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ABSTRACT

The intensity dependent refractive index change of a medium is frequently described in terms

of the product n2 · I where n2 is the nonlinear refractive index and I the light intensity. The

nonlinear refractive index is often treated as constant which is a reasonable assumption if

the light interacts only with bound electrons. In the case of carbon disulfide (CS2) however,

nuclear motions contribute to n2. These motions occur on the sub picosecond time scale

and thus become especially relevant for ultrashort laser pulses. The neat liquid CS2 is

studied because it exhibits a large nonlinear refractive index in comparison to other liquids.

Therefore, it is employed in optical switching, optical limiting, and beam filamentation

applications.

This thesis presents effective n2 values for Gaussian shaped linearly polarized pulses with

central wavelength at λ = 700nm. A theoretical model describing the time evolution of the

material response is applied to distinguish between the instantaneous electronic, the ultrafast

nuclear and the slow nuclear origins of the nonlinear refractive index. Moreover, the tensor

nature of the material response function is studied by means of circularly polarized light. The

relative magnitudes of bound electronic and nuclear contributions to n2 are experimentally

determined. Eventually, the dispersion of the instantaneous electronic response is measured

in the spectral range between 390nm and 1064nm.
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1 INTRODUCTION

1.1 Motivation of the Work

A couple years after J.A. Armstrong et al. [1] formulated the theory of an intensity dependent

refractive index, the nonlinear optical properties of carbon disulfide were investigated [2].

Still today (e. g. [3]), the nonlinear refractive index characterization of the material is a

topic of wide interest because CS2 has a large nonlinear refractive index in comparison to

other liquids as indicated through table 1.1. Consequently, it has been employed in optical

switching [5], optical limiting [6] and beam filamentation [7] applications. Furthermore,

carbon disulfide is often used as a reference material for optical nonlinarity measurements

of other materials (as textbooks like [8, chap. 3] show). Especially in this application, it

is indispensable to have available precise values in order to avoid propagating systematic

errors.

The reason why the characterization of the nonlinear refractive index of CS2 is still in progress

after 45 years, originates from the fact that n2 is not constant but clearly dependent on the

polarization and wavelength of light as well as the interaction time between light and matter.

The motions of molecules, nuclei and electrons which are stimulated by external electric

fields result in a temporal evolution of the material response. If short and intense laser pulses

interact with a nonlinear material, even the pulse shape may become an important parameter

in the determination of n2. This multitude of dependencies considerably complicates the

precise measurement of the material property and explains to some degree why a variety of

n2 values, which are now and then clearly different, is published as partly shown in table 1.2.
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Table 1.1: Several examples for the nonlinear refractive index of neat liquids.

Material Wavelength (nm) Pulse Duration (ps) n2(10−16cm2/W )

Benzene 532 30 129

Carbon disulfide 532 30 310

Chloroform 532 25 3.5

Toluene 532 25 6.7

Water 532 21 5.4

Examples are taken from R. L. Sutherland: Handbook of Nonlinear Optics [4], chapter 8,
table 6. More examples and detailed references are presented there.

A timescale of particular interest is the femtosecond (10−15s) and low picosecond (10−12s)

range due to the evolution of molecular motions within this range. The intention of this

work is to provide experimental Z-scan data to characterize the nonlinear response of carbon

disulfide on the mentioned timescale. The Z-scan is an experimental technique that was

invented at the College of Optics and Photonics in 1989. It is a single beam measurement

method that is explained in detail in chapter 2. In chapter 3 effective n2 values for Gaussian

pulses are determined. These nonlinear refractive indexes were measured over an temporal

range from about 30fs to about 2ps. In chapter 4, a theoretical model substitutes the variety

of effective n2 values by parameterizing the nonlinear response so that it can be analytically

described as a function of pulse duration for a particular wavelength. The validity of the

presented model is tested through Z-scans with circularly polarized light in chapter 5. Theo-

retical ratios between the results of linearly and circularly polarized light are derived for the

quasi instantaneous bound electron response and the slow diffusive molecular orientational

response. The expression quasi instantaneous bound electronic response means that the

electronic contribution to the nonlinear refraction is fully present independent of the pulse

2



Table 1.2: A selection of different n2 measurements of CS2

n2 (10−15 cm2

W
) pulse duration (fs) λ (nm) method reference

2.3 130 770 Z-scan [9]

2.5 110 800 SPIDER [10]

2.9 125 800 Z-scan [3]

3.0 110 795 Z-scan [11]

3.1 110 800 Z-scan [10]

3.5 475 1054 Z-scan [11]

4.7 100 800 time division [12]
interferometry

18.5 1000 800 Z-scan [13]

32.0 3 · 105 1054 Z-scan [11]
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duration. The theoretical ratios are experimentally checked and an additional ratio for the

fast nuclear contribution to the nonlinear refractive index of CS2 is determined. Finally, the

impact of wavelength variations on n2 is measured for ultrashort laser pulses. The derived

dispersion of the electronic response is presented in chapter 6.

1.2 Properties and Linear Characterization of Carbon Disulfide

Carbon disulfide is a linear, diatomic molecule, having the structural formula

S = C = S (1.1)

where S denotes a sulphur and C the carbon atom. At room temperature and normal

pressure the molecules assemble in the liquid phase which is synonymous to the fact that

the material is optically isotropic. Due to the centro-symmetry of the molecule, it does

not exhibit a permanent dipole moment. It has however two independent polarizability

components, α|| which is parallel to the molecular axis and the clearly smaller α⊥ which is

perpendicular to the molecular axis. Higher order permanent moments and polarizabilities

are not of importance in the topics discussed in this thesis but can be found in the literature

[14].

The neat liquid appears colorless and exhibits indeed a wide transparency range over the

visible and near IR spectrum. Figure 1.1 shows the linear transmittance of the liquid for a

1mm cell that is used in the later described experiments and a thinner 100µm cell. More-

over, the UV absorption bands are resolved more clearly and are expressed in terms of the

absorption cross section σ.
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Figure 1.1: Linear transmittance and absorption spectrum, resp. of CS2

The transmittance spectrum a) shows that CS2 is transparent over the whole visible range.
There is also no significant absorption in the near IR, in particular at λ = 1064nm. The
absorption bands are further specified in b). Clearly, the absorption band from ≈ 190 to
230nm is much stronger than the band from 290 to 340nm.

1.3 The Nonlinear Refractive Index and Two-photon Absorption

Every material consists of electric charge carrying particles, i.e. negatively charged elec-

trons and positively charged nuclei. Consequently, dipoles can be found or induced in every

medium. The polarization ~P (~r, t) = 1
2

(
~P(~r, t) + ~P∗(~r, t)

)
describes the macroscopic volume

density of electric dipoles in a material and represents the interaction between light and

matter which is formally expressed as

1
2 (Pi(~r, t) + P∗i (~r, t)) = ε0

∫ ∞
−∞

d~r ′
∫ ∞

0
dt′R(1)

ij (~r ′, t′)
E (∗)
j (~r − ~r ′, t− t′)

2

+
∫ ∞
−∞

d~r ′
∫ ∞
−∞

d~r ′′
∫ ∞

0
dt′
∫ ∞

0
dt′′R(2)

ijk(~r ′, ~r ′′, t′, t′′)
E (∗)
j (~r − ~r ′, t− t′)E (∗)

k (~r − ~r ′′, t− t′′)
4

+
∫ ∞
−∞

d~r ′
∫ ∞
−∞

d~r ′′
∫ ∞
−∞

d~r ′′′
∫ ∞

0
dt′
∫ ∞

0
dt′′

∫ ∞
0

dt′′′

×R(3)
ijkl(~r ′, ~r ′′, ~r ′′′, t′, t′′, t′′′)

E (∗)
j (~r − ~r ′, t− t′)E (∗)

k (~r − ~r ′′, t− t′′)E (∗)
l (~r − ~r ′′′, t− t′′′)

8
+ higher order terms ] , (1.2)
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where the vector and tensor indexes, resp. i, j, k, l refer to any position vector component

x, y, z. It is to note that expression (1.2) is written in Einstein notation. The integrals∫∞
−∞ d~r denote volume integrals and

∫∞
0 dt time integrals, the asterisks in brackets indicate

that both complex electric field and its complex conjugated fields are part of the real polar-

ization vector. All permutations must be summed up to describe the complete polarization.

Based on the principle of causality, which is briefly explained in the appendix A, the nth

order complex response function R̃(n)(~r, t), which is a tensor of the order (n+1), is zero for

negative times. The complex electric field vector of the light interacting with the material

is denoted by ~E(~r, t). The higher order terms of the polarization are not important in the

performed experiments due to sufficiently small peak irradiances and thus are not further

specified.

The relatively small dispersion in the visible and near IR wavelength range of linear ab-

sorption spectrum of CS2 implies that the linear term of equation (1.2) can be rewritten

as

P(1)
i (~r, t) = ε0χ

(1)
ij Ej(~r, t), (1.3)

where χ(1) is the complex linear susceptibility. The second term cancels for CS2 because of

the optical isotropy of liquids [15, chap. 1]. Eventually, the third term describes nonlinear

refraction and absorption. It can be considerably simplified in the case of carbon disulfide

because the macroscopic spatial homogeneity of the liquid eliminates the necessity of spatial

integration. Moreover, the sample under test was only illuminated by one input field, hence

the nonlinear polarization reads

P(3)
i (~r, t) + c.c. = ε0

4

∫ ∞
0

dt′R(3)
ijkl(t′)E

(∗)
j (~r, t− t′)E (∗)

k (~r, t− t′)E (∗)
l (~r, t− t′). (1.4)

6



The complex electric fields can be decomposed into a time and position dependent envelope

A(~r, t) and a carrier term exp{i(kz − ω0t+ ϕ)}, where

k := 2πn0

λ
(1.5)

is the wavenumber and ω0 the carrier frequency. The complex electric field components read

E(z, t) = A(~r, t)ei(kz−ω0t). (1.6)

The light transmitted through the sample does not change its frequency in the case of re-

fraction or absorption. Therefore, the polarization is required to oscillate with the carrier

frequency as well.

It will be referred to the integral (1.4) in later sections. However, in order to introduce

nonlinear refraction as well as absorption, it is much more instructive to consider the spe-

cial case of an instantaneous material response and linear polarized light. The third order

polarization simplifies to

P(3)
x (~r, t) = 3

4ε0χ
(3)
xxxxAx(~r, t)A∗x(~r, t)Ax(~r, t)ei(kz−ω0t). (1.7)

The factor 3 represents the number of permutations of the electric fields that allow the

polarization to oscillate with the carrier frequency of the input. Only the component χ(3)
xxxx

of the third order susceptibility tensor is of importance under the described assumptions.

The propagation of the light can be described by the reduced wave equation which takes the

form [15, chap. 2]

∂2Ei
∂z2 −

n2
0
c2
∂2Ei
∂t2

= 1
ε0c2

∂2P(3)
i

∂t2
(1.8)
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where ε0 is the vacuum permittivity, c is the vacuum speed of light and the linear refractive

index is defined as

n0 := <
{√

1 + χ(1)
}

CS2≈
√

1 + χ(1). (1.9)

A central wavelength of λ = 700nm implies the duration of an optical cycle of T ≈ 2.3fs.

Since the pulse duration, i.e. the width of the envelope A(t), of the light that was gener-

ated by the used laser system was at least ten times longer, it is appropriate to apply the

slowly varying envelope approximation (SVEA) [16, chap. 1] to the electric fields and the

polarization so that the upper equation (1.8) simplifies to

eiω0t
∂

∂z
A(~r, t) = i

ω2

2ε0c2k
P(3)
i . (1.10)

It is to note that this equation holds only in a reference frame that travels with the phase

velocity of the central wavelength of the laser pulse. The detailed derivation can be reviewed

in the appendix B. To solve the differential equation, the function A(~r, t) is decomposed into

its amplitude A(~r, t) and its phase φ(~r, t). Plugging expression (1.7) into (1.10) reads

eiφ
∂A

∂z
+ iAeiφ

∂φ

∂z
= i

ω2

ε0c2k
· 3

8ε0χ
(3)
xxxx|A|2Aeiφ. (1.11)

1.3.1 The Nonlinear Refractive Index

The nonlinear refractive index describes the irradiance dependent phase change of light that

travels through a sample of length L. From equation (1.11), it is found

∆φ =
∫ L

0
dz

3ω2
0<

{
χ(3)
xxxx

}
8c2k

A2(~r, t) (1.12)
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For a thin sample and a weak absorber the approximation that ∂A2(~r,t)
∂z

≈ 0 is justified.

Moreover, the irradiance I is

I(~r, t) = nε0c

2 |A(~r, t)|2 = nε0c

2 A2(~r, t) (1.13)

and the substitutions

k = ω0n0

c
, k0 = ω0

c
(1.14)

are made, so that the nonlinear refraction is described by

∆φ = (n2I) · k0L = ∆n · k0L (1.15)

where n2 is the so-called nonlinear refractive index that is related to the real part of the

nonlinear susceptibility through

n2 :=
3<

{
χ(3)
xxxx

}
4n2

0ε0c
(1.16)

for a linear polarized one beam input and an instantaneous material response.

1.3.2 Two-photon Absorption

If the real parts of the left-hand and right-hand side of equation (1.11) are compared, an

expression for the two-photon absorbing process is found which is in particular of impor-

tance for determining beam properties (cf. section 3.1). Through expanding the differential

equation by the factor 2A(~r, t), the equation representing two-photon absorption reads

∂A2(~r, t)
∂z

= −
3ω0=

{
χ(3)
xxxx

}
4n0c

A4(~r, t) (1.17)
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Applying expression (1.13) and defining the two-photon absorption coefficient

β := 3
2
ω0=

{
χ(3)
xxxx

}
n2

0ε0c
2 (1.18)

transforms equation (1.17) to

∂I(~r, t)
∂z

= −β(ω0)I2(~r, t). (1.19)

Consequently, the irradiance drops within a sample of length L to

I(L, x, y, t) = I(0, x, y, t)
1 + βLI(0, x, y, t) (1.20)

where I(0, x, y, t) is the input irradiance. Again, this result is only correct if the assumptions

stated in this section are valid and linear absorption is negligible.
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2 EXPERIMENTAL TECHNIQUE

2.1 The Z-scan

2.1.1 Fundamental Idea

The performed experiments were all done by means of the Z-scan technique which was in-

vented at CREOL, The College of Optics and Photonics in 1989 [17]. By now, the method to

measure third and fifth order nonlinearities is widely used and the original publication that

introduces its fundamental theory [18] is cited more than 3000 times. The idea of Z-scan is

based on the change of the laser beam irradiance along its propagation direction which alters

the magnitude of the material’s nonlinear response according to equations (1.15) and (1.20).

Focused laser light exhibits high peak irradiances at the beam waist as well as a fast beam

divergence. Thus, a sample is placed behind a lens and shifted with respect to the focal

position, in other words: scanned along the z-axis. The induced change of the magnitude of

multi-photon absorption or self focusing is measured at a detector behind the sample. While

the absorbance of the sample is determined from the power ratio between the light that is

incident on the sample and the light that is transmitted through the sample, the magnitude

of self focusing must be derived from the beam size at a particular position z′′. Knowing the

radial distribution of the laser beam and setting a radially symmetric aperture at position z′′

allows to obtain the amount of nonlinear refraction that is introduced by the sample under

test. The essential procedure is animated in media 2.1.

The main advantages of the Z-scan method are simplicity and sensitivity. The technique
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Media 2.1: The concept of Z-scan.

The detector signal changes dependent on the sample position z′.

is relatively simple because it is based on the effects of self action, i.e. the central frequency

of the incoming and outgoing light field does not change. Therefore, no phase matching is

necessary like in third harmonic generation measurements, which makes the technique appli-

cable to a wide range of materials. Moreover, the basic Z-scan is a single beam experiment.

While optical Kerr effect and degenerate four wave mixing experiments require the spatial

and temporal overlap of at least two beams, Z-scan only requires to align the aperture with

respect to the z-axis properly. Furthermore, only one Z-scan may reveal magnitude and sign

of the samples nonlinear refractive index and the multi-photon absorption coefficient.

Nonlinear phase distortions can be measured with interferometric sensitivity which can be

explained by the fact that the setup is comparable to a single beam interferometer as illus-

trated in figure 2.1. The sensitivity increases with a decreasing aperture radius [18]. A good

compromise between sensitivity and signal to noise ratio was found by allowing one third of

the laser power passing through the aperture if no nonlinear refraction occurs.
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Figure 2.1: Induced single beam interferometer.

Left: Induced optical resistance distribution in the Z-scan setup for a Gaussian beam. The
wings of the beam travel faster through the sample than the central part.
Right: Optical resistance distribution of a classical Fresnel biprism interferometer. The
higher |x| the less optical resistance the light has to overcome as in the previous case.

2.1.2 Z-scan Theory for Thin Samples

For Gaussian pulses which are in good approximation generated by the laser system described

in section 2.2, the complex electric field takes the form

E(z, r, t) = A0√
1 + z2

z2
0

· exp

− r2

w2
0

(
1 + z2

z2
0

) − ikr2

2z (1 + z2
0/z

2) −
t2

τ 2
G

+ iφ(z, t)

 (2.1)

and according to equation (1.13) the irradiance reads

I(z, r, t) = I0

1 + z2

z2
0

· exp

− 2r2

w2
0

(
1 + z2

z2
0

) − 2t2
τ 2
G

 (2.2)

where z is the distance to the beam waist location along the propagation axis, r is the radial

distance to the peak of the pulse, t is the time delay with respect to the peak of the pulse,

I0 is the peak irradiance

Ip = I0

1 + z2

z2
0

(2.3)
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at z = 0, w0 is the beam waist, defined as beam radius of (I0·e
− 2t2
τ2
G )/e2 irradiance (HW1/e2M),

z0 is the Rayleigh length or Rayleigh range which is defined as the location z where Ip(z0) =
1
2I0 and can be expressed as

z0 = πw2
0

λ
. (2.4)

τG is HW1/e2M with respect to the Gaussian temporal intensity shape. However, it is

usually referred to the shape independent pulse duration τp which is defined as FWHM of

the temporal intensity shape of a laser pulse. The pulse duration is connected to τG through

the relation

τp =
√

2 · ln 2 τG. (2.5)

Moreover, the z-dependent beam width is defined as

w(z) = w0

√
1 + z2

z2
0
. (2.6)

The expression thin sample is derived from the fact that the sample length L must be shorter

than the Rayleigh range z0 in order to assume constant peak irradiance over the sample

length. Furthermore, the approximation is only valid if the nonlinear light matter interaction

is small such that the shape of a laser pulse is not significantly changed. Through preparing

samples with less than 1mm length and not allowing signals to deviate more than 15% from

the nonlinear interaction free detector signal, the conditions for the upper approximations

were generally fulfilled.

In the case of pure nonlinear refraction, the sample induced phase distortion of the pulse
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can be described as

∆φ(z, r, t) = n2I0k0Leff

1 + z2

z2
0

· exp

− 2r2

w2
0

(
1 + z2

z2
0

) − 2t2
τ 2
G

 (2.7)

according to equation (1.15). The more general effective length Leff is used instead of the

physical sample length L in the upper equation. The effective length takes into account the

linear absorption effects and is defined as [18]

Leff = L
(1− Tlin)
ln(1/Tlin) (2.8)

where Tlin is the linear transmittance that is T ≈ 99.9% for a 1mm CS2 sample. Consquently,

the pyhsical length is reduced by about 0.5µm which is negligible.

The light field Ee(z, r, t) emerging from the sample under test must be propagated to the

aperture in order to derive its beam size at this particular location. Within the thin sample

approximation the electric field at the sample position z′ is

Ee(z′, r, t) = E(z′ − L, r, t) · e−i∆φ(z′,r,t) (2.9)

where the sign of the exponent is in agreement with the radius dependent phase term in

equation (2.1). Otherwise, the correct sign of the nonlinearity cannot be extracted from the

analysis.

Wearie et al. [19] proposed to propagate the terms of the exponential power series solely in

order to reduce the electrical field to a sum of Gaussian beams which can be analytically

propagated [20]. The electric field at the aperture plane, which is situated at the distance
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z = d, reads

Ea(d, r, t) = E(z′ − L, 0, t)
∞∑
m=0

[−i∆φ0]m

m! ·
√

1 + d2

d2
m

· exp
{
− r2

w2
m(d) −

ikr2

2d (1 + d2
m/d

2) + i arctan(d/dm)
}

(2.10)

where dm is the Rayleigh length and wm(d) is the beam size of the mth Gaussian component.

The phase distortion ∆φ0 is defined as

∆φ0 = n2I0k0L

1 + z′2

z2
0

(2.11)

It turns out that the higher order and fast diverging Gaussians only have a small impact on

the detector signal, for the beam size is expressed as

wm(d) = w0 ·
√

1 + d2/d2
m

2m+ 1 . (2.12)

Therefore, only several low order terms have to be taken into account in order to calculate

the signal the detector should display. Eventually, the measured Z-scan transmittance is

calculated by [18]

Tn2(z′) = 4
∫∞
−∞

∫ ra
0 |Ea(d, r, t)|

2 rdrdt

Sw2
0
∫∞
−∞ |E(t)|2 dt

(2.13)

where

S = 1− e−2r2
a/w

2
0(d) (2.14)

is the linear aperture transmittance and ra is the aperture radius.

In the case of two-photon absorption measurements the aperture is opened such that S ≡ 1.

The propagation of the beam emerging from the sample is unnecessary but the transmittance
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dependence on the sample position z′ must be described. The power at the detector is

P (d, t) = 2πTlin
∫ ∞

0
drr

I(z′, r, t)
1 + βLeffI(z′, r, t)

= Tlin ·
πw2

0 (1 + z′2/z2
0)

2βLeff
ln (1 + βLeffI(z′, t)) (2.15)

according to equation (1.20). Finally, the sample transmittance reads

T2PA(z′) = (1 + z′2/z2
0)√

πβLeffI0
·
∫ ∞
−∞

dt′ ln
(

1 + βLeffI0e
−t′2

1 + z′2/z2
0

)
. (2.16)

Further calculation details are shown in appendix C. If the signal is altered by effects resulting

from a finite aperture size, the measurement is denoted by the term closed aperture Z-scan

while the nonlinear absorption measurements are called open aperture Z-scans.

2.2 Experimental Setup

2.2.1 Ultrafast Laser

The short pulses are generated by a commercial laser system of the Clark-MXR CPA series

(model 2001). The laser operates at λ = 778.5nm and 1kHz repetition rate in the Gaussian

shaped TEM00 mode. The energy of the generated τp = 140fs pulses is about 1mJ which

corresponds to an average power of P̄ = 1W and a pulse peak power of Pp = 6.7GW .

In principle, the system consists of an oscillator, a pulse expander, a regenerative amplifier

and a pulse compressor. The resonator consists of an Er3+, i.e. erbium-doped fiber which is

pumped by a diode laser operating at λ = 980nm. The oscillator is passively mode-locked

through the method of stretched-pulse polarization rotation additive mode-locking which

was originally proposed by K. Tamura et al. [21]. The polarization rotation in the fiber is

induced by self as well as cross phase modulation which is based on the effect of nonlinear
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refraction. The pulse dispersion of linear polarized output is compensated and the light is

frequency doubled in a periodically poled lithium niobate crystal. Doped fiber oscillators

have several advantages. They are very compact and provide high gain as well as a large

gain bandwidth which allows relatively low pump powers and makes fs-pulse generation

possible. Another important property is the stability of mode-locked fiber lasers in the case

good temperature control.

In order to make the short pulses very intense, the principle of chirped pulse amplification

[22] is applied. By means of a transmission grating pair, spectral phase is added to the short

pulses in order to expand them and decrease their peak power. Some of the longer pulses

are picked by a polarization controlling Pockels cell and send into another cavity. An Al2O3,

i.e. sapphire crystal doped with optical active Ti3+, i.e. titanium ions serves as the active

medium of the regenerative amplifier. The isolated ions have a broad fluorescence spectrum

that provides optical gain over a wavelength range of about ∆λ = 400nm [23, chapt. 9] which

is very favorable for broadband short pulse generation. The crystal is pumped with light of

λ = 532nm from a Q-switched frequency doubled neodymium:YAG laser. The advantage

of the active crystal is the opportunity to reach fs-pulse energies in the mJ-range. After

several round trips the amplified pulses leave the Q-switched cavity and are compressed again

by another transmission grating to reach their output duration of 140fs.

2.2.2 Optical Parametric Amplifier

The operating wavelength is selected by the commercial optical parametric amplifier TOPAS-

C that is tunable from λmin = 1140nm to λmax = 2600nm. A small percentage of the

incoming laser beam is used to generate parametric superfluorescence in a BBO crystal.

This effect occurs if quantum noise is amplified by phase-matched χ(2)-based three wave

mixing processes [24] or in other words if a pump photon of energy ~ωp decays into a signal
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photon of energy ~ωs and an idler photon of energy ~ωi where

ωp = ωs + ωi. (2.17)

The generated signal photons are used as seed for a preamplification process that is initi-

ated by a first pump beam that is collinearly overlapped with the superfluorescence seed to

stimulate the three wave mixing process. A stable and relatively intense (in comparison to

the superfluorescence spectral component) seed pulse is created that is strongly amplified by

another pump pulse from the CPA laser system.

The signal wavelength is selected by means of the crystal orientation. For χ(2)-processes

the phase-matching between amplified and pump beam is crucial for noticeable conversion

efficiencies. Since BBO is birefringent the phase-matched wavelength is set by the effective

refractive index of the extraordinary polarized light.

During the parametric amplification the pump pulse properties are approximately main-

tained and thus the signal pulse duration is similar to that of the laser system. According to

the manufacturer, the output stability of the commercial parametric amplifier is supposed

to be lower than 2% rms. This is an important factor for effienciently generating the second

harmonic of the TOPAS output which is necessary to access the visible and near-IR spectrum

where the presented measurements were taken.

2.2.3 Prism Compressor

The pulse duration is varied by means of a prism pair. The principle of this dispersive

element is illustrated in figure 2.2. Broadband laser pulses are incident on prism 1 in the

Brewster angle to minimize Fresnel losses. Since the utilized SF10 glass prisms exhibit

normal dispersion, the shorter wavelength parts of the spectrum are stronger refracted than

the longer wavelengths. The pulse spectrum is spatially resolved behind prism one. The

stronger the refraction the longer the distance to the surface of the second prism which is
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Figure 2.2: Setup of a prism compressor.

P1, P2: prisms, RTM: rooftop mirror, l: apex distance, x: translation axis of P2

effective anomalous dispersion. On the other hand, the longer wavelengths travel through

more glass of prism two which results in additional normal dispersion. Taking both effects

into account, it can be shown that the effective dispersion can be negative [25] depending on

the parameters l and x (cf. figure 2.2). Increasing the apex distance leads to more anomalous

dispersion while increasing x enhances the normal dispersion. In addition, the finite beam

size has to be considered and thus also the distance the light travels through the first prism.

Experimentally, the peak open aperture Z-scan signal, which scales with the pulse duration

(cf. equation (2.16)), is used to adjust the apex distance roughly. In order to generate long

pulses, the distance l is increased continuously, the fine adjustment is done afterwards by

changing x. The longest obtained pulse duration is 2.3ps. A further increase of the distance

between the prisms was not possible for the pulse energy losses were to high. Subsequently,

the signal-to-noise ratio was so low that the transmittance signal of the Z-scan could not be

analyzed anymore.

2.2.4 Complete Setup

The complete laboratory setup is sketched in figure 2.3. The beam expander and the first iris
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Figure 2.3: Complete Z-scan Setup.

Ti:Sa CPA - Clark MXR CPA laser system, TOPAS - optical parametric amplifier, PC -
prism compressor, BE - beam expander, ID1, ID2, ID3, ID4 - iris diaphragms, λ/2 - half-
wave plate, PO1, PO2 - linear polarizers, SF - spatial filter, BS1, BS2 - beam splitter, λ/4 -
zeroth order quarter-wave plate, FL - focusing lens, S - sample and D1, D2, D3 - photodiode
detectors.
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diaphragm are used to select a clean Gaussian beam profile. The incoming beam is disturbed

by the multitude of parametric processes which makes cleaning advisable. The beam shape

is checked by means of the beam profiler At long pulse durations (τp > 1.1ps), not enough

energy is available to include the beam expander and and hence those optical elements were

removed. The half-wave plate and polarizer one are used to adjust the pulse energy. The

retardation plate rotates, depending on the orientation of its fast and slow axis, the electric

field vector. This vector is projected onto the the polarization axis of PO1 which leads to

an effective amplitude change of the linearly polarized light. The spatial filter consists of a

focusing and a collimating lens as well as a pinhole which is placed at the beam focus location.

Pinholes of 120µm and 180µm were used. The iris diaphragms 2 and 3 were basically used to

align the Z-axis properly which is crucial for the closed aperture scans. Polarizer PO2 and the

quarter-wave plate were only inserted into the setup during the measurements that should

reveal the tensor nature of the nonlinear response (cf. chapter 5). The second polarizer

ensures that linearly polarized light enters the retardation plate. The λ/4-plate is of zeroth

order and is recommended for a wavelength range from 700nm to 1550nm. The ellipticity of

the light was smaller than 5% in the case of quasi linear polarized light and higher than 90%

in the case of quasi circular polarization. Focusing lenses of 15mm and 25mm focal length

were used to observe nonlinear refraction and absorption at high signal-to-noise ratios. The

sample is shifted along the z-axis by means of a computer controlled motor that rotates

a fine adjustment screw of a Klinger Scientific translation stage. The beam splitter one

sends a small percentage of the beam energy to a reference detector. Dividing the signal

by the reference reduces the error caused by pulse energy fluctuation. The iris diaphragm 4

is adjusted to a radius ra that corresponds to a linear aperture transmittance of S = 0.33

which has proved as a good compromise of measurement sensitivity and signal-to-noise ratio.

Detector 2 measures the closed and detector 3 the open aperture signal. In the case of the

polarization measurements beam splitter 2 was replaced by a mirror in order to eliminate

the polarization dependence of the beam splitter.
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2.2.5 Alignment Procedure

In order to measure data that is comparable to the theoretical curves, alignment is absolutely

crucial. It is necessary to make sure that the beam after the beam expander and the spatial

filter is well collimated which was checked by means of two mirrors that projected the beam

on a wall of the lab at an optical distance of about 10m. The pinhole position can be aligned

by means of a x-y-z translation stage. A maximal throughput and a symmetrical beam

spreading upon small misalignment is adjusted in order to optimize the filtering of higher

order spatial frequencies. The iris diaphragms indicate the direction of the z-axis. The beam

is centered at these apertures before the optical elements along the z-axis are placed into the

setup. The beam profile camera, placed behind the second aperture ID3, allows to align the

central position very precisely. The optical elements, lens, if necessary quarter-wave plate

and polarizer, are afterwards gradually inserted into the setup. The back reflection of the

elements is checked first in order to avoid tilt and consequently beam walk-off. Afterwards,

the x-y location of the lens is adjusted such that the beam profile behind the aperture ID3

remains concentric. All of these alignment are double-check by means of the beam profiler.

Next, the sample is inserted in the far field, i.e. no nonlinearities can be detected at this

sample location. The sample is just tilted enough that its back reflections are not detected.

Of course, the symmetry of the beam behind the iris diaphragm must be maintained. Finally,

the beam splitter BS2 is adjusted such that the beam is centered at the aperture ID4 as

well.

2.3 Application of Gaussian Quadrature in the Data Analysis Algorithm

As section 2.1.2 has shown, it is necessary to solve integrals numerically in order to compare

theoretical Z-scan curves with numerical data. This is in particular a computational issue in

the case of the closed aperture Z-scan where integrations over space and time are performed.

In order to reduce the time consumption of an accurate data fit, fast integration algorithms
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must be applied. The Z-scan analysis contains integrals of quite similar functions which

do not have any singularities because of their physical origins. These properties lead to the

opportunity to apply Gaussian quadrature algorithms instead of the conventional trapezoidal

rule, Simpson’s rule or Romberg’s method.

Every integral

∫ 1

−1
f(x)dx (2.18)

can be solved exactly by the quadrature

n∑
k=1

wkf(xk) (2.19)

if f(x) is a polynomial of the order 2n − 1 [26]. The idea of the Gaussian quadrature is to

find the weights wk and abscissas xk which establish the equivalence of (2.18) and (2.19).

The interval [−1, 1] can be extended by variable substitutions to an arbitrary interval of

integration, such that even improper integrals can be solved. The choice of the weights

depends on the endpoints of the integration. In the Z-scan analysis program two weighting

formulas are used

• Gauss-Legendre formulas for the intervals [0, ra] and

• Gauss-Hermite formulas for the interval (−∞,∞).

The weights and abscissas are tabled in the "Handbook of Mathematical Functions" by M.

Abramowitz and I. A. Stegun [27] for both integral types. However, the book also presents an-

alytic expressions for wk so that values were calculated numerically to determine an optimal

number of integration points. For the Gauss-Legendre integration, 25 points are calculated

and 12 for the Gauss-Hermite integration. These were saved in a text file which is loaded

at the launch of the analysis program. The example
∫ 1

0 exp(−x2)dx in figure 2.4 shows how

fast the Gaussian quadrature converges to the correct value.
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Figure 2.4: Convergence of the Gaussian quadrature algorithm up to a precision of 10−12.

The example
∫ 1

0 exp(−x2)dx = 0.746824132812 + O(10−13) shows how fast the Gaussian-
Lengendre quadrature converges. Only eight points are necessary to obtain the arbitrarily
chosen precision.

Introducing these algorithms into the data analysis program has made it possible to apply

automatic least square fitting routines to the taken raw data. Consequently, measurement

uncertainties are reduced and the applicability of the parametrization of the temporal re-

sponse can be evaluated.
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3 PULSE WIDTH DEPENDENCE OF THE NONLINEAR

REFRACTION IN CS2

3.1 The Measurement Procedure

After aligning the setup, the pulse energy is adjusted by means of rotation of the half-wave

plate. The maximal change in transmittance is usually supposed to be more than 2% and less

than 10% in order to gain a signal that reproduces all features of the material’s third order

nonlinearity but does not violate the thin sample assumptions discussed in section 2.1.2 or

exhibit features of higher order nonlinearities. The energy is measured with a power meter

behind the focusing lens in the z-axis to calibrate the reference detector. Neutral density

filters in front of the detectors are set such that the readings are never below 1V or above

3V. The detectors respond linearly within this range as figure 3.1 shows. An average pulse

energy as well as reference detector signal is determined by taking 5000 data points. During

the measurements, energy fluctuations are limited by acquiring data only if the reference

signal differs less than 2% from the its previously determined average.

The Z-scan is usually performed at two or three spots on the sample (i.e. different x-y posi-

tions of the sample) to exclude errors due to inhomogeneities. The impact of inhomogeneities

is especially present in the open aperture semiconductor scans. Figure 3.2 shows an example

where two different spots reveal significantly distinct beam parameters. Moreover, the pulse

energy is varied to assure that no higher order effects are present. Per sample location z′,

50 data points are taken and averaged. Resembling curves of different spots are averaged,
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Figure 3.1: The linearity of the photo detectors.

The slope of the fitted line is 1V/nJ .

Figure 3.2: Effects of sample inhomogeneities.

The only difference between these measurements is the spot where the light beam hits the
ZnSe sample. Case a) is reproducible at other spots and thus case b) is omitted in further
evaluation.
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too. Data is acquired for 200 sample locations z′ during each Z-scan. The scan range is 4cm

which assures that the sample is measured in the far field behind as well as in front of the

focus.

Before comparing computed curves and measured data, the detector signal must be nor-

malized. The Z-scan theory of chapter 2.1.2 is based on the fact that the transmittance

signal is one if no nonlinearities occur. All linear losses behind the sample do not have to be

analyzed, but the signal in the far field position must be normalized to one. Moreover, the

point of minimal transmittance is shifted to z = 0 in the case of an open aperture scan since

the beam waist is minimal at this location and thus the two-photon absorption is maximal.

In the case of nonlinear refraction, the unity transmittance point between peak and valley

of the signal is shifted to z = 0 which is plausible if the optical power of a thick lens is

considered:

Φ = Φ1 + Φ2 − dΦ1Φ2 (3.1)

where the optical power Φ is the inverse of the focal length. If the sample location is at z = 0

and the light illuminating the focusing lens is collimated, the lens thickness is d = 1/Φ1 and

thus

Φ = Φ1 (3.2)

which is equivalent to the systems optical power if the sample is in the far field. After the

normalization is done by eye, the theoretical curves computed by equations (2.13) and (2.16),

resp. are fitted to the acquired data. Since the beam waist determines the beam divergence,

the open and closed aperture Z-scan signal is clearly more sensitive to a change of the beam

waist than to a change of pulse duration and refractive index, resp. Consequently, the beam

waist is determined by the shape of the open and the closed aperture signal. Although this is

done by eye, a measurement uncertainty of less than ±0.5µm is justified. An example for the
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determination of the beam waist is explained by means of figure 3.3. The pulse duration is

derived from the zinc selenide (ZnSe) open aperture Z-scans for λ = 700nm. The two-photon

absorption coefficient β is taken from the literature [28] and set as βZnSe = 5.6 cm
GW

. The

λ = 1064nm open aperture measurements were performed with cadmium selenide (CdSe)

as reference sample with βCdSe = 23.0 cm
GW

. Other semiconductors and fused silica are used

to check the validity of the utilized two-photon absorption coefficients. The closed aperture

data is fitted by means of a least square algorithm which is equivalent to the variational

ansatz

δAfit = δ
∫ ∞
−∞
|Tn2(z′)− Tn2(z′)| dz′ != 0. (3.3)

where Afit is the area between theoretical transmittance Tn2(z′) and measured transmittance

Tn2(z′). The integral is calculated numerically with Simpson’s rule. The variation is basically

done on a trial and error basis. The algorithm first tries zero nonlinearity and increases

afterwards n2 in steps of 10−15 cm2

W
until Afit grows. Afterwards the nonlinear refractive index

is decreased in steps of 10−16 cm2

W
until the area between both curves is getting larger again.

Finally, Afit is minimized by increasing n2 in steps of 10−17 cm2

W
which is set as the precision

of the fit algorithm. In order to emphasize peak and valley of Tn2(z′), where less points are

taken than at the wings, the data is weighted on a linear scale from one to five. The further

a data point is away from unity transmittance the higher its weighting factor. For example,

three data points are measured, the first at T1 = 1.00, the second at T2 = 1.10 and the third

at T3 = 1.03. The weights are subsequently w1 = 1, w2 = 5 and w3 = 2.2. Only 50 points in

the vicinity of z = 0 are used to fit the data. The other points at the far wings are mainly

considered during the normalization routine. Figure 3.4 illustrates the fitting routine which

is applied to all of the averaged normalized Z-scan data that was measured. The results for

the same pulse duration but different energies are averaged to one value. The average takes

into account the standard deviation obtained from the least square fits by weighting with its
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Figure 3.3: Determination of the beam waist by means of the open and the closed aperture
Z-scan analysis.

The open aperture signal a) is well fitted at the wings by w0 = 19.3µm. The w0 = 20.3µm
curve fits the peak better than the red curve, w0 = 18.3µm is clearly to small. On the
other hand, the blue curve fits the wings of the closed aperture signal b) well although the
peak-valley distance is too small. The large beam waist does not look appropriate for the
closed aperture data and thus w0 = 19.3µm is chosen as the beam waist for further analysis.
Pulse duration and nonlinear refractive index are adjusted to the signal extrema. Further
measurements at different energies are evaluated to determine the beam waist.
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Figure 3.4: Illustration of the n2 least square fit routine for a prenormalized curve.

The best fit with a precision of 10−17 cm2

W
is obtained for n2 = 3 · 10−15 cm2

W
. Consequently,

the routine starts decreasing n2 in steps of 10−16 cm2

W
at n2 = 4 · 10−15 cm2

W
until it overshoots

the best fit n2 = 2.7 · 10−15 cm2

W
. Finally, the refractive index is increased in steps of 10−17 cm2

W

until the best fit is obtained.

inverse.

3.2 Effective n2 for Gaussian Laser Pulses at λ = 700nm

As indicated in section 1.1, the nonlinear refraction of light in CS2 is influenced by nuclear

motions and thus changes in time. Owing to the subsequent importance of the shape of the

short laser pulses, the term "effective n2" is used. The equation (1.15), i.e. ∆n(t) = n2I(t),

is not applicable for the case of a time dependent nonlinear refractive index. Instead, the

change of the refractive index must be expressed as

∆n(t) = n2,eff · f(t) (3.4)

where the function f(t) contains the time dependency of the material’s response function

and the laser pulse. Nonetheless, an effective n2,eff can be derived that appears to satisfy
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Figure 3.5: Example for the closed aperture data analysis for light of the wavelength λ =
700nm.

The average effective nonlinear refractive index for the pulse duration 172fs is determined
to be n2,eff = 5.74 · 10−15 cm2

W
.

the equation ∆n(t) = n2I(t). Since the ultrashort pulses of many laser systems are fairly

well described by a Gaussian shape, the effective values are of relevance although they are

not pure material properties. The pulse duration dependent n2,eff are obtained by the

procedure described in the previous section. Figure 3.5 shows an example of fitted closed

aperture curves for a pulse duration of 172fs. All determined effective nonlinear indexes in

the temporal range from 31fs to 2085fs are presented in table 3.1.

3.3 Effective n2 for Gaussian Laser Pulses at λ = 1064nm

Similar effective n2 measurements were performed at a central pulse wavelength λ = 1064nm.

However, only the temporal range from 70fs to 340fs is scanned. Shorter pulses could not

be generated because the spectral bandwidth the parametric amplifier provides is smaller

than for λ = 700nm. Again, a closed aperture Z-scan example is shown in figure 3.6 and the
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Table 3.1: Effective nonlinear refractive indexes for Gaussian shaped laser pulses with central
wavelength λ = 700nm.

τp (fs) n2,eff (10−15 cm2

W
) τp (fs) n2,eff (10−15 cm2

W
)

31 2.33 217 6.55

32 2.02 235 6.61

33 2.79 265 6.71

37 2.37 313 8.13

43 2.36 368 8.41

48 2.99 495 9.88

57 2.67 585 9.48

65 2.79 620 10.99

67 2.86 680 10.87

83 3.01 865 12.23

92 3.65 1015 12.69

105 3.89 1163 12.08

119 4.06 1412 13.74

125 4.87 1640 14.72

147 4.74 2085 15.75

172 5.74
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Figure 3.6: Example for the closed aperture data analysis for light of the wavelength λ =
1064nm.

The average effective nonlinear refractive index for the pulse duration 130fs is determined
to be n2,eff = 3.87 · 10−15 cm2

W
.

derived values for n2,eff are shown in table 3.2.

3.4 Error Analysis

The measurement uncertainties of the effective values of tables 3.1 and 3.2 shall be analyzed

in this section. A straightforward error analysis is not possible in the scope of the Z-scan

theory because of the non-analytic character of the expressions (2.13) and (2.16). A phen-

emenological model is provided that estimates the total error if the measurements. It is

investigated by means of the least square fit routine how the determined effective nonlinear

refractive index changes upon a small variation of a single parameter, for the uncertainty of

n2 is calculated by

un2(λ,E, τp, w0) = |∂n2

∂λ
|uλ + |∂n2

∂E
|uE + |∂n2

∂τp
|uτp + | ∂n2

∂w0
|uw0 (3.5)
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Table 3.2: Effective nonlinear refractive indexes for Gaussian shaped laser pulses with central
wavelength λ = 1064nm.

τp (fs) n2,eff (10−15 cm2

W
)

70 2.44

82 3.24

97 4.19

110 3.87

113 3.64

130 3.87

149 4.66

166 4.86

200 5.34

255 7.10

310 8.05

340 7.93
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Figure 3.7: Change of n2 upon the variation of a single parameter.

where prevailing systematic errors are assumed. For this purpose, a theoretical closed aper-

ture curve was created with the parameters τp = 920fs, E = 28.6nJ , w0 = 18µm, λ = 700nm

and n2 = 13.5 · 10−15 cm2

W
. Figure 3.7 shows that n2 generally changes fairly linearly upon

the variation of λ, τp, w0 and the inverse of the pulse energy, resp. It is to clarify that the

plot of n2 over τp does not show the refractive index change in CS2 in dependence of the

pulse duration, but it exhibits which effective nonlinear refractive index is measured if for

instance a pulse duration of 900fs is assumed instead of the real pulse duration 920fs. The

oscillations around the lines in the plots c) and to a small amount also d) can be attributed

to the change in the transmittance signal shape, which is not present upon the variation of

the pulse duration and pulse energy for only beam waist and wavelength change the beam

divergence. This is the reason why the determination of w0 can be separated from the deter-
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mination of the other parameters. The central wavelength is measured with a spectrometer

and does scarcely change during the experiments. The fairly linear change of n2 upon small

wavelength variations explains partly why only the central wavelength is considered in the Z-

scan theory although a wave packet composes the short pulse. The pulse energy is controlled

by the reference detector and does therefore certainly contribute by 2% to the measurement

uncertainty. Errors caused by the photodetector and the data acquisition have to be added

as random errors to the relative energy uncertainty which is about 7%. Wavelength and

beam waist can be seperately determined and do not change much during the measurments

so that they mainly underly a relatively small systematic error of less than 5nm and 4%,

resp. The most uncertain parameter is the parameter is the pulse duration. An error of the

two-photon absortion coeffient does directly propagate to the uncertainty in the pulse dura-

tion since the beam waist is double-checked by the closed aperture scans. Furthermore, the

uncertainties of the beam waist and the pulse energy affect the pulse duration determination

through an open aperture scan. Consequently, a 10% relative measurement uncertainty of

τp is estimated. Therefore, an external pulse duration measurement, e.g. with an autocorre-

lator, would help to reduce the total measurement error. Moreover, information about the

pulse shape could be revealed. Neither errors resulting from a non-Gaussian pulse shape nor

errors resulting from imperfect alignment are taken into account in equation (3.5). To con-

sider these effects as well, a phemenological additional error of 3% is added to a total relative

error which is estimated to be 25% for a single closed aperture Z-scan measurement. The

relatively high measurement uncertainty shows up for example in the comparison between

the effective n2 at 32fs and 33fs in table 3.1 as well as at 97fs and 113fs in table 3.2.

At longer pulse durations the spatial resolution of the pulse bandwidth between the prisms

was larger than the width of the second prism. That led effectively to manipulations of the

pulse spectra and thus also to a change in the temporal shape. If these shape changes affect

the determined effective n2 values severely, is not clear yet and should be subject of future

work.
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Figure 3.8: Effective nonlinear refractive indexes at λ = 700nm and λ = 1064nm.

3.5 Effective n2 Measurements: Conclusions

The measured effective n2 are plotted in figure 3.8. The values for λ = 700nm and λ =

1064nm do not differ much which indicates that no significant dispersion of n2,eff is present

in this spectral range. The nonlinear refractive index generally grows with increasing pulse

duration. The slope of the effective n2 is relatively small below 100fs in comparison to

longer pulse durations. This is the signature of nuclear motions that cannot instantaneously

follow the light field but become increasingly significant for τp > 100fs. The measurement

uncertainties are especially significant at very short pulse durations. The measured relative

fluctuations of n2,eff become clearly smaller at longer pulse durations. This curve offers a

good reference for short laser pulse applications where the nonlinear refraction in CS2 is

involved.
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4 PARAMETRIZATION OF THE TIME DEPENDENCE OF n2 IN CS2

4.1 Nuclear Motions in the Neat Liquid Carbon Disulfide

4.1.1 Molecular Origins of n2

The previous chapter has shown that not only the bound electronic response of CS2 deter-

mines the nonlinear refractive index of the material but nuclear motions significantly change

its optical properties at pulse durations longer than 100fs. This section investigates the

origins of these nuclear motions in order to describe them mathematically and involve them

in the Z-scan analysis.

The Born-Oppenheimer approximation [29] is fundamental for a separated treatment of

electronic and nuclear contributions. It states that the inert nuclei cannot follow the rapid

motions of the light electrons. Moreover, the electrons react quasi instantaneously to the

light field while the nuclei do not notice the fast carrier oscillations but only the electric field

envelope.

The nuclear contributions to n2 can be basically divided into single particle effects and in-

teraction induced effects. The single particle or quasi interaction free effects are due to a

collective orientation of the non-symmetric molecules [15, chap. 4] which is energetically

favorable. The torque ~M induced on a dipole ~p by a homogeneous electric field ~E is

~M = ~p× ~E. (4.1)
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according to classical electromagnetic theory. Consequently, the molecules try to rotate until

~p and ~E are parallel which means that no electric field induced force is exerted on the nuclei.

If the interaction with other molecules is neglected, the molecules’ dipole reads

~p = α̃ ~E (4.2)

where

α̃ =


α⊥ 0 0

0 α⊥ 0

0 0 α||

 (4.3)

is polarizability tensor in the principle axis frame of the molecule. The ⊥ sign denotes the

polarizability perpendicular to the molecular axis and the || sign denotes the polarizability

along the molecular axis. The cigar shape of the CS2 molecules implies that α|| >> α⊥.

Consequently, the randomly oriented particles collectively try to align the molecular axis

along the electric field direction. On the other hand, the thermodynamic ensemble is still

aiming for a high entropy since the energetically most favorable state is not the state of the

lowest electric potential U but of the lowest free energy F which is

F = U − T · S (4.4)

where T is the temperature and S is the entropy. Therefore, the orientational motion is

counteracted by a thermal driven reorientational motion. It can be inferred from equations

(4.1), (4.2) and (4.4) that the amount of molecular alignment and thus the refractive index

change is dependent on the ensemble temperature and the light intensity.
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The electric field in the reference frame of the molecules’ principle axes reads

~E(ϕ, ϑ) = A


− cosϕ sinϑ

sinϕ sinϑ

cosϑ

 (4.5)

Again, according to classical electromagnetic theory, the change of the molecules electric

potential takes the differential form

dU = −~pd ~E (4.6)

which is equivalent to

U = −1
2
(
α||A

2 cos2 ϑ+ α⊥A
2 sin2 ϑ

)
(4.7)

= −A
2

2
(
α⊥ + (α|| − α⊥) cos2 ϑ

)
. (4.8)

Due to the molecular symmetry, the expression is independent of the angle ϕ. Comparing

this expression with the polarization induced energy density of the electromagnetic field gives

< U >= −Ē
2

2 < α > (4.9)

where < . . . > denote the ensemble averages and Ē the time average of the carrier of the

electric field. The time average is due to the inert nuclei which cannot follow the fast

light oscillations according to the Born-Oppenheimer equation. The polarizability induced

refractive index is derived from the Lorentz-Lorenz equation [15, chap. 4]

n2 − 1
n2 + 1 = N < α >

3ε0
(4.10)
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where N denotes the number density of molecules. The ensemble average takes into account

the entropy term of equation (4.4). Assuming a classical Maxwell-Boltzmann distribution,

the ensemble averaged polarizibility reads

< α > = α⊥ + (α|| − α⊥) < cos2 ϑ > (4.11)

= α⊥ + (α|| − α⊥)
∫ π

0 dϑ sinϑ cos2 ϑe−U(ϑ)/(kBT )∫ π
0 dϑ sinϑe−U(ϑ)/(kBT ) (4.12)

= α⊥ + (α|| − α⊥)
∫ 1
−1 dξξ

2eJξ
2∫ 1

−1 dξe
Jξ2 (4.13)

where

J := α|| − α⊥
2 · A

2

kBT
(4.14)

and kB denotes the Boltzmann constant. For J < 5, the number of oriented molecules grows

quasi linearly with the intensity of the light field [15, chap. 4]. This value corresponds to

an intensity of ≈ 1013 W
cm2 at room temperature which is about three orders of magnitude

higher than the peak intensities of the performed measurements. Consequently, the ensemble

averaged polarizability can be approximated as

< α > ≈ α⊥ + (α|| − α⊥)
(1

3 + 4J
45

)
(4.15)

and the nonlinear refractive index reads

n2 = N

45n2
0ε

2
0c

(
n2

0 + 2
3

)4 (α|| − α⊥)2

kBT
. (4.16)

4.1.2 Time Dependence of the Nuclear Response

The previous section explains why nuclear motions contribute to the nonlinear refractive

index n2. The presented theory however does neither involve a time dependence of the
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polarizability tensor nor a time dependent electric field. While this theoretical treatment is

sufficient for static fields and quasi continuous electromagnetic waves, it has to be extended

in the case of ultrashort laser pulses.

A sharp Lorentzian peak in dynamic light scattering spectra of CS2 [30] indicates that the

reorientational motion of the molecules is described by an exponential function. Therefore,

the rotational motion can be modeled by a driven damped harmonic oscillator [31]:

I d
2∆ϑ
dt2

+ ξ
d∆ϑ
dt

+ κ ·∆ϑ = α|| − α⊥
3

(
n2

0 + 2
3

)2

· A(~r, t) sinϑ cosϑ (4.17)

where ∆ϑ is the angular deviation from the molecules equilibrium position ϑ, I is the

molecule’s moment of inertia, ξ represents the internal friction and κ denotes the elastic

force constant of the assumed harmonic potential. The temperature effects are consequently

included in the internal friction coefficient. The upper equation rewritten in terms of n2

reads [31]

I
κ

d2∆n
dt2

+ ξ

κ

d∆n
dt

+ ∆n = n∗2I(~r, t) (4.18)

where

n∗2 = 2N
15n2

0ε0c

(
n2

0 + 2
3

)4 (α|| − α⊥)2

κ
(4.19)

While R. Cubeddu et al. [31] interpret the underdamped solution of equation (4.18) as a

librational motion of the molecules, i.e. a hindered orientation which results in an oscillatory

“molecular rocking”, McMorrow et al. [32] point out that also an overdamped solution of

the differential equation can for example be physically interpreted through the quasi free

orientational motion which is discussed in the previous chapter. Multiple solutions of the

initial differential equation are possible because ξ and κ are averaged quantities of an initially

highly random medium which may be considerably different if the environment of a single
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Figure 4.1: Rotational motions contribution to the nonlinear refraction.

In a), the red colored molecule is confined in the potential of two other aligned molecules
which do not feel the torque induced by the external electric field. The red colored molecule
starts oscillating in the potential of the neighboring molecules, κ is large. In b), the three
molecules are mutually fairly aligned and collectively start an orientational motion, κ is
smaller than in a). In c), the molecules are perfectly aligned, no molecular motion occurs, κ
is zero.

molecule is considered. The force constant κ may be therefore interpreted as indicator of

the mutual alignment of molecules along the electric field direction. Consequently, κ decides

if a particular molecule changes its orientation (small κ) or starts to librate (large κ). Fig-

ure 4.1 illustrates three cases of the molecular reaction upon an external light field in the

zero-temperature limit. It indicates that κ generally decreases with an increased degree of

alignment along the electric field axis. It can be inferred that the quickly occuring librational

motion is suppressed by the slower orientational motion of the molecules. McMorrow et al.

[32] estimate the time constant of the librations to be shorter than 170fs and the time con-

stant of the diffusive reorientational motion to be longer than 1ps in simple liquids. The fact

that the time ranges of both effects are quite distinct suggests to treat them independently

[33]. However, a more precise treatment, as employed in molecular dynamics simulations

[34], includes a dynamic correlation function F (t) in the total contribution to the intensity
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induced phase change due to rotational motions

∆φ(t) ∝ (1 + F (t))∆φSP (t). (4.20)

The function F (t) takes into account the degree of alignment in the medium and ∆φSP2 is

the nonlinear refractive index due to single particle effects.

The fact that nuclear contributions to n2 were also observed in atomic liquids [35] indicates

that not only rotational motions determine the time dependence of n2. Since atoms only

have translational degrees of freedom, the refractive index change is attributed to a so-called

translational anisotropy. The environment of an atom or molecule is altered through light

induced dipoles. The molecule is hence not at its energetically favorable location and moves

along the induced field gradient. The also called collision induced motion is orthogonal to

the rotational motions and can thus be separated from other nuclear contributions to n2

[34]. Although dynamic light scattering spectra show that the collision induced effects do

not exhibit an exact Lorentzian shape, optical Kerr effect studies imply that the temporal

description of the motion is well matched by an exponential rise and decay function [12, 33,

36].

4.2 Macroscopic Description of the Noninstantaneous Material Response

In chapter 1.3, the polarization is generally introduced as a convolution of the time dependent

material response function and the electric fields. In order to obtain the most common

description of the nonlinear refractive index, the assumption of an instantaneous response

is necessary. The determination of the effective n2, presented in chapter 3, is based on this

description. Now, equation (1.4) shall be considered again and treated with regard to the

45



noninstantaneous nuclear response. The expression can be simplified to

P(3)
i (~r, t) = 3ε0

4

∫ ∞
0

dt′R(3)
ijkl(t′)Ej(~r, t)Ek(~r, t− t′)E∗l (~r, t− t′). (4.21)

if the Born-Oppenheimer approximation is valid [37]. The convolution of the field Ej(~r, t)

and the material response has not to be taken into account in equation (4.21). The SVEA

can be applied again and thus the reduced wave equation has still the form of equation

(1.10). Under the assumption of linearly polarized light and after inserting (4.21), the wave

equation reads

eiω0t

(
eiφ
∂A

∂z
+ iAeiφ

∂φ

∂z

)
= iAei(φ+ω0t) 3k0

8n0

∫ ∞
0

dt′R(3)
xxxx(t′)A2(~r, t− t′). (4.22)

By rewriting the complex response function, the intensity induced phase change takes the

form

∆φ
k0L

=
m∑
i=1

n2,i
∫∞
0 dt′ri(t′)I(~r, t− t′)∫∞

0 dt′ri(t′)
(4.23)

where ri(t′) denotes the real response function of the ith contribution to the total nonlinear

refraction and m is the number of independent material repsonses. The response function

acts as a distribution function and is normalized by the denominators of the upper equation.

If the pulse duration is much longer than the decay time of the material response, the function

r(t) becomes δ-like and the single magnitudes of the contributions n2,i can be added up to a

total quasi time-independent nonlinear refractive index. According to the previous section,

there arem = 4 contributions that determine the total material response. However, since the

librational motion and the diffusive orientational motion show correlations, a model where

m = 3 is also investigated.
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The bound electronic response is quasi instantaneous and is thus expressed as

∆φe
k0L

= n2,e
∫∞

0 dt′δ(t′)I(~r, t− t′)∫∞
0 dt′δ(t′) = n2,eI(~r, t). (4.24)

This is consistent with the result (1.15) of chapter 1.3.

According to the overdamped solution of (4.18), the response function can be formulated as

rRO(t) =
(
1− e−t/βRO

)
· e−t/τRO (4.25)

where βRO characterizes the orientational motion which is delayed through the inertia of the

molecules and τRO represents the reorientational motion which is temperature driven.

The interaction induced contributions to the nonlinear refractive index, i.e. librations and

collision induced translational motions, take place on a similar time scale which makes it dif-

ficult to measure them separately. Furthermore, the involved many-body effects complicate

the precise mathematical description of these mechanisms. While Kalpouzos et al. include

both contributions in the analysis of their optical Kerr effect measurements of CS2 [36], Sato

et al. and Hattori et al. attribute the fast component of their measurements to a single

collision-induced process which is supposed to be mainly governed by translational motions

[12, 33]. In any case, the response function of one fast component is described like the re-

sponse function of the diffusive orientation (4.25). However, different time constants βCI and

τCI are involved. The response function of the librations is derived from the underdamped

solution of the differential equation (4.18) which reads

rLIB(t) = e−t/τLIB sin(ωt) (4.26)

where the oscillation frequency would be

ω =
√
κ

I
− ξ2

4I2 . (4.27)
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As discussed in the previous section, the force constant κ may vary drastically due to differ-

ent environments of the single molecules. Subsequently, multiple oscillation frequencies are

present. In order to take this bandwidth into account, Kalpouzos et al. propose to include

an inhomogeneous spectral broadening term, so that the librational response function reads

rLIB(t) = e−t/τLIBe−
t2∆ω2

2 sin(ω0t) (4.28)

where ∆ω represents the spectral bandwidth and ω0 is the central libration frequency.

4.3 Implementation of the Parametrized Nonlinear Refractive Index in the Z-scan

Analysis

It is basically straight forward to implement the previously introduced theory in the Z-scan

analysis since the beam can still be propagated as a sum of Gaussian beams. Only equation

(2.7) has to be adjusted through replacing it by equation (4.23). Keeping the complexity of

the algorithm low is absolutely favorable for a numerical data fitting routine. Subsequently,

it is useful to express the response functions analytically.

The normalization term of equation (4.25) takes the form

∫ ∞
0

dt′rRO,CI(t′) = τRO,CI

(
1− 1

1 + τRO,CI/βRO,CI

)
(4.29)

and the convolution of the response function and the irradiance reads

∫ ∞
0

dt′rRO,CI(t′)I(~r, t− t′) = I(~r) · e
−2t2

τ2
G

√
π

2 τG

·

e
τ2
G
4

(
1

τRO,CI
− 4t
τ2
G

)2

erfc
{

τG√
2 · 4

(
1

τRO,CI
− 4t
τ 2
G

)}

−e
τ2
G
4

(
1

τRO,CI
+ 1
βRO,CI

− 4t
τ2
G

)2

erfc
{

τG√
2 · 4

(
1

τRO,CI
+ 1
βRO,CI

− 4t
τ 2
G

)} (4.30)
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where the complementary error function is defined as

erfc (ζ) := 1− 2√
π

∞∑
m=0

(−1)m · ζ2m+1

m!(2m+ 1) . (4.31)

The argument ζ can take any complex value. The librational response function (4.28) can

be rewritten as

rLIB(t) = =
{
e−t/τLIB+iω0te−

t2∆ω2
2

}
(4.32)

and consequently, an analytical expression for the normalization factor is

∫ ∞
0

dt′rLIB(t′) = =


√

π

2∆ω2 exp
1/τ 2

LIB − ω2
0 − i 2

τLIBω0

2∆ω2

 erfc
[

1/τ − iω0√
2∆ω

] (4.33)

and the expression for the convolution of material response and light intensity reads

∫ ∞
0

dt′rLIB(t′)I(~r, t− t′) = I0(~r)

· =
{

1
2

√
π

∆ω2/2 + 2/τ 2
G

exp
[
−2t2/τ 2

G + (1/τLIB − iω0 + 4/τ 2
G)2

4(∆ω2/2 + 2/τ 2
G)

]

·erfc
1/τ − iω0 − 4t/τ 2

G

2
√

∆ω2/2 + 2/τ 2
G

 . (4.34)

Although these expressions look cumbersome, they are of low computational complexity for

they can be fully expressed in terms of power series. Further calculation details with regards

to the upper expressions are given in appendix D. It was therefore possible to implement

fitting routines in order to find the parameters that match the Z-scan measurements best.

The algorithm is reducing the area between theoretical and experimental transmittance curve

as expressed through equation (3.3). However, the areas of the single Z-scans are added up

and their total sum Afit,tot is minimized. Instead of changing n2,eff , like in the previous

presented routine, the parameters of the response functions are varied to obtain the best
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Figure 4.2: Illustration of the fitting algorithm.

If the initial guess of the parameter is one step smaller than 1.57, the routine will stop in
the red marked area - the exact spot depends on the chosen step width. Otherwise, the
parameter will be stepwise changed until it ends up in the green marked area where the
global minimum is. For example: The initial guess for the parameter is 2 and the rather
coarse step width is 0.25. The algorithm checks subsequently the values 2, 2.25, 2.5, 2.75, 3
and finally 2.5 again to ensure that 2.75 is the best value.

fit. The algorithm determines Afit,tot first, changes one parameter in a predetermined step

width and checks afterwards if Afit,tot is smaller after the change. If the total area is reduced

the routine changes the next parameter, otherwise the first parameter is increased if it was

decreased before or decreased if it was increased before. If neither the first nor the second

variation lead to a smaller area, the parameter remains unchanged. If none of the parameters

changes anymore, the routine stops and the magnitudes of n2 as well as the rise and decay

times are determined. The algorithm converges in any case within the preset precision but it

is not able to find the global minimum of the area Afit,tot but only the next local minimum.

Consequently, the initial guess of the parameters is very important. Figure 4.2 illustrates the

fitting routine for a single parameter. The total area can be interpreted as a m-dimensional

surface where m is the number of parameters. The higher the dimension of the surface

the more likely is a convergence to a local minimum. Consequently, boundary conditions
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Figure 4.3: Long pulse boundary.

The blue data points show results of Z-scans with CS2 samples for pulses of 13ps ≤ τp ≤ 20ps
and the red points show results for 2.5ns ≤ τp ≤ 16.5ns.

were applied to reduce the dimensionality of the surface. The first boundary condition is

derived from previous Z-scan measurements that were done in the Nonlinear Optics Group

of CREOL. As figure 4.3 implies, the sum of the single contributions n2,i must be about

3 ·10−14cm2/W . These results are independently confirmed in a publication of Ganeev et al.

[11]. As a second boundary, the relaxation time of the reorientional motion is fixed because

its value is supposed to be between 1.3ps and 2.2ps according to the literature [12, 38]. A

relaxation time of τro = 1.7ps at the center of this temporal range is assumed. This value

is proposed by Hattori et al. [33] and close to the value determined by Kalpouzos et al.

[36] (1.61ps) whose theoretical models are similar to the ones which are presented in this

thesis. Consequently, the remaining parameters for the three contribution model are n2,e,

n2,CI , βCI , βRO and τCI as well as n2,e, n2,LIB, n2,CI , βCI , ω0, ∆ω, βRO, τLIB and τCI for the

model including librations separately.
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Table 4.1: Fitted parameters for the three and four contribution model.

three contribution model four contribution model

n2,e 1.35 · 10−15 cm2

W
1.50 · 10−15 cm2

W

n2,CI 10.0 · 10−15 cm2

W
13.0 · 10−15 cm2

W

n∗2,RO 18.65 · 10−15 cm2

W
12.5 · 10−15 cm2

W

βCI 105fs 345fs

βRO 40fs 350fs

τCI 160fs 480fs

τ ∗RO 1700fs 1700fs

n2,LIB 3.0 · 10−15 cm2

W

ω0 1.05 · 1013s−1

∆ω 3.0 · 1012s−1

τLIB 390fs
∗ - These parameters were fixed by boundary conditions. The central libration frequency ω0
corresponds to a wavelength of λLIB = 179µm and a spectral line at ν̃ = 56cm−1.

4.4 Fitted Parameters

The step width for n2,e was chosen to be 0.2 · 10−15 cm2

W
, the step widths for n2,CI and n2,LIB

were 0.5 · 10−15 cm2

W
and n2,RO was determined by the long pulse boundary condition, i.e.

n2,RO = n2,e + n2,CI and n2,RO = n2,e + n2,CI + n2,LIB, resp. The times and 1/∆ω0 were

varied in 5fs steps. Eventually, ∆ω was varied in steps of 1011s−1. The 81 Z-scans taken at

λ = 700nm were fitted. The results of the three and four contribution model are shown in

table 4.1.

The theoretical Z-scan curves of the parameter model are fitted with the algorithm ex-
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Figure 4.4: Reproduction of the previously determined n2,eff through the three and four
contribution parameter model.

plained in section 3.1 in order to derive a reference curve for the effective n2. The reference

curves together with the previously determined effective nonlinear indexes are shown in fig-

ure 4.4. The magnitudes of the bound electronic response is relatively small in comparison

to the short pulse results shown in table 1.2 and the effective values determined in table 3.1.

This can be attributed to the slowly arising nuclear contributions which clearly determine

the nonlinear response if long pulses are measured. The convolutions of the response func-

tions and the irradiance are shown for three pulse durations in figure 4.5. The functions

were designed by the parameters of table 4.1 and have arbitrary units. The plots have in

common that the magnitude of the material response grows with the pulse duration. The

longer the pulse, the smaller the contribution of n2,e and the larger the contribution of the

diffusive orientation.

It was investigated how sensitive the reference curves in figure 4.4 are with respect to vari-
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Figure 4.5: Material response plots that are derived from the rise as well as decay times and
the magnitudes of the different contributions.

The plots a) to c) show the modeled response for only one ultrafast contribution while plots d)
to f) distinguish between librational and collision induced motions. The red curves denote the
instantaneous electronic response, the blue curves the ultrafast or collision induced response,
the green curves represent diffusive orientation and the orange curves the librational motion.
The black line shows the sum of all responses which determines basically n2,eff . The pulse
duration that causes the material response is stated in the upper right corner of the plots.
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Figure 4.6: Proportionality of the peak-valley difference and the effective nonlinear refractive
index

ations of a single parameter. An effective nonlinear refractive index is not involved in the

parametrization model but a good measure for n2,eff is the peak-valley difference in the

Z-scan transmission signal TPV . It turns out that

TPV ∝ n2,eff (4.35)

as indicated in figure 4.6. Therefore, if the single measurement n2,eff uncertainty is 25%,

the TPV error is also restricted to 25%. Consequently, the peak-valley differences of the

effective n2 fits were determined and utilized by the parameter fitting algorithm. The least

square fit parameters were individually varied until one of the resulting theoretical Z-scan

curves violated the confidence limits of TPV . It is poblematic however that one of the 81

Z-scans does not exhibit a peak-valley difference interval which corresponds to the TPV

determined by the three contribution parameter fit. In the case of the four contribution

model, there are even three curves that do not meet the initial requirement. These Z-scan

curves were not considered while varying the single parameters. The occurance of a small

number of measurements which do not lie within the determined confidence interval can be

justified since the interval is defined such that it contains a certain percentage of all results

55



Table 4.2: Allowed variations of the parameters in the three contribution model.

result minimal value maximal value

n2,e 1.35 · 10−15 cm2

W
1.20 · 10−15 cm2

W
1.70 · 10−15 cm2

W

n2,CI 10.0 · 10−15 cm2

W
7.8 · 10−15 cm2

W
12.6 · 10−15 cm2

W

n∗2,RO 18.65 · 10−15 cm2

W
16.05 · 10−15 cm2

W
20.85 · 10−15 cm2

W

βCI 105fs 85fs 135fs

βRO 40fs 20fs 440fs

τCI 160fs 120fs 200fs

τ ∗RO 1700fs - -
∗ - These parameters were fixed by boundary conditions.

(often 95%). The allowed variations of the parameters are listed in table 4.2 for the three

contribution model and in table 4.3 for the four contribution model.

The parameters deviate not more than 25% from the best fit value if only one fast nuclear

component is considered. The curve is only relatively unsensitive to the rise time of the

slow nuclear component which could be even one order of magnitude higher than the best

fit value. Owing to the higer number of parameters in the four contribution model, the

variation of a single parameter has less impact on the reference curve. The uncertainties

are consequently higher than in the three contribution model. Especially, changes of τLIB

and ∆ω hardly affect the reference curve. The lower limit of the inhomogeneous broadening

factor could not be determined due to numerical issues for small ∆ω, the maximal value for

τLIB is so far away from the expected range that the algorithm was stopped at times longer

than 6ps.
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Table 4.3: Allowed variations of the parameters in the four contribution model.

result minimal value maximal value

n2,e 1.50 · 10−15 cm2

W
1.30 · 10−15 cm2

W
2.10 · 10−15 cm2

W

n2,CI 13.0 · 10−15 cm2

W
9.5 · 10−15 cm2

W
20.5 · 10−15 cm2

W

n∗2,RO 12.5 · 10−15 cm2

W
5.0 · 10−15 cm2

W
16 · 10−15 cm2

W

βCI 345fs 215fs 470fs

βRO 350fs 20fs 2600fs

τCI 480fs 355fs 575fs

τ ∗RO 1700fs - -

n2,LIB 3.0 · 10−15 cm2

W
2.0 · 10−15 cm2

W
4.5 · 10−15 cm2

W

ω0 1.05 · 1013s−1 0.80 · 1013s−1 1.54 · 1013s−1

∆ω 3.0 · 1012s−1 < 2.0 · 1012s−1 13.9 · 1012s−1

τLIB 390fs 55fs > 6ps
∗ - These parameters were fixed by boundary conditions.
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4.5 Parametrization Model: Conclusions

The three contribution model fits the effective n2 not as good as the four contribution model

but the line in figure 4.4 is still within the measurement uncertainties of the individual data

points. The weak spot of the model is clearly the time range where actually two different

contributions are present. The red curve in figure 4.4 is systematically below the effective

values in the time range between 200fs and 800fs. The difference in the response at the time

range of the fast nuclear response comes clear in the plots b) and e) of figure 4.5. The four

contribution model includes the additional differentiation between two ultrafast responses

and fits the effective values therefore very well. However, the rise time parameters βRO and

βCI are about 350fs and therefore considerably longer than expected. Literature values are

about 100fs or less [33, 36]. The libration frequency and the decay time of the collision

induced contribution are in the expected range. It is unlikely however, that the collision

induced magnitude of n2 is larger than the orientational diffusion magnitude [32, 12, 33]

since the anisotropy of the polarizability tensor is expected to be the main origin of the

relatively high nonlinear refractive index of CS2. Furthermore, the parameters errors are

clearly higher than for the three contribution model and some of the used parameters do not

even influence the theoretical curves severely. It can be concluded that the four contribution

model fits the data well, but does only partly quantitatively represent the physical origins of

the nonlinearities. The major issue of the model can be attributed the ignorance of equation

(4.20). The four contributions may be separable in the case of pump-probe measurements,

where a short, intense pump pulse triggers the molecular motions but for a single beam

measurement it seems necessary to include the correlation between librations and diffusive

orientation. The time-resolved pump-probe measuement basically sees only the the responses

of the plots a) or d) of figure 4.5 (depending on the pump pulse duration). The probe scans

the material response at a later time. In a single beam measurement, all of the presented

material functions of the plots of figure 4.5 are accessible, however the pump is always also
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the pump. Apparently, the degree of alignment in the sample changes in a sufficient amount

to quench the librations when a long pulse excites the material. This does not change the

analysis in the case of plot d) in figure 4.5 since the slow nuclear contribution is still very

small. The applied analysis however drives the librations continuously also in the cases e)

and f) of figure 4.5. Only the orthogonal, translational fast component can be continuously

driven while the trailing edge of the librational component must be steepened in the plots

e) and f). In the case of quenched librational motions, the other nuclear components would

have to take over the early n2 components which might result in faster rise times. To

interpret the results of the model with two fast contributions more accurately, the numbers

of variable parameters would have to be reduced through additional boundary conditions

since the errors of the single parameters are quite large. It was however not possible to find

well founded conditions for that purpose.

The three contribution model is physically rather reasonable. The times where the librations

are expected to launch are covered by an early and wide-spread reorientational contribution

and a steep edge ultrafast response. The fast nuclear contribution has a very short time

span. It is mainly very strong when librations and translational contributions ought to be

present. At later times the diffusive reorientation is mainly contributing to the total material

response. Although the three contribution model distributes the librational contribution

to the remaining ultrafast and the slow nuclear motions, it is physically reasonable and

reproduces the previously determined effective n2 values well. Only the rise time of the

slow nuclear contribution is quite uncertain while the errors of the other parameters do not

question their physical interpretation. Therefore the three contribution model is applied in

later chapters of this thesis.
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5 POLARIZATION DEPENDENCE OF THE NONLINEAR

REFRACTIVE INDEX

5.1 Tensor Nature of the Material Response Function

So far, the presented theory is based on the assumption that the light field that illuminates

the sample is linearly polarized. The third order material response function is however a

fourth-rank tensor and thus the magnitude of nonlinear refraction exhibits a strong depen-

dence on the light polarization. It is to point out that the rise and the decay times presented

in the previous chapter are derived independently of the external light field. Therefore, they

should be also independent of the light polarization.

Due to the optical isotropy of CS2 the tensor R(3)
ijkl can be reduced to four elements [15,

chap. 4] which are R(3)
1111, R

(3)
1122, R

(3)
1212 and R(3)

1221 where 1, 2 = x, y, z. The use of 1, 2, 3

instead of i, j, k denotes that the indexes must be different. The material does not exhibit

any preferred direction and thus R(3)
iijj

!= R(3)
kkll for all i, j, k, l = x, y, z. The terms with

odd numbers of indexes must vanish. Bound electrons, for example, follow the electric field

vector quasi instantaneously. The electrons choose the way where they have to work least.

Since the instantaneous work is dW = ~Fd~s and the force ~F depends only on the distance

to the nuclei but not on any angle, the electrons minimize their way and follow the electric

field exactly along its direction of oscillation. Similar arguments hold for input fields of the

form E (∗)
1 E

(∗)
2 E

(∗)
2 and their permutations as well as for E (∗)

1 E
(∗)
2 E

(∗)
3 . Moreover, in the case of

E (∗)
2 E

(∗)
2 E

(∗)
1 , E (∗)

2 E
(∗)
1 E

(∗)
2 and E (∗)

1 E
(∗)
2 E

(∗)
2 , the electrons are formally allowed to respond only
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in the direction of the field in direction 1 while they are allowed to respond in the direction

of each of the three electric fields in the case of E (∗)
1 E

(∗)
1 E

(∗)
1 . Again, since there is no preferred

direction, it can be concluded that

R(3)
1111 = R(3)

1122 +R(3)
1212 +R(3)

1221. (5.1)

Eventually, only three independent tensor components are remaining for any isotropic ma-

terial. Another component can be eliminated if only the case of nonlinear refraction is

considered, i.e. if the polarization frequency is equal to the oscillation frequency of the ex-

ternal electric field. The principle of the so-called intrinsic permutation symmetry states

that the response time of a material does not depend on the polarization of the external

light field and thus

R(3)
1212E2E1E∗2 = R(3)

1122E1E2E∗2 . (5.2)

Consquently, R(3)
1212 and R(3)

1122 are equal. It is to note that the complex conjugated field

remains the last factor and cannot be permuted with the other fields. If the c.c. field was

set to be the first or second factor, the two real fields could be permuted each time but

two tensor components would remain independent in each of the three cases. Subsequently,

equation (1.4) can be specified to

P(3)
1 (~r, t) = 3ε0

4

{
2
∫ ∞

0
dt′R(3)

1122(t′)E1(~r, t− t′)E2(~r, t− t′)E∗2 (~r, t− t′)

+
∫ ∞

0
dt′R(3)

1221(t′)E2(~r, t− t′)E2(~r, t− t′)E∗1 (~r, t− t′)
}

(5.3)

The ratio of the two remaining parameters depends on the origin of the nonlinear effect.
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5.1.1 Bound Electronic Contribution

The bound electronic response is classically described as an oscillation of electrons in an

atomic or molecular potential. The Newtonian equation of motion for an isotropic material

reads

~F (~r, t) = me~̈r(t) = −e ~E(~r, t)− 2Γ~̇r −
∞∑
i=0

ai~r
2i+1 (5.4)

where me is the electron mass, −e the electron charge, Γ the damping constant and ai are

force constants. The dots above ~r denote the first and second time derivative, resp. The

centro-symmetry of the potential allows only odd powers of ~r. If the driving field ~E(~r, t) is

small, only the harmonic force constant a0 is relevant. The third order response however,

is determined by the ~r 3 term. Owing to the relatively small a1, the cubic term can be

treated as a perturbation of the harmonic oscillation. For this purpose, a phenomenological

parameter µ is introduced which turns on (µ = 1) and off (µ = 0) the external electric field.

Consequently, the position vector ~r can be formally expanded in terms of µ which leads to

a system of differential equations that must be fulfilled for an arbitrary µ. It reads

me~̈r0(t) + 2Γ~̇r0 + a0~r0 = −e ~E(~r, t) (5.5)

me~̈r1(t) + 2Γ~̇r1 + a0~r
3
1 = −a1~r

3
0 (5.6)

if only a0 and a1 are considered. The harmonic differential equation (5.5) is analytically

solvable in the steady state limit. The solution of ~r0(t) can be plugged in equation (5.6) and

subsequently ~r1(t) is found. The materials polarization is the density of dipoles ~p = −e~r, i.e.

~P (t) = −Ne (~r0(t) + ~r1(t)) (5.7)
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While the complete math is found in [15, chap. 1], only the relation which is decisive with

respect to the measurements shall be pointed out here:

χ
(3)
ijkl ∝ δijδkl + δikδjl + δilδjk (5.8)

where the Kronecker δ is defined as

δij :=


1 if i = j

0 otherwise
. (5.9)

It can be concluded from relation (5.8) that

χ
(3)
1111 = 3χ(3)

1122. (5.10)

If χ(3)
1111 is denoted by χ(3)

11 and χ(3)
1122 as well as χ(3)

1221 by χ(3)
12 , equation (5.3) takes the form

~P(3)(~r, t) = 3ε0
4
{

2χ(3)
12 |E(~r, t)|2~E(~r, t) + χ

(3)
12
~E 2(~r, t)~E∗(~r, t)

}
(5.11)

= 3ε0
4 eiω0t

{
2χ(3)

12 |A(~r, t)|2 ~A(~r, t) + χ
(3)
12
~A 2(~r, t) ~A ∗(~r, t)

}
(5.12)

where the transformation to the carrier reference frame is applied. The vectors can be

decomposed into a left-handed and a right-handed circularly polarized component. The

orthonormal unit vectors are denoted by σ̂l and σ̂r. These vectors are defined as

σ̂l : = x̂+ iŷ√
2

= σ̂∗r (5.13)

σ̂r : = x̂− iŷ√
2

= σ̂∗l (5.14)
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for a wave propagating in z-direction. The orthonormality can be proven in a straight

forward manner:

|σ̂r|2 = |σ̂l|2 = σ̂r · σ̂l = 1
2
(
x̂2 + ŷ2

)
= 1 (5.15)

σ̂r · σ̂∗l = σ̂l · σ̂∗r = 1
2
(
x̂2 − ŷ2

)
= 0. (5.16)

Through making use of the introduced unit vectors, equation (5.12) reads

P(3)
l (~r, t)σ̂l + P(3)

r (~r, t)σ̂r = 3
8ε0

{
2χ(3)

12

(
|Al(~r, t)|2 + |Ar(~r, t)|2

)
(Al(~r, t)σ̂l +Ar(~r, t)σ̂r)

+2χ(3)
12 (Al(~r, t)Ar(~r, t)) (A∗l (~r, t)σ̂r +A∗r(~r, t)σ̂l)

}
(5.17)

where the envelope of the electric field is written as

~A(~r, t) = Al(~r, t)σ̂l +Ar(~r, t)σ̂r. (5.18)

The polarization for a circularly polarized electric field of strength |A(~r, t)| reads

P(3)
l/r (~r, t) = 3

4ε0 · 2χ
(3)
12 |A(~r, t)|2 · Al/r(~r, t) (5.19)

= 3
4ε0 ·

2
3χ

(3)
11 |A(~r, t)|2 · Al/r(~r, t). (5.20)

The equations from (1.8) to (1.16) are independent of the light’s polarization and thus the

solutions of the reduced wave equation (1.8) for linearly and circularly polarized light predict

that

nlin2,e

ncir2,e
= 3

2 . (5.21)
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5.1.2 Slow Nuclear Contribution

In the case of orientational motions, the polarization is not induced by permanent dipoles but

by the polarizability of the molecules as explained in section 4.1.1. Similar to the presented

derivation of n2 for an electrostatic field, the nonlinear refractive index can be derived for

electromagnetic fields of an arbitrary polarization. Close et al. [39] generalize equation (4.9)

to

< U >= −
∑
i,j

EiEj
2 < αi,j > (5.22)

and divide < αi,j > into a sum of the linear α and nonlinear γij polarizability, i.e.

< αi,j >= αδi,j + γij. (5.23)

The nonlinear polarizability reads for CS2

γij = (α|| − α⊥)2

45kBT
·
∑
k,l

(3δikδjl − δijδkl)ElEk. (5.24)

This corresponds to result (4.15) for a linearly polarized static light field where the only

element is γstat11 = (α||−α⊥)2

45kBT · 2A2. In the case of an electromagnetic linearly polarized field,

the time average is however

Ēlin =
√
ω

2π

∫ 2π/ω

0
dtA2 cos2(ωt) = A/

√
2, (5.25)

so that

γlin11 = (α|| − α⊥)2

45kBT
· A2 (5.26)
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A circularly polarized field with the same irradiance reads in Cartesian coordinates

Ēcirc = A√
2

(cos(ωt)x̂± sin(ωt)ŷ) . (5.27)

The tensor elements are consequently

γcirc11 = (α|| − α⊥)2

45kBT
·

2∑
i,j=1

(3δ1iδ1j − δ11δij)EiEj = (α|| − α⊥)2

45kBT
· A

2

4 (5.28)

γcirc12 = (α|| − α⊥)2

45kBT
·

2∑
i,j=1

(3δ1iδ2j − δ12δij)EiEj = 0. (5.29)

where the indexes 1, 2 are either x or y. By comparison to the linearly polarized result (5.26),

it can be concluded that

nlin2,RO

ncir2,RO
= 4. (5.30)

5.2 Polarization Measurements and Results

The theoretical ratios derived in the previous section are checked experimentally. The three

contribution model which seems to fit the material response well within the measurement

uncertainties is applied to closed aperture Z-scan data taken with linearly and circularly po-

larized light. No theoretical evaluation of the fast nuclear response n2 ratio between linearly

and circularly polarized light is provided in this thesis. The value shall only be measured

instead. A polarizer and a quarter-wave plate is added to the Z-scan setup as explained in

section subsec:complsetup. The measurement were taken in direct succession. After adjust-

ing energy and pulse duration, three closed aperture Z-scan for linearly polarized were done,

the λ/4-plate was rotated about 45◦ and the measurements with circularly polarized light

were performed.

Since only the ratio between the nonlinear refractive indexes is of interest in this case, the

linear polarization measurements are fitted again, also already included in the data evalu-
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Table 5.1: Derived n2 ratios between linearly and circularly polarized light.

all magnitudes relative deviation only n2,CI
variable from theory variable

nlin2,e/n
cir
2,e 1.30 15% 1.5

nlin2,CI/n
cir
2,CI 3 2.69

nlin2,RO/n
cir
2,RO 4.15 4% 4

ation of chapter 3 and 4, allowing the three n2 magnitudes to adjust as good as possible.

This includes that the long pulse boundary condition is lifted. The circular polarization

measurements are fitted with the same algorithm. The results shall reveal how well the

parameters derived in chapter 4 match the theoretical prediction of the previous section. A

second fit routine allows only n2,CI to vary. The derived parametrized curve is compared to

the effective values in order to evaluate a range for nlin2,CI/n
cir
2,CI . The ratios for both algo-

rithms are shown in table 5.1. Like in the previous chapter, the theoretical Z-scan curves

were fitted with the effective value determining routine and plotted with the n2,eff values

obtained from the experimental data. Figure 5.1 shows the comparison between parameter

model and effective values.

5.3 Calculation of the Tensor Elements

5.3.1 Electronic Susceptibility Tensor Elements

According to equations (1.16) and (5.20), the independent third-order susceptibility tensor

components of the electronic response of CS2 are calculated through

χ
(3)
11 = 4

3n
lin
2,en

2
0ε0c (5.31)

χ
(3)
12 = 2

3n
cir
2,en

2
0ε0c. (5.32)
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Figure 5.1: Effective values and reference curves of the polarization measurements.

The measured times are 32fs, 67fs, 119fs, 265fs, 585fs, 865fs, 1412fs and 1640fs.
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By applying equation (5.10), the tensor elements could be also directly determined from the

linear measurements. Inserting

n0 = 1.61 [40] (5.33)

ε0 = 8.854187817 · 10−12 C

Vm
[41] (5.34)

c = 299792458m
s

[41] (5.35)

leads to the results

χ
(3)
11 = 1.24 · 10−21m

2

V 2 (5.36)

χ
(3)
12 = 0.41 · 10−21m

2

V 2 . (5.37)

Reference values are usually given in electrostatic Gaussian units. The transformation into

this unit system is done through [15, appendix C]

χ
(3)
ESU = (3 · 104)2

4π χ
(3)
SI . (5.38)

Therefore, the χs can be rewritten as

χ
(3)
11 = 8.9 · 10−14esu (5.39)

χ
(3)
12 = 3.0 · 10−14esu. (5.40)

It is to note that the theoretical ratio (5.10) was used to obtain these results. The ratio

determined by the polarization measurement deviates by 15% from the theory. This deviation

can be seen as relative measurement error. Uncertainties due to systematic errors that were

present during all measurements should additionaly be taken into account. Subsequently,
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the nonlinear susceptibilities are expected to be in the range of

χ
(3)
11 = (8.9± 1.8) · 10−14esu (5.41)

χ
(3)
12 = (3.0± 0.6) · 10−14esu. (5.42)

The values χ(3)
11 = (6.4± 0.4) · 10−14esu and χ(3)

12 = (2.1± 0.2) · 10−14esu published by Yan et

al. [3] are slightly below (5.41) and (5.42). The publication assumes that all of the nuclear

contributions exhibit the nonlinear refractive index ratio (5.30). However, this thesis shows

that the ultrafast component exhibits a different relation between nlin2,CI and ncir2,CI . The

derivation of the ratio in 5.1.2 implies the rotational origin of the molecular motion. It is by

no means justified that the translational motion exhibits the same ratio which questions the

accuracy of the published electronic and nuclear susceptibilities.

5.3.2 Nuclear Polarizability Tensor

The origin of the orientational contribution to n2 is due to the polarizability tensor of the

molecules as explained in section 4.1.1. Expressions (5.26) and (5.29) suggest that α|| and α⊥

cannot be determined individually through the n2 ratio. However, it is possible to calculate

the difference of both tensor elements. Combining equations (4.16) and (5.26) leads to the

expression

∆α = α|| − α⊥ =

√√√√90n2
0ε

2
0c

N

(
3

n2
0 + 2

)4

· kBT · n2,RO. (5.43)
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The following values are plugged into the equation

n0 = 1.61 [40] (5.44)

ε0 = 8.854187817 · 10−12 C

Vm
[41] (5.45)

c = 299792458m
s

[41] (5.46)

N = ρ

M
·NA = 1.2632

76.141 · 6.0221417930 · 1023cm−3 = 9.973 · 1021

cm3 [41] (5.47)

kB = 1.380650424 · 10−23J/K [41] (5.48)

T = 293K (5.49)

n2,RO = 18.65 · 10−15 cm
2

W
. (5.50)

Consequently, it is found

∆α = 8.7 · 10−40 · Cm
2

V
(5.51)

= 53e
2
0a

2
0

Eh
(5.52)

where

e0 = 1.60217648740 · 10−19C [41] (5.53)

a0 = 5.291772085936 · 10−11m [41] (5.54)

Eh = 4.3597439422 · 10−18J [41]. (5.55)

Theoretical and experimental literature values range from ∆α = 56.4 e
2
0a

2
0

Eh
to ∆α = 64.8 e

2
0a

2
0

Eh

[14] and thus deviate less than 23% percent from the calculated value. This result therefore

confirms the magnitude of n2,RO derived from the three contribution model.
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5.3.3 Nuclear Susceptibilities

The concept of the third-order susceptibility tensor shall be applied to the n2 magnitudes of

the nuclear contributions since experimental techniques like optical Kerr gating or degenerate

four wave mixing may make use the three independent tensor elements of equation (5.1).

In order to obtain the ratio (5.30), equation (5.19) have to be reconsidered. In the case of

diffusive orientation, this equation must read

P(3)
l/r (~r, t) = 3

4ε0 ·
1
4χ

(3)
11 |A(~r, t)|2 · Al/r(~r, t). (5.56)

It can be concluded that

χ
(3)
11 = 8χ(3)

1212. (5.57)

Solving equation (5.1) with respect to χ(3)
1221 eventually gives

χ
(3)
11 = 4

3χ
(3)
1221 (5.58)

χ
(3)
1221 = 6χ(3)

1212. (5.59)

Similarly to section 5.3.1, the magnitudes of the susceptibilities are calculated which are

χ
(3)
1111 = (17.1± 1.6) · 10−21m

2

V 2 = (123± 12) · 10−14esu (5.60)

χ
(3)
1221 = (2.14± 0.20) · 10−21m

2

V 2 = (15.3± 1.4) · 10−14esu (5.61)

χ
(3)
1221 = (12.8± 1.2) · 10−21m

2

V 2 = (92± 9) · 10−14esu. (5.62)

Finally, the tensor elements of the fast nuclear contribution ought to be determined. Starting
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from nlin2,CI = 3, the relations of the χs read

χ
(3)
11 = 6χ(3)

1212 (5.63)

χ
(3)
11 = 3

2χ
(3)
1221 (5.64)

χ
(3)
1221 = 4χ(3)

1212. (5.65)

The magnitudes have a relatively high uncertainty in comparison to the slow nuclear contri-

bution. They are

χ
(3)
1111 = (9.2± 1.5) · 10−21m

2

V 2 = (66± 11) · 10−14esu (5.66)

χ
(3)
1221 = (1.53± 0.24) · 10−21m

2

V 2 = (11.0± 1.7) · 10−14esu (5.67)

χ
(3)
1221 = (6.1± 1.0) · 10−21m

2

V 2 = (44± 7) · 10−14esu. (5.68)

5.4 Polarization Dependence of n2: Conclusions

The deviation of the n2 ratios are clearly below the single measurement uncertainties. Espe-

cially the ratio for the diffusive reorientation contribution is with only 4% deviation from the

theoretical value an excellent result. The linear polarization plots of figure 5.1 show, simi-

larly to the three contribution model results in chapter 4.4, the largest deviation from the

effective nonlinear indexes in the time range of the ultrafast contributions. The insufficient

differentiation between librations and translational motions has been already mentioned as

origin of this effect. Especially the green curve, where n2,e and n2,RO were enforced deviates

stronly from the data points. However, this curve matches for instance the 32fs data point

better than the blue curve, which would correct the 15% deviation of the n2,e ratio from

its theoretical value. At long times, where the slow nuclear contribution is dominant, the

blue and the green curve fit the data points almost equally well. The ratio range from 2.7

to 3.0 of the translational motion might be interpreted as a signature of the partly included
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libration which should exhibtit a n2 ratio of four since they have the same origin like the

reorientational diffusion. On the other hand is the translational motion probably less po-

larization sensitive than the orientational motion which leads to an effective ratio which is

between 1.5 and 4.

In conclusion, the in section 5.1 presented theory was reproduced by the polarization Z-scan

measurements. The well fitted effective values which are accompanied by the determined

ratios are a strong argument for the applicability of the parametrization model although

the willful insufficiently described fast nuclear response region cannot be perfectly matched.

Moreover, it is worth to note that Yan et. al [3] have recently published a n2 ratio between

1.7 and 2.2 for τp = 125fs and λ = 800nm. The ratio determined by means of the fitted

curves in figure 5.1 is 2.2 for this particular pulse duration and thus in accordance with

the published ellipse rotation measurement result. On the other hand, the magnitudes of

the electronic third-order susceptibilities that were proposed in the cited paper could not

be confirmed. The observance of a fast nuclear contribution which does not exhibit the n2

ratio of the slow nuclear contribution must be taken into account in order to determine the

tensor elements. Furthermore, the difference between the CS2 polarizability tensor elements

was determined and a result which is quite close to literature values is presented.
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6 DISPERSION OF THE INSTANTANEOUS ELECTRONIC

RESPONSE

6.1 The Role of Dispersion in the Electronic Response

The so far presented experiments are mainly focused on the temporal response of CS2.

Through the method of Fourier transformation from the time domain to the frequency do-

main, it becomes obvious that a time varying response must have a finite bandwidth. This

chapter is mainly concerned about the dispersion of the bound electronic response. As it is

shown in figure 3.8, the effective nonlinear index at pulse durations below 100fs changes only

slightly while the change of n2,eff with the pulse duration is much quicker above 100fs. It is

basically reasonable to assume that the measured nonlinearity is mainly caused by electrons

at these very short times and that the inert molecular motions are rather a perturbation

of the measured index. Therefore, the optical parametric amplifier is tuned to a multitude

of central wavelengths in order to scan the frequency dependence of n2,e. The pulses were

compressed as much as possible by means of the prism pair. Due to the varying bandwidth,

it is however not possible to generate 30fs− 40fs pulses at every central wavelength. Nev-

ertheless, pulse durations below 70fs were achieved in the spectral range from λ = 411nm

to 1064nm.

In the previous measurements, a quasi-instantaneous reaction of the bound electrons on the

external light field was assumed. This assumption is valid if a flat spectral response of n2,e(ω)

is present. Mathematically, instantaneous means delta-like and hence the Fourier transfor-
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mation would result in a constant. On the other hand, the linear absorption spectrum,

figure 1.1, shows absorption bands at about 200nm and 330nm. These linear transitions

offer also a higher probability for nonlinear transitions, i.e. two-photon absorption at the

doubled wavelengths. In terms of the oscillating electron model of section 5.1.1, a transition

is connected to a strong elongation of the electron in its potential. Therefore, higher order

force constants become more relevant and enhanced nonlinear refraction is expected.

6.2 Dispersion Measurements

Although the Z-scan setup remains as described in chapter 2.2, the data analysis has to

change because of the non-neglible two-photon absorption in CS2 at shorter wavelength. The

thin sample approximation, applied in section 2.1.2 to derive the theoretical transmittance,

states that the intensity of the light pulse illuminating the sample remains almost unchanged,

such that equation (1.12) can be transformed to equation (1.15). In the case of strong multi-

photon absorption, this transformation is not possible anymore. Thus the thick sample

must be sliced into many thin samples. The pulse which will change its initial shape is

also sliced into parts of ∆t and ∆r. These pulse parts are afterwards propagated through

the samples of length ∆z in order to calculate the impact of the nonlinear refraction. The

Gaussian field decomposition cannot be applied anymore in order to propagate the beam

from the sample to the aperture. Instead, the Huygens-Fresnel integral is numerically solved

to calculate the closed aperture transmittance. This evaluation of the theoretical signal is

clearly of higher complexity than in the thin sample case. Consequently, the fitting routine

presented in section 3.1 cannot be applied anymore. The n2 values were instead fitted by

eye. While at longer wavelengths the small absorption effects can be corrected by dividing

the closed aperture curve by the open aperture curve, at longer wavelengths this correction

is not sufficient anymore. To ensure that no artificial kinks are found in the nonlinear

refraction spectrum, all of the measurements were fitted by eye. The detailed mathematical
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Figure 6.1: Measured effective n2 and β spectrum for ultrashort pulses

description of the analysis algorithm was published by Said et al. [42] and shall not be

discussed here. The beam waist and pulse duration were mainly determined by means of

open aperture Z-scans with a zinc sulfide (ZnS) sample. The results of the measurements

are shown in figure 6.1. Significant two-photon absorption is present at wavelengths smaller

than 450nm which corresponds to the very strong transition around 200nm that is seen in

the linear absorption spectrum in figure 1.1 b). No two-photon absorption is visible in the

environment of 630nm which would correspond to the second absorption band in the linear

spectrum. The refractive index increases as predicted towards the two-photon absorption

peak. As the transition occurs the anharmonic oscillations are suppressed and the nonlinear

refractive index drops to smaller values. At higher wavelengths the spectral response seems

to flatten as previously assumed for a quasi-instantaneous reaction of the bound electrons.

As indicated by the results of the parameter model, the measured effective refractive indexes

at short pulse durations are not fully of electronic origin. Since the nuclear contributions are
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however quite small, a linear first order correction should lead to a good estimation of the

pure electronic refractive index if the dispersion of the fast nuclear response is small. The

effective values from table 3.1 that were measured at pulse durations smaller than 100fs

were linearly fitted with the fixed intercept ne = 1.35 ·10−15 cm2

W
. A pulse duration correction

factor of

∆ = 0.0244
10−15 cm2

W

fs
(6.1)

is determined. The product of the correction factor and the pulse duration subtracted from

the measured effective n2 should reveal a good estimation of n2,e(λ) within the error bars

shown in figure 6.1. The dispersion curve in figure 6.2 is quite smooth and has only one small

kink at 525nm which is clearly within the previously shown error bars of the measurements.

Besides being smoother, the pulse duration corrected curve shows features similar tp the

uncorrected spectrum. The electronic nonlinear refractive index has its maximum close to

the two-photon absorption peak. The index becomes relatively flat at wavelengths which are

far away from the 2PA resonance. At the 2PA peak a fast drop of the electronic response is

observed.
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Figure 6.2: Experimentally determined dispersion curve of the electronic contribution to the
nonlinear refractive index of CS2.

The points at 390nm and 403nm where actually outside the correction range (τp < 100) but
nonetheless seem to match the electronic dispersion.
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7 CONCLUSIONS AND PROSPECTS

This thesis reveals the impact of nuclear motions on the nonlinear refractive index of carbon

disulfide. A multitude of effective n2 is determined (cf. table 3.1) for λ = 700nm, that may

serve as a reference for nonlinear refraction of fs-pulses in CS2. The effective values do not

exhibit a significant amount of dispersion between λ = 700nm and λ = 1064nm as figure

3.8 indicates. Hence, they can probably be utilized over a broader spectral range far from

the two-photon absorption peak that is observed at λ = 410nm (cf. figure 6.1). However,

more detailed studies are necessary to prove this assumption. Although the dispersion of the

bound electronic n2 was studied (cf. figure 6.2), the dispersion of the nuclear components

has not been investigated so far. The dependence of the nuclear n2 on the central wavelength

of the light field is proposed as future work that would rely on the results provided in this

thesis.

The effective nonlinear refractive indexes unfortunately underly a quite high measurement

uncertainty which is estimated to be about one fourth of the values. It is recommended

to decouple the pulse duration measurements and the n2 measurements by using distinct

measurement techniques since these parameter show a similar impact on the closed aperture

transmittance. This would clearly reduce systematic errors which are involved in the all-

Z-scan measurements. Within the single measurement errors, the effective n2 curve could

be reproduced by a parametrized response function which modeled the temporal behavior

of the CS2 molecules (cf. figure 4.4). A model separating the total material response into

a bound electronic, a fast and a slow nuclear contribution is rather preferred than the four
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contribution model which divides the fast nuclear response into a librational and collision

induced contribution. Firstly, the three contribution model depends on clearly fewer pa-

rameters and is thus easier to apply. Furthermore, it represents the physical origins of the

nuclear response better than the four contribution model although it adds the contribution

of the second real fast nuclear response to the two remaining modeled nuclear responses. The

four contribution model must include correlations between the librations and the diffusive

reorientation in the case of single beam measurements and must thus be extended to a more

involved theory which might limit the practical applicability. The parameters presented in

table 4.1 and the equations given in section 4.2 should offer a pulse shape and duration

independent description of the nonlinear response of CS2 for λ = 700nm if the pulses a short

enough (holds for fs and ps range) and the laser repetition rate is small enough (kHz range)

to avoid thermal effects and electrostriction.

The three contribution model has confirmed the theoretical calculations of the ratios of the

n2 magnitudes between linearly and circularly polarized light (cf. table 5.1 and figure 5.1).

The ratio for the modeled fast nuclear component is estimated to be between 2.6 and 3.

In order to get more insights of the real magnitude of the electronic and nuclear n2 com-

ponents, further experiments that isolate an independent contribution to the total response

may be performed. Carbon disulfide in a low pressure vapor phase should for example ex-

hibit the electronic n2 but not the interaction effects which should allow to determine n2,e

scaled by the molecule volume density more precisely. Diluted CS2 solutions have been

already experimentally studied ([33], [36]) to observe the magnitude change of the single

nuclear contributions to n2. Similar experiments could be performed to check the presented

theory. Moreover, other measurement techniques could be used to reproduce the determined

reference curve in order to eliminate the systematic errors of the presented measurements.
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APPENDIX A: CAUSALITY
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Many textbooks (e.g. [16]) interpret causality in arguing that no effects which happen at

times t′ > t can be observed at time t and thus express the convolution of the material

response function R(t) and the light field function f(t) as

{R ∗ f} (t) =
∫ t

−∞
R(t− t′)f(t′)dt′

The substitution τ = t − t′ leads to the integrals that are used in the formalism of section

1.3:

{R ∗ f} (t) =
∫ 0

+∞
R(τ)f(t− τ)(−dτ)

=
∫ ∞

0
R(τ)f(t− τ)dτ.

Hence, the statement that the material cannot respond before it interacts is equivalent to

the statement that no response that occurs past the observation time can influence the

convolution.
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APPENDIX B: SLOWLY VARYING WAVE APPROXIMATION
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This section shows how equation (1.8) is transformed into (1.10).

The following abbreviations are used:

∂A
∂z
≡ A′

∂A
∂t
≡ Ȧ

Expression (1.6) is inserted into (1.8) and the SVEA is applied:


− k2︸︷︷︸

n2
0ω

2
0

c2

A(~r, t) + 2ikA′(~r, t) +A′′(~r, t)︸ ︷︷ ︸
SVEA

−
n2

0
c2

−ω2
0A(~r, t)− 2iω0Ȧ(~r, t) + Ä(~r, t)︸ ︷︷ ︸

SVEA


 ei(kz−ω0t)

= ik
[
A′(~r, t) + n

c
Ȧ(~r, t)

]
ei(kz−ω0t)

= 1
ε0c2

−ω2
0P

(3)
i −iω0

∂

∂t

(
P(3)
i e−i(kz−ω0t)

)
+ ∂2

∂t2

(
P(3)
i e−i(kz−ω0t)

)
︸ ︷︷ ︸

SVEA



The reference frame is supposed to move with the pulse and thus the following substitutions

are made:

τ := t− n0z

c

ζ := z

∂

∂t(τ, ζ) = ∂τ

∂t

∂

∂τ
+ ∂τ

∂ζ

∂

∂ζ
= ∂

∂τ

∂

∂z(τ, ζ) = ∂τ

∂z

∂

∂τ
+ ∂ζ

∂z

∂

∂ζ
= −n

c

∂

∂τ
+ ∂

∂ζ

Consequently, it is found

eiω0τ
∂

∂ζ
A(ζ, τ) = i

ω2

2ε0c2k
P(3)
i
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The variables (ζ, τ) can be relabeled to (z, t). The measured quantities are not affected by

the transformation.
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APPENDIX C: POWER TRANSMITTED THROUGH A THIN

SAMPLE WITH TWO-PHOTON ABSORPTION
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The laser power behind the absorbing sample is

P (d, t) = 2πTlin
∫ ∞

0
drr

I(z′, r, t)
1 + βLeffI(z′, r, t)

= 2πTlin
∫ ∞

0
drr

I(z′, t)e−2 r2
w2(z′)

1 + βLeffI(z′, t)e−2 r2
w2(z′)

= Tlin ·
πw2(z′)

2

∫ ∞
0

du
I(z′, t)e−u

1 + βLeffI(z′, t)e−u

= Tlin ·
πw2(z′)

2

∫ 1

0
du′

I(z′, t)
1 + βLeffI(z′, t)u′

= Tlin ·
πw2(z′)
2βLeff

ln (1 + βLeffI(z′, t))

= Tlin ·
πw2

0 (1 + z′2/z2
0)

2βLeff
ln (1 + βLeffI(z′, t))

and the power without 2PA:

P0(d, t) = 2πTlin
∫ ∞

0
drrI(r, t)

= Tlin ·
πw2

0
2 · I(t).

The measured energy of a Gaussian shaped pulse is thus

E0(d) = Tlin ·
πw2

0
2

∫ ∞
−∞

dtI0e
−2 t2

τG

= Tlin ·
π3/2τGw

2
0

23/2 · I0.
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APPENDIX D: ANALYTIC EXPRESSIONS OF THE NUCLEAR

RESPONSE FUNCTIONS
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The integrals of expression (4.23) shall be expressed analytically. For a response function of

type (4.25), the normalization term reads

∫ ∞
0

dt rRO,CI(t) =
∫ ∞

0
dt
(
1− e−t/βRO,CI

)
· e−t/τRO,CI

=
[
−τRO,CI · e−t/τRO,CI + 1

1/βRO,CI + 1/τRO,CI
e−t·(1/βRO,CI+1/τRO,CI)

]∞
0

= τRO,CI −
1

1/βRO,CI + 1/τRO,CI

= τRO,CI

(
1− 1

1 + τRO,CI/βRO,CI

)
.

The convolution of the response function with a Gaussian shaped pulse results in the ex-

pression

∫ ∞
0

dt′rRO,CI(t′)I(~r, t− t′) =
∫ ∞

0
dt′
(
1− e−t′/βRO,CI

)
· e−t′/τRO,CI · I(~r) · e

−2(t−t′)2

τ2
G

= I(~r) ·
∫ ∞

0
dt′
(
e
−t′/τRO,CI+−2t2−2t′2+4tt′

τ2
G − e

−t′/βRO,CI−t′/τRO,CI+−2t2−2t′2+4tt′

τ2
G

)
.

It is useful to complete the squares in the exponent, e.g.

−t′/βRO,CI − t′/τRO,CI + −2t2 − 2t′2 + 4tt′
τ 2
G

=−
(√

2t′
τG
− (1/βRO,CI + 1/τRO,CI)τG

2 ·
√

2
+
√

2t
τG

)2

− 2t2
τ 2
G

+
(

(1/βRO,CI + 1/τRO,CI)τG
2 ·
√

2
−
√

2t
τG

)2

.
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The substitutions

ξ = 2
τ 2
G

η1 = (1/βRO,CI + 1/τRO,CI)−
4t
τ 2
G

η2 = 1/τRO,CI −
4t
τ 2
G

ζ = 2t2
τ 2
G

simplify the integrals considerably:

∫ ∞
0

dt′rRO,CI(t′)I(~r, t− t′) = I(~r)e−ζ

·

e η2
2

4ξ

∫ ∞
0

dt′e
−
(√

ξt′− η2
2
√
ξ

)2

− e
η2
1

4ξ

∫ ∞
0

dt′e
−
(√

ξt′− η1
2
√
ξ

)2 .
By substituting

t′′ =
√
ξt′ − ηi

2
√
ξ

the expression becomes

∫ ∞
0

dt′rRO,CI(t′)I(~r, t− t′) = I(~r)e−ζ

·

e
η2
2

4ξ
√
ξ

∫ ∞
η2

2
√
ξ

dt′′e−t
′′2 − e

η2
1

4ξ
√
ξ

∫ ∞
η1

2
√
ξ

dt′′e−t
′′2

 .

This however can be identified with the complementary error function and thus reads

∫ ∞
0

dt′rRO,CI(t′)I(~r, t− t′) = I(~r)e−ζ
√
π

4ξ

·
(
e
η2
2

4ξ erfc
{
η2

2
√
ξ

}
− e

η2
1

4ξ erfc
{
η1

2
√
ξ

})
.
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By reversing the substitutions of ξ, η1, η2 and ζ, the result (4.30) is obtained.

The integrals of the librational response are solved similarly. The expression

∫ ∞
0

dt rLIB(t) = =
{∫ ∞

0
dt e−t/τLIB+iω0te−

t2∆ω2
2

}

can be rewritten to

∫ ∞
0

dt rLIB(t) = =


∫ ∞

0
dt e

−
(
t∆ω√

2
− iω0−1/τLIB√

2∆ω

)2
+ (iω0−1/τLIB)2

2∆ω2

 .
Substituting

ξd = 2
∆ω2

ηd = iω0 − 1τLIB,

gives an integral of the previously solved type and thus the analytic result (4.33). The

numerator resembles the denominator but in this case the substitutions

ξn = 2
∆ω2 + 2

τ 2
G

ηn = iω0 − 1/τLIB + 4t
τ 2
G

ζ = 2t2
τ 2
G

have to be made. Subsequently, the result (4.34) follows for the numerator.
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