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We study the superconducting properties of a doped one-layer graphene by using a model in
which the interparticle attraction is caused by a boson �phonon-like� excitations. We study the
dependence of the superconducting gap � and the mean-field critical temperature Tc

MF on the
carrier density, attraction strength, and characteristic �Debye� bosonic frequency. In addition, we
study the temperature-carrier density phase diagram of the model by taking into account the ther-
mal fluctuations of the order parameter. We show that the fluctuations result in a significant sup-
pression of Tc

MF, such that the real �Berezinskii-Kosterlitz-Thouless� critical temperature Tc is
much lower than Tc

MF. The region Tc�T�Tc
MF is characterized by a finite density of states at the

Fermi level �the pseudogap phase�. We show that the width of the temperature interval of the
pseudogap phase depends strongly on the model parameters—carrier concentration, attraction
amplitude, and boson frequency. © 2009 American Institute of Physics. �doi:10.1063/1.3224719�

I. INTRODUCTION

The possibility of superconductivity in graphene is one
of the most interesting and important problems of the mod-
ern theory of superconductivity. This problem is a part of the
more general problem of understanding the physical, espe-
cially the electronic, properties of graphene, which is one of
the most important basic units of carbon-based structures.
These structures have a great potential to be used in modern
nanotechnologies, especially due to strong and flexible car-
bon bonds. The single layer of graphene can be considered as
the basis for two-dimensional �one-to several-layer
graphene�, one-dimensional �carbon nanotubes and nanorib-
bons�, and zero-dimensional �fullerene molecules, graphene
flakes, etc.� structures. Naturally, one needs to understand the
low-temperature properties of such systems, when it is pos-
sible that the ground state of the system is the superconduct-
ing state. Moreover, the superconducting properties of
graphene demostrate many interesting applications. During
the last years, great progress has been made in understanding
some of the electronic properties of graphene �for overview
and references, see Ref. 1�.

Evidences of superconductivity in graphite and graphite-
sulfur structures have been found experimentally.2–5 Theoret-
ical studies of superconductivity in graphene were performed
in Refs. 6–14. Since the Fermi surface of undoped graphene
consists of Dirac points, the quantum-critical-point scenario
of superconductivity in this case was analyzed in Refs. 6 and
8. It was found that in the undoped case, superconductivity
takes place when the coupling is greater than a critical value.
Superconductivity in graphene within different scenarios,
like the phonon, plasmon,9 resonant-valence-bond, and
density-wave scenario, was considered in Refs. 6, 10, and 11.
In the doped case, when the Fermi surface is finite, the su-
perconductivity can take place at any value of coupling. The
doped case was analyzed within the framework of different

models in Refs. 6, 7, 9, 10, 12, and 13. In particular, a simple
model with an electron-electron attraction which is defined
by the amplitude and the range �or the Debye-like cutoff
energy �0 in the boson-exchange model� was considered in
Ref. 12. The authors solved the coupled system of the BCS
gap equation and the particle number equation, in order to
analyze the coupling dependence and doping dependence of
the superconductivity. The possibility of strong enhancement
of superconductivity with the critical temperature up to Tc

�10 K, due to the van Hove singularities in the electron
density of states in graphene at energies of order 3 eV with
respect to the band bottom was discussed in Ref. 13. One
needs to realize in practice such highly doped samples of
graphene in order to check the possibility of the strong en-
hancement of superconductivity. The possibility of supercon-
ductivity in the papers mentioned above was analyzed within
the mean-field approximation, when the fluctuations were
neglected. Such fluctuations cannot be neglected in 2D sys-
tems, since they can significantly modify the properties of
the system. In particular, the thermal fluctuations in a two-
dimensional system lead to a significant reduction of the
mean-field superconducting critical temperature Tc

MF �Refs.
15 and 17�. In this case, the real critical temperature is the
Berezinskii-Kosterlitz-Thouless �BKT� temperature Tc

�TBKT�Tc
MF, below which the order parameter is algebra-

ically ordered. Recently, we have studied the superconduct-
ing properties of the model considered in Ref. 12 in the case
of single- and double-layer graphene by taking into account
the thermal fluctuations.14 We have shown that the fluctua-
tions lead to a drastic reduction of the superconducting criti-
cal temperature in both cases. We have also shown that at
temperatures Tc�T�Tc

MF in both systems the fluctuations of
the order parameter produce so-called pseudogap phase with
a reduced DOS. In that paper, we have considered the limit
�0=�, which corresponds to the case of local attraction.
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Here we consider the case of superconductivity for boson-
exchange electron-electron attraction and show that the be-
havior of the system depends strongly on the bosonic energy
�Debye frequency in the phonon case�. The results obtained
in this paper can lead to a further clarification of the mecha-
nism of possible superconductivity in graphene.

We dedicate this paper to an outstanding person, the or-
ganizer and first Director of the Institute for Low Tempera-
ture Physics and Engineering, Prof. B. I. Verkin, for whom
the physics of superconductivity was one of the main re-
search interests.

II. THE MODEL

The effective superconducting Hamiltonian of doped
single-layer graphene has the following form:

H��� = �
�

��
†��,r����− i � � − 	�����,r�

−
1

2
� dr1� dr2�↑

†��,r2��↓
†��,r1�V�r1

− r2��↓��,r1��↑��,r2� , �1�

where ��
†�� ,r� and ���� ,r� are the fermionic operators of

creation and annihilation of a quasiparticle on the site r at
time � with spin �= ↑↓; ��−i� � and 	 are the free-fermion
dispersion relation and the chemical potential, and V�r1

−r2� is the interparticle attraction, respectively. The energy
spectrum ��k� around the Dirac points can be approximated
as �
�k�= 
vF	k	, where vF=3ta /2�106 m /s is the Fermi
velocity, t=2.8 eV is the nearest-neighbor hopping, and a
=1.42 Å is the distance between the nearest carbon atoms. In
the undoped case, the band �−�k� is filled. For definiteness,
we consider the electron-doped case with the conduction
band �+�k����k�.

We approximate the superconducting attraction by the
following interparticle potential:

Vp = V0���0 − 	��p� − 		� , �2�

where V0 is the amplitude of the attraction and �0 is the
bosonic �Debye-like� cutoff frequency, which corresponds to
a half of the BCS attraction shell around the Fermi energy
surface, which, in most cases, is proportional to 	 �see dis-
cussion below�. We shall study the dependences of the su-
perconducting properties of the model on V0 and �0 at dif-
ferent values of the doping, since knowledge of such
dependences can help establish the source of possible super-
conducting attraction in graphene �the coupling energy and
boson frequency in the case of a bosonic mechanism of su-
perconductivity�. We shall consider the isotropic s-wave
pairing, when the gap ��k� is momentum independent; how-
ever, the results obtained below will remain qualitatively the
same for more complicated interactions and different sym-
metries of the order parameter �see, e.g., Ref. 17�.

III. THE MEAN-FIELD APPROXIMATION

In order to study the superconducting properties of the
system, we shall consider the partition function

Z =� D�†D� exp

− �

0

1/T

d���
�
� dr��

†��,r�������,r� + H����
 , �3�

which can be obtained by performing the path integration
over the fermionic fields. To find Z, one can introduce the
Nambu spinor operators:

���,r� = ��↑��,r�
�↓

†��,r�
�, �†��,r� = ��↑

†��,r�,�↓��,r�� . �4�

We use the Hubbard-Stratonovich transformation in or-
der to decouple the four-fermion term in the Hamiltonian
�see Eq. �1��. In this case, the partition function is equivalent
to

Z =� D�†D�D
†D
e−S��†,�,
†,
�, �5�

where

S��†,�,
†,
� = �
0

1/T

d�� dr1� dr2���r1

− r2��
�

��
†��,r1���� + �z����r2

�

− 	������,r2� +
1

2

	
�r1,r2�	2

V�r1 − r2�

−
1

2
�†��,r1��+���,r2�
��,r1,r2�

−
1

2

†��,r1,r2��†��,r1��−���,r2�� ,

�6�

is the effective action, and �
= 1
2 ��x
 i�y� and �z are the

Pauli matrices. In Eq. �6�, 
�� ,r1 ,r2��V�r1

−r2��↓�� ,r1��↑�� ,r2� is a complex function, which has the
physical meaning of the superconducting order parameter.
After integration over the Nambu spinors in Eq. �5� one can
get the expression for the thermodynamic potential
��
† ,
�:

e−��
†,
�/T =� D�†D�e−S��†,�,
†,
�. �7�

In the case of the mean-field approximation, we assume that

�� ,r1 ,r2� is independent of momentum and time in the
momentum representation, and is equal to ��� ,k���
=const. In order to find the equations for the superconduct-
ing gap � and the chemical potential, one needs to minimize
���� with respect to � together with the particle-number
equation �1 /V��� /�	=−nf �V is the volume of the system�.
This gives:

1 =
1

2�
k

V�k�tanh�E�k�
2T

� 1

E�k�
, �8�
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nf = 2�
k

1 − tanh�E�k�

2T
���k� − 	

E�k� 
 , �9�

where E�k�=����k�−	�2+�2 is the quasiparticle spectrum
in the superconducting state. The solution of the system of
equations �8� and �9� gives the doping and temperature de-
pendence of � and also the doping dependence of the mean-
field critical temperature Tc

MF �at �=0�.
At T=0 the integration in Eqs. �8� and �9� can be easily

performed, and one gets the following system of equations
for the superconducting gap and chemical potential as func-
tions of the Fermi energy �F=vF

�8�nf, coupling �
=V0 /4�vF

2 and bosonic frequency �0:

1

�
= ���0 − 	����0

2 + �2 − �	2 + �2

+ 	 ln���0 + ��0
2 + �2��	 + �	2 + �2�/�2��

+ ��	 − �0�2	 ln���0 + ��0
2 + �2�/�� , �10�

�F
2

4
= −

�2

2
+ 	2 + 3	�	2 + �2 + �2 ln��W − 	

+ ��W − 	�2 + �2��	 + �	2 + �2�/�2� , �11�

where ��x� is the step function and we have assumed that the
bandwidth W is much greater than 	, �0, and �. One can
find an approximate analytical solution of the equation for
the zero-temperature superconducting gap:

� � �2�0	e−�1/�−�0�/2	���0 − 	� + 2�0e−1/2	���	 − �0� .

�12�

In deriving this result we assumed that �0��. One can
show that at zero doping, �=0 when ��1 /�0. In other
words, in this case there is a critical value of the coupling
below which there is no pairing. At finite doping, supercon-
ductivity takes place at any finite value of the coupling �see
Ref. 12�. One can compare the result of Eq. �12� with the
corresponding expression for the two-dimensional system
with parabolic dispersion:

� � 2��0���F���0 − 	� + ��0��	 − �0��e−4�/mV0. �13�

�see, e.g., Ref. 17�. There are several important differences
between the results �12� and �13�. Namely, i� in the case of
graphene, at low doping the gap is exponentially suppressed
when 	 is less than 1

2 ��1 /��−�0� �Figs. 1 and 2�. This sup-
pression is due to the factor in the exponent, which is pro-
portional to the single-particle density of states �DOS� on the
Fermi level. In the case with parabolic dispersion, the DOS
on the Fermi level is a constant. ii� Another consequence of
the difference of the density of states is increasing of the gap
with growth of the carrier density. In the case of Eq. �13�, the
gap is carrier density independent at large doping, approxi-
mately when 	��0. The doping dependence of the gap was
analyzed by assuming that the doping is proportional to the
chemical potential. Strictly speaking, in the two-dimensional
system this is correct only for parabolic dispersion at large
doping. As follows from Eq. �11�, in our case the particle
density is proportional to 	2 when 	��, � ln W, which is
true when the doping is rather large and the coupling is

weak. In other cases, the relation between nf and 	 is more
complicated. Generally speaking, one can also obtain the
crossover from superconductivity to superfluidity with de-
creasing doping and/or increasing the coupling, when the
chemical potential becomes negative �for an overview, see
Ref. 17�. However, in actual paper we consider the supercon-
ductivity scenario only, by assuming that 	 is positive �see
Eq. �2�, where the interaction is defined inside the belt −�0

����0 around the “Fermi energy”�. The dependences of
Tc

MF on nf, V0, and �0 are the same as those of ��T=0� �Figs.
3 and 4�. Moreover, we have found that the ratio 2��T
=0� /Tc

MF is close to the BCS value 3.52. In the next Section,
we demonstrate that the real Tc is much lower than Tc

MF due
to the thermal fluctuations in the two-dimensional system.

IV. FLUCTUATIONS

In order to study the fluctuation effects in the system, we
represent the fermionic operators as the product of the neu-
tral fermions and the phases:

����,r� = ����,r�exp�i���,r�/2� ,

1.5

1.0

0.5

0
0.25 0.50

nf

�
(T

=
0
)

V = 4.2, V = 6.8F 0

�0 = 1, 5, 10, 15, 20

FIG. 1. The doping dependence of the zero-temperature gap at different
values of the bosonic frequency �0. Here and in other figures all parameters
are given in eV, and the carrier density is divided by two.

1

0
0.25 0.50

nf

�
(T

=
0
)

V = 4.2,F �0 > W

2

3

FIG. 2. The doping dependence of the zero-temperature gap at different
values of coupling V0=3.2, 4, 5, 6, 6.8, 8, and 10.
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��
†��,r� = exp�− i���,r�/2���

†��,r� , �14�

such that

���,r� = ei�z���,r�/2Y��,r� = ei�z���,r�/2��↑��,r�
�↓

†��,r�
� ,

�†��,r� = Y†��,r�e−i�z���,r�/2 = ��↑
†��,r� ,

�↓��,r�
�e−i�z���,r�/2.

�15�

In this case, the order parameters become


��,r1,r2� = ���,r1,r2�exp�i��R�� ,


†��,r1,r2� = 
*��,r1,r2� = ���,r1,r2�exp�− i��R�� .

�16�

In the last equations, ��� ,r1 ,r2�= 	
�� ,r1 ,r2�	 is the modu-
lus of the order parameter, and ��R�����r1�+��r2�� /2,
where R= �r1+r2� /2 is the center-of-mass coordinate of two

electrons, is its phase. This approximation corresponds to the
limit of weak thermal fluctuations, when the space depen-
dence of the phase is not strong. Below, we neglect the time
�quantum� fluctuations, which become important only at very
low temperatures, and also assume that the gap depends only
on the relative electron coordinate r1−r2, i.e.,


��,r1,r2� � ��r1 − r2�ei��R�. �17�

The approximation given by Eq. �17� means that the dynam-
ics of Cooper pairs is described by the order-parameter
modulus, and its symmetry depends on the relative pair co-
ordinate, whereas the motion of the superconducting conden-
sate is defined by the slowly varying function ��R�, which
depends on the center-of-mass coordinate of the electrons.

Substitution of Eqs. �15� and �17� into Eq. �7� and inte-
gration over the fermionic fields Y† and Y yield the follow-
ing equation for the thermodynamic potential as a function of
�:

���,���,��� = T�
0

1/T

d�� dr1� dr2
1

2

	��r1 − r2�	2

V��r1 − r2��

− Tr ln�G−1 − �� + Tr ln G−1, �18�

where

Gk�t,t�� = − i�T�Yk�t�Yk
†�t���� �19�

is the time-ordered mean-field matrix Nambu Green’s func-
tion. It has the following form in the Matsubara frequency-
momentum representation:

Gk�i�n� =
1

i�n − �z���k� − 	� − �x��k�
. �20�

In Eq. �18�, � is the self-energy of the inhomogeneous
Green’s function, which depends on the gradients of the
phase of the order parameter:

��r1,r2� = ��r1 − r2�

��e−i�z��r1�/2�z��− i�r2
�ei�z��r2�/2 − �z��− i�r2

�� .

�21�

In Eq. �18�, Tr means the space-time integration and the
matrix trace �for details, see, e.g., Ref. 18�. In order to find
the thermodynamic potential, it is convenient to expand the
logarithm in powers of �:

Tr ln�G−1 − �� = Tr ln G−1 + Tr�
n

1

n
�G��n. �22�

This allows one to get the following expression for the
second-order expansion of the thermodynamic potential in
the limit of small fluctuations of the phase of the order pa-
rameter:

���,�� =
J
2
� d2r����2, �23�

where

J =
vF

2

8T
� d2k

�2��2

1

cosh2�E�k�/2T�
�24�

is the superconducting stiffness �see Appendix�.

1.0

0.5

0
0.25 0.50

nf

V = 4.2, V = 6.8F 0

T

FIG. 3. The temperature-carrier density phase diagram at different values of
frequency �0=1, 5, and 20. The solid curves correspond to Tc and the
dashed curves to Tc

MF.

1.0

0.5

0
0.25 0.50

nf

T

FIG. 4. The same as in Fig. 3 but for different values of the coupling, V0

=4, 6.8 and vF=4.2, �0=20.
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One can find the equation for the critical temperature of
the BKT transition Tc, below which the phases of order pa-
rameter become algebraically ordered, by using the analogy
with the 2D spin XY model, where the spin orientation cor-
responds to the vector �� in our problem. This equation has
the following form:

Tc =
�

2
J���	,Tc�,	,Tc� , �25�

where the function J is defined by Eq. �24�. The doping,
interaction, and bosonic frequency dependences of Tc can be
found by solving the system of equations �8�, �9�, and �25�.

A numerical analysis shows that Tc is significantly lower
than Tc

MF �Figs. 3 and 4�. The critical temperature decreases
with decreasing bosonic frequency �Fig. 3�. When the cou-
pling is not too strong, Tc is exponentially suppressed �Fig.
4�, similar to Tc

MF and ��T=0�. Our analysis shows that Tc

starts to grow rapidly at densities nf higher than the critical
value nf

cr�1 /V0
2 at large �0. In particular, in this case in

order to get a critical temperature higher than 1 K, one needs
to have the effective coupling �nfV0�1 eV �see Ref. 14�. It
is possible that Tc can be higher than the values obtained in
this paper due to a van Hove singularity, if rather high values
of doping ��F�3 eV� can be obtained. We have found also
that the ratio 2��T=0� /Tc is bigger than the BCS value 3.52,
and it increases with decreasing doping and acquires values
approximately two times bigger those of BCS.

Besides the reduction of the value of the critical tem-
perature, another important consequence of the thermody-
namic fluctuations is a finite DOS in the gap region at tem-
peratures Tc�T�Tc

MF, or the pseudogap phase,14 which can
be observed experimentally in graphene systems. A similar
phase is observed in high-temperature superconductors,
where the thermal fluctuations may also be responsible for its
formation �see, e.g., Ref. 19 and references therein�.

V. CONCLUSIONS

We have studied the doping, coupling, and boson-
frequency dependences of the superconducting properties of
a model of doped single-layer graphene by taking into ac-
count the thermodynamic fluctuations of the superconducting
order parameter. We have shown that, due to the form of the
doping dependence of the free-electron density of states, the
superconductivity is suppressed at low doping, and at high
values of doping the superconducting gap and critical tem-
perature increase with doping growth, which is different
from the two-dimensional system with the parabolic disper-
sion. We have found that the fluctuations lead to a significant
reduction of the critical temperature. Namely, for realistic
values of the model parameters, the critical temperature Tc is
exponentially suppressed at doping nf �nf

cr��1 eV /V0�2 at
large values of the bosonic frequency. The critical value nf

cr

decreases with decreasing �0. The results obtained in the
present paper can help to establish the mechanism of pos-
sible superconductivity in graphene, since the effective
electron-electron coupling and the bosonic frequency can be
estimated by comparing the theoretical results with the ex

perimentally measured temperature-carrier density phase dia-
gram.

V.M.L. acknowledges support through the Special Pro-
gram of the NAS of Ukraine. V.T. thanks the Department of
Energy for a partial support under grant number DOE-DE-
FG02-07ER15842.

APPENDIX: THE THERMODYNAMIC POTENTIAL FOR
THE PHASES OF THE ORDER PARAMETER

In this Appendix we derive the expression for the low-
energy effective action for the phases of the superconducting
order parameter, Eqs. �23� and �24�.

In order to find the thermodynamic potential within the
����2 approximation, one needs to consider the first two
terms in the expansion of Eq. �22�:

Tr ln�G−1 − �� � Tr ln G−1 + Tr�G�� +
1

2
Tr�G�G�� ,

�A1�

where the �-dependent part of the self-energy given by Eq.
�21� is

��r1,r2� = ��r1 − r2�

��e−i�z��r1�/2�zvF�− �r2

2 ei�z��r2�/2 − �zvF�− �r2

2 � .

�A2�

Since the last equation contains the square roots of the
Laplace operators, it is more convenient to calculate the trace
of the operators in Eq. �A1� in momentum space. In this
case, the action of the operator �−�r

2 has a simple form:

�− �r
2f�r� = �

k
	k	eikrfk, �A3�

where fk is the Fourier transform of f�r�. In the momentum
representation, the effective action Eq. �23� has the following
form:

� =
J

2�
k

k2�k�−k. �A4�

Therefore, one needs to find the coefficient in front of �−k�k,
which is equal to one-half of the the superconducting stiff-
ness J in Eq. �23�. Since the term linear in � leads to a term
proportional to 	k	�k in Eq. �A1�, we neglect it. In fact, the
term linear in � can be absorbed into the bilinear term by
defining a new phase � shifted by the corresponding factor.
Therefore, we consider only the second-order term:

1

2
Tr�G�G�� = −

vF
2

8
Tr��

p
Gp

2��
k

k2�k�−k, �A5�

which gives

J = −
vF

2T

4
Tr�

p
�Gp

2� . �A6�

In the derivation of Eq. �A5� we kept only the term propor-

636 Low Temp. Phys. 35 �8–9�, August-September V. M. Loktev and V. Turkowski



tional to k2�k�−k. Equation �A5� gives the expression for the
superconducting stiffness �24�.
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