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Calculation of Critical Values for Somerville’s FDR

Procedures

Paul N. Somerville
University of Central Florida

Abstract

A Fortran 95 program has been written to calculate critical values for the step-up
and step-down FDR procedures developed by Somerville (2004). The program allows
for arbitrary selection of number of hypotheses, FDR rate, one- or two-sided hypotheses,
common correlation coefficient of the test statistics and degrees of freedom. An MCV
(minimum critical value) may be specified, or the program will calculate a specified number
of critical values or steps in an FDR procedure.

The program can also be used to efficiently ascertain an upper bound to the number of
hypotheses which the procedure will reject, given either the values of the test statistics, or
their p values. Limiting the number of steps in an FDR procedure can be used to control
the number or proportion of false discoveries (Somerville and Hemmelmann 2007). Using
the program to calculate the largest critical values makes possible efficient use of the FDR
procedures for very large numbers of hypotheses.

Keywords: FDR, critical values, Fortran, Somerville’s procedure.

1. Introduction

Recent developments in diverse fields, including genomics, have resulted in very large data sets
where it may be desired to simultaneously test many thousands of null hypotheses. Traditional
procedure to control the probability of rejecting true hypotheses in multiple hypotheses testing
has been to control the family-wise error rate (FWER). For a large number of hypotheses,
however, extremely low power for testing single hypotheses may result.

Recently, procedures have been proposed which control the false discovery rate (FDR). The
false discovery rate is defined to be the expected value of the proportion of rejected hypotheses
which are actually true, with the false discovery rate defined to be zero when no hypotheses
are rejected. Using an FDR procedure, the hypotheses H1, H2, . . . ,Hm, are simultaneously
tested using the corresponding test statistics t1, t2, . . . , tm. Let T(1) ≤ T(2) ≤ . . . ≤ T(m) be

http://www.jstatsoft.org/


2 Calculation of Critical Values for Somerville’s FDR Procedures

the ordered test statistic values, and denote by H(i) the hypotheses corresponding to T(i).
Then critical constants d1 ≤ d2 ≤ . . . ≤ dm, are used to compare T(i) with di.

For a step-down FDR procedure, for i = m,m− 1, . . ., compare T(i) with di until for the first
time T(i) < di, rejecting in turn all the hypotheses for which T(i) ≥ di. For a step-up FDR
procedure, for i = 1, 2, . . . , compare T(i) with di until for the first time T(i) ≥ di, rejecting all
the hypotheses, except those for which the comparisons already made have shown T(i) ≤ di.
The critical values di are chosen such that the expected value of the FDR is always less
than some value q (or α). FDR procedures may also be defined in terms of critical p values.
Benjamini and Hochberg (1995) proposed an FDR step-up procedure valid for independent
test statistics. Benjamini and Lui (1999) presented a step-down FDR procedure valid under
the same conditions. Sarkar (2002) showed that both procedures were valid under positive
dependency. Troendle (2000) developed both step-up and step-down FDR procedures which
asymptotically control the FDR when the test statistics have a multivariate t distribution.
Somerville (2004), assuming a multivariate t distribution and common correlation of the
test statistics used least favorable configurations to develop step-down and step-up FDR
procedures. His step-down procedure yielded the same critical values as those of Troendle.
It should be stated that, although extensive calculations strongly suggested the validity of
the assumed location of the least favorable locations, a rigorous proof was not realized. Also,
instead of setting negative critical values equal to zero, Somerville used a minimum critical
value (MCV). The step-down FDR procedures of Troendle and Somerville have been shown by
Horn and Dunnett (2004) and Somerville (2003) to have superior power, under the assumption
that the test statistics have a multivariate t distribution.

While FDR procedures control the expected value of the proportion of true hypotheses which
are rejected, it is possible that a very large number of true hypotheses could be rejected. To
control the number of true hypotheses, which are falsely rejected, van der Laan, Dudoit, and
Pollard (2004) proposed the generalized family-wise error rate gFWER(k). It is defined as the
probability of at least (k+1) Type 1 errors (k = 0 for the usual FWER), i.e. P[U ≤ k] ≥ 1−α
where U is the number of true hypotheses which are rejected. Augmentation procedures
proposed by van der Laan et al. (2004) and Dudoit, van der Laan, and Birkner (2004) can
then be used to control PFP (proportion of false positives), where P[PFP ≤ γ] ≥ 1−α for some
pre-specified γ and α . More recently Lehmann and Romano (2005) suggested new methods
of controlling gFWER(k) (called by them k-FWER) and PFP (called by them FDP - False
Discovery Proportion). Both single-step and step-down procedures were derived which control
the k-FWER. The procedures make no assumptions concerning the dependence structure or
the p values of the individual tests. The step-down procedure is simple to apply, and cannot
be improved without violation of control of the k-FWER. Lehmann and Romano (2005) also
proposed two methods for controlling the PFP. The first holds under “mild conditions on the
dependence structure of p values” while the second requires no dependence assumptions.

Somerville (2004) noticed that by limiting the number of steps in his procedures, the FDR
could be reduced with a small subsequent loss of power. (An s step procedure is equivalent
to an m step procedure where the m − s smallest critical values are replaced with the value
dm−s+1, also called MCV. Thus, only the largest s critical values are used in the comparisons).
Somerville and Hemmelmann (2007), by limiting the maximum number of steps in step-
down and step-up procedures, developed new procedures to control k-FWER. The procedures
require only an arbitrary set of critical constants d1 ≤ d2 ≤ . . . ≤ dm, and need not be related
to any step-down or step-up procedure. However, by starting with a set of critical values
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which satisfy an FDR requirement, the procedures can be used to simultaneously control FDR
and k-FWER requirements. Using data from the literature, the method of Somerville and
Hemmelmann (2007) was compared with those of Lehmann and Romano (2005), and under
the assumption of multivariate normality and a common correlation of the test statistics,
considerable improvement in the reduction of false positives, in control of PFP, and in power,
were accomplished while still controlling the FDR. The Fortran 95 program seq.f95 can be
used in four different modes to calculate the critical values for the procedure of Somerville
(2004). In mode 1, the program calculates the critical values for step-down or step-up FDR
procedures for one- or two-sided hypotheses, arbitrary degrees of freedom, arbitrary FDR
levels and arbitrary common correlation coefficients. Using mode 3, the program calculates
the largest critical values (number of critical values is specified by the user). Using mode 4,
the Fortran 95 program, given the test statistic values, efficiently calculates an upper bound
to the number of hypotheses which will be rejected. Given p values for the test statistics,
the program, using mode 5, converts the p values to test statistic values and also obtains an
upper bound to the number of rejected hypotheses. This paper has a number of objectives:

1. Describe the ways in which the Fortran program seq can be used in hypotheses testing,
when the number of hypotheses is large.

2. Describe how the program obtains the constants used in Somerville’s FDR procedures.

3. Present instructions and examples, which make it relatively easy for a user, using the
Fortran program seq to solve many hypotheses testing problems involving a large number
of hypotheses.

2. Calculation of critical values

The procedure for calculating the critical values is described in Somerville (2004). Let
H1, H2, . . . ,Hm be m hypotheses to be simultaneously tested using the test statistics T1,
T2, . . . , Tm. We require that the false discovery rate (FDR), be less than a pre-specified value
q (or α). If Q is the proportion of rejected hypotheses which are true, then FDR = E(Q). We
wish to calculate the m critical values d1 ≤ d2 ≤ . . . ≤ dm, such that E(Q) ≤ q. We outline
here the procedure for the step-down case.

Let Ai be the probability that exactly i hypotheses are rejected. Then

A0 = P[T(m) < dm]
A1 = P[T(m) ≥ dm, T(m−1) < dm−1]
. . .
Am−1 = P[T(m) ≥ dm, . . . , T(2) ≥ d2, T(1) < d1]
Am = P[T(m) ≥ dm, . . . , T(2) ≥ d2, T(1) ≥ d1]

where T(1) ≤ T(2) ≤ . . . ≤ T(m). To obtain the critical values, use is made of m least
favorable configurations of the location parameters of the test statistics. Define LFC i as
the configuration where i of the location parameters are zero and the remainder are infinite.
(The case where all m hypotheses are true corresponds to LFCm). To obtain d1, use LFC 1.
Then, with probability 1, T(m), . . . , T(2) are infinite, and A0, . . . , Am−2 are zero, and E(Q) =
Am−1(0/(m− 1)) +Am(1/m) ≤ q or P[T(1) ≥ d1] ≤ mq.
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To maximize power considerations, we choose the smallest value di which satisfies the equa-
tion. To obtain di, (1 < i ≤ m), given the values of d1, . . . , di−1, use LFC i. With probability
1, T(m), T(m−1), . . . , T(i+1) are infinite and A0, . . . , Am−i−1 are zero. Under LFC i, when ex-
actly r(≥ m − i) hypotheses are rejected, the proportion of true hypotheses rejected equals
(r− (m− i)/r) with probability 1. We may then write, using the basic expectation algorithm,

E(Q) = Am−i(0/(m− i)) +Am−i+1(1/(m− i+ 1)) + . . .+Am(i/m)

where
A(m−i+1) = P[T(i) ≥ di, T(i−1) < d(i−1)]1

. . .
Am−1 = P[T(i) ≥ di, . . . , T(2) ≥ d2, T(1) < d1]
Am = P[T(i) ≥ di, · · · , T(2) ≥ d2, T(1) ≥ d1].

Since Am−i+1, . . . , Am are each decreasing functions of di, we choose di as the smallest value
such that E(Q) ≤ q. The value for dm for the FDR step-down procedure may also be calculated
using the equation P[T(m) < dm] = 1−q. For the FDR step-up procedure, the formula slightly
underestimates dm.

3. Fortran 95 implementation

3.1. Mode 1

The program first calculates d1 and dm. The problem is to find the smallest value for di given
previously obtained values d1, . . . , di−1, subject to FDR = E(Q) ≤ q. Since d1 ≤ d2 ≤ . . . ≤
dm, starting lower and upper bounds, boundXL and boundXU, for di are di−1 and dm. (It is
well known that dm for the step-up case is never less than dm for the step-down case for the
same parameter values. Extensive calculations suggest that the ratio is never greater than
approximately 1.01, with the values close to 1.0 for large values of m. For step-up FDR, the
upper bound for dm is “conservatively” replaced with 1.1 times the values of dm for the step-
down case.) Starting “attained” lower and upper bounds, boundFL and boundFU, for FDR are
set at 0 and 1. Two initial estimates of di, x1 and x2 are chosen to calculate the corresponding
values of FDR, namely F1 and F2. (The subroutines getFDR and getFDRup are used to obtain
the corresponding FDR values.) Using those calculations, the subroutine bound(X,F) is used
to improve both sets of bounds. Linear interpolation is then used to obtain a third estimate
x3 (modified, if necessary, to keep it within the existing bounds), and the corresponding FDR
value F3 calculated. If F1 is closer to q than F2, then the values x2 and F2 are replaced with
the values x3 and F3, and likewise the values x3 and F3 replace the values x1 and F1 if F2 is
closer. Again linear interpolation using the new pair, x1 and x2 is used to obtain a new x3

and the iteration continues until the process is defined to converge. The program attempts
to obtain an estimate for di with an FDR within .0001 of q.

Subroutine getFDR

The subroutine getFDR (getFDRup for the step-up case) uses Monte Carlo to get estimates
for Am−i+1 to Am (step-down case) given the previously obtained values d1, . . . , di−1 and an

1Somerville (2004), page 102 line 18, gives an erroneous formula for Am−i+1.
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estimate for di. The estimate of Aj is the proportion of the n vectors, whose elements are
the randomly obtained values for the m test statistics, for which the FDR procedure rejects
exactly j hypotheses under LFC i. The FDR is then obtained as

E(Q) = Am−i(0/(m− i)) +Am−i+1(1/(m− i+ 1)) + . . .+Am(i/m).

Subroutine bound(X,L)

The subroutine bound(X,L) replaces boundXU with xi and boundFL with FDRi if boundFL
< Fi < q, and replaces boundXL with xi, and boundFU with FDRi if q < Fi < boundFU.

3.2. Mode 3

In mode 3, the program calculates the pre-specified “ic”“unique” values (number of steps s).
The values d1, . . . , dm−ic+1 are equal and trial values x1 and x2 are chosen to calculate the
corresponding FDR values F1 and F2. As in mode 1, linear interpolation is used to obtain x3

and iteration is employed to obtain the common value of the m−ic+1 smallest critical values.
seq.f95 uses the procedures of mode 1 to calculate the remaining ic− 1 critical values.

3.3. Mode 4

Calculating all of the critical values for Somerville’s FDR procedure would present an almost
insurmountable task when the number of hypotheses to be simultaneously tested is very large.
The object of mode 4 is, given the values of all of the test statistics (or their p values), is
to estimate an upper bound to the number of hypotheses that the procedure would reject.
Having this upper bound, a user could use an s-step version of the procedure. (The value of
s would be equal to the upper bound). This would require the calculation of only s critical
values, which should then present a manageable task. The program is designed so that using
mode 4 estimates both an upper bound to the number of test statistics to be rejected, and
also calculates the needed s critical values for a corresponding s-step procedure.

Starting with i = 1, the program assumes that MCV equals the ith largest test statistic and
estimates the probability that at least i test statistics will each be greater than or equal to
MCV. The program finds the largest value of i (ub) such that the probability is less than or
equal to q. Mode 3 can be used to calculate the largest s (= ub) critical values. The values
of nCV and nCVend in line 2 are not used in the program. For a quick estimate, the value of
n need not be large, with n = 1000 usually adequate.

3.4. Mode 5

seq.f95 converts the p values to test statistic values and mode 4 is used.

4. Errors in the estimates

The iterative procedure is complicated by the fact that the FDR calculations are Monte
Carlo based. To reduce the effect of such errors, the same random number seeds are used
for each FDR calculation. For fixed critical values, the error in the calculated value of FDR
can be approximated by

√
(FDR(1− FDR)/n). Numerous calculation to estimate the partial
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Figure 1: Effect of n on accuracies of critical value calculations

derivative of dj with respect to FDR indicate that for a change of ε in FDR, changes in the
value of dj from 7ε to 40ε may be required and the change in dj is a function of m, q, and
the value of j. The fortunate aspect is that modest errors in the estimation of a critical value
may result in much smaller errors in the achieved False Discovery Rate. Since calculation
of each critical value is a function of all previously calculated critical values, there is also a
self-correcting effect, which may be enhanced by smoothing the final set of critical values.
Values of n greater than 10,000 are recommended when calculating critical values. Figure 1
illustrates the effect on the accuracy of the critical values as n increases. Values used are
step-down FDR, 1-sided hypotheses with m = 1000, ρ = 0, q = .05, and four values for n,
namely 103, 104, 105 and 106, and using exactly 31 “unique” critical values.

5. Examples

The program was used in mode 4 to obtain an upper bound to the number of rejected hy-
potheses for the data of Hedenfalk et al. (2001). Using n = 10, 000 or 100, 000, q = .05, ρ = 0,
df =∞, 2-sided hypotheses, seq.f95 has given an upper bound to the number of hypotheses
to be rejected as 153.

An example for each of the four modes is given. The input file crit.in is given for each, as
are the two output files crit.out and seq.out.

6. Summary and conclusions

Using the program seq.f95 to obtain a specified limited number of critical values for the
FDR procedure is simple and efficient and the results can be used to control the number
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and proportion of false positives. The FDR procedure requires that the test statistics have
a multivariate t distribution with a common correlation. Limited studies suggest that the
procedure has robust qualities with regard to the assumption of the multivariate t distribution,
and is conservative when correlations are underestimated. It is not difficult to show that d1

and dm, the smallest and largest critical values are decreasing functions of ρ, the common
correlation coefficient.
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A. User manual

A.1. Capabilities of the program

Some of the capabilities are:

• The program can be used to calculate all or a specified number of the largest critical
values needed to simultaneously test m null hypotheses. The hypotheses may all be
one-sided or all two-sided.

• If all of the values of the test statistics (or all of the p values) are available, the program
can be used to estimate an upper bound to the number of hypotheses which will be
rejected, and a corresponding MCV will be given. The program can then be used to
calculate that number of critical values or the user can specify the MCV. This is an es-
pecially useful capability of the program, and eliminates the practically insurmountable
task of calculating all of the m critical values when m is very large.

• A minimum critical value (MCV) can be specified. That is, the user decides that
a hypothesis will never be rejected if the test statistic value is less than MCV. The
program will then calculate all of the necessary critical values.

• Enables user to calculate critical values for an implementation of the procedure of
Somerville and Hemmelmann (2007) (controlling the number of false positives, given
a set of critical values).

In all cases, the user will need to specify all of the following parameters:

m the number of hypotheses,

df the common number of degrees of freedom for all of the test statistics (or
p values),

q the false discovery rate (also often denoted by α),

upordown for step-down, a negative integer, for step-up, a positive integer or zero,

nbrsided 1 for one-sided hypotheses, 2 for two-sided hypotheses,

rho common correlation between the test statistics.

In addition, the user will need to specify values for iseed, n, nCV and nCVend:

iseed a positive integer for the random number generator, e.g., 757.

n the number of random m-dimensional vector to be generated. The size of n
determines the accuracy of the critical values generated. A value less than
10,000 is almost never recommended. A value of 1,000,000 will usually be
sufficient to produce near 3 decimal accuracy.

nCV, nCVend dnCV is the first value and dnCV is the last value to be calculated. It
is assumed that the values d1 to dnCV−1 have already been calculated. Note:
if the mode is not 1, arbitrary values for nCV and nCVend may be input.
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Three files must exist prior to the running of the program. crit.in consists of three lines
and contains the necessary input for the program. The two files crit.out and seq.out will
contain the output of the program at the completion of running the program seq.f95.

The program has four modes: 1, 3, 4, and 5.

Mode 1

In this mode, the program calculates all of the critical values from dnCV to dnCV end. It is
assumed that the values from d1 to dnCV−1 are known. If all of the critical values are to be
calculated, set nCV = 1, and set nCVend = m.

This mode can also be used when an MCV is given. Set nCV = 2 and nCVend = m, and in
line 3, make both the first and second values equal to MCV. This could be very inefficient if
m is large unless a small value of n can be used. If one is able to make a close underestimate
of the number critical values which will be equal to MCV (say ub), then setting nCV equal to
ub and nCVend equal to m, and inserting ub consecutive values of MCV in line 3 of crit.in
will be much more efficient. A method to make an estimate of ub might be to make several
runs using guessed values for ub, using a smaller value for n (say 1000). See also the note in
Mode 3.

Mode 3

This mode is used when only the largest critical values need to be calculated. (See modes 4
and 5.) When using mode 3, the values for nCV and nCVend are ignored. If ub is the number
of critical values to be calculated, line 3 should contain only the value ub. Note: The smallest
critical value for an s-step procedure is also the MCV for the procedure.

Mode 4

If the set of m test statistic values are given, the program efficiently calculates an upper bound
(say ub) to the number of hypotheses that will be rejected, and a corresponding MCV. Mode
3 can then be used to calculate only the largest ub critical values. The remaining critical
values can then be set equal to the smallest of the calculated critical values, constituting the
set of critical values needed for an s-step FDR procedure.

Mode 5

Given the p values corresponding to the m hypotheses, the p values are converted to test
statistic values, and the methodology used in mode 4 is used to determine an upper bound
to the number of hypotheses which will be rejected.

Contents of the input file crit.in

crit.in contains three lines. The first line contains the digit 1, 3, 4 or 5, corresponding to
the desired mode. The second line contains ten elements: n, iseed, m, nCV, nCVend, df, q,
nbrsided, upordown, rho. Note that unless the mode is 1, arbitrary integers may be used for
nCV and nCVend.

If the mode is 1, the third line contains the previously obtained values for d1 to dnCV−1,
followed by an estimate for dnCV . If no values have been previously obtained, the line contains
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an estimate for d1. If the mode is 3, the line contains only the integer giving the number of
critical values to be obtained. If the mode is 4 or 5, the line contains exactly m values. If the
mode is 4, the elements are the values of the test statistics (in non-decreasing order). If the
mode is 5, the elements are the p values corresponding to the hypotheses (in non-increasing
order).

Contents of the output file seq.out

If the mode was 1 or 3, seq.out contains the requested calculated critical values and their
critical value number nCV. If the mode is 4 or 5, seq.out gives an upper bound to the number
of hypotheses that may be rejected (say ub). It gives also the ub-th largest test statistic which
is also a corresponding MCV.

Contents of the output file crit.out

This file contains some of the results of intermediate calculations. It may be of interest to
some users.

A.2. Calculating all of the critical values

If 20 hypotheses to be simultaneously tested with the expected value of the FDR to be
controlled at the level .05, the hypotheses are all two-sided, the degrees of freedom for each
of the test statistics is 19, and the test statistics have a common correlation of zero. For
step-down FDR, the following 3 lines in crit.in can be used:

1

10000 757 20 1 20 19 .05 2 -3 0.0

1.024 (This number is your estimate of the value of d1 and could be set equal to zero.)

See also Example 4.1 in seq.f95.

A.3. Determining an upper bound for the number of rejected hypotheses

Suppose the values of the test statistics are as follows (arranged in non-descending order
of magnitude): 0.74 1.01 1.30 1.42 1.42 1.50 1.60 1.73 1.82 1.82 1.95 2.04 2.42
2.61 3.02 3.15 4.02 4.32 5.12 5.23

With the expected value of FDR to be controlled at the level .05, two-sided hypotheses, 19
degrees of freedom and a common correlation of zero and step-down FDR, the following 3
lines in crit.in can be used:

4

10000 757 20 17 20 19 .05 2 -3 0.0

0.74 1.01 1.30 1.42 1.42 1.50 1.60 1.73 1.82 1.82 1.95 2.04 2.42 2.61 3.02
3.15 4.02 4.32 5.12 5.23
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The program will then give 8 hypotheses as the upper bound (corresponding to an MCV of
2.42). See also Example 4.3 in seq.f95.

Using the p values corresponding to the above test statistic values, the following 3 lines can
be used in crit.in:

5

10000 757 20 17 20 19 .05 2 -3 0.0

0.468346 0.325186 0.209152 0.171809 0.171809 0.150049 0.126095
0.099842 0.084551 0.084551 0.066089 0.055499 0.025711 0.017214
0.007043 0.005273 0.000732 0.000369 0.000061 0.000048

A.4. Calculating the s largest critical values

For m = 1000, I would like to calculate the 10 largest critical value (use a 10-step procedure).
I wish to use 2 sided FDR, assume a common correlation of 0.0. Each test statistic has 20
df. Arbitrary values may be given for nCV and nCVend. The following may be used as input
for crit.in.

3

10000 757 1000 1 44 20 .05 2 -3 0.0

10

See also Example 4.2 in seq.f95.

A.5. Specifying a minimum critical value

For any set of parameters, m, rho, upordown, df, nbrsided, q there is a relationship between
an MCV and the number of “unique” critical values (number of steps in the corresponding
s-step procedure). Knowing the approximate relationship may assist in determining whether
to use a “unique” number of critical values or choose an MCV. A quick way to explore this
is to choose several numbers of “unique” critical values and find the corresponding MCVs. If
m = 5000, df = 30, q = .05, rho = 0, and 1-sided step-down, choosing 20 “unique” values (a
small value for n will be sufficient here, and values for nCV and nCVend are arbitrary), crit.in
could be the following:

3

1000 757 5000 4 7 30 .05 1 -3 0.0

20

Note that after the program calculates the first critical value, the following statement oc-
curs: MCV = 3.887 for exactly 20 "unique" critical values. Abort the program (us-
ing CTRL BREAK) and replace 20 in line 3 with another number, and repeat the process. Using
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successively the values 10, 20, 40, 60, 80, 100, 500, one obtains corresponding MCV’s of 4.111,
3.887, 3.620, 3.501, 3.398, 3.316, 2.656.

A.6. Implementing the procedure of Somerville and Hemmelmann

Somerville and Hemmelmann (2007) have shown that the number of false discoveries can be
controlled by limiting the number of steps in a step-down procedure.

Suppose there are 5000 test statistics each with 22 df. A step-down procedure is desired such
that the probability of more than 10 false discoveries is less than .05 (approximately). Using
the FDR step-down procedure of Somerville (2004) what is the maximum number of steps
that can be used?

Assuming the test statistics have a multivariate t distribution with a common correlation of
zero, the formulas for the number of steps given by Somerville and Hemmelmann (2007) and
interpolation can be used. If k is the number of false discoveries:

for df = 15: Max Steps = −0.24923 + 3.85682k − .000425084k2 (use for k ≤ 33).

for df =∞ : Max Steps = −5.0138 + 10.1836k + 0.3642844k2 (use for k ≤ 19).

Using k = 10, the maximum number of steps would be 38.276 and 133.25 for df = 15 and
df = ∞ , respectively. Using linear interpolation in 1/df , the number of steps for df = 22
would be 62.02. Similarly, for k = 19, the number of steps would be 134.65. That is, if U is
the number of false discoveries:

P[U ≤ 10] ≤ .05 if no more than 62 steps can be used.

P[U ≤ 19] ≤ .05 if no more than 134 steps can be used.

The program seq can be used to calculate the necessary critical values. For higher common
correlations between the test statistics, the Fortran 95 program FDRPWR could be used to find
the maximum number of steps that could be used and still meet the stated requirements. See
Somerville and Hemmelmann (2007).

A.7. Special conditions for step-up FDR

Somerville (2004) noted that using his step-up FDR procedure, an MCV was sometimes neces-
sary. Using seq for small values of m, even for large values for n, the following message may oc-
cur if an attempt is made to obtain all of the critical values: Unable to get large enough d
value. Try larger values for n. For step-up FDR, a larger value of MCV may be
required. A practical solution, and an efficient procedure, is to use mode 3, and obtain only
the largest values (e.g. 20, 50 or 100).

A.8. An additional capability when using modes 4 or 5

Examining the file seq.out, where the output for Example 4 (Hedenfalk data) is given, the fol-
lowing statement appears: As many as 153 hypotheses may be rejected (FDR level .05).
It should be noted that, examining the FDR column, additional statements may be made: As
many as 54 hypotheses may be rejected (FDR level .01). As many as 28 hypotheses
may be rejected (FDR level .001).
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