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ABSTRACT

Electron transport in single lateral quantum dot (QD) and parallel lateral double

quantum dot (DQD) systems is modeled using semiclassical rate equations. The Zeeman

effect, in conjunction with resonant tunneling, is used to select the spin of electrons

involved in transport. We show adiabatic spin pumping by periodic variation of the

systems’ confining parameters, namely the quantum point contacts (QPCs) dictating the

boundaries of the dots, and the gate voltage applied to each dot. The limitations of

adiabatic spin pumping are subsequently examined by counting the average spin pumped

per cycle when frequency and interdot capacitance are adjusted.
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CHAPTER ONE:
INTRODUCTION

1.1 Spintronics

Our lives are inseparably entwined with semiconductor technology. We stay in touch

with friends and loved ones using cell phones, submit important documents via the in-

ternet, store our most precious memories electronically, and owe a great deal of our

scientific understanding of the world around us to numerical computation performed on

clusters. Recognizing the phenomenal utility of consumer electronics, we strive to find

faster, smaller, hardier devices with more memory and raw computational ability. So

predictable is the thirst for better technology that Moore’s law - that the number of tran-

sistors on an integrated circuit will double every two years - has held since its proposal in

1965 [1]. However, the size of each transistor cannot continue to shrink indefinitely, nor

can the number of transistors per chip increase without reservation. One encounters the

definite size limitation imposed by the atom - after all, we cannot build with subatomic

particles! - even without considering the decidedly non-classical behavior of electrons

already encountered even at sizes just a few orders of magnitude larger than a single

atom. Furthermore, one cannot simply pack transistors closer together without consid-

ering thermodynamics. To push electrons around inside a device, a potential is applied,

resulting in some unavoidable joule heating. This becomes an issue when considering the

signal pickup of a transistor can be muddied by thermal broadening, leading to reduced

computational ability; above a certain transistor density, it is entirely conceivable that

the device simply melt and not perform any computation at all.
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The present generation of consumer electronics owes its impressive storage capac-

ity and computational ability to the relatively new field of spintronics. As opposed to

traditional devices, which operate solely on charge current, spintronic devices also incor-

porate electron spin, leading to reduced power requirements for equivalent operations in

traditional devices. Readily available devices use spin polarized current, generated by

exploiting tunneling magnetoresistance (TMR) (a variation on giant magnetoresistance,

or GMR). Other methods for generating spin-polarized current include various types of

electron injection and using spin-orbit coupling effects, such as the Rashba effect. 1

Spin polarized current has certainly allowed devices to shrink and use less power,

but in the end, polarized current is still charge current. The same limitations apply as

for purely charge based devices. However, using a pure spin current- that is, a current

which does involve moving charge, just the transportation of spin- would at the very least

sidestep some of the thermodynamic issues tied to miniaturization. As an added benefit,

electron spin itself makes a very good information carrier, and thus has been suggested

as a natural qubit. Naturally, the biggest obstacles between us and purely spin based

devices lie in generating a pure spin current and in detecting a pure spin current.

1.1.1 Pure Spin Current

Several methods for generating spin current have been investigated, both theoretically

and experimentally. Some take advantage of the material properties the system, hinging

on spin-orbit interactions to scatter certain spins more than others [9, 10, 11, 12, 13];

some employ external oscillating fields [14, 15]. A substantial number of schemes follow

the work of Thouless [16] by using periodic variation of system parameters to pump

electrons through low-dimensional structures (e.g., 1D quantum wires and 0D quantum

dots) [17, 18, 19, 20]; spin pumping is achieved when spin degeneracy is broken, usually

1While the generation of spin polarized current is both useful and interesting, it lies outside the scope
of this work. We refer the interested reader to any of a number of review of spintronics, for instance,
references [2, 3, 4], or papers directly addressing the systems, such as [5, 6, 7, 8].
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with the application of an external field [21, 22, 23, 24, 25, 26, 27, 28]. There are also

those which rely on interactions with polarized photons, such as in [29].

The difficulty in detecting spin current lies in the inaccessible geometry of the devices

and the the lack of any method for directly measuring spin current. Electron injection,

using ferromagnetic leads, converts the accumulation of spin at the lead boundary into

a voltage signal [30], though coupling ferromagnetic leads and semiconductors presents

some some challenges [6, 31]. The spin Hall effect [32] has also proven to be useful

in generating spin current [33], with the inverse spin Hall effect allowing spin current

to be converted to charge current [34] There are certainly ongoing debates about the

best way to even define a spin current [35, 36], as measurement at a boundary does not

reflect overall conditions in bulk, whereas detection techniques use spin accumulation and

diffusion to determine the magnitude of spin transport. For a more thorough (but still

general) review of the mechanisms delineated here, see Ref. [37].

1.2 Outline

In this Thesis, we consider electron transport in single and double lateral quantum dot

systems in the sequential tunneling regime. We develop a pumping scheme in which

tunneling barriers and gate voltages are varied adiabatically to pump charge from one

reservoir to another at zero bias. In the presence of a static in-plane magnetic field, spin

degeneracy is lifted and it becomes possible to select the spin of the electron pumped; we

attempt to determine a scheme which pumps zero net charge but one ~ between reservoirs

per cycle.

Chapter 1.2 contains a more complete physical description of the DQD system in

question, followed by an electrostatic treatment of charging energy, and a review of the

Coulomb blockade and Zeeman effect. The phase diagram is introduced as a useful tool

for qualitative analysis of the system.
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In Chapter 2.5,we provide a quantum mechanical description of the complete dot-

reservoir system in the Constant Interaction (CI) model (that is, neglecting exchange

interactions). The Interaction Hamiltonian may be used to derive the semiclassical rate

equations as well as an expression for electron transition rates. The rate equations are

then used to find expressions for current and conductance for the system, and applied to

the toy example of one dot with one available energy level for clarity.

In Chapter 3.5, the results of simulations based on the rate equations are presented

for one dot and two dot systems, both with and without an applied magnetic field.

Occupation probabilities are plotted in the phase space of Vg1 and Vg2 for equilibrium and

non-equilibrium conditions; in equilibrium it is shown that configurations with equivalent

charge are equally likely, hence the rate equations do not completely determine the state

of the system. This degeneracy is briefly explored in the context of “switching” behavior.

For the DQD system, the total charge pumped per cycle is calculated for a variety of gate

voltage and level width parameterizations and pumping frequencies. When considering an

applied magnetic field, we also calculate the average spin transferred between reservoirs

for each parameterization and frequency.
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CHAPTER TWO:
BACKGROUND THEORY

In this Chapter, we provide a brief overview of the construction of a lateral quantum dot,

followed by an electrostatic treatment of charging energy. The Coulomb blockade is then

discussed in relation to electron transport through a quantum dot system, and finally,

the Zeeman effect and its proposed role in spin selection processes is presented.

2.1 Lateral Quantum Dot Construction

As a general description, quantum dots spatially confine electrons to zero dimensions [38].

Here, “zero dimensional” is not meant to be taken in a strict mathematical sense; rather,

regions on the order of an electron’s Fermi wavelength

λF =
h

pF
(2.1)

are sufficiently small to allow for quantization of energy levels inside the confining poten-

tial, and may be considered low dimensional. This may be physically achieved by first

creating a 2DEG at the interface of an AlGaAs-GaAs heterojunction, then strategically

depositing conducting strips on the substrate surface. Applying voltage to these contacts

acts to create a potential barrier in the 2DEG directly underneath, so that electrons are

unable to move freely across the effective barriers. A potential well may be formed by

isolating a small region of the 2DEG with such leads. Figure 2.1 shows an SEM image
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of two dots in series, and a schematic representation of a parallel double quantum dot

structure is given in Fig. 2.2.

SEM image of two quantum dots in series. Image courtesy of Albert Chang, Duke University.

Figure 2.1: SEM Image of Two Dots in Series

The unconfined 2DEG surrounding the dot, referred to as the “reservoir”, contains

electron states populated according to

f(ε) =
1

e(ε−µ)/kBT + 1
. (2.2)

The magnitude of the dot-reservoir coupling Γ may be decreased by decreasing the voltage

on the outermost conducting strips, pinching the electrons’ path from reservoir to dot.

To increase coupling, one increases the applied voltage. A gate voltage (Vg) is applied by

means of an additional contact directly over the isolated dot area. Vg uniformly adjusts

the chemical potential of the dot, thereby raising or lowering its discrete energy levels

without affecting level spacing. A charge current can be generated in the presence of a

source-drain bias solely by manipulation of Vg; in the absence of a bias it will also become

necessary to control the coupling of the dot to each reservoir (see Section 2.3).
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2.2 Charging Energy

The total electrostatic energy for a quantum dot system may be found using electrostatics,

starting from

U =
1

2
~QC−1 ~Q, (2.3)

in which the system is treated as N conductors with intercapacitances Cjk and stored

charge Qj. The schematic representation of a parallel DQD configuration in Fig. 2.2

labels the nodes between dot 1 and dot 2, dot 1(2) and left(right) reservoir, and dot 1(2)

and gate voltage source with the appropriate capacitance.

Consider node j, which has total charge Qj, total capacitance Cjj, and electrostatic

potential Vj:

Qj =
N∑
k=1

qjk

=
N∑
k=1

cjk(vj − vk). (2.4)

For the entire system, charge follows from

~Q = C~V . (2.5)

A more thorough derivation may be found in Appendix A. In the literature, one frequently

encounters double quantum dots (DQDs) in series configurations [39, 40, 41, 42, 43]. The

total energy expressions for parallel and series configurations are nearly identical, but we

make several critical distinctions:

• The coupling between dots in series is not just capacitive. It also carries a physical

conduction channel which allows tunneling between dots.

In the parallel configuration considered here, Cm does not represent a real channel,

but rather takes into account the electrostatic distortion of dot 1(2) due to the

7



Schematic diagram of quantum dots in parallel.

Figure 2.2: Parallel Double Quantum Dot Schematic
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addition or removal of an electron from dot 2(1). We have assumed that dots 1 and

2 are well shielded from each other so that the capacitance Cm is very small. There

are several studies addressing physically coupled parallel DQDs, however. These

provide interesting insights into cotunneling, Kondo phenomena, and “switching”

behavior. See, for example, [44, 45]).

• DQDs in series are often subjected to a source-drain bias to generate current. That

is, left and right reservoirs are held at different potentials so that transport is

preferred in one direction only.

Since the goal of this investigation is to create spin current with zero net charge

current, the chemical potential of the left and right reservoirs are set equal to each

other. For symmetric dots in equilibrium, this allows electrons to move in either

direction with equal probability.

• For a parallel configuration, both dots are coupled to both reservoirs, creating

two additional capacitances in the expression for charging energy. For the sake of

simplicity, the system is assumed to be symmetric, so that CL,1 = CR,1 = CR,2 =

CL,2 and Cg1 = Cg2 = Cg. In the case of the gate voltage-dot capacitances Cg1(2),

the potential Vg and the charge on the node are ideally so large that adding or

removing an electron from the dot does not change Cg appreciably.

Using Eqs. (2.3) to (2.5) and the results of Appendix A, the general expression for the

total electrostatic energy of the parallel DQD may be obtained:

U(N1, N2) =
1

2
N2

1Ec1 +
1

2
N2

2Ec2 +N1N2E
2
cm

− 1

|e|
[Cg1Vg1(N1Ec1 +N2Ecm) + Cg2Vg2(N1Ecm +N2Ec2)]

+ f(Vg1, Vg2), (2.6)

9



where f(Vg1, Vg2) represents “background” charges and potentials,

f(Vg1, Vg2) =
1

|e|2

[
1

2
C2
g1V

2
g1Ec1 +

1

2
C2
g2V

2
g2Ec2 + Cg1Vg1Cg2Vg2Ecm

]
. (2.7)

The charging (or addition) energy Ec1(2) is the energy required to add an electron to the

dot,

Ec1(2) = e2 C1(2)

C1C2 − C2
m

, (2.8)

where C1(2) represents the total capacitance of dot 1(2), C1(2) = CL1(2) +CR1(2) +Cg1(2) +

Cm. Charging energy is very similar in definition to the electrochemical potential of the

dot, which is the energy required to add an electron to dot 1(2) while taking into account

the electrons on dot 2(1). This amounts to the difference in electrostatic energy when

adding or removing an electron from the system,

µ1(N1, N2) = U(N1 + 1, N2)− U(N1, N2) (2.9)

µ2(N1, N2) = U(N1, N2 + 1)− U(N1, N2). (2.10)

Equation (2.8) may be obtained by finding the change in electrochemical potential when

adding an electron to dot 1(2),

Ec1 = µ1(N1 + 1, N2)− µ1(N1, N2) (2.11)

Ec2 = µ2(N1, N2 + 1)− µ2(N1, N2). (2.12)

Finally, Ecm is the electrostatic coupling energy of the dots,

Ecm = e2 Cm
C1C2 − C2

m

. (2.13)

In parallel DQDs, Ecm represents the magnitude of the electrostatic distortion of dot 1(2)

due to electrons on dot 2(1). Quantization may be accounted for by including discrete

energy levels in the expression for the electrochemical potential of the dots. For example,

10



the electrochemical potential for adding an electron to level n in the dot is

µi,n = µi + εn. (2.14)

Hence the expression for charging energy, Eq. (2.8), is adjusted by the amount ∆ε, which

is the level spacing of the dot.

Ec1 = µ1,m(N1 + 1, N2)− µ1,n(N1, N2)

= µ1(N1 + 1, N2)− µ1(N1, N2) + εm − εn

= Ec1,class + ∆ε. (2.15)

It is reasonable to treat dots as no more than tiny systems of conductors, as is shown

here, providing that the system remains in a regime which may be characterized by the

Constant Interaction (CI) model [46]:

• In the CI model, electron interactions are characterized by a constant capacitance

C, which is the sum of all of the system capacitances. Electron interactions are

limited to charging, although in the case of very small dots, exchange energy may

be taken into account by adding a term to describe spontaneous spin polarization

[47]. Tunneling in and out of the dot is typically assumed sequential and incoherent.

• Interactions which cannot be adequately described as electrostatic charging, par-

ticularly in the presence of coherent tunneling, are not included in the CI model.

Cotunneling, correlation effects within the QD, the Kondo effect etc. can be min-

imized by allowing only small magnetic fields, negligibly small reservoir bias, and

weak dot-reservoir coupling. In addition, these effects tend to be more significant

for very small QDs.

Because the dots’ physical dimensions are only large enough to accommodate a few elec-

trons, N1 and N2 must be small integer numbers. Hence, the discrete nature of charging

becomes very apparent and important.
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2.3 Coulomb Blockade

Electron transport between dot and reservoir is naturally suppressed. This is in part due

to the confining potential gates, but even more importantly, by the mismatch between

the chemical potentials of the reservoir and the dot. To maximize transmission, the Fermi

level of the reservoir must equal change in the dot chemical potential due to the addition of

an electron. A change in the dot’s chemical potential can be achieved by adjusting Vg. For

instance, to increase conductance, Vg is adjusted to suppress the dot’s chemical potential

beyond the requisite addition energy for the (N + 1)th electron, effectively aligning the

available (n + 1)th dot energy level with the reservoir’s Fermi level. At this point there

is no charging energy penalty for an electron to move between dot and reservoir, and

the conductance peaks [48]. This conduction-suppression behavior is known as Coulomb

blockade.

The voltages for which the peaks occur are found by setting Eq. (2.6) equal to itself

for N and N + 1 electrons. As an example, consider a one-dot system:

U(N) = U(N + 1)

eNVg +
e2N2

2C
= e(N + 1)Vg +

e2(N + 1)2

2C
. (2.16)

Rearranging Eq. (2.16) gives

Vg =
−e
C

(N + 1/2). (2.17)

Coulomb blockade oscillations occur any time the charging energy of a system is greater

than its thermal energy; that is, U(N1, N2, . . . , Nn) >> kBT [38, 49]. However, conduc-

tance peaks are most readily observed when certain conditions are met:

• Thermal fluctuations must be smaller than both charging energy and level spacing,

kBT < ∆ε, Ec.
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• Dots are weakly coupled to the reservoirs, so that electrons are well confined to the

dot, Γ� ∆ε. When dot-reservoir coupling is large, conductance peaks may become

so broad as to be indistinguishable; in addition, other phenomena become important

when considering electron transport, especially in the presence of a magnetic field

[50, 51, 52].

The last condition is particularly important since delocalization contributes to the for-

mation of coherent and correlated electronic states in what is known as the Kondo effect

[53, 54, 55]. It should be noted that the CI model is invalid when describing situations

where correlations develop, so that charging energy effects are insufficient to describe

electron transport. More specifically, correlation effects appear when T approaches the

Kondo temperature [54],

TK =

√
ΓU

2
exp

[
πε0(ε0 + U)

ΓU

]
. (2.18)

In this investigation we will assume that T � TK by choosing Γ sufficiently small and

T sufficiently large. This strategy can be also used in real experiments in order to avoid

strong correlation effects.

When the Coulomb blockade resonant condition is met, the charging energy cost of

adding or removing an electron from the dot is exactly compensated by an external

gate voltage, and the dot and reservoir electrochemical potentials become aligned. As a

result, the transmission probability approaches a maximum, allowing electrons to move

almost freely across the dot, except at the tunneling contacts. In this case, the charging

energy can be discarded and a single-level approximation can be used. The transmission

probability may be found by treating the dot as a double barrier system and using a

standard single-particle scattering matrix formulation [56, 49]. Conductance depends on

partial level widths Γ1 and Γ2, which in turn depend on the density of states in the

reservoirs and the tunneling amplitude tj of the “incident” or “outgoing” electron, as
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given by the Fermi golden rule

Γj = 2π ν |tj|2. (2.19)

The amplitude tj is difficult to estimate without a detailed knowledge of the potential

barriers. In addition, since tj can be tuned at will in most devices, one adopts Γ1 and

Γ2 as variable phenomenological parameters. For most setups, they vary in the range of

tens to hundreds of µV.

From the 2DEG density, one can estimate the number of electrons a dot can typically

hold: For a small dot of 100 nm in diameter, a brief calculation yields N ∼ 10 when the

2DEG density is 1011 cm−2.

2.3.1 Stability Diagrams

A number of DQD system properties may be visualized with the use of stability diagrams

in which the equilibrium charge states are shown with respect to the gate voltages.

In order to do so, let the pair (N1, N2) represent a state with N1 electrons in dot 1

and N2 electrons in dot 2. For instance, in a two-dot system, where each dot has only

one single-particle energy eigenstate, N1(2) can only take the values 0 or 1. Figure 2.3

shows the four possible system configurations in this case: (0, 0), in which both dots are

empty; (1, 0), in which dot 1 contains 1 electron and dot 2 is empty; (0, 1), where dot 1

is empty and dot 2 has one electron; and (1, 1), in which both dots contain one electron.
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The possible configurations of a two-dot system with one available level each.

Figure 2.3: Possible Configurations for a Two-Dot System

For a given set of gate voltages, the equilibrium charge state may be found analytically

by minimizing Eq. (2.6) with respect to the electron numbers. To generate a stability

diagram, the equilibrium charge state is found for a range of gate voltages, then plotted

in the Vg1-Vg2 phase space, as shown in Figs. 2.4 to 2.6.
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Stability diagram for a DQD system showing up to two electrons per dot. When Cm is very
small, the dots behave independently. Notice the four-fold degenerate corners.

Figure 2.4: Stability Diagram for a DQD when Cm = 0
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Small but non-negligible interdot coupling, 0 < Cm/C < 1, causes the regions to distort into
hexagons. The distance separating the triple points where three regions meet is Ecm and
therefore increases with Cm.

Figure 2.5: Stability Diagram for a DQD when Cm = 0.01Cg
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When the interdot coupling becomes very large, Cm/C ' 1, the regions become maximally
distorted as Ec approaches ∆E.

Figure 2.6: Stability Diagram for a DQD when Cm = 0.1Cg

The regions become distorted for nonzero interdot coupling, going from rhombic to

hexagonal, and earning the stability diagrams the alternate title of “honeycomb dia-

grams”.

For dots in series, conductance resonances occur at triple points in the diagram [39],

i.e. an electron may traverse two or more dots in series without penalty. Dots in par-

allel do not have this constraint, since each dot is connected to each reservoir and is

not dependent on the other to provide an available channel for electrons. In this case,

conductance peaks occur at all cell boundaries, except those between equal net charge

regions (for example, (1,0) and (0,1)). See Fig. 2.7.
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Conductance peaks occur at the boundaries of equilibrium charge regions. The path traced in
(a) corresponds to the conductance line in (b).

Figure 2.7: Position of Conductance Peaks in Phase Space
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The height of the equilibrium charge region may be used to find the distance between conduc-
tance peaks in dot 2 and the width gives the distance between conductance peaks in dot 1.
The separation distance of the triple points is conveniently given by the electrostatic coupling
energy Ecm, which is in turn the shift in conductance peak position due to interdot coupling.

Figure 2.8: Meaning of the Dimensions of Stability Diagram Cells

Some additional useful features of the stability diagram are illustrated in Fig. 2.8.

For nonzero interdot coupling, the corner points (as in Fig. 2.4) of an uncoupled system

become edges of length Ecm, where the width and height of the line with respect to Vg1(2)

corresponds to a shift in the conductance peak due to interdot coupling (∆V m
g1(2)). The

total width and height of the cell still correspond to the spacing between conductance

peaks with respect to Vg1 and Vg2:

∆V m
g = ∆Vg

Cm
C

= |e| Cm
CgC

(2.20)

∆Vg =
|e|
Cg

(2.21)
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2.4 Zeeman Effect

A symmetric two-dimensional parabolic potential well provides a very simple, commonly

used representation of small quantum dots (see, for example, [57]). Solutions to this

model have degenerate energy levels and an electron orbital structure. In symmetric

dots (generally speaking, vertical quantum dots), electrons of opposite spin will share

the same energy level unless the exchange energy is larger than the level spacing, in

which case consecutive electrons will occupy different orbital levels maintaining the same

spin polarization, similarly to Hund’s rules in atomic physics [58]. Level filling in (less

symmetric) lateral dots is not spin independent, but does follow some spin-dependent

filling scheme [59]. Any existing spin degeneracy can be lifted via an external magnetic

field through the Zeeman effect. The spin-degenerate energy levels will split according to

the familiar formula

∆EZ = |g|µBB, (2.22)

where the bare Landé gyromagnetic (g) factor for GaAs is g = −0.44 [40]. In large, high-

density dots, it is possible to enhance the spin-orbit coupling by compressing transversally

the 2DEG with a strong in-plane magnetic field [60]. This effect, combined with meso-

scopic fluctuations in the dot, can renormalize the g factor. Since our focus is on small

dots and low densities, we will neglect this effect and adopt the bare value for g.

In addition, to keep our results applicable to the real world we must impose further

constraints on the system:

• If we want to use a fairly weak field, we must use a dot with several if not tens of

electrons. Very small dots exhibit a richer energy spectrum: level spacing fluctuates

greatly and tends to bunches up in a shell structure, so that the spacing varies

substantially from N = 2 to N = 3, from N = 6 to N = 7, etc [58]. In addition,

correlation effects are more pronounced.
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• Large perpendicular fields give rise to level crossing and eventually to Landau levels,

so that the chemical potential of the dot “zigzags” [52]. Correlation effects become

important in this case as well, making the CI model invalid.

Thus, we will assume that the dot holds in the range of tens of electrons and that the

Zeeman field is applied parallel to the 2DEG, to avoid any coupling to orbital degrees of

freedom.

2.5 Chapter Summary

This chapter reviewed the construction and basic physical principles of lateral quantum

dots.

A 2DEG is created using GaAs heterojunctions. Strips of conducting material are

deposited on top of the structure in a specific pattern. Voltage is applied to the strips,

creating a potential barrier in the 2DEG directly underneath, forming the “dot”.

The CI model adequately describes electron transport across a quantum dot, provided

that there is small or no reservoir bias, dot-reservoir coupling is small, any applied mag-

netic field is weak, and the temperature is sufficiently larger than the Kondo temperature.

Expressions for charging, addition, and total electrostatic energy were found for systems

meeting these conditions. For cases when the level spacing in the dot is on the order of

the charging energy, the expressions must be modified to account for quantization.

The Coulomb blockade was discussed as an important consequence of discretization

in the dot, as well as the conditions for which conductance oscillations are most readily

observed. Stability diagrams, which show equilibrium charge states in the gate voltage

phase space, were introduced as a tool for visual inspection of the system.

Finally, the Zeeman effect was reviewed to address the issue of level filling and level

degeneracy in quantum dots.
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CHAPTER THREE:
THE RATE EQUATION METHOD

Chapter 2 described mostly classical, time-independent phenomena. This chapter will

focus on dynamic behavior and the quantum mechanical description of the system. First,

the Hamiltonian of the system will be discussed, breaking the total system into dot and

reservoir subsystems, and defining an interaction Hamiltonian. In the limit of weak dot-

reservoir coupling, the interaction term may be treated as a perturbation, allowing the

calculation of electron transition rates using Fermi’s golden rule. The time evolution of

the state of the dot is then described probabilistically using rate equations. The notation

is explained for clarity, and a one-dot, one-reservoir system illustrates the usefulness of

the rate equations. Finally, expressions for current and conductance through a quantum

dot are derived, then applied to the one-dot example.

3.1 The Hamiltonian

The entire DQD system may be divided into two basic subsystems, that of the dots and

that of the reservoirs. Events in both subsystems consist of adding or removing electrons,

so the Hamiltonian for each may be conveniently expressed in terms of creation and

annihilation operators.

Recall that the reservoir is a 2DEG with a density of states ν. The energy of free

electrons in a GaAs 2DEG is assumed spin independent and may be written as

ξk =
~2k2

2m∗
, (3.1)
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where k is linear momentum and m∗ is effective band mass. The reservoir Hamiltonian

can thus be written

HR =
∑
r=R,L

∑
σ=↑,↓

∑
k

ξk ĉ
†
r;kσ ĉr;kσ. (3.2)

Summation occurs over both reservoirs (denoted by reservoir index r), linear momentum

k, and spin σ. Here, ĉ†r;kσ and ĉr;kσ represent the creation and annihilation operators,

respectively.

The Hamiltonian for the dots may be similarly expressed. For simplicity, electrons will

be considered non-interacting particles inside a well with single-particle states {ψp} asso-

ciated to energies {εp}. Electron-electron interaction is accounted for with the addition

of the dot electrostatic energy U . For two identical dots,

HD =
∑
q=1,2

∑
p

εp â
†
q,pâq,p + U(N̂1, N̂2), (3.3)

where N̂q =
∑

p â
†
q,pâq,p counts the electrons in dot q. This expression is very general,

and allows the index p to account for both orbital and spin degrees of freedom.

The interaction Hamiltonian is expressed in the combined subspaces of the dots and

the reservoirs,

HI =
∑
r=R,L

∑
q=1,2

∑
k,σ

∑
p

Tr,q
k,p

(
ĉ†r;kσâq,p + â†q,pĉr;k,σ

)
. (3.4)

To continue operating under the assumptions made in Chapter 2, it will be assumed that

dot-reservoir coupling is very weak. Here, the magnitude of the interaction is governed

by the parameter Tr,q
k,p, which represents tunneling events’ transmission matrix elements

(refer to Section 2.3). In the present calculations, it will be assumed that the amplitude

of these parameters is independent of k, σ, and p. This is a combination of the so-called

wide-band approximation (a brief review of which was given in [61]), and the assumption

that states ψp do not differ substantially in their overlap with the states in the reservoirs.

Finally, the full Hamiltonian is found by combining Eqs. (3.3), (3.3), and (3.4) to
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obtain

H = HD +HR +HI . (3.5)

3.1.1 Transition Rates

It is possible to treat Eq. (3.4) as a perturbative term since the interaction Hamilto-

nian describes very weak dot-reservoir coupling. As such, transition rates for transport

between the subsystems may be found using Fermi’s golden rule,

Γi→f =
2π

~
|〈f |H̃I |i〉|2δ(Ei − Ef ). (3.6)

In Eq. (3.6), we define the initial state |i〉 and the final state of the system as |f〉. The

Hamiltonian used is the interaction Hamiltonian transformed into the interaction picture,

H̃I = e
it
~ (HD+HR)HIe

−it
~ (HD+HR) (3.7)

Its effect is to translate one electron from(to) the reservoir to(from) the dot. In coherent

transport, the transformation would also lead to a phase shift for transmitted electrons,

but we are only considering incoherent, sequential transport. The matrix elements are

evaluated by substituting in the Hamiltonians from Eqs.(3.3), (3.4), and (3.2):

〈f |e
it
~ (HD+HR)HIe

−it
~ (HD+HR)|i〉 = Tr,q

k,pe
it
~ (Ef−Ei). (3.8)

From Eqs. (3.2) and (3.3), the initial and final energies are expressed in terms of the

electrostatic energy, level energy εp, and reservoir energy ξk,

Ef − Ei = εp,f − εp,i + U(N1,f , N2,f )− U(N1,i, N2,i) + ξk,f − ξk,i. (3.9)

In Eq. (3.9), we may assume that ξk,f - ξk,i ' 0, and drop the last term. The expression

is further simplified by referring to Eq. (2.15), and substituting in charging energy Ec

for the remaining terms.
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Finally, Eqs. (3.8) and (3.9) can be used in Eq. (3.6) to find

Γrq(E) =
2π

~
∑
p

|Tr,q
k,p|

2δ(E − Ec). (3.10)

In the wide band approximation, the transmission matrix elements Tr,q
k,p can be taken as

independent of energy level.

3.2 Rate Equations

In equilibrium, the distribution of state probabilities for a QD system may be found using

statistical mechanics. However, when describing system dynamics, it is necessary to use

a non-equilibrium approach. Electron dynamics in quantum dot systems is commonly

described using rate equations (otherwise known as master equations), which are valid

provided that Γrq is smaller than the relaxation rate of confined electrons 1/τd, dot level

spacing, and interaction energy [62]. Here, τd is the average dwell time of an electron in

the dot. The equations do not describe ballistic electron transport; rather, solutions are

probability distributions of dot states.

In this Section, the general form of the rate equations is introduced. In order to dispel

confusion over notation, and to provide a meaning for each term in the equation, this

general form will then be used to find the set of equations for a single dot. A variety

of simple dot configurations have been explored elsewhere in the literature (for example,

[63, 64]), so it is not necessary to include a derivation here. However, in the interest of

completeness, a density matrix based approach has been included as Appendix B.1.

The static nonequilibrium probability distribution of dot states can be found from
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stationary solutions of the rate equations [48]:

∂

∂t
P ({ni}) = −

∑
p

P ({ni})δnp,0[Γlpf(Ei,l(N)− EF ) + Γrpf(Ei,r(N)− EF )]

−
∑
p

P ({ni})δnp,1{Γlp[1− f(Ei,l(N)− EF )] + Γrp[1− f(Ei,r(N)− EF )]}

+
∑
p

P ({(n1, ..., np−1, 1, np+1, ...})δnp,0

×{Γlp[1− f(Ei,l(N + 1)− EF )] + Γrp[1− f(Ei,r(N + 1)− EF )]}

+
∑
p

P ({(n1, ..., np−1, 0, np+1, ...})δnp,1

×[Γlpf(Ei,l(N − 1)− EF ) + Γrpf(Ei,r(N − 1)− EF )]. (3.11)

Despite its obtuse notation, Eq. (3.11) can be understood heuristically by examining

each term. On the left-hand side, we wish to find the rate of change of the probability of

state ({ni}). ({ni}) translates readily to the notation of Sections 2.3.1 and 3.1: ni is the

number of electrons occupying energy level i = 0, 1, ..., p in the dot, and may take values

0 or 1. On the right hand side, the rate is equal to the total probability that other states

will evolve into ({ni}), minus the total probability that ({ni}) will evolve into a different

state.

In its most basic formulation, the odds of such an evolution depends on the existence

of an electron (or empty level) in the reservoir which satisfies the condition for resonant

tunneling. The probability that state k in reservoir r, with energy ξk, is occupied is just

the Fermi function,

f(ξk) =
1

eβξk + 1
. (3.12)

It follows then that the probability that level k is unoccupied is 1− f(ξk).

This must be multiplied by the probability that a state in the dot exists and is able to

accept (donate) the electron in question. Hence, the evolution of the system into P ({ni})

is given by the sum of the probabilities of all states ({(n1, ..., np−1, 1, np+1, ...})δnp,0 and

({(n1, ..., np−1, 0, np+1, ...})δnp,1 which can gain (lose) one electron to become ({ni}), by

27



the probability that the appropriate electron (hole) is available in the reservoir, f(ξk)

(1− f(ξk)).

3.2.1 Example: A Single Dot

We apply the general form of the rate equations, Eq. (3.11), to the system of one dot

with two available energy levels and two reservoirs.

The possible transitions for a dot with two available energy levels. The arrows drawn between
dot configurations represent events where an electron is added to (removed from) the dot.

Figure 3.1: Possible Transitions for a Single Dot System

Figure 3.1 shows the possible first-order transitions for a dot with two available energy

levels. For instance, if the initial state is ({np}) = (0, 0), the dot may evolve into states

(1, 0) or (0, 1). This knowledge, combined with Eq. (3.11), is used to write the time

evolution of P (0, 0) as

∂

∂t
P (0, 0) = −P (0, 0)[Γl1f(Ei,l(0)− EF ) + Γr1f(Ei,r(0)− EF )

+Γl2f(Ei,l(0)− EF ) + Γr2f(Ei,r(0)− EF )]

+P (1, 0){Γl1[1− f(Ei,l(1)− EF )] + Γr1[1− f(Ei,r(1)− EF )]}

+P (0, 1){Γl2[1− f(Ei,l(1)− EF )] + Γr2[1− f(Ei,r(1)− EF )]}.(3.13)
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Equation (3.13) can be simplified since the wide band approximation (as mentioned in

Section 3.1) allows Γ to be independent of k, p, and σ, so that Γ
l(r)
2(1) = Γ

r(l)
1(2) = Γ.

Furthermore, the reservoirs are assumed to be symmetric, f(Ei,l(N)−EF ) = f(Ei,r(N)−

EF ). With these substitutions, Eq. (3.13) becomes

∂

∂t
P (0, 0) = −P (0, 0) 2Γ[f(Ei,l(0)− EF ) + f(Ei,r(0)− EF )

+P (1, 0) 2Γ[1− f(Ei,l(1)− EF )]

+P (0, 1) 2Γ[1− f(Ei,l(1)− EF )]. (3.14)

To solve Eq. (3.14), equations for P (1, 0), P (0, 1), and P (1, 1) must also be found:

∂

∂t
P (1, 0) = −P (1, 0) 2Γ[f(Ei(1)− EF )− (1− f(Ei(1)− EF ))

+P (0, 0) 2Γ[f(Ei(0)− EF )]

+P (1, 1) 2Γ[1− f(Ei(2)− EF )]. (3.15)

∂

∂t
P (0, 1) = −P (0, 1) 2Γ[f(Ei(1)− EF )− (1− f(Ei(1)− EF ))

+P (0, 0) 2Γ[f(Ei(0)− EF )]

+P (1, 1) 2Γ[1− f(Ei(2)− EF )]. (3.16)

∂

∂t
P (1, 1) = −P (1, 1) 2Γ[2− (f(Ei(2)− EF ) + f(Ei(2)− EF ))

+P (1, 0) 2Γ[f(Ei(1)− EF )]

+P (0, 1) 2Γ[f(Ei(1)− EF )]. (3.17)

The evolution of the system is almost completely characterized with these four, coupled,

homogeneous differential equations.

In Eqs. (3.14)-(3.17), ({ni}) may be equivalently written as (n1, n2, ..., np, ....). The

value of np may be either 1 or 0, where 1 indicates that level p is occupied, and 0
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indicates that level p is unoccupied. A system with multiple dots can be indexed as

({ni}) = ({ni}q=1)({ni}q=2)...({ni}q); hence for two dots, ({ni}) = ({ni}q=1)({ni}q=2).

When considering spin, we will let all odd p refer to spin down electrons, and all even

p refer to spin up electrons. Since no interdot or second order events are considered,

transitions like (1, 0) ↔ (0, 1) and (0, 0) ↔ (1, 1) do not appear in the set of equations

given by Eq. (3.11).

3.2.2 Solutions for Coupled Differential Equations

In the notation of Eq. (3.3), the total number of possible configurations for a given system

is 2s, where

s = γiq, (3.18)

q is the number of dots, i is the total number of levels per dot, and γ is the degeneracy

of the dot energy levels.

The rate equations for a system may be written as either a set of 2s coupled homo-

geneous differential equations, or, using the condition
∑
P ({ni}) = 1, 2s − 1 coupled

inhomogeneous differential equations. In theory, the equations may always be solved

analytically, but only in the case of extremely small systems with time-independent co-

efficients is this practical. For every additional degree of complexity of the system, the

number of coupled differential equations doubles, and the number of coefficients (constant

or otherwise) increases to the square of its previous value.

Overall, the biggest challenge presented in modeling QD systems did not concern

numerical integration, but rather the entry of 22s coefficients, some of which were time

dependent. However, the latter is not as informative, so the code which generated the

coefficient matrix is given in Appendix D.1, and the code which set up the system of

differential equations is given in Appendix D.2. The algorithms used by NDSolve (Math-

ematica’s numerical differential equation solving function) are presented as Appendix

A.2.
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3.3 Current

In describing current through a quantum dot, one must address the statistical nature of

transport. The current through the left dot-reservoir lead is expressed as [62]

Il = −e
∑
p

∑
{ni}

ΓlpP ({ni}){δnp,0f(Ei,l(N)− EF )− δnp,1[1− f(Ef,l(N)− EF )]}. (3.19)

Current through the right lead is written in a similar manner as Eq. (3.19), although

with the opposite sign and different subscripts.

We therefore adopt the convention (see Fig. 3.2) that contributions to left current

are positive for electrons entering the dot, and negative for electrons entering the left

reservoir; contributions to current through the right lead are positive for electrons leaving

the dot and entering the right reservoir and negative for electrons entering the dot from

the right.

Electrons entering the dot from the left reservoir constitute iL+, and electrons leaving the dot
for the left reservoir constitute iL−. The total current through the left lead, IL, is the sum of
iL+ and iL−. Similarly, positive contributions to the current through the right lead are given
by iR+, and negative contributions by iR−.

Figure 3.2: Current Direction Convention in a Quantum Dot
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The total current through one lead, as in Eq. (3.19), can be split into the sum of

positive and negative contributions, i.e.

il+ = −e
∑
p

∑
{ni}

ΓlpP ({ni}){δnp,0f(Ei,l(N)− EF ) (3.20)

il− = e
∑
p

∑
{ni}

ΓlpP ({ni})δnp,1[1− f(Ef,l(N)− EF )]}. (3.21)

Similar expressions can be found for current through the right lead.

Finally, the accumulated charge on the dot can be found by integrating the sum of

the right and left currents with respect to time:

Qnet =

∫
dt(IL + IR). (3.22)

At zero bias and for ΓL = ΓR, no charge should accumulate on the dot. If ΓL 6= ΓR, some

charge may accumulate temporarily, but for t→∞ the net charge should still be zero.

3.3.1 Example: Current for a Single Dot

The compact notation of Eq. (3.19) lends itself to confusion. For clarity, we continue the

example from Sec.3.2.1 of a single dot with two levels by writing expressions for current.

Using Eq. (3.20), the left current is given by the electrons moving into the dot,

iL+ = −e ΓL[2P (0, 0)f(Ei,l(0)− EF )

+P (1, 0)f(Ei,l(1)− EF ) + P (0, 1)f(Ei,l(1)− EF )], (3.23)

minus the contributions of electrons leaving the dot for the left reservoir,

iL− = −e ΓL[(P (1, 0)(1− f(Ef,l(1)− EF ))

+P (0, 1)(1− f(Ef,l(1)− EF )) + 2P (1, 1)(1− f(Ef,l(2)− EF ))]. (3.24)
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We have dropped the index p in ΓL since we are assuming (as is appropriate in the

wide band approximation) that transmission rate is independent of energy. The total left

current is then

IL = iL+ − iL− (3.25)

= −e ΓL[2P (0, 0)f(Ei,l(0)− EF )− 2P (1, 1)(1− f(Ef,l(2)− EF ))

+P (1, 0)[f(Ei,l(1)− EF )− (1− f(Ef,l(1)− EF )]

+P (0, 1)[f(Ei,l(1)− EF )− (1− f(Ef,l(1)− EF )]]. (3.26)

For the right current, iR+ contains the terms describing electrons moving from the dot

to the right reservoir, and iR− contains the terms for electrons leaving the right reservoir

and entering the dot. The final expression is

IR = iR+ − iR− (3.27)

= +e ΓR[2P (0, 0)f(Ei,r(0)− EF )− 2P (1, 1)(1− f(Ef,r(2)− EF ))

+P (1, 0)[f(Ei,r(1)− EF )− (1− f(Ef,r(1)− EF )]

+P (0, 1)[f(Ei,r(1)− EF )− (1− f(Ef,r(1)− EF )]]. (3.28)

3.4 Conductance

QD systems are frequently modeled as a macroscopic electronic circuits [39, 54, 65]. The

analogy is so ubiquitous that one would expect conductance to follow, as usual,

G = I/Vbias. (3.29)

While Eq. (3.29) does describe conductance for a QD system, it holds only in the limit

that Vbias → 0 (linear regime).
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Classically, electrons cannot traverse the dot-reservoir barrier, so junctions are mod-

eled as capacitors. Quantum mechanically, however, electrons can tunnel through the

barriers such that conductance across the dot is a function of the barrier potential. The

conductance may be calculated by starting with the Landauer formula [56],

G =
2e2

h
T(E). (3.30)

In Eq. (3.30), T(E) is the transmission function, expressible in terms of the number of

propagating modes of a contact M , and the average probability of transmission across the

contact T, or alternatively the trace over the transmission coefficient matrix as defined

in Eq. (3.4):

T(E) = MT(E) (3.31)

=
∑
p

∑
q

Tpq(E). (3.32)

In systems with multiple conducting channels, conductance between channels p and

q can be expressed as

Gpq =
2e2

h

∫
Tpq(E)

(
−∂f0

∂E

)
dE, (3.33)

where f0(E) is the equilibrium Fermi function.

At low temperatures, we note that −∂f0/∂E ' δ(EF − E), so that conductance is

Gpq =
2e2

h
Tpq(EF ). (3.34)

For finite temperature, when the resonance condition in Eq. (2.16) is met, Eq. (3.33)

is

Gpq =
2e2

h

∫
Tpq(E)

4kBT cosh2(EF−E
2kBT

)
dE, (3.35)

the familiar result for conductance found in the literature.
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In Section 3.1.1, it is shown that the transmission matrix elements are related to

the transition rates Γ. Working in the wide band approximation at finite temperature,

we allow Γ to be independent of energy, so that conductance near a Coulomb Blockade

resonance is

G =
Γ1Γ2

Γ1 + Γ2

1

4kBT cosh2
(

ε−µ
2kBT

) . (3.36)

The desired final form for conductance should account for non-coherent transport in

the linear regime across both dot-reservoir leads, including charge quantization and the

exclusion principle. A derivation may be found in part in [56], and in its entirety in

[61, 66]. The result is [48]

G(EF ) =
e2

kBT

∑
p

Γp1Γp2
Γp1 + Γp2

∑
N

Peq(N)Feq(Ep|N)[1− f(Ep + U(N)− U(N − 1)− EF )],

(3.37)

where

Peq(N) =
∑
{ni}

δN,∑i ni
(3.38)

and

Feq(Ep|N) =
1

Peq(N)

∑
{ni}

Peq({ni})δnp,1δN,
∑

i ni
. (3.39)

Finally, current can be calculated from by back substitution of Eq. (3.37) into Eq.

(3.29),

I =
e2Vbias
kBT

∑
p

Γp1Γp2
Γp1 + Γp2

∑
{ni}

Peq({ni})δnp,0f(Ep + U(N + 1)− U(N)− EF ), (3.40)

where we take the limit Vbias → 0.

3.5 Chapter Summary

This chapter reviewed the formulation of the rate equations, starting with the construc-

tion of the Hamiltonian for a dot-reservoir system. For weakly coupled dots, the interac-
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tion term in the Hamiltonian was be treated as a perturbation. Fermi’s golden rule was

subsequently used to calculate transition rates for electrons moving from dot to reservoir

(and vice versa).

Next, the rate equations were presented in compact notation and the individual terms

of the equations were examined. The rate equations were used to generate expressions

for the current and conductance of a quantum dot. As an instructive example, the rate

equations and expressions for current and conductance were applied to the system of a

single quantum dot with one reservoir.
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CHAPTER FOUR:
RESULTS AND DISCUSSION

In this Chapter, numerical simulations based on the theoretical framework of Chapters

1.2 and 2.5 will be presented in two parts. The first part explores stationary attributes

of the quantum dot systems, namely equilibrium probability distributions. The second

part is devoted to dynamical phenomena, and comprises the main result of this research.

4.1 Stationary Results

In this Section, numerical and analytical solutions of a test case are compared in order

to verify that the results are consistent. The next-most-complicated case of two coupled

dots with no applied magnetic field was analyzed in the same manner. The appearance

of a degenerate region between equivalent charge states indicates that the rate equations

do not completely describe the system. The phenomenon is also seen in a system which

has an applied magnetic field. Finally, conductance is calculated for both spin degenerate

and spin split systems then plotted in the gate voltage phase space.

4.1.1 Single Dots: A Test Case

Before approaching more complex systems, it was necessary to examine the validity of

the results obtained with the rate equation method and to establish a working regime.

A system composed of a single quantum dot with one available energy level and coupled
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to two reservoirs at zero bias provided a suitable test model, since its rate equations may

be solved analytically. Numerical and analytic results were then be compared in order to

determine the accuracy of the code.

Using the general form for the rate equations [Eq. (3.11)], and the initial conditions

P0(t = 0) = 1, P1(t = 0) = 0 (that is, the dot contains no electrons), analytic solutions

are

P0(t) = 1− f(E)
[
1− e−Γt

]
, (4.1)

P1(t) = f(E)
[
1− e−Γt

]
. (4.2)

A comparison of Eqs. (4.1) and (4.2) to numerically calculated data shows perfect agree-

ment (Fig. 4.1). The energy level of the dot was chosen somewhat arbitrarily, as were the

values for ΓL(R) and capacitances. The only criteria in choosing these values were those

dictated in Chapter 2; i.e., that charging energy is in the neighborhood of level spacing,

and that system temperature and ~Γ are much smaller.

The data obtained in this simulation (Fig. 4.1) reflects the equilibrium probabilities of

the system. To calculate each data point, the applied gate voltage and initial conditions

were specified, and integration of the rate equations occurred for a total time interval

much longer than the relaxation time of the system. Because of this, solutions do not

reflect the state of the system at any previous time. In this limit, the electrostatic

treatment of quantum dots (as given in Chapter 2) is perfectly valid.
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State probabilities for a single quantum dot with one available energy level, as functions of the
gate voltage. Solid lines represent analytical solutions [Eqs. (4.1), (4.2)], whereas numerical
data is represented by points. The blue line is the probability P0 (no electrons in the dot),
and purple represents the probability P1 (one electron in the dot). Here, gate voltage is swept
adiabatically such that the system is fully relaxed for each value of Vg. Scaling corresponds to
∆ε = 1 meV, Ec = 1.5 meV, kBT = 10−2 meV, and ~Γ = 5× 10−3 meV.

Figure 4.1: Stationary Probabilities for One Dot

The obtained probabilities can be used in calculating current and conductance for the

system via Eqs. (3.19) and (3.29) or (3.36). In equilibrium, with no applied bias, the left

and right currents should be equal and opposite, with a line shape identical to that of

conductance, which is shown in Fig. 4.2. In the limit T → 0, the conductance peak takes

the Breit Wigner (Lorentzian) form for resonant tunneling. Since we will not be working

in the thermodynamic limit, all of our calculations show thermal broadening.
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Conductance peak in the resonant tunneling regime. Scaling corresponds to ∆ε = 1 meV,
Ec = 1.5 meV, kBT = 10−2 meV, and ~Γ = 5× 10−3 meV.

.

Figure 4.2: Conductance Across One Dot

To evaluate the relaxation time, a small segment of code was inserted into the program

which halted numerical integration when the initial state probability (P0(t = 0) = 1)

became sufficiently small. The total number of time steps was returned, which was

translated as the transition time of the system.

This method is easy to use, and useful as a guide when constructing time-dependent

variables, but introduces some uncertainty in any subsequent calculations requiring the

solutions to the rate equations. The magnitude of the introduced error depends on the

given exit condition. For instance, accuracy to within 0.01% requires the program to

halt evaluation when the probability of the initial state reaches P0(t) = 0.0001. Further

calculations may be assumed to propagate this 0.01% uncertainty, in addition to any other

introduced uncertainties (for instance, those introduced by the numerical integration

algorithm- see Appendix A.2).
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4.1.2 Coupled Dots with One Degenerate Level Each

The equilibrium charge state probabilities, stationary current, and transition rates of a

system of two coupled dots in parallel with one available energy level each is explored in

this Section. This configuration provides the basis for the spin-split system considered in

the next Subsection. Here, it will be assumed that energy levels are singly occupied, so

that the spin degeneracy of the system does not lead to any Hund shell filling rules, and

that the spin of any given electron may be up or down with equal probability.

The four possible configurations for this system are shown in Fig. 2.3 and are detailed

in Sec. 2.3.1. The rate equations governing the non-equilibrium state probabilities are

nearly identical to Eqs.(3.14) - (3.17), since both interdot transitions and intradot transi-

tions are not considered; we only need to index two additional Γs to account for the two

additional leads. We also distinguish between the two dots by indexing the argument of

the Fermi function. As an example, Eq. (3.13) becomes

∂

∂t
P (0, 0) = −P (0, 0)[(Γl1 + Γr1)f(Ei

1(0)− EF ) + (Γl2 + Γr2)f(Ei
2(0)− EF )]

+P (1, 0){(Γl1 + Γr1)[1− f(Ei
1(1)− EF )])]}

+P (0, 1){(Γl2 + Γr2)[1− f(Ei
2(1)− EF )]]}, (4.3)

where Γ
l(r)
1(2) now indicates a transition between dot 1(2) and the left(right) reservoir.

Similarly, the subscript of E
i(f)
1(2) [given by Eq. (2.15)] denotes that dot 1(2) was involved

in an interaction with a reservoir. EF does not need an index as it is assumed that the

left and right reservoirs are held at the same chemical potential.

41



State probabilities for a double dot system where each dot has one available energy level.
Interdot coupling is zero. Vg1 lies on the horizontal axis, and Vg2 lies on the vertical axis.
Scaling corresponds to ∆ε = 1.2 meV, Ec = 1.25 meV, kBT = 10−2 meV, and ~Γ = 5 × 10−3

meV.

Figure 4.3: Stationary Probabilities for a DQD when Cm = 0

Solutions to this system were found numerically. Figures 4.3, 4.4, and 4.5 show

stationary solutions to the rate equations when the interdot coupling is negligible, small,

and relatively large, respectively.

42



State probabilities for a double dot system where each dot has one available energy level.
Interdot coupling is small but not negligible, Cm = 0.01. Vg1 lies on the horizontal axis, and Vg2
lies on the vertical axis. Scaling corresponds to ∆ε = 1.2 meV, Ec = 1.237 meV, kBT = 10−2

meV, and ~Γ = 5× 10−3 meV.

Figure 4.4: Stationary Probabilities for a DQD when Cm = 0.01Cg
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State probabilities for a double dot system where each dot has one available energy level.
Interdot coupling is relatively large, Cm = 0.1Cg. Vg1 lies on the horizontal axis, and Vg2 lies
on the vertical axis. The small rhombic region shared by P(1,0) and P(0,1) corresponds to
probability 1/2 for both configurations. Scaling corresponds to ∆ε = 1.2 meV, Ec = 1.146
meV, kBT = 10−2 meV, and ~Γ = 5× 10−3 meV.

Figure 4.5: Stationary Probabilities for a DQD when Cm = 0.1Cg
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The stability diagram for coupled dots with one available energy level each. The boundary
between the equal charge regions (1,0) and (0,1) lies along the line Vg1 = Vg2 for symmetric
dots. Shown in magenta is the general path in phase space used in investigating hysteretic
behavior in coupled dots (Figs. 4.7a and 4.7b), Vg1 = −Vg2 + const.

Figure 4.6: Stability Diagram for Coupled Dots with One Level Each

Degenerate Regions

In Figures 4.5 and 4.4, there exists a small rhombic region where the probabilities of

equal charge states overlap in phase space. For time intervals outside the relaxation

time of the system (in other words, in the adiabatic regime), the rate equations do

not completely determine the state of the system, and the equal charge configurations

are equally probable for gate voltages corresponding to those in the degenerate region.

When gate voltage is varied at a rate ∆t−1 = τ−1
d , the system’s memory allows one state to

remain dominant even in the vicinity of Vg1 = Vg2. The boundaries of the overlap area can

be found by extending the lines U(1, 1) = U(1, 0), U(1, 1) = U(0, 1), U(1, 0) = U(0, 0),

and U(0, 1) = U(0, 0) past Vg1 = Vg2 (see Figs. 2.8 and 4.6).
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In this region, the total energy of the dots is the same. For systems which allow

interdot tunneling, the area represents the set of gate voltages for which an electron

is delocalized over both dots. This phenomena can be explored as a mechanism for

“switching” behavior in dots, since the size of the region can be externally controlled by

adjusting the gate voltages.

The hysteretic behavior of the dots is investigated here pumping back and forth along

the line Vg2(t) = −Vg1(t) + const. for a variety of time step sizes. Coarse graining is used

when deriving the rate equations, where it is assumed that the dwell time of electrons on a

dot, τd, follows τd & Γ−1, and that the confining potential varies slowly. The rate equation

method can be expected to break down when the rate of change of the gate voltage, ∆t−1,

is comparable to Γ. Results are plotted in Figs. 4.7a and 4.7b. The limitations of the

model are immediately apparent, with the transition from P (10)→ P (01) sharply defined

when ∆t−1 << Γ. The calculated probabilities appear to have some memory as (∆tΓ)−1

increases, indicating a breakdown of the rate equation method as it is employed here.

In this context, the calculated probabilities should not be taken as reliable indicators

of the system configuration during a single cycle, but could be interpreted as the mean

probability over the course of several cycles, as long as ∆t ∼ τd. Systems with fast-

varying coefficients are perhaps better treated using a non-equilibrium Green’s function

approach, such as the Keldysh or Kubo formalisms.

The presence of the degenerate region in the adiabatic limit presents problems when

trying to determine the best set of parameters for charge and spin pumping. More

complex systems have even more overlapping equal probability regions, and show the

same hysteretic behavior. The effect does not seem to be merely an artifact of the rate

equation method but is rather due to the discrete nature of the system; the lines simply

correspond to where levels (1,0) and (0,1) are in resonance with the reservoir Fermi levels.

Similar constructs appear in Coulomb blockade “diamonds“ for systems under bias (see,

among many others, Ref. [67]). The hysteretic nature of charging also seems to manifest

in electron transport in large arrays of QDs [68], and could possibly provide an explanation
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(a) Hysteresis for P(0,1)

(b) Hysteresis for P(1,0)

(a) Probability for state (0,1), plotted with respect to Vg1, where Vg1 = −Vg2. (b) Probability
for state (1,0), plotted with respect to Vg1, where Vg1 = −Vg2 + constant. The arrows indicate
the direction of increasing time. Scaling corresponds to ∆ε = 1.2 meV, Ec = 1.237 meV,
kBT = 10−2 meV, and ~Γ = 5× 10−3 meV.

Figure 4.7: Switching Behavior in Parallel DQDs
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for discrepancies in charging behavior between systems with different numbers of dots,

as in Ref. [69].

Stationary Current Through Coupled Dots

Stationary current and conductance through each dot may be found in the same manner

as in Sec. 4.1.1. Since current must be calculated with respect to one node at a time,

there are four quantities to consider for two coupled dots: right and left current through

the top dot, and right and left current through the bottom dot. We will consider the

current through the left lead of the top dot.

Figure 4.8a shows the left current through the top dot when Cm = 0. The peak

occurs, as expected, when the resonance condition is met [Eq. (2.16)] and conductance

is maximized. In Fig. 4.8b, the normalized conductance (G/Gmax) for the top dot has

been plotted in the phase space of Vg1 and Vg2. So that we may qualitatively examine

the effects of thermal broadening, Figure 4.8a has been plotted for kBT = 10−2 meV,

whereas in Fig. 4.8b, values were calculated with kBT = 10−3 meV.
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(a) Current for Decoupled Dots

(b) Conductance for Decoupled Dots

(a) Stationary current through the left lead of the top dot when Cm = 0, plotted as a function of
Vg1. Here, Vg2=0.8 mV is held constant, and kBT = 10−2 meV. (b) Conductance as calculated
through the top dot when Cm = 0, plotted as a function of gate voltages. Here, kBT = 10−3

meV. Otherwise, scaling for both corresponds to ∆ε = 1.2 meV, Ec = 1.25 meV, and ~Γ =
5× 10−3 meV.

Figure 4.8: Current and Conductance in Decoupled Dots

Figure 4.9 shows the left current through the top dot when Cm is relatively large,

Cm = 0.1Cg. Current was calculated for a range of Vg1, while the gate voltage applied to
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the bottom dot was held constant at Vg2 = 0.91. This choice of parameters, which allows

the examination of current at the boundaries of the degenerate region, is represented by

the dashed magenta line in the inset. The slight asymmetry in the current peaks when

moving from (0,1) to the central region, as compared to the current when moving from

the degenerate region to (1,0), is the result of choosing a value for Vg2 which corresponds

to the equilibrium charge configuration (1, 0). In this case electrostatic distortion of dot

1 from dot 2 suppresses the conductance of the leads connected to dot 1, decreasing the

current. For comparison, the conductance when Cm = 0.1Cg, shown in the phase space of

Vg1 and Vg2 in Fig. 4.10, was calculated using Eq. (3.29). The conductance is highest at

the interfaces (0,0)→(1,0), and (0,1)→(1,1), with local maxima bordering the degenerate

region and states (1,0) and (0,1).We note that the dots are not directly coupled, so that

the transition from (0,1) to (1,0) does not represent an electron hopping between the

dots. Rather, this result could be interpreted as the current due to cotunneling, in which

one dot is evacuated as the other dot simultaneously gains an electron, thus accounting

for the difference in the magnitude of the currents in Figs.4.8a and 4.9.

Stationary left current through the top dot when Cm = 0.1Cg, plotted as a function of gate
voltage Vg1. The gate voltage of the bottom dot, Vg2, has been held constant at Vg2 = 0.91
mV, in order to examine current at the boundaries of the degenerate region, as shown in the
inset. The dashed gray lines represent the boundaries of the degenerate regions. The dashed
blue line indicates the the path in phase space of the gate voltages used to calculate stationary
left current. Scaling corresponds to ∆ε = 1.2 meV, Ec = 1.146 meV, kBT = 10−2 meV, and
~Γ = 5× 10−3 meV.

Figure 4.9: Stationary Current for Coupled Dots
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Conductance for the top dot with Cm = 0.1Cg, expanded to show features across the degenerate
region. Values are found in the stationary regime. Scaling corresponds to ∆ε = 1.2 meV,
Ec = 1.146 meV, kBT = 10−2 meV, and ~Γ = 5× 10−3 meV.

Figure 4.10: Conductance for Coupled Quantum Dots

4.1.3 Coupled Dots with Spin Splitting

In Sec. 2.4, the Zeeman effect was introduced as a means of selecting the spin of electrons

tunneling into or out of a dot. When a magnetic field is applied in the plane of the 2DEG,

the degeneracy of the dot’s energy levels is broken, and the charging energy [Eq. (2.15)]

must be corrected with the Zeeman energy, ∆EZ = |g|µBB [Eq. (2.22)]. We wish to

have Γ < ∆EZ < ∆E, and using g = −0.44 for GaAs leads to values around ∆EZ ' 25

µeV per Tesla, so we restrict the magnitude of the applied magnetic field . The new

expression for charging energy reads

Ec = Ec,classical + (εm ±∆EZ)− (εn ±∆EZ). (4.4)

In Eq. (4.4), in addition to accounting for discrete energy levels, the charging energy also

includes a correction for spin splitting. Since we are working in the CI model, no further
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corrections are needed.

In a two dot system with two non-degenerate energy levels per dot, there are 16

possible system configurations. The indices previously used to indicate the number of

occupied levels per dot may also be used to denote the spin of the electrons. In this case,

there are four indices ({ni}), which will be written as (N1↓N1↑, N2↓N2↑). The first(last)

two indices give the number of spin down and spin up electrons in dot 1(2), respectively.

In Fig. 4.11, the probabilities in equilibrium are shown with respect to gate voltages

for four states, with small but non-negligible Cm (Cm = 0.01 Cg and ∆EZ = 0.05 meV.

As with the configuration of Sec. 4.1.2, in Fig. 4.11, degenerate regions form between

states with the same charging energy. A similar configuration exists for states (11,00),

(11,10), (10,10), and (10,00); those states with equivalent charge (but not necessarily

spin), i.e. (10,10), (10,01), (01,10), and (01,01), share a more complex area in phase space.

Geometrically, the boundaries of the region may be sketched as before, by extending the

boundaries of other state probability regions. In this limit, where the running time of the

code is very large, numerical solutions converge to classical probabilities.

Stationary Spin Current Through Coupled Dots

We consider the current through the left lead of the top dot in the presence of an applied

magnetic field, taking care to distinguish between the spins of the electrons. The current

may be written

IL1 = IL1↑ + IL1↓, (4.5)

with

IL1↑ = iL1↑+ + iL1↑− (4.6)

IL1↓ = iL1↓+ + iL1↓−, (4.7)

where the direction convention is the same as in Eqs.(3.24) and (3.23).
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Probabilities for a two-dot system with spin splitting in equilibrium. Dark blue indicates low
probability, whereas white or very light blue indicates high probability. States (00,11), (10,11),
(10,10), and (00,10) are shown here, where a diagram of the system configuration, similar
to those in Fig. 2.3, has been superimposed over each high-probability region The size of
the degenerate areas is determined by the strength of the in-plane magnetic field. Scaling
corresponds to ∆ε = 1.2 meV, Ec = 1.237 meV, kBT = 10−3 meV, ~Γ = 5 × 10−3 meV, and
∆EZ = 0.05 meV.

Figure 4.11: Stationary Probabilities for a DQD with Spin Splitting
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In the absence of a field, it is reasonable to assume IL1↑ = IL1↓, but in this case,

Zeeman splitting allows the spin of the electrons to be selected via the gate voltage.

In Fig. 4.12a, the normalized conductance of spin-down electrons in the left lead of

the top dot is plotted in the phase space of Vg1 and Vg2 where the interdot coupling is

Cm = 0.01Cg. Figures 4.12b- 4.12d show the normalized conductance of spin-up electrons

in the left lead of the top dot, and for spin-down and spin-up electrons in the left lead of

the bottom dot. Calculations have been made at lower temperature (kBT = 10−3 meV)

to show the features of the system more clearly.

4.2 Dynamic Results

In recent years, there has been a considerable amount of interest in using quantum dots

to generate charge or spin current (among others, [22, 70, 71, 72, 73, 74]). A number of

the proposals use open dots and a pulsed confining potential to move charge, and some

propose elaborate setups to generate spin currents [75, 76].

Given the results of Sec. 4.1.2, one might be tempted to increase the dot-lead coupling

in order to speed up the pumping cycle while holding the value of ∆tΓ constant. However,

doing so would necessarily decrease electron dwell time τd. When Γ ∼ τ−1
d , transport is no

longer dominated by sequential tunneling, current is not quantized, and coherent effects

become more important. A number of papers address just such systems [67, 77].

We will attempt to increase the net current through a dot at zero bias by param-

eterizing the magnitude of the dot-reservoir coupling in addition to the gate voltage.

Specifically, Γl and Γr can be varied out of phase with each other so that the lead favored

for electron tunneling alternates, while the choice of parameterization for gate voltage

depends on the particular configuration of the system and the desired outcome of the

pumping cycle.

In this Section, both charge and spin pumping will be explored in the semiclassical

approximation by simultaneously manipulating of dot-reservoir coupling constants and
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(a) Spin Down, Left Lead, Dot One (b) Spin Up, Left Lead, Dot One

(c) Spin Down, Left Lead, Dot Two (d) Spin Up, Left Lead, Dot Two

(a) The normalized conductance of spin-down electrons in the left lead of the top dot in the
region of (00,10), (00,11), (10,10), and (10,11) is plotted with respect to gate voltages, with
interdot coupling Cm = 0.01Cg. (b) Normalized conductance of spin-up electrons in left lead
of the top dot. (c) Normalized conductance of spin-down electrons in left lead of the bottom
dot. (d) Normalized conductance of spin-up electrons in left lead of the bottom dot. Scaling
corresponds to ∆ε = 1.2 meV, Ec = 1.237 meV, kBT = 10−3 meV, ~Γ = 5 × 10−3 meV, and
∆EZ = 0.05 meV.

Figure 4.12: Spin Resolved Conductance
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gate voltages. First, relationships between transition rates, dot-reservoir coupling Γ, and

the sweep rate of the gate voltages will be discussed. We will then take advantage of the

ability to externally control the coupling between each dot and reservoir to push electrons

in a specific direction, as opposed to the application of a reservoir bias. Finally, using

the stability diagram of the system as a guide, we will attempt to parameterize the gate

voltages in such a way that one complete cycle results in a zero net charge current while

generating a non-zero spin current.

4.2.1 Single Dots

A single dot may operate as an electron pump in the linear regime by parameterizing the

gate voltage and the dot-reservoir coupling coefficients, where the choice of parameteri-

zations directly influences the efficiency of the pump.

The frequency of the cycle may be determined by estimating the dwell time of an

electron on the dot using mean values for the dot-lead coupling coefficients and dot

electrostatic energy, assuming variations are small and occur relatively slowly. From Sec.

4.1.2, the pumping frequency should be smaller than the inverse dwell time of the electron

on the dot, or

ω <
1

τd
. (4.8)

Apart from maintaining a reasonably slow pumping frequency, the choice of parameter-

izations is arbitrary. Table 4.1 compares the average charge pumped per cycle, 〈Q〉, for

three different sets of parameterizations. Each case used the same pumping frequency

and the initial conditions P (0) = 1 and P (1) = 0, and each resulted in a different average

pumped charge per cycle. Current through either lead fluctuates over the course of one

cycle since the probability for each state takes a finite amount of time to evolve, although

the total charge moved per cycle generally remains constant. A poor choice of parameters

may actually inhibit the ability of the dot to pump electrons in the adiabatic limit; in Fig.

4.13 the average charge pumped per cycle is plotted with respect to pumping frequency
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Table 4.1: Comparison of the Charge Pumped for Various Parameterizations

ΓL(t) ΓR(t) Vg(t) 〈Q〉
(A) Γ + δΓ cos(ωt) Γ− δΓ cos(ωt) Vg + δVg cos(ωt) 0.249
(B) Γ + δΓ cos(ωt) Γ− δΓ cos(ωt) Vg + δVg sin(ωt) 0.296
(C) Γ + δΓsgn(cos(ωt)) Γ− δΓsgn(cos(ωt)) Vg + δVg sin(ωt) 0.344

For three different parameterizations of gate voltage and dot-lead coupling in a single quantum
dot, the average charge pumped per cycle for ω = 1.5 GHz, is calculated. The charge pumped
is also dependent on the rate at which voltage is varied; one may optimize the system for a
given parameterization by estimating the electron dwell time using root mean square values for
ΓR(t),ΓL(t), and Vg(t). Scaling corresponds to ∆ε = 1 meV, Ec = 1.5 meV, kBT = 10−2 meV,
and ~Γ = 5× 10−3 meV, with δΓ = 2× 10−3 meV/~.

for each of the three parameterizations shown in Table 4.1. In case A, represented by

the blue line, the average charge pumped per cycle is largest for large ω, indicating that

the current in this case is a non-equilibrium effect, and should be considered the result

of an effective dot-lead bias. A phase shift of π/2 in Vg(t) is more conducive to charge

transport (cases B and C, shown with the magenta and tan lines, respectively). In cases

B and C, we can compare the charge pumped per cycle with the function for Γ(t); the

square wave of C is slightly more conducive to transport than the sinusoidal wave of B.

We failed to pump integer numbers of electrons for any parameterization, and so

were unable to generate a quantized current. At higher frequencies, current is roughly

proportional to ω, but in the adiabatic limit the average charge pumped saturates for

sufficiently small frequencies; the particular value of 〈Q〉 is determined in part by the

choice of parameterizations. Realistically, thermal and shot noise prevent the generation

of quantized current even with the best of parameterizations [78, 79].
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Average charge pumped per cycle versus pumping frequency for the parameterizations in Table
4.1, with the blue line corresponding to case A, the purple line corresponding to case B, and
the tan line corresponding to case C. Scaling corresponds to ∆ε = 1 meV, Ec = 1.5 meV,
kBT = 10−2 meV, and ~Γ = 5× 10−3 meV, with δΓ = 2× 10−3 meV/~.

Figure 4.13: Charge Pumped Per Cycle for Various Parameterizations

With level degeneracy of a single dot broken by an in-plane magnetic field, it is possible

to generate a completely polarized spin current comparable to the charge current in the

degenerate case, where the spin polarization is

Pσ =
N↑ −N↓
N↑ +N↓

. (4.9)

We allow Vg(t) to oscillate about the energy required for the transition (0, 0) → (0, ↓),

V0 = ε↓ + U(1)− U(0). All electrons contributing to current have spin down, regardless

of the pumping frequency, when the variation δV is smaller than the Zeeman energy.

If δV > ∆ε, Vg(t) will periodically match the energy required for spin up electrons to

tunnel; in this case, the current will be completely polarized only for sufficiently small ω

(Fig. 4.14).
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Polarization of the current through the left (blue) and right (purple) leads of the single dot
when δV > ∆ε. When δV < ∆ε, current is completely polarized for any ω, Pσ = −1. Scaling
corresponds to ∆ε = 1 meV, Ec = 1.5 meV, kBT = 10−2 meV, and ~Γ = 5 × 10−3 meV, with
δΓ = 2× 10−3 meV/~.

Figure 4.14: Current Polarization Versus Pumping Frequency

Single Dot Spin Filter

The non-equilibrium behavior of the (↑, 0) and (0, ↓) states could be exploited by using

a single dot as a “spin turnstile, in a scaled down version of the DQD spin pump. To do

so, the parameterizations for Vg(t) and ΓL(R)(t) allow spin up electrons to move from left

to right, and spin down electrons to move from right to left (Fig. 4.15),

Vg(t) = V0 + δV (cos(2ωt− π/2) + sin(ωt+ π/4)) (4.10)

ΓL(t) = Γ0 − δΓsgn(cos(ωt+ π/4)) (4.11)

ΓR(t) = Γ0 + δΓsgn(cos(ωt+ π/4)). (4.12)

The change in angular momentum in each lead using these parameterizations is shown

in Fig. 4.16. Oppositely polarized currents of equal magnitude exist for sufficiently high
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frequency. The energy levels in the dot act as separate conduction channels, even while

working in the wide band approximation. The advantage to this approach is the relative

physical simplicity of the system; instead of four QPC and two gate voltage signals to

control, one must only parameterize the signals for two QPCs and one “plunger”. One

could alternatively allow multiple conduction channels in the leads for better control over

tunneling events. This would still require four parameterizations for Γl(r)(t), but is still

potentially useful when space is at a premium. Admittedly, the Markovian approximation

used in deriving the rate equations is inapplicable when describing “fast” events, but the

model can be interpreted as describing the statistical behavior of the system over the

course of many cycles.

One cycle of the proposed single dot spin pump.

Figure 4.15: Spin Turnstile Schematic
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The change in spin for each lead for a single dot spin filter, plotted with respect to pumping
frequency ω. For slower frequencies, the probability amplitudes of the states approach the
equilibrium distribution, which favors the lower energy (0, ↓) state over (↑, 0); consequently,
more spin down electrons contribute to current than spin up electrons. At higher frequencies,
the excited states are able to participate in transport, and spin up and spin down electrons are
pumped with roughly equal probability. Scaling corresponds to ∆ε = 1 meV, Ec = 1.5 meV,
kBT = 10−2 meV, ∆EZ = 0.05 meV, and ~Γ = 5× 10−3 meV.

Figure 4.16: Spin Transferred Between Leads for a Single Dot Turnstile

4.2.2 Double Dots

The easiest method of determining the bounds of the parameterizing functions is by visual

inspection of the stability diagram. An appropriate choice of gate voltages should result

in zero net charge current at the end of one complete cycle; when a magnetic field is

applied, a non-zero net spin current should also be generated. Any cycle resulting in

zero charge current would be centered at the intersection of four charge states in Vg1, Vg2

phase space, as illustrated in Fig. 4.17, although the only cycles capable of generating a

non-zero spin current lie off the main diagonal of Vg1 = Vg2.2 The direction of the spin

2For instance, consider path F in Fig. 4.17. Moving from state (00,00) to (01,00) adds one spin down
electron from the left lead to dot one. Moving to (01,01) adds one spin down electron to dot two. (00,01)
removes the electron from dot one, and returning to (00,00) removes the other spin down electron from
dot two. No matter what parameterization is chosen, no spin up electrons are involved in the pump
cycle; this would be acceptable if we were only looking to generate spin polarized current, but not if we
want pure spin current.
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current depends on the order of the Γ(t) pulses. We also impose that QPCs controlling

the dot-reservoir coupling should be pulsed such that only one lead is open at a time in

order to limit cotunneling events.

Each ellipse represents a parameterization for Vg1 and Vg2 which would result in zero net charge
transfer between the reservoirs over the course of one complete cycle. Path {ABCD} is the
general path used for numerical calculations, while path E represents a parameterization which
would result in a spin transfer opposite to that of {ABCD}. Path F would not transfer either
charge or spin between the reservoirs. The inset shows the equilibrium probability distribution
of the system in the region of path {ABCD}.

Figure 4.17: Possible Gate Voltage Parameterizations

Referring to Fig. 4.17, the points A, B, C, and D indicate where a transition occurs

in the system. The specific events are sketched in Fig. 4.18, showing the spin of the

electron being moved and the changes in both charge and spin for the reservoirs, for each

step.
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Events corresponding to points A, B, C and D in Fig. 4.17 are shown. For each transition, the
total change in charge and spin of each reservoirs is shown as ±e− and ±~/2.

Figure 4.18: Schematic of the Proposed Spin Pump Cycle

We first considered two single-level dots with very small electrostatic coupling, with

no magnetic field present. Gate voltages were parameterized to form an ellipse in Vg1−Vg2

phase space, following the general form

Vg1(t) = h+ a cos(ωt− π) cos(π/4)− b sin(ωt− π) sin(π/4) (4.13)

Vg2(t) = k + b sin(ωt− π) cos(π/4) + a cos(ωt− π) sin(π/4), (4.14)

where the additional phase of π is to ensure there are no immediate transitions from the

(0, 0) state. Variables a and b are the major and minor axes of the ellipse, respectively,

and (h, k) is the center of the ellipse. The leads were timed to coincide with conductance

maxima, taking the form

Γ(t) = Γ + δΓsgn(cos(ωt− t0)− 1/
√

2). (4.15)
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In Eq. (4.15), the value for t0 depends on where in the cycle the particular dot-reservoir

coupling should be increased, with t0,A < t0,B < t0,C < t0,D. The values for each t0 were

calculated numerically by substituting the gate voltages given by Eqs. (4.13-4.14) into

Eq. (2.15).

The average charge pumped per cycle by both dots, 〈Q〉 = 〈Q1〉+〈Q2〉, was calculated

for a range of frequencies and path eccentricities ε = 0.5 and ε = 0.9, and is shown in

Figure 4.19. Paths with larger eccentricity admit more charge per cycle than circular

paths, which can be attributed to the increased time spent in states (1, 1) and (0, 0),

which are less energetically stable than the degenerate (1, 0) and (0, 1) states. As be-

fore, the average charge pumped per cycle increases with decreasing pumping frequency.

When ω becomes too large or if the parameterizations for Γ(t) are poorly chosen, charge

accumulates on the dots and the system eventually saturates; after saturation no more

charge can be pumped unless the system is allowed to discharge.
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Average charge pumped per cycle is shown with respect to frequency. Each line corresponds to
a different path eccentricity: ε = 0.5 in plotted in blue, and 0.9 in purple. More eccentric paths
increase the total charge pumped, presumably since more time is spent in the less energetically
stable (0, 0) and (1, 1) states. Scaling corresponds to ∆ε = 1.2 meV, Ec = 1.237 meV, kBT =
10−2 meV, and ~Γ = 5 × 10−3 meV, with ~δΓ = 2 × 10−3 meV. Average charge is in units of
electrons.

Figure 4.19: Average Charge Pumped Per Cycle for Both Dots

The nondegenerate case is treated in a similar manner. It is useful to consider the

equilibrium probability distribution of states in Vg1 − Vg2 phase space (Fig. 4.11 and the

inset in Fig. 4.17), in addition to the stability diagram, since the equilibrium probability

distribution has several degenerate regions. These overlapping areas allow unwanted

states to contribute to current, especially for slow pumping frequencies, making the choice

of δVg and eccentricity especially important.
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The total charge transferred between reservoirs per cycle in the nondegenerate system, plotted
with respect to pumping frequency ω, for path eccentricities ε = 0.5 and 0.9, shown in blue
and purple respectively. At higher pump frequencies, the system is not allowed to fully relax,
allowing unwanted states to contribute to current. As before, the path with larger eccentricity
permits more time to be spent in the less stable (00,10) and (10,11) states, mitigating (though
not completely resolving) the problem of charge accumulation on the dots at higher frequencies.
Scaling corresponds to ∆ε = 1.2 meV, Ec = 1.237 meV, ∆EZ = 0.05 meV, kBT = 10−2 meV,
and ~Γ = 5× 10−3 meV, with ~δΓ = 2× 10−3 meV. Charge is in units of electrons.

Figure 4.20: Charge Pumped Per Cycle

In Figure 4.20, the charge pumped between reservoirs per cycle is plotted with respect

to pumping frequency for path eccentricities ε = 0.5 (blue line) and ε = 0.9 (purple line).

For sufficiently slow frequencies and well chosen Γ(t), charge does not accumulate on the

dot. Higher frequencies do not allow the states to relax, increasing the probability that

an electron will either become trapped in the dots or contribute to a small, non-zero

charge current. As in the nondegenerate case, the path with larger eccentricity permits

more time to be spent in the less stable (00,10) and (10,11) states, mitigating (though

not completely resolving) the problem of charge accumulation on the dots at higher

frequencies. We illustrate this further in Fig. 4.21 by plotting the charge accumulated on

dot 1 (dashed lines) and charge pumped by dot 1(solid lines) with respect to frequency,

for eccentricities ε = 0.5 (blue data) and 0.9 (purple data). Charge pumped was found
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by integrating the current through the right lead with respect to time over one cycle,

and charge accumulated was calculated using Eq. (3.22). For ε = 0.5, the accumulated

charge appears to overtake the pumped charge around ω = 22 GHz; here, we can infer

that the left lead has a larger current than the right lead, owing to the persistence of

state (10,10) when approaching the transition (10,11)→(00,11) and the suppression of

cotunneling events.

The charge pumped by and accumulated in dot 1 per cycle with respect to pumping frequency ω
for path eccentricities ε = 0.5 and 0.9 (blue and purple lines, respectively). At lower frequencies
there is no appreciable difference between the choice of parameterizations, though with increas-
ing ω, ε = 0.9 again appears to be the better choice. Solid lines show the charge pumped by
dot 1, and dashed lines show the charge accumulated on dot 1. Scaling corresponds to ∆ε = 1.2
meV, Ec = 1.237 meV, ∆EZ = 0.05 meV, kBT = 10−2 meV, and ~Γ = 5 × 10−3 meV, with
~δΓ = 2× 10−3 meV. Charge is in units of electrons.

Figure 4.21: Accumulated Charge Per Cycle
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The average change in angular momentum per cycle between the two reservoirs with respect
to pumping frequency ω, for ε = 0.5 (blue) and 0.9 (purple). Scaling corresponds to ∆ε = 1.2
meV, Ec = 1.237 meV, ∆EZ = 0.05 meV, kBT = 10−2 meV, and ~Γ = 5 × 10−3 meV, with
~δΓ = 2× 10−3 meV.

Figure 4.22: Change in Angular Momentum Per Cycle

In Figure 4.22, the average spin transferred from the left to the right reservoir per

cycle is shown with respect to pump frequency. The same mechanisms which prevent

quantized charge pumping in the degenerate system also prevent quantized spin pumping

here. At sufficiently slow frequencies, the differences in spin transferred arising from the

specific parameterization of Vg1(t) and Vg2(t) are resolved, with both resulting in about

0.56 ~ per cycle with zero charge transfer.

4.3 Chapter Summary

In this Chapter, the equilibrium probability distributions for single and double quantum

dot systems were obtained, and plotted in Vg1 − Vg2 phase space. First, the probabili-

ties, current and conductance for a single quantum dot with one available energy level

were calculated both analytically and numerically in the stationary regime to evaluate
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the accuracy of the numerical method used. The rate equations were then used to find

probabilities, current, and conductance for double quantum dot systems in the stationary

regime, with and without an applied magnetic field. A degenerate region between equiv-

alent charge states, created by overlapping probabilities, was found when the equilibrium

probability distribution was plotted in phase space. Conductance maxima were found to

lie along the boundaries of the states’ probabilities, not just the regions indicated in the

stability diagram for the system.

The degenerate region was used to examine the limitations of the rate equation ap-

proach. Gate voltage was parameterized to follow Vg2(t) = −Vg1(t), and the evolution

of the probabilities for states (0, 1) and (1, 0) were plotted. The hysteretic nature of the

system was apparent when the rate of change of the gate voltage, ∆t−1 exceeded the

relaxation rate of the dots, proportional to Γ. In this limit, the method breaks down, as

the coarse graining used in deriving the rate equations is no longer valid.

The dynamic behavior of single and double quantum dot systems was then analyzed.

For single dots with one available energy level, several different parameterizations of gate

voltage and dot-reservoir coupling coefficients were used to calculate the charge and spin

pumped over the course of ten cycles for a set pumping frequency, ω = 1.5 GHz. The

average charge and spin per cycle was calculated for a range of frequencies as well. The

best signal was obtained for slow frequencies, when Γl(t) and Γr(t) were out of phase by

π/2, and were timed to coincide with conductance maxima. A completely spin polarized

current was generated when the gate voltage was allowed to oscillate about the requisite

tunneling energy for a spin down electron; however, when the variation in Vg exceeded

the Zeeman energy, it became possible for spin up electrons to contribute to current as

well.

We suggested that the non-equilibrium behavior of the dot could be exploited in

creating a single dot “spin turnstile, which acts as a scaled down version of the double

quantum dot spin pump. By pumping the dot too fast for the system to equilibrate,
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the spin up energy level can be used as a second conduction channel. A specific set of

parameterizations for the left and right QPCs would allow spin polarized current to be

generated in one direction only; i.e. spin down electrons can only move from the left

to the right reservoir, and spin up electrons move from the right to the left reservoir.

However, a more rigorous theoretical treatment is necessary to characterize the system,

since by definition, the adiabatic approximation used here is inappropriate.

Finally, charge and spin transport were investigated for double quantum dot systems.

Average charge pumped per cycle was plotted for a range of frequencies and for two

different parameterizations of Vg1(t) and Vg2(t), where all Γ(t) maxima were timed to

coincide with the appropriate conductance maxima. Lower frequencies were again found

to increase the average charge pumped per dot per cycle, as did more eccentric gate

voltage parameterizations. The charge pumped per cycle for a system with an applied

magnetic field was comparable to the case without an applied magnetic field. In both

cases, as ω → 0, there was no net charge transfer between reservoirs, and a pure spin

current was generated, although it was not quantized.
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CHAPTER FIVE:
CONCLUDING REMARKS

We have simulated charge and spin pumping in single and double quantum dots in the

linear response regime.

In Chapter 2, the construction of lateral quantum dots is reviewed, followed by a

discussion of the Constant Interaction model. In this model, electron interactions are

characterized by a constant capacitance C, which may be found using classical electro-

statics. We then calculate the electrostatic charging energy of single and double quantum

dot systems, Ec, and account for quantization by including a term to describe energy lev-

els inside the dots. The “stability diagram” is introduced, showing the most stable charge

configuration for a double quantum dot for any given set of gate voltages, Vg1 and Vg2.

Finally, we introduce the Zeeman effect, providing a mechanism with which to select

electrons by their spin.

In Chapter 3, a quantum mechanical description of dot systems was given. Hamil-

tonians for both subsystems and their interaction were written in terms of creation and

annihilation operators, followed by a calculation of transition rates using Fermi’s golden

rule in the wide band approximation. We then provided the general form of the rate

equations, describing the time evolution of the probability amplitudes for the possible

configurations of the dot system. Finally, expressions for current and conductance were

given.

Chapter 4 contains the results of simulations based on the models presented in Chap-

ters 2 and 3. First, stationary results for several different dot systems were presented.
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For a one-dot, one-level system, analytic and numerical solutions to the rate equations

were compared and found to agree, both with each other and with existing research.

Numerical calculations for more complex systems reveal that configurations with

equivalent charge are equally probable for a certain range of gate voltages. The area

of the probability overlap in Vg1 − Vg2 phase space is dictated by the magnitude of the

electrostatic coupling between dots. Switching behavior in the dots was investigated by

varying the gate voltages to force transitions between states (1, 0) and (0, 1) only. For

dots in series, switching represents a real tunneling event between dots. However, when

considering parallel dots without a direct conduction channel, the hysteretic behavior

indicates a second order tunneling event. By varying the rate at which gate voltage is

changed, we found that the rate equations were not appropriate when the rate change

of the gate voltage is on the order of the inverse dwell time of electrons in the dot. At

this point, apparent memory effects influence the probability distribution of the states.

Stationary current was calculated for all configurations, and conductance maxima were

found to coincide with the boundaries between state probabilities in phase space, as op-

posed to the boundaries between configurations in the stability diagram. In addition, the

electrostatic coupling between dots was found to suppress conduction in dot 1(2) when

transport occurs in dot 2(1).

Determining the parameters of the degenerate region in the phase space of gate volt-

ages could be advantageous when designing logic gates for use in nanoelectronics, for

instance quantum dot cellular automata (QCA). A QCA cell is composed of capacitively

coupled quantum dots whose charge configuration determines the polarization of the

cell, ultimately representing binary 1 or 0. Interaction with neighboring cells is strictly

Coulombic, with the polarization of one cell directly influencing the polarization of ad-

jacent cells [80, 81]. Adiabatic switching allows for minimal energy dissipation in the

system [82], potentially making QCA an attractive architecture for next generation elec-

tronic devices. Mapping the equilibrium probabilities of the cell (or set of cells) in phase

space would be helpful in determining the gate voltages necessary to completely polarize
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each cell. In addition, the time it takes to sweep the gate voltage (and thus ensure the

state of the cell) could be estimated by the sweep rate and magnitude of dot coupling,

which would prove enormously helpful in designing QCA latches (see, eg. Ref. [83]). The

same concepts hold for other proposed devices, such as in QDs used as spin qubits [84],

and could help explain unexpected features of charging as in Refs. [68, 69].

Dynamic results were then presented. First, charge pumping in a single, weakly

coupled quantum dot was investigated. It was found that the parameterizations for gate

voltage and left and right contacts significantly affected the amount of charge pumped

between reservoirs per cycle. The amount of charge pumped generally increased with

decreasing frequency, although with a particularly poor choice of parameterizations the

opposite may occur: from Table 4.1, at 1.5 GHz, the set of parameterizations C led

to an average current of 82.7 pA, whereas set A resulted in 59.8 pA per cycle. By

comparison, pumping current in open quantum dots tended to be proportional to ω,

where the charge pumped per cycle is independent of frequency [74]. This is since the

dwell time of electrons in open dots is very short, making transport adiabatic for all

but the fastest pumping frequencies. Using the same parameterizations and an in-plane

magnetic field, completely spin polarized current of comparable magnitude was generated.

However, when the variation in gate voltage was larger than ∆EZ , completely polarized

current was only generated when ω < Γ; otherwise, excited states were able to contribute

to the current using spin-up electrons.

The nonequilibrium behavior of a dot with Zeeman splitting was examined in the

context of a single-dot “spin turnstile, acting as a scaled down version of a double quan-

tum dot spin pump. Similar proposals exist for single dot spin pumps, using various

combinations of parameterizations [23, 85, 86]. The effect was most pronounced when

the pumping frequency was too fast for the system to relax. In this limit, the higher

energy state (↑, 0) does not have time to decay, allowing current due to spin up electrons

to roughly equal current due to spin down electrons. Our calculations show that almost

zero charge current and small but non-zero spin current was produced at sufficiently high
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frequencies. For a frequency of 253 MHz, we calculate the change in spin of the left

reservoir to be -0.0005 ~, with an average of 0.0078 electrons accumulating on the dot per

cycle. At 678 MHz, the change in spin for the left reservoir was 0.053 ~ with an average

accumulation of 0.0065 electrons per cycle. As before, the spin pumped per cycle was

subject to the choice of Vg(t), ΓL(t), and ΓR(t). However, we caution that the approxi-

mations used in deriving the rate equations are not suitable for describing systems with

rapidly varying coefficients.

Charge pumping in double quantum dot systems was then examined. A general form

of parameterizations for each QPC and gate voltage was presented in Eqs. (4.13) and

(4.15). The maxima of each Γ were timed to coincide with the cell boundaries of the

stability diagram. The effect of the eccentricity of the ellipse formed by the gate voltages

in Vg1−Vg2 phase space was examined by making calculations using ε = 0.5 and 0.9. The

total charge pumped per cycle increased at low frequency and with larger eccentricity:

at 478 MHz, for ε = 0.5, average current through the left lead of the top dot was 122 pA;

for ε = 0.9, 〈IL1〉 = 130.8 pA. For larger eccentricities, more time was spent sweeping the

less stable (0,0) and (1,1) states than the bistable (1,0) and (0,1) states, allowing more

time for the system to relax.

When level degeneracy was broken with an applied magnetic field, the number of

configurations with overlapping probabilities increased. The states’ probabilities in phase

space no longer directly corresponded to the regions in the stability diagram, limiting the

choices of parameterizations for gate voltage and dot-reservoir coupling. The dimensions

of the closed contour in phase space were chosen carefully to prevent the unnecessary

inclusion of other stable charge states in the pumping cycle. The total charge pumped

per cycle was similar to the results of the degenerate case: at 478 MHz, for both ε = 0.5

and 0.9, each dot transferred 0.59 electrons per cycle, with no accumulated charge. Both

cases had zero total charge transfer between reservoirs per cycle. The spin transferred

was comparable, at 0.59 ~ per cycle.

74



Ultimately, we were unable to generate either quantized charge or spin current, but

do not attribute this to any particular failings of the model. Rather, it seems the energy

scales required to stay in the linear, incoherent, sequential tunneling regime run close

together, making it difficult for any one mechanism to dominate transport. Our results

were similar to those already found in the literature (for instance, [24, 25, 70, 77]), even

when more sophisticated approaches were used, suggesting that noise is inherent in the

system. Our calculations were made at T = 100 mK, with finite dwell times, and less

than perfect transmission through barriers. The issues of shot noise, thermal noise,

rectification, and other sources of noise are addressed at length elsewhere [13, 87, 88, 89,

90, 91, 92, 93, 94]. It should be noted that schemes resulting in quantized current tend

do so in the limit T → 0 [23, 95, 96], although the signal can be improved by careful

choice of pumping parameters [95, 96, 97, 98, 99, 100]. Given the encouraging results at

very low frequency, future work should focus on frequencies less than 500 MHz.
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APPENDIX A:
ELECTROSTATIC ENERGY
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We consider the dot configuration as a system of N conductors. Classically, there

exists a capacitance cij between conductors i and j, which has stored charge qij,

qij = cij(vi − vj), (A.1)

so that the total charge Qi on i is just the sum of all the charges on all the capacitors

connected to i:

Qi =
N∑
j=1

qij =
N∑
j=1

cij(vi − vj). (A.2)

Voltage sources - gates and reservoirs - are treated as nodes with large capacitance and

charge. For the entire system, Eq. (A.2) generalizes to

~Q = C~V , (A.3)

with elements of the capacitance matrix C given by

Cii =
∑

j=0,j 6=i

cij

Cij = cji = −cij. (A.4)

The matrix form of Eq. (A.3) is then

 ~Qc

~Qv

 =

Ccc Ccv

Cvc Cvv


~Vc
~Vv

 , (A.5)

where the subscript c indicates the node of a charge source and v indicates the node of a

voltage source. It follows that voltage on a charge node is found by

~Vc = C−1
cc (Qc − Ccv

~Vv). (A.6)
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Electrostatic energy may be found as usual by

U =
1

2
~VC~V =

1

2
~V ~Q =

1

2
~QC−1 ~Q. (A.7)

A.1 Calculations for Single Quantum Dots

A schematic illustration of a quantum dot as a system of capacitors, charges, and voltages.
“Nodes” are the points at which the dot is connected to external voltages sources. In this
example, the nodes are between the dot and the right and left reservoirs, and between the dot
and the gate voltage.

Figure A.1: The QD as a System of Conductors

Let Qc represent the total charge on the dot, and Q1 represent charge from just the

electrons on the dot. Referring to Fig. A.1 and using Eq. (A.3),

Qc = C1V1

= Q1 + CLVL + CRVR + CgVg. (A.8)
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C has just one element, C1, where

C1 = CL + CR + Cg. (A.9)

By substitution, the charge of the electrons on the dot can be found as

Q1 = CL(V1 − VL) + CR(V1 − VR) + Cg(V1 − Vg). (A.10)

Using Eq. (A.10) in Eq. (A.7), and letting Q1 = −N |e|, where e is individual electron

charge and N the number of electrons on the dot,

U =
1

2
~QC−1 ~Q

=
(Q1 + CLVL + CRVR + CgVg)

2

2C
(A.11)

We make the substitution Q1 = −N1|e|, and set VL = VR = 0 with respect to V1. Hence

the above can be simplified as

U =
N2

1 |e|2

2C
− N1|e|CgVg

C
+
C2
gV

2
g

2C
. (A.12)

The charging energy can be obtained as in Sec. 2.2:

Ec =
(N1 + 1)2|e|2

2C
− (N1 + 1)|e|CgVg

C
+
C2
gV

2
g

2C
N2

1 |e|2

2C
− N1|e|CgVg

C
+
C2
gV

2
g

2C

=

(
N +

1

2

)
|e|2

C
− |e|CgVg

C
. (A.13)

A.2 Calculations for Parallel DQDs

We start by designating the total charge on the top dot Qc1 = C1V1 and the total charge

on the bottom dot Qc2 = C2V2. Referring to Fig. 2.2, the total capacitances for each dot

79



are

C1(2) = CL + CR + Cg1(2) + Cm, (A.14)

so that the total charge on each dot is

Qc1(2) = Q1(2) + CL1(2)VL + CR1(2)VR + Cg1(2)Vg1(2) + CmV2(1). (A.15)

The above can be simplified by setting VL = VR = 0, which is the case when there is no

applied bias. Electron charge on each dot is then

Q1(2) = CL1(2)V1(2) + CR1(2)V1(2) + Cg1(2)(V1(2) − Vg1(2)) + Cm(V1(2) − V2(1)). (A.16)

With some algebra V1 and V2 can be found:

V1

V2

 =
1

C1C2 − C2
m

C2 Cm

Cm C1


Q1 + Cg1Vg1

Q2 + Cg2Vg2

 . (A.17)

Multiplying the above out and using the definitions of electrostatic charging energy,

Ec1(2) = |e|2
C2(1)

C1C2 − C2
m

Ecm = |e|2 Cm
C1C2 − C2

m

, (A.18)

the voltages are

V1(2) = − 1

|e|

[
Ec1(2)

(
N1(2) −

Cg1(2)Vg1(2)

|e|

)
+ Ecm

(
N2(1) −

Cg2(1)Vg2(1)

|e|

)]
. (A.19)

Finally, from Eq. (A.7),

U =
Ec1
2

(
N2

1 −
N1Cg1Vg1
|e|

)
+
Ec2
2

(
N2

2 −
N2Cg2Vg2
|e|

)
+
Ecm

2

[
2N1N2 −

1

|e|
(N1Cg2Vg2 +N2Cg1Vg1)

]
. (A.20)
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APPENDIX B:
NUMERICAL INTEGRATION ALGORITHMS
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The rate equations given by Eq. (3.11) form a set of stiff differential equations;

solutions do not vary at a uniform rate and hence no single integration time scale is

adequate. For instance, in Fig. 4.1, the numerical step size prior to Vg = 2.44 can

be relatively large and still generate an accurate solution, but must be small between

Vg = 2.44 to 2.56 to maintain stability. Rather than sacrificing either accuracy or stability,

one may choose an algorithm which adjusts the step size with each iteration.

The probabilities and currents of various QD systems were found numerically using

Mathematica’s differential equation solving package, NDSolve. Unless otherwise specified

by the user, NDSolve uses the LSODA routine, which is a combination of predictor-

corrector and backwards differentiation methods [101]. In this technique, the “stiffness”

of the equations is evaluated and step size is adjusted accordingly, thereby reducing total

computation time while still returning useful solutions.

B.1 Adams-Bashforth-Moulton Algorithm

A more detailed discussion of the algorithms used may be found in Ref. [102].

In general, solutions to differential equations can be approximated by a polynomial

function y(x),

y(x) = yn +

∫ x

xn

f(x′, y)dx′, (B.1)

in which the (n + 1)th numerical value is generated by assuming that y(x) also passes

through several previous points xn, xn−1, .... Evaluation at x = xn+1 is given by

yn+1 = yn + h(β0y
′
n+1 + β1y

′
n + β2y

′
n−1 + β3y

′
n−2 + ...) (B.2)

where y′n = f(xn, yn), and β0 is non-zero for implicit methods.

Accurate solutions can be found explicitly for small step size h; for larger h stability

is sacrificed. Alternatively, y can be found implicitly, so that the algorithm is stable for
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all h, albeit with some loss of accuracy with increasing h . The rate equations generated

with Eq. (3.11) are unquestionably stiff, so that the size of h must vary from one iteration

to the next. Hence stability can only be assured if an implicit method is used.

To generate solutions, a guess is made for the value of yn+1, which is inserted into

the right-hand side of Eq. (B.2) to generate the next value of yn+1. The new value

is reinserted into the equation, and the process is repeated until the maximum allowed

number of steps has been reached. The initial guess – generated with a predictor step –

is based on an explicit form of yn+1, and subsequent iterations comprise corrector steps.

In the Adams-Bashforth-Moulton algorithm (ABM), values for yn+1 are generated

with the Adams-Bashforth predictor,

yn+1 = yn +
h

12
(23y′n − 16y′n−1 + 5y′n−2) +O(h4), (B.3)

and the Adams-Moulton corrector,

yn+1 = yn +
h

12
(5y′n+1 + 8y′n − 5y′n−1) +O(h4). (B.4)

Both Eqs. (B.3) and (B.4) are given to third order. The step size h is appropriate if

| h ∂f(x, y)

∂y
|< 1 (B.5)

over the integration region.
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APPENDIX C:
FORMULATION OF THE RATE EQUATIONS
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In this appendix, we derive a set of rate equations for the system illustrated in Fig.

2.2, where each dot has one available energy level. In this case, the dot Hamiltonian [Eq.

(3.3)] may be written as

HD = U(N1, N2) + ε1a
†
1a1 + ε2a

†
2a2, (C.1)

the reservoir Hamiltonian, from Eq. (3.2) is

HR =
∑
k

(ξklc
†
klckl + ξkrc

†
krckr), (C.2)

and the interaction term, from Eq. (3.4) is

HI = T
∑
k

{(c†kla1 + c.c.) + (c†kla2 + c.c.) + (c†kra1 + c.c.) + (c†kra2 + c.c.)}. (C.3)

We define

ν =
∑
k

(ckl + ckr) ν† =
∑
k

(c†kl + c†kr). (C.4)

In the subspace of the dot, let

H = HD +HI . (C.5)

The Hamiltonian can alternatively be expressed in matrix form

HD =



0 0 0 0

0 E10 0 0

0 0 E01 0

0 0 0 E11


. (C.6)
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In the above, E10 = ε1 + U(1, 0), E01 = ε2 + U(0, 1), and E11 = ε1 + ε2 + U(1, 1).

HI =



0 V12 V13 0

V21 0 0 U24

V31 0 0 U34

0 U42 U43 0


. (C.7)

Here,

V12 = T
∑
k

(c†kl + c†kr)a1 V13 = T
∑
k

(c†kl + c†kr)a2

V21 = T
∑
k

(ckl + ckr)a
†
1 V31 = T

∑
k

(ckl + ckr)a
†
2

U24 = T
∑
k

(c†kl + c†kr)a2 U34 = T
∑
k

(c†kl + c†kr)a1

U42 = T
∑
k

(ckl + ckr)a
†
2 U43 = T

∑
k

(ckl + ckr)a
†
1. (C.8)

In the wide band approximation, T is a coefficient describing the magnitude of the dot-

reservoir interaction, and can be taken as a small constant. We define

Ẽ1 =

E10 0

0 E01

 (C.9)

such that Eqs.(C.6) and (C.7) may take the form

HD =


0 0 0

0 Ẽ1 0

0 0 E11

 (C.10)

and

HI =


0 V † 0

V 0 U †

0 U 0

 . (C.11)
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In HD we have rewritten V12 and V13 together as V †, and similarly for U †, U , and V .

To obtain the master equations, we first define the basis of the reservoir subsystem,

{|r〉} and those of the dot subsystem, {|n1, n2〉 = {|00〉, |10〉, |01〉, |11〉}, or alternately

{|n1, n2〉 = {|1〉, |2〉, |3〉, |4〉}. The full density operator in the interaction picture is

ρI(t) =
∑

ei
(HD+HR)t/~|n1, n2; r〉〈n1, n2; r|e−i(HD+HR)t/~. (C.12)

Time evolution is governed by the von Neumann equation,

i~ρ̇I(t) = [V (t)I , ρI(t)], (C.13)

or in integral form,

ρI(t) = ρI(0)− i

~

∫ t

0

[V (t′)I , ρI(t
′)]dt′. (C.14)

By back substitution, we find the useful general form

ρ̇I(t) =
i

~
[V (t)I , ρI(0)]− 1

~2

∫ t

0

[V (t)I , [V (t′)I , ρI(t
′)]]dt′. (C.15)

Here we introduce the reduced density operator, which allows us to neglect the unob-

served reservoir subsystem in subsequent calculations:

ρI(R, t) = trRρI(t). (C.16)

Here, trR indicates a trace over the reservoir states. In terms of the reduced system,

Eq. (C.15) now reads

ρ̇I(R, t) =
i

~
[V (t)I , ρI(0)]− 1

~2

∫ t

0

trR[V (t)I , [V (t′)I , ρI(t
′)]]dt′. (C.17)
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Calculations can be further simplified by replacing ρRI(t) with ρRI(0) in the expres-

sion for ρI(t). This assumes the “condition of irreversibly holds, i.e., that the reservoir

subsystem will remain in thermal equilibrium regardless of any interaction with the dot

subsystem, since any change to the reservoir will dissipate very quickly. In what is known

as the Markov approximation, the evolution of the dot subsystem is also independent of

past behavior for time intervals longer than the characteristic relaxation time of the dot.

We define the transition rate from dot state m to dot state n as

Wmn =
2π

~
∑
kk′

|〈mk|V |nk′〉|2〈k′|ρ(0)R|k′〉δ(ξk′ − ξk − ~ωmn). (C.18)

The thermal average over the reservoir takes the form

〈νν†〉 =
∑
k,k′

〈(ckl + ckr)(c
†
kl + c†kr)〉

=
∑
k,k′

[〈cklc†kl〉+ 〈ckrc†kr〉]

= (1− f(ξkl))δk,k′ + (1− f(ξkr))δk,k′ (C.19)

〈ν†ν〉 =
∑
k,k′

〈(c†kl + c†kr)(ckl + ckr)〉

=
∑
k,k′

[〈c†klckl〉+ 〈c†krckr〉]

= f(ξkl)δk,k′ + f(ξkr)δk,k′ . (C.20)

For an unbiased system, we may let f(ξkl) = f(ξkr) so that

〈νν†〉 = 2(1− f(ξk))δk,k′ (C.21)

〈ν†ν〉 = 2f(ξk)δk,k′ . (C.22)

The rate equations may be written as a set of coupled equations,

∂ρi(t)

∂t mm
=
∑
n6=m

ρ(t)nnWmn −
∑
n6=m

ρ(t)mmWnm. (C.23)
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As an example, ρ̇(t)11 is

ρ̇(t)11 = ρ(t)22W12 + ρ(t)33W12 + ρ(t)44W14 − ρ(t)11(W21 +W31 +W41). (C.24)

The coefficients in Eq. (C.24) are calculated by substituting Eq. (C.21) into Eq. (C.18),

and taking ~ωmn = εm + U(Nm)− (εn + U(Nn)) = ∆ε+ Ec:

W12 =
2πT 2

~
∑
kk′

|〈1|a1|2〉〈k|ν†|k′〉|2〈k′|ρ(0)R|k′〉δ(ξk − {ε1 + U(1, 0)− U(0, 0)})

=
2πT 2

~
(2f(ε1 + U(1, 0)− U(0, 0)))

W21 =
2πT 2

~
(2{1− f(ε1 + U(1, 0)− U(0, 0))}) (C.25)

W13 =
2πT 2

~
∑
kk′

|〈1|a2|3〉〈k|ν†|k′〉|2〈k′|ρ(0)R|k′〉δ(ξk − {ε2 + U(0, 1)− U(0, 0)})

=
2πT 2

~
(2f(ε2 + U(0, 1)− U(0, 0)))

W31 =
2πT 2

~
(2{1− f(ε2 + U(0, 1)− U(0, 0))} (C.26)

W14 =
2πT 2

~
∑
kk′

|〈1|0|4〉〈k|0|k′〉|2〈k′|ρ(0)R|k′〉δ(ξk − {ε2 + ε1 + U(1, 1)− U(0, 0)})

= 0

W41 = 0. (C.27)

(C.28)

We replace the term 2πT 2/~ with Γ, so that Eq. (C.24) becomes

ρ̇(t)11 = ρ(t)22[2Γf(ε1 + U(1, 0)− U(0, 0))]

+ρ(t)33[2Γf(ε2 + U(0, 2)− U(0, 0))]

−ρ(t)11[2Γ{(1− f(ε1 + U(1, 0)− U(0, 0))

+(1− f(ε2 + U(0, 1)− U(0, 0)))}]. (C.29)
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The probability of each state is found using the projection operator and taking the

trace over the density matrix. For example,

P (0, 0) = tr(P00ρ(t)), (C.30)

where

P00 =



1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


. (C.31)

C.1 Second Order Interactions

When the dots are not weakly coupled to the reservoirs, it is necessary to include second

order terms in the rate equations to account for cotunneling events. To do this, we

could continue the perturbative expansion in Eq. (C.15), or alternatively, construct a

Hamiltonian describing only higher order phenomena. This can be accomplished using

the Schrieffer-Wolff similarity transform,

H ′ = e−SHeS

= H + [H,S]− 1

2
[S, [H,S]] +O(T3). (C.32)

where S is on the order of T, S = −S†, and takes the form

S =


0 A B

−A† 0 C

−B† −C† 0

 . (C.33)
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Setting HI = [S,HD] in Eq. (C.32), the transformed Hamiltonian is

H ′ = HD +
1

2


−V †A† − AV 0 V †C − AU †

0 V A− U †C† + A†V † − CU 0

−UA† + C†V 0 UC + C†U †

 , (C.34)

where the elements of S were found to be

B† = 0 B = 0

A† = Ẽ−1
1 V A = V †Ẽ−1

1

C† = U(E11 − Ẽ1)−1 C = (E11 − Ẽ1)−1U †. (C.35)

With a bit of algebra, the Hamiltonian may be written as shown in Fig. C.1. Each term

in the transformed Hamiltonian describes a cotunneling event. States |1〉 and |4〉 are

decoupled from states |2〉 and |3〉, It remains only to calculate the coefficients from Eq.

(C.18) and apply the results to Eq. (C.23).
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The transformed Hamiltonian describing the dot subsystem and second order interactions with the reservoir subsystem. Each term describes a
cotunneling event.

Figure C.1: The Transformed Hamiltonian
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APPENDIX D:
MATHEMATICA CODE
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The results presented in Chapter 3.5 are not the product of a single, massive program,

but rather a set of smaller programs which evolved over time. Section D.1 contains a

program which generates the coefficients in the rate equations, allowing some to depend on

time, gate voltage, or even dot charge. Section D.2 contains the module SolutionCode[],

which generates the set of state probabilities for a system, sets up the system of coupled

differential equations, performs the numerical integration, and returns a list of state

probabilities. Finally, Section D.3 uses the list of probabilities found in SolutionCode[]

to calculate current through each lead.

D.1 Automated Coefficient Matrix Generation

It was mentioned in Sec. 3.2.2 that the number of coupled differential equations is 2s,

where s is the product of the number of dots, the number of energy levels per dot, and

the degeneracy of the system. That being said, the number of coefficients for the set of

rate equations is 22s; even for very simple systems, it is impractical to manually enter the

rate equations.

To address this problem, the equations found using Eq. (3.11) can be rewritten as a

linear system,



Ṗ (00...0)(t)

Ṗ (00...1)(t)

...

Ṗ (11...1)(t)


=



c11 c12 · · · c1p

c21 c22 · · · c2p

...
...

. . .
...

cp1 cp2 · · · cpp





P (00...0)(t)

P (00...1)(t)

...

P (11...1)(t)


. (D.1)

The short program given in this section generates the elements of the coefficient matrix

for a specified system size, then writes the matrix to an external, non-executable file. The

generated elements are purely symbolic, so that numerical values may be substituted in

the appropriate place when called by the module SolutionCode[] (see Appendix D.2).
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ndots = 2;

nlevels = 2;

num = ndots*nlevels;

nstates = 2^num;

(*perm generates a list of the possible combinations of filled and \

unfilled levels.*)

perm = Permutations[Join[Table[0, {num}], Table[1, {num}]], {num}];

(*We use the indices of perm to find total charge and spin for a \

given configuration. Odd slots are spin up, even slots are spin down.*)

up = Table[

Total[Table[perm[[j, i]], {i, 1, num, 2}]], {j, 1, Length[perm]}];

down = Table[

Total[Table[perm[[j, i]], {i, 2, num, 2}]], {j, 1, Length[perm]}];

netspin = up - down;

netcharge = up + down;

(*Coeff generates an empty array for the coefficient matrix for the \

rate equations.*)

Coeff = Table[Table[0*i*j, {i, 1, nstates}], {j, 1, nstates}];

tally[i2_, j2_] := Module[{q = i2, p = j2},

\!\(

\*UnderoverscriptBox[\(\[Sum]\), \(k = 1\), \(num\)]\((1 -

KroneckerDelta[perm[\([\)\(q, k\)\(]\)],
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perm[\([\)\(p, k\)\(]\)]])\)\)]

(*This cell generates the nstates x nstates coefficient matrix, \

Coeff.*)

Do[

Do[

m = netcharge[[i]];

n = netcharge[[j]];

If[tally[i, j] > 1,

Coeff[[i, j]] = 0,

If[i == j,

Do[

If[tally[i, l] > 1,

Coeff[[i, j]] += 0,

If[i < l,

Coeff[[i, j]] -= \!\(

\*UnderoverscriptBox[\(\[Sum]\), \(k =

1\), \(num\)]\((\[CapitalGamma][i, l]*f[i, l]*

KroneckerDelta[perm[\([\)\(i, k\)\(]\)],

0]*\((1 -

KroneckerDelta[perm[\([\)\(i, k\)\(]\)],

perm[\([\)\(l, k\)\(]\)]])\) + \[CapitalGamma][i,

l]*\((1 - f[i, l])\)*

KroneckerDelta[perm[\([\)\(i, k\)\(]\)],

1]*\((1 -

KroneckerDelta[perm[\([\)\(i, k\)\(]\)],

perm[\([\)\(l, k\)\(]\)]])\))\)\),

Coeff[[i, j]] -= \!\(

\*UnderoverscriptBox[\(\[Sum]\), \(k =
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1\), \(num\)]\((\[CapitalGamma][i, l]*f[l, i]*

KroneckerDelta[perm[\([\)\(i, k\)\(]\)],

0]*\((1 -

KroneckerDelta[perm[\([\)\(i, k\)\(]\)],

perm[\([\)\(l, k\)\(]\)]])\) + \[CapitalGamma][i,

l]*\((1 - f[l, i])\)*

KroneckerDelta[perm[\([\)\(i, k\)\(]\)],

1]*\((1 -

KroneckerDelta[perm[\([\)\(i, k\)\(]\)],

perm[\([\)\(l, k\)\(]\)]])\))\)\)]],

{l, nstates}],

If[n - m == 1,

If[i < j,

Coeff[[i, j]] = \!\(

\*UnderoverscriptBox[\(\[Sum]\), \(k =

1\), \(num\)]\((\[CapitalGamma][i,

j]*\((1 - f[i, j])\)*\((1 -

KroneckerDelta[perm[\([\)\(i, k\)\(]\)],

perm[\([\)\(j, k\)\(]\)]])\))\)\),

Coeff[[i, j]] = \!\(

\*UnderoverscriptBox[\(\[Sum]\), \(k =

1\), \(num\)]\((\[CapitalGamma][i,

j]*\((1 - f[j, i])\)*\((1 -

KroneckerDelta[perm[\([\)\(i, k\)\(]\)],

perm[\([\)\(j, k\)\(]\)]])\))\)\)],

If[i < j,

Coeff[[i, j]] = \!\(

\*UnderoverscriptBox[\(\[Sum]\), \(k =

1\), \(num\)]\((\[CapitalGamma][i, j]*
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f[i, j]*\((1 -

KroneckerDelta[perm[\([\)\(i, k\)\(]\)],

perm[\([\)\(j, k\)\(]\)]])\))\)\),

Coeff[[i, j]] = \!\(

\*UnderoverscriptBox[\(\[Sum]\), \(k =

1\), \(num\)]\((\[CapitalGamma][i, j]*

f[j, i]*\((1 -

KroneckerDelta[perm[\([\)\(i, k\)\(]\)],

perm[\([\)\(j, k\)\(]\)]])\))\)\)]]

]],

{j, nstates}],

{i, nstates}]

file = OpenWrite["/home/sabine/Documents/Dots/mat1.txt"]

Write[file, Coeff]

Close[file]

OutputStream["/home/sabine/Documents/Dots/mat1.txt", 26]

D.2 Numerical Integration of the Rate Equations

In Appendix D.1, the code that generates the coefficient matrix for an arbitrarily large

QD system was presented. The module below is designed to import the coefficient ma-

trix, substitute the appropriate numerical values for each element, then use the result

to generate the set of coupled differential equations obtained using Eq. (3.11). Finally,

SolutionCode[] calls Mathematica’s NDSolve utility (see Appendix A.2) to generate

solutions to the rate equations.
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(*SolutionCode[] solves the rate equations.

st[] is a list of state probabilities, used as initial conditions.

vgt is the gate voltage of the top dot.

vgb is the gate voltage of the bottom dot.

gra, grb, gla, glb are the gammas for the top (a) or bottom (b) dot,

on the right (r) or left (l) side.

NDSolve[] solves the 2^N coupled differential equations for one time

step (although there are many iterations per step) and returns a list of

the new state probabilities. The size of the step directly relates to the

speed of pumping;

if the interval between values of gate voltage is large,

the pump speed is large. The new probabilities are appended to a list,

but also used as the next set of initial conditions.*)

matz = Import[" home sabine Documents Dots mat1.txt"];

(*Import the coefficient matrix.*)

SolutionCode[st_, vgt_, vgb_, gra_, grb_, gla_, glb_] :=

Module[{St = st, Vgt = vgt,

Vgb = vgb, \[CapitalGamma]ra = gra, \[CapitalGamma]rb =

grb, \[CapitalGamma]la = gla, \[CapitalGamma]lb = glb},

(*the module f[i,j] is used

to generate the fermi function for a particular i and j \

in Coeff. It is generalized for two energy levels per dot,

so define all ea1,2, as the same if nlevels=1. Define a de.*)

f[i_, j_] := Module[{u = i, v = j},
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slot =

Flatten[Position[

Table[1 - KroneckerDelta[perm[[u, k]], perm[[v, k]]], {k, 1,

num}], 1]][[1]];

U[Nt_, Nb_] = .5*Nt^2*Ect + .5*Nb^2*Ecb +

Nt*Nb*Ecm - (Cgt*Vgt (Nt*Ect + Nb*Ecm) +

Cgb*Vgb (Nt*Ecm + Nb*Ecb)) + fv - Nt*Vgt - Nb*Vgb;

fv = .5 Cgt^2*Vgt^2*Ect + .5 Cgb^2*Vgb^2*Ecb +

Cgt*Vgt*Cgb*Vgb*Ecm;

NA2 = Total[Table[perm[[v, k]], {k, 1, num/2}]];

NB2 = Total[Table[perm[[v, k]], {k, num/2 + 1, num}]];

NA1 = Total[Table[perm[[u, k]], {k, 1, num/2}]];

NB1 = Total[Table[perm[[u, k]], {k, num/2 + 1, num}]];

If[slot < (num/2 + 1),

(*Transition occurs in dot A*)

If[slot < (num/4 + 1),

(*If transition is to the 1st available level*)

If[appfield,

(*If there is an applied magnetic field*)

If[EvenQ[slot],

energy = \[Epsilon]a1 + d\[Epsilon] + U[NA2, NB2] -

U[NA1, NB1], (*If slot number for the transition is even,

it is a spin down electron.*)

energy = \[Epsilon]a1 - d\[Epsilon] + U[NA2, NB2] -

U[NA1, NB1]],(*Else,

if slot number for the transition is odd,
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it is a spin up electron.*)

(*Else, there is no field.*)

energy = \[Epsilon]a1 + U[NA2, NB2] - U[NA1, NB1]],

(*Else, transition is to level 2 of dot A.*)

If[appfield,

(*If there is an applied magnetic field*)

If[EvenQ[slot],

energy = \[Epsilon]a2 + d\[Epsilon] + U[NA2, NB2] -

U[NA1, NB1], (*If slot number for the transition is even,

it is a spin down electron.*)

energy = \[Epsilon]a2 - d\[Epsilon] + U[NA2, NB2] -

U[NA1, NB1]],(*Else,

if slot number for the transition is odd,

it is a spin up electron.*)

(*Else, there is no field.*)

energy = \[Epsilon]a2 + U[NA2, NB2] - U[NA1, NB1]]],

(*Else, it occurs in dot B*)

If[slot < (3 num/4 + 1),

(*If transition is to the 1st available level*)

If[appfield,

(*If there is an applied magnetic field*)

If[EvenQ[slot],
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energy = \[Epsilon]b1 + d\[Epsilon] + U[NA2, NB2] -

U[NA1, NB1], (*If slot number for the transition is even,

it is a spin down electron.*)

energy = \[Epsilon]b1 - d\[Epsilon] + U[NA2, NB2] -

U[NA1, NB1]],(*Else,

if slot number for the transition is odd,

it is a spin up electron.*)

(*Else, there is no field.*)

energy = \[Epsilon]b1 + U[NA2, NB2] - U[NA1, NB1]],

(*Else, transition is to level 2 of dot A.*)

If[appfield,

(*If there is an applied magnetic field*)

If[EvenQ[slot],

energy = \[Epsilon]b2 + d\[Epsilon] + U[NA2, NB2] -

U[NA1, NB1], (*If slot number for the transition is even,

it is a spin down electron.*)

energy = \[Epsilon]b2 - d\[Epsilon] + U[NA2, NB2] -

U[NA1, NB1]],(*Else,

if slot number for the transition is odd,

it is a spin up electron.*)

(*Else, there is no field.*)

energy = \[Epsilon]b2 + U[NA2, NB2] - U[NA1, NB1]]]];

1/(Exp[energy/kbT] + 1)];
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(*The module for gamma reads in time-

dependent values from a list and inserts them into the coefficient \

matrix.*)

\[CapitalGamma][n_, m_] := Module[{nn = n, mm = m},

(*This module selects the gamma for a four state system.*)

slot1 = Flatten[

Position[

Table[1 - KroneckerDelta[perm[[nn, k]], perm[[mm, k]]], {k, 1,

num}], 1]][[1]];

If[slot1 == 1,

(\[CapitalGamma]la + \[CapitalGamma]ra),

(\[CapitalGamma]lb + \[CapitalGamma]rb)]];

ProbEq = ToExpression[matz];

SysEq[t_] = {p1[t], p2[t], p3[t], p4[t], p5[t], p6[t], p7[t], p8[t],

p9[t], p10[t], p11[t], p12[t], p13[t], p14[t], p15[t], p16[t]};

MethSol = MapThread[#1 == #2 &, {SysEq’[t], ProbEq.SysEq[t]}];

Sol = NDSolve[{MethSol, p1[0] == St[[1]], p2[0] == St[[2]],

p3[0] == St[[3]], p4[0] == St[[4]], p5[0] == St[[5]],

p6[0] == St[[6]], p7[0] == St[[7]], p8[0] == St[[8]],

p9[0] == St[[9]], p10[0] == St[[10]], p11[0] == St[[11]],

p12[0] == St[[12]], p13[0] == St[[13]], p14[0] == St[[14]],

p15[0] == St[[15]], p16[0] == St[[16]]}, {p1, p2, p3, p4, p5, p6,

p7, p8, p9, p10, p11, p12, p13, p14, p15, p16}, {t, 0, 10}(*,

Method->{EventLocator,"Event"->p1[t]-.0001}*)];

{P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13, P14, P15,

P16} = Flatten[{p1[t], p2[t], p3[t], p4[t], p5[t], p6[t], p7[t],

p8[t], p9[t], p10[t], p11[t], p12[t], p13[t], p14[t], p15[t],
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p16[t]} /. Sol];

Block[{t = 1},

Chop[Evaluate[{P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12,

P13, P14, P15, P16}]]]

]

D.3 Module to Calculate Current

After the probabilities have been generated for a given set of gate voltages, it is relatively

simple to calculate current. The module shown here, Current[], generates expressions for

the current through each node using Eq. (3.19), takes values for gate voltages, tunneling

rates, and a list of state probabilities, and returns values as a list. Like SolutionCode[],

Current takes one set of values at a time, so the module must be invoked as many times

as there are voltage steps.

The output is then used to calculate quantities such as the total current through the

top (or bottom) dot and net spin. Over many cycles, data may be used to find average

per-cycle quantities, such as average total charge and spin transferred per cycle.

Current[vga_, vgb_, in_, gammatopl_, gammabottoml_, gammatopr_,

gammabottomr_] :=

Module[{vvgt = vga, vvgb = vgb, pr = in, gla = gammatopl,

glb = gammabottoml, gra = gammatopr, grb = gammabottomr},

F[pe_, qu_] := Module[{eu = pe, ev = qu},

sslot =

Flatten[Position[

Table[1 - KroneckerDelta[perm[[eu, k]], perm[[ev, k]]], {k, 1,

num}], 1]][[1]];
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UU[Nt_, Nb_] = .5*Nt^2*Ect + .5*Nb^2*Ecb +

Nt*Nb*Ecm - (Cgt*vvgt (Nt*Ect + Nb*Ecm) +

Cgb*vvgb (Nt*Ecm + Nb*Ecb)) + Fv - Nt*vvgt - Nb*vvgb;

Fv = .5 Cgt^2*vvgt^2*Ect + .5 Cgb^2*vvgb^2*Ecb +

Cgt*vvgt*Cgb*vvgb*Ecm;

NA2 = Total[Table[perm[[ev, k]], {k, 1, num/2}]];

NB2 = Total[Table[perm[[ev, k]], {k, num/2 + 1, num}]];

NA1 = Total[Table[perm[[eu, k]], {k, 1, num/2}]];

NB1 = Total[Table[perm[[eu, k]], {k, num/2 + 1, num}]];

If[sslot < (num/2 + 1),

(*Transition occurs in dot A*)

If[sslot < (num/4 + 1),

(*If transition is to the 1st available level*)

If[appfield,

(*If there is an applied magnetic field*)

If[EvenQ[sslot],

energy = \[Epsilon]a1 + d\[Epsilon] + UU[NA2, NB2] -

UU[NA1, NB1], (*If slot number for the transition is even,

it is a spin down electron.*)

energy = \[Epsilon]a1 - d\[Epsilon] + UU[NA2, NB2] -

UU[NA1, NB1]],(*Else,

if slot number for the transition is odd,

it is a spin up electron.*)

(*Else, there is no field.*)

energy = \[Epsilon]a1 + UU[NA2, NB2] - UU[NA1, NB1]],
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(*Else, transition is to level 2 of dot A.*)

If[appfield,

(*If there is an applied magnetic field*)

If[EvenQ[sslot],

energy = \[Epsilon]a2 + d\[Epsilon] + UU[NA2, NB2] -

UU[NA1, NB1], (*If slot number for the transition is even,

it is a spin down electron.*)

energy = \[Epsilon]a2 - d\[Epsilon] + UU[NA2, NB2] -

UU[NA1, NB1]],(*Else,

if slot number for the transition is odd,

it is a spin up electron.*)

(*Else, there is no field.*)

energy = \[Epsilon]a2 + UU[NA2, NB2] - UU[NA1, NB1]]],

(*Else, it occurs in dot B*)

If[sslot < (3 num/4 + 1),

(*If transition is to the 1st available level*)

If[appfield,

(*If there is an applied magnetic field*)

If[EvenQ[sslot],

energy = \[Epsilon]b1 + d\[Epsilon] + UU[NA2, NB2] -

UU[NA1, NB1], (*If slot number for the transition is even,

it is a spin down electron.*)
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energy = \[Epsilon]b1 - d\[Epsilon] + UU[NA2, NB2] -

UU[NA1, NB1]],(*Else,

if slot number for the transition is odd,

it is a spin up electron.*)

(*Else, there is no field.*)

energy = \[Epsilon]b1 + UU[NA2, NB2] - UU[NA1, NB1]],

(*Else, transition is to level 2 of dot A.*)

If[appfield,

(*If there is an applied magnetic field*)

If[EvenQ[sslot],

energy = \[Epsilon]b2 + d\[Epsilon] + UU[NA2, NB2] -

UU[NA1, NB1], (*If slot number for the transition is even,

it is a spin down electron.*)

energy = \[Epsilon]b2 - d\[Epsilon] + UU[NA2, NB2] -

UU[NA1, NB1]],(*Else,

if slot number for the transition is odd,

it is a spin up electron.*)

(*Else, there is no field.*)

energy = \[Epsilon]b2 + UU[NA2, NB2] - UU[NA1, NB1]]]];

1/(Exp[energy/kbT] + 1)];

cj = {0, 0, 0, 0};

(*This part figures out which states contribute to a specific

current, and calculates the currents for one time step.*)

For[i = 1, i < Length[perm] + 1, i++,

For[j = 1, j < Length[perm] + 1, j++,
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fn = perm[[i]] - perm[[j]];

For[k = 1, k < 5, k++,

If[Total[Abs[fn]] == 1,

If[fn[[k]] == 1,

cj[[k]] += F[j, i]*pr[[j]],

If[fn[[k]] == -1,

cj[[k]] += (1 - F[i, j])*pr[[j]]]]]]]];

{gla*cj[[1]], gla*cj[[2]], gra*cj[[1]], grb*cj[[2]], glb*cj[[3]],

glb*cj[[4]], grb*cj[[3]], grb*cj[[4]]}

]
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[8] K. C. Hall, M. E. Flatté, “Performance of a spin-based insulated gate field effect

transistor,” Appl. Phys. Lett., vol. 88, no. 16, pp. 162503-162506, 2006.

109



[9] S. Sanvito, “Filtering spins with molecules,” Nature Materials, vol. 10, pp. 484-485,

Jun. 2011.

[10] W. Gong et al., “Tunable pure spin currents in a triple-quantum-dot ring,” Appl.

Phys. Lett., vol. 92, no. 4, pp. 042104-042107, 2008.

[11] J. Peng and Z. Chen, “A single molecule spin pump,” Phys. Lett. A, vol. 365, no.

56, pp. 505-509, Jun 2007.

[12] S. Cho et al., “Gate-tunable graphene spin valve,” Appl. Phys. Lett., vol. 91, no. 12,

pp. 123105-123108, 2007.

[13] B. Braunecker et al., “Spin current and rectification in one-dimensional electronic

systems,” Phys. Rev. B, vol. 76, no. 8, pp. 085119-085130, 2007.

[14] P. Zhang et al., “Spin Current through a Quantum Dot in the Presence of an Oscil-

lating Magnetic Field,” Phys. Rev. Lett., vol. 91, no. 19, pp. 196602-196606, 2003.

[15] M. Busl and G. Platero, “Spin-polarized currents in double and triple quantum dots

driven by ac magnetic fields,” Phys. Rev. B, vol. 82, no. 20, pp. 205304-205311, 2010.

[16] D. J. Thouless, “Quantization of particle transport,” Phys. Rev. B, vol. 27, no. 10,

pp.6083-6087, 1983.

[17] L. P. Kouwenhoven et al., “Photon-assisted tunneling through a quantum dot,” Phys.

Rev. B, vol. 50, no. 3, pp. 2019-2022, 1994.

[18] L. P. Kouwenhoven et al., “Observation of photon-assisted tunneling through a quan-

tum dot,” Phys. Rev. Lett., vol. 73, no. 25, pp. 3443-3446, 1994.

[19] B. L. Hazelzet et al., “Coherent and incoherent pumping of electrons in double

quantum dots,” Phys. Rev. B, vol. 63, no. 16, pp. 165313-165323, 2001.

[20] M. Braun and G. Burkard, “Non-adiabatic two-parameter charge and spin pumping

in a quantum dot,” Phys. Rev. Lett., vol. 101, no. 3, pp. 036802-036806, 2008.

110



[21] P. Sharma and P. W. Brouwer, “Mesoscopic effects in adiabatic spin pumping,”

Phys. Rev. Lett., vol. 91, no. 16, pp. 166801, Oct. 2003.

[22] E. R. Mucciolo et al., “Adiabatic Quantum Pump of Spin-Polarized Current,” Phys.

Rev. Lett., vol. 89, no. 14, pp. 146802-146806, 2002.

[23] T. Aono, “Adiabatic spin pumping through a quantum dot with a single orbital

level,” Phys. Rev. B, vol. 67, no. 15, pp. 155303-155307, 2003.

[24] E. Cota et al., “AC-driven double quantum dots as spin pumps and spin filters,”

Phys. Rev. Lett., vol. 94, no. 10, pp. 107202-107206, 2005.

[25] B. Dong et al., “Pumped spin-current and shot noise spectra in a single quantum

dot,” Phys. Rev. Lett., vol. 94, no. 6, pp. 066601-066606, 2005.

[26] L. Fu and C. L. Kane, “Time Reversal Polarization and a Z2 Adiabatic Spin Pump,”

Phys. Rev. B, vol. 74, no. 19, pp. 195312-195325, 2006.

[27] S. M. Frolov et al., “Electrical generation of pure spin currents in a two-dimensional

electron gas,” Phys. Rev. Lett., vol. 102, no. 11, pp. 116802-116806, 2009.

[28] R. Sánchez et al., “Spin filtering through excited states in double quantum dot

pumps,” Phys. Rev. B, vol. 74, no. 3, pp. 035326-035334, 2006.

[29] R. D. R. Bhat and J. E. Sipe, “Optically Injected Spin Currents in Semiconductors,”

Phys. Rev. Lett., vol. 85, no. 25, pp. 5432-5435, 2000.

[30] S. Ju et al., “Electrically controllable spin filtering and switching in multiferroic

tunneling junctions,” Phys. Rev. B, vol. 75, no. 6, pp. 064419-064424, 2007.

[31] A. Fert and H. Jaffrès ,“Conditions for efficient spin injection from a ferromagnetic

metal into a semiconductor,” Phys. Rev. B, vol. 64, no. 18, pp. 184420-184429, 2001.

[32] J. E. Hirsch, “Spin Hall Effect,” Phys. Rev. Lett., vol. 83, no. 9, pp. 1834-1837, 1999.

111



[33] V. Sih et al., “Generating Spin Currents in Semiconductors with the Spin Hall Ef-

fect,” Phys. Rev. Lett., vol. 97, no. 9, pp. 096605-096609, 2006.

[34] E. Saitoh et al., “Conversion of spin current into charge current at room temperature:

Inverse spin-Hall effect,” Appl. Phys. Lett., vol. 88, no. 18, pp. 182509-182512, 2006.

[35] D. Culcer et al., “Semiclassical Spin Transport in Spin-Orbit-Coupled Bands,” Phys.

Rev. Lett., vol. 93, no. 4, pp. 046602-046606, 2004.

[36] J. Shi et al., “Proper Definition of Spin Current in Spin-Orbit Coupled Systems,”

Phys. Rev. Lett., vol. 96, no. 7, pp. 076604-076608, 2006.
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