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Practical Experience Using a Computational Model forthe Design of Heterogeneous Distributed SoftwareT. L. Williams and R. J. ParsonsUniversity of Central FloridaSchool of EECSOrlando, FL USA 32816-2362fwilliams,rebeccag@cs.ucf.eduApril 15, 2001KEYWORDS: distributed systems, heterogeneous computing, performance evaluation,BSP, cluster computing, collective communication.AbstractHeterogeneous cluster environments are becoming an increasing popular platformfor executing parallel applications. E�cient heterogeneous programs must accountfor the di�erences inherent in such an environment. We propose the HBSP1 modelof computation as a framework for developing applications for heterogeneous clustersof workstations. The utility of the model is demonstrated through the design andanalysis of the scatter and one-to-all broadcast algorithms. Extensive experimentationillustrates the bene�ts of using the model for heterogeneous program development.By hiding the non-uniformity of the underlying system, the HBSP1 model provides aframework that embraces the heterogeneity of the underlying system.1 IntroductionThe growth of the Internet has contributed to an increased interest in distributedsoftware. In fact, it is not uncommon for distributed applications to execute on acollection of machines with myriad di�erences such as computational speeds, memorysizes, and data formats. Such platforms are considered to be heterogeneous distributedenvironments. One example is the SETI@home project, which exploits the enormousamounts of idle time going to waste on PCs to crack encryption challenges. Performancegains in heterogeneous environments result from e�ectively exploiting the speeds of theunderlying components. Executing standard (homogeneous) distributed applicationson heterogeneous platforms leads to low-end systems becoming a bottleneck, whichreduces overall system performance. Thus, a new approach is necessary for the designof e�cient heterogeneous distributed applications.1



The k-Heterogeneous Bulk Synchronous Parallel model (HBSPk) is the model wepropose for the development of general-purpose heterogenous applications (Williams,2000). It is an extension of the BSP model of parallel computation (Valiant, 1990).The superscript k refers to the number of network layers present in the heterogeneousenvironment. Unlike BSP, the HBSPk model describes multiple heterogeneous plat-forms connected by some combination of internal buses, local-, campus, and wide-areanetworks. Applicable environments include workstation clusters, the Internet, andcomputational grids (Foster and Kesselman, 1998). In this paper, we focus on thedevelopment of programs for a heterogeneous cluster of workstations. Since these sys-tems are connected by a single communications network, we concentrate on the HBSP1model, which is a speci�c instantiation of the generalized HBSPk model.Collective communication algorithms are used frequently as building blocks in avariety of distributed algorithms. Proper implementation of these operations is vitalto the e�cient execution of the distributed algorithms that use them. Collective opera-tions designed for homogeneous distributed systems are not adequate for heterogeneousenvironments. As a result, we present two collective communication algorithms|scatter and one-to-all broadcast|for a heterogeneous cluster of workstations. OurHBSP1 algorithms are based on BSP communication routines (Hill, Donaldson andSkillicorn, 1997; Juurlink and Wijsho�, 1996). Our design strategy, which is guidedby the HBSP1 model, for these algorithms is two-fold. Faster workstations should beinvolved more in the computation than slower machines. Secondly, faster nodes shouldreceive more data items than slower nodes. HBSP1 predicts that increased performancewill result if these guidelines are taken into consideration when designing heterogeneousapplications.We perform extensive experiments to validate the predictions of the model. Ourexperimental testbed consists of a non-dedicated, heterogeneous cluster of worksta-tions. Experimental results demonstrate that our collective algorithms have increasedperformance on heterogeneous platforms. Moreover, the model accurately predicts theperformance trends of the communication algorithms. Improved performance is nota result of programmers having to account for myriad di�erences in a heterogeneousenvironment. By hiding the non-uniformity of the underlying system from the appli-cation developer, the HBSP1 model o�ers a framework that encourages the design ofsoftware for heterogeneous clusters in an architecture-independent manner.The rest of this paper is organized as follows. Section 2 gives a brief overview ofrelated work. The HBSP1 model is described in Section 3. Sections 4 and 5 presentour experimental approach and the experimental results, respectively. Conclusions aregiven in Section 6.2 Related WorkThe Bulk Synchronous Parallel (BSP) (Valiant, 1990) model provides the foundationfor the HBSPk model. The BSP model provides guidance on designing applicationsfor good performance on homogeneous parallel machines. Support for BSP includestheoretical results, empirical results, and experimental parameterization of BSP pro-grams (Gerbessiotis and Valiant, 1994; Goudreau, Lang, Rao, Suel and Tsantilas,1999). 2



Two models that address heterogeneous clusters of workstations are the Heteroge-neous Coarse-Grained Multicomputer (HCGM) model (Morin, 1998) and the Hetero-geneous Bulk Synchronous Parallel (HBSP) (Williams and Parsons, 2000), which issynonymous with HBSP1. Both of these models take into account varying processorspeeds to develop parallel algorithms for heterogeneous systems. The main di�erencebetween the two models is that HCGM is not intended to be an accurate predictorof execution times whereas HBSP attempts to provide the developer with predictablealgorithmic performance.Additional research has studied the performance of collective algorithms for hetero-geneous workstation clusters. The ECO package (Lowekamp and Beguelin, 1996), builton top of PVM, automatically analyzes characteristics of heterogeneous networks todevelop optimized communication patterns. Bhat, Raghavendra and Prasanna (1999)extend the FNF algorithm (Banikazemi, Moorthy and Panda, 1998) and propose severalnew heuristics for collective operations. Their heuristics consider the e�ect commu-nication links with di�erent latencies have on a system. Banikazemi, Sampathkumar,Prabhu, Panda and Sadayappan (1999) present a model for point-to-point communi-cations in heterogeneous networks of workstations and use it to study the e�ect ofheterogeneity on the performance of collective operations.3 The HBSP1 ModelHBSP1 is a synchronous model of computation that provides a framework for the designof software for a heterogeneous cluster of workstations. The HBSP1 model consists of acost model that provides predictable costs of algorithm execution. HBSP1 captures theessential characteristics of heterogeneous clusters with only a few parameters. Morecomplex models tend to use more parameters that render them too tedious for practicaluse. Moreover, the HBSP1 model can be viewed as a kind of programming methodology.The essence of the HBSP1 approach is the notion of the superstep and the idea thatthe input/output (i.e., sends and receives) associated with a superstep is performed asa global operation. Viewed in this way, an HBSP1 program is simply one that proceedsin phases, with the necessary global communications taking place between the phases.In this section, we formally de�ne the HBSP1 model as well as describe the asso-ciated programming methodology. Afterwards, we use the model to guide the designand analysis of the scatter and one-to-all broadcast operations.3.1 Model descriptionAn HBSP1 computer is characterized by the following parameters:� p, the number of processors or workstations labeled P0; : : : ; Pp�1;� g, a bandwidth indicator that reects the speed with which the fastest machinecan inject messages into the communications network;� rj , the speed relative to the fastest processor for Pj to inject a packet into thenetwork;� L, the overhead to perform a barrier synchronization of the p processors; and� cj , the fraction of the problem size that Pj receives.3
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Figure 1: A superstep in the HBSP1 model.For notational convenience, the indices f and s identify the fastest and slowest nodes,respectively. We assume that the rf value of the fastest machine is normalized to 1.If rj = t, then Pj communicates t times slower than the fastest workstation. The cjparameter adds a load-balancing feature into the model. It's value is in the range from0 to 1. Speci�cally, it attempts to provide Pj with a problem size that is proportional toits computational and communication abilities. Intuitively, cj is inversely proportionalto rj .Computation in an HBSP1 machine consists of a sequence of supersteps. During asuperstep, each processor performs asynchronously some combination of local compu-tation, message transmissions, and message arrivals. A message sent in one superstepis guaranteed to be available to the destination processor at the beginning of the nextsuperstep. Each superstep is followed by a global synchronization of all the processors.Figure 1 shows an example of a superstep.Since HBSP1 de�nes a speci�c programming style, the formal parameters of themodel allow for the cost analysis of HBSP1 programs. Again, the basic notion of anHBSP1 computation is the superstep, which consists of local computation, communi-cation, and synchronization. Let w represent the largest amount of local computationperformed by a workstation. Let hj be the largest number of messages sent or receivedby processor j. The size of the heterogeneous h-relation is h = maxfrj � hjg requiringa communication cost of gh. Thus, the cost of a superstep isw + gh+ L: (1)The overall cost of the program is the sum of the superstep times.The above cost model demonstrates what factors are important when designingHBSP1 applications. To minimize execution time, the programmer must attempt to(i) balance the local computation in each superstep, (ii) balance the communicationbetween the machines, and (iii) minimize the number of supersteps. Balancing theseobjectives is a nontrivial task. Nevertheless, HBSP1 provides assistance with makingthe tradeo�s necessary for the design of e�cient heterogeneous programs.3.2 Heterogeneous Algorithm DesignThe HBSP1 model provides parameters that allow application developers to exploitthe heterogeneity of the underlying system. The model promotes a two-fold strat-4



egy for designing heterogeneous collective operations. First, faster machines shouldbe involved in the computation more often than their slower counterparts. Collectiveoperations use speci�c nodes to collect or distribute data to the other nodes in the sys-tem. For faster algorithmic performance, these nodes should be the fastest machinesin the system. Secondly, faster machines should receive more data items than slowermachines. This principle encourages the use of balanced workloads, where machinesreceive problem sizes relative to their communication and computational abilities. Par-titioning the workload so that nodes receive an equal number of elements works quitewell for homogeneous distributed environments. However, this strategy encourages un-balanced workloads in heterogeneous environments since faster machines typically sitidle waiting for slower nodes to �nish a computation.Throughout the rest of this section, let n represent the total number of items ofinterest. Balanced workloads assume Pj possesses cjn elements.3.2.1 ScatterThe scatter operation uses a single root node to distribute a unique message to eachof the other nodes. Here, each processor j will receive cjn unique data items fromPf . In the homogeneous version, each node receives np elements. The HBSP1 scatteralgorithm requires a single superstep. Therefore, the size of the single, heterogeneoush-relation is maxfrj � cjn; rf � ng. Each processor's rj value is relative to the fastestprocessor. Hence, rf = 1 and rj � rf . Recall that cj is inversely proportional to thespeed of Pj . Consequently, rjcj < 1. Thus, the HBSP1 scatterr cost is gn+ L.The above cost of the scatter operation is e�cient since the fastest processor isperforming most of the work. If rjcj > 1; Pj has a problem size that is too large. Itscommunication time will dominate the cost of the scatter operation. Whenever possi-ble, the fastest processor should handle the most data items. Our analysis demonstratesthe importance of balanced workloads. Thus, the HBSPk model rewards programs withbalanced design.3.2.2 One-to-all broadcastIn the one-to-all broadcast, only the source processor has the data that needs to bebroadcast. At the termination of the procedure, each node has a copy of the data.The HBSP1 broadcasts executes similarly to the two-phase BSP algorithm (Hill et al.,1997). During the �rst phase, the root node distributes np items to each processor.Afterwards, processor j is responsible for sending its share of the data to its peers.During the �rst phase of the algorithm, Pj receives np items from Pf . This phaserequires a heterogeneous h-relation of size maxfrf �n; rj � npg. In a typical environment,it is reasonable to assume that p ranges from the tens to the hundreds. It is quiteunlikely that a machine would communicate p times slower than the fastest machine.If this is the case, it may be more appropriate not to include that machine in thecomputation. As a result, the communication time of the �rst phase reduces to gn.During the second phase, each processor must receive the same number of items. Thus,the slowest processor will cause a bottleneck. Let rs represent the communication timeof the slowest node. This results in a communication time of grsn. Actually, Ps willreceive n� np elements. We use n to simplify the notation. Thus, the complexity of a5



two-phase broadcast on an HBSP1 machine is gn(1 + rs) + 2L.As a point of comparison, the one-phase broadcast (Pf sends n items to each of itschildren) costs gnp+L. For reasonable values of rs, the two-phase approach is the betteroverall performer. An interesting conclusion concerning the broadcast operation is thatit e�ectively cannot exploit heterogeneity. Since the slowest processor must receive nitems, its cost will dictate the complexity of the algorithm. Moreover, partitioning theproblem size based on the cj parameter is ine�ective. Although wall clock performancemay improve, theoretically, the resulting speedup is negligible.4 Experimental ApproachUsing the HBSP1 as a guide, we have designed and analyzed two collective commu-nication operations|scatter and one-to-all broadcast. According to the model, thealgorithms should demonstrate good performance on a heterogeneous cluster of work-stations. We are now ready to investigate the behavior of these algorithms on an actualheterogeneous platform. In this section, we describe our experimental methodology andSection 5 provides the experimental results.4.1 HBSPlibOur collective communication algorithms are implemented using the HBSP Program-ming Library (HBSPlib). Table 1 lists the functions that constitute the HBSPlibinterface. The design of HBSPlib incorporates many of the functions contained inBSPlib (Hill, McColl, Stefanescu, Goudreau, Lang, Rao, Suel, Tsantilas and Bisseling,1998). HBSPlib is written on top of PVM (Sunderam, 1990), a software package thatallows a heterogeneous network of computers to appear as a single, concurrent, com-putational resource. The computers compose a virtual machine and communicate bysending messages to each other. We use PVM's pvm send() function for asynchronouscommunication to directly send messages between heterogeneous processors. To receivea message, we take advantage of the PVM function pvm recv(). The pvm barrier()primitive provided by PVM assisted with the development of hbsp sync(). However,our implementation of global synchronization is somewhat complex since we neededto guarantee that all messages arrived at their destination before the beginning of thenext superstep.HBSPlib incorporates functions that allow the programmer to take advantage ofthe heterogeneity of the underlying system. Under HBSP1, faster machines shouldperform the most work. The primitive hbsp get rank(1) returns the identity of thefastest processor. hbsp get rank(p) returns the slowest machine's identity, where pis the number of processors. HBSPlib also includes functions to help the program-mer distribute the workload based on a machine's ability. The HBSPlib primitivehbsp get speed(j) provides the speed of processor j. hbsp cluster speed returnsthe speed of the entire cluster. When combined together, these two functions allow for�nding the value of processor j's cj parameter. We discuss in more detail in Section 4.4.Figure 2 shows the implementation of the scatter algorithm using HBSPlib. Thealgorithm requires 3 parameters: sendbuf, which contains the data items the rootnode sends to the other processors; sendcounts, which is an array that tells the root6



Function Semanticshbsp begin Starts the program with the number of processors requested.hbsp end Called by all processors at the end of the program.hbsp abort One process halts the entire HBSP computation.hbsp pid Returns the processor id in the range of 0 to one less thanthe number of processors.hbsp time Returns the time (in seconds) since hbsp begin was called.The timers on each of the processors are not synchronized.hbsp nprocs Returns the number of processors.hbsp sync The barrier synchronization function call. After the call, alloutstanding requests are satis�ed.hbsp send Sends a message to a designated processor.hbsp get tag Returns the tag of the �rst message in the system queue.hbsp qsize Returns the number of messages in the system queue.hbsp move Retrieves the �rst message from the processor's receive bu�erhbsp get rank Returns the identity of the processor with the requested rank.hbsp get speed Returns the speed of the processor of interest.hbsp cluster speed Returns the total speed of the heterogeneous cluster.Table 1: The functions that constitute HBSPlib interface.node the number of elements that each processor should receive (i.e., the root will sendsendcounts[j] elements to Pj); recvbuf, where the nodes store the items receivedfrom the root node; and root, the identity of the source node. The algorithm �rstrequires the root node to send the data to all of the other processors. In order tosend the data, the hbsp send requires the destination, a tag to identify the message(if relevant), the beginning address of the data bu�er, and the size of the data to becommunicated. In the second superstep, each processor puts the data sent to it fromthe root into its recvbuf.4.2 Experimental platformOur experimental testbed consists of a non-dedicated, heterogeneous cluster of SUNand SGI workstations at the University of Central Florida. Table 2 lists the speci�ca-tions of each machine. Our platform is quite heterogeneous. CPU speeds range from85 MHz to 360 MHz and memory sizes vary between 64 MB to 256 MB. Each node isconnected by a 100Mbit/s Ethernet connection.4.3 Machine rankingThe ranking of the heterogeneous nodes is determined by the BYTEmark bench-mark (Magazine, 1995), which consists of a variety of di�erent tests that extensivelyexercise a machine's capabilities. A sampling of programs in the benchmark suiteinclude numeric and string sorting, an IDEAL encryption algorithm, Hu�man com-pression, a oating-point package, a back-propagation network simulator, and a LUDecomposition solver. 7



void bsp_scatter(int *sendbuf, int *sendcounts, int *recvbuf, int root){ int bytes, i, j, offset, size, temp;/* root sends data to the processors */if (hbsp_pid() == root) {offset = 0;for (i = 0; i < p; i++) {if (root != i)hbsp_send(i, NULL, sendbuf+offset, sendcounts[i] *sizeof(int));elsetemp = offset;offset += sendcounts[i];}/* root copies its data into recvbuf */size = sendcounts[root];for (i = 0; i < size; i++)recvbuf[i] = sendbuf[i+temp];}hbsp_sync();/* processors receive data from root */if (hbsp_pid() != root) {hbsp_get_tag (&bytes, NULL);bsp_move(recvbuf, bytes);}} Figure 2: The scatter algorithm written using HBSPlib.Host CPU type CPU speed (MHz) Memory (MB) Data cache (KB)aditiz UltraSPARC II 360 256 16chromus microSPARC II 85 64 8dcn sgi1 MIPS R5000 180 128 32dcn sgi3 MIPS R5000 180 128 32gradsun1 TurboSPARC 170 64 16gradsun3 TurboSPARC 170 64 16gromit UltraSPARC IIi 333 128 16sgi1 MIPS R5000 180 96 32sgi3 MIPS R5000 180 96 32sgi7 MIPS R5000 200 64 32Table 2: Speci�cation of the nodes in our heterogeneous cluster. z A 2 processor system,where each number is for a single CPU. 8



Machine Integer Floating-pointIndex Indexaditi 4.45 3.77chromus 0.75 0.59dcn sgi1 2.80 3.73dcn sgi3 2.79 3.67gradsun1 1.80 1.41gradsun3 1.81 1.42gromit 4.89 3.33sgi1 2.81 3.60sgi3 2.77 3.30sgi7 3.13 4.11Table 3: BYTEmark benchmark scores.After running all of the tests, BYTEmark produces two overall �gures, an Integerand a Floating-point index. The Integer index is the geometric mean of those teststhat involve only integer processing. The remaining tests comprise the Floating-pointindex. Since the benchmark is a few years old, the index score calculation is based onthe performance of a 90 MhZ Pentium. If a machine has an index score of 2.0, it istwice as fast a 90 MhZ Pentium computer.Table 3 presents the Integer and Floating-point index scores for each machine inthe heterogeneous cluster. Since we consider integer data only, the Integer index scoreswere used to rank the processors. According to the results, chromus is the slowest node.gromit is the fastest machine in the cluster. This result is surprising considering aditiappears faster on paper. Interestingly, aditi narrowly edges out gromit in every test,except string sort, where gromit outperforms aditi with a score of 7.63 to 2.40. SinceBYTEmark uses only a single execution thread, it cannot take advantage of aditi'sadditional processor. This does not present a problem for our experiments since ourHBSPlib implementation does not use threads. We ran our experiments with bothaditi and gromit as the fastest processor. There was no major di�erence in theexecution times. Therefore, we consider gromit to be the fastest processor in thecluster.4.4 Parameter estimationIn order to compare the actual and predicted (theoretical) execution times of thealgorithms, we must determine the values of the HBSP1 parameters on an actualheterogeneous platform. Below, we describe our method for �nding the values of thecj ; rj , and L parameters of the HBSP1 model. It is important to note that these arearchitecture-dependent parameters. If we were to change the underlying platform, wewould need to recalculate the parameter values for that environment.Unlike a homogeneous environment, the ordering of the processors can have a dra-matic e�ect on the performance results. To ensure consistent results, we apply thesame processor ordering for each experiment. Table 4 shows the ordering. Whenp = 2, the experiments utilize gromit and chromus. The speed of this con�guration is5:64, which is the sum of each machine's Integer index score. Each machine's cj value is9



p Machine Speed L(�s)2 gromit, chromus 5.64 9,0004 aditi, dcn sgi1 12.89 15,0006 dcn sgi3, gradsun1 17.48 23,0008 gradsun3, sgi1 22.10 30,00010 sgi3, sgi7 28.00 37,000Table 4: Cluster speed and synchronization costs.machine rjaditi 1.03chromus 4.08dcn sgi1 2.12dcn sgi3 1.95gradsun1 2.00gradsun3 2.46gromit 1.00sgi1 1.68sgi3 1.20sgi7 1.16Table 5: rj values.based on its Integer index score and the cluster speed. In general, Ppj=0 cj = 1. Whenp = 2, gromit's cj value is 4:895:64 (or .867). The cj value of chromus is .133. Therefore,gromit receives 86.7% of the data elements and chromus acquires the remaining 13.3%.When p = 4, the cluster speed is 12.89. The workstations that comprise the clusterare gromit, chromus, aditi, and dcn sgi1, which receive 37.9%, 5.8%, 34.5%, and21.7% of the input, respectively.Table 4 also presents the synchronizing costs of the clusters comprised of 2, 4, 6,8, and 10 workstations. For example, synchronizing two processors (i.e, gromit andchromus) requires 9,000 �s. The value of L corresponds to the time for an emptysuperstep (i.e., no computation or communication). When p = 4, 15,000 �s are neededin order to synchronize the processors. Several factors contribute to the high synchro-nization costs. Since the cluster is non-dedicated, many other nodes share the networklink, which e�ectively degrades communication performance. Secondly, our implemen-tation of barrier synchronization is not necessarily e�cient. Despite the high L values,our collective algorithms outperformed their PVM counterparts. Additional work willfocus on the development of a more e�cient barrier synchronization primitive.Table 5 shows the rj values achieved on our heterogeneous cluster. To obtain thesevalues, we measure the time needed for each machine to inject a su�ciently large packetinto the network. gromit performed the best with a score of 0.196 �sbyte . Processor j'srj value is relative to this score.
10



5 Experimental ResultsThe input data for each experiment consists of 100 KBytes to 1000 KBytes of uniformlydistributed integers. The problem size, n, refers to the largest number of integerspossessed by the root. Experimental results are given in terms of an improvementfactor. Let TA and TB represent the execution time of algorithm A and algorithm B,respectively. The improvement factor of using algorithm B over algorithm A is TATB .The HBSPk model encourages the use of fast processors and balanced workloads.According to the model, applications that embody both of these principles will resultin good performance. We designed two types of experiments to validate the predictionsof the model. The �rst experiment tests whether processor speed has an impact onalgorithmic performance. Let Ts represent the execution time of a collective routineassuming the root node is the slowest processor, Ps. Tf denotes the algorithmic costof using Pf as the root. For these experiments, each processor has an equal number ofdata items since our objective is to monitor the performance of slow versus fast rootnodes. Hence, cj = 1p . The results demonstrate that often times using the fastest nodeas the root results in signi�cant performance improvement.Our second experiment studies the bene�t of using the fastest processor as theroot and balanced workloads. Let Tu be the execution time when the workload isunbalanced. Note that Tu = Tf . Each processor j's cj value is 1p . Tb denotes theexecution time when the workload is balanced. Here, cj is computed as described inthe previous section. In most cases, the results demonstrate that balanced workloadsimprove the performance of the algorithm.We also investigate the accuracy of the HBSP1 cost function in predicting execu-tion times. Similarly to BSP, we consider HBSPk to model only communication andsynchronization (Goudreau et al., 1999). I/O and local computation are not modeled.As a result, none of our experiments include I/O. Furthermore, the work component(w) of our algorithms is neglible. As a result, the cost model that we use to predict thecost of a superstep is gh + L. Our results show that the model is able to predict per-formance trends, but not speci�c execution times. The inability of HBSPk to predictspeci�c execution times does not reect negatively toward the model. The accuracy ofthe cost function depends on the choices made in the implementation of the HBSPliblibrary. Thus, one source for inaccurate predictions may result from the shortcomingsof the library implementation.The remainder of this section provides experimental results for the scatter and one-to-all broadcast operations. Complete experimental results can be found in Williams(2000). Each data point is the average of 10 runs. For each of the experiments, thelogic of the algorithms is not changed. Instead, the modi�cations occur in either rootnode selection or problem size distribution. In both cases, performance increase issubstantial.5.1 ScatterFigure 3 (a) plots the increase in performance if the root node is the fastest processor.The improvement factor is steady as the problem size increases. The best improvementoccurs when p = 6 and n = 500KB. When p = 2, TsTf < 1. Figure 3 (b) compares theperformance of unbalanced and balanced workloads. The results indicate that there11
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Figure 3: Scatter actual performance. The improvement factor is determined by (a) TsTfand (b) TuTb . The problem size ranges from 100KB to 1000KB of integers. Each data pointrepresents the average of 10 runs on a cluster comprised of 2, 4, 6, 8, and 10 heterogeneousprocessors.is a bene�t to distributing the problem size based upon a processor's computationalabilities. Here, p = 2 had the best performance with a maximum improvement of 3:62.Figure 4 shows predicted performance for the scatter operation.For both experiments, the results at p = 2 are interesting. First, Figure 3 (a)shows that it is better for the root node to be the slowest workstation. This seemscounterintuitive. In our implementation of scatter (as well as the other collectiveoperations), a processor does not send data to itself. When Ps is the root, Pf receivesnp items from it. Similarly, if the fastest processor is the root, Ps receives np elementsfrom Pf . Ts < Tf implies that it is more bene�cial to have Pf waiting on data fromPs. Clearly, the root node should be Pf as the number of processors increase.Secondly, at p = 2, balanced workloads contribute to increased performance. Tuis the execution time of Ps receiving np data elements from the fastest processor. Tbis the cost of Ps receiving csn integers from Pf , where cs is calculated as described inSection 4.4. Note that csn < np . In this setting, balanced workloads make a di�erence(i.e., Tb < Tu) since Pf sends a smaller number of elements to Ps than in the unbalancedcase.5.2 One-to-all broadcastFigure 5 (a) compares the execution time of the algorithm assuming the root node iseither Ps or Pf . The plot demonstrates that their is neglible improvement in perfor-mance. The HBSPk model predicted this behavior. The broadcast operation takessmall advantage of the heterogeneity since each processor must receive all of the data.In fact, the improvement in performance is a result of Pf distributing np integers toeach processor during the �rst phase of the algorithm. Our analysis also applies ifprocessor j receives cjn elements during phase one of the algorithm. Figure 5 (b)corroborates the theoretical results. Figure 6 plots the predictions of the cost model,12
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Figure 4: Scatter predicted performance. The improvement factor is determined by (a) TsTfand (b) TuTb . The problem size ranges from 100KB to 1000KB of integers. Each data pointrepresents the predicted performance on a cluster comprised of 2, 4, 6, 8, and 10 heteroge-neous processors.which over-predicts the bene�t of using the fastest processor.6 ConclusionsThe HBSP1 model o�ers a framework that promotes the development of distributedapplications for heterogeneous clusters of workstations. HBSP1 incorporates a smallset of parameters that characterize the underlying heterogeneous platform. E�cientalgorithmic execution results from nodes receiving a workload proportional to theircomputational and communication abilities, if applicable. For example, a close ex-amination of the one-to-all broadcast operation demonstrates that it is impossible toavoid unbalanced workloads since the slowest machine must receive n items. The per-formance of our collective operations is quite impressive. Complete results are shownin Williams (2000). Fundamental changes to the algorithms are not necessary in orderto attain an increase in performance. Besides good performance, the model predictsthe behavior of our collective routines within a reasonable margin of error.In conclusion, HBSP1 o�ers a single-system image of a heterogeneous platform tothe application developer. Under HBSP1, improved performance is not a result of pro-grammers having to account for myriad di�erences in a heterogeneous environment.By hiding the non-uniformity of the underlying system from the application developer,the HBSP1 model o�ers an environment that encourages the design of heterogeneousdistributed software in an architecture-independent manner. Extensions to this workinclude designing HBSP1 applications that can take advantage of our heterogeneouscollective routines. We also intend to perform additional experiments on a heteroge-neous cluster with a larger set of workstations.
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Figure 5: One-to-all broadcast actual performance. The improvement factor is determinedby (a) TsTf and (b) TuTb . The problem size ranges from 100KB to 1000KB of integers. Eachdata point represents the average of 10 runs on a cluster comprised of 2, 4, 6, 8, and 10heterogeneous processors.
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Figure 6: One-to-all broadcast predicted performance. The improvement factor is deter-mined by (a) TsTf and (b) TuTb . The problem size ranges from 100KB to 1000KB of integers.Each data point represents the predicted performance on a cluster comprised of 2, 4, 6, 8,and 10 heterogeneous processors.
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