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ABSTRACT 

 

Active remote sensing techniques, such as Light Detection and Ranging (LiDAR), have 

transformed the field of forestry and natural resource management in the last decade. 

Intensive assessments of forest resources and detailed structural assessments can now 

be accomplished faster and at multiple landscape scales. The ecological applications of 

having this valuable information at-hand are still only being developed. This work 

explores the use of two active remote sensing techniques, airborne and portable LiDAR 

for forestry applications in a rapidly changing landscape, Southeastern Coastal Pine 

woodlands.  Understanding the strengths and weaknesses of airborne and portable 

LiDAR, the tools used to extract structural information, and how to apply these to 

managing fire regimes are key to conserving unique upland pine ecosystems. 

Measuring habitat structure remotely and predicting habitat suitability through modeling 

will allow for the management of specific species of interest, such as threatened and 

endangered species. 

 

Chapter one focuses on the estimation of canopy cover and height measures across a 

variety of conditions of secondary upland pine and hardwood forests at Tall Timbers 

Research Station, FL. This study is unique since it uses two independent high resolution 

small-footprint LiDAR datasets (years 2002 and 2008) and extensive field plot and 

transect sampling for validation. Chapter One explores different tools available for 

metric derivation and tree extraction from discrete return airborne LiDAR data, 

highlighting strengths and weaknesses of each.  Field and LiDAR datasets yielded 

better correlations for stand level comparisons, especially in canopy cover and mean 
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height data extracted. Individual tree crown extraction from airborne LiDAR data 

significantly under-reported the total number of trees reported in the field datasets using 

either Fusion/LVD and LiDAR Analyst (Overwatch).  

 

Chapter two evaluates stand structure at the site of one of the longest running fire 

ecology studies in the US, located at Tall Timbers Research Station (TTRS) in the 

southeastern U.S.  Small footprint high resolution discrete return LiDAR was used to 

provide an understanding of the impact of multiple disturbance regimes on forest 

structure, especially on the 3-dimensional spatial arrangement of multiple structural 

elements and structural diversity indices.  LiDAR data provided sensitive detection of 

structural metrics, diversity, and fine-scale vertical changes in the understory and mid-

canopy structure. Canopy cover and diversity indices were shown to be statistically 

higher in fire suppressed and less frequently burned plots than in 1- and 2-year fire 

interval treated plots, which is in general agreement with the increase from 2- to 3-year 

fire return interval being considered an‖ ecological threshold‖ for these systems 

(Masters et al. 2005). The results from this study highlight the value of the use of LiDAR 

in evaluating disturbance impacts on the three-dimensional structure of pine forest 

systems, particularly over large landscapes. 

 

Chapter three uses an affordable portable LiDAR system, first presented by Parker et 

al. (2004) and further modified for extra portability, to provide an understanding of 

structural differences between old-growth and secondary-growth forests in the Red Hills 

area of southwestern Georgia and North Florida. It also provides insight into the 
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strengths and weaknesses in structural determination of ground-based portable 

systems in contrast to airborne LiDAR systems. Structural plot metrics obtained from 

airborne and portable LiDAR systems presented some similarities (i.e. canopy cover), 

but distinct differences appeared when measuring canopy heights (maximum and mean 

heights) using these different methods. Both the airborne and portable systems were 

able to provide gap detection and canopy cover estimation at the plot level. The 

portable system, when compared to the airborne LiDAR sensor, provides an 

underestimation of canopy cover in open forest systems (<50% canopy cover), but is 

more sensitive in detection of cover in hardwood woodland plots (>60% canopy cover). 

The strength of the portable LiDAR system lies in the detection of 3-dimensional fine 

structural changes (i.e. recruitment, encroachment) and with higher sensitivity in 

detecting lower canopy levels, often missed by airborne systems. 

 

Chapter four addresses a very promising application for fine-scale airborne LiDAR data, 

the creation of habitat suitability models for species of management and conservation 

concerns. This Chapter uses fine scale LiDAR metrics, such as canopy cover at various 

height strata, canopy height information, and a measure of horizontal vegetation 

distribution (clumped versus dispersed) to model the preferences of 10 songbirds of 

interest in southeast US woodlands. The results from this study highlight the rapidly 

changing nature of habitat conditions and how these impact songbird occurrence. 

Furthermore, Chapter four provides insight into the use of airborne LiDAR to provide 

specific management guidance to enhance the suitable habitat for 10 songbird species.   
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The collection of studies presented here provides applied tools for the use of airborne 

and portable LiDAR for rapid assessment and responsive management in southeastern 

pine woodlands. The advantages of detecting small changes in three-dimensional 

vegetation structure and how these can impact habitat functionality and suitability for 

species of interest are explored throughout the next four chapters. The research 

presented here provides an original and important contribution in the application of 

airborne and portable LiDAR datasets in forest management and ecological studies.   
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INTRODUCTION 

 

With the rapid loss of ecosystems and their inherent biodiversity, there is a great need 

for tools that enhance conservation and management to take place at multiple spatial 

scales. Furthermore, these methods must be rapid and accurate, providing fine scale 

information over broad landscapes. Remote sensing is one way to evaluate and apply 

many of the key ecological concepts, such as the relationship of biodiversity to 

structural habitat (MacArthur and MacArthur, 1961;Karr and Roth, 1971) and Niche-

Gestalt (James, 1971), to conservation decisions. Passive remote sensing techniques, 

especially with multispectral and hyperspectral sensors, have yielded scientists with 

direct and indirect species and ecosystem health information (Turner et al., 2003b), 

even in rugged terrain. The advent of active remote sensing, such as LiDAR and, to 

some extent, Radar, has added a third component or vertical dimension to ecosystem 

level data collection. The advantages of these new sensors are difficult to dismiss, 

especially when both horizontal and vertical heterogeneity can be assessed 

simultaneously at varying spatial scales.  

 

Airborne LiDAR was a breakthrough technology, particularly in the field of forestry 15 

years ago.  Applications range from forest inventories and stand characterization, and 

fire behavior modeling (Akay et al., 2009), to microclimate modeling (Chen et al., 

1999;Zimble et al., 2003) and species habitat suitability modeling (Vierling et al., 2008).  

The number of ecological applications for airborne LiDAR is expanding, as costs have 

decreased and validation has been substantiated across a variety of ecosystems.  
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The advantages of being able to use this active remote sensing tool are numerous: 1) it 

is much more cost- and time-effective to collect structural data, particularly fine-scale 

vertical data 2) allows the data to be extracted and analyzed at multiple spatial scales 

(i.e. individual tree, plot, stand, landscape) that might be best appropriate for different 

applications 3) provides more detailed spatial distribution information 

(dispersal/clumpiness of vegetation) than practical to collect using conventional 

vegetation sampling techniques on the ground, and 4) provides an alternative for 

collecting data in difficult to access terrain, a particularly common problem in areas with 

complex structures and high biodiversity.  

 

This study provides an overview of the use of LiDAR and highlights the potential 

ecological applications in southeastern pine woodlands.   The type of ecosystem was 

selected due to four reasons: 1) pine forests, particularly old-growth longleaf pine 

forests, have been dramatically reduced to less than 2% of the original extent (Noss et 

al., 2001), and many of the remaining forests are now secondary old pine-oak 

woodlands 2) southern pine ecosystems are highly disturbance driven (Masters, 2007), 

with a frequent fire presence, therefore tools are necessary for very active management 

and monitoring to be successful 3) this ecosystem contains many wildlife species of 

management and conservation concern (Masters et al., 2002;Masters et al., 2006), for 

which appropriate steps have to be applied to assure perpetuity 4) extensive history of 

management at the ecosystem level and scientific studies have been conducted  in this 

ecosystem (Hermann, 1995). 
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The goal of the research, as a whole, is to advance the value of airborne and portable 

LiDAR in forest management and species conservation. Ultimately, 21st century 

adaptive management of ecosystems in flux will require incorporating remotely sensed 

data to minimize field inventory efforts, especially in large landscapes or hard to reach 

areas. To provide a better understanding of how LiDAR can be incorporated in 

management, this research study first confirmed the relationship of airborne LiDAR 

versus field derived canopy cover metrics at fine and large spatial scales (individual 

tree-plot-stand scales) using an extensive network of over 2000 field plots, then, 

examined how specific tools for LiDAR extraction performed. Secondly, two 

independent sets of airborne LiDAR were applied to plots with varying fire regimes to 

demonstrate the sensitivity of these data to portray fine scale 3-dimensional differences 

in structure, particularly shrub encroachment and recruitment. This second portion of 

the study highlights the advantages and limitations of airborne LiDAR in making 

spatially explicit management decisions, such as the application of fire regimes, to 

forested ecosystems.  Thirdly, the use of a portable LiDAR unit, first presented by 

(Parker et al., 2004) is explored for its potential in providing fine-scale mid-story 

structural information for monitoring and providing time-sensitive information for 

management decisions. Comparisons between portable and airborne systems focus on 

the limitations, strengths, and future advantages in fusing both sensors to provide an 

accurate, complete, and comprehensive understanding of all vertical layers in a forest or 

woodland. 
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Finally, the last chapter of this research links vertical and horizontal structural 

heterogeneity to habitat suitability of woodland songbird species. Fine and coarse scale 

structural measures extracted from airborne LiDAR are used to model habitat suitability 

of ten selected species, including species of management and conservation priority (i.e. 

Bachman's Sparrow, Northern Bobwhite, and Red-headed Woodpecker).  The fourth 

chapter brings the focus back to the ecological need for advanced technology, such as 

airborne LiDAR, to provide the best understanding of how to manage biodiversity, by 

managing structural parameters.  It also provides promising models that, 

parsimoniously, explain the preferences of ten species that are currently under active 

management in southeastern pine-woodlands. Upon further validation or refinement 

with additional, independent datasets, these could provide clear measurable goals for 

land managers to implement. 

 

This work will facilitate the use of airborne and portable LiDAR in understanding fine-

scale vertical structure in forested ecosystems, and how structural changes can be 

measured and quantified for conservation success. This research will also benefit land 

managers by providing specific guidelines to enhance the habitat of 10 important 

woodland bird species in southeastern pine forests of the US. Finally, this work can be a 

precursor in establishing habitat suitability models, using exclusively LiDAR data, to 

model the occurrence of species that require immediate conservation and recovery 

efforts.     
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CHAPTER ONE - ESTIMATION AND GROUND VALIDATION OF SOUTHERN PINE FOREST 

CANOPY STRUCTURE USING SMALL FOOTPRINT LiDAR 

 

 

Abstract 

 

Estimation of canopy cover and height measures across large areas is of great value for 

forestry and natural resource management, with key structural attributes being directly 

linked to target goals for wildlife and ecosystem level management. In this study, we 

evaluated two independent high resolution small-footprint LiDAR datasets (years 2002 

and 2008) at Tall Timbers Research Station, FL. Basic canopy metrics (cover, mean 

and maximum heights) were validated across a variety of conditions of secondary 

upland pine and hardwood forests using extensive field plot and transect sampling. Two 

methods were examined in the extraction of canopy metrics from LiDAR: a raw GIS and 

the Fusion/LDV software (USDA Forest Service) approach. The asynchronous nature of 

the field and LiDAR datasets resulted in  low plot-level correlations for most variables, 

but Fusion/LDV stand estimation of canopy cover and heights, were within 15%, and 2 

m, respectively, of field mean data. In general, the Fusion/LDV approach yielded better 

canopy cover and stand height estimates than the raw GIS method.  

 

Individual tree crown locations including tree height, height to base of live crown, and 

crown width, were extracted from 2008 LiDAR data using both LiDAR Analyst 

(Overwatch) and Fusion/LDV software packages. Both methods significantly under-

reported the total number of trees extracted from LiDAR data compared to field data, 
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with the LiDAR Analyst outperforming Fusion/LDV's algorithm in denser canopy areas 

(>60% cover) and Fusion/LDV capturing more of the trees in open field conditions 

(<40% cover).  Management treatments, i.e. major thinning, applied after the field 

inventory (2003-2004) and LiDAR data collection events (2008), could justify a 

percentage of the tree under-representation in the later year. 

 

 

Introduction 

 

Airborne LiDAR has rapidly become a powerful technology in forestry and natural 

resource management. This active remote sensing technique has demonstrated the 

ability to characterize forest stands and approximate forest inventory data with canopy 

height (Lovell et al., 2003;Clark et al., 2004;Coops et al., 2007), basal area, 

aboveground biomass (Drake et al., 2002a;Drake et al., 2002b;Lefsky et al., 2002a), 

and leaf area (Roberts et al., 2003;Lefsky et al., 2005).  In addition, one of the most 

promising ecological applications of small footprint LiDAR is the direct acquisition of 

vertical foliage distribution (Kao et al., 2005;Coops et al., 2007), which provides detailed 

information of the forest subcanopy elements.  Field methods for foliage profile 

characterization involve quantifying the horizontal and vertical distribution of vegetation, 

either using a line method (MacArthur and Horn, 1969) or laser point-quadrat method 

(Radtke and Bolstad, 2001), both of these are very field intensive.  

 



10 
 

This paper focuses on estimation of simple canopy structure variables, such as canopy 

height (mean and maximum height) and cover, which have been found to be in general 

agreement to field data across ecosystems types (Naesset and Okland, 2002;Lim et al., 

2003), from boreal (Magnussen et al., 1999) to tropical (Drake et al., 2002a) 

ecosystems. In some studies, individual tree height errors have been found to be less 

than 1.0 m (Persson et al., 2002) and plot based estimated errors of maximum and 

mean canopy heights were less than 0.5 m (Naesset, 2002). Other LiDAR studies have 

found errors of up to 3 m in height to be common when estimating field heights (Coops 

et al., 2004). Small footprint LiDAR is known to underestimate canopy height at the plot 

or stand level (Gaveau and Hill, 2003;Coops et al., 2007), due to the low likelihood that 

the beam hits the tree tops.  Other common problems when using LiDAR to estimate 

field canopy heights are related to difficulty to pinpoint ground elevations in certain 

conditions (Lefsky et al., 2002a). Misclassified understory returns as ground returns, 

more likely to occur in complex canopy systems, induces a negative bias in the derived 

tree canopy height.  

 

As LiDAR data collection becomes more affordable and its strengths become apparent 

for structural characterization, the choice of processing options and off-the shelf 

software has expanded. Careful planning is needed when selecting the methodology 

employed for analysis, either off-the-shelf software or custom. Equivalent to the variety 

of definitions of field stand "top height" - seven, according to (Sharma et al., 2002)- 

canopy metrics from LiDAR point cloud data metrics can assume distinctively different 

definitions, and, thus, provide different results.   
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Individual tree extraction from LiDAR datasets, including tree height, height to the base 

of live crown, and crown width, is another area of recent high interest. There are a 

variety of options - in terms of proprietary software with customizable algorithms - to 

allow trees to be located and attributed from point cloud datasets. Success in the 

detection of subcanopy or non-isolated dominant trees has been very limited (Lee and 

Lucas, 2007), unless optical imagery is used (Palace et al., 2008). Most of the 

algorithms currently available to the user, such as implemented in TreeVaW software 

(Kini and Popescu, 2004) and Fusion/LDV (McGaughey, 2010) were developed for a 

very specific ecosystem, Pacific Northwest Douglas-fir forest. This study implements 

two currently available methods - ESRI ArcGIS or Fusion/LDV - for tree extraction for 

the same LiDAR dataset, and compares the success of these two against field data. 

 

The first objective of this study was to ground validate two independent LiDAR datasets 

based on a densely sampled network of field plots and transects that cover a variety of 

ecosystems and forest conditions. Secondly, this study highlights strengths and 

weaknesses of using different methods for extracting common structural plot metrics 

and individual tree information. Both of these objectives provide a foundation for 

important ecological applications of airborne LiDAR data: forest dynamics analyses 

(Birnbaum, 2001), wildlife habitat modeling and mapping (Davenport et al., 2000;Hinsley 

et al., 2002), light penetration modeling (Zimble et al., 2003), and carbon and energy 

exchange modeling (Lefsky et al., 1999;Clark et al., 2004;Lefsky et al., 2005).  
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Methods 

Tall Timbers Research Station  

 

This study took place at Tall Timbers Research Station, which is located within the Red 

Hills region of southwestern Georgia and northwestern Florida (Figure 1).  This region 

occupies approximately 300,000 ha between Thomasville, Georgia and Tallahassee, 

Florida and is home to over 230 rare types of plants and animals and over 27 federally 

listed threatened and endangered species (Masters et al., 2007). The Red Hills area is 

comprised of a mixture of young and old growth longleaf pine forests, natural and 

planted loblolly (Pinus taeda) and shortleaf  (Pinus echinata) pine forests primarily in an 

old field context, mixed hardwood and pine forests, forested and herbaceous wetlands, 

agricultural fields, and residential/urban land cover types . 

 

The Tall Timbers Research Station (TTRS) covers 1600 ha within the Red Hills Region, 

and is located just north of Tallahassee, FL.  Until 1895 the upland pine ecosystems at 

TTRS were dominated by pristine savanna uplands, but have been highly disturbed by 

agriculture, and are currently dominated by a mixed canopy of loblolly pine (Pinus 

taeda), shortleaf (Pinus echinata) and longleaf (Pinus palustris) (Masters et al., 2005). 

The groundcover at the study site is dominated by many legumes and composite family 

members and interspersed with grasses (broomsedge bluestem, Andropogon virginicus, 

primarily), but lacking the wiregrass typical of pristine longleaf pine savanna ecosystems 

(Hermann, 1995).  
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Figure 1. Location of Tall Timbers Research Station (TTRS) within the Red Hills area. 



14 
 

TTRS is focused on research and management issues of longleaf pine savanna, pine 

woodlands, and other ecosystems of the Red Hills area, including management for 

game birds (such as the Northern bobwhite, Colinus virginianus ) and threatened and 

endangered species (such as the red cockaded woodpecker, Picoides borealis).  This 

Research Station provides a ―model working landscape‖ that engages landowners 

(under the Land Conservancy, TTLC) to ensure the future health of the Red Hill area’s 

forests and wetlands. 

 

The unique heterogeneity of the landscape, on-site long-term research history, and 

availability of two sets of LiDAR data, allowed for an ideal study area for ground 

validation and estimation of forest canopy structure.  

 

 

Forestry Plots and Transects 

 

Two sets of field data (plots and transects) are used to provide insight into structural 

variables that can be extracted from small-footprint airborne LiDAR datasets. Forestry 

plots 0.04 ha in area (11.3 m radius) have been setup by TTRS field staff in a dense 61 

by 61 m grid throughout the entire uplands of the station, excluding bottomland 

hardwoods, fields, and wetlands (Figure 2).  GPS location of the plot center, tree 

canopy cover (9 sighting scope readings), individual tree species and corresponding 

DBH (for trees and saplings >1.27cm DBH) were collected for all 2572 plots.  Canopy 

cover was collected at the plot center and all 4 cardinal directions at 2 and 4 m from the 

plot center. In addition, for about one fifth of the plots (422 plots), tree top height and 
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height to the base of live crown were obtained for all trees within the plot area.  The 

forestry data collection took place by TTRS forestry staff in two phases, the first 

completed in 2003, and the second one in 2004. 

 

Additionally, sixteen transects of 250 m in length and 10 m in width (0.25 ha) designed 

for further field data collection were strategically placed throughout the TTRS (Figure 3).  

The transect approach was selected in addition to the dense network of forestry plots 

for validation, increasing the representation of diverse land cover types and natural 

variation present at TTRS.  Furthermore, this transect approach also allowed a more 

detailed ground validation analysis, since accurate (1-2 m) geolocations for all trees 

were obtained.  
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Figure 2. Location of the Extensive Forestry Field Plot Network within the Tall Timbers 
Research Station.
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Figure 3. Location of the 16 Field Transects and their Represented Land Cover in the Tall Timbers Research Station.  
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Transect selection was based on a variety of factors and carefully planned in a GIS 

environment.  Land use land cover 2002-2004 coverage (Noble, 2006) and 2004 digital 

orthophotos (www.labins.org) were used to verify natural variability and allow 

appropriate transect placement.  From the 2001 land use land cover information, it was 

clear that almost 50% of TTRS should be excluded from sampling, consisting of open 

fields, developed areas, loblolly planted areas, roads, and wetlands.  Further areas of 

exclusion consisted of the northern portion of TTRS (located outside Leon County and 

for which no airborne LiDAR data are available) and the Stoddard experimental 

fireplots.  The 16 transects were placed scattered in the upland pine area, varying 

direction, road interference (11 out of 16 crossed minor roads), ecotone representation 

(2 represented a clear transition between cover types),attempting to achieve some 

degree of spatial dispersion (Figure 3).  

 

Three point spatial layers were collected using customized data dictionaries with a 

Trimble GeoXT for each transect: canopy cover/ shrub layer, tree locations, and 

photograph point locations. For the first layer, binary canopy cover measurements (0% 

vs. 100%) were recorded using a densiometer at 5 m intervals along the transect line.  

Additionally, height estimates and species of shrub and small trees (<2m) were 

collected at the same location.  Height estimates for shrubs will fall within one of the 

following categories: >40, 40-60, 60-80, 80-100, 100-120, 120-140, 140-160, 160-180, 

and 180-200 cm classes.  

 

The tree layer included the exact location of all trees > 5 cm in DBH within the 10 m 

wide swath (5 m on each side of the transect line) of each of the 16 transects. Data 
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collected for the individual trees included the species, DBH, top height, crown height 

(height to base of live crown), and maximum crown diameter. Height data were 

collected using a LTI Impulse laser rangefinder.  Dead trees were also included in the 

tree layer, and clearly identified as such. 

 

 

LiDAR Data 

 

Two datasets of small footprint multiple return LiDAR (Light Imaging and Ranging) were 

obtained from the Tallahassee-Leon County Geographic Information Systems (GIS) 

Department. These datasets included raw LAS files for the entire Leon County in both 

2002 and 2008 transitional seasons (February and March, respectively) with the goal of 

creating countywide detailed floodplain mapping. The first set (2002) was collected 

using the ALS40 (Leica Geosystems) scanner by Merrick & Co. in February 2002, and 

has a mean and minimum point spacing of 1.39 and 1.05 m, respectively. The 2008 

dataset was collected using a Leica ALS50 Geosystem in March 2008, and has a mean 

and minimum point spacing of 1.55 and 1.19 m, respectively. Horizontal accuracies 

were 0.55 and 0.52 m RMSE for the 2002 and 2008 LiDAR datasets and vertical 

accuracy was 0.10 m RMSE for both datasets. 

 

Point cloud data were obtained in the LAS 1.0 format for the 2002 data which specified 

ground vs. non-ground data, but not any additional return numbers. The point cloud 

data were converted to multipoint files and interpolated using an inverse distance 
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weighted (IDW) approach in the 3D Analyst ArcGIS (ESRI) environment to a Digital 

Elevation Model (DEM) - ground point - and a Digital Canopy Height Model (DSM) - for 

all non-ground points (Zimble et al., 2003). The Canopy Height Model (DCHM) was 

extracted from the difference between the DSM and the DEM.   

 

For 2008, the newer LAS 1.1 format was used, which included both the class (ground 

versus non-ground) and multiple return numbers. Similar to the 2002 dataset, the 2008 

point cloud data were converted to multipoint files.  After the construction of the DEM 

using an IDW second degree interpolation of ground returns, the DCHM model was 

similarly extracted from the difference between the DSM (constructed using first returns 

only) and the DEM. All IDW interpolations performed were second power interpolations 

with a variable search of up to 12 neighbors and a 1 meter grid output size (instead of a 

much smaller 0.2 m grid used by (Zimble et al., 2003). Post processing of all the raster 

products was used to fill most, if not all, empty cells, with nearby interpolated values. 

The DEM heights were assigned to all point cloud data, allowing the computation of 

height above ground for every data point.  

 

LiDAR data with above ground heights were extracted for the forestry plots by selecting 

point cloud data within a 12 m buffer around point center. Similarly, LiDAR data within 

the transects' area were extracted and further identified with the transect unique 

identifier in the ESRI ArcGIS environment. Data management for these large datasets 

took place in ESRI ArcGIS using geodatabases for the extracted LiDAR plots and 

transect 2002 and 2008 datasets. No co-registration between LiDAR datasets took 
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place, since the RMSE vertical and horizontal errors were strictly controlled by the 

vendor, and insignificant for plot and stand level comparisons.   

 

 

Data Analyses 

 

The two goals of the data analyses were: 1) to obtain LiDAR derived structural 

variables, using two different methods (raw GIS and Fusion/LDV) and datasets (2002 

and 2008), and use field plot and transect data for validation 2) to test two different tree 

extraction methods from airborne LiDAR and compare these results to field collected 

data.  

 

Plot and Transect Data Analyses 

 

The field plot data measurements for canopy cover were averaged from the 9 sighting 

readings and converted to percentage from the 0-9 scale. Individual tree data collected 

for each plot were linked to the plot id, and height statistics (average, maximum, 

minimum, standard deviation) were calculated per plot. While canopy cover and basal 

area were available for all 2572 plots, tree height variables were only available for a 

subset of these (422 plots).   

 

The transect data measurements for canopy cover were averaged per transect from the 

50 binomial readings (0/100%). In contrast to the plot data, individual tree data were 
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collected with associated high accuracy locations and available for all 16 transects. 

Height variables, similar to the plot field data ones, were calculated for each transect.  

The first method of LiDAR data extraction of structural variables of interest -raw GIS 

extraction- was used for both the 2002 and 2008 datasets. This method used only ESRI 

ArcGIS and Spatial Analyst's built-in tools, along with database queries, for the creation 

of elevation and canopy height models, attribution of x, y, z LiDAR points with heights 

above ground (see "LiDAR Data"), and extraction of variables of interest per plot and 

stand. 

 

For appropriate validation of the field data, x,y,z LiDAR data points with heights above 

ground were clipped to the appropriate area of interest. For the plot validation, a 12 m 

buffer was used around the forestry plot center location, and for the transects, a 5 m 

buffer around each side of the transect were used. The clipping allowed the 

correspondence of the airborne LiDAR datasets to the field collected data. 

 

The variables of interest extracted using the first method included canopy cover, canopy 

height (maximum, minimum, mean, and standard deviation), basal area, and tree count. 

Canopy height and cover indices were extracted using similar methodology (Lim et al., 

2003;Lovell et al., 2003) for discrete return LiDAR, with slight modification from the 

20X20m window used by others (Lovell et al., 2003;Coops et al., 2007). For the canopy 

heights, instead of using a 20X20 m window to obtain the highest canopy point as the 

maximum height, the individual forestry plots or transect buffer area were used. 

Maximum mean height corresponded to the highest LiDAR canopy classified return 

(within the entire plot), and mean canopy height used an average of all canopy returns 
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over 2 m, and is expected to underestimate the average field tree heights (Lim et al., 

2003). Canopy cover was measured by redefining closed canopy returns as only the 

ones over 2 m and dividing the total number of these returns in each plot by all discrete 

returns in the same plot. The proportion of canopy returns is a standard canopy cover 

index (Lim et al., 2003), which, for this study, has been slightly modified to exclude the 

herbaceous and lower shrub layers.   

 

The second method of LiDAR data extraction -FUSION/LDV extraction- was also used, 

for comparison purposes, to analyze the 2008 dataset only (for both the plots and 

transects). The lack of return information and the older LAS file format for the 2002 

dataset prevented its use in the Fusion/LDV software version 2.9 (McGaughey, 2010). 

The freely available Fusion/LDV software from the USDA Forest Service uses LAS files 

and associated orthophotography to allow data analysis and visualization. In order to 

extract height variable and canopy cover information, a number of command line 

programs have to be run, including "PolyClipData" (clips the cloud data to user specific 

polygons using an ArcGIS shapefile), "GridSurfaceCreate" (allow the creation of 

interpolated surfaces using user selected LAS files and parameters), "CanopyModel" 

(created a CHM using LAS files), "Cover"(creates a canopy cover raster file), and 

"CloudMetrics" (McGaughey, 2010).  Resulting metric information were combined with  

interpolated ground elevation values for each plot or transect to obtain height above 

ground metrics. Cloud metrics for height data provided by Fusion/LDV are extensive 

and include percentile values, means, minima and maxima, variance and skewness 

variables. Canopy cover is estimated by Fusion/LDV using the first returns, as default, 

and results correspond to the canopy closure (0-100%) in a grid output format. For 
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consistency, only canopy first returns over 2 m were selected as canopy returns for the 

estimation of the proportion of canopy returns from all LiDAR returns.  

 

Extracted raw GIS and Fusion/LDV LiDAR-derived structural information were 

compared to field-derived variables (canopy cover, mean, median, and maximum tree 

height) through scatterplots and visual representation at the plot, transect, and stand 

level. Stand level analysis included both aggregating the field and LiDAR plot data into 

stand statistics, as well as spatial analysis of the differences in canopy cover and 

heights across the study area. For the spatial distribution maps, ArcGIS 3D Analyst was 

used to create IDW interpolations of the field versus LiDAR canopy cover and maximum 

plot heights, and subsequent percent differences between these grids were calculated. 

Difference maps always represent the subtraction of LiDAR derived data (ArcGIS raw 

method) from the corresponding field values.  

 

 

Tree Extraction 

 

Individual tree extraction utilized the 2008 LiDAR dataset and was conducted 

independently using two sets of tools for a subset of the Tall Timbers area: the LiDAR 

Analyst extension (Overwatch Geospatial, 2009), and Fusion/LDV software (USDA 

Forest Service, 2010). For the entire area that covers both the 2572 field plots and the 

16 transects, tree extraction was completed only using the Fusion/LDV software tools. 

Tree extraction using LiDAR Analyst was completed for a subset of the study area, to 

enhance performance and avoid license limitations. Both methods require a digital 
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terrain model and canopy height model to be created prior to extraction tree location 

and associated height information.  

 

The LiDAR Analyst toolset provides automatic methods of extracting individual tree 

locations based on the LiDAR DEM, along with tree height, crown width, and stem 

diameter. The proprietary tree extraction algorithm allows users to define certain 

features as trees, by providing minimum tree height and degree of vertical curvature.  

For the Fusion/LDV toolset, a combination of command line programs had to be 

completed prior to running the "CanopyMaxima" program. This latter one uses a CHM 

to identify local maxima, based on a local algorithm with a variable-size window. The 

algorithm used in Fusion/LDV is similar to that reported in (Popescu et al., 2002) and 

(Kini and Popescu, 2004) and implemented in the TreeVaW software (Kini and 

Popescu, 2004). The tree variable window algorithm uses a window that changes 

dependent on the height of the CHM for that particular region, and is geared to 

providing dominant tree height information. The extracted trees from this method 

include tree height, crown height, and minimum and maximum crown width 

(McGaughey, 2010). 

 

Extracted tree location and height information were compared and contrasted between 

the two tree extraction methods for the same area, using visual plots and general 

statistics. Furthermore, tree height information available from the Fusion/LDV method 

for all plots and transects were compared to field collected tree information.  Location of 

the tree locations could only be compared to the transect collected tree data, since 

these were individually geolocated in the field.  
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Results and Discussion 

Forest Plots 

 

Stand Analysis 

 

Overall, aggregating plot-level information into stands distributed across TTRS, 

highlighted the wide range of conditions across Tall Timbers. Field canopy cover mean 

values for the stands range between 28% (Tower and Rep III) to 56% (Scrub), with an 

overall mean for all plots within Tall Timbers around 39% (Table 1). The 2002 and 2008 

LiDAR canopy cover percentages (extracted using ArcGIS tools) have a similar range to 

the field results, between 27% (Anders North and Bottom Dollar) and 53% (Daily 

Double). However, the stands representing the highest or lowest canopy cover in one 

dataset did not consistently present the same pattern in the other datasets (LiDAR or 

Field).  It was expected that differences would occur between both LiDAR datasets, 

since a selective thinning treatment occurred in 2007 for all stands with the exception of 

the Gallien, Van Brunt, and Hanna Hammock. Thinning can account for some of the 

canopy cover reductions observed between 2002 and 2008.   

 

While mean canopy cover percentage values for all the plots were around 4% higher 

when comparing field to 2002 LiDAR data, the 2008 LiDAR canopy cover mean was 5% 

higher than the field collected data. It is important to note that the plot field data were 

collected asynchronously from either LiDAR data collection events: field data were 

collected 1-2 years after the 2002 LiDAR data collection, and 4-5 years before the 2008 
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LiDAR data collection. Cumulative rainfall differences prior to the data collection event 

can have an impact on the canopy cover differences (Masters, pers. communication) 

encountered among the three sets of data (43%, 39%, and 34% in 2002 LiDAR, 2004 

field, and 2008 LiDAR datasets, respectively). The 2002 LiDAR derived canopy cover 

values correspond to a well above average rainfall year (150 cm), while both 2004 

(field) and 2008 (LiDAR) data collection events corresponded to below average rainfall 

years (97 and 115 cm, respectively). Furthermore, forestry data collection for the plots 

did take place in a range of seasons, depending on the stand, from dormant to late 

transitional. In contrast, both LiDAR datasets took place in the transitional season 

(February-March) for all the study area. The impact of seasonality in canopy cover 

measurements is obvious in hardwood woodlands, but also important in secondary 

upland pine forest, where there is a significant hardwood encroachment component.   
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Table 1. Stand Level Field and Raw Airborne LiDAR (2002 and 2008) Results for the Tall Timbers Forestry Plots. 

 

1
 Units are in meters
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Spatial patterns of differences between airborne and field canopy cover are distinct, 

indicating stands located in northeastern Tall Timbers (Anders North, Scrub and 

Charlie's) with higher field canopy cover values, and a section of the southern central 

study area (Daily Double, Smoking Gun, and Rep III) having greater LiDAR values in 

comparison to field collected ones (Figure 4).  

 

 

Figure 4. Spatial Interpolation of Canopy Cover Differences across Tall Timbers (Field - 
LiDAR derived canopy cover). 
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Height variables, mean and maximum height for the forest stands are more consistent 

for both sets of airborne LiDAR data, with an across the board increase in mean stand 

height in the later year (17.64 m for 2008 instead of 15.38 m for 2002). This is 

consistent with an increase in height from 6 years of vegetation growth and, additionally, 

the effects of selective thinning of the smaller trees. Field collected maximum stand 

height is overall 1 m higher than airborne LiDAR maximum stand height, but differences 

range between 10 m higher to 8m lower than LiDAR measurements (Table 1). There is 

a consistent bias towards slightly lower top tree elevations (portrayed in the maximum 

heights) common to LiDAR datasets, since it is easy for first returns to miss the highest 

point of the tree. Mean heights derived from LiDAR datasets can under-report field 

mean heights substantially, since the former includes the height through all the tree 

crown and not only average tree top height, as collected in the field.   

 

Spatial interpolations of maximum canopy heights yielded clear differences across the 

stands (Figure 5), with the northwestern stands (Anders North and Scrub), which had 

significant less detected canopy cover using LiDAR than field methodologies, 

presenting greater maximum heights using LiDAR data. Over-representation of 

maximum heights using LiDAR were located where field sampling was reduced, such as 

portions of Gallien and Tower stands, or in stands where thinning took place in 2007 

(Gallien, Hannah's Hammock and the Van Brunt stands). Across most of the other 

areas, the pattern still indicated a slight bias towards lower maximum heights captured 

by remotely sensed data, when compared to field acquired heights. 
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Figure 5. Spatial Interpolation of Maximum Canopy Height Differences across Tall 
Timbers (Field - LiDAR derived maximum canopy height). 

 

 

Mean crown height from field data varied between 6 m (Anders North) to 21 m (Rep III), 

with a stand average of 16 m. These height measurements are the result of averaging 

field plots individual tree measurements, and include saplings 0.5 cm DBH or greater. 
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Stands with a high number of saplings or shrub encroachment, such as Anders North 

with a tree count of 861 (twice as high as any other stand), are heavily biased by this 

new growth (mean height 40% of the mean stand height). In contrast, LiDAR derived 

mean stand heights correspond to all returns over 2 m, and are more heavily influenced 

by the entire crown structure of the trees, rather than just measures of the top crown.  In 

most stands (15 out of 21), the mean height measures of field versus LiDAR were within 

3 m of each other, even when considering the distinctly different nature of these 

measures.  Stands with the greatest differences in field heights were characterized by 

extreme conditions, either very dense or sparse tree counts. Stands with a high amount 

of saplings (Anders North) were heavily biased in the field by the heights of small 

shrubs, and thus, lower than LiDAR portrayed heights (8 to 9 m below LIDAR mean 

heights). Stands with a low number of trees (North and South Brunt, 24 and 34 trees, 

respectively) had between 3-7 m higher field mean heights than LiDAR mean heights. 

The low number of tree top heights from the field in comparison from returns from the 

entire crown of the trees represented with the LiDAR explains the bias in these stands.  

 

Fusion/LDV derived data from the 2008 airborne dataset produced more consistent 

canopy cover and mean height stand values compared to the field measurements 

(Table 2), than did the raw GIS extraction of the same LAS data. Overall average 

canopy cover data for the stands was only 1% lower for the Fusion/LDV values than the 

field, but individual stand differences did reach almost 22% for the Scrub Stand. With 

the exception of four stands, however, canopy cover differences between the 

Fusion/LDV and Field methods were within 10%. Considering the variability of canopy 
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cover measurements with the number of samples taken in the field (Jennings et al., 

1999) and the asynchronous nature of the datasets used in this validation, cover 

differences of 10% are encouraging. This difference could also be a direct result of the 

management treatments occurring at the station, including burning and especially 

thinning that took place in 2007, a year prior to the 2008 LiDAR data acquisition. 

 

Fusion/LDV derived maximum and mean height variables averaged about 2 m lower 

than the height variables obtained using the raw GIS processes (Table 1 and Table 2). 

Differences in maximum stand height between LiDAR and field datasets were greater 

using the Fusion/LDV (4.02 m) than the raw GIS methodology (1.19 m), whereas 

differences in mean stand heights were more subdued using Fusion/LDV (0.57 m) than 

raw GIS (1.54 m). Stand mean heights were, as an average, only 0.6 m higher in the 

field data than the Fusion/LDV metrics (Table 2), and the range of differences was 

reduced from the raw to the Fusion/LDV LiDAR processes. With the exception of three 

stands, mean Fusion/LDV derived heights were within 1-3 m of the field results.  

 

 

Overall, crown height maximum and mean heights extracted from the airborne LiDAR 

datasets closely approximated field heights, with mean stand differences at or below 1.5 

m: mean and maximum crown height differences were 1.08  and 0.71 m for the 2002 

LiDAR and 1.19 and -1.54 m for the 2008 LiDAR dataset (Table 1).
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Table 2. Stand Level Field versus Fusion/LDV Derived Metrics (2008 LIDAR) Results for the Tall Timbers Forestry Plots. 

 

1
 Units are in meters
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Plot Level Analysis 

 

Plot level comparison of field versus 2002 and 2008 LiDAR canopy cover percentages 

(raw GIS methodology)  presented a large amount of scatter, with a low r2 of 0.22 to 

0.27, respectively (Figure 6). A large portion of this scatter was found in plots that were 

recorded in the field as having  no canopy cover (from the nine field measurements per 

plot), but had a wide ranging percentage of crown returns using either LiDAR datasets. 

As a matter of fact, some of these plots did have tree height data recorded, highlighting 

the difficulty estimating canopy cover in the field for a plot based on a small sample of 

points. According to Jennings et al. (1999), canopy cover differences, unless major, 

cannot be discerned with less than 100 samples per plot.   Previous suggestions of 20 

sample points per plot now seem to be insufficient to provide an accurate 

characterization of canopy cover plot differences. The high field sampling effort required 

to provide greater confidence in structural measurements is a keypoint in the utility of 

using active remote sensing techniques, such as airborne LiDAR, in the assessment of 

forest structures.   

 

The relationship between mean field versus airborne LiDAR derived heights for the 422 

plots at Tall Timbers  is slightly stronger (r2  of 0.28 and 0.32 for 2002 and 2008 LiDAR, 

respectively), but still presents some scatter, especially with plots with lower field height 

estimates (Figure 7). These plots are concentrated in the Anders North Stand and 

present a high percentage of saplings, potentially not present in other data collection 

years (due to fire management approaches).  
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The best relationship encountered at the plot level corresponds to the maximum height, 

with an r2 of 0.33 and 0.42 for 2002 and 2008 datasets, respectively. The majority of the 

scatter is present in plots with field maximum heights of 2 and 20 m, with airborne 

LiDAR capturing higher crowns in the majority of these plots (Figure 8). Excluding these 

plots, the maximum height difference between field and airborne LiDAR methods is 

within the 3 m range, which could be easily explained by either geolocation errors in plot 

centers or field height collection errors. Investigations of the outliers plots using 

orthophotography from the field data collection year indicated that canopy cover 

estimated from LiDAR datasets appear to better represent the actual field conditions. 

 

 

Figure 6. Scatterplot of Field versus Airborne LiDAR (2002 and 2008) derived Canopy 

Cover for individual forest plots at Tall Timbers.  
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Figure 7. Scatterplot of Field versus Airborne LiDAR (2002 and 2008) derived Mean 
Crown Height for individual forest plots at Tall Timbers. 
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Figure 8. Scatterplot of Field versus Airborne LiDAR (2002 and 2008) derived Maximum 
Crown Height for individual forest plots at Tall Timbers. 

 

Investigating the plots with dramatic differences in canopy cover (Figure 6) and mean 

canopy height (Figure 7) using imagery (2004 DOQQs), indicated that most of the plots 

with zero or low canopy cover in the field dataset had a visible amount of crown cover, 

in closer agreement with the LiDAR cover extraction. The weaker than expected 

relationships between field and LiDAR derived metrics could be, in part, explained by 

field plot geolocation errors.  
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Transect 

  

Transect field canopy cover percentages are visibly higher for most transects than 2008 

LiDAR canopy cover metrics (Table 3). The difference between field versus LiDAR 

cover is much smaller when these latter values were derived using Fusion/LDV than the 

raw GIS methodology (11% versus 25% difference, respectively).  Higher canopy cover 

percentages were expected for the 2006 field collected transect data, since the 

preceding 12 month rainfall was just above average (154 cm), while the rainfall 

preceding the 2008 LiDAR data collection was well below average (115 cm).  

 

Additionally, the majority of the field work took place in April and May, two months later 

in the year than the timing of the airborne LiDAR data collection. The difference in 

canopy cover metrics between two extraction types of the same raw LiDAR dataset is 

accentuated in transects that either represent hardwood ecosystems or ecotones 

between upland pine and hardwood areas (transects 8, 9, 30, and 32). The end product 

of both methods is different, which could have an impact in the differences observed: 

Fusion/LDV created a standard 15 by 15 m grid of cover values using first return only, 

whereas the raw GIS metrics provided cover value as the proportion of all canopy 

returns within the transect buffer area. In dense areas, the Fusion/LDV method provided 

higher canopy cover returns, which seemed more consistent with field canopy cover 

results (Table 3).  
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Table 3. Comparison of Conventional Forestry (Field), GIS-derived and Fusion/LDV-derived LiDAR metrics (2008 data) 
for the Transects located throughout Tall Timbers Research Station.  

 
1
 Units are in meters
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Some of the differences encountered in the canopy cover estimated between 

Fusion/LDV and raw GIS could correspondent to vegetation under 2 m not captured by 

the raw GIS method (which includes canopy returns above this threshold only). 

Transects representing ecotones (8 and 9) and hammocks (30 and 32) have a 

significant presence of shrubs (0.5-2.0 m) which would only be captured by the 

Fusion/LDV methods. Canopy cover differences in these 4 transects are extremely high, 

with the raw GIS method removing the shrub component and yielding 30-50% less 

cover than the Fusion/LDV results. 

 

Maximum and mean crown height present the usual LiDAR underestimation bias due to 

missed top tree returns, but overall differences are minimized by the use of Fusion/LDV 

metrics, instead of raw GIS values. Overall, field maximum heights are 6m higher than 

raw GIS derived LiDAR values, but only 2 m higher when using Fusion/LDV metrics. 

The differences are smaller for the mean crown height values, with 1.6 m versus 1.3 m 

higher field mean heights than for raw GIS and Fusion/LDV metric LIDAR heights, 

respectively. Transects with much higher maximum field heights than LiDAR maximum 

heights are, in general, the most open upland pine representatives (transects 25 and 

26). A simple small geolocation error could explain missing these unique examples of 

very tall loblolly pine (Pinus taeda) trees of over 43 m in height. 

 

  



42 
 

Tree Detection 

 

The variable-window tree extraction algorithm used in the Fusion/LDV software was 

designed to extract individual tree information from relatively open conifer-type forests 

with dominant and co-dominant trees (McGaughey, 2010). Without modification of the 

window size coefficients, the number of trees extracted for all the forestry plots located 

at Tall Timbers was minimal compared to the field tree count (Table 4). Field derived 

tree counts per stand ranged between 24 and 861 trees, with an average count of 188 

trees. In contrast, Fusion/LDV only extracted data from the most dominant trees and 

was able to derive between 7-36 trees per stand, with an average tree count of 19 per 

stand. Since only the largest and most isolated trees were detected by Fusion/LDV, 

average tree height is much higher for the tree extraction than for field tree data 

collection (extracted mean heights are consistently between 2 and 14 m higher than 

mean stand field heights). Maximum tree heights per stand were similar (<4 m 

difference) for both field and Fusion/LDV methods, with differences easily accounted for 

by plot geolocation errors described above (see plot level analysis).  

 

It is very important to note that tree extraction methods, including Fusion/LDV, require a 

minimum of 4 returns per meter to perform adequately, while the 2008 LiDAR datasets 

had only a maximum of 1 return per meter. Newer LiDAR datasets acquired for forestry 

applications can easily meet or exceed these specifications, and individual tree 

extraction would be significantly improved. Additional management treatments between 

field and LiDAR data collection, such as the thinning in 2007, might also have an impact 



43 
 

on tree detection: some of the non-dominant trees might be under-reported in 2008 

because these were removed in 2007 by the treatment. Another potential cause for the 

differences in maximum canopy height are field sampling error: heights, particularly 

from very tall trees, are difficult to obtain with a great accuracy. The impact of under or 

over-reporting one tree per stand would have immediately impact in the differences 

reported. 

 

Similar results from tree extraction using the Fusion/LDV software were encountered for 

the transects across Tall Timbers: most transects, especially the ones with 60% or 

higher canopy cover (transects 8, 9, 26, 30-32), were grossly misrepresented by the 

Fusion/LDV tree extraction results (Table 5). These are transects either completely 

within the hardwood woodlands and hammocks or ecotones between these are upland 

pine areas.  Tree extraction for transects with lower canopy cover conditions and 

dominated by upland pine (Figure 9) performed better, but still underrepresented the 

trees on-site by about 50%, and over-reported the mean average height by about 6 m 

(Table 5). Since Fusion/LDV assigns height to base of live crown and crown width as 

fixed proportions of the extracted tree height (50% and 16%, respectively), both of these 

variables were overestimated by 5 m and 9 m, respectively, when comparing to field 

values.  
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Table 4. Stand Level Comparison of Fusion/LDV Tree Extraction Results from 2008 Airborne LiDAR with Field Collected 
Tree Data for the Forestry Plots at Tall Timbers. 

 
1
 Units are in meters 

  
2
 MeanCrHT is the mean to the base of live crown height 
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Figure 9. Tree Extraction Results: a comparison of Fusion/LDV Tree Extraction 
Algorithms with Field Collected Tree Data for selected transects (transect 28, top, 
transect 22, bottom) within Tall Timbers. 
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Table 5. Comparison of Fusion/LDV Tree Extraction Results from 2008 Airborne LiDAR with Field Collected Tree Data for 
the Transects at Tall Timbers. 

 
1
 Units are in meters 

2
 MCRHT is the mean to the base of live crown height 

3
 MCRWD is the mean width of the tree crown 
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Automated tree extraction resulted in contrasting results depending on the choice of 

methodology, with LiDAR Analyst extracting more trees than Fusion/LDV in heavily 

wooded areas (Figure 10).  Fusion/LDV had the advantage of capturing some of the 

small trees and shrubs interspersed in open field areas. 

 

Figure 10. Tree Extraction Results: a comparison of LiDAR Analyst and Fusion/LDV 
Tree Extraction Algorithms for selected plots within Tall Timbers. Red line is zoomed 
extent. 
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Generally, however, both methods did under-represent tree data captured in the field, 

which could be due to two independent causes: 1) the point density of the LiDAR 

dataset used was too low (1-1.5 returns/meter) to obtain reliable results with any 

attempted tree extraction software and 2) a heavy thinning treatment was applied in 

2007, a year prior to the LiDAR data collection, heavily reducing the number of trees.  

 

Without modification, LiDAR Analyst performed better at delineating  trees in denser 

canopy conditions, especially when these were dominated by hardwoods. On the other 

hand, Fusion/LDV, without any modifications, is particularly more sensitive when 

extracting evergreen trees in open conditions. While very limited user-input is allowable 

using the LiDAR Analyst tree extraction application, Fusion/LDV is customizable, and 

the algorithm based on a variable window first presented in (Popescu et al., 2002) and 

(Kini and Popescu, 2004) can be calibrated with field crown height and width 

information. Providing appropriate calibration data for the ecosystem of interest would 

increase the ability of appropriately detecting, at a minimum, most of the dominant trees 

with isolated crowns. Most importantly, using a higher density LiDAR dataset, with a 

minimum of 4-6 returns/m would further enhance the ability of extracting individual tree 

crowns accurately. 

 

Conclusion 

 

Advances in active remote sensors, reduction in the commercial cost, and 

improvements in the off-the-shelf available software for data analyses and 
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management, have intensified the need to understand the value of the use of these 

tools in forestry, conservation biology, and natural resource management applications.  

For the use of multiple return LiDAR to replace or minimize field data collection efforts, 

validation of this technology, and especially of different strategies of  data extraction 

have to be explored. The potential applications of LiDAR in forest management include 

forest inventory estimations - gross-merchantile volume or fine-scale stratified 

inventories (Lim et al., 2003) - and site quality assessments using canopy height/age 

data (Dean et al., 2009). Ecological applications for the use of LiDAR data include the 

prioritization of areas of high biodiversity, prediction of species distributions, ecological 

species or assemblage modeling, and anthropogenic change detection (Turner et al., 

2003a). This study provides an in-depth look at validation of two independent LiDAR 

datasets with an extensive grid of field plot data using a variety of analyses tools. 

 

There is an inherent assumption, when validating data, that field data collection carries 

a smaller degree of error than remotely sensed data. Nevertheless, field measurements 

do include errors, which can be difficult to estimate, and should be acknowledged in a 

validation effort. In this study, the forestry field collected data certainly had errors in the 

measurement of both canopy cover and tree height, with field plot geolocation errors 

having a potential to be a large error source. Canopy cover percentages per plot, unless 

sampled extensively (approaching 100 replicates per plot), can produce gross errors 

(Jennings et al., 1999). Only nine point canopy cover samples were taken per plot, and 

about 25 per transect, which could have resulted in a very low confidence in the field 

canopy cover results per individual plot.  



50 
 

 

Correlations of individual plot field with LiDAR canopy cover measurements was, as a 

result, very low (r2 <0.27), but stand level comparisons faired significantly better. 

Nevertheless, 15% difference in cover detection can have an important impact on 

ecological applications. On a landscape scale, land cover classification, important for 

circulation and carbon exchange models could incorrectly assign woodland classes to 

forests or shrubland, with a 15% error in canopy cover (Hansen et al., 2000).  Light 

penetration modeling would be also dramatically skewed with a 15% error, and habitat 

suitability modeling for wildlife species could provide incorrect guidance to land 

managers (See Chapter 4).   

 

Plot mean and maximum heights obtained from field measurements have inherent 

errors which would be more pronounced in either denser canopy conditions (bottomland 

hardwoods and hammocks) or isolated taller trees (Clark et al., 2004). In stands and 

transects representing these two extreme conditions at Tall Timbers, the discrepancy 

between LiDAR and field mean heights was the most obvious. Additionally, small 

footprint LiDAR datasets are well reported for the underestimation of canopy height due 

to failure of recording the top of trees (Gaveau and Hill, 2003). The underestimation of 

laser returns when determining maximum canopy height is clearly visible in most stands 

and transects at Tall Timbers, where an average negative bias of between 1-4 m was 

detected. Other studies detected negative bias ranging between 1 to 3.7 m (Gaveau 

and Hill, 2003;Clark et al., 2004). Overall, validation of both 2002 and 2008 LiDAR 

derived mean and maximum heights performed extremely well, with differences ranging 

between 0.5-1.5 m. These differences are negligible for modeling habitat preferences, a 
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powerful application especially for avian woodland species (Davenport et al., 2000) and 

microclimate in forest ecosystems, crucial for floral and faunal diversity (Chen et al., 

1999).  

 

Other obvious sources of error are the temporal differences among all three datasets 

(the two LiDAR datasets) and the field data collection. Hardwood components are 

known to vary dramatically at Tall Timbers, not only due to senescence (seasonal 

variation), but also to active management. Differential treatment of stands, such as 

selective thinning in 2007 at most stands, added variability when detecting metric 

differences. Selective thinning directly impacts canopy cover and canopy heights by 

removing non-dominant, smaller trees from most stands. Furthermore, differences in 

cumulative annual rainfall prior to the data collection could impact the forest structure, 

especially the canopy cover of specific stands. 

 

Potential causes for the weaker correspondence in LiDAR include field calibration and 

geolocation errors, LiDAR mean height underestimation bias, and most likely the 

asynchronous nature of the datasets. The field data collection was at least 2 years apart 

from either LiDAR data collection event, and significant rainfall differences and even 

seasonal differences could have impacted canopy cover and height.  Reducing the bias 

of environmental (rainfall and seasonality differences) and anthropogenic factors 

(management treatments) in validation of the field data is difficult when datasets are not 

synchronous or at least within the same range of conditions. 
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The methodology used for LiDAR data metrics extraction and tree extraction does 

impact the results. As sensors improve, the point cloud data density increases while 

cost decreases, and more options will be available for automated data extraction from 

larger LiDAR datasets. The choice of processing methodologies, either off-shelf or 

custom software, should take the goal of the analysis, LiDAR dataset size, and on-site 

conditions into account. In this study, metrics derived from the raw GIS method were 

able to pinpoint the highest crown height better, for most plots, than Fusion/LDF 

software metrics did. For most other metrics, however, canopy cover and mean plot or 

transect heights, Fusion/LDV derived metrics outperformed  GIS results. The nature of 

the analyses using point cloud data in ArcGIS preserves all individual returns, while the 

Fusion/LDV analysis relies heavily on grid interpolated values of canopy and ground 

heights to calculate its metrics.  Similarly, tree extraction results were dramatically 

different when comparing LiDAR Analyst with Fusion/LDV's CanopyMaxima algorithm 

detection: LiDAR Analyst, without customization was more suitable for detection of trees 

in denser woodlands, whereas Fusion/LDV was superior in open canopy/field 

conditions.   

 

Success in tree extraction results from LiDAR extraction is still very limited to a few 

studies (Hyppa et al., 2001;Leckie et al., 2003;Suarez et al., 2005;Lee and Lucas, 

2007), mostly due to application of algorithms that were developed primarily for 

uniformly structured forests in areas that have a greater variety of crown sizes and 

subcanopy dominance.  Success at tree extraction on a broad spatial scale is still best 

reported with the use of optical imagery (Palace et al., 2008). Fusion/LDV's 

"CanopyMaxima" algorithm used in this study was based on TreeVAW software (Kini 
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and Popescu, 2004), and targeted eastern coniferous trees. In plots or transects with 

relatively open canopy (40% or under) and dominated by pine trees, this algorithm 

performed well. In hardwood dominated areas or transects representing ecotones with 

significant hardwood encroachment, a large percentage of the trees were not detected. 

Increasing the average point density of the LiDAR data acquired to a minimum of 4-6 

returns/m should be priority when the data will be used for tree extraction.  Additionally, 

modification of the algorithm used in Fusion/LDV's software, especially after calibrating 

it with field specific data, could enhance its tree extraction performance. LiDAR Analyst, 

however, doesn't provide as much flexibility in the implementation of the proprietary 

algorithm. The use of a complementary relative penetration index, Height-Scaled Crown 

Openness Index (HSCOI) developed for more complex forests (Lee and Lucas, 2007), 

might significantly improve the tree extraction results. Fusing optical with LiDAR 

imagery might further enhance tree extraction.  Accurate tree extraction is important for 

forest managers, since it switched the emphasis back to the results conventional 

forestry uses for daily management tasks. On an ecological note, appropriate detection 

of crowns across broad landscapes will broaden the applications even further: it would 

enhance species suitability modeling to an even finer scale level, and potentially allow 

canopy gap modeling. Canopy gaps are crucial in forest recruitment and succession, 

and key in understanding and protecting biodiversity, especially in tropical forests 

(Hamer et al., 2003). 

  

To be used in forestry, LiDAR data should be acquired and processed with the specific 

goals in mind. For stand level canopy cover and mean height estimates, using 

Fusion/LDV software, which interpolates point cloud data, yields estimates closer to 
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field inventory metrics. Pinpointing maximum crown height in plots, using the raw GIS 

method yields more appropriate results, since this method does not average or smooth 

individual returns.  Tree extraction should only be attempted with very high density 

LiDAR datasets, with a minimum of 4-6 returns/m. High density sampling is also crucial 

to reduce the underestimation bias airborne LiDAR datasets commonly present, by 

reducing the likelihood of missing treetops. 

 

The approximation of field structural variables by the use of high resolution LiDAR data 

doesn't fully highlight the value and benefits of the use of active remote sensing 

techniques in natural resource management. Multi-return LiDAR provides the ability of 

characterizing forest structures three-dimensionally, even through large extents (Kao et 

al., 2005;Akay et al., 2009), enhancing forest monitoring and management (Lim et al., 

2003). 
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Abstract 

 

Once a dominant ecosystem in the Southeast, pine-grassland forest has been cleared 

to agriculture or converted to either closed canopy pine-hardwood forest or pine 

plantations, and requires active and responsive management for successful restoration.  

These forests depend on a frequent (1-3—year fire return), low- to moderate-intensity 

fire regime to prevent succession to mixed hardwood forests and maintain understory 

species diversity.  This study evaluates stand structure at the site of one of the longest 

running fire ecology studies in the US, located at Tall Timbers Research Station (TTRS) 

in the southeastern U.S.  Small footprint high resolution discrete return LiDAR was used 

to provide an understanding of the impact of multiple disturbance regimes on forest 

structure. 

 

Height profiles and derived metrics - canopy cover, canopy heights, shrub height and 

cover were determined using 2002 and 2008 airborne LiDAR. The study plots consist of 
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three replicates each of four different fire treatments:  1-year, 2-year, 3-year fire return 

interval, and fire suppressed plots.  The 3-dimensional spatial arrangement of multiple 

structural elements was used to assess hardwood encroachment.   Canopy cover and 

diversity indices were shown to be  statistically higher in fire suppressed and less 

frequently burned plots than in 1- and 2-year fire interval treated plots, which is in 

general agreement with 3-year fire return interval being considered an‖ ecological 

threshold‖ for these systems (Masters et al. 2005). The results from this study highlight 

the value of the use of LiDAR in evaluating disturbance impacts on the three-

dimensional structure of pine forest systems. 



68 
 

Introduction 

 

In the last decade, LiDAR remote sensing, both in waveform and discrete returns (as in 

this study), has been explored as a tool in the field of forestry. Besides providing 

predominant height, canopy cover, and even derived basal area information that is 

analogous to field data (Lefsky et al. 1999; Means et al. 1999; Dubayah and Drake 

2000; Lovell et al. 2003; Coops 2007), this active remote sensing technique allows the 

direct measurement of canopy height profiles, or the three dimensional distribution of 

plant material in space, including subcanopies (Lefsky 2002). LiDAR has been 

demonstrated to be an effective tool to characterize stand structure including above-

ground biomass and carbon storage- (Lefsky et al. 2005), forest inventory and 

management (Lim et al. 2003; Akay et al. 2009,), and fire behavior and bird population 

modeling (Lim et al. 2003). LiDAR provides a means to evaluate the three-dimensional 

forest structure (Zimble et al 2003), with a much reduced effort and cost than ground 

based measurements, particularly over large areas. In fact, field constraints, such as 

accessibility, lack of objective and efficient measurement techniques, and high 

personnel and equipment costs, have quickly made the use of LiDAR remote sensing 

more attractive to land managers and conservation ecologists. 

 

Small footprint LiDAR allows the rapid characterization of habitat structure, which is so 

crucial for determining habitat suitability and consequent community richness (Lefsky et 

al. 2002) from plot to landscape scales (Lefsky et al. 2002; Zimble et al. 2003). Its use 

brings scientists and land managers together and enhances their understanding of 
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forest structure over large landscapes (Kao et al. 2005). As steadily improving sensors 

increase the number of surface returns captured, a further decrease in overall costs is 

expected, and more detailed three dimensional models can be constructed quickly and 

affordably. This cost and time savings has been demonstrated in the development of 

forest fuel management plans at half the cost and with 3.5 times less time with airborne 

LiDAR than with the traditional alternative (Akay et al. 2009). 

 

The application of a high resolution LiDAR to a study site with a long-term study design, 

consistent implementation, and well known structural differences – the Stoddard Fire 

Plots on Tall Timbers Research Station (TTRS) - allowed a better understanding of the 

strengths and weaknesses of this new technique. The study sites (TTRS and two 

surrounding plantations) are representative of pine savanna ecosystems in the 

southeastern U.S., that led to a concerted conservation effort.  

 

Historically, most of the upland areas of the Southeast Coastal Plain were dominated by 

pine savanna (Vogl 1973) or pine-grassland woodlands (Masters et al. 2005), which can 

be described as very open pine-dominated ecosystems with a rich grassland 

understory. The role of fire in shaping the composition and understory species richness 

of these communities is well established in the literature (Walker and Peet 1983; Allen 

and Wyleto 1983; Mehlman 1992; Waldrop et al.1992; Gliztenstein et al. 2003; 

Glitzenstein et al. 2008). Fire is a mechanism that controls multiple components in this 

ecosystem;  it maintains a relatively low canopy cover (Waldrop et al. 1992; Masters et 

al 1995; Masters et al. 2005), reduces hardwood shrub encroachment and litter (Garren 
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1943; Ahlgren and Algren 1960; Vogl 1972; Masters et al. 1998), and it enhances pine 

recruitment by creating canopy gaps and seedling success (Vogl 1972; Platt et al. 1988; 

Myers 1990).  While increasing canopy openness is relatively easy in management, 

enhancing understory heterogeneity and maintaining the balance between reduction of 

hardwood midstory components and increasing pine recruitment remains a challenge to 

land managers.  

 

Succession of pine-dominated ecosystems to dense mixed pine-hardwood forests with 

reduced understory species richness is largely a consequence of fire suppression 

(Masters et al. 1995, 2007; Sparks et al. 1998, Glitzenstein et al 2008). Additionally, the 

large-scale conversion of pine dominated upland areas to agriculture and short-rotation 

forestry plantations have further decimated this once prevalent landscape to fragmented 

remnants of the once abundant pine savannas. One of the most studied pine savanna 

ecosystems, the longleaf pine (Pinus palustris) savanna, is now considered one of the 

―most endangered ecosystems‖ in the world (Noss et al. 1995), after being reduced to 

less than 2% of its original extent (Ware et al. 1993). 

 

The historical fire regime of southeastern pine woodlands or savannas, derived by fire 

history studies (Chapman 1926, Frost 1998, Huffman 2006) and landform-slope 

mapping (Hammond 1964; Frost 1998), consists of very frequent (1-3 year) low intensity 

fires predominantly during the growing season of May-October (Gliztenstein et al. 

2003). Other studies focusing specifically on Florida indicate an earlier start of the fire 

season, February and March (Myers and Ewel 1990).  The fire return frequency is the 
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result of high incidence of lightning strikes during the natural fire season (Chen and 

Gerber 1990) and, historically, has been attributed to the widespread use of fire by 

Native Americans (Vogl 1972; Gliztenstein et al. 2003). Many researchers suggest that 

original fire frequency of the upland Southeastern pine forest was as high as annually 

(Komarek 1964; Lotti 1971; Perkins 1971), and that the predicted 1-3 year fire return is 

a conservative estimate (Frost 1998).  Recent work by Huffman (2006) suggest that a 2 

year interval may be the norm with periodic longer intervals. 

 

Traditional management efforts in the southeastern US have attempted, to a certain 

extent, to mimic the original pre-settlement fire regime in frequency and intensity.  

However, the traditional goal of land management was game management (Robbins 

and Myers 1992) rather than ecosystem management, which led to a pattern of very 

frequent 1-2 year dormant season (November through February) burns. Seasonality 

and frequency of fires have an impact of species composition and structure. 

Researchers have evaluated how the modification of seasonality from growing to 

dormant seasons reduces the impact on woody species encroachment and the long-

term ability of native herbaceous species survival (Gliztenstein et al. 1995, Robbins and 

Myers 1995).  Other studies, specifically at Tall Timbers, have shown how an annual 

burning regime suppresses pine basal area growth and seedling establishment 

(Masters et al. 2005).  
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The objective of this study was to determine the ability of airborne LiDAR for fine scale 

determination of vegetation structure on an experimental area of known treatment 

differences.    

 

Methods 

Study area 

 

This study took place at Tall Timbers Research Station, historically the Henry Beadel 

Plantation, which is located within the Red Hills area of southwestern Georgia and 

northwestern Florida, USA (Figure 11).  This region occupies approximately 300,000 ha 

between Thomasville, Georgia and Tallahassee, Florida and is home to over 230 rare 

types of plants and animals and over 27 federally listed threatened and endangered 

species (Masters et al., 2007). The Red Hills area is comprised of a mixture of young 

and old growth longleaf pine forests, natural and planted loblolly (Pinus taeda) and 

shortleaf  (Pinus echinata) pine forests primarily in an old field context, mixed hardwood 

and pine forests, forested and herbaceous wetlands, agricultural fields, and 

residential/urban land cover types . 
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Figure 11. Location Map of the Red Hills Area and Tall Timbers Research Station. 
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The Tall Timbers Research Station (TTRS) covers 1600 ha within the Red Hills area, 

and is located just north of Tallahassee, FL (Figure 11).  Prior to 1895, the area now 

occupied by the Research Station, was dominated by pristine pine savanna uplands 

interspersed with hardwoods and some hammocks at lower elevations along drainages.  

After 1897, the area was converted to Hickory Hill Plantation, a corn and cotton 

producing plantation, but was soon devoted to agriculture and wildlife management as 

early as the 1920’s when it became known as Tall Timbers Plantation.  The upland pine 

ecosystems at TTRS have been highly disturbed by agriculture, and are dominated by a 

mixed canopy of loblolly pine (Pinus taeda), shortleaf (Pinus echinata) and longleaf 

(Pinus palustris) (Masters et al. 2005). The groundcover at the study site is dominated 

by many legumes and sunflower family members and interspersed with grasses 

(primarily broomsedge bluestem, Andropogon virginicus), but lacking the wiregrass 

typical of pristine longleaf pine savanna ecosystems (Hermann 1995).  

 

TTRS is focused on research and management issues of longleaf pine savanna, pine 

woodlands, and other ecosystems of the Red Hills area, including the management of 

forests for game birds (such as the Northern bobwhite, Colinus virginianus ) and 

threatened and endangered species (such as the red cockaded woodpecker, Picoides 

borealis).  This Research Station provides a ―model working landscape‖ that engages 

landowners (under the Land Conservancy, TTLC) to ensure the future health of the Red 

Hill area’s forests and wetlands. 
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The TTRS has been actively managing its secondary upland pine forest using 

prescription fire of low intensity transition season treatments with a return interval of 1-2 

years (applied in a heterogeneous small-scale pattern). It is important to note that the 

upland pine woodlands for this study are formerly old field sites (Herman 1995) and no 

longer have a natural fire regime. Furthermore, scientists at the station had realized for 

many decades the importance in studying the role of fire in the restoration and 

maintenance of its upland pine ecosystem. In 1959, the Stoddard fire plots were 

established using three replicates of four fire treatments (1-, 2-, 3-, and 4-year fire return 

intervals) and a set of three control or fire suppressed plots, among others. The 

specifically mentioned Stoddard fire plots are the focus of this research project. 

 

 

Description of Stoddard Fire Plots  

 

The 12 Stoddard fire plots (named after Herbert Stoddard, prominent conservationist 

who established these) and three additional control plots are 20 by 20 m (Table 6), 

occupy about 0.3 ha in area and were randomly placed throughout the central upland 

area of TTRS (Figure 12). There are replicates (A, B, and C) for each of the four fire 

returns studied, W1, W2, W3, and W4 correspond to the 1-, 2-, 3-, and 4-year fire return 

interval treatments. The control plots (UA, NB66, and W75B) have been fire suppressed 

since 1959 except for NB66 which has been fire suppressed since winter 1967. 
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Table 6. Stoddard Fire Plots Description:  Treatment Type, Dimensions, Soil Type, Fire and Land Use History (extracted 
from 1930s Imagery) 
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Figure 12. Location, Fire Treatment and Location, Fire Frequency, and Soil Type of the 
Stoddard Fire Plots at TTRS. 
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Differences in soil type and past land use (Figure 12, Table 6) for the Stoddard plots 

have been explored. Historical photography from the 1930s was obtained and the areas 

of open canopy, dense forest, cleared land, and roads clearings were digitized for all the 

Stoddard plots. An alteration ratio for each plot was calculated as the total percentage 

of cleared land to the total forested percentage (Table 6).  

 

All the treated plots were burned using low intensity fires during the transitional season 

(between the dormant and growing season or March-April) at their dedicated fire 

rotation for 50 consecutive years. The only treated plots out of rotation for a period of 

time were the 4-year fire return Stoddard plots (W4 A, B, and C). These latter plots were 

treated as 2-year fire return interval plots during the 1999-2007 period before being 

returned to the 4-year interval. 

 

Canopy cover was collected for all 12 Stoddard fire plots starting in 2004. These plots 

were sampled on April, August, October, and December 2004, all months of 2005, 

January-March 2006, and April 2010. For the canopy cover assessment, 8 permanent 

point locations within each fire plot were established.  These permanent plots were 

located at 10 m intervals on two randomly located lines perpendicular to the fire plot 

boundary.  To avoid bias caused by influences from adjacent treatment units, no 

sampling took place within 10-m of any edge. Overstory canopy cover was determined 

using a 9-point grid in a sighting tube with vertical and horizontal levels. Cover was 

determined at each plot center and the four cardinal points at 2-m and 4-m from each 

permanent plot location. The yearly basal area assessment was determined by the 
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variable radius plot method.  Basal areas of trees/stems with ≥ 5 cm in DBH were 

quantified with a 10-factor wedge prism at each of the 8 permanent plot locations that 

were used for collecting canopy cover.   

 

 

LiDAR remote sensing 

 

Two datasets of small footprint multiple return LiDAR (Light Imaging and Ranging) were 

obtained from the Tallahassee-Leon County Geographic Information Systems (GIS) 

Department. These datasets included raw LAS files for the entire Leon County in both 

2002 and 2008 transitional seasons (February and March, respectively) with the goal of 

creating countywide detailed floodplain mapping. The first set (2002) was collected 

using the ALS40 (Leica Geosystems) scanner by Merrick & Co. in February 2002, and 

has a mean and minimum point spacing of 1.39 and 1.05 m, respectively. The 2008 

dataset was collected using a Leica ALS50 Geosystem in March 2008, and has a mean 

and minimum point spacing of 1.55 and 1.19 m, respectively. Horizontal accuracies 

were 0.55 and 0.52 m RMSE for the 2002 and 2008 LiDAR datasets and vertical 

accuracy was 0.10 m RMSE for both datasets. 

 

Point cloud data were obtained in the LAS 1.0 format for the 2002 data which specified 

ground vs. non-ground data, but not any additional return numbers. The point cloud 

data were converted to multipoint files and interpolated using an inverse distance 

weighted (IDW) approach in the 3D Analyst ArcGIS (ESRI) environment to a Digital 
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Elevation Model (DEM) - ground point - and a Digital Canopy Height Model (DSM) - for 

all non-ground points (Zimble et al., 2003). The Canopy Height Model (DCHM) was 

extracted from the difference between the DSM and the DEM.   

 

For 2008, the newer LAS 1.1 format was used, which included both the class (ground 

versus non-ground) and multiple return numbers. Similar to the 2002 dataset, the 2008 

point cloud data were converted to multipoint files.  After the construction of the DEM 

using an IDW second degree interpolation of ground returns, the DCHM model was 

similarly extracted from the difference between the DSM (constructed using first returns 

only) and the DEM. All IDW interpolations performed were second power interpolations 

with a variable search of up to 12 neighbors and a 1 meter grid output size (instead of a 

much smaller 0.2 m grid used by (Zimble et al., 2003). Post processing of all the raster 

products was used to fill most, if not all, empty cells, with nearby interpolated values. 

The DEM heights were assigned to all point cloud data, allowing the computation of 

height above ground for every data point.  

 

LiDAR data with above ground heights were extracted for the forestry plots by selecting 

point cloud data within a 12 m buffer around point center. Similarly, LiDAR data within 

the transects' area were extracted and further identified with the transect unique 

identifier in the ESRI ArcGIS environment. Data management for these large datasets 

took place in ESRI ArcGIS using geodatabases for the extracted LiDAR plots and 

transect 2002 and 2008 datasets. No co-registration between LiDAR datasets took 

place, since the RMSE vertical and horizontal errors were strictly controlled by the 

vendor, and insignificant for plot and stand level comparisons.   
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Data Analyses 

 

The goals of the data analyses were three-fold: 1) to obtain LiDAR derived structural 

variables and attempt to relate these to the fire-return interval 2) to provide a method to 

present and analyze fine-scale differences in the three-dimensional structure, 

particularly in the midlevel canopy, of a plot using LiDAR data, and 3) to understand if 

past land use, soil, and location of the plots has an impact on plot canopy structure. 

 

Structural variables of interest for the 2002 and 2008 LIDAR data were extracted using 

database queries and histograms. The variables of interest included canopy cover, 

canopy height (maximum, minimum, mean, and standard deviation), shrub height 

(mean and standard deviation of returns between 0.34 and 2 m), shrub cover 

(proportion of 0.34-2 m returns), and height diversity and height evenness indices (HDI 

and HEI, respectively) (Table 7). Canopy height and cover indices were extracted using 

similar methodology described by Lim et al. (2003) for discrete return LiDAR, with slight 

modification from the 20X20m window used by Lovell et al (2003) and Coops et al. 

(2007). For the canopy heights, instead of using a 20X20 m window to obtain the 

highest canopy point as the maximum height, the entire Stoddard plots, which are only 

about 40X40m in dimension, were used. Maximum height corresponded to the highest 

LiDAR canopy classified return within the entire plot, and mean canopy height used an 

average of all canopy returns over 2m, and is expected to underestimate the average 

field tree top heights (Lim 2003). Canopy cover was measured by redefining closed 

canopy returns as only the ones over 2m and dividing the total number of these returns 
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in each plot by all discrete returns in the same plot, including non-ground returns (Table 

7). The proportion of canopy returns is a standard canopy cover index (Lim et al. 2003), 

which, for this study, has been slightly modified to exclude herbaceous and lower shrub 

layers.   

 

Shrub Dominance Index (SDI), or the proportion of shrub returns (returns between 0.34-

2 m in height) to all LiDAR returns, was developed to capture shrub encroachment 

and/or recruitment (Table 7). This is a similar measure as the shrub density index 

adopted by Clawges et al. (2008), with the exception of a narrower height class (0.5-2 

m). The higher the relative shrub cover value (or SDI), the greater the amount of returns 

classified as canopy between 0.3 m and 2 m in height. Shrub encroachment, specifically 

of hardwood species, in the southeastern pine forest, is often considered undesirable 

and leads to ecosystem function alterations, with the elimination of fire being directly 

linked to the reduction of ecological and conservation values (Masters et al. 2007). The 

frequent use of moderate intensity fire attempts to reduce this hardwood shrub 

encroachment. Other studies, using the Stoddard Fire Plots, have reported 2-year fire 

interval burns suppressing woody vegetation, and 3-year fire return intervals slowing, 

but not suppressing woody understory encroachment (Herman 1995).   
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Table 7. Definitions of LiDAR-derived Structural Information. 

Name Acronym Units Description 

Canopy Cover CANCOV % (Count of Canopy Returns >2m/Count of All Returns) * 100 

Mean Canopy Height CANAVGH
T 

m Average Height of all Canopy Returns (>2m in height)  

Maximum Canopy Height CANMAXH
T 

m Maximum Height of all Canopy Returns (>2m in height)  
 

Shrub Mean Height SHAVGHT m Average Height of all Shrub Returns, which are defined as Canopy Returns > 
0.34m and <2m in height 

Shrub Dominance Index SHINT N/A Total Shrub Returns/All Returns  

Height Diversity Index HDI N/A The Shannon Diversity Index (H') modified to calculate Foliage Height Diversity 
or Structural Diversity (MacArthur & MacArthur 1961).        

Height Evenness Index or 
Equitability Height Index 

HEI N/A Another measure of diversity that takes the total number of height classes into 
account (MacArthur & MacArthur 1961).         

 
Numbers in italics are significantly different among fire treatments  
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In order to examine the Stoddard plot three-dimensional structure, histograms of the 

proportion of LiDAR returns per 1 m height interval were constructed. Additionally, the 

Height Diversity Index (HDI) and corresponding Height Evenness Index (HEI) were 

calculated (Table 7), using a finer scale interval of 0.5 m intervals. The Height Diversity 

Index (HDI) was calculated using the standard Shannon-Height Diversity Index formula 

(H'):  𝐻′ =  − (piln𝑝𝑖
𝑠
𝑖=1 ), and is equivalent to the foliage height diversity (FHD) used 

by Clawges et al. (2008). The Height Evenness Index (HEI) was calculated by using the 

following formula: 𝐻𝐸𝐼 =  
𝐻𝐷𝐼

ln 𝑆
, where S is the total number of foliage layers. 

 

 

Linear regressions were used to compare field-derived canopy cover (using a gridded 

sighting tube) and LiDAR-derived canopy cover. Since field data were not coincident 

with the 2002 and 2008 LiDAR data collection events, the closest available data were 

used. Field data from April 2004 were compared to February 2002 LiDAR canopy cover 

data, and April 2010 field data were used to compare with March 2008 LiDAR data.   

 

The impact of the frequency of fire and location of the plots on the different LiDAR 

extracted structural variables of interest were examined by using several One-Way 

ANOVAS.  The dependent variables examined were canopy cover, mean and maximum 

canopy heights, shrub dominance (SDI), shrub mean height, height and evenness 

diversity indices (HDI and EDI).  One of the independent variables, the fire return 

interval, included the 1-, 2-, 3- year fire return and the suppressed plots. The 4-year fire 

return plots were not included for the statistical analyses, since these were out of 

rotation between 1999 and 2007. The other independent variable, the location (i.e. block 
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number) within the study area, included Block A (plots W1A-W4A and suppressed plot 

W75B), Block B (W1B-W4B and suppressed plot NB66), and Block C (plots W1C-W4C 

and suppressed plot UA). The different Blocks refer to locations within the study area, 

and were used to provide replicates of each treatment type within the Tall Timbers 

Research Station (Figure 12). 

 

The dependent variables that were found to be significantly different among treatment 

groups using ANOVAs, were further tested to determine pairwise significant differences 

among means of treatment groups were the Fisher Least Significant Difference (LSD) 

and the Tukey’s Honestly Significantly Different (HSD) post-hoc tests. The former test is 

the original test developed to pinpoint which groups have significant differences from 

each other, and the latter test aims to perform similar analyses and still maintain 

accurate alpha levels (which, at times gets reduced with the LSD test). The Tukey’s test 

advantage of conserving alpha levels is accompanied with a decrease in detection 

power, when compared to most other post-hoc tests (Winer et al. 1991). 

 

Finally, the relationship between some of the statistically significant structural variables 

and the historical land use variable alteration ratio (see above for description) was 

explored by linear regression and adding this variable as a covariate in analyses of 

variance. The goal of this analysis was to eliminate historical past land use as a factor in 

shaping the present structure of the Stoddard plots. 
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Results and Discussion 

 

LiDAR Stoddard Plot Structural Data 

 

LiDAR-derived canopy cover percentages (CCLi) of the Stoddard Plots vary significantly 

across the different fire treatments (Table 8). The canopy cover increases with an 

extension in the fire return interval; 2002 and 2008 LiDAR-derived cover have means of 

45% (2002) and 40% (2008), respectively, for one year fire return intervals,  54% and 

48% for 2-year return plots, 71% and 57% for 3-year plots, and finally 77% and 68% for 

fire suppressed plots (Figure 13).  These findings are in agreement with many previous 

studies, which describe how repeated fires maintain an open overstory canopy in 

upland pine systems (Vogl 1972; Waldrop et al. 1992; Masters et al. 2005). The only 

apparent exception to this pattern is the canopy cover of the 4-year fire return plots, with 

means of 57% (2002) and 44% (2008), similar to the 2-year fire return canopy cover 

means.  The 4-year fire return plots were out of rotation and treated as 2-year fire return 

plots prior to and during the data collection (See Methods), and further highlights the 

impact of a short-term change in fire return on forest structure.  
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Figure 13. LiDAR-derived canopy cover percentages among Stoddard plots with multiple fire treatments and control plots. 
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Table 8. Derived Structural Canopy Information from the 2002 LiDAR dataset: Canopy Cover, Mean and Maximum 
Canopy Heights, Shrub Intensity, Height Diversity Index (HDI), Height Evenness Index (HEI). 

 
a
 Plots out of fire rotation between 1999-2007 (2 year fire return during this 8 year period)       

b 
Metrics with statistically significant differences among fire treatment 
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Canopy cover in 2002 was, overall, higher than in 2008 across all Stoddard plots. 

Differences in canopy cover per treatment group varied between 6% and 14% lower in 

2008 than in 2002. The overall mean for canopy cover of all Stoddard plots in 2002 was 

61%, whereas the mean 2008 canopy cover was 52%.  Similar, but more subdued 

differences in rainfall are visible in the field data collection between 2004 and 2006.The 

differences in canopy cover could likely be explained by a dramatic contrast in the 

cumulative and 2006 12 month and 24 month precipitation prior to the 2002 and 2008 

data collection events (Tall Timbers, unpublished data). Whereas the cumulative 12 and 

24 month precipitation prior to 2002 was at or near the 1969-2009 historical average 

(143 cm and 137 cm, respectively), the cumulative precipitations prior to 2008 was well 

below the average (99 cm and 97 cm, respectively) (Tall Timbers, unpublished data). 

Both 2006 and 2007 can be described as extreme drought years in North Florida, with 

values of 41 cm and 43 cm below the historic annual average of 140 cm. Loblolly pine 

needle fall – which would imply a decrease in canopy cover-, has been correlated to 

relative drought during the growing season, with precipitation effects lagging a year on 

these stands (Hennessey et al. 1992). Loblolly pine was the dominant canopy species 

on many of these plots (Masters et al. 2005). 

   

Mean canopy height values varied between 11.85 m and 21.25 m (2002) and 9.75 m 

and 22.12 m (2008). There were no significant differences among treatment groups: 

2002 and 2008 mean group heights varied only between 16 and 17m for 1-, 2-, 3-, and 

4- year fire return treatments (Table 8). The only treatments with higher mean canopy 

heights are the unburned plots, with 19 m for 2002 and 18 m for 2008 data. The 
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different fire treatments did not seem to influence the canopy height directly. Indirectly, 

the plots with much higher amount of shrub and canopy vegetation, such as the fire 

suppressed plots, had slightly higher mean heights, as a result of more tree cover. The 

mean canopy height (either derived by the average of all canopy points above 2 m or 

the average DCHM raster values per plot) is not equivalent to the average tree field 

height.  LiDAR-derived data includes some midstory canopy and shrub returns into 

account, and would, therefore, be more easily biased than field heights of the dominant 

and co-dominant tree matrix. 

 

The rainfall differences between 2002 and 2008 datasets also did not seem to have 

impacted the mean canopy heights of the Stoddard plots. The difference between the 

2002 and the 2008 mean canopy height of all Stoddard and control plots is less than 1 

m, namely between 17.06 m and 16.78 m, respectively. 

 

Maximum canopy height values ranged between 27.5 m and 35.7 m (2002) and 27.7 m 

and 35.58 m (2008). Similar to the mean canopy heights, the maximum heights for both 

2002 and 2008 did not show any discernable pattern among the different fire 

treatments:  maximum heights are lowest in the 2 year fire return interval treatment (29 

m), similar for all other treatment and control plots (31-33 m) (Table 8). The fire 

treatment did not seem to have an impact in the maximum canopy height of the 

Stoddard plots, with fire suppressed plots having essentially identical average heights 

(32.54 m or 32.75 m for 2002 and 2008, respectively) to the 1-year fire return treatment 

(32.4 m and 32.09 m, respectively).  
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The maximum canopy height data for the 2002 dataset were identical to the 2008 data, 

with total plot averages of 35.70 m for the canopy height of the first dataset and 35.58 m 

for the later dataset. The canopy height, represented by the highest return value in the 

plot, didn't seem to have been negatively affected by the extreme drought experienced 

in 2006 and 2007. 

 

Relative shrub cover (or SDI) values range from 0.21 to 6.35% for the 2002 dataset and 

from 0.10 to 2.14% for the 2008 dataset (Table 8, Figure 14). The overall mean shrub 

cover of all the Stoddard and control plots was much higher in 2002 (2.7%) than in 2008 

(0.71%). As a matter of fact, several of the more frequently burned Stoddard plots 

(W1A, W1B, and W2B) presented no return classified as shrub in the 2008 year (Figure 

14). With similar point density (minimum 1.05-1.19 returns/m) and seasonality of data 

collection of both sets (February-early March), differences in the ability of shrub 

detection were not expected. Low numbers of shrub returns in 2008 could be a 

consequence of precipitation differences described previously (indicating a lack of shrub 

growth after a prolonged drought) as average Keetch-Byram Drought Index values for 

the burns in the previous years (2001 and 2007) were considerably different (22 vs. 

435) and likely reflect more intense fire behavior on the plots in the later burns.  



92 
 

 

 

Figure 14. LiDAR-derived Shrub Intensity among Stoddard plots with multiple fire treatments and control plots
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Relative shrub cover among the different fire treatments presented a subtle pattern for 

the 2002 dataset (2008 had several plots without cover values), especially when 

examining the ―C‖ replicates (Figure 14). The 2002 mean relative shrub cover for the 1-, 

2-, 3-, and 4- year fire return treated plots was 1.8% , 2.4%, 3.7%, and 4.5%, 

respectively. The variability among the replicates for each treatment group is very large, 

causing the standard deviations to range between 0.7 to 2.6%. An increase in shrub 

cover or dominance with a greater interval in the fire regime is in complete agreement 

with other studies which measure a statistically significant increase in number of 

hardwood stems with less frequent fire (Hermann 1995). However, fire suppressed 

control plots presented very low shrub cover (1% for both 2002 and 2008 datasets), 

when compared to a longer fire return interval plot. In these plots, the hardwood canopy 

mid story component is now dominating the canopy, effectively shifting over time, 

canopy constituents to a mesic hardwood-pine forest with dense canopy cover. The 

significantly reduced number of saplings (which composes most of the woody 

encroachment in the non-annual treatment plots) can be explained by a reduction in 

light availability after 50 years of canopy closure in these hardwood forested 

environments and possibly increased root competition. 

  

Analyses of Variance of multiple LiDAR-derived metrics among the three treatments 

and one control group yielded consistent statistically significant differences in only the 

canopy cover (Table 8 and Figure 15) and height diversity variables. Canopy height 

variables (mean and maximum) and shrub variables (shrub mean height and cover) 

were either not found to be significant in either one or both years.   
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Figure 15. Means and Confidence Intervals of 2008 LiDAR Derived Canopy Cover 
among Treatment and Control Plots. 

 

Further Post-Hoc Analyses – Fisher LSD and the Tukey’s HSD tests- of the canopy 

cover variable determined that no significant differences were present between the one 

– and two-year fire return treatments for both 2002 and 2008 datasets (Table 9). 

Canopy cover means from 2002 and 2008 were significantly different using either post-

hoc tests between one-year and 3 year- treatment plots,- and also between one or two-

year treatments and control (fire suppression) plots. Canopy Cover differences between 

one or two-year treatment plots and three-year treatment plots were only significant 

using the more sensitive Fisher LSD test, for both 2002 and 2008 (Table 9). In most 

instances, there were no significant differences between canopy cover of the control 
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plots and 3-year fire return treatment; the only exception to this was the 2008 dataset 

using the Fisher LSD analysis.   

 

In general, the Post-Hoc Analyses agree with the assessment that there is a great 

disparity between canopy cover of high frequency burned plots (1 and 2-year 

frequencies) and low frequency or suppressed plots (3-year and control plots). Other 

studies have effectively demonstrated that 3-year interval is an ―ecological threshold‖ for 

upland pine systems (Masters et al. 1993; Masters et al. 2005), with stands under 3-

year fire frequencies being dominated by herbaceous understory, and stands at and 

over 3-year intervals dominated by woody vegetation.  This implies fire management at 

3-year interval – commonly thought as being within the ―natural‖ fire regime for upland 

pine woodlands in the Southeast-, will allow a progressive increase in hardwood 

presence at least on old-field derived lands. The rate at which this shift from an open 

pine-grassland to a more mesic hardwood-pine type forest would occur is probably 

linked to soil and fuel moisture (Masters and Robertson 2007), and potentially other 

environmental variables.  
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Table 9. Post-Hoc Test (Fisher LSD/Tukey’s HSD) Results for 2002 and 2008 Statistically Significant Structural Variables 
among Fire Treatments. 

 

 
 
Bolded values are signficant at α=0.05; cells shaded in gray are significant for both the Fisher LSD and Tukey’s HSD tests
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Field Stoddard Plot Canopy Cover Data 

 

Field Canopy Cover data for the Stoddard and Control Plots vary between treatments 

and across data collection events (Table 10). The 1-year fire return treatment plots have 

field canopy covers of 11 to 51% across all dates and replicates, with an overall 

average canopy cover of 33%. The 2-year Stoddard plots had higher canopy cover 

values than the 1-year plots, varying between 28 and 73% canopy covers, with an 

overall mean across dates of 52%. The 3-year fire return plots have even more dense 

canopy, with canopy cover values varying between 44 and 84%, and an overall mean of 

67%. Since the 4-year fire return plots were rotated as 2-year fire return plots for the 

majority of the years presented, the canopy covers were expected, if indeed shaped by 

fire interval, to be similar to the 2-year fire treatment plots. In fact, the 4-year replicate 

Stoddard plots had canopy cover similar to the 2-year fire return plots, with cover 

between 40 and 65%, and the same average canopy cover average of 52%. Finally, the 

control plots with fire suppressed for at least 50 years, have the highest canopy cover 

values ranging between 78 and 99%, and with an across the years and replicates 

average of 87%, 20% higher than the 3-year Stoddard plots. 
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Table 10. Field Canopy Cover Data using a Sighting Griding Scope of the Stoddard 
Plots.  

 

Preceding 12-month cumulative rainfall for the field data collection events are: 102 (4/30/2004 event), 170 
(3/15/2005 event),192 (4/12/2005 event), and 159 cm (for 3/21/2006). Rainfall for 2010 event not 
available.  

 

Across the different data collection events, canopy cover for individual Stoddard plots 

did vary (Table 10). For one-year Stoddard Plots the variation ranges between 9 and 

21%, for individual replicates, 2-year treated plots ranged between 5 and 22%, 3-year 

plots between 15 and 22%, and fire suppressed plots between 12 and 26% (4-year 

Stoddard plots only had data collected in the 2010 event). Across all treatments, with 

the exception of the control plots only, canopy cover values tended to be lowest during 

the March 2006 data collection event and highest during the April 2005 event. This 

might likely be linked to rainfall differences between both years: while 2006 was an 

extreme below average rainfall year (99 cm), 2005 was an extremely wet year with 

rainfall well above historical average (174 cm) (Tall Timbers, unpublished data).  
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Comparison between April 2004 Field and February 2002 LiDAR canopy cover data 

yielded a correlation coefficient of 0.56 (Figure 16). The largest difference between the 

2002 LiDAR and the 2004 field canopy cover data can be found in the W3B Stoddard 

plot.  The 2004 field data indicates a canopy cover of 58%, almost 22% lower than the 

2002 LiDAR-derived canopy of the same plot (Table 10). The fire intensity of the 2004 

burns was very high and had dramatic influence on upper mid-story hardwood canopy 

cover. If this outlier were to be removed from the comparison, the regression coefficient 

would increase to 0.84, an indicator of a strong relationship between the two datasets. It 

is difficult to compare datasets over 2 years apart, especially when these were affected 

differently by recent fire treatments. Whereas prior to the LiDAR data collection, none of 

the Stoddard and control plots had been burned for at least 12 months, all plots with the 

exception of the 2-year fire return treatment plots, were burned just before the 2004 field 

data collection.  The immediate reduction of canopy cover data in the 2004 field dataset 

could be a result of mid-story hardwood species being eliminated, and the W3B plot 

likely was affected by the higher intensity fire, making this reduction even more 

dramatic.  

 

The comparison of April 2010 Field and March 2008 LiDAR canopy cover data yielded a 

strong relationship, with a 0.82 regression coefficient (Figure 16). The higher correlation 

between these two datasets could be related to a more similar season (both collected 

during the transitional season), newer technology LiDAR sensor (with a greater number 

of returns, capturing more mid canopy data), and a similar fire treatment history.  
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Figure 16. Correlation Results between Field and LiDAR Canopy Cover Data (2002 LiDAR versus 2004 Field and 2008 
LiDAR versus 2010 Field measurements).
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Height Diversity of Variable Fire Return Intervals 

 

Beyond simple structural metrics, airborne LiDAR allows a better understanding of 

three-dimensional structural measurements (Leksfy et al. 2002; Kao et al. 2005), such 

as height distribution and diversity among plots. The percentage of LiDAR returns 

across heights is dramatically different among treatments (Figure 17-Figure 19). The 

amount of ground returns (<1m) is the most variable of all height categories, indicating 

the canopy cover differences among treatments: frequently burned plots have over 50% 

of the returns categorized as ground returns (64% for 1-year plots and 54% for 2-year 

plots), while less frequently burned plots (3-year fire return) and control plots have less 

than 40% of ground returns (39 and 30%, respectively).  

 

Overall, in more frequently burned plots, the proportion of LiDAR returns is reduced in 

the lower height categories (<3 m), and this proportion increases with a decrease in fire 

frequency. In one-year fire return plots, the shrub height vegetation is absent or heavily 

reduced (>0.2% of the LiDAR returns), and the bulk of the LiDAR returns is 

concentrated around the midstory canopy level, between 5 to 12 m in height (Figure 17a 

and Figure 18a). In the 2-year fire plots, the shrub layer is still reduced, but more visible 

than in the 1 year treatments, and the vegetation is typically less focused in one height 

interval, and clustered around the mid to higher canopy heights, between 17 to 20 m in 

height  (Figure 17b and Figure 18b). With a decrease in fire frequency, the 3-year fire 

plots present a structural distribution resembling a normalized curve, with no visible 

gaps in either lower or higher height categories (Figure 17c and Figure 18c).  
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Figure 17. Mean Height Distribution of 2002 LiDAR Returns for differently treated Stoddard Fire Plots: a) 1-year b) 2-year 
c) 3-year d) 4-year fire return interval. Standard deviation across plot replicates of the same treatment (A, B, and C) 
represented as error bars. 
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Figure 18. Mean Height Distribution of 2008 LiDAR Returns for differently treated Stoddard Fire Plots: a) 1-year b) 2-year 
c) 3-year d) 4-year fire return interval. Standard deviation across plot replicates of the same treatment (A, B, and C) 
represented as error bars. 
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The exception to the previously described pattern – increasing numbers of shrub-level 

returns – is found in the 4-year fire return interval treatment plots, which have been 

treated out of rotation, mimicking 2-year old fire return treatment for about a decade. 

These plots present a structure that is heavily weighted towards higher canopy and 

scarce in the shrub height categories, with most of the vegetation found between 22-28 

m in height (Figure 17d and Figure 18d).  The number of returns in the shrub layer (<5 

m) is almost non-existent, and less than 0.5% of LiDAR returns are present in any of the 

height categories below 12m. In the control –fire suppressed- plots, the distribution of 

LiDAR returns is almost even across the entire height profile (Figure 19), which 

indicates the presence of dense vegetation across all height categories.  

 

Differences between the vegetation distribution between the 2002 and 2008 LiDAR 

datasets are present in the less frequently burned plots, 3- and 4-year fire return 

intervals, and control plots. In the treatment plots, the 2002 profiles are more heavily 

weighed by shrub and lower mid story vegetation (1-10 m) than the 2008 profiles 

(Figure 17 and Figure 18). This is in agreement with the lower shrub intensity values 

observed in 2008 than in 2002, which could be explained by cumulative rainfall 

differences prior to data collection. 
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Figure 19. Mean Height Distribution of Fire Suppressed Stoddard Plot using two sets or Airborne LiDAR: 2002 dataset (a), 
and 2008 dataset (b).



 

106 
 

The structural diversity – as measured by the Height Diversity Index (HDI) and Height 

Evenness Index (HEI) - is also highly variable among treatment and control plots. As the 

LiDAR returns become more evenly distributed and less densely focused on a height 

category, both indices will indicate higher values. An increase in both the HDI and HEI 

is visible with a decrease in fire frequency (Table 8, Figure 20, Figure 21). Stoddard 

treatment plots have 2002 HDI means of 2.58, 2.85, and 3.57 for one-, two-, and three-

year fire return intervals, respectively, while control plots have a HDI mean of 3.6. The 

2008 HDI pattern is identical with mean values increasing with less frequently treated 

plots: 2.21, 2.48, 2.97, and 3.35 for one-, two-, three-year treatments, and control plots, 

respectively. The 2002 HEI means are 0.62, 0.70, and 0.85 for 1-, 2-, and 3- year 

Stoddard treated plots, respectively, and slightly higher, 0.86, for control plots. For 2008 

the values are slightly lower than 2002 values, but still consistent in pattern across 

treatments, with means of 0.54, 0.63, 0.71, and 0.81 for one-, two-, three-year 

treatments, and control plots, respectively. Four-year fire return interval plots, treated as 

2-year fire return intervals for about a decade, presented values for both indices very 

similar to 2-year treated Stoddard plots: HDI means of 2.91 (2002), and 2.30 (2008), 

and HEI means of 0.71 (2002) and 0.57 (2008).  

 

Both diversity indices indicate an increase in structural diversity with a decrease in fire 

frequency. Unlike in other ecosystems, southeastern pine, however, doesn't present an 

increase in species diversity with increases in structural diversity, since most of the 

floral diversity is in the groundcover layer. As structural diversity increases, shrub and 

mid canopy presence threatens this very unique floral richness. 
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Figure 20. LiDAR-derived Height Diversity Index (HDI) values among Stoddard plots with multiple fire treatments and 
control plots. 
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Figure 21. LiDAR-derived Evenness Height Index (EHI) values among Stoddard plots with multiple fire treatments and 
control plot. 
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Statistical comparison of structural indices means (or medians, when the data did not 

meet parametric assumptions) across treatment and control plots indicated that the 

visually apparent patterns (Figure 20 and Figure 21) are significant. The HDI is 

statistically higher in lower frequency and control plots both for 2002 and 2008 with p-

values of 0.014 and 0.000, respectively.  The HEI test of means across treatment and 

control plots for 2002 is also statistically significant, according to Analyses of Variance, 

with a p-value of 0.008. Medians of treatment and control groups are also significantly 

different, according to the non-parametric Kruskal-Wallis test, with a p-value of 0.000. 

 

Further Post-Hoc Analyses – Fisher LSD and the Tukey’s HSD tests- of the HDI 

variable determined that no significant differences were present between the 1- and 2--

year fire return treatments for both 2002 and 2008 datasets (Table 9). The HDI means 

from 2002 and 2008 were determined to be significantly different using either of the 

post-hoc tests between the one-year and 3 year-return treatments, and also between 

one- year treatments and the control (fire suppression) plots. No statistically significant 

differences occurred in the Height Diversity means between one-year and two-year fire 

return treatment plots for either 2002 and 2008 datasets (Table 9). In most instances, 

the HDI mean of 2-year treatment is significantly different than the control plot mean; 

the only exception to this is visible for the 2002 dataset using the Tukey test.  Whereas 

the Fisher test showed a larger number of significant differences between different 

treatment groups, especially in 2008 (Table 9), the Tukey post-hoc test, maintained the 

alpha level but also reduced the power of detection of significant differences, reducing 

the amount of significant interactions detected (Table 9).   
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The Height Evenness index (HEI), is highly correlated with the HDI, and the post-hoc 

results, were, in general, very similar. In addition to all the significant differences in 

means among treatment and controls described for the HDI, the 1- and 2-year treated 

plots showed significantly different means for only the 2008 dataset only using the 

Fisher LSD test. 

 

Overall, the Post-Hoc analyses of the structural indices are consistent with the 

differences among treatment and control groups observed for canopy cover. Consistent 

significant differences between control plots and high frequency burned treatment are 

present in all variables of focus, and, in most cases, the increase of the 2- year fire burn 

interval to 3-years or greater caused significant changes in structural metrics.  The 3-

year interval appears to be the ―ecological threshold‖ as described previously in this 

secondary upland pine ecosystem (Masters et al. 1993; Masters et al. 2005), with 

significant structural changes occurring at or above this interval. Interestingly, a similar 

pattern that highlighted the same ecological threshold was detected by Glitzenstein et 

al. (2008) using groundcover species diversity, where the majority of the floral diversity 

is contained in this systems, as a measure of species composition. 

 

 

Soil and Past Land Use 

 

The Stoddard Plots were selected over 50 years ago, using a stratified design with 

replicates randomly placed across the Tall Timbers upland land area. This design 
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attempted to remove bias from other independent variables (such as soil, slope, 

exposure/direction, distance to road, among others), isolating the independent factor of 

interest (fire return interval). Different soil types (Table 11) encountered in the Red Hills 

upland area are represented within the Stoddard treatment and control plots (Table 6). 

The two main soil types represented in the Stoddard plots are Faceville (common in 

both A and C replicates across all treatment types) and Orangeburg (present mostly in 

all B replicate treatments and the NB66 control plot), with a few plots having soil 

identified as Fuquay (W3A) and Pelham (W3C).  

 

Soil types are not consistent per treatment type with all treatment groups represented 

by different types of soils (e.g.: one-year fire return treatment plots have either the 

Faceville soil type –A and C replicates or Orangeburg soil type – B replicate). With 

different soil types represented across each treatment type, soil differences are not 

correlated with significant differences in structural metrics encountered between 

treatments. Soil type, at least across the range of conditions studied, can be eliminated 

as a factor explaining the differences in canopy cover and structural diversity among fire 

return treatments. 

 

Past land use of the Tall Timbers area, as depicted in the 1930s aerial photography, 

consists of cleared areas for agriculture, fields, and roads, and secondary growth pine 

forest. The specific land use of the Stoddard plots represents this mixture, with a great 

variation in the dominance of past land use (Table 6). Whereas eight plots are 

dominated by forested area (either densely forested or open canopy), the remaining six 
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plots were dominated by cleared areas. Only three Stoddard treatment or control plots, 

W2A, W75B, and W4A (87%, 78%, and 71% forested, respectively), were largely 

covered by secondary forest, whereas W2C and NB66 where dominated by cleared 

land (12% and 25% forested only). The past land use cover varies across all types of 

treatments with no consistent patterns, with some 2-year fire return treatment plots 

dominated by secondary forest (W2A with 87% forest), and others represented by 

cleared land (W2C with 88% non-forested cover).   

 

The alteration ratio or the proportion of non-forested to forested cover is an indicator of 

past land use changes compared to present conditions: a high alteration ratio value, 

especially higher than 1, indicates that a major change in land use took place, with over 

50% of the plot having been non-forested in the 1930’s. The Stoddard plots with 

significant alteration ratios are encountered across all treatment types (Table 6), ranging 

from 1-year fire treated plots (W1A with 1.29), 2-year fire return plots (W2C with 7.35), 

3-year fire return plots (W3A with 1.17), and finally control plots (NB66 or 3.06).   

Furthermore, no significant linear correlations between past land use (as portrayed by 

the alteration ratio) and significant structural metrics were encountered in this study with 

r2 coefficients all below 0.01. This indicates that past land use is not a good predictor of 

the significant changes in canopy cover, Height Diversity Index, and Height Evenness 

Index among different fire treatments at Tall Timbers. At the least, it suggests that the 

fire-frequency influences on woodland succession has an over-riding influence. 
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Conclusion 

 

The structural characteristics of southeastern pine woodlands are molded and shaped 

by the fire behavior and history (Glitzenstein et al. 2008). There have been multiple 

studies focusing on the short- and long-term effects of different fire-return intervals on 

the species composition of pine woodlands (Sparks et al. 1998; Gliztenstein et al. 

2003).  Other studies have looked at specific structural variables, such as canopy cover 

or individual species tree and population growth (e.g. of Pinus palustris), in an attempt 

to understand the best management strategies for recruitment success (Ford et al. 

2010). This study confirms many of the previously encountered impacts of different fire 

return treatments on structural metrics, using high density multiple return LiDAR, a 

breakthrough technology for forestry application throughout the last decade (Dubayah 

and Drake 2000).  Furthermore, the clear detection of structural differences among the 

Stoddard plots with different fire regime histories which matched or even further 

magnified previous results, allows the advantages of the use of fine-scale LiDAR  in the 

evaluation of three-dimensional structural differences to be highlighted.  

 

One of the clear advantages of using LiDAR remote sensing is the ability to detect fine 

nuances in the mid-structure levels in a woodland, allowing an easier detection of 

succession changes easily overlooked otherwise.  In contrast, obtaining statistically 

sound data in a field setting for height distribution is, in many cases, time- and cost-

prohibitively. Canopy height profiles can be easily constructed from point cloud data, 

and even further indices or canopy cover for different height categories determined. In 



 

114 
 

the Stoddard Fire Plots, it was clear that the three-dimensional structure of the forest is 

heavily altered by the frequency of fire. With an increase in fire interval, an increase in 

shrub presence is noticeable, and a more normalized vertical distribution of vegetation 

across all heights takes place. Height diversity indices (both the Height Diversity Index 

and the Height Evenness Index) show similar increases in value with a decrease in fire 

frequency. Fire suppressed plots have much higher structural diversity, with vegetation 

evenly occupying all height strata. Annual fires prevent shrub encroachment, both from 

woody and pine species in this secondary pine forest, which, consequently prevent pine 

recruitment and ―degrade forest resources‖ (Hermann 1995). Masters et al. (2005) 

observed that recruitment of loblolly pine will not take place with a fire rotation of ≤ 3 

years, while short-leaf pine will be able to survive and recruit with shorter interval burns. 

Managing secondary old field upland pine forests with a combination of different fire 

tolerant pine species is complex, and perhaps requires a variable fire frequency regime 

(Hermann 1995). 

 

Another advantage of using LiDAR data is the ability to detect changes quickly after a 

new management regime is established; this allows for the appropriate feedback to be 

promptly incorporated in a responsive management strategy. Additionally, scalability is 

a significant advantage is using airborne LiDAR for the determination of structural 

differences. Since LiDAR data are usually collected for large areas (which proves to be 

much more cost-effective), study areas are not limited to a few plot samples or a 

specific scale. This is an important advantage, allowing for remotely sensed data to be 
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collected simultaneously and at one cost for a variety of studies and applications, 

making this dataset even more valuable and cost-effective. 

  

LiDAR-derived data can also be used to provide variables that are commonly collected 

in the field, such as canopy cover, further reducing the amount of fieldwork required to 

manage or restore an area. LiDAR- derived canopy cover and diversity structure 

measurements yielded significant differences among different fire return interval 

treatments. Canopy cover percentages are significantly greater, especially when the fire 

interval is increased beyond two years, with canopy means rising from 48-54% to 57-

71% in three year fire return interval treatments. Fire suppression or control plot did 

present the highest canopy covers, but these did not consistently differ significantly from 

the 3 year fire return plots. To keep the canopy closure at no more than 40%, fire must 

be frequent in the landscape and occur every 1 to 2 years. Increasing fire intervals to 

three years will allow the structure to undergo significant alterations, even if the new 

regime is temporary in nature. Results from this study confirm the 3-year interval, 

previously highlighted using field-derived data, as the ecological threshold in 

maintaining the typical open canopy, herbaceous dominated understory of secondary 

upland pine forest (Masters et al. 1993; Masters et al. 2005).  

 

Both past land use and soil types were examined as potential independent factors that 

could have coincidently also explained the significant differences in the structural 

metrics and diversity among plots. The past land use alteration ratio had very poor 

correlation with the significant structural variables and the dominant soil types were 
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spread throughout all replicates of the same treatment. Fire frequency was the only 

factor that seemed to clearly explain the structural changes recorded in the Tall Timbers 

area woodlands. 

 

This study reaffirms the use of LiDAR in the evaluation of different resource 

management prescriptions (Zimble et al. 2003). The use of active remote sensing tools 

in forestry management, especially with the potential of identifying small differences in 

shrub and mid-structure levels at varying spatial scales, can greatly decrease field 

assessment efforts and allow timely management decisions. 
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Abstract 

 

This study uses an affordable ground-based portable LiDAR system to provide an 

understanding of structural differences between old-growth and secondary-growth 

Southeastern pine. It provides insight into the strengths and weaknesses in structural 

determination of portable systems in contrast to airborne LiDAR systems. Portable 

LiDAR height profiles and derived metrics and indices (e.g. canopy cover, canopy 

height) are compared among plots with different fire frequency and fire season 

treatments within secondary forest and old growth plots. The treatments consisted of 

transitional season fire with four different return intervals:  1-year, 2-year, 3-year fire 

return interval, and fire suppressed plots.  The remaining secondary plots were treated 

using a 2-year late dormant season fire cycle.  The old growth plots were treated using 

a 2-year growing season fire cycle. Airborne and portable LiDAR derived canopy cover 

are consistent throughout the plots, with significantly higher canopy cover values found 

in 3-year and fire suppressed plots. Portable LiDAR height profile and metrics present a 
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higher sensitivity in capturing subcanopy elements than the airborne system, particularly 

in dense canopy plots. The 3-dimensional structures of the secondary plots with varying 

fire return intervals were dramatically different than old-growth plots, where a normal 

distribution with clear recruitment was visible. 

 

 

Introduction 

 

Light detection and ranging (LiDAR), irrespective of the type of platform (terrestrial, 

airborne, or spaceborne), has allowed the quantification of the 3D structure of forest 

canopies in a cost-effective, rapid, and accurate manner (Van der Zande et al., 2008). 

Applications of these remotely sensed data range between forest inventory, ecosystem 

functions - i.e. carbon and water cycling, microclimate regulation- (Roth et al., 2007), 

and habitat suitability studies (Parker, 1995;Bradbury et al., 1999). Some of the initial 

challenges and limitations in the use of LiDAR for forest inventory applications have 

centered on the specialized expertise needed for data processing, the reliability of 

extracted canopy structural metrics, and the initial hardware cost (Nelson et al., 2003).  

As more off-the-shelf software products have become available and a large range of 

validation studies have demonstrated the correspondence of extracted canopy metrics 

to field data (Lim et al., 2003;Lovell et al., 2003;Clark et al., 2004;Coops et al., 2007), 

the use of LiDAR, especially the airborne platform systems, has entered the commercial 

arena.  
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The variety of available sensors, particularly airborne ones, have made the use of this 

new technology attractive, but sometimes difficult to understand by users in the forestry 

community. The type of platform used for these airborne laser sensors is an important 

factor to take into account, when selecting the most appropriate remote sensing 

technique for a study. The combination of footprint, return type (discrete versus 

waveform), and scale of interest (from individual tree to stand level, small to large 

landscape scale) should all be carefully considered when selecting the appropriate 

sensor and platform.  

 

Airborne LiDAR sensors are the most commonly available ones today, and discrete 

return sensors are usually used for forest inventory studies (van Leeuwen and 

Nieuwenhuis, 2010), particularly when taking the cost-effectiveness at the plot to 

landscape level scale into account. Full waveform airborne sensors, initially only 

developed for research purposes by NASA, i.e. the SLICER (Blair et al., 1994;Harding 

et al., 1994) and LVIS (Blair et al., 1999), are now commercially available for forestry 

applications as well (Hug et al., 2004;Kirchhof et al., 2008). Well known limitations of 

airborne LiDAR include the systematic underestimation of the canopy height at both the 

plot and stand scales (Gaveau and Hill, 2003;Coops et al., 2007), due to the low 

likelihood that the beam hits the tree tops.  Additionally, validating LiDAR tree height 

with field data can be challenging due to temporal and spatial scale differences of 

acquisition (Popescu et al., 2002;Zhao et al., 2009;van Leeuwen and Nieuwenhuis, 

2010). Finally, the cost of many of the units is another limitation that, in recent years, is 

slowly disappearing: while the powerful research laser scanners (SLICER and LVIS) 
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have remained at or above the million dollar range, and commercial units, designed for 

accurate Digital Elevation Model (DEM) creation with costs around still hundreds of 

thousands of dollars, new cost-effective portable airborne sensors have been in 

development and testing phases for almost a decade (Nelson et al., 2003). 

 

Another platform of sensors, spaceborne LiDAR, is much more limited, especially for 

forestry applications. The ICESat satellite has the geoscience laser altimeter system 

(GLAS) mounted, and this sensor, up to 2009, when turned off, could provide very 

large-footprint (>60 m) long-term dataset as a full waveform (Nelson, 2008). The 

limitation of this platform was the large footprint of the current available sensor does not 

allow detailed forest structure to be extracted, and it even proved to be challenging to 

estimate accurate tree heights (van Leeuwen and Nieuwenhuis, 2010).   

 

Most of the available terrestrial based laser sensors fit within the terrestrial laser 

scanning (TLS) category, instruments that emit high spatial density of light beams from 

a stationary location, rotating or moving around its axis, in order to provide a detailed 3D 

point cloud dataset (Takeda et al., 2008). The application of TLS systems has focused 

on the reconstruction of the detailed forest architecture at a small plot or even individual 

tree scale: providing accurate tree volume or leaf area estimates (Lefsky and McHale, 

2008;Strahler et al., 2008), defining plant area density profiles for agricultural and 

natural lands (Takeda et al., 2008;Van der Zande et al., 2008;Hosoi and Omasa, 

2009;Jupp et al., 2009), and evaluating stem and branch morphology (Teobaldelli et al., 

2008). The benefits of TLS include the high level detail capacity to map 3D surfaces in a 
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reproducible and unequivocal manner (Lefsky and McHale, 2008;van Leeuwen and 

Nieuwenhuis, 2010), avoiding the destructive and cost- and time-intensive field methods 

(Henning and Radtke, 2006). Repeated measures of TLS allow growth and other 

structural changes to be easily detected (i.e. canopy gaps, shrub encroachment, fuel 

loading, and disturbance events), which are crucial applications in forestry 

management.  

 

Compared to airborne sensors, terrestrial laser scanning is limited by the short 

functional range (van Leeuwen and Nieuwenhuis, 2010), the high cost of the acquisition 

and processing (Wulder et al., 2008), and the lack of characterization of the upper 

canopy layers (Hilker et al., 2010;Hosoi et al., 2010). Strengths of any bottom-up 

sensors, such as TLS or the one presented in this study, a portable ground-based 

system (Parker et al., 2004), are in the sensitivity to lower canopy levels, usually missed 

by airborne systems (Hilker et al., 2010;Hosoi et al., 2010;Ni-Meister et al., 2010).   

 

This study further explores the use of an affordable system, first presented by Parker et 

al. (2004), and modified further for portability and consistency in difficult terrain (forested 

areas with significant shrub encroachment) in a managed forest setting. The high-

speed, commercially purchased laser rangefinder allows the capture of a high sample 

size, previously a limitation when estimating canopy structure and leaf area densities 

(Sumida et al., 2009) from ground-based methods.  Other strengths of this system are 

in the retrieval of a higher level detail assessment of lower canopy structure (Hilker et 

al., 2010), and rapid assessment of forest structure (Parker et al., 2004).  



 

131 
 

 

The objective of this study is twofold: 1) to provide a better understanding of the canopy 

structure metrics and profiles of the portable LiDAR system and how these relate to 

discrete return airborne LiDAR data and 2) to apply the use of the portable LiDAR 

system to detecting differences in the 3D canopy structure of different fire managed 

forest plots.  

 

 

Materials and Methods 

Study Area  

 

This study focuses on the Red Hills area of the northwestern Florida and southwestern 

Georgia (Figure 22).  This region occupies approximately 300,000 ha between 

Thomasville, Georgia and Tallahassee, Florida and is home to over 230 rare types of 

plants and animals and over 27 federally listed threatened and endangered species 

(Masters et al., 2007). The Red Hills area is comprised of a mixture of young and old 

growth longleaf pine forests, natural and planted loblolly (Pinus taeda) and shortleaf  

(Pinus echinata) pine forests primarily in an old field context, mixed hardwood and pine 

forests, forested and herbaceous wetlands, agricultural fields, and residential/urban land 

cover types . 

 

Three sites within the Red Hills area were selected for this study, the Tall Timbers 

Research Station (TTRS), the Pebble Hill Plantation (PB) and Wade Tract at Arcadia 



 

132 
 

Plantation (WT). The first objective of the study, the comparison of the portable and 

airborne LiDAR structural results, took place at TTRS, a research forest located on the 

historic Beadel plantation in north Florida. The second objective, the application of 

portable LiDAR metrics and profiles to understand the effects of fire management 

strategies on forest canopy structure, added  six additional plots located at the Pebble 

Hill and Arcadia Plantations, located in Georgia.  
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Figure 22. Location of Tall Timbers Research Station within the Red Hills area. 

 

The Tall Timbers Research Station (TTRS) covers 1600 ha within the Red Hills area, 

and is located just north of Tallahassee, FL.  The upland pine ecosystems at TTRS, 
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which, up to 1895 were dominated by pristine longleaf pine savanna uplands, have 

been highly disturbed by agriculture, and are dominated by a mixed canopy of loblolly 

pine (Pinus taeda), shortleaf (Pinus echinata) and longleaf (Pinus palustris) (Masters et 

al., 2005). The groundcover at the study site is dominated by many legumes and 

composite family members and interspersed with grasses (broomsedge bluestem, 

Andropogon virginicus, primarily), but lacking the wiregrass typical of pristine longleaf 

pine savanna ecosystems (Hermann, 1995).  

 

The first objective of this study specifically targeted the Stoddard Fire plots located 

throughout the central upland areas of TTRS (Figure 23). These plots were initially 

setup in 1959 by Herbert Stoddard, a prominent conservationist in the southeastern US 

ecosystem (Hermann, 1995). The 12 Stoddard fire plots and an additional three control 

plots are each 20 by 20 m (0.3 ha) and were strategically placed to represent a variety 

of soil types (Figure 23). There are replicates (designated A, B, and C) for each of the 

four fire returns applied: W1, W2, W3, and W4 correspond to the 1-, 2-, 3-, and 4-year 

fire return interval treatments. The control plots (UA, NB66, and W75B) have been fire 

suppressed since 1959 except for NB66 which has been fire suppressed since 1967. 

 

All the treated plots were burned using low intensity fires during the transitional season 

(between the dormant and growing season or March-April) at their dedicated fire 

rotation for 50 consecutive years. The only treated plots out of rotation for a period of 

time were the 4-year fire return Stoddard plots (W4 A, B, and C). These latter plots were 

treated as 2-year fire return interval plots during the 1999-2007 period. Due to the 

alteration of the treatment rotation of the 4-year fire return plots, these were excluded 
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from the portable LiDAR data collection. A total of 9 Stoddard treatment plots and 3 

additional control plots had data collected using both airborne and portable LiDAR 

sensors. 

 

 

Figure 23. Location of the Stoddard Fire Plots, their Fire Frequency, and Soil Type in 
TTRS. 
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For the second objective of the study, six plots similar in size (0.3 ha) to the Stoddard 

fire plots, were randomly placed throughout Pebble Hill and Wade Tract in Arcadia 

Plantation (Figure 24). Pebble Hill consists of 1200 ha of secondary growth mixed 

upland forest located in Thomasville, Georgia. Prior to the Civil War, Pebble Hill was a 

cotton plantation, and was converted back to Coastal Plain upland forest cover, with 

patches of plantation, in the early 1900's. Currently, portions of Pebble Hill are opened 

to the public with an on-site museum, and the upland pine systems are maintained 

using a 2-year late dormant season fire cycle.   

 

The Wade Tract Preserve is an 85 ha research plot located within the private hunting 

Arcadia Plantation estate (1260 ha) in Thomasville, Georgia (Figure 24). The Wade 

Tract is one of the few remaining old-growth longleaf pine stands in southeastern 

Coastal Plain, and is now managed under a conservation easement by TTRS using a 2-

year growing season fire cycle.   
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Figure 24. Location of the 2-year Fire Return Plots at Pebble Hill and Wade Tract, 
Arcadia (GA). 
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Airborne LiDAR Data 

 

A small footprint multiple return LiDAR (Light Imaging and Ranging) dataset, collected 

by Merrick & Co using a Leica ALS50 Geosystem was obtained from the Tallahassee-

Leon County Geographic Information Systems (TLGIS) Department. This dataset 

included raw 1.1 format LAS files and was flown in the 2008 transitional season (March 

2008) with the goal of creating countywide detailed floodplain mapping. The mean and 

minimum point spacing of this LiDAR data were 1.55 and 1.19 m, respectively. This 

dataset covered approximately one third of the Red Hills area (105,000 ha), but 

excluded the Arcadia and Pebble Hill Plantations. 

 

The obtained point cloud included specified multiple return numbers and class types in 

accordance with the 1.1 LAS format specifications. The 2008 airborne LiDAR dataset 

selected  for this research study was collected by TLGIS 2 years after the portable 

LiDAR data collection, and it is the closest available dataset to the portable LiDAR data. 

 

The point cloud data were converted to multipoint files (all, ground points only, and 

canopy points only), and then interpolated in the 3D Analyst GIS environment to a 

Digital Elevation Model (DEM) and a Digital Surface Model (DSM) (Zimble et al., 2003). 

For the DEM, an Inverse Distance Weighted (IDW) Interpolation of ground points only 

were used, whereas for the DSM all first returns were interpolated in the same manner. 

After the construction of the DEM using an IDW second degree interpolation of ground 

returns, the Digital Canopy Height model was extracted from the difference between the 
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DSM and the DEM. All IDW interpolations performed were second power interpolations 

with a variable search of up to 12 neighbors and a 1 meter grid output size (instead of a 

much smaller 0.2 m grid used by (Zimble et al., 2003). Post processing of all the raster 

products took place to fill most, if not all, empty cells, with nearby interpolated values. 

The DEM heights were assigned to all point cloud data, allowing the computation of 

height above ground for every data point.  

 

A personal ESRI ArcGIS geodatabase was created to manage and streamline all the 

spatial data layers relating to the Stoddard fire treatment plots in one location.  The 

boundaries of the Stoddard field plots were collected using a sub-meter GPS, and a 5 

meter buffer surrounding these was applied for airborne LiDAR point cloud data 

extraction. This buffer provided greater certainty that none of the field data collection 

was outside of the analyzed LiDAR data.   

 

 

Portable LiDAR Data 

 

Portable LiDAR data were collected in March-April 2006 for all 18 plots (12 at TTRS, 3 

each at PB and WT) using a Riegl LD90-3100 HS eye-safe (laser safety class I) first-

return type rangefinder operating at 890 nm and 1 kHz, connected to a lightweight 

Toughbook and placed in a lightweight backpack homebuilt frame.  This is a very similar 

setup to the one used by Parker et al. (2004), with frame modifications for greater 

portability (Figure 25). This Riegl rangefinger averages a minimum of five ranges 
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together to give one measurement, and presents ―sky hits‖ (open canopy) as an error, 

allowing for easy accounting of open canopy returns.  

 

 

 

Figure 25. Portable LiDAR unit in the backpack frame. 

 

Since the portable LiDAR system does not collect x and y positional information, evenly 

spaced transects across all the field plots were predetermined in ArcGIS, and a Trimble 

GeoXT (submeter) unit was used in conjunction with the portable unit for LiDAR data 

collection. The data are recorded in a ASCII text file format using a serial data 

connection, and appropriately labeled for each plot. Since the assumption of constant 
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walking speed is important to be able to assign positional accuracy, the portable LiDAR 

system was redesigned from the one used by Parker et al. (2004) to include a on/off 

switch. This allows the data collection to be paused temporarily and resumed when 

there are difficult field conditions, such as heavy understory cover and impassible 

ditches.   

 

 

Field Data Collection of Stoddard Plots 

 

Canopy cover and an annual basal area was collected for all 12 Stoddard fire plots 

starting in 2004. These plots were sampled on April, August, October, and December 

2004, all months of 2005, January-March 2006, and April 2010. For the canopy cover 

assessment, 8 permanent point locations within each fire plot were established.  These 

permanent plots were located at 10 m intervals on two randomly located lines 

perpendicular to the fire plot boundary.  To avoid bias caused by influences from 

adjacent treatment units, no sampling took place within 10-m of any edge. Overstory 

canopy cover was determined using a 9-point grid in a sighting tube with vertical and 

horizontal levels. Cover was determined at each plot center and the four cardinal points 

at 2-m and 4-m from each permanent plot location. The yearly basal area assessment 

was determined by the variable radius plot method.  Basal areas of trees/stems with ≥ 5 

cm in DBH were quantified with a 10-factor wedge prism at each of the 8 permanent 

plot locations that were used for collecting canopy cover.   
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For comparison with the portable LiDAR data, the 2006 collected data were used, since 

these are synchronous (within 2 months) to the portable LiDAR data collection. 

 

 

Data Analyses 

 

Airborne LiDAR Data Analysis 

 

For appropriate validation and comparison with portable LiDAR data, x,y,z data points 

from the airborne LiDAR dataset with height above ground were clipped to the Stoddard 

fire plots. The variables of interest included canopy cover, canopy height (maximum, 

minimum, mean, and standard deviation), and two structural diversity indices, the 

Height Diversity Index(HDI), and the Height Evenness Index (HEI). Both diversity 

indexes use a modification of the Shannon Diversity Index (H') to calculate Foliage 

Height Diversity or Structural Diversity (MacArthur and MacArthur, 1961).  Definitions 

and details of how these were calculated from the LiDAR point cloud datasets are 

included in Table 11. Canopy height and cover indices were extracted using similar 

methodology described by (Lim et al., 2003) for discrete return LiDAR, with slight 

modification from the 20X20m window used by Lovell et al (2003) and Coops et al. 

(2007). For the canopy heights, instead of using a 20X20 m window to obtain the 

highest canopy point as the maximum height, the entire Stoddard plots, which are only 

about 40X40m in dimension, were used. Maximum mean height corresponded to the 

highest LiDAR canopy classified return within the entire plot, and mean canopy height 
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used an average of all canopy returns over 2m, and is expected to underestimate the 

average field tree heights (Lim et al., 2003). Canopy cover was measured by redefining 

closed canopy returns as only the ones over 2 m and dividing the total number of these 

returns in each plot by all discrete returns in the same plot (Table 11). The proportion of 

canopy returns is a standard canopy cover index (Lim et al., 2003), which, for this study, 

has been slightly modified to exclude the herbaceous and lower shrub layers.   

 

Table 11. Definitions of LiDAR-Derived Structural Information 

Name Acronym Units Description 

Canopy Cover CANCOV % (Count of Canopy Returns >2m/Count of All 
Returns) * 100 

Mean Canopy Height CANAVGHT m Average Height of all Canopy Returns (>2m in 
height)  

Maximum Canopy 
Height 

CANMAXHT m Maximum Height of all Canopy Returns (>2m in 
height)  
 

Shrub Mean Height SHAVGHT m Average Height of all Shrub Returns, which are 
defined as Canopy Returns > 0.34m and <2m 
in height 

Shrub Dominance 
Index 

SHINT N/A Total Shrub Returns/All Returns  

Height Diversity Index HDI N/A The Shannon Diversity Index (H') modified to 
calculate Foliage Height Diversity or Structural 
Diversity (MacArthur & MacArthur 1961).        

Height Evenness 
Index or Equitability 
Height Index 

HEI N/A Another measure of diversity that takes the total 
number of height classes into account 
(MacArthur & MacArthur 1961).         

 

 

In order to examine the Stoddard plots three-dimensional structure, histograms of the 

proportion of LiDAR returns per 1 m height interval were constructed. Additionally, the 

Height Diversity Index (HDI) and corresponding Height Evenness Index (HEI) were 

calculated (Table 11) using a finer scale interval of 0.5 m intervals. The Height Diversity 

Index (HDI) was calculated using the standard Shannon-Height Diversity Index formula 
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(H'):  𝐻′ =  − (piln𝑝𝑖
𝑠
𝑖=1 ). The Height Evenness Index (HEI) was calculated by using 

the following formula: 𝐻𝐸𝐼 =  
𝐻𝐷𝐼

ln 𝑆
, where S is the total number of foliage layers. 

 

Portable LiDAR Data Analyses 

 

The portable LiDAR data collected in ASCI text file formats were merged by Stoddard 

plot into database tables. Pre-processing of these data including assigning open/closed 

canopy indicators for all returns and adding 1.3 m (the height above ground of the 

portable LiDAR data collector) to all canopy return heights.  

Similar metrics were calculated for the portable LiDAR Stoddard data: canopy cover, 

canopy height (maximum, minimum, mean, and standard deviation), and two structural 

diversity indices, HDI and HEI. The canopy cover for the portable LiDAR, included all 

captured canopy returns (>1.3 m) divided by the total returns (open and canopy 

returns).The structural indices were calculated using the proportion of returns within 

every  0.5 m intervals. Histograms, mimicking the ones created with the airborne LiDAR 

data, were constructed for the portable LIDAR height classes of 1 m, providing a 

graphical 3-dimensional structural representative of the Stoddard fire plots. 

 

 

Comparisons and Statistics 

 

To meet the first objective of this study, paired t-tests (or non-parametric alternatives, 

i.e. Wilcoxon signed rank test) of the extracted metrics using the two methods were 
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implemented. The within-subjects design compares the airborne with portable LiDAR 

method per Stoddard plot in extracting canopy cover, mean and maximum canopy 

height, and the diversity indices. 

 

Further analyses to provide an understanding of the correspondence between the 

airborne and portable LiDAR data collection methods, include the comparison of the 

return distributions across heights of each plot. Return histograms, pictures, and 

boxplots representing means and interquartile distributions of heights for both data 

collection methods were also studied. 

 

The second objective used one-way ANOVAs to highlight the sensitivity of the portable 

LiDAR in detecting structural differences among secondary and old-growth forest 

managed plots. The dependent variables examined were canopy cover, mean and 

maximum canopy heights, height and evenness diversity indices (HDI and EDI).  The 

independent variable or grouping was based on the fire return interval and seasonality: 

transitional season fire with 1-, 2-, 3- return intervals (Stoddard plots), dormant season 

2-year return intervals (Pebble Hill), and 2-year growing season return intervals (Wade 

Tract). With the exception of the plots at Wade Tract, which are in a remnant of old-

growth longleaf pine forest, all other 15 plots are located in secondary old field pine 

forest ecosystem. Three replicates per treatment type (represented by location of block 

number A, B, and C at Tall Timbers) were included in the analyses of variance. Post-

hoc tests, Tukey Honestly Significantly Different (HSD) tests were performed to 

determine pairwise significant differences among means of treatment. 
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In addition to the statistical analyses discerning the impact of a variety of fire treatments 

on several structural metrics, visual representations (i.e. bar graphs and histograms) 

were constructed for all metrics of interest with 5 treatment types.  

 

 

Results  

Comparison of Airborne and Portable LiDAR  

 

Canopy cover estimates from the portable LiDAR sensor were 7-23% lower than 

airborne LiDAR canopy cover estimates in all fire treated Stoddard plots (1-3 year fire 

return) (Table 11). For the hardwood dominated plots, where fire had been excluded for 

over 4 decades, portable LiDAR canopy cover estimates were 7 to 18% higher than the 

corresponding airborne LiDAR results. The mean canopy cover differences between the 

portable and airborne canopy cover estimates for all the TTRS study plots were not 

statistically significant using a paired t-test (p= 0.153). Portable LiDAR derived canopy 

cover measurements mimic field collected canopy cover (average of 8 permanent plot 

locations) more closely than airborne portable LiDAR canopy cover estimates: 8 of the 

12 forestry plots have portable LiDAR estimates within 8% of field canopy cover 

measurements, and none of the plots' estimates are over 20% of the measured field 

values.  
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Canopy mean height estimates for the sensor types are statistically different (p<0.001) 

with an overall negative bias for the portable LiDAR when comparing to the airborne 

LiDAR (Table 12, Figure 26). The mean portable LiDAR return height for all treatment 

and control plots at TTRS ranges between 0.8 and 6.8 m lower than the airborne LiDAR 

mean returns. The only treatment plot with higher portable LiDAR mean return height - 

by 0.6 m- than airborne mean height is W2A, a 2 year fire return interval treatment plot. 

The average underestimation of portable LiDAR mean returns, in comparison with the 

airborne sensor, is 3.12 m (Figure 26). The difference between sensors is most visible 

in plots with canopy covers greater than 60%, the suppressed or control plots, where 

portable mean heights were 5-6 m lower than the airborne counterparts (Table 12).  

 

In contrast with the average canopy height, the maximum return height per plot (Table 

11) yielded higher values, when using the portable LiDAR sensor (Table 12, Figure 27).  

The overall statistically significant higher maximum plot heights using portable LiDAR 

(p=0.0024), would be negligible (<1.5 m average difference) if the outlier treatment plot 

W3B would be removed.  This 3 year fire return treatment plot presented a portable 

maximum LiDAR height of 45.1 m, 11.2 m higher than the airborne derived maximum 

canopy height (33.9 m). The differentials of all other plots between both sensors were 

within 0.2 to 3.1 m range, with consistently higher values detected by the portable 

method. 
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Table 12. Portable and Airborne LiDAR Metrics for the Stoddard Fire Plots at Tall Timbers Research Station. 

 

1
 Plots were burned 10 days prior to portable LiDAR data collection. 

 



 

149 
 

 

 

Figure 26. Mean Canopy Height of the Stoddard Fire Plots using Portable and Airborne 
LiDAR (TTRS, FL). 

 

 

Figure 27. Maximum Canopy Height of the Stoddard Fire Plots using Portable and 
Airborne LiDAR (TTRS, FL). 
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Structural diversity measures (HDI and HEI) are consistently higher using the portable 

system (Table 11), with statistically significant (p<0.001) higher mean HDI (3.91) than 

with the airborne (2.75) (Figure 28). The mean HDI was 1.15 higher, when derived from 

portable LiDAR returns than when stemming from airborne LiDAR returns, with 

differences ranging between 0.3 and 1.9 (Table 12). Structural diversity differences 

between both sensors are more obvious in higher fire return interval plots (with canopy 

covers below 50%) than in denser canopy plots. 

 

 

Figure 28. Height Diversity Index (HDI) of the Stoddard Fire Plots using Portable and 
Airborne LiDAR (TTRS, FL).
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Extraction of structural metrics using LiDAR sensors is only a small part of the strength 

of active remote sensing tools for forestry applications. Understanding the impact of the 

use of airborne and portable LiDAR sensors in capturing the three dimensional forest 

structure is even more important for future applications of these sensors. Comparisons 

of the LiDAR vertical profiles, the proportional distribution of LiDAR returns by height 

class, between both sensors yielded some consistent differences. Portable LiDAR 

profiles, independent of treatment type, provided a higher proportion of high shrub/lower 

subcanopy vegetation (3-7 m) representation than airborne LiDAR profiles (Figure 29 to 

Figure 32). Conversely, the airborne LiDAR profiles provided, in most cases, a more 

detailed and substantial representation of the highest canopy layers (>27 m) (Figure 29 

to Figure 32). 

 

Portable and airborne LiDAR profiles from the most frequently burned Stoddard plots (1-

year fire return intervals) have a similar bimodal type distribution: both histograms 

present two peak areas of percentage returns, one in the high shrub/small tree height 

and the other at the mid canopy height (Figure 29). However, both peaks appear at 

slightly lower heights using the portable LiDAR (3-7 m and 19-26 m; Figure 29a) in 

comparison to the airborne LiDAR profile (5-12 m and 23-27 m; Figure 29b).  
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Figure 29. Vertical Distribution of Portable (a) and Airborne (b) LiDAR returns for the One-Year Fire Return Treatment 
Stoddard Plots (TTRS, FL).
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The profiles of the two-year return treatment plots have a distinctly unimodal distribution 

of LiDAR returns for both the portable and airborne sensors (Figure 30). Once again, 

while the peak of the returns is lower for the portable LiDAR data (9-18 m) (Figure 30a), 

the distribution appears skewed to a higher vegetation layer in the airborne LiDAR 

profile (16-25 m) (Figure 30b). 

 

With higher canopy cover plots, either the least frequently burned treatments (3-year fire 

return intervals) or the control plots, the overall profile of the LiDAR returns starts 

becoming distinct between the two sensors. For the 3-year fire return treatments, the 

portable LiDAR profile indicates the highest presence of vegetation between 4-11 m and 

14-21 m (Figure 31a), whereas the airborne LiDAR profile mimics a normal curve with 

peak vegetation between 11-24 m (Figure 31b). The most obvious differences between 

the three-dimensional forest structure captured by both sensors are detected in the fire 

suppressed plots: while the portable LiDAR presents an extreme bottom-heavy 

distribution with most canopy returns between 2-20 m in height (Figure 32a), the 

airborne LiDAR profile present a closer to a normal distribution, where most returns are 

in the 13-29 m range (Figure 32b).  
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Figure 30. Vertical Distribution of Portable (a) and Airborne (b) LiDAR returns for the Two-Year Fire Return Treatment 
Stoddard Plots (TTRS, FL). 
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Figure 31. Vertical Distribution of Portable (a) and Airborne (b) LiDAR returns for the Three-Year Fire Return Treatment 
Stoddard Plots (TTRS, FL). 
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Figure 32. Vertical Distribution of Portable (a) and Airborne (b) LiDAR returns for the Suppressed Fire Treatment Plots 
(TTRS, FL).
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Portable LiDAR and Fire Management 

 

The assembled portable LiDAR sensor was able to detect statistically significant 

differences (ANOVA p-value < 0.001) in canopy cover across differently managed forest 

plots within the Red Hills area (Table 13 and Figure 33).  

 

Other extracted canopy height variables (mean, median, maximum canopy heights) did 

vary across the fire management regimes and forest types (secondary versus old-

growth), but these were not statistically significant across treatments (Table 13). 
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Table 13. Portable LiDAR Metrics for the Stoddard Fire Plots (TTRS), Wade Tract (Arcadia) and Pebble Hill Plantation 
managed plots. 
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Figure 33. Portable LiDAR Derived Canopy Cover for all forest plots: 12 secondary forest with transitional varying fire 
return intervals (W1A-W75B), three old-growth forest plots with 2-yr fire regime (ARC1-ARC3), and three secondary forest 
with a dormant 2-yr fire regime (PEBHL1-3). 
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Plot canopy cover increases significantly with an increase in fire return interval at the 

secondary forest locations (TTRS). The mean canopy cover detected by the portable 

system is as low as 21% for one-year fire return treatment, but increases quickly to 38% 

and 51% for 2- and 3-year fire return treatments, respectively (Figure 33). Cover 

differences between 1- and 2-year treatments are not statistically significant, but 

differences between these two treatments and the 3-year fire return treatment are 

significantly lower (Table 14). Secondary forest suppressed plots have canopy cover as 

high as 84% (W75B), with an average control canopy cover of 81%, according to the 

portable LiDAR data. Fire suppressed plots have statistically significant higher canopy 

cover than any of the other treated plots (Table 14). The canopy cover means of both 

the old-growth longleaf pine (Pinus palustris) plots and the secondary dormant season 

treated forest plots, are as low as the mean from the most frequently burned plots at 

Tall Timbers (22% and 19% for the Arcadia and Pebble Hill plots, respectively). Even 

though the 2-year Stoddard plots (TTRS) have the same fire return interval as the other 

two site locations, the resulting plot canopy cover values are almost twice (38%) as high 

as the ones measured at Arcadia and Pebble Hill (Figure 33). These differences, 

however, due to the large variability between individual plot covers, are not statistically 

significant (Table 14). Potential reasons for the observed differences in canopy cover 

could be linked to historical land use differences, and seasonality of the fire treatment at 

all three locations. 

 

Mean canopy height, as defined by the use of the portable LiDAR (Table 11), was 

consistent across most secondary forest treatments, both at Tall Timbers and Pebble 



 

161 
 

Hill (Table 13): mean return heights varied between 13.9 and 15.3 m, with Pebble Hill 

demonstrating the greatest variation between same treatment plots (8.2 to 19.1 m 

heights). The old-growth plots, however, did present much higher mean canopy heights 

(18.6 m) than all remaining treatments, with plots ranging from 17.2 to 21 m in height 

(Table 13).  

 

No statistical significant difference among treatments was detected in any of the 

statistical analyses performed for mean canopy heights. Maximum canopy heights did 

present some variations between treatment types, yet, the within treatment variation of 

these heights was higher. Maximum canopy heights were lower in the most frequently 

burned plots, independently of the type of forest of seasonality, with heights in the 30.2 

to 32.9 m range (Table 13). The secondary forest plots with 3-year or suppressed fire 

regime presented the highest canopy height values, with 38.8 and 34.9 m, respectively. 

One of the 3-year Stoddard fire plot, W3B, did present one exceptionally high tree (>45 

m), which did skew the average of the 3-year fire return treatment from 35.6 to 38.8 m. 

This skewed maximum canopy height average was captured by the Tukey test as a 

statistically significant difference when compared to the slightly lower maximum heights 

at dormant 2-year fire return interval plots (Table 14). The maximum canopy height at 

one of the three Pebble Hill plots, PEBHL2, was negatively skewed due to the large 

planted pine to enhance recruitment in that specific area.  

 



 

162 
 

 

Table 14. Post-hoc Tukey HSD results for the structural variables derived from the portable LiDAR dataset among fire 
treatments.  

 

Bolded values and shaded cells in gray are signficant at α=0.05

1-Year 2-Year 3-Year Suppression 2-Year Old-growth 2-Year Dormant 1-Year 2-Year 3-Year Suppression 2-Year Old-growth 2-Year Dormant

1-Year 0.052 0.001 0.000 1.000 0.996 1.000 1.000 0.986 0.522 0.998

2-Year 0.052 0.157 0.000 0.068 0.023 1.000 1.000 0.995 0.453 0.992

3-Year 0.001 0.157 0.001 0.001 0.000 1.000 1.000 0.997 0.424 0.988

Suppression 0.000 0.000 0.001 0.000 0.000 0.986 0.995 0.997 0.231 0.883

2-Year Old-growth 1.000 0.068 0.001 0.000 0.983 0.522 0.453 0.424 0.231 0.766

2-Year Dormant 0.996 0.023 0.000 0.000 0.983 0.998 0.992 0.988 0.883 0.766

1-Year 2-Year 3-Year Suppression 2-Year Old-growth 2-Year Dormant 1-Year 2-Year 3-Year Suppression 2-Year Old-growth 2-Year Dormant

1-Year TTRS 0.977 0.640 0.994 0.999 0.318 0.949 1.000 1.000 0.860 0.023

2-Year TTRS 0.977 0.280 0.810 0.999 0.693 0.949 0.931 0.975 1.000 0.097

3-Year TTRS 0.640 0.280 0.902 0.443 0.027 1.000 0.931 1.000 0.828 0.020

Suppression TTRS 0.994 0.810 0.902 0.943 0.146 1.000 0.975 1.000 0.911 0.029

2-Year Old-growth 0.999 0.999 0.443 0.943 0.491 0.860 1.000 0.828 0.911 0.149

2-Year Dormant 0.318 0.693 0.027 0.146 0.491 0.023 0.097 0.020 0.029 0.149

1-Year 2-Year 3-Year Suppression 2-Year Old-growth 2-Year Dormant

1-Year 0.976 0.703 0.884 0.562 0.019

2-Year 0.976 0.975 0.999 0.918 0.064

3-Year 0.703 0.975 0.999 1.000 0.204

Suppression 0.884 0.999 0.999 0.987 0.115

2-Year Old-growth 0.562 0.918 1.000 0.987 0.291

2-Year Dormant 0.019 0.064 0.204 0.115 0.291

Mean Canopy Height

Treatment Type 

Location

Maximum Canopy Height Height Diversity Index (HDI)

Treatment Type 

Location

Evenness Height Index (EHI)

Treatment Type 

Location

Canopy Cover
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Finally, both diversity indices - the HDI and HEI - are very consistent across all 

treatment types, and no overall statistically significant difference was detected for either 

of these. The Height Diversity Index (HDI) ranged between 3.60 and 3.96, with the 

secondary forest plots at Tall Timbers having a slightly higher values (greater diversity) 

than the Arcadia and Pebble Hill plots (Table 13). The relatively even-aged PEBHL2 

plot, caused the below average height diversity values at the dormant 2-year fire return 

treatments to be detected as statistically significant from most other treatments (Table 

14). The Height Evenness Index, which accounts for the total number of height classes 

used in the calculation of the HDI,  presented even less variation across all treatment 

and forest types (0.91 to 0.95).   

 

The portable LiDAR distribution of returns clearly shows dramatic differences in the 

overall structure of the forest plots treated with varying fire return intervals and/or fire 

seasonality. Both of the most frequently burned Stoddard treatments located at Tall 

Timbers (1- and 2-year fire return interval treatments), a secondary forest, have a 

dramatically different vegetation distribution than the Pebble Hill and Arcadia forest 

plots, both burned with the same or similar frequency (Figure 34). The Tall Timbers 

plots burned annually during the transition season present a bimodal distribution of 

returns, with a peak located in the high shrub/small tree height (3-11 m), and the other 

in the top canopy height (20-26 m) (Figure 34a). The 2-year fire treatment at Tall 

Timbers no longer presents this distribution, but is closer to a normal distribution, with 

the majority of the vegetation returns located in the 7-21 m bulk canopy height (Figure 

34b). In contrast to the plots at TTRS, the Pebble Hill (secondary forest with dormant 
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season 2-year fires) and Wade Tract (old-growth forest with growing 2-year fires) have 

very similar distributions. Both of these (Figure 34c-d), present a skewed normal 

distribution, with larger proportion of returns in the higher canopy heights (12-29 m), but 

also a visible contribution of new recruitment with heights between 2 and 8 m.
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Figure 34. Vertical Distribution of Portable LiDAR returns for Treatment Plots in the Red Hills Area: a) secondary forest 
burned in the transitional season with 1 year fire return interval and b) two year fire return interval c) secondary forest 
burned in the dormant season with a 2-year fire return interval d) old growth plot burned in growing season.
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Discussion 

Strengths and Limitations of Airborne and Portable Sensors  

 

Structural plot metrics obtained from airborne and portable LiDAR systems presented 

some similarities (i.e. canopy cover), but distinct differences appeared when measuring 

canopy heights (maximum and mean heights) using these different methods. Both the 

top-down (airborne) and bottom-up (ground) systems were able to provide gap 

detection and canopy cover estimation at the plot level. The portable system, when 

compared to the airborne LiDAR sensor, provides an underestimation of canopy cover 

in open forest systems (<50% canopy cover), but is more sensitive in detection of cover 

in hardwood woodland plots (>60% canopy cover). The strength of the bottom-up 

system, with higher sensitivity in detecting lower canopy levels (Welles and Cohen, 

1996;Parker et al., 2004;Strahler et al., 2008;Van der Zande et al., 2008;Hilker et al., 

2010), which are missed by the airborne systems, explained the trend in the canopy 

cover data. The hardwood dominated plots contained dense subcanopy and shrub 

elements, underrepresented in the airborne LiDAR return data.   

 

Plot mean height was significantly lower (by a mean of 3.12 m) when using the ground-

based LiDAR, since this system included more lower canopy returns, which is 

considered to be a blind region for the airborne systems (Hosoi et al., 2010). Maximum 

heights were statistically higher when captured using the portable system; however, the 

differences between both methods would have been minimal if one plot outlier (W3B) 

had been removed from the dataset. The impact of missing a tree apex by the airborne 
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LiDAR highlights a common weakness in these systems (Gaveau and Hill, 2003;Coops 

et al., 2007), especially with airborne data point-spacing of 1 m or greater. The fine-

grained data collection of the portable LiDAR system (thousands of returns per meter) 

would eliminate, in large part, missing a tree apex.    

 

Both sensors provided a detailed plot-level 3D structure of the forest, with differences in 

these profiles being minimal in open canopy setting. The sensitivity of the portable 

LiDAR in capturing lower subcanopy layers, while becoming blind to upper canopy 

elements (Hilker et al., 2010;Hosoi et al., 2010) becomes obvious in denser conditions 

(>60% cover).  Portable LiDAR, even though unable to detect data below the collection 

height (1.3 m, in this case), is still a powerful tool in detecting establishment of 

hardwood shrub or small tree species in open pine forests.  

 

The ecological implication of being unable to detect shrub level data (<1.3 m) with this 

portable system is especially relevant in habitat suitability modeling of species of 

management and conservation concern. Many pine-grassland obligate species, such as 

Prairie Warbler (Dendroica discolor), Indigo Bunting (Passerina cyanea), Red-headed 

Woodpecker (Melanerpes erythrocephalus), and Bachman's Sparrow (Aimophila 

aestivalis), are negatively associated with midstory canopy and positively associated 

with dense understory (Masters et al., 2002). In fact, for many wildlife species, being 

able to describe the understory structure is an important factor in predicting habitat 

suitability (Müller et al., 2009). Specific species of management concern in the 

southeastern U.S., i.e. Northern Bobwhite (Colinus virginianus), is currently managed by 
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the maintenance of permanent woody cover < 2 m in height (Cram et al., 2002;Masters 

et al., 2006). Without access to this understory canopy layer, suitability models for many 

species would be incomplete, and monitoring or implementation of management plans 

could not be guided.  

 

However, for species directly impacted by canopy cover, the portable LiDAR system 

would be able to provide clear guidance: canopy cover differences could be clearly 

detected among fire treatments and forest types. Furthermore, it provided vegetation 

height profiles that indicate the impact of both fire return and season in the canopy 

structure. Plots managed with fire returns of 2-years had significantly different profiles, 

depending on the seasonality of the fire treatment (dormant, transition or growing 

season) and/or the historical context of the forest (i.e. secondary versus old-growth 

forest). A distinct advantage of using portable LiDAR was the clear detection of 

recruitment, which provides invaluable information for land managers.  Another 

important application of LiDAR would be in the detection and monitoring of structural 

complexity (above 1.3 m) and canopy closure, which impact the small mammal 

community, in particular habitat specialists such as the harvest mouse 

(Reithrodontomys nutalli) and hispid cotton rat (Sigmodon hispidus) (Masters et al., 

2002). 
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Recommendations and Future Applications 

 

The evaluation of a portable ground-based system is an expansion of the Parker et al. 

(2004) study and provides further insight into the value of an affordable and rapid 

assessment system for forestry applications. The strengths of this portable unit are in its 

cost, ease of use in the field and analysis, and high sensitivity to lower canopy 

elements. Canopy cover metrics are consistent with airborne LiDAR metrics, with higher 

detection of canopy closure in heavily hardwood-dominated plots. This system provides 

a repeatable method for structural change detection through time, without expending 

significant additional costs, unlike airborne LiDAR data acquisition.  

 

Some elements of this system could be further refined to reduce its limitations. One of 

the most important components that would increase the usability of the system would be 

the addition of a GPS tagging throughout the data collection. This would allow a 3D data 

collection to occur, and point cloud datasets to be constructed. Geotagging could occur 

at certain time intervals, and be provided by an external submeter GPS data collector. 

Having geotagged height information would reduce the data preparation time of creating 

transects and allow detailed profiling of subplot elements to occur. 

 

Another weakness of the ground-based system was the exclusion of the herbaceous 

and lower shrub-level structure, which, in some habitat suitability modeling and 

monitoring, are of high interest. Shrub encroachment and initial recruitment are two 

elements that land managers would like to have immediate feedback on without 
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extensive fieldwork. It would be interesting to explore combining a bottom-up with a top-

down approach of this same system; this could only be properly combined with 

appropriate geotagging. Furthermore, airborne LiDAR systems have limitations in 

detecting lower canopy structure which could be minimized by the fusion of data derived 

from bottom-up sensors, especially if these were inexpensive. The idea of fusing 

airborne and portable ground-based LiDAR systems to reduce blind spots has been just 

recently independently suggested by Hosoi et al. (2010). 

  

Future work should focus of providing synchronous airborne and portable LiDAR data 

collection to eliminate any other potential factors in canopy structure changes detected 

between both sensors. Repeated analyses of the same plot through time, maintaining 

seasonality and treatment, would allow an understanding of the consistency and 

repeatability of this system in structural determination. Finally, the future of active 

remote sensing techniques for natural resource management hinges on data fusion, 

specifically bottom-up and top-down sensors, to eliminate weaknesses and biases of 

either approaches. A focus on the methodology of LiDAR fusion and its application to a 

variety of ecosystems is warranted. 
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CHAPTER FOUR - - AN APPLICATION OF FINE-SCALE LIDAR TO MODEL SONGBIRD 

OCCURRENCE IN SOUTHEASTERN U.S. WOODLANDS  

 

Abstract 

 

Adopting appropriate conservation strategies for individual species of wildlife or wildlife 

assemblages requires a fine-grained understanding of habitat-animal relationships. This 

study applies airborne LiDAR (Light Detecting and Ranging) data to create habitat 

suitability models for species of management and conservation concern.  Structural 

habitat metrics, such as canopy cover at various height strata, height information, and a 

measure of vegetation distribution (clumped versus dispersed), were derived from 

LiDAR datasets and used to model habitat relationships for 10 songbirds of 

conservation interest in southeastern U.S. woodlands.  

 

LiDAR structural habitat data, at both fine and coarse spatial scales, explained up to 

54% of the variance in bird species abundance. Non-parametric multiplicative 

regression (NPMR) modeling using remotely derived structural predictors yielded cross-

validation R2 relationships between 0.39 and 0.69 for each of the selected avian 

species. These results provide insight into the powerful use of airborne LiDAR to 

provide specific management guidance to enhance the suitable habitat for songbird 

woodland species of conservation concern.   
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Introduction 

 

The importance of habitat structure in determining overall wildlife species biodiversity, 

particularly avian diversity, has been studied for decades (MacArthur and MacArthur, 

1961;MacArthur, 1964;Karr and Roth, 1971). Ecological concepts, such as ―Niche-

Gestalt‖ (James, 1971;James et al., 1996) suggest habitat structure plays a dominant 

role in species distributions, and a number of studies has focused on predicting bird 

assemblages using structural variables (Pain et al., 1997;Chapman et al., 

2004b;Chapman et al., 2004a;Masters, 2007). A challenge in constructing ecological 

predictors has been the lack of three-dimensional structural data, particularly at spatial 

scales that are ecologically relevant (Russell et al., 2007;Venier and Pearce, 

2007;Martinuzzi et al., 2009).  

 

The rapid development of airborne LiDAR has been a breakthrough in measuring 3-D 

structure at broad spatial scales (Lefsky et al., 2002b;Newton et al., 2009), and 

advantages of using LiDAR in understanding the functional role of structure in avian 

species occurrence are clear. The cost and time effort is greatly reduced from 

conventional efforts for vertical structure data collection, particularly in complex 

environments such as forested or savanna-woodland ecotones (Michel et al., 

2008;Goetz et al., 2010). Airborne LiDAR accounts for small structural elements, such 

as vines, and minor branches and leaves (Michel et al., 2008), providing insight into the 

microhabitat variables important for nesting or reproductive success. Providing this type 
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of fine-grained structural information in any broad spatial extent would be impossible 

without the advent of active remote sensing.  

 

With the advent of high density datasets, the applications of LiDAR in the ecological 

world have been extended to assessing habitat features for wildlife assemblages 

(Hinsley et al., 2009;Müller et al., 2009;Goetz et al., 2010) and individual species 

(Bradbury et al., 2005;Seavy et al., 2009).  These studies have concluded that LiDAR is 

a powerful tool in providing habitat associations for individual or groups of species 

(Goetz et al., 2007;Clawges et al., 2008;Müller et al., 2009).  

 

This study assesses the use of LiDAR-derived structural indicators in predicting 

individual songbird species in southeastern U.S. woodlands.  It further expands on the 

importance of spatial scale, just recently addressed in a multi-scale approach for 

riparian bird associations (Seavy et al., 2009),  and spatial heterogeneity in habitat 

suitability predictions. 

  

Additionally, this study assesses habitat suitability models for 10 species that include 

common inhabitants of mature southeastern pine forests as well as three species of 

conservation and management concern: Bachman's Sparrow (Aimophila aestivalis), 

Northern Bobwhite (Colinus virginianus), and Red-headed Woodpecker (Melanerpes 

erythrocephalus)(Cox and Widener, 2008). The relationship between habitat quality and 

species occurrence has been examined for a few of the selected species, such as for 

the Northern Bobwhite (Cram et al., 2002;Masters et al., 2006), and some pine-
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grassland indicators (Masters et al., 2002;Masters, 2007). The individual models 

presented in this study exclusively use airborne LiDAR predictors and take both 

horizontal and vertical spatial heterogeneity into account, providing quantitative 

predictors that can be implemented in land management approaches. 

  

Results from this study provide further evidence of the validity of LiDAR derived 

structural data in examining very detailed wildlife species-habitat relationships in a 

broad spatial scale (Vierling et al., 2008). The future of species conservation rests on 

the creation of specific quantitative habitat suitability models to guide management of 

vegetation structure and monitoring.  Airborne LiDAR can assist in providing information 

to help in the effort of predicting habitat suitability at broad scales, important for 

determining conservation priorities.   

 

 

Methods 

Study Area 

 

The study site location is Tall Timbers Research Station (TTRS), located in the Red 

Hills area of the northwestern Florida and southwestern Georgia (Figure 35).  This 

region occupies approximately 300,000 ha between Thomasville, Georgia and 

Tallahassee, Florida and is home to over 230 rare types of plants and animals and over 

27 federally listed threatened and endangered species (Masters et al., 2007). The Red 

Hills area comprises a mixture of young. mature, and old-growth longleaf pine forests 
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(Pinus palustris), natural and planted loblolly (Pinus taeda) and shortleaf  (Pinus 

echinata) pine forests primarily in an old field context, mixed hardwood and pine forests, 

forested and herbaceous wetlands, agricultural fields, and residential/urban land cover 

types . 

 

The TTRS covers 1600 ha within the Red Hills area, and is located just north of 

Tallahassee, FL.  Upland pine ecosystems on TTRS were likely dominated by open 

longleaf pine forests until late 1800's when agriculture moved into the area. Follow the 

cessation of agriculture, second-growth forests dominated by loblolly and short-leaf pine 

have recolonized abandoned agricultural lands (Masters et al., 2005). The groundcover 

at the study site lacks the wiregrass (Aristida) and many other plants that occur in 

pristine longleaf pine sites (Hermann, 1995), but it is dominated by many legumes and 

composite family members and interspersed with grasses (broomsedge bluestem, 

Andropogon virginianus, primarily).  
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Figure 35. Location of the Study Area, Tall Timbers Research Station located within the 
Red Hills area. 

 

Tall Timbers has been actively managing its secondary upland pine forest using 

prescription fire of low intensity transitional season treatments with a return interval of 1-

2 years (applied in a heterogeneous pattern using small-scale areas). Most of the 

survey locations are located within this old field ecosystem type, with a few representing 

wetland and hammock conditions (Figure 36). 
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Avian Point Counts 

 

Two sets of avian point-count surveys were located historically throughout Tall Timbers 

(Figure 36). The initial set was established in 1997 and consisted of 17 plots (N1-N8 

and S1-S9) located in the central and eastern upland areas of the property. Data at 

these survey locations were originally collected to compare the effects of hardwood 

removal conducted in upland pine woodlands with pre- and post-treatment sampling 

events (1997 and 1999).  The second set of point-count survey locations consisted of 

20 survey points randomly located throughout TTRS. These sample areas were used to 

monitor breeding populations of birds on Tall Timbers, and the counts were initiated in 

2005, with additional annual sampling between 2008-2010. 

  

Counting stations were located > 300 m apart (Figure 36) for both avian surveys. In all 

instances, counts were conducted during the height of breeding season between May 

and 28 June using standardized point-count methods (Ralph et al., 1993). For each 

year,  a minimum of three  was made to each station, separated by a week. 

Observations at each station consisted of all birds seen or heard within 200 m of the 

station (segregated by <50, 50-100, >100 m counts) for 10-min in non-rainy and low 

wind conditions. 
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Figure 36. Location of the Historic (1997-1999) and Current (2008-present) avian point-
count survey locations at TTRS (FL).  
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For the analysis, only counts of species of management and conservation concern with 

enough variability in their frequency among plots were selected (Table 15). For the 

habitat suitability model development, only 2008 counts (total counts of the three events 

within that spring) were used, while 1999 data were selected for independent model 

evaluation. The selection of these particular years is related to the availability of LiDAR 

datasets for 2002 (closest to the 1999 bird count data) and 2008 (within 3 months of 

avian bird count collection). 
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Table 15. Selected bird species for habitat suitability modeling and their respective nesting preferences and conservation 
status. 

 

1999 2008

BACS Bachman's Sparrow Aimophila aestivalis Ground-Nesting Pine-Grassland Near Threatened 17 12

BLGR Blue Grosbeak Passerina caerulea Low-Shrub Pine-Grassland Least Concern 18 12

CARW Carolina Wren Thryothorus ludovicianus Tree Cavity, Midstory Thickets Least Concern 18 18

EAWP Eastern Wood-Pewee Contopus virens Mature Hardwood Trees Least Concern 18 12

INBU Indigo Bunting Passerina cyanea Low-Shrub Pine-Grassland Least Concern 18 18

NOBO Northern Bobwhite Colinus virginianus Ground-Nesting Pine-Grassland Near Threatened, Game Spp. 18 14

PIWA Pine Warbler Dendroica pinus Mature Pine Trees Least Concern 18 13

RHWO Red-headed Woodpecker Melanerpes erythrocephalus Tree Cavity, Hardwood Trees Near Threatened 14 13

WEVI White-eyed Vireo Vireo griseus Mid-Story Thickets Least Concern 15 9

YBCH Yellow-breasted Chat Icteria virens Mid-Story Thickets Least Concern 12 14

Count Plot Presence
Acronym Common Name Latin Name Nest Type/Habitat

IUCN Conservation 

Status
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LiDAR Data and Vegetation Metrics 

 

Two datasets of small footprint multiple return LiDAR (Light Detecting and Ranging) 

were obtained from the Tallahassee-Leon County Geographic Information Systems 

(GIS) Department. These datasets included raw LAS files for the entire Leon County in 

both 2002 and 2008 transitional seasons (February and March, respectively) with the 

goal of creating countywide detailed floodplain mapping. The first set (2002) was 

collected using the ALS40 (Leica Geosystems) scanner by Merrick & Co. in February 

2002. The 2008 dataset was collected using Leica ALS50 Geosystem in March 2008. 

 

Point cloud data were converted to multipoint files and then interpolated using second 

power Inverse Distance Weighted interpolation in the 3D Analyst GIS environment 

(ESRI 2008) to a Digital Elevation Model (DEM) and a Digital Canopy Height Model 

(DCHM) (Zimble et al. 2003). Post processing of all the raster products took place to fill 

most, if not all, empty cells, with nearby interpolated values. The DEM heights were 

assigned to all point cloud data, allowing the computation of height above ground for 

every data point. 

 

LiDAR measurements of canopy height, canopy cover, strata cover, and vegetation 

distribution were extracted to describe structural information around 100 and 200 m for 

each point location (Figure 37). The variables extracted from the LiDAR datasets 

included maximum and average heights, standard deviation and coefficient of variation 

of canopy heights (Seavy et al., 2009), canopy cover, cover and spatial distribution of 
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vegetation at four height strata (Table 16). The different height strata used for data 

analyses were as follows: S1 represented ground vegetation between 0 - 0.6 m, S2 low 

shrubs between 0.6 - 1.5 m in height, S3 midstory between 1.5 - 6.1 m in height, and 

canopy heights above 6.1 m. These strata were selected to represent potential 

preferences of nesting or feeding habitat levels for bird species of interest, similarly to 

previous structure-avian diversity studies (Karr and Roth, 1971). 

 

Figure 37. Sample point-count location with buffered radii (100 and 200 m) used for 
extraction of LiDAR structural data for habitat suitability modeling.
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Table 16. Structural Metrics Derived from the 2002 and 2008 LiDAR Metrics for the Survey plot Locations. 

 

1N and F after any of these acronyms indicates these correspond to the "Narrow" (100 m) or "Farther" (200 m) buffer (fine or coarse spatial 
scales) around the survey point count. 
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The structural variables were derived for the hardwood removal plots using the 

temporally nearest available LiDAR dataset (2002), while the structural habitat 

predictors for the 2008 survey point locations were derived from the 2008 LiDAR 

dataset. For both sets of survey locations, data were extracted for the narrower 

(referred as N or fine scale) and farther (hereafter F or coarse scale) buffer areas of 100 

and 200 m, respectively. 

  

The distribution of vegetation at the four specific height strata was approximated by the 

use of a spatial statistic, the average nearest neighbor z-value, obtained using ArcGIS 

9.3 (ESRI 2008). The Z-value is a measure of statistical significance when compared to 

a null model (ESRI 2009) based on random distribution of points. Z-values are a 

measure of standard deviation of a normal distribution: a very high or low value would 

be located in the tails of the normal distribution, with very low likelihood of being 

randomly distributed. Dispersal or "clumpiness" of the LiDAR returns of the 4 strata 

levels were also calculated for both spatial scales (i.e. 100 and 200 m) around each 

point survey center. 

 

 

Habitat Suitability Modeling 

 

The objective of this study was to assess the potential of LiDAR data in describing the 

forest structure sought by woodland songbird species. The first step was to understand 

what response dataset, bird count data, should be selected for modeling, including if 
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aggregation of several years of data was appropriate. Scatterplots and standard 

deviations of the selected bird species across 2008-2010 were examined and survey 

points were ordinated by Principal Components Analysis (PCA) and Non-metric 

Multidimensional Scaling  (NMS) (PC-Ord, 2011) using bird count datasets.  

 

Exploratory multivariate analyses were also conducted with the LiDAR derived structural 

metrics (Table 16) at both spatial scales (100 and 200 m), discerning the importance of 

these as predictors in the habitat modeling. Structural variables were used to ordinate 

the point centers by the use of Principal and Detrended Components Analyses.  

Additionally, Canonical Correspondence Analyses (CCA) (PC-Ord, 2011) with 

corresponding structural and species variables were conducted as a precursor to 

suitability modeling. These preliminary analyses were used to identify the  structural 

predictors with greater weight in the distribution of the 10 selected woodland bird 

species. It also enabled grouping of the avian species by habitat preferences, effectively 

delineating guilds.  

 

Subsets of 2008 LiDAR-derived variables (predictors) and exclusively 2008 bird count 

data (response variables) were used for individual species habitat suitability modeling 

with non-parametric multiplicative regressions (NPMR) and cross-validation 

(HyperNiche 2, 2009). NPMR has as advantage allowing predictors to have 

multiplicative interactive effects, incorporating built-in overfitting controls, and being 

independent from any requirement to provide an apriori model form (McCune, 2006). 

This type of modeling incorporates the ecological concept of species responses to 
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variations in multidimensional habitat space, assuming that habitat factors interact in a 

multiplicative and not an additive fashion.  

 

A Gaussian weighting function with a local mean estimator was used in a forward 

stepwise regression of species abundance values against the structural predictors. For 

each of the species, thousands of models were tested and the best fit, using leave one-

out cross validated statistic, the cross R2 was assessed and reported.  The cross R2 

corresponds to proportion of the residential sum of squares (RSS) to the total sum of 

squares (TSS), and it can range from a negative to a positive value, with the former 

valued being indicators of weaker models (McCune, 2006). Only the best models, 

according to the cross validated R2 and parsimonious number of predictors (LiDAR 

variables) were reported and further fitted to a 3D projection response surface. 

Furthermore, validation of the best models using independent dataset of both predictors 

and response variables was conducted. For this, the 1999 bird count data and 2002 

LiDAR derived structural predictors for the hardwood removal survey point locations 

were used. Cross-validated R2 were also calculated to provide a comparison between 

predicted and observed bird counts, based on the NPMR models. 
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Results 

Bird Occurrences 

 

Four broad guilds of bird species were represented by the 10 selected bird species 

(Table 15), and their occurrence across the point survey locations varied broadly 

(Appendix D, Table 20). Ground-nesting pine grassland nesting species, such as the 

Bachman's Sparrow (Aimophila aestivalis, BACS) and Northern Bobwhite (Colinus 

virginianus, NOBO) were better represented in points 2, 7, and 12 (2008 survey points), 

being clearly absent in points 16 and 18. Blue Grosbeak (Passerina caerulea, BLGR) 

and Indigo Bunting (Passerina cyanea, INBU), low-shrub pine-grassland nesters, were 

found in much higher abundance in points 7 and 12 than in the remaining points, and 

absent from the same points (16 and 18) as the grassland species. Bird species that 

prefer midstory thickets, such as Carolina Wren (Thryothorus ludovicianus, CARW), 

White-eyed Vireo (Vireo griseus, WEVI), and Yellow-breasted Chat (Icteria virens, 

YBCH), favored points 5 and 7, while occupying points 2 and 17 in low numbers. The 

Eastern Wood-Pewee (Contopus virens, EAWP), Pine Warbler (Dendroica pinus, 

PIWA), and Red-headed Woodpecker (Melanerpes erythrocephalus, RHWO), species 

which prefer to nest in mature trees, were more abundant in points 8 and 10, and 

almost absent in points 14 and 20.  

 

Besides the spatial variability of bird occurrence discussed above, temporal variability, 

more specifically, annual variability, was very high, even if seasonality was accounted 

for by maintaining the data collection events within 6 weeks. For example, for 



 

196 
 

Bachman’s sparrow, count numbers for the same point center (e.g. point 2)  could vary 

from 2 to 9 occurrences between 2008 and 2010 (Figure 38). Changes of bird 

abundance numbers between 2008 and 2009 for the same point survey locations were 

large and unpredictable (Figure 39). When taking three consecutive years into account 

(2008-2010), standard deviations for the selected bird species were, in cases, close to 

or as high as the mean abundance for the three years (Table 21). The high fluctuation 

indicated that it was not appropriate to aggregate multiple years of bird abundance data 

for the model building effort. 

 

  

Figure 38. Annual variability of bird count data for the BACS (Bachman’s Sparrow) at 
TTRS point centers from 2008-2010.
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Figure 39. Scatterplot of the 2008 and 2009 point-based total sampled abundance for 4 
representative species of their guilds: BACS, BLGR, CARW, and RHWO. 

 

Bird abundance data was able to separate most of the 20 survey point locations with 

66% of the variance explained in the first three axes of a PCA (Figure 40, Table 17). 

With community bird data, it is difficult to assume that relationships among variables are 

linear or monotonic, an assumption of the PCA. However, no arch effect was visible and 

the first few axes did seem to effectively summarize the trend in species composition 

along the gradient. Other ordination techniques with no linearity assumption (Non-metric 

Multidimensional Scaling or NMS) did present similar patterns (Figure 41), but are not 

as easy, without Eigenvectors to interpret.   
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Table 17. Eigenvalues for PCA Analyses of Bird Species and Structural Habitat 
Variables. 

 

 

Figure 40. Principal Components Analysis results for 2008 Bird Abundance Ordination 
(Axes 1 and 2). The point centers are represented by the triangles and species as 
Eigenvectors. Black ellipse represent mid-story thicket nesters, blue ellipse tree nesters 
in pine-grasslands, and red ellipse ground-nesters in pine-grasslands. 

 

Ordination Type Axis Eigenvalue % Variance Cum.% of Var.

PCA Bird Species 1 3.231 32.306 32.306

PCA Bird Species 2 1.627 16.273 48.579

PCA Bird Species 3 1.444 14.442 63.02

PCA Structure Fine-scale 1 2.893 48.222 48.222

PCA Structure Fine-scale 2 1.811 30.182 78.403

PCA Structure Fine-scale 3 0.843 14.058 92.461

PCA Structure Multiple Scale 1 8.446 60.331 60.331

PCA Structure Multiple Scale 2 2.399 17.137 77.468

PCA Structure Multiple Scale 3 1.438 10.273 87.741
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Figure 41. Non-metric Multidimensional Scaling results for 2008 Bird Abundance 
Ordination (Axes 1 and 2). The point centers are represented by the triangles and 
species as black point locations. 

 

Ground nesting species, i.e. Bachman's Sparrow and Northern Bobwhite, were 

associated with the strongest Eigenvalues for Axis 1: stations 7, 12, and 13 have the 

highest frequency of ground-nesting bird species and these stations were closely 

associated with positive Axis 1 values.  All three mature pine/hardwood nesters, Pine 

Warbler, Eastern Wood-pewee, and Red-headed Woodpecker had similar strong 

positive Eigenvalues for Axis 2, while Indigo Bunting (a low shrub nester) and Yellow-

breasted Chat (midstory thickets nester) had the most negative Eigenvalues associated 

with Axis 3. 
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Detrended Correspondence Analysis (DCA) yielded similar results to the PCA, with 

Indigo bunting and Northern bobwhite having the strongest associations with Axis 1 (r= 

0.65 and r=0.72, respectively), and Red-headed Woodpecker with the strongest 

association with Axis 2 (r=0.791, Figure 42). The cluster of points formed in the 

ordination analyses were dominated by species within the same guild, particularly 

visible for the ground nester (Bachman's Sparrow and Northern Bobwhite), and mature 

tree nesters (Pine Warbler, Eastern-wood Pewee, and Redheaded Woodpecker) 

(Figure 40). More interestingly, directionality of the ordination, especially in Axes 1 and 

3 (Appendix D, Figure 103), indicated that the high abundance of midstory thicket 

species (White-eyed Vireo and Carolina Wren) was in direct opposition to some low 

shrub and mature species (Blue Grosbeak and Red-headed Woodpecker, respectively). 

 

 

Figure 42. Detrended Correspondence Analysis and r-value results for the red-headed 
woodpecker across Axes 1 and 2. 
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Habitat Structure 

 

Multiple LiDAR derived structural variables at two spatial scales, 100 and 200 m buffers 

around point centers, were examined in relation to the ordination of the 2008 point 

samples.   A PCA of the six structural variables for the finer spatial scale of 100 m- 

canopy cover, S1-S2 covers, and average height explained 92.4% of the points 

distribution in the first 3 dimensions (Figure 43, Table 17).  It became clear that overall 

canopy cover became less important in understanding differences in habitat structure, 

when specific strata covers were also incorporated. The strongest Eigenvalues for Axis 

1 included the S1 cover (positive relationship) and, almost in direct opposition, S4 cover 

(negative relationship). In general, an increase in groundcover vegetation (<0.6 m) was 

accompanied by reduced canopy cover (>6.1 m in height), a trend described by the first 

axis of the ordination. The second axis of the PCA used the midstory canopy cover (S2 

and S3 cover) to ordinate most of the points. In general, points with extremely high 

cover between 0.6 and 6.1 m were ordinated closer to 0 for Axis 2 (e.g. 14), while points 

with an almost absent midstory canopy (e.g. 9, 12) were near the highest Axes 2 

values. Axis 3 corresponded to the overall canopy cover (positive relationship), and 

explained only 14% of the variance in the ordination.  

 

Non-metric Multidimensional Scaling (NMS) of structural variables - height and cover 

variables - yielded similar results for both the finer (100 m) or coarser (200 m) scale with 

the most stable ordinations only using two dimensions. The most relevant variables in 

the NMS ordination were the S1 cover (r=0.980, Figure 44), Average Height and S4 
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Cover (r=0.816 and r=0.968, respectively) for Axis 1, and Canopy Cover for Axis 2 

(r=0.885). In contrast to the PCA, the midstory cover variables (S2 and S3 cover) did 

not appear to be the most important structural variables in predicting species 

abundance in the NMS ordination.   

 

  

Figure 43. Principal Components Analysis results for 2008 LiDAR-derived Structural 
Variables for the 100 m buffer around point survey locations (Axes 1 and 2). The point 
centers are represented by the triangles and structural variables as Eigenvectors. 
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Figure 44. Non-metric Multidimensional Scaling and r-value results for the S1 (0-0.6 m) 
Cover across Axes 1 and 2. 

 

The two habitat scales studied have very similar impact and directionality in ordination 

point survey locations (See Appendix D; Figure 107). PCA of the combination of cover, 

height and dispersal (Z-value) variables of both scales (N-fine scale and F-coarser 

scale) present overlapping Eigenvectors, with the exception of small differences in both 

the S23 and S4 distribution patterns. Even with the use of a large amount of 

environmental variables, almost 87% of the variation of the points could be explained by 

the first 3 axes (Table 17).  The majority of the points were ordinated by the amount of 

groundcover (S1) and evenness of this same stratum (negative Z-value representing 



 

204 
 

clumped vegetation) on Axis 1. On Axis 2, as similar to the previous ordinations, the 

mid-story (S2 and S3) cover had the strongest impact in the ordination.   

 

 

Habitat Suitability Models 

 

Selected bird species abundance varied across the gradients in structural habitat 

variables, with cover type variables explaining 54% of the variance (Figure 45, Table 

18). The Canonical Correspondence Analysis (CCA) was able to distinctly separate all 

10 studied woodland bird species using the first 3 axes of the ordination, providing an 

understanding that habitat suitability is species-specific. 
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Figure 45. Canonical Correspondence Analysis Biplot for species and LiDAR-derived 
structural habitat attributes for 2008 survey point location data (Axes 1 and 2). 

 

Table 18.Canonical Correspondence Analysis Eigenvalues and Pearson Correlation 
values for bird species abundance and structural variables. 

 

 

Axis Eigenvalue % Variance Cum.% of Var. Pearson Corr.1 Kendall Corr.

1 0.181 33 33 0.945 0.684

2 0.064 11.6 44.7 0.873 0.579

3 0.05 9.2 53.8 0.819 0.716
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Nevertheless, a few species did have similar habitat preferences. Northern Bobwhite 

(NOBO) and Bachman's Sparrow (BACS) were generally grouped together by points 

with low overall canopy cover and high groundcover 0-0.6 m (S1COV). In addition, 

these ground-nesters preferred a coarse-scale dispersed distribution of mid-story 

vegetation (0.6-6.1 m in height).  

 

Indigo Bunting (INBU) and Yellow-breasted Chat (YBCH) were typically encountered in 

similar conditions, demonstrating these two species have a selective preference for 

relatively open, spatially cluster canopy cover (low S4 or >6.1 m z-level).  The Indigo-

Bunting, however, prefers higher groundcover, in comparison to both the Yellow-

breasted Chat and the Blue Grosbeak (BLGR). The Blue Grosbeak, a low-shrub nester, 

as the Indigo Bunting, seems to have distinct habitat preferences from the latter. The 

Blue Grosbeak presents an aversion to a high percentage of midlevel canopy cover 

(S23Cov) at both fine and coarse spatial scales. In this regard, it is very similar to the 

Red-headed Woodpecker (RHWO), with the later preferring a more open groundcover 

as well.   

 

From all the woodland songbird species, both the White-eyed Vireo (WEVI) and 

Carolina Wren (CARW) have the greatest association with high canopy cover and low 

amounts of groundcover. However, these two species have distinct habitat preferences: 

the vireo prefers a dispersed canopy (>6.1 m), whereas the wren selects for more 

clustered type of vegetation, particularly in the mid-canopy levels.  Other mature tree 

nesters, such as the Pine Warbler (PIWA) and Eastern Wood-pewee (EAWP) prefer 
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slightly more open canopy cover and the presence of some groundcover, with the 

warbler selecting for habitat with higher cover in the mid-story level (0.6 - 6.1 m) than 

the wood-pewee. 

 

The individual habitat preference of each of the ten bird species was taken into account 

when modeling their habitat suitability. A large array of habitat predictors, extracted from 

both the fine (100 m) and coarse (200 m) scales, were used in multiplicative non-

parametric modeling. Cross-validation xR² varied between 0.39 for the Carolina Wren to 

0.69 for the Bachman's Sparrow, with parsimonious use of no more than 3 predictors or 

structural variables (Table 19).  Validation of these models using an independent data 

set, the 1999 bird count data from hardwood removal survey points, yielded relatively 

weak results with negative xR², with the exception of the Carolina Wren and White-eyed 

Vireo habitat suitability models. 
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Table 19. Best Performing NPMR Models for the Ten Woodland Bird Species using LiDAR structural variables.  

 

Response Variable are the avian species of interest, predictors are the LiDAR derived structural variables. Predictor Count indicated the total 
number of structural predictors used in the model (2 or 3). Tolerance is one standard deviation of the Gaussian smoothing function.  



 

209 
 

The ten species evaluated using the NPMR models can be divided into two broad 

groups: forest edge species (Blue Grosbeak, Carolina Wren, White-eyed Vireo, and 

Yellow-breasted Chat), and pine-grassland species (Bachman’s Sparrow, Eastern 

Wood- pewee, Indigo Bunting, Northern Bobwhite, Pine Warbler, and Red-headed 

Woodpecker).  Within these groups, bird species can be further subdivided into niches, 

by nesting preference (Table 15).    

 

Pine-grassland species 

 

The best NPMR model for the Bachman's Sparrow indicated that the most suitable 

habitat could be identified by the lowest average canopy height and dispersed 

distribution of Stratum 2 with low shrub heights between 0.6 and 1.5 m.  For the other 

ground-nesting species, the Northern Bobwhite, the predictors with highest impact in 

their habitat selection were the low overall canopy cover (20-25%) and relatively high 

groundcover percentages (20-30%) (Figure 46).   

 

 

 

Figure 46. 3D Response Variable for the NOBO as the predictor and the two strongest 
predictors: coarse scale (200 m buffer) canopy cover and S1 Cover. 
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The Indigo bunting, the only pine-grassland species with nesting preference in low-

shrub areas, could be best predicted by canopy cover between 30-40% and high 

vegetation cover in the 1.5-6.1 m height range. 

 

For species nesting in mature pine or hardwood trees (including some cavity-dwelling 

bird species), habitat preferences were drastically distinct. The Eastern Wood-pewee 

suitable habitat is characterized by mid canopy cover values (40-50%) and high overall 

canopy heights. Pine Warblers have a distinct preference for high shrub covers (1.5-6.1 

m) and dispersed spatial pattern of groundcover vegetation. Red-headed Woodpeckers 

prefer more open canopy cover (<50%) and dispersed midstory vegetation (0.6-6.1 m in 

height) (Figure 47).    

 

 

Figure 47. 3D Response Variable for the RHWO as the predictor and the two strongest 
predictors: fine scale (100m) canopy cover and S2+S3 z-level. 
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Forest-edge species 

 

The model for the Blue Grosbeak, a low-shrub level nesting species of ecotones, 

indicated a preference towards lower maximum canopy heights and an avoidance of 70-

90% canopy canopy cover.   

 

The Carolina Wren and White-eyed Vireo presented preferences for a highly clustered 

vegetation pattern in the shrub levels (between 1.5-6.1 m and 0.6-6.1 m, respectively), 

Stratum 3 between 1.5-6.1 m), with smaller influences of high vegetation cover of the 

same midstory strata (Figure 48). However, the Yellow-breasted Chat, often classified in 

the same guild due to its nesting preference in midstory thickets, indicated suitable 

habitat with relatively low high shrub level cover (1.5-6.1 m) and high mean canopy 

heights. 

 

Figure 48. 3D Response Variable for the CARW as the predictor and the two strongest 
predictors: fine scale (100 m buffer) S3 Cover and S3 z-value.  
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Discussion 

 

Temporal and spatial variability of the frequency of woodland bird species is very high in 

pine-hardwood woodlands. The annual change in bird abundance for the same spatial 

location has strong modeling and management implications. Compounding this 

temporal variability (Bulluck et al., 2006;Hinsley et al., 2006) with the strong response of 

woodland bird species to habitat structure at variety of spatial scales (Díaz et al., 

2005;Seavy et al., 2009) has made habitat suitability modeling a challenge.  Predictive 

models have to be constructed from temporally coherent data - synchronous predictor 

and response variables - and at a variety of spatial scales, to allow a fine-tuned habitat 

suitability model to be constructed. Management of species at individual or community 

scale needs a dynamic approach, and monitoring of key direct or indirect targets (e.g. 

habitat quality, species occurrence) has to take temporal changes into account. 

 

Habitat structure is a key predictor for species distribution and abundance (MacArthur 

and MacArthur, 1961;Clawges et al., 2008;Müller et al., 2010). Ecological concepts, 

such as ―Niche-Gestalt‖ (James, 1971;James et al., 1996) have highlighted the 

importance of vegetation structure for avian woodland species’ distributions, and 

extensive effort was placed in describing these relationships using field methods. Active 

remote sensing tools, such as airborne LiDAR, have been filling the void of horizontal 

and vertical heterogeneity in habitat and management approaches (Foody, 

2008;Bergen et al., 2009).  In this study, LiDAR extracted structural habitat variables, 

when combining coarse and fine spatial predictors provided up to 54% of predictive 
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power for selected bird species' abundance, higher than previous studies (Müller et al., 

2009). When describing the habitat structure-distribution relationship at an individual 

species scale, explanatory power was as high as xr2 of 0.69.   

 

Incorporating both coarse and fine scale structural variables increase the overall 

predictability of structure in modeling preferences, especially at the individual species 

scale.  Ecologically, predation risk and breeding success are highly impacted by local 

structure, with the spatial scale of impact directly linked to individual species behavior. 

Recently, structural heterogeneity at several spatial scales has been found to be 

important in modeling habitat quality at the individual species level (Bradbury et al., 

2005;Seavy et al., 2009). For the ten individual habitat suitability models constructed in 

this study, four used exclusively coarse spatial scale predictors (Northern Bobwhite, 

Blue Grosbeak, Yellow-breasted Chat, and Pine Warbler), and the remaining species 

(i.e. Bachman's Sparrow, Indigo Bunting, Carolina Wren, White-eyed Vireo, Eastern 

Wood-pewee, and Red-headed Woodpecker) had better predictors using only fine scale 

structural predictors.  

 

The most influential structural predictors in separating individual bird species and 

assemblages (i.e. ground open nesting species, shrub, and mature tree nesters in forest 

edge versus pine-grassland habitats) were the overall canopy cover, midstory cover 

(Strata 2 and 3 combined, or between 0.6-6.1 m in height), and, in direct opposition to 

these, ground level cover (0-0.6 m). In addition, spatial heterogeneity of vegetation 

across different height strata (represented by z-values, or a measure of standard 
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deviation of a random distribution), in particular, the overstory (>6.1 m) vegetation was 

another very important factor in the distribution and abundance of woodland bird 

species.  Height data, such as mean and maximum height, has, overall, very little 

impact in the distribution of bird species, when other structural variables that describe 

the vertical and horizontal distribution of vegetation were included.  Habitat quality 

determinations and suitability modeling using LiDAR data are commonly performed with 

tree height predictors only (Hinsley et al., 2002;Hill et al., 2004;Bradbury et al., 

2005;Hinsley et al., 2006), or a combination (Hinsley et al., 2009) of canopy height and 

cover. Improvements in quantitative modeling to answer species-specific ecological 

questions need to include variables that describe the canopy heterogeneity and three-

dimensionality. With the advances of remote sensing, canopy profiles are just starting to 

be included in species diversity and abundance studies (Goetz et al., 2007;Vierling et 

al., 2008;Goetz et al., 2010). 

 

Non-parametric multiplicative regressions (NPMR) (HyperNiche 2, 2009) provided 

strong cross-validation r2 for several species, in particular Bachman's' Sparrow, Blue 

Grosbeak, Northern Bobwhite, Pine Warbler, and Red-headed Woodpecker (xr2 >0.55). 

The use of parsimonious predictors and incorporation of multiplicative interactions 

between predictors (McCune, 2006), allowed the interpretation of the best predictors at 

specific spatial scales to be detected for individual bird species. In general, species that 

prefer forest edge habitats (i.e. Carolina Wren and White-eyed Vireo) showed 

preference for highly clustered shrub layer, with relative high shrub cover. Carolina 

Wren appeared, in independent studied (Masters et al., 2002) to be positively related to 
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shrub-level foliage under 2 m. Pine-grassland species, benefited, in general from lower 

canopy covers, in agreement to the general consensus (Masters et al., 2002), but 

predictors with greatest weight varied depending on nesting preference. The strongest 

predictors for ground-nesting species, such as Northern Bobwhite, were low overall 

canopy cover and high groundcover percentages. Tree or cavity nesting species, i.e. 

Red-headed Woodpecker, still preferred open canopy cover (<50%) but also seem to be 

associated with dispersed midstory vegetation (0.6-6.1 m in height) habitat. Individual 

species, even within the same apparent habitat (Northern bobwhite versus Bachman’s 

Sparrow), do have unique predictors: for the Bachman’s Sparrow, dispersed distribution 

of low shrub is a stronger predictor of suitability than high groundcover values. 

Individuality of preferences among species requires management of these preferences 

which involves assessing and monitoring spatial and vertical habitat heterogeneity, 

 

Future validation of these models with independent datasets would further improve their 

use in predicting suitable habitat using remotely sensed data. Independent validation 

attempted in this study performed weakly, potentially due to the large temporal 

discrepancy between structural predictor dataset (2002) and response variable data 

(1999 bird occurrences). 
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Management Implications 

 

This study provides valuable wildlife and conservation management lessons. High 

spatial and temporal variability have to be taken into account when managing at the 

individual species or community level. Monitoring of management goals has to be an 

ongoing task, taking place at relatively frequent intervals, and airborne LiDAR can 

provide valuable datasets which can improve decision-making in a timely manner 

(Vierling et al., 2008;Bergen et al., 2009). 

 

Individual species habitat preferences, particularly those of management and 

conservation concern, can often only be characterized with fine spatial scale habitat 

structural data (Michel et al., 2008;Vierling et al., 2008). Airborne LiDAR data can 

provide a rapid three-dimensional assessment of structure at user-specified scales, 

reducing the time-consuming and costly effort of manual field structural data collection.  

The ability to obtain data at fine vertical scale and broad horizontal scales allow 

modeling of individual species to be more quantitative and have greater predictive 

power. Woodland bird species, even the ones classified within the same guild by 

nesting preferences, had clearly distinct habitat structural preferences. For example, 

while the Eastern wood-pewee indicated preference for canopy cover values between 

40-45% and a high mean height, the Pine Warbler preferred low shrub cover (between 

1.5-6.1 m) and highly dispersed groundcover vegetation (<0.5 m).  
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Spatial heterogeneity of vegetation at different vegetation structural levels might be an 

element as important as percentage cover for these same strata. In this study we 

looked at the average nearest neighbor distance of the point cloud data of the four 

height strata represented as a z-statistic value. The dispersed or clumped nature of the 

vegetation was a powerful predictor in several individual species models. The Red-

headed Woodpecker, for example, a species targeted for conservation and highly 

dependent from frequent fires in savanna-woodlands (Grundel and Pavlovic, 2007), 

appeared to be best predicted by a combination of low-medium (30-55%) canopy cover 

and a dispersed shrub vegetation layer (0.6 -6.1 m). This closely corresponds to 

findings by (Masters et al., 2002) of the negative relationship between Red-headed 

Woodpecker and both canopy cover and midstory vegetation. 

 

Understanding the predictors key for suitability of individual species, allows appropriate 

management goals to be set, and, consequently, appropriate treatments to be imposed. 

For example, the Northern bobwhite, a game species of high interest in the SE pine-

hardwood woodlands, is often managed by improving habitat quality with supplementing 

feeding and introduction of frequent fire return intervals using controlled burns. There is 

general consensus on the need to maintain persistent woody cover under 2 m in height 

(Masters et al., 2006). Also, low basal areas and open canopies are preferential (Cram 

et al., 2002).  Using NPMR modeling with detailed LiDAR derived structural predictors, a 

much more detailed understanding of suitability can be determined (Figure 46): the 

preferential habitat characteristics are low canopy cover between 20-40% combined 

with a high cover (20-30%) in 0-0.6 m high vegetation. Similar modeling could be 



 

218 
 

performed for all species of management and conservation concern using a larger 

sampling effort and validation of the results in a wide range of study areas, for which 

both synchronous LIDAR and bird occurrence data are available. 
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APPENDIX A: PICTURES OF THE STODDARD FIRE PLOTS, TTRS, FL  
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Figure 49. Stoddard Plot W1A (1-year fire return interval). 

 

Figure 50. Stoddard Plot W1B (1-year fire return interval). 
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Figure 51. Stoddard Plot W1C (1-year fire return interval). 

 

Figure 52. Stoddard Plot W2A (2-year fire return interval). 

 



 

230 
 

 

 

Figure 53. Stoddard Plot W2B (2-year fire return interval). 

 

Figure 54. Stoddard Plot W2C (2-year fire return interval). 
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Figure 55. Stoddard Plot W3A (3-year fire return interval). 

 

Figure 56. Stoddard Plot W3B (3-year fire return interval). 
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Figure 57. Stoddard Plot W3C (3-year fire return interval). 

 

Figure 58. Control Plot UA (fire suppressed). 
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Figure 59. Control Plot W75B (fire suppressed). 
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APPENDIX B: PICTURES OF THE FIELD TRANSECTS AT TTRS, FL  
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Figure 60. Field transect location 8 (eastern view). 

 

Figure 61. Field transect location 8 (western view). 
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Figure 62. Field transect location 9 (eastern view). 

 

Figure 63. Field transect location 9 (southern view). 
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Figure 64. Field transect location 14 (eastern view). 

 

Figure 65. Field transect location 14 (southern view). 
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Figure 66. Field transect location 16 (eastern view). 

 

Figure 67. Field transect location 14 (southern view). 
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Figure 68. Field transect location 18 (eastern view). 

 

Figure 69. Field transect location 18 (southern view). 
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Figure 70. Field transect location 20 (eastern view). 

 

Figure 71. Field transect location 20 (southern view). 
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Figure 72. Field transect location 21 (eastern view). 

 

Figure 73. Field transect location 21 (southern view). 
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Figure 74. Field transect location 25 (eastern view). 

 

Figure 75. Field transect location 25 (southern view). 
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Figure 76. Field transect location 26 (eastern view). 

 

Figure 77. Field transect location 26 (southern view). 
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Figure 78. Field transect location 27 (eastern view). 

 

Figure 79. Field transect location 27 (southern view). 
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Figure 80. Field transect location 28 (eastern view). 

 

Figure 81. Field transect location 28 (southern view). 
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Figure 82. Field transect location 29 (eastern view). 

 

Figure 83. Field transect location 29 (southern view). 
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Figure 84. Field transect location 30 (eastern view). 

 

Figure 85. Field transect location 30 (southern view). 
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Figure 86. Field transect location 32 (eastern view). 

 

Figure 87. Field transect location 32 (southern view). 
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Figure 88. Field transect location 45 (eastern view). 

 

Figure 89. Field transect location 45 (southern view). 
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APPENDIX C: PICTURES OF THE PLOTS AND TRANSECTS AT PEBBLE HILL AND ARCADIA 

PLANTATIONS, GA  
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Figure 90. Arcadia Plot 1, Wade Tract (old-growth with 2-year fire return interval). 

 

Figure 91. Mid-story thicket in a pocket of Arcadia Plot 1, Wade Tract. 
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Figure 92. Arcadia Plot 2, Wade Tract (old-growth with 2-year fire return interval). 

  

Figure 93. Arcadia Plot 3, Wade Tract (old-growth with 2-year fire return interval). 
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Figure 94. Arcadia Transect 1, Wade Tract (old-growth with 2-year fire return interval). 

 

Figure 95. Arcadia Transect 2, Wade Tract (old-growth with 2-year fire return interval). 
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Figure 96. Arcadia Transect 3, Wade Tract (old-growth with 2-year fire return interval). 

 

Figure 97. Pebble Hill Plot 1 (secondary-growth with 2-year fire return interval). 
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Figure 98. Pebble Hill Plot 2 (secondary-growth with 2-year fire return interval). 

 

Figure 99. Pebble Hill Plot 3 (secondary-growth with 2-year fire return interval). 
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Figure 100. Pebble Hill Transect 1 (secondary-growth with 2-year fire return interval). 

 

Figure 101. Pebble Hill Transect 2 (secondary-growth with 2-year fire return interval). 
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Figure 102. Pebble Hill Transect 3 (secondary-growth with 2-year fire return interval). 
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APPENDIX D: SUPPLEMENTAL TABLES, CHARTS OF MULTIVARIATE ORDINATION ANALYSES 

AND 3D SURFACE MODELS FOR CHAPTER 4
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Table 20. Bird occurrence data for the ten species of interest grouped by guilds (1999 and 2008 survey points). 
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Table 21. Means and standard deviations of selected bird species abundance for the 2008-1020 data collection events.  
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Figure 103. PCA Results for 2008 Bird Abundance Ordination (Axes 1 and 3). The point 
centers are represented by the triangles and species as Eigenvectors. 
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Figure 104. NMS and r-value results for the Average Height across Axes 1 and 2. 

 

Figure 105. NMS and r-value results for the vegetation stratum 4 (>6.1 m) cover across 
Axes 1 and 2. 
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Figure 106. NMS and r-value results for the Canopy Cover across Axes 1 and 2. 

 

Figure 107. PCA Results for 2008 LiDAR-derived Structural Variables for the both 
spatial scales (N=narrow or 100 m buffer and F=farther or 200 m buffer) around point 
survey locations. 
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Figure 108. Canonical Correspondence Analysis Biplot for species and LiDAR-derived 
structural habitat attributes for 2008 survey point location data. 
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Figure 109. 3D Response Variable for Bachman's Sparrow as the predictor and the two 
strongest predictors: fine scale (100 m buffer) average height and Stratum 2 z-value. 

 

Figure 110. 3D Response Variable for the Blue Grosbeak as the predictor and the two 
strongest predictors: course scale (200 m buffer)  maximum height and Stratum 4 cover. 

 

  

Figure 111. 3D Response Variable for the Indigo Bunting as the predictor and the two 
strongest predictors: fine scale (100 m buffer) canopy cover and Stratum 3 cover. 
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Figure 112. 3D Response Variable for the White-eyed Vireo as the predictor and the 
two strongest predictors: fine scale (100m) Stratum 1 z-value and Strata 2+3 z-level.   

 

Figure 113. 3D Response Variable for the Yellow-breasted Chat as the predictor and 
the two strongest predictors: coarse scale (200m) average height and Stratum 3 cover. 

 

Figure 114. 3D Response Variable for the Eastern Wood-pewee as the predictor and 
the two strongest predictors: fine scale (100 m buffer)  average height and Stratum 2 z-
value. 
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Figure 115. 3D Response Variable for the Pine Warbler as the predictor and the two 
strongest predictors: coarse scale (200 m buffer) Stratum 3 Cover and Stratum 1 z-
value. 
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