figure 1a shows the distributions of the epi-
centers and the characteristic of them. Furthermore, Figure
1b shows the distributions of the events and stations in
detail near the reservoir. In Figure 1c, a cross-section A-A’
is used to determine the fault geometry, which is across
LMSEF.

LMSEF lies near the eastern margin of the Tibetan plat-
eau and contains three major thrust faults: Wenchuan-
Maoxian fault (WMF), Yingxiu-Beichuan fault (YBF),
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and Guanxian-Jingyou fault (GJF), which dip toward NW
trend [Zhang et al., 2009]. Two clusters located around the
reservoir are characterized by the occurrence of a large
number of events (Figure 1la). One is beyond 200 km,
striking NE. The other is about 60 km long toward N55°W
trend. This indicates that two existed faults were being
active before the Wenchuan Mg8.0 earthquake. The one
toward NW trend is the Xiaoyudong-Lixian fault (XLF).
Chen reported a similar result obtained from the after-
shocks of the Wenchuan M¢8.0 earthquake about XLF
[Chen et al., 2009], which was confirmed by the rupture of
the main earthquake [Xu et al., 2008]. Also, the faults ge-
ometry underlying was also clear. As shown in Figure l1c,
almost all events occurred above 10 km. However, depth
of the aftershocks was between 10 and 20 km [Zhu et al.,
2008; Chen et al., 2009], and the dip angle of YBF was
found to be high at the surface and becoming lower with
depth. Toward the east of YBF, a seismicity band could be
noted in 5~15 km depth, which did not reach the surface;
this could be the reflection of the buried fault.

3. PORE-PRESSURE DIFFUSION

Limestone distribute widely in this region. Because of
limestone erosion processes, many big cracks along the
YBF are left [Wang, 2001]. That is a geological back-
ground for analyzing the pore pressure diffusion of the
Zipingpu reservoir.

In order to realize the diffusion process, the spatiotem-
poral pattern of the seismic activity near the reservoir is
shown in Figure 2. In 2004, the seismicity was only near
the dam. With the water level rising, the seismicity migrat-
ed toward both side in 2005. From 2006 to 2008, the seis-
micity was mainly at the end of the reservoir, where Shui-
mogou earthquake swarm was less than 10 km away from
the epicenter of Wenchuan earthquake (Figure 2b). Unit-
ing the stream profile and the seismicity, the characteristic
can be seen that the distributions of the events spread to
the end of the reservoir gradually with the water filling of
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Fig. 1. a — active faults (red, blue, and green line [Deng et al., 2007]) and epicenters of earthquakes (31 July 2004 — 11 May 2008)
on Longmenshan thrusts and surrounding regions observed by the Zipingpu local seismic network. Black circles indicate
earthquakes. MWF, YBF, and GJF indicate Maoxian-Wenchuan fault, Yingxiu-Beichuan fault, and Guanxian-Jiangyou fault. Cyan
lines are the contours of the epicenters distributions with the step size of 0.2 degree. Dash line is the buried fault; b — map view of
Wenchuan earthquake surface ruptures (red lines) of Mg 8.0, the Zipingpu reservoir (blue region), and the Zipingpu local seismic
network (red triangle); ¢ — cross-section of the details shown in (b).

Puc. 1. a — akTHBHBIe pajioMbl (KpacHble, ToyOble U 3esieHble TMHUM) 110 [Deng et al., 2007] v 3TULIEHTPHI 3eMJIETPSICEHUN B
niepuog ¢ 31 utons 2004 r. o 11 mast 2008 r. Ha HazjBUrax JIOHrMeHIlIaH U BOIM3U HUX M0 JAHHBIM MECTHOH CETH CelCMUYeCKUX
HabJro/ieHrH B palioHe 3UIMHTITY. 3eM/IeTPSICeHus TOKa3aHbl KaK 3a/1uThle KpyKku. Paznombr: MWF — MaokcraH-BeHuyaHbCKHH,
YBF — MHkcro-befiuyanbckuid, GJF — I'yaHbkcraH-AHryicKui. ['omyOpIMY TUHUSIMHA OKOHTYPEHBI paliOHBI pacripe/ie/ieHust 3TId-
yeHTpoB (war 0.2 rpagyca). [IlyHKTHPOM ToKa3aH norpeOeHHBIH pasioM; b — KapTa “3y4aeMoro paiioHa; OBEPXHOCTHBIE Pa3phIBLI
nocsie Benuyanbsckoro 3emsetpsicenust (Mg 8.0) moka3aHbl TMHUSMU KPACHOTO LiBeTa; BOJOXPaHWIMILe 3UMMHITY 0Ka3aHO CUHUM
1|BETOM; KpacHble TPeYroJIbHUKN — CeliCMOCTaHLIMU B pailoHe 3UNMHITLY; ¢ — paspes K puc. (b).

reservoir. It can be observed that the distance of seismic
migration toward NE trend is short, but is long toward SW
trend. The reasons for this might be the terrain and shape
of the Zipingpu reservoir. A point worth emphasizing is
that the impoundment of the Zipingpu reservoir at Sep-

pressure diffusion can be described as Biot’s equation, the
equation has the form

2 = pr2p, 1)

tember in 2005 could be responsible for the abrupt in-
crease in the speed of seismic migration.

For evaluating hydraulic diffusivity (D) of the crust, the
method developed by Shapiro to describe pore-pressure
perturbations caused by fluid injections into a borehole
was used [Parotidis et al., 2003, 2004; Shapiro et al.,
1997, 2002, 2005, 2006]. In the isotropic medium, the pore

where D is hydraulic diffusivity, P is pressure produced by
waterhead increment, t is time. If a time-harmonic pertur-
bation Pjexp(—iwt) of pore pressure perturbatoin is given
on a small spherical surface of radius a with the center at
an injection point, the solution of equation takes the forms

P(r,t) = Poe_th%exp[(i - D -a) /2] ()

)
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Fig. 2. a — water level and stream profile; b — epicenters of earthquakes (2004/8/1 — 2008/05/11) and Wenchuan earthugake surface
ruptures of Ms8.0 along the Zipingpu reservoir. Red bigger circles are the filling points. The point symbols of red, orange, green,
blue, and black are the locations of the earthquakes of 2004, 2005, 2006, 2007, and 2008, respectively; ¢ — cross-section of the

details shown in (b).

Puc. 2. a — ypoBeHb Bojpl U npodunb Bojoema; b — smurieHTphl 3emserpsicenuit ¢ 01 aBrycra 2004 r. mo 11 mas 2008 r. u
TIOBePXHOCTHBIE Pa3phIBEI Moc/ie BeHuyaHbckoro 3emitetpsicennst (Mg 8.0) y Bogoxpanvuira 3unvHry. KpyrmHeie KpacHbIe TOUKA
— MecTa, OTKy/la BeJIOCh 3arojiHeHHe BOZoM. TOUKM KPacHOr0, OPAH)XEBOrO, 3e/IeHOro, royiyboro U uepHOro rBeta rmoKa3biBaroT
MeCTOTIOJIOXKEeHHe 3eMJIeTpsiCeHnH, rporsomeamux B 2004, 2005, 2006, 2007 u 2008 1T., COOTBETCTBEHHO; C — paspe3 K puc. (b).

where  is the angular frequency and y is the distance
from the injection point to the point where the solution is
looking for. When the medium is homogeneous and iso-
tropic, the slowness of slow wave can be used to estimate
the size of spactial domain. The pore-pressure perturbation
at the injection point can be looked as a step function

780

p(t)=py if >0 and p(t)=0 if t<0, then the dominant part of
the power spectrum is located in the frequency range be-
low 21/ty. Thus, the probability that seismic even at time t,
was triggered by signal components from the frequency
range w<2m/ty is high. Then, the equation employed can be
given as follows:
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Fig. 3. a — model for evaluating hydraulic diffusivity in a reservoir region with background seismicity. Crosses indicate the possible
expected background seismicity by active faults. Circles indicate the earthquakes triggered by reservoir; b — the obtained events af-

ter rejecting the background earthquakes value.

Puc. 3. a — mogens 151 o1jeHKH Ko3¢duiieHTa rupaBinrueckor Auddysun a1 palioHa BOJOXPaHMWIUILA C yuyeToM ()OHOBOM Celc-
MUYHOCTH. KpecTHKM — BO3MOKHas oxkujaemasi (poHOBasi CEMCMHUYHOCTb AKTUBHBIX PanoMoB. KpyKOUKHM — 3eMyeTpsiceHus,
CIIPOBOLIMPOBaHHbIE BOJOXPaHU/IUILEM. b — NosiyueHHble coObITHs Oe3 BeHUMHbI OHOBOM CeiCMUYHOCTH.

y = V4nDt. 3)

However, shocks had occurred before the Zipingpu
reservoir was built on LMSF. It meant that the earth-
quakes, which were not connected with the water filling of
reservoir, could also occur after the reservoir was built.
These events would make some disturbance to the eva-
luation of the hydraulic diffusivity and should be deleted.
The principle of rejecting data is shown in Figure 3a. First,
a typical region far away from the reservoir was selected.
The frequency of shocks in this region was then evaluated.
Second, the events near the reservoir area were scanned.
The earlier events in every cell, which were with the same
frequency of the studied region, should be deleted. In Fi-
gure 3a, the data with cross would interfere with the eva-
luation of the D, then being rejected. Maybe some useful
data was deleted in this progress, such as the events be-
tween curve of D; and D,. However, the data left would be
better for us to catch the characteristics of pore-pressure
diffusion. The events, which were possibly triggered by
the Zipingpu reservoir, were obtained in this way (Figure
3b).

Taking Point as the injection point source, the D of the
crust in the Zipingpu reservoir area was evaluated using
the data in Figure 2b and Figure 3b. When the data in Fig-
ure 2b was used, we could hardly see the diffusion because
of the background seismicity by LMSF (Figure 4a). How-
ever, the pore-pressure diffusion is clear in Figure 4b after
the background seismicity being rejected. The value of
5m’/s is obvious too big. However, the D of 0.5 m/s is a
little small and not all the events are in the curve. The best
fitted value of D was 0.7 m?/s.

Two types of seismic response after the filling of large
reservoir were given by simpson: one is the rapid response
type; the other is the delayed response type [Simpson et

al., 1988]. Considering the fact that lots of events appeared
in Shuimogou region with the rising water level after Sep-
tember 2005 (Figure 2b), most earthquakes, which oc-
curred far away from Point as soon as the reservoir filling,
could be the rapid response type.

4. DISCUSSION AND CONCLUSIONS

Similar to the analyses by Lei et al. [2008], Ge et al.
[2009], Deng et al. [2010], Gahalaut et al. [2010], and Lei
et al. [2011], we examined the local seismicity before the
occurrence of Wenchuan Ms 8.0 earthquake. However,
unlike the earlier researches, we focused on the faults ge-
ometry and pore-pressure diffusion, but not ACFS. These
factors were noted to be significant for modeling to calcu-
late ACFS.

Our results showed that the dip angle of YBF was low
at 8 km depth and close to zero at 10 km depth. This find-
ing is not in agreement with that of Zhu et al. [2008] and
Chen et al. [2009] based on aftershocks, which were
deeper than our results. The reasons for this might be that
YBF has more complex structure. The obtained result is
confirmed by seismic interpretation profiles [Zhou et al.,
2010]. Hence, we infer that the fault in shallow was
actived by the reservoir.

The issue was very significant that whether the earth-
quakes before the Wenchuan Ms8.0 earthquake were con-
nected with the pore-pressure diffusion. Because of the
background seismicity by LMSF, it could hardly see the
diffusion of pore-pressure. However, when the data dis-
turbing our evaluation was rejected, we can see the dif-
fusion clearly. The D of the crust was estimated to be
0.7 m%s. In the earlier researches, the D of the crust was
estimated to be in a range between 10™* and 10 m%s [Lei,

781
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Puc. 4. PaccTosiHve OT TOUKW Hab/IOZeHHs 10 3eMJIeTPSICEHU C y4eTOM BpeMeHH, BK/IoUasi pOHOBYIO CeiCMUUHOCTE (a); paccTosi-
HUe OT TOYKHM HabII0/IeHust 10 3eMJIeTpSICeHHH C yueToM BpeMeHH Oe3 hoHOBOM ceiicMuuHoCTH (D).

2011; Scholz, 2002; Talwani et al., 2007]. Our results
also suggest that there were two types earthquakes near
the reservoir. Some earthquakes were the background
seismicity by LMSF with a similar shock frequency to are-
as far away from the Zipingpu reservoir. Other earth-
quakes were the rapid response type, which appeared im-
mediately far away from the injection sources as soon as
the reservoir filling. Because limestone and big cracks dis-
tribute widely in this region, the pore pressure diffusing in
big cracks is in charge of these rapid response type earth-
quakes.

Previous experiments show the existence of the syner-
gism process of the fault under a meta-instability state be-
fore fault sliding [Ma et al., 2012; Ren et al., 2013; Zhuo
et al., 2013]. Tt enhances the stress on the stronger portion
of the fault and the synergism degree by reducing strength
of the weak portions and by increasing the total length of
weak portions. To LMSF, an obvious locked segment of
60 km long came into being after 2004, which include the
fault near the reservoir [Ma et al., 2013]. According to the
points above, it can be sure that the pore pressure diffusion
due to the water filling of reservoir played a key role on
reducing the strength of fault of 20 km long near the reser-
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