
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2011

Improving Throughput and Predictability of High-volume Business Improving Throughput and Predictability of High-volume Business

Processes Through Embedded Modeling Processes Through Embedded Modeling

Joseph S. DeKeyrel
University of Central Florida

 Part of the Industrial Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
DeKeyrel, Joseph S., "Improving Throughput and Predictability of High-volume Business Processes
Through Embedded Modeling" (2011). Electronic Theses and Dissertations, 2004-2019. 6623.
https://stars.library.ucf.edu/etd/6623

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/307?utm_source=stars.library.ucf.edu%2Fetd%2F6623&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/6623?utm_source=stars.library.ucf.edu%2Fetd%2F6623&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

IMPROVING THROUGHPUT AND PREDICTABILITY

OF HIGH-VOLUME BUSINESS PROCESSES

THROUGH EMBEDDED MODELING

by

JOSEPH S. DEKEYREL

B.S. Virginia Military Institute, 1986

M.S. University of Southern California, 2003

A dissertation submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

in the Department of Industrial Engineering and Management Systems

in the College of Engineering and Computer Science

at the University of Central Florida

Orlando, Florida

Spring Term

2011

Major Professor: Linda C. Malone

ii

© 2011 Joseph S. DeKeyrel

iii

ABSTRACT

Being faster is good. Being predictable is better. A faithful model of a system, loaded to

reflect the system’s current state, can then be used to look into the future and predict

performance. Building faithful models of processes with high degrees of uncertainty can be

very challenging, especially where this uncertainty exists in terms of processing times, queuing

behavior and re-work rates. Within the context of an electronic, multi-tiered workflow

management system (WFMS) the author builds such a model to endogenously quote due dates.

A WFMS that manages business objects can be recast as a flexible flow shop in which

the stations that a job (representing the business object) passes through are known and the

jobs in the stations queues at any point are known. All of the other parameters associated with

the flow shop, including job processing times per station, and station queuing behavior are

uncertain though there is a significant body of past performance data that might be brought to

bear. The objective, in this environment, is to meet the delivery date promised when the job is

accepted.

To attack the problem the author develops a novel heuristic algorithm for decomposing

the WFMS’s event logs exposing non-standard queuing behavior, develops a new simulation

component to implement that behavior, and assembles a prototypical system to automate the

required historical analysis and allow for on-demand due date quoting through the use of

embedded discrete event simulation modeling.

iv

The developed software components are flexible enough to allow for both the analysis

of past performance in conjunction with the WFMS’s event logs, and on-demand analysis of

new jobs entering the system. Using the proportion of jobs completed within the predicted

interval as the measure of effectiveness, the author validates the performance of the system

over six months of historical data and during live operations with both samples achieving the

90% service level targeted.

v

ACKNOWLEDGMENTS

I would like to thank my senior leaders within Raytheon, Mike Edwards and Joel Johns

for their encouragement, patience and understanding as this process consumed far more of my

time and energy than I would have imagined. To Eric Davis, Gene Beauvais, and Dr. Joan

Mahoney for their willingness to read, and re-read my intermediate manuscripts and papers –

both minimizing the mistakes in grammar, spelling, punctuation, parallelism and helping to

clearly say what I intended to convey – any remaining errors are purely mine. To Rick Stikkers,

Richard Blum, Carl Davis, Corey Hendricks, Julie Kent and especially to Traci Caldwell for bearing

the load of my day-to-day duties when the research and writing got particularly heavy. To my

committee members – Dr. Christopher D. Geiger, Dr. Stephanie J. Lackey, and Dr. Mansooreh

Mollaghasemi for their willingness to give their time, energy and guidance. Extra thanks to my

Committee Chair, Dr. Linda C. Malone for her gentle (and sometimes not so gentle) prodding

without which I would have given up several times along the way, and her knowledge and

wisdom of the processes, people, and priorities associated with this journey, that lacking, would

certainly have driven me mad. To my long-time mentor, Rick Glynn, special thanks for 13 (and

counting) years of encouragement and support of my professional career, my education, and

the welfare of my family. And to my beautiful wife, Cindy and our wonderful daughters, Ashton

and Charlotte for their love and support especially when I was frustrated with the process. And

last, though most importantly, I thank God for the modest talents and immeasurable grace he

has bestowed on me.

vi

TABLE OF CONTENTS

LIST OF FIGURES .. xiii

LIST OF TABLES .. xvi

LIST OF ABBREVIATIONS .. xvii

CHAPTER ONE: INTRODUCTION .. 1

Outsourcing ... 3

Flexible Ordering Models .. 4

Context System ... 5

Generalized Problem .. 7

Prior Work ... 11

Research Objectives .. 14

Subsequent Chapters .. 15

CHAPTER TWO: RESEARCH METHODOLOGY .. 17

Step 1 - Describe the Business Process ... 18

Step 2 - Build a Workflow Tool for the Business Process ... 22

Step 3 - Review the Process Data and the Business Process .. 29

Step 4 - Analyze the Instrumentation Data .. 30

vii

Step 5 - Create a Discrete Event Simulation Model .. 33

Step 6 - Create an Embedded Version of DES Model ... 34

Step 7 - Integrate Model and Data Analysis Tools to Workflow Tool 34

Step 8 - Run Model in Non-Intrusive Mode .. 36

Step 9 - Validate Predictive Capabilities ... 37

Step 10 - Activate Model for Process Scheduling ... 38

CHAPTER THREE: A HEURISTIC FOR DECOMPOSING TRANSACTION LOGS FROM WORKFLOW

SYSTEMS .. 40

Introduction .. 40

Formulation .. 40

Relevant Literature ... 41

Methodology ... 42

Assumptions .. 43

Heuristic Example ... 45

Processing Times ... 48

Summary ... 48

CHAPTER FOUR: PROCESSING PREDICTIONS THROUGH EMBEDDED SIMULATION 50

viii

Abstract ... 50

Introduction .. 50

Problem Formulation .. 51

Related Literature ... 53

Due Date Quoting ... 54

Business Process Modeling and Mining .. 58

Necessity Of A Novel Approach .. 59

Necessity of Modeling ... 59

Necessity of Real-world Queuing Behavior .. 61

Argument Summation ... 63

System Under Test .. 63

Test Methodology ... 67

Test Results ... 68

Conclusion And Future Research .. 72

CHAPTER FIVE: PREDICTING BUSINESS PROCESS PERFORMANCE WITH ‘REAL WORLD’ QUEUING

... 73

Introduction .. 73

ix

Prerequisites ... 73

Scope of Problem .. 74

Relevant Literature ... 76

Due Date Quoting ... 76

Predictive use of DES Modeling .. 80

Developmental Details .. 81

Automated Analysis .. 81

Embedded Simulation ... 87

System Under Test .. 90

Test Methodology ... 91

Results ... 92

Conclusions ... 95

CHAPTER SIX: REAL-TIME ASSIGNMENT OF DUE DATES WITHIN WORKFLOW MANAGEMENT

SYSTEMS .. 96

Abstract ... 96

Introduction .. 97

Description of the Problem ... 98

x

Previous Related Work ... 100

Problem Formulation .. 104

Proposed Methodology .. 106

Experimental Study ... 109

Description of WFMS under Study.. 109

Experimental Data... 110

Discussion of Results ... 111

Summary and Future Work... 114

CHAPTER SEVEN: RESULTS OF INTEGRATING MACHINE LEARNING AND SIMULATION TO

PREDICT DELIVERY TIMES UNDER UNCERTAINTY ... 116

Abstract ... 116

Introduction .. 117

Prerequisites ... 117

Mathematical Formulation ... 123

Related Literature ... 126

Necessity of A Novel Approach ... 129

Necessity of Modeling ... 130

xi

Necessity of Real-world Queuing Behavior .. 131

Argument Summation ... 133

Methodology ... 133

Automated Analysis .. 134

Simulation Components .. 138

Embedded Simulation ... 140

Results ... 142

Discussion ... 148

Conclusions and Future Research ... 149

CHAPTER EIGHT: CONCLUSIONS AND FURTHER RESEARCH ... 151

Practical Implications .. 151

Future Work .. 152

APPENDIX A: LITERATURE REVIEW ... 155

Business Process Modeling ... 156

Workflow .. 159

Data Mining ... 161

Simulation, Modeling And Analysis .. 165

xii

Embedded Modeling And Simulation ... 166

Predictive Use Of DES Modeling ... 167

Due Date Quoting ... 169

Conclusion ... 173

APPENDIX B: PRACTICAL CONSIDERATIONS ... 174

LIST OF REFERENCES ... 178

xiii

LIST OF FIGURES

Figure 1 - UML Event Trace Diagram .. 8

Figure 2 - UML Event sub-trace for subject system .. 9

Figure 3 - Initial phase of business tracking system development process 12

Figure 4 - Multi-segmented bar chart of processing time .. 13

Figure 5 - 10-Step system development process .. 14

Figure 6 - Embedded model development process .. 17

Figure 7 - Sample Object-Actor-Action diagram ... 20

Figure 8 - Phase 1 of the system development .. 29

Figure 9 - Phase 2 of the system development .. 30

Figure 10 - Phase 3 of the system development .. 36

Figure 11 - Phase 4 of the system development .. 37

Figure 12 - Phase 5 of the system development .. 39

Figure 13 - Normal inputs and output from a DES Server .. 44

Figure 14 - Revised inputs and outputs available from virtual DES Server 44

Figure 15 - Queue position determination ... 46

Figure 16 - Processing time determination .. 48

Figure 17 - Flexible Queue .. 61

Figure 18 - Relative percentage of jobs inserted into queues by position 62

Figure 19 - Model of system ... 64

xiv

Figure 20 - Mean Squared Lateness – FIFO .. 69

Figure 21 - Mean Squared Lateness - LIFO ... 70

Figure 22 - Mean Squared Lateness - Empirical.. 71

Figure 23 - Detailed DES model of system .. 74

Figure 24 - Queue position determination ... 84

Figure 25 - Processing time determination .. 86

Figure 26 - Correlation between WIP and TAT ... 93

Figure 27 - Predicted versus Actual TAT ... 94

Figure 28 - Workflow sequence of orders in the WFMS under study 109

Figure 29 - Correlation between customer order WIP and TAT 112

Figure 30 - Predicted TAT vs. Actual TAT .. 112

Figure 31 - Predicted versus Actual flow time .. 114

Figure 32 - Stylized business process .. 118

Figure 33 - Mapping the business process to the workflow system 119

Figure 34 - Transactions to events .. 120

Figure 35 - Consolidation of analytical results .. 121

Figure 36 - Detailed DES model of system .. 122

Figure 37 - Components of the amended workflow system .. 123

Figure 38 - Flexible Queue .. 131

Figure 39 - Relative percentage of jobs inserted into queues by position 132

xv

Figure 40 - Queue position determination ... 136

Figure 41 - Processing time determination .. 137

Figure 42 - Modeling components .. 140

Figure 43 - Embedded model with parameters .. 141

Figure 44 - Predictive performance versus job history, P0 = 0.90 143

Figure 45 - Predictive performance versus job history, P0 = 0.55 145

Figure 46 - Predictive performance versus job history, P0 = 0.60 145

Figure 47 - Predictive performance versus job history, P0 = 0.65 146

Figure 48 - Predictive performance versus job history, P0 = 0.70 146

Figure 49 - Predictive performance versus job history, P0 = 0.75 147

Figure 50 - Predictive performance versus job history, P0 = 0.80 147

Figure 51 - Predictive performance versus job history, P0 = 0.85 148

Figure 52 - Business Process literature grid .. 158

Figure 53 - Workflow literature grid ... 161

Figure 54 - Data Mining literature grid ... 165

Figure 55 - Simulation literature grid .. 168

Figure 56 - Due Date Quoting literature grid .. 173

xvi

LIST OF TABLES

Table 1 - Processing times by step .. 65

Table 2 - Queuing behavior by step .. 66

Table 3 - Processing times by step, which are derived from historical data 110

Table 4 - Result figures by P0 .. 144

xvii

LIST OF ABBREVIATIONS

ACWIP Actual Current Work In Progress
CORBA Common Object Request Broker Architecture
CRUD Create, Review, Update and Delete
DES Discrete Event Simulation
EDD Earliest Due Date
FCFS First Come, First Served
FIFO First In, First Out
FTE Full-Time Equivalent
HTML Hypertext Markup Language
IAT Interarrival Time
IDD Internal Due Date
IDIQ Indefinite Delivery, Indefinite Quantity
JIQ Jobs In Queue
JSIM Java SIMulation Library
LCL Lower Confidence Limit
LIFO Last In, First Out
MLP Multi-Layer Perceptrons
MSL Mean Squared Lateness
NOP Number of Operations
NWIP Mean Work In Progress
OAA Object-Actor-Action
ODD Operation Due Date
PHP PHP Hypertext Processor
ProM Process Mining toolkit
RBAC Role-Based Access Control
SLK Constant Slack
SME Subject Matter Expert
SPT Shortest Processing Time
SQL Structured Query Language
ST Safety Time
SVM Support Vector Machine
TAT Turn-Around Time
TWK Total Work Content
UCL Upper Confidence Limit
UML Unified Modeling Language
WEKA Waikato Environment for Knowledge Analysis
WFMS Workflow Management System

xviii

WIP Work In Process
XDD External Due Date
YAWL Yet Another Workflow Language

1

CHAPTER ONE: INTRODUCTION

In flush economic times, the elements of excellence that characterize the practice of

Industrial Engineering -- reducing cycle-times, decreasing variability, and increasing

predictability can mean the difference between a growing business and a struggling one. This is

a distinction that can be argued by pundits extolling the competing values of flexibility and

control. In leaner times, however, the consequences are more Boolean - the business survives,

or it fails. In this latter case, the discussion is rarely friendly and usually not between pundits. It

is much more likely to be characterized as a morose recrimination between laid-off employees

and their former employers, or between the company leadership and their investors, or in

some cases the discussion takes place in front of a judge or an oversight committee.

If the preceding premise can be accepted, why then would companies not uniformly

pursue these key performance enhancers provided by rigorous process? The answer is, of

course, that these pursuits cost money and are perceived to add to development cost and

delivery time without returning sufficient value. In flush times, the argument against process is

that this money is better used investing in infrastructure, acquiring key resources or intellectual

property (through research or acquisition), or maintaining a strong debt posture. In lean times

it is difficult to justify creating processes that add overhead in the face of shrinking margins,

falling sales, and imminent layoffs. Part of this prejudice is based on the historical tools and

techniques for improving performance often corralled together under the umbrella title of

"Systems Management". This set of practices is undeniably successful and is often cited as

2

critical to the US Space Program. Effective Systems Management implementations added 15%

to the cost of a program while returning highly managed risk [1].

When operating in the comfortable embrace of our Nation's generational goal, this

trade of cost for minimal risk made good sense. However, after the successful completion of

the Space Race the 15% premium was deemed too much to bear for programs concerned

simply with developing the next fighter aircraft, the latest main battle tank, or a new nuclear

submarine. Through the conclusion of the Cold War, the Systems Engineering approach

became ascendant with its slimmer, 10% price point. Now, with the former Soviet Union

broken up and the People's Republic of China seemingly more interested in competing in the

marketplace than on a battlefield even the 10% cost of Systems Engineering often seems

burdensome [2]. Today there are several lower priced alternatives to Systems Management

and Systems Engineering, such as Lean Six Sigma which purports to offer sufficient process with

a more attractive 5% price point. Today, the twin tines of exploding technology and increasing

economic pressure continue to force out even the narrow safety wedge that rigorous process

provides. Corporations now routinely operate on the edge of failure, knowing full well that a

single slip might precipitate a chain reaction of insolvency litigation that might bankrupt the

business and disemploy its workforce. The bewildering proliferation of disruptive technologies

force businesses to shorten their response cycles or be lost in last month's technology. The

coincident decline of sales means that businesses rarely have the luxury of deep Research and

Development budgets to explore leap-frogging technologies as hedges against market

3

disruption. To reclaim some maneuver room, individuals, corporations and governments have

all turned to outsourcing as a way to reduce cost and shift risk. This is a reasonable technique

but requires one, significant caveat – the right outsourcing provider must be selected. Selecting

an unqualified provider may reduce short-term costs but only because risk has been shifted

such that one has limited control over it.

Outsourcing

Outsourcing Source Selection is, in every sense, a critical process – it is vitally important,

complicated, and expensive. Whether it is a consumer selecting someone to paint their house,

a multi-billion dollar corporation deciding to whom they will outsource their IT support, or the

Federal Government choosing a contractor to provide services to the Department of Defense –

the choice of source directly affects quality, cost and risk. Source selection is rarely a simple

decision made by a single person -- it is usually made within the context of some sort of

business process.

A given selection process can be either simple or complex. The simple process costs

little in terms of time or effort but often selects less than ideal sources. The complex process is

often very expensive but can yield a better source selection. Therefore, balancing the cost of

the selection process with the benefit of selecting the most qualified source is vital. The

complexity of the most suitable process is very much related to the nature of the product being

selected. If one is buying 60-watt light bulbs, then a check of price per hour of life is probably

4

sufficient, and requires practically no time to execute. Seasoned grocery shoppers perform this

type of source selection all of the time. However, when the perceived quality of the product is

important, some other (often non-quantitative) criteria must also be applied. As price and

complexity increase, the process becomes even more cumbersome both in terms of complexity

(more criteria applied), and scale (an outsourcing proposal worth tens of millions [106] of

dollars can consume the equivalent of thousands of sheets of paper). And there are both fixed

and variable costs associated with these types of selection processes that affect how often an

outsourcing supplier should be selected, but both corporations and governments seem to have

settled on a minimum of a five year term and as long as ten years to make outsourcing viable

both in terms of the cost of the competition but also to make the deal worthwhile to the

suppliers.

Flexible Ordering Models

This potential reduction in total cost (cost of selection + cost of performance) has led, in

recent years, the US Government to move away from traditional, "Full and Open" contract

awards (i.e., define requirements, develop specification, seek sources, qualify sources, publish a

Request for Proposal, evaluate proposals received, award contract, execute contract, re-

evaluate requirements, repeat). Instead, the government has exhibited a preference for IDIQ

(Indefinite Delivery, Indefinite Quantity) contracts where the sources selected are capable of

performing across a broad scope of possible tasks. The corresponding construct in the

5

commercial market are sometimes termed “Blanket Ordering Agreements” or “Blanket

Purchase Orders”. These IDIQ awards may be to a single contractor or to multiple contractors.

They are typically executed over a span of many years and may have very high funding ceilings

(some measured in billions [109] of dollars). Within these contracts (because of the pre-

negotiated rates) the task award process for a specific piece of work is considerably more

streamlined than the traditional full and open competition. This can result in a more efficient

use of the government’s funds with more of the funding available to do work because less is

expended in the competition process. An additional benefit to the agency requiring goods or

services, often cited in their justification for the acquisition, is that the agency can expect that

their delivery times would be much shorter.

Though the program that will provide the context and data for this research also

provides support to the US Government, the techniques and attendant benefits described are

applicable to any organization that provides, or seeks to provide, broad-scope, outsourcing

services.

Context System

A recent single-award IDIQ contract was awarded to a major defense contractor to

support world-wide training operations. The award has a ceiling on the order of $10 billion

over a 10 year period. A base task order to that award accounts for approximately 20 percent

6

of the $10 billion ceiling. The remaining 80 percent of the ceiling is set aside to cover additional

task orders within the broad scope of work awarded.

As the senior managing engineer for the recipient of the above award, the author has

been deeply involved in the development of the extended business processes required to

support this new contract vehicle. Central to the IDIQ contract type is a business process to

handle order management. This order management process runs across the entire enterprise

from field customer, through contracting agency, and then through nearly all of the various

functional and operational sub organizations of the contractor team. The quantity of dollars

was mentioned above, but perhaps the more telling metric is the number of individual orders

that must be processed by the combined government-contractor team. During the first two

years of execution, the business processed on the order of 1,200 task orders per year (100 per

month, or 5 per business day). If the orders were for books or other packaged consumer goods,

then an Amazon-like model could have been used. If the orders had been for cars – allowing

for some limited buyer configuration, then a model based on the auto industry might have

been appropriate. And while there is some limited similarity to the construction industry, the

price variance for the individual orders is greater than five orders of magnitude. The author has

been tasked with developing the system to responsively schedule the delivery of the proposal,

not the product itself.

From a historical perspective, the resources required to execute the corresponding

process on the preceding contract amounted to “X” Full Time Equivalents (FTEs). As the volume

7

of orders has increased by nearly 1,500% one might expect the upper bound on the resources

required would be on the order of 15X FTEs. By implementing some of the techniques

described in the following, the upper limit on resources has remained under 2X FTEs. Even at

service industry rates, for an effort of this magnitude this reduction in required resources

equates to millions [106] of dollars annually. This process and system for capturing the

remaining ceiling onto this IDIQ contract will provide the practical backdrop for this research.

Generalized Problem

Recast in more general terms and in a broader sense, this process begins with the

identification of a requirement by a consumer and contracted by his agent through a broker. It

ends with the work completed on-time, the final bill submitted, and the broker as well as its

suppliers paid an amount less than or equal to that proposed. Each of these orders requires

considerable effort by both the sales agent and the broker with statements of work and order

packages being developed and staffed by the sales organization and proposals being generated

by the broker and his suppliers. The proposals must be reviewed and, if accepted, activated by

the agent, and then subcontracted, in many instances, to existing or new suppliers. This flow is

depicted in the sequence diagram at Figure 1.

8

Figure 1 - UML Event Trace Diagram

As a complement to the existing project management literature which covers the

performance segment of the diagram above, the existing supply chain literature that covers the

Order and Deliveries sections, and the existing finance and accounting literature that covers the

Invoicing, Billing and Payment sections, the area of focus for this research will be on the order

and proposal sections of this process, as shown in Figure 2.

While this diagram is representative of the aforementioned government contracting

vehicle, it is noteworthy that a custom home builder might draw a similar diagram with the

consumer being interested in a custom home, the sales agent filling out the order form

Consumer Sales Agent Broker Service Suppliers

Requirements

Credit Check
Order Sheet

Request(s) for Quote

Quote(s)
Proposal

Notification of price

Funds Transfer
Order

Order(s)

Deliveries

Invoices
Performance

Bills
Payment

Payment(s)

9

describing the customer’s desires, and the broker (general contractor) evaluating the order

(with its suppliers) to determine a final cost and schedule for the home.

Based on historical data for the test system, these orders must flow (in a steady state,

steady flow process sense) through the consolidated order and proposal process at a nominal

rate of five per day. As a starting point, a notional (without analysis) cycle time of 21 calendar

days was set. It is this cycle time that most neatly captures the efficiency of the combined

Agent-Broker-Supplier process.

Figure 2 - UML Event sub-trace for subject system

Unfortunately, measures of central tendency tell very little of the story in this situation.

Lower than required mean cycle times on the order of 10 days obscure the variance, with

minimum cycle times and maximum cycle times differing by at least two orders of magnitude.

Traditional, manufacturing-centric, quality-based wisdom suggests that this variation should be

vigorously stamped out by eliminating the sources of variation. And, in fact, many of the

reducible sources have been and continue to be attacked. However, the single largest

Sales Agent Broker Service Suppliers

Order Sheet
Request(s) for Quote

Quote(s)
Proposal

10

contributing factor to variability is the scope of the order being processed. Orders are taken

whose final proposed values vary between hundreds of dollars and tens of millions of dollars.

Further complicating the management of these order efforts are a significant collection of

variables including requirement completeness, requirement maturity, mission lead time, task

complexity, risk (cost, schedule, and performance), task order type (Time and Material or Fixed

Price), location where work is to be performed, customer priority and many others. Some of

these are neatly captured on the order sheet provided by the Sales Agent, but several, most

notably those respecting requirements, only become visible upon semantic review of the

supporting documents.

Now, finally recast as a generalized problem – there is a flexible flow shop in which the

stations that a job passes through are known and the jobs in the stations queues at any point

are known. All of the other parameters associated with the flow shop, including job processing

times per station, job value, and station queuing behavior are uncertain though there is a

significant body of past performance data that might be brought to bear. The objective, in this

environment, is to meet the delivery date promised when the job is accepted.

With the continued success of the contractor hanging in the balance, the author

proposes to perform data collection and analysis to measure the performance of the existing

business process, build a suitable model of the process as a baseline of comparison, and then

develop an embedded process model coupled with nondeterministic algorithms to improve

predictability of this critical process.

11

Prior Work

Prior to the start of execution of the contract, which employed the author in 2008, the

procuring government agency approached the author, and asked that the author develop a tool

to assist the agency in tracking its internal business process for generating and issuing order

sheets. The author agreed and developed the initial version of that tool. While developing this

tool for the agency to use (though developed at contractor expense and hosted in the

contractor’s data center) the author recognized the logical benefit of extending the tool to

encompass the contractor’s emergent business process for preparing and delivering proposals

in response to the agency’s order sheets. The generalized nature of the process for developing

such a system is depicted in Figure 3.

12

Figure 3 - Initial phase of business tracking system development process

The author recognized the potential power of gathering transactional data as the

documents were executed through the paired agency-contractor processes. It was with these

goals in mind that the author wrote the initial workflow tool and documented the

corresponding initial business processes. Central to this workflow management approach was

the accountability that is enforced by the transactions that are recorded - for each change in

state of the affected document, the date and time of the change, and the person effecting the

change are recorded. [3]

13

After the process and tool had been running for six months, a consolidated performance

review was held. During that meeting questions were raised by the agency about order

processing times. The author was able to answer in objective terms about the mean processing

times by individual process step and by the category of services provided. The results, while

not necessarily pleasant for all involved were both illuminating and beneficial. To allow greater

visibility, the author then had this processing time report recast as a multi-segmented bar chart

(Figure 4) which was made continuously available to all parties within the agency and to the

contractor.

Figure 4 - Multi-segmented bar chart of processing time

The positive effects of this transparency were remarkable to both the contractor and

the customer. Simply measuring what was being done by both the agency and the contractor,

and making the results continuously visible through a web-based tool drove combined

processing times (inclusive of agency processing and contractor processing) from 88 days down

to 48 days without applying any particular pressure to any point of the system. Overall

14

efficiency was improved as well as customer satisfaction by making the answer to most

questions regarding status immediately available from any web enabled computer.

During the subsequent two years, the process and the tool have continued to receive

updates to streamline processing and allow for additional categorical information to be

captured on the order sheets. It is on this now firm foundation that the author proposes to

build an engine that will allow for accurate prediction of proposal delivery time for new orders.

The overall process for this research is presented in Figure 5.

Figure 5 - 10-Step system development process

Research Objectives

The overall goal of this research is (1) to extend the literature with respect to the use of

embedded modeling and automated data mining to enhance predictability in uncertain

15

processes while specifically addressing techniques for dealing with realistic tracking and

performance data through output-ordered queue analysis and empirical queues, (2) develop a

prototype embedded model combined with automated analysis techniques to improve the

predictability of a representative, multi-tier business process with dynamic behavior, and (3)

conduct a feasibility study of these techniques by deploying the prototype into a production

environment to validate the benefits of the combined process on predictability. At the

conclusion of the research, a proficient practitioner should be able to apply this approach to

similar multi-tiered, electronic workflow management systems. For the researcher, the non-

standard queuing components, both for analysis and simulation, should provide fertile ground

for the exploration of system optimizations outside the well studied First Come-First Served

(FCFS) queuing policy.

Subsequent Chapters

As the development of the theoretical and practical portions of this research have been

intertwined with the author’s professional pursuits and portions of the results have already

been published, accepted for publication, or submitted for publication, an alternative

organization of the remaining chapters is utilized. Chapter Two describes in detail the proposed

10-step process presented in Figure 5. Chapter Three describes the proposed heuristic

algorithm developed to decompose the event logs from the test workflow management system

(WFMS). Chapter Four contains a published paper in which the author begins the logical

16

argument for a new approach to Due Date Quoting in complex systems, particularly those that

do not use an FCFS queuing policy. This chapter focuses on Steps 4 and 5 of the 10-step

process. Chapter Five contains a paper, currently in review for presentation, that presents the

development of the prototype implementation of this new approach (Steps 6 and 7) and the

initial predictive results. Chapter Six contains a paper, accepted for publication, which extends

the results from Chapter Five by incorporating an error distribution into the predictive process

against historical workflow orders. Chapter Seven is a paper, submitted for publication review,

which details the results of the predictive prototype in setting accurate due dates for a

production order processing system – completing Steps 8, 9 and 10. Conclusions are drawn and

suggested areas for further research enumerated in Chapter Eight. The gap in the existing

literature is bounded in the extended literature review in Appendix A. A listing of practical

considerations discovered while following the proposed 10-step methodology is provided at

Appendix B.

The reader should note that Chapters Four, Five, Six, and Seven are written as

standalone papers and included in their entirety. As a consequence, certain material in these

chapters (i.e., mathematical formulations, descriptions of the test system, etc.) are redundant.

17

CHAPTER TWO: RESEARCH METHODOLOGY

The overall goals of this research are (1) to extend the literature with respect to the use

of embedded modeling and automated data mining to enhance predictability in uncertain

processes while specifically addressing techniques for dealing with realistic tracking and

performance data through output-ordered queue analysis and empirical queues, (2) develop a

prototype embedded model combined with automated analysis techniques to improve the

predictability of a representative, multi-tier business process with dynamic behavior, and (3)

conduct a feasibility study of these techniques by deploying the prototype into a production

environment to validate the benefits of the combined process on predictability. To achieve

these goals the author executes the tasks summarized in the 10-step flow diagram in Figure 6,

provides the graphical outline for the remainder of this chapter.

Figure 6 - Embedded model development process

18

At the end of this 10-step process, the author expects to have a system capable of

answering the specific question: “Given the descriptive attributes of an object and the current

state of the business process system, when will the object exit the system with 90%

confidence?” Though the question is stated in terms of a 90% service level, the resulting

prototype could as easily be tuned for other services levels. Throughout this chapter, a series

of graphics highlight the portions of the system under study or development and their

interrelationships. This series culminates with a pictorial representation of a system the author

offers that is capable of answering the question above.

Step 1 - Describe the Business Process

In order to begin the process described in Figure 6, the practitioner must first capture

the business process in question. Depending on the circumstance, the practitioner will have

some degree of familiarity with the process to be captured. This familiarity will range from

highly familiar in the case of an in-house practitioner to limited familiarity for a consulting

practitioner. In the case of the in-house practitioner, one should be careful not to assume that

tenure equates to understanding – 15 years of requisitioning light bulbs does not qualify the

practitioner as an expert in the Supply Chain functions of ordering, receiving, and stocking light

bulbs. Similarly problematic, the consulting practitioner should avoid forcing the process now

under consideration into a previous consultancy’s pattern as a shortcut to developing the

process documentation required.

19

There are several different representations that can successfully be used to capture

business processes and much literature exists citing the virtues of one scheme over another.

Any representation that can capture the behavior of the process in question is sufficient. This

author is primarily concerned with capturing the process as efficiently and unobtrusively as

possible. To that end, a sufficient modeling paradigm that the practitioner is well experienced

with is as important as any other concern in selecting a representation. As this author is most

experienced with an Object-Actor-Action (OAA) framework, it is that framework that will be

used for capturing processes and their behavior throughout the research.

An OAA diagram is analogous to a Unified Modeling Language (UML) Activity Diagram

combined with a UML Use Case diagram to indicate the actions taken on an object but also

annotating the user (or user class) responsible for the action. It also captures status changes to

the object as the process progresses. The opening phrase of the subject process is provided as

a brief example in Figure 7. In this example, the object that flows through the workflow system

is an “Order Sheet”.

20

Figure 7 - Sample Object-Actor-Action diagram

The author has found that an appreciation for the overall process is useful before

delving into the details of the individual steps in the process. This activity of capturing the top-

level business process is often chaotic as complex organizations may not have an internally

consistent view of how they conduct their own business. This tends to lead to confusion and

often contention among the functional and operational Subject Matter Experts (SMEs) gathered

to assemble this artifact. When complete, this top-level view of the process quickly highlights

the interpersonal and inter-organizational interfaces. Perhaps of even greater value is the

highlighting of significant gaps (lack of interface) between organizational elements. These gaps

usually become obvious as places where the diagram is discontinuous.

As best stated, “The greatest leverage in architecting is at the interfaces” [4]. The things

that traverse these interfaces are the objects that the process functions upon - usually

documents (whether paper or electronic) in the business process context. The enumeration of

the interfaces will usually provide the statuses applied to the objects (usually written in the past

21

tense, e.g. “Supplier Quotation(s) Received”). Similarly, the people processing the objects

between the interface steps are the actors.

It is these interfaces that must be clearly understood when capturing the attributes of

the object(s) that are processed. With a draft top-level process view established, the individual

actors in the process can then be efficiently interviewed to confirm the object attributes that

they require in performing their step(s) in the process. It is important not to lose sight of the

individual actor’s actual requirements when attempting to consolidate their collective inputs as

this is a sure way to end up with not only disenfranchised users but potentially uncontrolled

portions of the business process as well [5].

Along with the attributes of the objects, the responsibility for managing the objects

must also be captured. For any non-trivial business process executed by a complex

organization there will be some separation of duties and responsibilities which will be referred

as a role in this context and denotes authority or permission across all instances of various

object types. Disentangling these ownership/authority boundaries is a challenging practice, the

consequences of which are noted by Larsen and Klischewski [6]. As the resources (number of

actors) applied to a process increase it is sometimes advantageous to associate particular users

with particular objects (a sales representative with a particular customer, etc.). This is

described as an assignment and would denote authority or permission across the subset of

object instances to which the actor is assigned. With these definitions, the practitioner can then

determine the object permissions by role and/or assignment. The author prefers to use the

22

CRUD method [7] to catalog which users or user classes have permission to Create, Read,

Update, and Delete instances of objects in the system though other methodologies could

certainly be employed.

While all of the above activities may seem to be focused in the virtual world, it is critical

that the corresponding physical portions of the process are not overlooked. During the

interviews the practitioner must elicit all of the actions (real or virtual) required after each step

in the process – from sending a notification email to physically stamping a paper form, each of

the actions must be cataloged so that the potential of leveraging automation systems

(Enterprise Resource Planning, etc.) can be explored.

The final step in this cycle of capturing the business process is to consolidate the data

collected and review it with the collected set of actors.

Step 2 - Build a Workflow Tool for the Business Process

After the process under study is well understood and well described the next step is to

build an information system to facilitate the measurement of that process. To construct such a

system three phases organize the task manageably: database design, application development,

and report creation. In this context “Database Design” encompasses both the logical design of

the database (its abstract schema) as well as the instantiation of that abstract schema as a

concrete schema against a particular database engine. Similarly “Application Development”

encompasses evolution of the architectural elements (logical, security, network, and physical),

23

which informs the technology selection, which underpins the actual encoding of logic in the

specified language. And while listed last, the “Report Creation” phase must remain fixed as a

design driver throughout the database and application development processes – ensuring the

database design and the application developed readily support the required reports.

Define the schema to contain objects – during this portion of the logical database design

process the practitioner creates a table for each distinct object type discovered within the

business process elicitation. In addition to a unique, system generated, primary key for each

object, all of the attributes associated with the object are encoded either within the table itself

or within companion tables (when the objects and attributes form a “one to many”

relationship). Care must be taken to thoughtfully establish which attributes are required and

which are optional. This partitioning may change as the object changes state. For example, a

new order request object may simply need a customer and a sales representative (in addition

to its unique key value, and its creation date – both system generated) to allow object creation,

but will certainly require that additional attributes are populated before it can be submitted for

bid processing.

Define schema to capture transactions – this extension of the database design process

extends the object schema. The object schema alone simply reflects the state of the system at

the current time but as a “workflow” system, it must account for time as well. Transactional

tables are a means of reflecting time (in this usage – history) within a database. At their

simplest, transactional tables provide a framework to record the identification (ID) of an object,

24

the date of the transaction, which actor effected the change in state, and the new (or old)

status of the object. Depending on the network and physical implementation of the database

and application it may be desirable to disambiguate the order of transactions with a system

generated unique key on the transactions as well.

Define schema to identify actors – this portion of the database design defines the

structure that will represent all of the entities that can change the status of an object or who

are interested in such changes. A user key, user name, and email address are required in such a

schema though many other attributes are likely to be desired such as a phone number (or

numbers), physical addresses, company affiliations, and so on.

Define schema to identify actions – if the practitioner has been thorough in

understanding the business process, this schema should be simple to define and the data to

populate simple to create. In the author’s implementation, the table that implements the

action schema has three fields: a unique, numeric ID, and abbreviation for the state of the

object, and a long description of the object state. These states, or statuses, are simply the

enumeration of the steps in the business process as elicited in step 1. Depending on the

number of unique object types to be handled in a system it may be possible to use a single

table to reflect the statuses of multiple object types, though this small efficiency is likely

outweighed by the added complexity of keeping the statuses of the various objects out of

conflict.

25

Define schema to support security – this step in designing the database is simple to

overlook, especially for a small implementation, but failure to adequately address this aspect of

the overall system within the database schema will cause the application portion of the system

to be much more cumbersome to develop and maintain than necessary. As described in step 1

above, security can be based on roles, assignments, or both. The simplicity of implementation

for purely Role-Based Access Control (RBAC) scheme can lead to unauthorized access when

users are promoted to overcome RBAC limitations [8]. There are several sufficient patterns that

can be used to provide a security structure. The criteria involved in choosing an appropriate

pattern are associated with the number of actors using the system, the availability of an

existing user directory external to the application, the geographic and organizational diversity

of the collection of actors, and others. Successful patterns may, based on the criteria above,

range from a local user table with application enforced credential policies to enterprise-wide

directories containing both internal and external actors. As the security aspects of a well

designed system tend to pervade the implementation, care should be taken to account for the

potential growth of the process – a process that today might run comfortably with a dozen

actors in one warehouse might be vastly inadequate when the process scales to run with

hundreds of employees located at several geographically dispersed locations.

Normalize schema – as a routine part of any database design, after an initial, logical

database schema has been developed it should be normalized to minimize data redundancy (a

seasoned practitioner may perform this task sufficiently during the development of the

26

individual portions of the schema above such that this step is simply a validation of

normalization). In addition to the database-centric benefits of normalization, the author finds

the hands-on process of normalizing the schema to be of value in pre-defining data to be

entered – thus minimizing the quantity of free text entry required (or allowed) in the

application.

With the database schema logically defined and implemented against a database

engine, the next task is to define the application environment that will implement both the

business logic of the business process and controlled access, in accordance with the CRUD

matrix, to the object store. As the strategic and tactical requirements, corporate security

strictures, and customer infrastructure details that informed the larger architectural

development are beyond the scope of this research, a short summary of the salient points is

appropriate – external users should have the same experience as internal, no software beyond

a web-browser could be assumed on the client machines, and thousands of users should be

expected across (nearly) every time zone. These points lead quickly to a web based solution

with some form of server-side scripting.

Of the many choices available (Java Server Pages [JSP], Active Server Pages [ASP], and

PHP: Hypertext Preprocessor [PHP] to name a few), PHP was selected as the server side

language for this project based on the author’s familiarity with it. It was coupled with

Microsoft’s SQL Server as the database engine – similarly, any database engine capable of

handling the required transactional loading could be used. Both internal and external users

27

make use of Microsoft’s Internet Explorer as their web browser which serendipitously

shortened the development effort by obviating multi-browser integration issues. These tools

were required to interact with the Enterprise user directory necessitating the creation and

management of internal and external user accounts in a single data store.

With the above architectural decisions made, the next task was the creation of the web

application itself. A cursory review of the requirements of such an application demands a

consolidated list of objects, a view to add an object, one to edit an existing object and a read-

only view. The practitioner is then faced with the choice of hand coding the pages or using a

third party tool to generate the pages described above. Based on perceived framework

flexibility the author selected a code generation tool that produced PHP pages based on the

already defined database schema. The choice to use a code generator saved many hours of

HTML and PHP development, however the constraints of placing the workflow code within the

tool’s required framework may have outweighed the time savings associated with the

automatic page generation. The tool selected was eventually extended by its author to support

role-based security based on a local user table. This capability was found to be insufficient and

was subsequently replaced by a hybrid integration combining locally defined roles and

assignments in conjunction with enterprise user and credential management. All of the

available code generation tools reviewed by the author worked directly on the object tables,

none of them supported any sort of automation to facilitate transaction or audit history

creation – these capabilities must be added by the practitioner.

28

As the application is being developed it is appropriate to begin to formulate the queries

and display layouts for an initial set of reports. Some reports are obvious such as count of

objects by current status, objects by actor assignment, and objects by creator. Other reports

are more subtle and might provide insight into things like the time spent by objects in various

statuses.

Thoughtfully considering the perspective of the various actors may lead to additional

aggregating attributes. As an example, each of the actors in Figure 7 is a distinct customer from

the broker’s perspective, and each would likely desire a differing aggregation. The Sales Agent

would like to see orders for all of his clients, while the Business Manager might want to see

orders by product, or Sales Agent, or payment terms. There are cases where the attributes will

be hierarchical – each of the Account Representatives works for only one Account Manager. In

other instances, the attributes will not align with organizational boundaries as in the case

where clients may work with multiple Account Representatives for different products. The key

is to remain flexible to differing reporting (especially aggregation) requirements depending on

the customer’s perspective.

The WFMS that serves as the test bed for this research implements all of the

architectural and design consideration described in this section. Critical to the analysis step

(Step 4), the test WFMS implements transaction logs that are written out to the WFMS

repository (a Microsoft SQL Server, in this case). These transaction logs record the arrival times

and locations for each order as it transits the system.

29

Step 3 - Review the Process Data and the Business Process

Figure 8 - Phase 1 of the system development

With the business process in question well defined, documented and communicated

and the supporting tool developed and tested it is appropriate to run the workflow tool in a

production environment. The reader should note the feedback arrows from Step 3 back to

Steps 1 and 2. Irrespective of the time and effort invested in performing Steps 1 and 2, there

will be issues that arise when the process/tool combination is put into production.

The key to this third step is to look at the data frequently, and talk to the users

frequently. The point of doing so is to make sure the system, the data and reality match, if they

do not the practitioner must modify the process, the tool, or both until they do.

As a result of this step, the author implemented several changes but as examples,

consider the following three: (1) a facility to require actors to enter comments when an object

is moved backwards in the workflow (or more bluntly, rejected), (2) several additional reports

Business Process

Workflow/

Instrumentation

System

Business Process

Objects

Current and Historical

Attributes &

Transactions

1

2

3

30

exposing action times, and (3) a mechanism to capture (in an auditable sense) the quality

control checks performed on the object before its final delivery.

In the case of the subject system Steps 1, 2, and 3 took 18 months to bring the

processes and tools to the current state where they have now been operating for an additional

18 months.

Step 4 - Analyze the Instrumentation Data

In preparation for building the Discrete Event Simulation (DES) models for Step 5 and

Step 6, the data collected by the system is mapped to typical DES data sets, e.g., Inter-arrival

Times (IATs), Processing times, etc. Depending on design decisions in Steps 2 and 3, this task

may be straightforward or complicated. Figure 9 provides a pictorial representation of this step

and its two immediate successors.

Figure 9 - Phase 2 of the system development

Business Process

Objects

Current and Historical

Attributes &

Transactions

Manual

Analysis

Historical

Objects

4

Inter-Arrival Times

Attribute Distributions

Processing Time Distributions

Queue Behavior

Discrete Event

Simulation

Model

5 6

31

In the case of the test system, the raw IATs are trivial to extract from the transactional

tables; however, extracting the net IATs (discounting nights, weekends and holidays) is more

challenging since processing can take place at anytime but as a practical matter largely occurs

between 7 AM and 7 PM in the Eastern US time zone and Monday through Friday. These net

IATs are required to adequately create additional objects in the DES behind the object in

question when there are multiple processing stations across multiple process steps such that

jobs may overtake others during processing. The complexities of this relationship are described

mathematically in Chapter Three.

Similarly, and as a consequence of “Practical Consideration #2” (APPENDIX B: PRACTICAL

CONSIDERATIONS), basic workflow process events (when an object reaches a station’s queue,

and when it leaves the station) have to be decomposed to distinguish between queuing time

and processing time. Since the actual start of processing is not captured and the queuing

behavior is not necessarily First in First out (FIFO) or Last in First out (LIFO), but somewhat

arbitrary, the decomposition requires a non-trivial approach and some effort to design and

implement. The description of this portion of the process follows in Chapter Four.

As a note, the author has chosen to implement the analytical and modeling aspects of

the subject system in Java. The reasons for this selection are more practical than theoretical as

there are several existing DES frameworks written in Java, and the author is reasonably

comfortable coding in Java. A practitioner could as easily choose to implement the analytical

32

and modeling aspects in another language as there is no elements of the solution that require

Java or even an Object Oriented programming language.

These processing times are a critical input to the embedded modeling process that will

generate a predicted delivery schedule for the object. Analysis of the data also aids in

determining how jobs are handled at the various processing stations – an initial analysis of a

sample of data for one step of the process indicated that jobs were being handled in a

predominantly LIFO fashion for that step. The complete results of this analysis are portrayed in

Figure 17, in Chapter Four.

The final activity in this step is to automate the analyses performed above so that the

analyses can be orchestrated to run as required by the workflow system. To keep the

development manageable, the author also coded these development tools in Java. The manual

analysis of the target system consumed two weeks and the re-creation of the analytical process

as an automated task took several more.

For steps in the process that exhibit readily identifiable queuing behavior, the analysis

and automation will be more straightforward, however, the real-world nature of the process

may lead to inconsistent behavior which would be considerably more challenging to model,

especially in an automated sense.

33

Step 5 - Create a Discrete Event Simulation Model

With the Object-Actor-Action diagrams created in step 1 and validated by the end of

step 3, and armed with IAT distributions, queue behaviors, and processing times extracted

during step 4, a DES model can be readily encoded in a discrete event simulation tool (Arena,

ProModel, etc.) for visualization, verification and validation. The only exception to this may be

queuing behavior if the completed analysis from step 4 indicates non-standard behavior across

the stations. In this case, it might be necessary to build modules for the DES framework to

provide this behavior (see Chapter Three). After the model is built, operational validity will be

established using historical data validation [9]. In this method, arrivals, processing times, and

queuing behavior taken from the actual system will be used to stimulate the model. To

determine this validity objectively, confidence intervals will be computed for both the historical

and model generated cycle times, and these will be compared for statistically significant

differences between the means [10].

It will be important to capture the entities and all of their attributes so that they may be

fed into the embedded model from the upcoming step 6 to ensure the model behavior is

consistent irrespective of the random variate seed behavior between the standalone DES

environment and the Java-based DES framework. If the practitioner simply wants to conduct

off-line simulations of the workflow process, he might stop here.

34

Step 6 - Create an Embedded Version of DES Model

In order for the DES model to be used to its greatest extent, it must remain

synchronized with the production system. In this case re-coding the model, or alternatively

building the initial model within a toolset that allows for stand-alone and embedded operation,

is required. With the fully defined and validated behavior of the DES model from step 5 (as well

as the full recording of its entities and attributes), the author coded a DES model using JSIM

(one of several available Java DES frameworks) and re-ran the verification and validation with

the recorded data from step 5 using the methodology previously described. At this point the

Java-based, automated, analytical tools and the Java-based DES model will be ready for

integration to the workflow system developed in step 2.

Step 7 - Integrate Model and Data Analysis Tools to Workflow Tool

As represented in Figure 10, the data required to update the machine learning process,

pre-load the queues of the DES, and inform new object creation within the DES are all stored in

the database that provides persistence for the workflow system. As a practical consequence,

the integration of both the data analysis tools and the embedded DES model largely devolve to

(1) connecting these items to the database, and (2) providing some mechanism to initiate their

functions programmatically.

35

More specifically, the author will integrate the data analysis tools from step 4 with the

transactional data from the workflow system to allow on-the-fly regeneration of the best

machine learning model (described in Step 4) and provide updated IAT and attribute

distributions. This portion of the process is required when a new object arrives, though it is not

dependent on the object itself and so can be called without parameters. With an updated

machine learning model the next task is to assign processing times to the newly arrived object

based on its attributes. Since this task is clearly dependent on the new object a mechanism is

required that refers the analysis to the object in question. The predicted processing times

output from the machine learning model for the object will be stored with the object in the

database. The penultimate task in the integration is to start the DES model with the current

workflow system state loaded, the new object as the next arrival, and subsequent, synthetic

objects created behind the object in question based on previous system behavior. To achieve

this effect, the system need only call the DES model with the object in question being specified,

and then only by reference. The final task is to output the predicted exit times for the object

from each step in the business process to some level of prediction confidence. This output

should be stored in the database with the object.

36

Figure 10 - Phase 3 of the system development

The details of executing steps 6 and 7 for the prototype are provided in Chapter Four.

Step 8 - Run Model in Non-Intrusive Mode

With the predictive subsystem integrated and tested in a development environment,

what follows is the mundane migration of the prediction subsystem into the production

environment. In a well designed and implemented development control system, this should

require little more than the installation of the code on the production servers and modification

of either an environment variable or initialization script to point at the production database

instead of the development instance.

Business Process

Objects

Historical (for “fill” jobs):

Inter-Arrival Times

Attributes

Processing Times

Embedded

DES Model

7

Machine

Learning

Model

Historical:

Attributes

Processing Time by Step

New Object

(attributes

only)

New Object

(attributes +

Processing

times)

Current:

Starting queue states

Processing Times

37

Figure 11 - Phase 4 of the system development

Until the quality of prediction versus actual performance has been validated, it is wise to

keep the predictions out of view of the actors (as depicted in Figure 11) in the system (1) to

avoid poor first impressions, and (2) to keep from skewing the results by providing intermediate

target dates that are either too aggressive or too conservative (though this becomes an

interesting capability to introduce in the final solution, aiming for an aggressive 80% confidence

target while advertising to meet a conservative 90% confidence goal).

Step 9 - Validate Predictive Capabilities

After the predictive subsystem has been exercised in the production environment for a

period of time, the actual intermediate and final dates for the objects processed in that time

can be compared to the predicted dates generated by the prediction subsystem. Given the

Business Process

Objects

Historical (for “fill” jobs):

Inter-Arrival Times

Attributes

Processing Times

Embedded

DES Model

8

Machine

Learning

Model

Historical:

Attributes

Processing Time by Step

New Object

(attributes

only)

New Object

(attributes +

Processing

times)

Current:

Starting queue states

Processing Times

Temporary

Tablespace

Predicted

Processing

Dates

Actual

Processing

Dates

38

throughput observed on the subject system, a period of 30 calendar days (22 business days)

should provide approximately 100 new objects. From a practical standpoint the actual dates

will be compared to the prediction intervals constructed for each object and will be deemed

acceptable if, in fact, the actual dates fall within the intervals at the rate specified, e.g. 90 of

100 dates predicted fall within the 90% confidence prediction intervals.

Inadequacies at the individual step level, if discovered, may need to be addressed within

the model (queuing behavior in particular) or within the analysis processes that build the

machine learning model or output the processing times. Depending on the scope of the

changes required to achieve acceptable performance, it may be necessary to return as far back

as step 4 and cycle through some or all of the intervening Steps before re-executing step 8. The

final results of steps 8 and 9 for the prototype are included in Chapter Five.

Step 10 - Activate Model for Process Scheduling

Once predictions match measured performance as described above, the workflow

system will be reconfigured to publish the output of the prediction subsystem to the

production scheduling table(s) as shown in Figure 12. With these promised delivery dates

available in the system we can, with customer concurrence, switch our performance based

metrics away from the existing gross measures of central tendency to measuring individual

performance against discrete orders.

39

Figure 12 - Phase 5 of the system development

The following chapters will catalog the results of executing the 10-step process

described in this section.

Business Process

Objects

Historical (for “fill” jobs):

Inter-Arrival Times

Attributes

Processing Times

Embedded

DES Model

10

Machine

Learning

Model

Historical:

Attributes

Processing Time by Step

New Object

(attributes

only)

New Object

(attributes +

Processing

times)

Current:

Starting queue states

Processing Times

Predicted

Processing

DatesActual

Processing

Dates

Business Process

Workflow/

Instrumentation

System

40

CHAPTER THREE: A HEURISTIC FOR DECOMPOSING TRANSACTION LOGS FROM
WORKFLOW SYSTEMS

Introduction

The execution of Step 4 of the 10-step process described in Chapter Two brought to

light the need for a non-deterministic method of decomposing the collection of transactions

from the WFMS’s logs into two vectors of observations – one representing the processing times

for the jobs processed at a given station, and the other representing the queuing behavior of

that station. This chapter describes the author’s solution to this problem.

Formulation

To summarize the problem at-hand, consider the following formulation:

ni: number of operations for job i

pij: processing time for job i at step j in its flow shop routing

wij: waiting time for job i at step j

fij: flow time for job i at step j, fij = pij + wij

fi: flow time for job i

ei: margin of error associated with job i, ei=di -

ri: release date for job i, i.e., the date that job i enters the WFMS

 : quoted due date for job i,

41

Refactoring this formulation as shown in Equation 3.1 allows for segregation of data

elements that are required for due date quoting based on the source and uncertainty of the

data. The release date is given. The processing times are drawn for an appropriate

distribution. The error may be assumed or estimated from historical performance, and the

waiting times are related to the number of jobs in queue and queuing behavior.

 (3.1)

Equation 3.2 summarizes the salient difficulty in predicting turn-around times (TATs) in a

system with non-standard queuing behavior.

 . (3.2)

Where IAT is the inter-arrival time for jobs that appear after the arrival of job i, and

 are the vectors of processing times, queuing behaviors, and rework rates

respectively for the other jobs in the system. Note that the arrival process need not be

stationary, and in fact, is not in the subject system [11].

Relevant Literature

There is generally a significant quantity of attribute data associated with the objects

entering and flowing through a WFMS. van der Aalst, Reijers et al. make the point that modern

information systems (and specifically workflow systems) capture much of the necessary data to

perform data mining on the process information, which they termed “process mining” without

42

having to resort to external data collection though there have been few real-world

exploitations of this capability captured in the literature [12]. Rozinat, Wynn et al. proposed

to extend this concept through the use of a pair of open source tools -- YAWL (Yet Another

Workflow Language) and ProM (Process Miner). They described the potentially tight coupling

theoretically possible between a workflow system and a simulation model that represents that

system. This coupling would be accomplished by describing the workflow system in YAWL,

running the resultant workflow description through the YAWL runtime, and then developing

plug-ins for ProM that would (1) allow it to ingest the system design and (2) interpret the

transaction and state information. Rozinat successfully created an example of this coupling

using a simple credit processing workflow. It is important to note Rozinat’s conclusion -- that

while the concept seems valid, the creation of a generalized process for achieving coupling was

not yet obtainable [13]. In addition to the limitations imposed by the developmental nature of

Rozinat’s plug-ins for reading YAWL information into ProM, there are also limitations based on

ProM itself in that there currently are not facilities to support the generalized queues that are

necessary to support certain real-world processes such as the one under consideration.

Methodology

The author’s proposed solution to determining Wi is then to (1) construct an embedded

DES model, (2) determine the parameters for that model applicable at the point in time where

job i enters the system, (3) determine the properties of job i necessary for representation

43

within the model, and (4) to repeatedly execute the model until an acceptable margin of error

on predicting its time in system can be achieved. In order to effect this methodology, however,

the vectors must be determined.

Assumptions

The proposed methodology is developed based on the following list of assumptions: (1)

there is exactly one processor at each step, (2) there is no forced idle time at the processors at

the steps, and (3) the resultant processing times for each step may be represented using a

distribution function.

Queuing Behavior

The author’s formulation for attacking from Equation 3.2 is, conceptually, similar to

executing a discrete event simulation (DES) in reverse. When conducting a discrete event

simulation, the release time for a job, the processing time for a job, and the queuing policy for a

station are specified as inputs (either deterministically or stochastically), and the output for the

job is the departure time from the station. The flow time fij for job i at station j (or cycle time) is

the difference between the departure time and the release time (see Figure 13).

44

Figure 13 - Normal inputs and output from a DES Server

In the case where the transactional logs from the WFMS are given, however, the release

and flow times are known and the result of the heuristic analysis are the processing time for the

job, and the queuing behavior of the station (see Figure 14).

Figure 14 - Revised inputs and outputs available from virtual DES Server

More specifically, the historical jobs arriving at a given station are processed in time-

order of their arrival at the station but the jobs are placed in the queue based on their recorded

rij

qj

pij

DES

Server j
fij

rij

qij

pij

DES-like

Server j
fij

45

departure time. Executing this process one job at a time, it is possible to determine the queue

insertion location at the station, and the accumulated processing time for the job.

Heuristic Example

As an example of this process, consider the following sequence: Job 1, which arrives at

Server j at time 0 and is known to have departed at time = 20, finds Server j empty and idle;

since the server is empty and idle, Job 1 is immediately placed in service (location = 0, queue

depth = 0) and begins to accumulate processing time. Job 2 (arrives at time = 5, will depart at

time = 21) arrives at Server j; since the server is not idle the departure time of the newly arrived

job is compared to that of the job in service; since Job 2 will depart after Job 1, it is placed in

queue; since the queue is empty, Job 2 is queued at location = 1, queue depth =1. Job 3 (arrives

at time = 10, will depart at time = 30) arrives at Server j; since Job1 is still in service, departure

times for Jobs 1 and 3 are compared; Job 3 will depart after Job 1, so Job 3 is queued; since Job

3 will depart after Job 2, it is queued after Job 2 at location 2 and queue depth = 2. Job 4

(arrives at time = 15, will depart at time = 25) arrives at Server j; since its departure time is after

Job 1 (still in service), Job 4 will be queued; since Job 4 will depart after Job 2 and before Job 3,

it is queued at location = 2, queue depth = 3 which is recorded in as ‘2/3’. Executing this

scenario, and stopping at time = 15 is represented graphically in Figure 15.

46

Figure 15 - Queue position determination

In pseudo-code, the virtual Server performs the following top-level tasks:

Read previous 180 days of Transactions for Server;

Create Arrival Events and Departure Events based on

 transactions for completed jobs;

loop through events in time order {

 if (arrival event) Push(event);

 else if (departure event) Pop(event);

}

The pseudo-code above references 180 days of transactions as the look-back window

which is appropriate in the author’s business environment. Depending on the circumstances of

the practitioner’s environment the look-back window might be appropriately specified in terms

of days, or in terms of a number of transactions.

Arrival Event 4

D
e

p
a

rt
u

re
 E

v
e

n
t

2

(10,2x)

Server not idle

D
e

p
a

rt
u

re
 E

v
e

n
t

4

D
e

p
a

rt
u

re
 E

v
e

n
t

3

Inserted in queue based on time of departure.

[order of departure rarely = order of arrival]

D
ep

ar
tu

re
 E

ve
nt

 1

Queue Insertion for job 4 at ‘2/3’

47

The virtual Server Push method performs the following:

new_job = get_job_from_event(event);

if (server idle)

 in_progress_job = new_job;

 new_job.arrival_location = 0;

 new_job.arrival_queue_depth = 0;

else (server busy)

 if (new_job.departure < in_progress_job.departure)

 in_progress_job.add_processing_time_to_date();

 queue.add(in_progress_job);

 in_progress_job = new_job;

 new_job.arrival_location = 0;

 new_job.arrival_queue_depth = queue.size();

 else

 queue.add(new_job);

 new_job.arrival_location = queue.find(new_job);

 new_job.arrival_queue_depth = queue.size();

The corresponding virtual Server Pop method performs the following:

in_progress_job.add_processing_time_to_date();

if (queue not empty)

 in_progress_job = queue.next();

else

 server idle = true;

The output of this function, which is accomplished by the “Push” method of the virtual

server, is three parameters per station specifying the fraction of jobs that preempt, queue at

the head-of-line, and queue at the tail-of-line. Jobs that do not meet any of the three criteria

are assumed to be randomly placed in the queue between head-of-line and tail-of-line.

48

Processing Times

The second output of the process is the determination of the processing time for a job i

at a particular Server j. And with these values in hand, the author can then fit the processing

times with a statistical distribution. This statistical distribution addresses, in conjunction with

the server simulation component, the component from Equation 3.2.

Figure 16 - Processing time determination

During the manual analysis process of step 4, the author used Rockwell Software’s Input

Analyzer (a component of their Arena product suite) to fit the processing time distributions and

assess their “goodness of fit”.

Summary

At the end of this process, the author faithfully captured the queuing behavior and

processing time distributions which were then used as parameters in the stand-alone DES

model for Step 5 which is described in Chapter Four. In Step 7, the entire analysis process

Arrival Event 4

D
e

p
a

rt
u

re
 E

v
e

n
t

2

(10,2x)

Server not idle

D
e

p
a

rt
u

re
 E

v
e

n
t

4

D
e

p
a

rt
u

re
 E

v
e

n
t

3

D
ep

ar
tu

re
 E

ve
nt

 1

By processing the events

 in departure order

(as would be scheduled

 in a DES) it is possible

 to separate

processing time at

a station from

queue time at a station

Processing

Time

49

(extraction of queuing behavior, segregation of processing times, distribution fitting, goodness

of fit testing, and time-based exponential smoothing) was automated through code written in

Java. The use of this analytical process is described, along with the model output in Chapters

Five and Six.

50

CHAPTER FOUR: PROCESSING PREDICTIONS THROUGH EMBEDDED SIMULATION

The following material was presented at the 2010 Software Engineering and

Applications conference held by the International Association of Scientific and Technology for

Development (IASTED), and published in the conference proceedings [11].

Abstract

Being faster is good. Being predictable is better. A faithful model of a system, loaded to

reflect the actual system’s state at a given point in time, can then be used to look into the

future and predict performance. Building faithful models of processes with high degrees of

uncertainty can be very challenging, especially where this uncertainty exists both in terms of

processing times, and queuing behavior. The author will discuss the potential benefits of using a

discrete event simulation to quote due-dates in a business process/work flow environment.

Introduction

In flush economic times the elements of excellence that characterize the practice of

Industrial Engineering -- reducing cycle-times, decreasing variability, and increasing

predictability can mean the difference between a growing business and a struggling one. In

leaner times the consequences are more Boolean - the business survives, or it fails. The benefits

of such pursuits are recognized. And these pursuits are common, though not ubiquitous in

51

manufacturing but appear much less frequently in human-centric business processes. Perhaps

the reason for this discrepancy lies in the difficulty of capturing the seemingly capricious

behavior of the humans in such a setting. In non-trivially complex business systems, the

humans that perform functions within the business process do so with some measure of

autonomy. This autonomy can lead to behavior, especially in the order that queued tasks are

handled, that is difficult to capture and therefore to analyze. In this chapter the author asserts

that a discrete event simulation (DES) model can be used to capture such behavior when

augmented with a novel queuing component that allows for the flexible ordering of tasks within

a queue.

Problem Formulation

To describe the situation mathematically, consider the following definitions and

relationships:

ni: number of operations for job i

pij: processing time for job i at step j in its flow

wij: waiting time for job i at step j

fi: flow time for job i

ei: margin of error associated with job i

li: lead time associated with job i

ri: release date for job i, i.e. the date that job i enters the system

52

 : quoted due date for job i

di: actual delivery date for job i

Li: Lateness of job i with respect to its quoted due date

q: number of jobs in process or in queue when job i enters the system

Assuming that there is no down time at the steps and that there is no transportation

time between steps, then the flow time for a job, fi, is simply the sum of the expected

processing times for the steps for that job, pij, and the expected waiting time per step for that

job, wij.

 (4.1)

Then the lead time, li, used to quote a due date for that job is the flow time, fi, plus

some margin of error, ei, associated with the estimation of the processing and waiting times.

 (4.2)

 The predicted due date for the job, , is then the release date for the job into the

system, ri, plus the estimated lead time, li.

 (4.3)

Refactoring this formulation as shown below allows for a more straightforward

segregation of data elements that are required for due date quoting based on the source and

uncertainty of the data. To wit: the release date is given, the processing times are drawn for an

appropriate distribution, the error may be assumed or estimated from historical performance,

and the waiting times are related to the jobs in queue and queuing behavior.

53

 (4.4)

It is this relationship between the jobs in queue, the queuing behavior by job or by step,

and the waiting times that can make this a challenging problem.

 (4.5)

Where IAT is the inter-arrival time for jobs that appear after job i arrives, and are

the vectors of processing times, queuing behaviors, and re-work actions respectively for the

other jobs in the system.

Completing the formulation, the lateness of a job, Li, with respect to its quoted due date

is simply the difference between the actual delivery date, di, and the quoted due date, .

 (4.6)

The square of this lateness will be used as the measure of performance in the

experiment described in Test Methodology section.

Related Literature

The following subsections summarize pertinent instances of the existing literature with

respect to Due Date Quoting, and Business Process Modeling and Mining.

54

Due Date Quoting

Cheng and Gupta [14] produced a survey of the existing research with respect to due

date determination. In this survey, Cheng and Gupta open by pointing out that meeting due

dates is extremely important to practicing managers. They then utilize a classification scheme

first proposed by Elion [15] which has six (6) dimensions: (1) Static versus Dynamic, (2)

Deterministic versus Stochastic, (3) Single-product versus Multi-product, (4) Single-processor

versus Multi-processor, (5) Theoretical versus Practical, and (6) Exogenous due-dates versus

Endogenous due-dates. Since exogenous due-dates obviate due-date quoting and lead directly

to sequencing and scheduling problems, Cheng and Gupta focus their attention on endogenous

due-dates. Using the above classification scheme they conclude that there is very little extant

research on Dynamic, Complex, Multi-processor systems. And after noting that better

predictors would be beneficial, if practical, they conclude that there is a need for more practical

and applied research in this area.

Alfieri [16] proposes two new quoting policies based on setting a static Safety Time (ST)

parameter analogous to ei in the formulation above noting that setting this parameter

dynamically could be time consuming. The performance of these quoting policies, which both

presuppose a First-Come-First-Served (FCFS) ordering, is compared to the Total Work Content

(TWK) policy when jobs are sequenced by Shortest Processing Time (SPT), Earliest Due Date

(EDD) and First-In-First-Out (FIFO). These comparisons are predicated on batch scheduling

(ignoring subsequent arrivals), deterministic processing times and non-permutation

55

sequencing. With these simplifications, her results indicate that TWK outperforms both of her

proposed policies. She notes that estimating flow times for more complicated systems is a

suitable topic for future research.

Subsequent to the survey conducted with Gupta discussed above, Cheng [17] describes

an efficient and optimal sequencing algorithm when using the slack due-date quoting policy.

Cheng simplifies the system under consideration by assuming that once a set of jobs is

sequenced, no subsequent jobs will affect the systems performance, there will be no re-

sequencing of the jobs between stations and all of the earliness and tardiness costs are

constant. In effect, the lack of consideration of arrivals and non-permutation scheduling

becomes a presupposition of FCFS. In this scenario Cheng concludes that an SPT sequence is

optimal although this conclusion is at odds with the findings of Duenyas and Hopp below.

Duenyas and Hopp [18] propose an analytical framework for evaluation of various job

sequencing rules given that flow times can be optimally predicted. Working through a series of

increasingly more generalized scenarios they conclude that an EDD sequence is optimal if the

tardiness penalty is constant for all customers and proportional to the tardiness which seems to

contradict Cheng [17] above. To achieve this result Duenyas and Hopp only assume that pre-

emption does not take place. The result of an EDD sequence being optimal is useful in that it

provides direction for redesigning the workflow system in this author’s construct to encourage

EDD processing order but is not helpful in determining the optimal due-dates.

56

Similar to Duenyas and Hopp above, Lawrence [19] presupposes that the practitioner

either has a simple system with closed-form flow time estimates, or has some way to

determine flow times for complex systems. With that as a precondition, he describes an

analytical approach to setting due-dates based on previously observed forecasting errors.

While Lawrence proposes to fit the forecasting errors, which he refers to as “G”, using a

Ramberg-Schmeiser distribution, he concludes that Erlang and Gaussian distributions worked

equally well in his research. Lawrence makes three observations that are particularly germane

in this context: (1) exponential smoothing of the forecasting error distribution parameters

enhances the accuracy of the fit, especially in time-dynamic situations, (2) various measures of

performance lead to differing uses of the error distribution, e.g. Mean Absolute Lateness is

minimized by adding the median of the error distribution to the predicted flow time, Mean

Square Lateness (MSL) is minimized by adding the mean of the distribution to the predicted

flow time, and service level matching is met by adding the target percentile of the distribution

to the predicted flow time, e.g. G-1(0.9) for a 90% Service Level, and (3) the analytic due date

quoting policies that include information about the current system state outperform those that

do not, at least in the simple scenarios that the author specifically evaluates. Additionally,

Lawrence’s paper provides a good summary of the most common analytic quoting policies

which will be useful for comparison with this author’s proposed modeling-based approach.

Van Ooijen and Bertrand [20] introduce a distinction in terminology intended to allow

some leeway between the tightly estimated Internal Due Date (IDD) and the slightly looser

57

External Due Date (XDD). To set this difference, which is analogous to ei in the problem

description above, or the Safety Time from Alfieri, or Lawrence’s error distribution, G, the

authors propose to adjust the XDD using the ratio of the current level of work in progress

(acwip) to the average level of work in progress (nwip). Using variations of this quoting policy

various sequencing rules were applied and the optimal cost per order was established over a

variety of relative earliness/tardiness combinations. Van Ooijen and Bertrand’s results bring

some closure to the disagreement between Cheng [17] and Duenyas [18] by noting that when

earliness and lateness penalties are of similar magnitude then SPT sequencing works best;

however, when tardiness penalties are much larger than earliness costs a Due Date sequencing

rule is best. Another interesting conclusion that can be drawn from the data is that in spite of

the dependence on FCFS sequencing in much of the literature, FCFS provided among the worst

performance of the sequencing rules tested.

Rajasekera, Murr, et al [21] open by observing that including more information into the

dynamic flow time prediction process produces better results. Much of the paper subsequently

focuses on an analytical description of a load-balancing algorithm that could be implemented in

an information system integrated with the manufacturing system. The authors conclude that

after applying their load balancing procedure and assuming FCFS processing, then setting due-

dates is straightforward even when taking into account the jobs already in the system. As a

parting note, the authors concede that more complex work centers would require more

complex queuing decomposition methods and further analysis.

58

Business Process Modeling and Mining

van der Aalst, Reijers et al. make the excellent point that modern information systems

(and specifically workflow systems) capture much of the necessary data to perform data mining

on the process information, which they term “process mining” without having to resort to

external data collection though there have been few real-world exploitations of this capability

captured in the literature [12].

Rozinat, Wynn et al. propose to extend the preceding concept through the use of a pair

of open source tools -- YAWL (Yet Another Workflow Language) and ProM (Process Miner).

They describe the potentially tight coupling theoretically possible between a workflow system

and a simulation model that represents that system. This coupling would be accomplished by

describing the workflow system in YAWL, running the resultant workflow description through

the YAWL runtime, and then developing plug-ins for ProM that would (1) allow it to ingest the

system design and (2) interpret the transaction and state information. Rozinat successfully

created an example of this coupling using a simple credit processing workflow. It is important

to note Rozinat’s conclusion that while the concept seems valid, the creation of a generalized

process for achieving coupling was not yet obtainable [13]. In addition to the limitations

imposed by the developmental nature of Rozinat’s plug-ins for reading YAWL information into

ProM, there are also limitations based on ProM itself in that there currently are not facilities to

support the generalized queues that are necessary to represent certain real-world processes

such as the one under consideration.

59

Given the ongoing difficulties in creating an automated method of utilizing the workflow

output logs to build a model of the system, this author is left with little choice but to build a

discrete event simulation model of his system by hand.

Necessity Of A Novel Approach

As mentioned in the introduction, the author asserts that better predictive performance

in quoting due dates should be achieved by making a faithful model of the system into which a

new job is then introduced. The motivation for doing so, as well as the argument to support

this assertion follows in two parts: Modeling versus deterministic assessment and Real-world

versus ideal queuing behavior.

Necessity of Modeling

Meeting promised due dates is critical to customer satisfaction [14, 18, 19, 21].

Promised due dates are readily met when arbitrarily long lead times are set. However,

quoting arbitrarily long lead times to ensure service levels dilutes customer appeal while overly

optimistic lead times erodes customer confidence [16]. Based on this, more accurate due dates

(with narrower confidence intervals) are better (more pleasing to customers) as long as the

mechanism is practical to implement [14].

60

As expressed in the Problem Formulation section, the due-date for a job is dependent

on that job’s processing times and waiting times, and should also include some safety margin

[16, 17, 19].

Also from the Problem Formulation section, the dominant feature of the due-date

setting problem is estimating the wait time for a given job [14].

The wait times for a job are obviously dependent on the jobs already in the system,

though the particular relationship is also dependent on the queuing scheme assumed [16, 18,

19].

Including more information about the current state of the system leads to better

predictions of due dates [14, 16, 18-21].

Analytical methods are suitable for simple cases with ideal assumptions, but more

complicated systems require more complicated analysis typically involving simulation [14, 16,

18].

A detailed discrete event simulation model of the actual system will allow more

information on the system (design, historical performance, and current state) to be brought to

bear on the estimation of waiting times.

61

Necessity of Real-world Queuing Behavior

The data observed from the subject system for this author’s research exhibits job

insertion at head of line preemptively, head of line without preemption, tail of line, and other

locations in the middle of the queue as depicted in Figure 17.

Figure 17 - Flexible Queue

Since the insertion location for a given job determines the minimum number of jobs that

will be processed before that job, it provides a lower bound for the wait time of the target job

at that step, but this determination is not complete, as subsequent jobs may arrive after the job

in question and be queued in front of the target job increasing its wait time at that step.

62

Figure 18 - Relative percentage of jobs inserted into queues by position

As mentioned in the Problem Formulation section, several thousand historical

transactions are available for analysis of the system under test. By decomposing the

transactions into corresponding arrival and departure events and then processing those events

in departure order it is possible to glean the relative insertion position of jobs at each step. The

results of this analysis are applied to the model of the system under test for this paper and

expressed as the relative frequency of job insertion location by step as shown in Figure 18.

These relative frequencies will be used in the empirical queuing implementation described in

the System Under Test section. While all of the existing queuing models provide equivalent,

average, system-level performance prediction, the author’s goal is to accurately model the

63

behavior of a single, discrete job within the context of its fellow jobs, and therefore a more

flexible model is required.

Argument Summation

In summary, more accurate assignment of due dates will make customers more likely to

continue to place their orders using the system. Outside of certain idealized systems,

incorporating more detail in the prediction process can make those predictions more accurate.

A DES model allows for incorporating more system detail than any of the existing mechanisms

and incorporating real-world queuing behavior is a key aspect of that mechanism. It is

therefore worthwhile to study the forecasting performance of a faithful DES model against

existing, deterministic policies.

System Under Test

The actual system that this example is based upon is a workflow system that supports a

business process. It is similar to a flexible flow shop in which the stations that a job passes

through are known (11 in this example) and the jobs in the stations’ queues at any point are

known. All of the other parameters associated with the job shop, including job processing

times per station and station queuing behavior are uncertain though there is a significant body

of past performance data that is brought to bear to determine input distributions.

64

This system was modeled in DES form using Rockwell’s Arena package and an overview

of the resultant model is depicted in Figure 19. A source module was instantiated which

implements a Poisson arrival process for new orders and is labeled “New Orders” in Figure 19.

Figure 19 - Model of system

After the orders arrive in the system they are assigned processing times and queue

behaviors using an assignment module based on the distributions as listed in Table 1 and Table

2 respectively. These values are stored in attributes associated with each order. Eleven servers

were then instantiated, labeled “Step 1” through “Step 11”, and connected serially as depicted.

The processing times for each order and at each server are read from the attributes

assigned above. Associated with each server is a queue that can be configured to process

orders as FIFO, Last In-First Out (LIFO), or in priority order based on an assigned attribute. The

model is completed by instantiating an order sink which disposes of the orders after processing

is complete – this component is labeled “Submit Proposal” in Figure 19. To capture the actual

65

departure dates from the system and aid with the experiment a series of output modules (not

shown) are instantiated. These modules allow for the capture of the squared lateness by job

with respect to each of the due date quoting policies previously mentioned.

As mentioned in the Necessity of a Novel Approach section, transactions from the actual

workflow system were decomposed into arrival and departure events. In addition to providing

data for queuing behavior, this event processing also partitioned the time each job spent at a

server into processing time and waiting time. Using Rockwell’s Input Analyzer, the processing

time data was fitted. The outputs of this process are the following processing time distributions

as listed in Table 1.

Table 1 - Processing times by step

Step Processing Time Distribution
Step 1 WEIB(0.146, 0.389)

Step 2 WEIB(1.19, 0.425)

Step 3 WEIB(0.404, 0.304)

Step 4 WEIB(0.709, 0.407)

Step 5 WEIB(0.928, 0.417)

Step 6 WEIB(0.573, 0.342)
Step 7 WEIB(0.821, 0.386)

Step 8 WEIB(0.505, 0.34)

Step 9 WEIB(0.373, 0.331)

Step 10 WEIB(0.918, 0.405)

Step 11 WEIB(1.32, 0.463)

Similarly, the following Queuing Distributions (see Table 2) were also fitted using Input

Analyzer based upon the previously described convolution of the historical data such that the

input position is mapped to fall between 0 for head of line and 1 for tail of line.

66

Table 2 - Queuing behavior by step

Step Processing Time Distribution

Step 1 WEIB(0.00947, 0.33)

Step 2 BETA(0.413, 1.49)

Step 3 WEIB(0.00474, 0.399)

Step 4 LOGN(2.37, 187)
Step 5 BETA(0.355, 0.86)

Step 6 WEIB(0.0257, 0.373)

Step 7 WEIB(0.0978, 0.415)

Step 8 WEIB(0.0276, 0.328)

Step 9 WEIB(0.0119, 0.33)

Step 10 BETA(0.401, 1.14)
Step 11 LOGN(1.1, 70.7)

As a detail of the implementation, both the Processing Times and Queuing Behavior

distributions were assigned unique random variate streams (avoiding Arena’s default stream of

10). Note that the Queuing Behavior distributions only affect the model when the Queue Mode

is set to prioritize the queue by lowest attribute value.

Additional entity attributes were defined and assigned in an Arena “Assignment”

module to capture the calculated due dates based on the JIQ (Jobs In Queue), SLK (Slack

assignment), NOP (Number of Operations), and TWK (Total Work Content) policies as described

by Cheng and Gupta [14]. These policies are represented by the following formulae:

67

JIQ:

 (4.7)

SLK:

 (4.8)

NOP: (4.9)

TWK:

 (4.10)

Note that each of the policies has one or more coefficients (JIQK1, JIQK2, SLKK, NOPK,

TWKK) which must be adjusted based on the actual model. The due dates captured in these

attributes were then used to calculate the Squared Lateness of the entities by due-date quoting

policy and then recorded as outputs of the model.

Test Methodology

Before comparison of the due-date quoting policies could be undertaken, the adjusting

parameters for each of the policies had to be tuned. Rockwell’s Process Analyzer was used to

adjust the coefficients for each policy (JIQK1, JIQK2, SLKK, NOPK, TWKK) while minimizing its

Mean Square Lateness performance. After these coefficients were tuned, the model was set up

to run with a 90 day warm up and 365 days of simulation in each of three queuing modes: FIFO,

LIFO, and Empirical. It is in this last mode that the Queuing Behavior attributes (listed in Table

2) come into play by prioritizing the entities by the value drawn from that distribution for that

step.

68

The model was executed for 30 replications in each mode and the output captured.

Since the Mean Square Lateness was recorded as an “Output” Arena politely exports the mean

and 95% confidence half-widths directly in the output file.

Test Results

The following three figures display the relative performance of the four due date

quoting policies that were tested using this model. Given the assumptions taken when these

policies were developed, it is not surprising that the results of the first test case align

reasonably with that summarized from the literature under the section titled Due Date Quoting

as shown in Figure 20 below using Microsoft Excel’s High-Low-Close Stock chart to handily

portray the confidence interval for the MSL per policy.

69

Figure 20 - Mean Squared Lateness – FIFO

Similarly, Figure 21 shows the relative performance of the policies when the queuing

behavior is switched for FIFO to LIFO. As argued above in the section titled Necessity of a Novel

Approach, this drastic reduction in performance when the system does not conform to the

simplifying assumptions is not surprising. It is worth noting that not only does the performance

suffer greatly, but that the variance in the squared lateness is large enough that the policies are

no longer distinguishable statistically.

70

Figure 21 - Mean Squared Lateness - LIFO

And finally, in Figure 22, the corresponding results are portrayed when the queuing

mode incorporates the fitted distributions from Table 2. Given that the distributions indicate

behavior between FIFO and LIFO in an approximate 40%/60% split the results below are

between the two previous results sets.

71

Figure 22 - Mean Squared Lateness - Empirical

The broad confidence intervals of the latter two test cases dictate larger than

reasonable margins required to meet desired service levels.

One of the test cases that the author had intended to address was the addition of pre-

emption for head of line insertions. Unfortunately, Arena does not readily support pre-emptive

processing with its built-in queuing component.

72

Conclusion And Future Research

All of the tested due-date quoting policies tested suffered when applied to systems that

did not inherently provide FCFS behavior. Clearly there is room for additional research on

setting due dates in non-FCFS systems such as those that are prevalent in more human-centric

systems. As borne out by the test results, in such situations the relationship between the jobs

in queue, the queuing behavior, and the wait times for the orders is too complex to be

adequately captured by the prevalent due date quoting policies and should benefit from the

computational flexibility provided by a discrete event simulation.

An additional source of complexity in the production system could be represented in a

DES model by the inclusion of a 3-way decision block that represents the likelihood that a given

job will be accepted (and thus passed to the next step), rejected (and returned to the previous

step), or returned to the customer with no further action – this behavior was omitted from the

model used in this experiment but is implemented in the embedded models described in

Chapters Five, Six and Seven.

The author has also created and incorporated a more robust queuing component that

will support random queue placement as well as pre-emption for use in embedded DES

simulations and the prototype system described in the following chapters.

73

CHAPTER FIVE: PREDICTING BUSINESS PROCESS PERFORMANCE WITH ‘REAL
WORLD’ QUEUING

The following material has been submitted for presentation at the 2011

Interservice/Industry Training, Simulation and Education Conference.

 Introduction

Accurate determination of due dates for the delivery of bespoke items based on non-

technical specifications is a challenging task. Limiting fixed staffing levels to control costs is at

odds with having sufficient resources necessary to quote these due dates in a timely fashion.

An environment that is extremely contentious with respect to the necessary resources and

offering little in the way of firm prioritization only exacerbates the situation. And finally, when

customers demand both demonstrably strict dates and penalties for exceeding those dates the

situation becomes nearly untenable. The author proposes that an artful combination of

automated analysis and efficient simulation might be successful in resolving this stark situation.

Prerequisites

In order to apply the methodology described here, a practitioner should already have (1)

developed a functional, transaction-based workflow system, (2) performed an initial, manual

data analysis of the processing times, queuing behavior and rework rates, and (3) built a

representative discrete event simulation (DES) model of the workflow process to validate

74

understanding of the practitioner’s system. In this author’s case, the model of the system at

hand is depicted in Figure 23.

Figure 23 - Detailed DES model of system

Scope of Problem

To summarize the problem at-hand, consider the following abbreviated formulation:

ni: number of operations for job i

pij: processing time for job i at step j in its flow

wij: waiting time for job i at step j

ei: margin of error associated with job i

ri: release date for job i, i.e. the date that job i enters the system

 : quoted due date for job i

75

Refactoring this formulation as shown below allows for a more straightforward

segregation of data elements that are required for due date quoting based on the source and

uncertainty of the data. To wit: the release date is given, the processing times are drawn for an

appropriate distribution, the error may be assumed or estimated from historical performance,

and the waiting times are related to the number of jobs in queue and queuing behavior.

 . (5.1)

The following relationship summarizes the salient difficulty in predicting turn-around

times (TATs) in a system with non-standard queuing behavior.

 . (5.2)

Where IAT is the inter-arrival time for jobs that appear after job i arrives, and

 are the vectors of processing times, queuing behaviors, and rework rates

respectively for the other jobs in the system. Note that the arrival process need not be

stationary, and in fact, is not in the subject system [11].

The author’s proposed solution to determining Wi is then to (1) construct an embedded

DES model, (2) determine the parameters for that model applicable at the point in time where

job i enters the system, (3) determine the properties of job i necessary for representation

within the model, and (4) to repeatedly execute the model until an acceptable margin of error

on predicting its time in system can be achieved.

76

Relevant Literature

The following sections will highlight some of the salient literature that bears upon this

topic from the areas of due date quoting, predictive use of models, and embedded modeling.

Due Date Quoting

Cheng and Gupta [14] produced a survey of the existing research with respect to due

date determination. In this survey, Cheng and Gupta open by pointing out that meeting due

dates is extremely important to practicing managers. They then utilize a classification scheme

first proposed by Elion [15] which has six (6) dimensions: (1) Static versus Dynamic, (2)

Deterministic versus Stochastic, (3) Single-product versus Multi-product, (4) Single-processor

versus Multi-processor, (5) Theoretical versus Practical, and (6) Exogenous due dates versus

Endogenous due dates. Since exogenous due-dates obviate due-date quoting and lead directly

to sequencing and scheduling problems, Cheng and Gupta focus their attention on endogenous

due-dates. Using the above classification scheme they conclude that there is very little extant

research on Dynamic, Complex, Multi-processor systems. And after noting that better

predictors would be beneficial, if practical, they conclude that there is a need for more practical

and applied research in this area.

Alfieri [16] proposes two new quoting policies based on setting a static Safety Time (ST)

parameter analogous to ei in the formulation from Chapter Three noting that setting this

77

parameter dynamically could be time consuming. The performance of these quoting policies,

which both presuppose a First-Come-First-Served (FCFS) ordering, is compared to the Total

Work Content (TWK) policy when jobs are sequenced by Shortest Processing Time (SPT),

Earliest Due Date (EDD) and First-In-First-Out (FIFO). These comparisons are predicated on

batch scheduling (ignoring subsequent arrivals), deterministic processing times and non-

permutation sequencing. With these simplifications, her results indicate that TWK outperforms

both of her proposed policies. She notes that estimating flow times for more complicated

systems is a suitable topic for future research.

Subsequent to the survey conducted with Gupta discussed above, Cheng [17] describes

an efficient and optimal sequencing algorithm when using the slack due date quoting policy.

Cheng simplifies the system under consideration by assuming that once a set of jobs is

sequenced, no subsequent jobs will affect the systems performance; there will be no re-

sequencing of the jobs between stations and all of the earliness and tardiness costs are

constant. In effect, the lack of consideration of arrivals and non-permutation scheduling

becomes a presupposition of FCFS. In this scenario Cheng concludes that an SPT sequence is

optimal although this conclusion is at odds with the findings of Duenyas and Hopp below.

Duenyas and Hopp [18] propose an analytical framework for evaluation of various job

sequencing rules given that flow times can be optimally predicted. Working through a series of

increasingly generalized scenarios they conclude that an EDD sequence is optimal if the

tardiness penalty is constant for all customers and proportional to the tardiness which seems to

78

contradict Cheng [17] above. To achieve this result Duenyas and Hopp only assume that

preemption does not take place. The result of an EDD sequence being optimal is useful in that

it provides direction for redesigning the workflow system in this author’s construct to

encourage EDD processing order but is not helpful in determining the optimal due dates.

Similar to Duenyas and Hopp above, Lawrence [19] presupposes that the practitioner

either has a simple system with closed-form flow time estimates, or has some way to

determine flow times for complex systems. With that as a precondition, he describes an

analytical approach to setting due dates based on previously observed forecasting errors.

While Lawrence proposes to fit the forecasting errors, which he refers to as “G”, using a

Ramberg-Schmeiser distribution, he concludes that Erlang and Gaussian distributions worked

equally well in his research. Lawrence makes three observations that are particularly germane

in this context: (1) exponential smoothing of the forecasting error distribution parameters

enhances the accuracy of the fit, especially in time-dynamic situations, (2) various measures of

performance lead to differing uses of the error distribution, e.g. Mean Absolute Lateness is

minimized by adding the median of the error distribution to the predicted flow time, Mean

Square Lateness is minimized by adding the mean of the distribution to the predicted flow time

, and service level matching is met by adding the target percentile of the distribution to the

predicted flow time, e.g. G-1(0.9) for a 90% Service Level, and (3) the analytic due date quoting

policies that include information about the current system state outperform those that do not

at least in the simple scenarios that the author evaluates specifically. Additionally, Lawrence’s

79

paper provides a good summary of the most common analytic quoting policies which will be

useful for comparison with this author’s proposed modeling-based approach.

Van Ooijen and Bertrand [20] introduce a distinction in terminology intended to allow

some leeway between the tightly estimated Internal Due Date (IDD) and the slightly looser

External Due Date (XDD). To set this difference, which is analogous to ei in the problem

description from section 1.2, or the Safety Time from Alfieri, or Lawrence’s error distribution, G,

the authors propose to adjust the XDD using the ratio of the current level of work in progress

(acwip) to the average level of work in progress (nwip). Using variations of this quoting policy

various sequencing rules were applied and the optimal cost per order was established over a

variety of relative earliness/tardiness combinations. Van Ooijen and Bertrand’s results bring

some closure to the disagreement between Cheng [17] and Duenyas [18] by noting that when

earliness and lateness penalties are of similar magnitude then SPT sequencing works best;

however, when tardiness penalties are much larger than earliness costs a due date sequencing

rule is best. Another interesting observation that can be made from the data is that in spite of

the dependence on FCFS sequencing in much of the literature, FCFS provided among the worst

actual performance of the sequencing rules tested – it does however provide the best

predictions of performance.

Rajasekera, Murr, et al. [21] open by observing that including more information into the

dynamic flow time prediction process produces better results. Much of the paper subsequently

focuses on an analytical description of a load-balancing algorithm that could be implemented in

80

an information system integrated with the manufacturing system. The authors conclude that

after applying their load balancing procedure and assuming FCFS processing, then setting due-

dates is straightforward even when taking into account the jobs already in the system. As a

parting note, the authors concede that more complex work centers would require more

complex queuing decomposition methods and further analysis.

Predictive use of DES Modeling

Much of the existing literature talks about using models of systems to conduct

experiments where the objective is to optimize system performance by adjusting resources or

queuing behavior [22, 23].

There is some literature that seeks to use the model to evaluate differing courses of

action such as selecting a sequence of jobs to be scheduled. For example, Azzaro-Pantel,

Bernal-Haro et al. describe using a combination of discrete event simulation and a genetic

algorithm to optimally dispatch tasks in a job shop environment, with the genetic algorithm

generating the sequences and the DES model evaluating each sequence [24]. In a related

fashion, Reijers discusses using short-term simulations coupled with work flow to provide

decision support, i.e. scheduling additional resources during peak loads [25]. Much less of the

literature discusses the potential for use of the faithful model to make predictions about the

system just the way it is. Rojanapibul and Pichitlamken make some excellent observations

about using embedded simulations to calculate prediction intervals in a flow shop environment

81

[26]. Cates and Mollaghasemi describe the use of simulation to predict project completion

dates and thereby enhance visibility of risk to better manage completion of complex projects

[27]. In both of these cases, though, the job parameters were reasonably established before

predictions were made.

Developmental Details

The author’s prototype solution for implementing this methodology is composed of two

distinct, but closely interrelated components. The first component, which replicates the

previously mentioned manual analysis as an automated process, uses historical data to

determine descriptive parameters. The second component is an embedded simulation model

that makes use of these descriptive parameters to replicate the behavior of the target system.

It is important to note that the predictive power of this construct is dependent on both

components, which must act in concert.

Automated Analysis

The automated analysis component performs five major functions: (1) decompose the

departure transactions (by job and by station) from the workflow system into Departure and

Arrival events, (2) using the correlated Departure and Arrival events determine the rework rate

of the sample of jobs by station, (3) using the correlated events by station, determine the

queuing behavior for that station, (4) using the correlated events by station, decompose the

82

total time at a station for a job into waiting time and processing time and fit the processing

times to a valid statistical distribution, and (5) utilizing the transaction logs, determine the inter-

arrival rate per month. The last four functions output their results as a series of parameters to

be used by the embedded simulation.

The first function is a pre-processing step facilitating the remaining functions. As

mentioned, the system in question is an electronic workflow system. As such, there is no

perceptible transportation delay. Without transportation delay, the decomposition of the

departure transactions simply requires the creation of a departure event from the current

station, and an arrival event at the next station visited by the job. The times of occurrence for

each of these events are identical; the only complicated aspect is determining the next station

visited. As this complication is purely self-inflicted by the author’s implementation of

transactions, recording the details of overcoming this particular hurdle will be glossed over. A

sage practitioner would be well served to capture both the source and destination stations

within the departure transaction and thus avoid this step entirely. As the output of this step is

only used as the input for the subsequent three steps, there is no need to store these results

back to the database.

The second function uses the correlated departure and arrival events created by the

first function to determine rework rates. This is accomplished simply by implementing a two-

level, nested, case construct which takes at the outer-level the source station, and at the inner-

level the destination station. The rework status per job is then captured as a logical action, in

83

the author’s case a job is accepted, rejected or returned without further action. The relative

frequencies of these actions are recorded by station as model parameters in the database and

are used by the branch components to correctly route jobs from one station to the next – this

pairing of analytical and simulation components directly addresses from Equation 5.2.

The third function, determining the queuing behavior, is considerably more interesting

to describe, and is in fact, half of the novel aspect of the author’s formulation for attacking in

Equation 5.2. In general terms, the concept of the function is similar to executing a DES in

reverse. In a normal DES, both the processing time for a job, and the queuing policy for a

station are specified and the result for the job is the departure time from the station. In this

case, however, the arrival and departure times are known and the results of the analysis are the

processing time for the job, and the queuing behavior of the station. More specifically, the

historical jobs arriving at a given station are processed in time-order of their arrival at the

station but the jobs are placed in the queue based on their, known a priori, departure time.

Executing this process one input job at a time, it is possible to determine the queue insertion

location at the station, and the accumulated processing time for the job.

As an example of this process consider the following sequence: job 1, which arrives at

station X at time 0 and is known to have departed at time 20, finds station X empty and idle;

since the server is empty and idle, job 1 is immediately placed in service (location = 0, queue

depth = 0) and begins to accumulate processing time. Job 2 (arrives at time = 5, will depart at

time = 21) arrives at station X; since the station is not idle the departure time of the newly

84

arrived job is compared to that of the job in service; since job 2 will depart after job 1, it is

placed in queue; since the queue is empty, job 2 is queued at location = 1, queue depth =1. Job

3 (arrives at time = 10, will depart at time = 30) arrives at station X; since job1 is still in service,

departure times for jobs 1 and 3 are compared; job 3 will depart after job 1, so job 3 is queued;

since job 3 will depart after job 2, it is queued after job 2 at location 2 and queue depth = 2. Job

4 (arrives at time = 15, will depart at time = 25) arrives at station X; since its departure time is

after job 1 (still in service), job 4 will be queued; since job 4 will depart after job 2 and before

job 3, it is queued at location = 2, queue depth = 3 which is recorded in Figure 24 as ‘2/3’.

Executing this scenario, and stopping at time = 15 is represented graphically in Figure 24.

Figure 24 - Queue position determination

Arrival Event 4

D
e

p
a

rt
u

re
 E

v
e

n
t

2

(10,2x)

Server not idle

D
e

p
a

rt
u

re
 E

v
e

n
t

4

D
e

p
a

rt
u

re
 E

v
e

n
t

3

Inserted in queue based on time of departure.

[order of departure rarely = order of arrival]

D
ep

ar
tu

re
 E

ve
nt

 1

Queue Insertion for job 4 at ‘2/3’

85

In pseudo-code, the virtual Server performs the following top-level tasks:

Read previous 180 days of Transactions for Server;

Create Arrival Events and Departure Events based on

transactions for completed jobs;

loop through events in time order {

 if (arrival event) Push(event);

 else if (departure event) Pop(event);

}

The virtual Server Push method performs the following:

new_job = get_job_from_event(event);

if (server idle)

 in_progress_job = new_job;

 new_job.arrival_location = 0;

 new_job.arrival_queue_depth = 0;

else (server busy)

 if (new_job.departure < in_progress_job.departure)

 in_progress_job.add_processing_time_to_date();

 queue.add(in_progress_job);

 in_progress_job = new_job;

 new_job.arrival_location = 0;

 new_job.arrival_queue_depth = queue.size();

 else

 queue.add(new_job);

 new_job.arrival_location = queue.find(new_job);

 new_job.arrival_queue_depth = queue.size();

The corresponding virtual Server Pop method performs the following:
in_progress_job.add_processing_time_to_date();

if (queue not empty)

 in_progress_job = queue.next();

else

 server idle = true;

The output of this function, which is accomplished by the “Push” method of the virtual

server, is three parameters per station specifying the fraction of jobs that preempt, queue at

86

the head-of-line, and queue at the tail-of-line. Jobs that don’t meet any of the three criteria are

assumed to be randomly placed in the queue between head-of-line and tail-of-line.

The fourth function separates the processing time from the waiting time and then fits

the processing times to a statistical distribution. This statistical distribution addresses, in

conjunction with the server simulation component, the component from Equation 5.2. In the

author’s implementation, the first portion of this function – separating processing and waiting

times for a job at a station – is accomplished by a combination of the “Push” and “Pop” virtual

server methods described above.

Figure 25 - Processing time determination

The second portion of the function uses a well known formulation to convolve the

resulting processing times at a given station such that a linear, least-squares regression of the

convolved data exhibits the shape and scale parameters of a Weibull distribution fitted to the

unprocessed data. Similar to the implementation(s) above, the newly calculated parameters are

combined using exponential smoothing – as in the second and third functions – with the

existing parameter values and the resultant, smoothed values stored back into the database,

Arrival Event 4

D
e

p
a

rt
u

re
 E

v
e

n
t

2

(10,2x)

Server not idle

D
e

p
a

rt
u

re
 E

v
e

n
t

4

D
e

p
a

rt
u

re
 E

v
e

n
t

3

D
ep

ar
tu

re
 E

ve
nt

 1

By processing the events

 in departure order

(as would be scheduled

 in a DES) it is possible

 to separate

processing time at

a station from

queue time at a station

Processing

Time

87

two parameters per station. Unlike the previous implementations above, however, a

Kolmogorov-Smirnov goodness of fit test is executed between the source data and the fitted

distribution, and the newly calculated parameters are only combined with the existing

parameters if the test statistic is less than the adjusted critical value for the sample size [22].

As the reader may have already surmised, the fifth function, calculating the inter-arrival

rates by month, when coupled with the source component of the simulation, completes the

input parameters to Equation 5.2, namely IAT. This function is executed very simply using an

SQL query which aggregates the arrivals by month for the previous 12 months. The more

interesting aspects of this function reside in the simulation component discussed below.

Embedded Simulation

The Source component uses parameters from the database to implement a non-

stationary, Poisson arrival process which varies month-by-month. At each arrival event the

Factory Component (see below) is used to generate an order entity which is sent to the output

component of the source which would normally be either a Branch or a Server.

The following pseudo-code initializes the non-stationary arrival process:

Query database for monthlyIAT[month];

hours = (lastDay[current_month] - today) * 24;

for (month = 0..6) {

 ‘IATBin<month>Hours’ = hours;

 ‘IATBin<month>Rate’ = monthlyIAT[month];

 Hours += lastDay[month] * 24;

}

88

While the following pseudo-code implements the non-stationary arrival process:

in scheduleArrival()...

for (month in 0..6) {

 if (simulation time < IATBin<month>Hours) {

 IATRate = IATBin<month>Rate;

 }

}

IATgenerator.setRate(IATRate);

nextArrivaltime = simulation time +

 IATgenerator.draw();

The Factory component produces, on demand, entities of type Order with processing

times per step drawn from Weibull distributions whose parameters are taken from the

analytical component. The Factory is also capable of creating a special “target” Order.

The Order component extends the Entity class and implements the Comparable

interface. It also contains a Properties object that is used to capture the history of the event as

it traverses the model.

The Server component, in conjunction with its Queue, implements the empirical

queuing behavior specified by the parameters from the analytical component.

89

Pseudo-code for Preemptive, LIFO, FIFO, and Random queuing:

new_job = get_job_from_event(event);

new_job.queue_behavior = uniform.draw();

if (server idle)

 in_progress_job = new_job;

 schedule_departure(new_job, new_job.process_time); else

 if (new_job.queue_behavior < preepmt)

 calendar.remove_depart_event(in_progress_job);

 in_progress_job.process_time -=

 processing_time_to_date();

 queue.add(in_progress_job,HEAD_OF_LINE);

 in_progress_job = new_job;

 schedule_departure(new_job,

 new_job.process_time);

 else if (new_job.queue_behavior < LIFO)

 queue.add(new_job,HEAD_OF_LINE);

 else if (new_job.queue_behavior < FIFO)

 queue.add(new_job,TAIL_OF_LINE);

 else

 queue.add(new_job,RANDOM_LOCATION);

The Queue component utilizes the CompareTo() method of the Order entities to queue

the Orders based on the value set for the Order by the Queuing Behavior method of the server.

The Branch component implements routing of incoming Orders to one of two or more

destinations based on the rework parameters form the analytical component. The author’s

implementation adds special treatment for the “target” Order – it is not allowed to exit through

the “return without further action” sink.

The Sink component disposes of non-target Orders as they depart the simulation, and

store the target Orders in a static collection when they exit. The Sink also signals a

SimulationEnd event when the target Order exits.

90

System Under Test

The model of the system under test is implemented as a top-level simulation object.

This object has one source component implementing non-stationary arrivals as indicated above

and containing an order factory producing orders in accordance with the processing time

distributions based on the Weibull parameters, including the special “target” order. The

simulation object instantiates 11 servers which, in conjunction with their attendant queues,

implement empirical queuing behavior in accordance with the parameters from the analytical

component. It also instantiates 11 branches (3-way) that implement rework based upon the

parameters. Finally, the simulation implements two sink components, one for capturing objects

successfully traversing the system and a second for objects that are returned to the customer

without further action.

These components are instantiated, logically connected as pictured in Figure 23,

initialized with the parameters as mentioned above, the queues pre-loaded with jobs according

to the current date’s queues. At this point the target job is introduced to the system, and the

simulation clock started. The simulation run terminates when the target job exits via the first

sink.

To facilitate statistical analysis, the target jobs from each replication of the simulation

are maintained until the desired number of replications has been executed. At that point the

91

collection of target jobs can be summarized, in this case by determining the upper confidence

limit for the mean of the turn-around time.

Test Methodology

As the actual system under test is, in fact, a transactional workflow system, it is possible

to roll the systems state back to any point in time covered by the transaction log. Utilizing this

capability it is possible to (1) determine actual turn-around times for jobs entering the system

on any given day, and (2) to execute both the analytical and simulation components against the

data that was available on that same day. With both data sets available simultaneously it is

possible to compare the actual and predicted data side-by-side.

The actual turn-around times were gleaned from the workflow system through an SQL

query of the database that provides persistence to the workflow system. This query was

structured such that the output consisted of the date, the mean turn-around time of the jobs

that entered the system on that date, and the number of jobs entering on that date. Using this

data it was then a simple bit of manipulation in Microsoft Excel to generate a time-weighted

average turn-around time looking back 10 days to smooth the necessarily jagged plot of mean

turn-around times.

The predicted turn-around times were generated by providing a “main” function that

specified a date for simulation such that the analytical component could execute as if it were

that date and looking 180 days into the past to calculate the simulation parameters, and then

92

using that same date, the simulation component could execute 200 replications of the model

capturing the upper confidence limit (UCL) of the mean turn-around time. After the analytical

and simulation components had executed for the date specified, the date was incremented by

1 and the process repeated until the desired end date was reached. The output of the

components was adjusted such that the output was the date, the number of jobs in queue on

that date, and the UCL of the time in system for a new job on that date.

With the two data sets described it is a simple matter to match the actual data and the

predicted data by date, again using Microsoft Excel.

Results

Initial results of the tests conducted indicate an expected result – that the turn-around

time predicted for a given job is closely correlated (ρ = 0.76) to the number of jobs in queue

when the new job enters the system as shown in Figure 26. The red line in the figure

represents the 90% UCL for the mean turn-around time predicted by the model, while the blue

line – plotted against the secondary y-axis – represents the total number of jobs in the system

when the target job arrives. The correlation is not perfect due to the location of the jobs in the

system. If, for example, the 100 jobs in the system are evenly distributed across the 11 servers,

then one would reasonably expect that the target job would end up getting queued in several

of the steps along its processing journey. The results would be very different if most of the 100

jobs were about to exit the system, perhaps at server 11. In this case the target job would race

93

through stations 1 through 10 without queuing (unless previous jobs were inserted, due to

rework, into previous queues), not slowing until step 11. And, depending on the relative

processing times for the 100 jobs queued at step 10, it is possible, though unlikely, that the

target job could run through the entire system without experiencing any queuing whatsoever.

Figure 26 - Correlation between WIP and TAT

Of more practical benefit is the indication of a good correlation between the predicted

turn-around times for a given day, and the actual, observed turn-around times for jobs entered

on that day as shown in Figure 27. The red line is the same as in Figure 26 – the 90% UCL for

94

the mean, but the green line represents the mean turn-around time for the actual jobs that

entered the system on that day.

Figure 27 - Predicted versus Actual TAT

The performance indicated in Figure 27 above is actually quite good. Simply using the

UCL of the mean flow time for predicting the due dates yields a service level of approximately

65%. Adjusting the flow time by adding in some multiple of the standard deviation of the

forecasting error ei (1.285σe) allows the achievement of a 90% service level. And while

achieving at least a 90% score is desirable for the process owner, it may be more attractive to a

customer to tune the predictive subsystem for an 80% service target (0.841σe) and incentivize

95

the process owner to achieve the next 10%. An interesting side benefit of this methodology is

that it provides a ready mechanism for continuous improvement, i.e. if the processor is

successful in achieving 90% during this period, future job flow times will be based on this

tighter standard.

Conclusions

The author’s previous work indicated that the existing, deterministic methods of

quoting due dates suffered when applied to systems not based on FCFS queuing and argued

that investigation of a stochastic approach was warranted. This paper documents that

investigation, and indicates that a carefully crafted mix of automated analytics and embedded

simulation might indeed provide a practical alternative for higher-fidelity due date quoting in

systems with non-standard queuing behavior and high levels of rework. The author is currently

performing additional research based on a prototypical implementation integrated to a

production workflow system to validate these results in a practical setting.

In the experiment described in the following chapter, this research was extended to

incorporate the error distribution described in the results section, above.

96

CHAPTER SIX: REAL-TIME ASSIGNMENT OF DUE DATES WITHIN WORKFLOW
MANAGEMENT SYSTEMS

The following material has been accepted for presentation and publication at the 2011

Institute of Industrial Engineers (IIE) Industrial Engineering Research Conference (IERC) [28].

Abstract

This research presents the application of real-time simulation to assign due dates within

a multiprocessor, electronic workflow management system. The workflow system under study

accepts from customers external requests (called orders) for work to be done. Upon receiving

an order from a customer, the workflow system immediately quotes that customer a date by

when the review of the order will be completed and a customized proposal against the order is

generated. The customer fully expects the review of the order to be completed by the due date,

and severe penalties are incurred if the review is completed before or after the quoted due

date. Therefore, accurate determination of due dates for the delivery of this service is critical.

The authors present an innovative approach to perform real-time sequencing of customer

orders. Using machine learning concepts and discrete event simulation, the approach minimizes

the deviation between actual proposal delivery dates and the quoted due dates.

97

Introduction

Today, organizations face unprecedented levels of intense competition and these

organizations are motivated to improve their competitive advantage through increased

productivity, improved customer service and strict conformity to standards. As a result,

information technology solutions that support and automate internal business processes have

become critically important and serve as the backbone of the modern-day firm. These business

processes, which describe key procedures within an organization, often involve multiple steps,

several people, and significant resources. Workflow is the term that describes the logical steps

that comprise a business process, i.e., the sequence of steps and the required tasks, resources

(people and machines), tools and information needed for each step. It is this sequence of steps

that creates or adds value to a firm’s activities.

The information technology software solutions that support the automated coordination of

the steps of a business process are called workflow management systems (WFMSs). The

modern WFMS is a computerized system that is composed of a set of applications and tools

that helps to define, create, and manage the tasks, resources, tools, and information associated

with the workflows. WFMSs are generally responsible for the scheduling and execution of the

tasks associated with the processes, where the core capabilities supported in most of today’s

workflow technology solutions are: database management, document management, project

management, electronic messaging, and directory services. For example, in a manufacturing

environment, a product design specification originating from design engineer might be

98

automatically routed for approval through the WFMS to the project leader then to a technical

director then to the production engineer and then back to the initiating design engineer. At

each step in the design specification document workflow, one individual or a group of people is

responsible for a specific task.

At each step within its workflow, the order can be placed in one of four positions in the

queue of orders: (1) at the head (first) position of the queue, (2) at the tail (last) position of the

queue, (3) at a random position in the queue, or (4) it can preempt the order that is in process

at the step. Once the task is complete, the workflow management system ensures that the

individuals responsible for the next task are notified and receive the information they need to

execute their associated steps of the process. It is important to note that, if a correction to an

order needs to be made, it is sent to previous steps to be reworked, before it continues through

its workflow. The nature of a WFMS depends on the type of workflow that is to be supported –

either content-based or activity-based. Content-based workflow places a content object (e.g., a

document) as the focal point of the process. Activity-based workflow focuses on a task. The

focus of this research is content-based workflow.

Description of the Problem

The WFMS that inspires this research is a content-based, multiprocessor, electronic

production workflow management system. The system accepts external customized requests

99

(called orders) from customers over time for work to be done. Upon receiving an order from a

customer, the workflow system immediately quotes that customer a date by when the review

of the order will be completed and a customized proposal against the order is generated. The

customer fully expects the review of the order to be completed by the due date, and severe

penalties are incurred if the review is completed before or after the quoted due date. The

customers demand both demonstrably strict dates – that is to say that orders should not be

delivered significantly before quoted due dates as this lends the impression that the due dates

have been over-inflated, detracting from the credibility of this methodology. Moreover,

penalties for not meeting quoted delivery dates tend to be severe as they effect the likelihood

of customers accepting the final order. Therefore, accurate determination of due dates for the

delivery of this service is critical, and the desire is to minimize the deviation between actual

proposal delivery dates and the quoted due dates, or the mean squared lateness. However,

accurate determination of due dates for the delivery of customized work based on non-

technical specifications is a challenging task, and due date assignment is simply a difficult

problem given the dynamic nature of most productive environments.

In this chapter, the authors propose a new due date assignment method, where the method

uses real-time simulation to predict the actual delivery date of the customized work to the

customer. As can be imagined, the queue priority discipline at each step, i.e., the position in

which the order is placed in queue at each of its steps as the order progresses through its

100

workflow, greatly influences the order’s delivery date. Therefore, it is imperative that any due

date quoting approach consider this in its prediction.

The remainder of this chapter is organized as follows. Section 2 summarizes the previous

research highlighting some of the salient literature from the areas of due date quoting, and

predictive use of simulation models. Section 3 presents the formulation of the problem under

study. Section 4 describes the proposed due date assignment methodology, and Section 5

illustrates the performance of the proposed method within a real-world WFMS. The chapter is

concluded in Section 6 with a summary and a discussion of future research.

Previous Related Work

Cheng and Gupta [14] survey the existing research with respect to due date determination.

In this survey, Cheng and Gupta [14] open by pointing out that meeting due dates is extremely

important to practicing managers due to the customer service implications. They then utilize a

classification scheme first proposed by Elion [15], which has six dimensions: (1) Static vs.

Dynamic, (2) Deterministic vs. Stochastic, (3) Single-product vs. Multi-product, (4) Single-

processor vs. Multi-processor, (5) Theoretical vs. Practical, and (6) Exogenous due dates vs.

Endogenous due dates. Since exogenous due dates obviate due date quoting and lead directly

to sequencing and scheduling problems, Cheng and Gupta [14] focus their attention on

endogenous due dates. Using the above classification scheme, they conclude that there is very

little extant research on dynamic, complex, multi-processor systems.

101

Subsequent to the survey conducted by Cheng and Gupta [14], Cheng [17] describes a

sequencing algorithm when using the slack due date quoting policy. He simplifies the system

under consideration by assuming that once a set of jobs is sequenced, no subsequent jobs will

affect the system’s performance, there will be no re-sequencing of the jobs between stations

and all of the earliness and tardiness costs are constant. In effect, the lack of consideration of

dynamic arrival of jobs and non-permutation scheduling becomes a presupposition of first

come, first serve (FCFS). Cheng [17] concludes that a shortest processing time (SPT) sequence is

optimal, although this conclusion does not fully support the findings of Duenyas and Hopp [18],

who propose an analytical framework for evaluation of various job sequencing rules given that

flow times can be optimally predicted. Working through a series of increasingly generalized

scenarios, they conclude that an earliest due date (EDD) sequence is optimal if the tardiness

penalty is constant for all customers and proportional to the tardiness, which seems to

contradict Cheng [17]. To achieve this result Duenyas and Hopp [18], only assume that

preemption does not take place.

Similar to Duenyas and Hopp [18], Lawrence [19] presupposes that the practitioner either

has a simple system with closed-form flow time estimates, or has a method to determine flow

time for complex systems. With that as a precondition, he describes an analytical approach to

setting due dates based on previously-observed forecasting errors. While Lawrence [19]

proposes to fit the forecasting errors, which he refers to as “G”, using a Ramberg-Schmeiser

distribution, he concludes that Erlang and Gaussian distributions worked equally well. He makes

102

a key observation that is particularly germane in this context. Various measures of performance

lead to differing uses of the error distribution. For example, mean absolute lateness is

minimized by adding the median of the error distribution to the predicted flow time. Mean

squared lateness is minimized by adding the mean of the distribution to the predicted flow

time, and service level matching is met by adding the target percentile of the distribution to the

predicted flow time, e.g., G-1(0.9) for a 90% service level.

Van Ooijen and Bertrand [20] introduce a distinction in terminology intended to allow some

leeway between the tightly-estimated Internal Due Date (IDD) and the slightly looser External

Due Date (XDD). The difference between the two is analogous to a margin of error ei, Alfieri’s

Safety Time, or Lawrence’s G. The authors propose to adjust the XDD using the ratio of the

current level of work in progress (acwip) to the average level of work in progress (nwip). The

results of Van Ooijen and Bertrand [20] bring some closure to the disagreement between Cheng

[17] and Duenyas and Hopp [18] by noting that when earliness and lateness penalties are of

similar magnitude, then SPT sequencing works best; however, when tardiness penalties are

much larger than earliness costs, a due date sequencing rule is best. Another interesting

observation that can be made from the data is that, in spite of the dependence on FCFS

sequencing in much of the literature, FCFS is among the worst performers of the sequencing

rules tested. It does, however, provide the best predictions of performance.

Much of the existing literature discusses using models of systems to conduct experiments,

where the objective is to improve system performance by adjusting resources or queuing

103

behavior [22, 23]. There is some literature that seeks to use the model to evaluate differing

courses of action such as selecting a sequence of jobs to be scheduled. For example, Azzaro-

Pantel, Bernal-Haro et al. [24] describe using a combination of discrete-event simulation and a

genetic algorithm to optimally dispatch tasks in a job shop environment, with the genetic

algorithm generating the sequences and the DES model evaluating each sequence. In a related

fashion, Reijers [25] discusses using short-term simulations coupled with workflow to provide

decision support, i.e., scheduling additional resources during peak loads. Much less of the

literature discusses the potential for use of the faithful model to make predictions about the

system just the way it is. Rojanapibul and Pichitlamken [26] make some excellent observations

about using embedded simulations to calculate prediction intervals in a flow shop environment.

Cates and Mollaghasemi [27] describe the use of simulation to predict project completion dates

and thereby enhance visibility of risk to better manage completion of complex projects. In both

of these cases, though, the job parameters are reasonably established before the predictions

are made.

This review of the literature illustrates the bounds of the current literature and highlights

the lack of coverage for due date quoting in systems (in research and in practice) that do not

implement rigid queuing disciplines and where job preemption and job recirculation is

permissible and commonplace.

104

Problem Formulation

We now provide the formulation of the due date quoting problem as it relates to the

WFMS in this study. First, however, the relevant notation is given.

Notation:

N: set of orders to be scheduled and for which due dates are quoted, where order

i = 1, …, |N|

Si: set of steps for customer order i, where step j = 1, …, |Si|

Mj: set of processors at step j

ri: release date for customer order i, i.e., the date that order i arrives to the

system to receive a due date quote

pij: processing time for order i at step j in its workflow

wij: waiting time for order i at step j

 : quoted due date for order i

ei: margin of error associated with order i

The estimated, or quoted, due date of an order i is a function of four key elements, as

shown in Equation 6.1,

 (6.1)

105

Each term in Equation 6.1 is either obtained from source data or derived from the

uncertainty of the data. The quoted due date for an order i is a function of its release date ri.

The quoted due date for order i is also a function of its processing times at its |Si| workflow

steps,

 , where the actual processing time pij values are drawn from a random

probability distribution. The error ei may be assumed or estimated from historical performance,

and the waiting times of order i

 are a function of the number of orders in queue at

each step and the queuing discipline at each step. The salient difficulty in predicting

completion times, i.e., turn-around times (TATs), which ultimately determine due dates, in a

system with stochastic processing times and dynamic queuing priority disciplines is summarized

in Equation 6.2,

 , (6.2)

where is the waiting time function for order i, and the order waiting time is a

function of IAT, which is the interarrival time for orders that arrive to the system after order i,

and , which are the vectors of processing times, queuing priority disciplines, and

rework probabilities, respectively, at each step for the other orders in the system. Note that the

order arrival process need not be stationary. Estimating Wi is the greatest challenge in quoting

due dates due to the inherent stochastic nature of the WFMS.

The authors’ proposed method to determine Wi involves: (1) constructing an embedded

discrete-event simulation (DES) model, (2) determining the parameters for the DES model that

106

are applicable when a new order i enters the WFMS, (3) determining the properties of order i

necessary for representation within the DES model, and (4) repeatedly running the model until

an acceptable margin of error on predicting its TAT, thus, its estimated delivery date, is

determined. The measure of performance is the mean squared lateness, or

where ci is the actual completion time of order i, and ci = ri + TATi.

Proposed Methodology

The authors now describe the proposed due date assignment methodology and its three

main phases – (1) Update, (2) Record, and (3) Simulate. However, before describing the

methodology, the assumptions on which it is based are provided. The proposed methodology is

developed based on the following list of assumptions: (1) there is exactly one processor at each

step, (2) there is no forced idle time at the processors at the steps, and (3) the processor times

at each step follow a Weibull distribution.

Phase 1 of the proposed method, the Updating phase, uses historical order data from the

WFMS. The number of past orders n or the past t time periods is used to update the

parameters of the embedded DES model by executing the heuristic developed that effectively

reverses the discrete-event simulation and records the behavior of the WFMS using the

107

historical data. The desired value of n or t is set by the user of the WFMS. The parameters of

the DES model that are updated include the Weibull shape and scale parameters for the

processing times, and the order rework probabilities at each step. Most importantly, the

queuing discipline at each step is determined. Recall that, at each step within its workflow, an

order can be placed in one of four positions in the queue of orders: (1) at the head (first)

position of the queue, (2) at the tail (last) position of the queue, (3) at a random position in the

queue, or (4) it can preempt the order that is in process at the step. A probability parameter Pk

for each position k at a step is computed based on the historical order data, and

for each step j.

Each of the DES model parameter values is exponentially smoothed against the previously

stored values using the smoothing parameter . For the processing time parameters, however,

an additional step is executed before the exponential smoothing. A Komolgorov-Smirnov

Goodness of Fit test is performed for the newly-calculated distribution to ensure that the new

parameters fit the processing time distribution. If they fit (with α = 0.05), the exponential

smoothing takes place. If the parameters do not fit, the new processing time values are

discarded, and an exception is logged. After the DES model parameter values are updated, they

are stored in a centralized database for later reference and updating. This updating phase

occurs at a frequency F set by the user of the WFMS.

Phase 2 of the proposed method, the Record phase, records a “snapshot” of the current

orders in the WFMS whenever a new customer order i arrives to the system. This snapshot

108

records the current orders that are in queue at each step as well as which processors are busy.

These orders are used to populate the queues at the steps in the embedded DES model.

Additionally, the past n orders (or the orders that arrived during the past t periods) are used in

Phase 3 to inform the non-stationary arrival process.

Finally, Phase 3, the Simulate phase, places the arriving order i in the first queue in its

workflow either at the head (first) position, at the tail (last) position, at a random position or

the order preempts the order currently in process at the step based on the queuing probability

parameters for that step, as determined in Phase 1. With the embedded model now loaded to

match the current system’s state, and the new order i inserted, the simulation model is run

using the historical n orders (or the orders that arrived during the past t periods) until the new

order i completes all of its |Si| workflow steps.

A user-specified number of replications R are run, and the average completion times

(and associated confidence intervals) for the new order i at each step are recorded. After the

replications are completed, the step completion times are summarized, including the

completion time of the last step in order i’s workflow. This value is the predicted value for the

TAT, and ultimately the quoted due date , for the new order.

109

Experimental Study

Description of WFMS under Study

The proposed due date assignment methodology is evaluated within a workflow

management system that supports a real-world business process and one that inspired this

research. It is similar in logic to a reentrant flow shop in which the sequence of steps that an

arriving order passes through is known and orders may return to previous steps (based on a

probability) before exiting the system. There are 11 steps in the workflow that this particular

WFMS supports (see Figure 28).

Figure 28 - Workflow sequence of orders in the WFMS under study

The Updating phase occurs once per day, i.e., the updating frequency F = 1 day. The

historical data used to update the parameter values for the embedded DES model is from the

past six months of data, i.e., t = 6 months, which uses approximately 145 days of production

110

workflow logs (from 2/1/2010 to 6/6/2010). During this period, 572 orders are received,

processed, and returned to the originating customer.

Experimental Data

After each order arrives to the system, it is assigned a vector of processing times, which

are derived from the historical order data. The processing time distributions for this

experimental study are summarized in Table 3, and, in fact, the times can be described by the

Weibull distributions fitted with α = 0.05.

Table 3 - Processing times by step, which are derived from historical data

Step

Processing Time Distribution

[WEIB(Scale , Shape)]

1 WEIB(0.15, 0.39)

2 WEIB(1.19, 0.44)

3 WEIB(0.40, 0.30)

4 WEIB(0.71, 0.41)

5 WEIB(0.93, 0.42)

6 WEIB(0.57, 0.34)

7 WEIB(0.82, 0.39)

8 WEIB(0.51, 0.34)

9 WEIB(0.34, 0.33)

10 WEIB(0.92, 0.41)

11 WEIB(1.32, 0.46)

111

The logic of the current WFMS presents to the processor at each step a list of the orders

requiring processing with the newest orders at the top of the list. In other words, the WFMS

processes an order at each step in last in, first out (LIFO) order. As each order is completed, the

error between the predicted and actual flow times is captured and the standard deviation of

the expanded sample is re-calculated. The upper confidence limit of the mean TAT is also

calculated for each new order.

Discussion of Results

Initial results of the experiments conducted indicate an expected result – that the predicted

TAT for a given order is closely correlated (ρ = 0.76) to the number of orders in queue when the

new order enters the system as shown in Figure 29. The red line in the figure represents the

90% Upper Confidence Limit (UCL) for the mean TAT predicted by the model, while the blue line

– plotted against the secondary y-axis – represents the total number of orders in the system

when the new order arrives. Of more practical benefit is the indication of reasonable predictive

performance (65% of the actual jobs were delivered before the predicted date) of the predicted

TATs for a given day, and the actual, observed turn-around times for orders entered on that day

as shown in Figure 30. The red line is the same as in Figure 29. The 90% UCL for the mean, but

the green line represents the mean TAT for the actual orders that entered the system on that

day.

112

Figure 29 - Correlation between customer order WIP and TAT

Figure 30 - Predicted TAT vs. Actual TAT

113

The unadjusted performance shown in Figure 30 is actually quite reasonable. Simply

using the UCL of the mean flow time for predicting the due dates yields a service level of

approximately 65%. Adjusting the flow time by adding in some multiple of the variance of the

forecasting error ei (1.285σe) allows the achievement of a 90% service level. Figure 31 depicts

the same actual due date performance (green line) versus the error-adjusted predicted due

date (in red). The implementation of Lawrence’s methodology achieved 92% during the

historical period analyzed. And, while achieving at least a 90% score is desirable for the process

owner, it may be more attractive to a customer to tune the predictive subsystem for an 80%

service target and incentivize the process owner to achieve the next 10%. An interesting

benefit of this methodology is that it provides a ready mechanism for continuous improvement,

i.e., if the processor is successful in achieving 90% during this period, future order flow times

will be based on this tighter standard.

114

Figure 31 - Predicted versus Actual flow time

Summary and Future Work

The authors’ previous work indicates that the existing, deterministic methods of quoting

due dates suffer when applied to systems not based on FCFS queuing and argues that

investigation of a stochastic approach is warranted. This paper documents that investigation,

and indicates that a carefully-crafted mix of automated analytics and embedded simulation

might indeed provide a practical alternative for higher fidelity due date quoting in systems with

non-standard queuing behavior and high levels of rework. The authors are currently performing

115

additional research based on a prototypical implementation integrated to a production WFMS

to validate these results in a practical setting.

Future work includes publication of a thorough description of the heuristic developed to

decompose the WFMS historical logs, and analysis of the most appropriate exponential

smoothing constant , which the authors suppose will vary with the number of historical data

points available and which are used to determine the DES modeling parameters.

The following chapter describes the extension of this research to encompass the live,

production workflow system operating in real-time, with results reported after 75 days of

operation during which 119 orders were processed.

116

CHAPTER SEVEN: RESULTS OF INTEGRATING MACHINE LEARNING AND
SIMULATION TO PREDICT DELIVERY TIMES UNDER UNCERTAINTY

The following material has been submitted for review in the Information Systems

Frontiers journal.

Abstract

This research presents a methodology for, and the results of a prototypical

implementation of the application of real-time simulation to assign due dates within a

multiprocessor, electronic workflow management system. The workflow system under study

accepts orders from external customers for work to be done. Upon receiving an order from a

customer, the workflow system’s embedded simulation immediately quotes that customer a

date by when a customized proposal against the order will be generated. The customer fully

expects to receive the proposal by the due date, and severe penalties are incurred if the

proposal is delivered after or significantly before the quoted due date. The customers demand

both demonstrably strict dates – that is to say that orders should not be delivered significantly

before quoted due dates as this lends the impression that the due dates have been over-

inflated, detracting from the credibility of this methodology. Moreover, penalties for not

meeting quoted delivery dates tend to be severe as they effect the likelihood of customers

accepting the final order. Therefore, accurate determination of due dates for the delivery of

this service is critical. Using machine learning concepts including a heuristic algorithm for

117

determining queuing behavior and discrete-event simulation including a component that

implements non-standard queuing, the approach minimizes the deviation between actual

proposal delivery dates and the quoted due dates.

Introduction

Accurate determination of due dates for the delivery of bespoke items based on non-

technical specifications is a challenging task. Limiting fixed staffing levels to control costs is at

odds with having sufficient resources necessary to reliably quote these due dates in a timely

fashion. An environment that is extremely contentious with respect to the necessary resources

and offering little in the way of firm prioritization only exacerbates the situation. And finally,

when customers demand both demonstrably strict dates and penalties for exceeding those

dates the situation becomes nearly untenable. The authors propose that an artful combination

of automated analysis and efficient simulation might be successful in resolving this stark

situation.

Prerequisites

In order to apply the methodology described here, a practitioner should already have (1)

codified the business process to be modeled, (2) developed a functional, transaction-based

workflow system, (3) performed an initial, manual data analysis of the processing times,

118

queuing behavior and rework rates, and (4) built a representative discrete event simulation

(DES) model of the workflow process to validate understanding of the practitioner’s system.

The diagram at Figure 32 represents a stylized representation of the business process

under consideration showing the documents that map to the order and proposal and the actors

involved in the process.

Figure 32 - Stylized business process

With the business process identified, it is then mapped to a workflow system that

facilitates the flow of information, enforces the business logic, and functions as a common tool

for situational awareness. This mapping is shown, conceptually, in Figure 33.

Sales Agent

Proposal

Order Processor
Suppliers

Order

Technical Supply Chain Procurement Pricing Management

Status = Submitted to Broker;

Order number is assigned

Status = Process Start (1/12)

Status = Potential

Suppliers Identified

(3/12)

Status = Bill of Materials

 Issued (4/12)

Status = Submitted

to Sales Agent

(12/12)

Status = Assigned

Status = Supplier(s) Price

Bill of Materials (5/12)

Status = Supplier

Evaluation (6/12)

Status = Proposal

Pricing (7/12)

Status = Final

Supplier

Determination (8/12)

Status = Draft Prop

Review (10/12)

Status =

Management

Review (11/12)

Status = Submitted

to Sales Agent

Status = Requirements Review (2/12)

Status = Supplier

Review (9/12)

119

Figure 33 - Mapping the business process to the workflow system

In order to undertake the analysis of the workflow system’s performance, the

transactional events from the workflow system are decomposed into arrival and departure

events. In the author’s case, SQL queries and Java code were written to facilitate this

decomposition which is depicted at Figure 34.

AnalyzeNew Orders

Return Order

Design Price
Submit

Proposal

Order,

Proposal

Departure

Transaction

Departure

Transaction

Exit Transaction

Departure

Transaction

Prop

Order

Prop

Order

120

Figure 34 - Transactions to events

With the decomposed events as inputs, three distinct analytical steps are undertaken to

determine the queuing behavior at each step, the processing times for orders at each step, and

the re-work rates per step. The results of these analyses are combined and stored as

parameters that will be inputs to both the stand alone and embedded DES models. This process

is depicted at Figure 35.

New Orders

Return Order

Submit

Proposal

Departure

Transaction

Departure

Transaction

Exit Transaction

Departure

Transaction

(10,-)
(10,20) (10,21) (10,22)

(11,31)

(-1,-)

Arrival

Transaction

New Orders

Return Order

Submit

Proposal

(10,-)
(10,20) (10,21) (10,22)

(11,31)

(-1,-)

A
rr

iv
a

l
E

v
e

n
t

D
e

p
a

rt
u

re
 E

v
e

n
t

A
c

c
e

p
t/

R
e

je
c

t/
R

e
tu

rn

D
e

c
is

io
n

A
rr

iv
a

l
E

v
e

n
t

D
e

p
a

rt
u

re
 E

v
e

n
t

A
rr

iv
a

l
E

v
e

n
t

D
e

p
a

rt
u

re
 E

v
e

n
t

A
c

c
e

p
t/

R
e

je
c

t/
R

e
tu

rn

D
e

c
is

io
n

A
c

c
e

p
t/

R
e

je
c

t/
R

e
tu

rn

D
e

c
is

io
n

Java process decomposes

workflow system transactions

into analogous arrival and

departure events.

These events are then used to

calculate total time per

Processing step and also to

capture Accept/Reject/Return

actions

121

Figure 35 - Consolidation of analytical results

In this authors’ case, the manual analysis was completed with some interesting results

which will be detailed in the section titled “Necessity of Real-world Queuing Behavior” and

which precluded a complete validation of the standalone model’s behavior as in queue

preemption is not readily achievable in the modeling tools available to the author.

Based on the results of the analysis, the standalone model of the system at hand is

depicted in Figure 36.

Accept/Reject/Return

Decision for Prop Z

at Step X

Queue Insertion for Prop Z at Y/W

at Step X

Processing Time for Prop Z

at Step X

Output of these

processes is written

to ModelParameters

table

BranchYAcceptFraction

BranchYRejectFraction

StepYPreemptFraction

StepYLIFOFraction

StepYFIFOFraction

StepYProcessingShape

StepYProcessingScale

Java Process reads and analyzes

ModelParameters

· Relative Frequency analysis for

Accept/Reject/Return Decisions

· Relative Frequency analysis for

Queue Insertion Position

· Weibull Least Squares estimate

for Processing Times

Output written to ModelProperties

table

Note: Exponential

Smoothing is

applied to each of

these parameters

as they are updated

122

Figure 36 - Detailed DES model of system

With the prerequisites in place, the authors’ prototypical scheduling subsystem to the

workflow system was constructed. The diagram at Figure 37 depicts the major components of

the amended workflow system.

123

Figure 37 - Components of the amended workflow system

Mathematical Formulation

To describe the situation mathematically, consider the following definitions and

relationships:

ni: number of operations for job i

pij: processing time for job i at step j in its flow

wij: waiting time for job i at step j

fi: flow time for job i

ei: margin of error associated with job i

Business Process

Objects

Historical (for “fill” jobs):

Inter-Arrival Times

Attributes

Processing Times

Embedded

DES Model

10

Machine

Learning

Model

Historical:

Attributes

Processing Time by Step

New Object

(attributes

only)

New Object

(attributes +

Processing

times)

Current:

Starting queue states

Processing Times

Predicted

Processing

DatesActual

Processing

Dates

Business Process

Workflow/

Instrumentation

System

124

li: lead time associated with job i

ri: release date for job i, i.e. the date that job i enters the system

 : quoted due date for job i

di: actual delivery date for job i

Li: Lateness of job i with respect to its quoted due date

q: number of jobs in process or in queue when job i enters the system

Assuming that there is no down time at the steps and that there is no transportation

time between steps, then the flow time for a job, fi, is simply the sum of the expected

processing times for the steps for that job, pij, and the expected waiting time per step for that

job, wij.

 (7.1)

Then the lead time, li, used to quote a due date for that job is the flow time, fi, plus

some margin of error, ei, associated with the estimation of the processing and waiting times.

 (7.2)

 The predicted due date for the job, , is then the release date for the job into the

system, ri, plus the estimated lead time, li.

 (7.3)

Refactoring this formulation as shown below allows for a more straightforward

segregation of data elements that are required for due date quoting based on the source and

uncertainty of the data. To wit: the release date is given, the processing times are drawn for an

125

appropriate distribution, the error may be assumed or estimated from historical performance,

and the waiting times are related to the jobs in queue and queuing behavior.

 (7.4)

The following relationship summarizes the salient difficulty in predicting turn-around

times (TATs) in a system with non-standard queuing behavior.

 (7.5)

Where IAT is the inter-arrival time for jobs that appear after job i arrives, and are

the vectors of processing times, queuing behaviors, and rework rates respectively for the other

jobs in the system. Note that the arrival process need not be stationary, and in fact, is not in the

subject system [11].

Completing the formulation, the lateness of a job, Li, with respect to its quoted due date

is simply the difference between the actual delivery date, di, and the quoted due date, .

 (7.6)

The author’s proposed solution to determining Wi is then to (1) construct an embedded

DES model, (2) determine the parameters for that model applicable at the point in time where

job i enters the system, (3) determine the properties of job i necessary for representation

within the model, (4) to repeatedly execute the model until an acceptable margin of error on

predicting its time in system can be achieved, and (5) adjust the predicted due date based on

the error distribution observed from previously scheduled jobs. With this methodology

instantiated against a workflow system, the practitioner may readily answer the relevant

126

question: “Given a new order today, when can I expect to receive the corresponding proposal

(with 90% confidence)?”

Related Literature

Cheng and Gupta [14] survey the existing research with respect to due date determination.

In this survey, Cheng and Gupta [14] open by pointing out that meeting due dates is extremely

important to practicing managers due to the customer service implications. They then utilize a

classification scheme first proposed by Elion [15], which has six dimensions: (1) Static vs.

Dynamic, (2) Deterministic vs. Stochastic, (3) Single-product vs. Multi-product, (4) Single-

processor vs. Multi-processor, (5) Theoretical vs. Practical, and (6) Exogenous due dates vs.

Endogenous due dates. Since exogenous due dates obviate due date quoting and lead directly

to sequencing and scheduling problems, Cheng and Gupta [14] focus their attention on

endogenous due dates. Using the above classification scheme, they conclude that there is very

little extant research on dynamic, complex, multi-processor systems.

Subsequent to the survey conducted by Cheng and Gupta [14], Cheng [17] describes a

sequencing algorithm when using the slack due date quoting policy. He simplifies the system

under consideration by assuming that once a set of jobs is sequenced, no subsequent jobs will

affect the system’s performance, there will be no re-sequencing of the jobs between stations

and all of the earliness and tardiness costs are constant. In effect, the lack of consideration of

dynamic arrival of jobs and non-permutation scheduling becomes a presupposition of first

127

come, first serve (FCFS). Cheng [17] concludes that an shortest processing time (SPT) sequence

is optimal, although this conclusion does not fully support the findings of Duenyas and Hopp

[18], who propose an analytical framework for evaluation of various job sequencing rules given

that flow times can be optimally predicted. Working through a series of increasingly generalized

scenarios, they conclude that an earliest due date (EDD) sequence is optimal if the tardiness

penalty is constant for all customers and proportional to the tardiness, which seems to

contradict Cheng [17]. To achieve this result Duenyas and Hopp [18], only assume that

preemption does not take place.

Similar to Duenyas and Hopp [18], Lawrence [19] presupposes that the practitioner either

has a simple system with closed-form flow time estimates, or has a method to determine flow

time for complex systems. With that as a precondition, he describes an analytical approach to

setting due dates based on previously-observed forecasting errors. While Lawrence [19]

proposes to fit the forecasting errors, which he refers to as “G”, using a Ramberg-Schmeiser

distribution, he concludes that Erlang and Gaussian distributions worked equally well. He makes

a key observation that is particularly germane in this context. Various measures of performance

lead to differing uses of the error distribution. For example, mean absolute lateness is

minimized by adding the median of the error distribution to the predicted flow time. Mean

squared lateness is minimized by adding the mean of the distribution to the predicted flow

time, and service level matching is met by adding the target percentile of the distribution to the

predicted flow time, e.g., G-1(0.9) for a 90% service level.

128

Van Ooijen and Bertrand [20] introduce a distinction in terminology intended to allow some

leeway between the tightly-estimated Internal Due Date (IDD) and the slightly looser External

Due Date (XDD). The difference between the two is analogous to a margin of error ei, Alfieri’s

Safety Time, or Lawrence’s G, the authors propose to adjust the XDD using the ratio of the

current level of work in progress (acwip) to the average level of work in progress (nwip). The

results of Van Ooijen and Bertrand [20] bring some closure to the disagreement between Cheng

[17] and Duenyas and Hopp [18] by noting that when earliness and lateness penalties are of

similar magnitude, then SPT sequencing works best; however, when tardiness penalties are

much larger than earliness costs, a due date sequencing rule is best. Another interesting

observation that can be made from the data is that, in spite of the dependence on FCFS

sequencing in much of the literature, FCFS is among the worst performers of the sequencing

rules tested. It does, however, provide the best predictions of performance.

Much of the existing literature discusses using models of systems to conduct experiments,

where the objective is to improve system performance by adjusting resources or queuing

behavior [22, 23]. There is some literature that seeks to use the model to evaluate differing

courses of action such as selecting a sequence of jobs to be scheduled. For example, Azzaro-

Pantel, Bernal-Haro et al. [24] describe using a combination of discrete-event simulation and a

genetic algorithm to optimally dispatch tasks in a job shop environment, with the genetic

algorithm generating the sequences and the DES model evaluating each sequence. In a related

fashion, Reijers [25] discusses using short-term simulations coupled with workflow to provide

129

decision support, i.e., scheduling additional resources during peak loads. Much less of the

literature discusses the potential for use of the faithful model to make predictions about the

system just the way it is. Rojanapibul and Pichitlamken [26] make some excellent observations

about using embedded simulations to calculate prediction intervals in a flow shop environment.

Cates and Mollaghasemi [27] describe the use of simulation to predict project completion dates

and thereby enhance visibility of risk to better manage completion of complex projects. In both

of these cases, though, the job parameters are reasonably established before the predictions

are made.

This review of the literature illustrate the bounds of the current literature and highlight

the lack of coverage for due date quoting in systems (in research and in practice) that do not

implement rigid queuing disciplines and where job preemption and job recirculation is

permissible and commonplace.

Necessity of A Novel Approach

As mentioned in the introduction, the author asserts that better predictive performance

in quoting due dates should be achieved by making a faithful model of the system into which a

new job is then introduced. The motivation for doing so, as well as the argument to support

this assertion follows in two parts: modeling versus deterministic assessment and real-world

versus ideal queuing behavior [11].

130

Necessity of Modeling

Meeting promised due dates is critical to customer satisfaction [14, 18, 19, 21].

Promised due dates are readily met when arbitrarily long lead times are set. However,

quoting arbitrarily long lead times to ensure service levels dilutes our customer appeal while

overly optimistic lead times erodes customer confidence [16]. Based on this, more accurate due

dates (with narrower confidence intervals) are better (more pleasing to customers) as long as

the mechanism is practical to implement [14].

As expressed in the Problem Formulation section, the due-date for a job is dependent

on that job’s processing times and waiting times, and should also include some safety margin

[16, 17, 19].

Also from the Problem Formulation section, the dominant feature of the due-date

setting problem is estimating the wait time for a given job [14].

The wait times for a job are obviously dependent on the jobs already in the system,

though the particular relationship is also dependent on the queuing scheme assumed [16, 18,

19].

Including more information about the current state of the system leads to better

predictions of due dates [14, 16, 18-21].

Analytical methods are suitable for simple cases with ideal assumptions, but more

complicated systems require more complicated analysis typically involving simulation [14, 16,

18].

131

A detailed discrete event simulation model of the actual system will allow more

information on the system (design, historical performance, and current state) to be brought to

bear on the estimation of waiting times.

Necessity of Real-world Queuing Behavior

The data observed from the subject system for this author’s research exhibits job

insertion at head of line preemptively, head of line without preemption, tail of line, and other

locations in the middle of the queue as depicted in Figure 38.

Figure 38 - Flexible Queue

Since the insertion location for a given job determines the minimum number of jobs that

will be processed before that job, it provides a lower bound for the wait time of the target job

at that step, but this determination is not complete, as subsequent jobs may arrive after the job

in question and be queued in front of the target job increasing its wait time at that step.

132

Figure 39 - Relative percentage of jobs inserted into queues by position

As mentioned in the Problem Formulation section, several thousand historical

transactions are available for analysis of the system under test. By decomposing the

transactions into corresponding arrival and departure events and then processing those events

in departure order it is possible to glean the relative insertion position of jobs at each step. The

results of this analysis are applied to the model of the system under test for this paper and

expressed as the relative frequency of job insertion location by step as shown in Figure 39.

These relative frequencies will be used in the empirical queuing implementation described in

the “System Under Test” section. While all of the existing queuing models provide equivalent,

average, system-level performance prediction, the author’s goal is to accurately model the

133

behavior of a single, discrete job within the context of its fellow jobs, and therefore a more

flexible model is required.

Argument Summation

In summary, more accurate assignment of due dates will make customers more likely to

continue to place their orders using the system. Outside of certain idealized systems,

incorporating more detail in the prediction process can make those predictions more accurate.

A DES model allows for incorporating more system detail than any of the existing mechanisms

and incorporating real-world queuing behavior is a key aspect of that mechanism. It is,

therefore, worthwhile to study the forecasting performance of a faithful DES model against

existing, deterministic policies [11].

Methodology

The author’s prototype solution for implementing this methodology is composed of two

distinct, but closely inter-related components. The first component performs an automated

analysis of historical data to determine descriptive parameters for a discrete event simulation.

The second component is an embedded simulation model that makes use of these descriptive

parameters to replicate the behavior of the target system. It is important to note that the

predictive power of this construct is dependent on both components, which must act in

concert.

134

Automated Analysis

The automated analysis component performs five major functions: (1) decompose the

departure transactions (by job and by station) from the workflow system into Departure and

Arrival events, (2) use the correlated Departure and Arrival events to determine the rework rate

of the sample of jobs by station, (3) use the correlated events by station, to determine the

queuing behavior for that station, (4) use the correlated events by station, to decompose the

total time at a station for a job into waiting time and processing time and fit the processing

times to a valid statistical distribution, and (5) utilize the transaction logs, to determine the

inter-arrival rate per month. The last four functions output their results to a database as a

series of parameters to be used by the embedded simulation.

The first function is a pre-processing step facilitating the remaining functions. As

mentioned, the system in question is an electronic workflow system. As such, there is no

perceptible transportation delay. Without transportation delay, the decomposition of the

departure transactions simply requires the creation of a departure event from the current

station, and an arrival event at the next station visited by the job. The times of occurrence for

each of these events are identical; the only complicated aspect is determining the next station

visited. As this complication is purely self-inflicted by the author’s implementation of

transactions, recording the details of overcoming this particular hurdle will be glossed over. A

sage practitioner would be well served to capture both the source and destination stations

within the departure transaction and thus avoid this step entirely. As the output of this step is

135

only used as the input for the subsequent three steps, there is no need to store these results

back to the database.

The second function uses the correlated departure and arrival events created by the

first function to determine rework rates. This is accomplished simply by implementing a two-

level, nested, case construct which takes at the outer-level the source station, and at the inner-

level the destination station. The rework status per job is then captured as a logical action, in

the author’s case a job is accepted, rejected or returned without further action. The relative

frequencies of these actions are recorded by station as model parameters in the database and

are used by the branch components to correctly route jobs from one station to the next – this

pairing of analytical and simulation components directly addresses from Equation 7.5.

The third function, determining the queuing behavior, is considerably more interesting

to describe, and is in fact, half of the novel aspect of the author’s formulation for attacking in

Equation 7.5. In general terms, the concept of the function is similar to executing a DES in

reverse. In a normal DES, both the processing time for a job, and the queuing policy for a

station are specified and the result for the job is the departure time from the station. In this

case, however, the arrival and departure times are known and the results of the analysis are the

processing time for the job, and the queuing behavior of the station. More specifically, the

historical jobs arriving at a given station are processed in time-order of their arrival at the

station but the jobs are placed in the queue based on their, known a priori, departure time.

136

Executing this process one input job at a time, it is possible to determine the queue insertion

location at the station, and the accumulated processing time for the job.

For details of this process, including pseudo-code for implementation, see [28]. The

concept is represented graphically in Figure 40.

Figure 40 - Queue position determination

In pseudo-code, the virtual Server performs the following top-level tasks:

Read previous 180 days of Transactions for Server;

Create Arrival Events and Departure Events based on

transactions for completed jobs;

loop through events in time order {

 if (arrival event) Push(event);

 else if (departure event) Pop(event);

}

The pseudo-code above references 180 days of transactions as the look-back window

which is appropriate in the author’s business environment. Depending on the circumstances of

Arrival Event 4

D
e

p
a

rt
u

re
 E

v
e

n
t

2

(10,2x)

Server not idle

D
e

p
a

rt
u

re
 E

v
e

n
t

4

D
e

p
a

rt
u

re
 E

v
e

n
t

3

Inserted in queue based on time of departure.

[order of departure rarely = order of arrival]

D
ep

ar
tu

re
 E

ve
nt

 1

Queue Insertion for job 4 at ‘2/3’

137

the practitioner’s environment the look-back window might be appropriately specified in terms

of days, or in terms of a number of transactions.

The output of this function, which is accomplished by the “Push” method of the virtual

server, is three parameters per station specifying the fraction of jobs that preempt, queue at

the head-of-line, and queue at the tail-of-line. Jobs that do not meet any of the three criteria

are assumed to be randomly placed in the queue between head-of-line and tail-of-line.

The fourth function separates the processing time from the waiting time and then fits

the processing times to a statistical distribution. This statistical distribution addresses, in

conjunction with the server simulation component, the component from Equation 7.5. In the

author’s implementation, the first portion of this function – separating processing and waiting

times for a job at a station – is accomplished by a combination of the “Push” and “Pop” virtual

server methods described above.

Figure 41 - Processing time determination

The second portion of the function uses a well known formulation to convolve the

resulting processing times at a given station such that a linear, least-squares regression of the

Arrival Event 4

D
e

p
a

rt
u

re
 E

v
e

n
t

2

(10,2x)

Server not idle

D
e

p
a

rt
u

re
 E

v
e

n
t

4

D
e

p
a

rt
u

re
 E

v
e

n
t

3

D
ep

ar
tu

re
 E

ve
nt

 1

By processing the events

 in departure order

(as would be scheduled

 in a DES) it is possible

 to separate

processing time at

a station from

queue time at a station

Processing

Time

138

convolved data exhibits the shape and scale parameters of a Weibull distribution fitted to the

unprocessed data. Similar to the implementation(s) above, the newly calculated parameters are

combined using exponential smoothing – as in the second and third functions – with the

existing parameter values and the resultant, smoothed values stored back into the database,

two parameters per station. In addition, a Kolmogorov-Smirnov goodness of fit test is executed

between the source data and the fitted distribution, and the newly calculated parameters are

only combined with the existing parameters if the test statistic is less than the adjusted critical

value for the sample size [22].

As the reader may have already surmised, the fifth function, calculating the inter-arrival

rates by month, when coupled with the source component of the simulation, completes the

input parameters to Equation 7.5, namely IAT. This function is executed very simply using an

SQL query which aggregates the arrivals by month for the previous 12 months. The more

interesting aspects of this function reside in the simulation component discussed below.

Simulation Components

To build the embedded model used to simulate the workflow system, a series of lower-

level modeling components had to be written in Java. They are described below, and shown

with their key parameters in Figure 42 at the bottom of this section.

The Source component uses parameters from the database to implement a non-

stationary, Poisson arrival process which varies month-by-month. At each arrival event the

139

Factory Component (see below) is used to generate an order entity which is sent to the output

component of the source which would normally be either a Branch or a Server.

The Factory component produces, on demand, entities of type Order with processing

times per step drawn from Weibull distributions whose parameters are taken from the

analytical component. The Factory is also capable of creating a special “target” Order.

The Order component extends the Entity class and implements the Comparable

interface. It also contains a Properties object that is used to capture the history of the event as

it traverses the model.

The Server component, in conjunction with its Queue, implements the empirical

queuing behavior specified by the parameters from the analytical component.

The Queue component utilizes the CompareTo() method of the Order entities to queue

the Orders based on the value set for the Order by the Queuing Behavior method of the server.

The Branch component implements routing of incoming Orders to one of two or more

destinations based on the rework parameters from the analytical component. The author’s

implementation adds special treatment for the “target” Order – it is not allowed to exit through

the “return without further action” sink.

The Sink component disposes of non-target Orders as they depart the simulation, and

stores the target Orders in a static collection when they exit. The Sink also signals a

SimulationEnd event when the target Order exits.

140

Figure 42 - Modeling components

Embedded Simulation

The top-level Java process which implements the simulation first connects to the

workflow system’s database. This connection is used to (1) read in the parameters generated

by the analytical functions above, and (2) to determine the current state of the workflow

system. A graphical representation of the embedded model is shown in Figure 43.

ServerSource

Branch

Sink

StepYProcessingShape
StepYProcessingScale
StepYProcessingSeed

BranchYAcceptFraction
BranchYRejectFraction
BranchYSeed

StepYPreemptFraction
StepYLIFOFraction
StepYFIFOFraction
StepYQueueSeed

Order

Order Factory

JanuaryArrivalRate
FebruaryArrivalRate
…
DecemberArrivalRate

IsTargetOrder
compareTo()

Sends Exit event on receipt of
Target Order

Priority based on compareTo()

141

Figure 43 - Embedded model with parameters

 The top-level process then instantiates the required types and quantities of modeling

components using the analytical parameters. The instantiated modeling objects are then

connected to each other using member functions that allow for the efficient execution of the

event driven simulation. The objects are then initialized with the current state of the workflow

system. At this point, the new, target order is created and enters the simulation at the first

station and the simulation clock is started. The simulation runs until the target order exits the

system at which point the target order and its history are added to an array of results. For

multiple replications, the objects may be re-initialized (which does not reset their random

number streams), a new target Order created, and the simulation again run until completion.

StepYProcessingShape

StepYProcessingScale

StepYProcessingSeed

Step 1New Orders Branch 1 Return OrderStep 2 Branch 2 Step 3

Submit

Proposal

Branch 3

Step 4 Branch 4 Step 5 Branch 5 Step 6 Branch 6

Step 7 Branch 7 Step 8 Branch 8 Step 9 Branch 9

Step 10 Branch 10 Step 11 Branch 11

BranchYAcceptFraction

BranchYRejectFraction

BranchYSeed

StepYPreemptFraction

StepYLIFOFraction

StepYFIFOFraction

StepYQueueSeed

110 Parameters for processing orders

12 for non-stationary arrival process

x 11 x 11 x 11

142

After the desired number of replications has been executed, statistics may be drawn from the

set of resulting target Orders.

The final modification to the predictive subsystem was to incorporate the error

distribution in the predictive process. After the second Order is completed, the final term in

the expression for the predicted due date, ei, can be included in the predictive process. Based

on Lawrence’s formulation, the target percentile of the observed error distribution for the

desired service level is added to the modeled flow time [19]. If the number of completed

Orders is too low, care must be taken when calculating the target percentile. If however, there

are sufficient Orders completed to justify the assumption of normality (both pn ≥ 4, and qn ≥ 4),

then simply using the product of the standard deviation of the errors and an appropriate z-

value is sufficient. In this case, given a sample size greater than 40, a z-value of 1.285

(corresponding to a single-tailed, 90% area) multiplied by the standard deviation would be used

for ei to achieve a 90% service level.

Results

The prototype of the Predictive Subsystem described ran against its corresponding,

production workflow system for 75 days. During this period, 119 orders were received,

processed, and returned to the originating customer. As each order is completed, the error

between the predicted and actual delivery dates is captured and the standard deviation of the

newly expanded sample is re-calculated.

143

To assess the validity of the predictive process, the proportion of the orders completed

within the predicted due dates, (p-hat), is compared to the target proportion, p0 (p-zero,

which is 0.9 in this case). Instead of simply calculating the statistic for a single point in time, the

authors took a time-series approach to the analysis by calculating a critical value of based on

the sample size. In the figure below, the results of this time series approach are shown. The

series labeled p-hat is the observed proportion of orders that are delivered on or before the

predicted due-date. The (p-hat-critical) series graphically depicts the lower bound for an

observed value of that would be statistically indistinguishable from p0.

Figure 44 - Predictive performance versus job history, P0 = 0.90

144

The p-hat-critical series is calculated as

 .

Based on the 119 complete data points available, the authors verified Lawrence’s

formulation for targeted service levels between 55% and 90% in 5% increments. In each case,

the value of ended above the value indicating that the observed service level is

indistinguishable from the targeted service level. The following table lists the z-values

corresponding to the p0 values and the associated figures depicting the results.

Table 4 - Result figures by P0

P0 Z value Figure

0.55 0.125 Figure 45

0.60 0.253 Figure 46

0.65 0.390 Figure 47

0.70 0.525 Figure 48

0.75 0.675 Figure 49

0.80 0.841 Figure 50

0.85 1.036 Figure 51

0.90 1.285 Figure 44

145

Figure 45 - Predictive performance versus job history, P0 = 0.55

Figure 46 - Predictive performance versus job history, P0 = 0.60

146

Figure 47 - Predictive performance versus job history, P0 = 0.65

Figure 48 - Predictive performance versus job history, P0 = 0.70

147

Figure 49 - Predictive performance versus job history, P0 = 0.75

Figure 50 - Predictive performance versus job history, P0 = 0.80

148

Figure 51 - Predictive performance versus job history, P0 = 0.85

Discussion

As the reader may have observed, the achievement of an arbitrary service level is trivial

in the endogenous due date case, i.e. if the manufacturer of a widget is allowed to determine

his own due date for delivery within the bounds of some service level he may simply quote a

date far enough in the future such that no readily conceivable circumstance might cause him to

miss his due date - ten times the duration of the worst case scenario, for example. In practice,

these extravagant delivery times tend to alienate customers. Depending on the circumstances

of both the customer and the supplier, a balance must be reached between arbitrarily inflated

delivery times and missed deliveries. In the case of goods, there is often a cost associated with

149

early delivery, such as storage – either held before delivery by the manufacturer, or stored until

required by the customer – in either case, there is a measurable cost of storage space over

some period of time to be accounted for.

With services however, the cost of early delivery is less tangible. There is no measurable

cost associated with the storage of a simple electronic document for an additional week or two.

In the services case, especially with endogenous due dates, the cost for early delivery lies in the

realm of perceptions. If the service provider consistently and extravagantly overestimates the

delivery date, the customer may resent paying the premium associated with a “guaranteed

service level”, especially when the provider appears to be padding his estimates. Compounding

the problem, there is also no measurable cost for the service provider to hold on to an

electronic file until the quoted due date.

The authors’ approach to this dilemma is to share as much of the raw processing data

and due-date quoting methodology as possible with current and prospective customers. It is

only in this transparency that trust can be formed.

Conclusions and Future Research

Given the success of the prototypical implementation, future work will focus on the

implementation of this methodology in a production system such that a premium may be

charged for the meeting of specified service levels. As mentioned in the discussion section

above, of equal importance to the implementation of the production system will be the

150

transparent communication of the fairness of the quoted due dates. The authors expect that

continued research on this topic will lend credibility to this methodology.

151

CHAPTER EIGHT: CONCLUSIONS AND FURTHER RESEARCH

The due date quoting methodology proposed and implemented in this research has

been effective in providing accurate delivery targets for the orders processed through the

target workflow system. Since the implementation of this methodology on the production

system, the delivery predictions have been met in accordance with the service level specified.

In addition to simply specifying a final delivery date, the system also produces step-by-step

milestones leading to the predicted due date. This capability has improved management

confidence in meeting our service targets and provided the framework for efficient

measurement of progress. Management of this performance is handled simply through a daily

review of expected progress, expressed as the predicted milestones against the actual progress

of the orders. A reporting tool was developed and deployed that produces an up to date view

of pending and late steps across all of the orders in the system. The tool also allows

subordinate managers and functional workers to continually monitor their progress on their

orders.

Practical Implications

Within the next three to nine months the predicted dates may well become

contractually binding. If and when the decision is made, it will be mutually agreed to by our

customers and management. To effect this change, an additional output capability will be

152

activated which will send email notification to the requesting customer and the responsible

manager of the new orders promised delivery date.

During the development of the workflow system that underlies this research as well as

the predictive subsystem which is its subject, a series of practical considerations were collected.

These considerations are predominantly concerned with human behavior, business process

definition, and software usability. As these topics are important to successfully repeating the

process described in Chapter Two they have been included in this document. However, as they

are outside the author’s academic background they have been included in an appendix

(APPENDIX B: PRACTICAL CONSIDERATIONS) instead of within the body of this document.

Readers wishing to implement the subject methodology are encouraged to refer to this section

before beginning work.

Future Work

Performance of the modeling component will be improved through the thoughtful

incorporation of multi-threading support whilst maintaining the appropriate control on the

several random number streams used.

An optimization method will be incorporated into the prediction system such that the

error term used in calculating the delivery date may be adjusted for unequal earliness and

tardiness penalties. The preliminary implementation will allow for a system wide parameter

indicating the relative value of the penalties, e.g. the tardiness penalty is five times as large as

153

the earliness penalty. Subsequent implementations may allow for the parameter to be set on a

job-by-job basis.

The author was fortunate in having thousands of historical records upon which to

predicate his analysis. If the described process were undertaken from scratch, parameters such

as the exponential smoothing factor (usually denoted by α) would have to be set carefully to

achieve reasonable performance until such point that sufficient jobs might consistently be

available in the historical window to dilute the criticality of this parameter. Similarly, the

determination of historical window sizes for the determination of queuing behavior, processing

times, rework rates, and error distributions should be parameterized for other applications.

Given the strong correlation between the number of jobs in work and the processing

time for a new job entering the system (see Figure 26), it may be possible to reduce the

simulated complexity heuristically to a formula that relates the flow time for a job, fi to some

sort of cross product between the queuing behaviors at each server (Q), and the total

processing time for all of the jobs at that server (P) such that the due date could be quoted as

di = ri + QxP + zei.

As postulated by Ferreira and Ferreira [29], the author will look for a suitable, standards-

based, workflow framework to rehost the subject business process. However, before any

rehosting can be considered, such a framework must demonstrate similar capabilities (web

access, open development, extensible data structures, and clear integration points) to the

developmental system described herein. If such a commercial product cannot be found, then

154

following through with Milainovic, et al.[30] and several of the other sources a better

developmental solution may be pursued.

155

APPENDIX A: LITERATURE REVIEW

156

There exists an extensive body of research on Discrete Event Simulation, Business

Process modeling, workflow systems, data mining and optimization. This review will touch on

the existing literature in this area but predominantly focus on highlighting the gaps in that

literature with respect to the modeling of systems with high levels of non-deterministically

defined parameters and using the resultant models to make specific predictions about

individual jobs as opposed to general system performance. The structure of the literature

review will parallel the 10-step system development process introduced in the first chapter and

each section will have a separate grid cataloging the articles.

Business Process Modeling

Discrete Event Simulation modeling has been predominantly focused on manufacturing

and other production systems where the individual steps in the process are well defined and

often repeated. As our society transitions away from production and towards services, the

tools of the Industrial Engineer must adapt. Gladwin and Tumay stated that a business process

is a collection of logically interrelated activities that consume resources to achieve specific

objectives [31]. Within that context, they explored modeling business processes within

simulation tools and applying those simulation tools to improve performance of business

processes outside of manufacturing where such tools have been predominantly used. Of

course, before such a model might be created it is necessary to capture the business process

often with the intent of building an information system to support the process. Cook, Rozenblit

157

et al. described their use of UML diagrams to capture a desired business process management

system [32]. The evaluation of business processes with the intent of improving speed or

efficiency is often referred to as Business Process Re-Engineering. Bae, Jeong et al. discussed

the potential linkage between a business process model and a correlated simulation as a means

of analyzing the impacts of proposed changes to the business process as part of a business

process re-engineering exercise [33]. Ghanmi provided a solid, real-world example of how this

correlation between process and model can be drawn in a product-centric environment [34].

Similarly, Jianhua, Zhibin et al. presented a case study for a parallel situation in a more service-

centric environment [35].

It is commonly considered that one of the key distinctions between a manufacturing

process and a business process is that business processes may involve mechanical or

technological components but is predominately a human-centric endeavor and, therefore,

inherently more difficult to model than the more mechanical processes that dominate the

manufacturing world. As a practical consequence of this, Gladwin and Tumay made good

points about accounting for non-deterministic processing times and variable processing

capacity [31].

The benefits of capturing an extended business process and creating a workflow around

the process is nicely described by Abecker, Bernardi et al. and Kayser, McIntosh et al. in which

they rightly concluded that this exercise, even before any more extensive changes are made to

the business process, is of tremendous benefit to all of the parties involved through enhanced

158

communications [36, 37]. As a counterpoint to this, however, Reijers, Song et al. concluded

that a collaborative workflow system is not solely sufficient to level the communications

gradient across geographically distributed work forces [38].

Figure 52 - Business Process literature grid

Title Primary Author Bu
si

ne
ss

 P
ro

ce
ss

 M
od

el
in

g

W
or

kf
lo

w
 S

ys
te

m
s

Da
ta

 M
in

in
g

Di
sc

re
te

 E
ve

nt
 S

im
ul

at
io

ns

Em
be

dd
ed

 S
im

ul
at

io
ns

Pr
ed

ic
tiv

e
us

e
of

 S
im

ul
at

io
ns

Information supply for business processes:

Coupling workflow with document analysis and

information retrieval Abecker, A. X X

Meta-Manager: A requirements analysis Cook, Jay F. X X

Modeling and analysis of a Canadian Forces

Geomatics division workflow Ghanmi, Ahmed X X

Workflow management based on process model

repositories Gruhn, Volker X X

Comparative research of modeling methods for

workflow process Jiang, Guoyin X X X

A surgical management information system driven

by workflow Jianhua, Qi X X

New generation well project management

application improves cycle time, workflow

efficiency, corporate compliance, and knowledge

sharing (and people like it!) Kayser, H. X X

Process ownership challenges in IT-enabled

transformation of interorganizational business

processes Larsen, Michael Holm X

Modelling business processes with workflow

systems: An evaluation of alternative approaches Mentzas, Gregory X X

Integrating light-weight workflow management

systems within existing business environments Muth, Peter X X

A user-oriented design for business workflow

systems Pourabdollah, Amir X X

Analysis of a collaborative workflow process with

distributed actors Reijers, Hajo A. X X

Workflow simulation for operational decision

support Rozinat, A. X X X X

Research and implementation of workflow

interoperability crossing organizations Wan, Dingsheng X X

159

Workflow

As a logical precursor for the workflow system’s development, Jiang and Dong

compared different frameworks that can be used for creating the workflow model from the

business process [39]. Correspondingly, Mentzas, Halaris et al. reviewed various available

workflow systems for suitability, highlighting the strengths and limitations of each [40].

Gruhn and Schneider pointed out that workflow tools and frameworks have existed for

some time but that they had not been widely exploited owing, in their estimation, to the lack of

building blocks from which to build reasonably complex systems. Their proposed solution was

to provide a repository of such sub-process snippets which they deemed helpful in building up

more complex workflows for well structured processes such as software development [41].

Ames, Burleigh et al. discussed the concept of a web-based workflow management

system and provided some example applications that have been developed [42]. Liang, Wu et

al. reviewed the, then extant, techniques in web-based workflow management [43]. Hong Va,

Kei Shiu et al. refined this discussion by describing the potential use of CORBA as a

representative “distributed object management” means of allowing for the encapsulation of

distinct pieces of the process logic while facilitating interoperability [44]. As CORBA fades from

the modern parlance, Jin, Wu et al. and Wan, Li et al. presented corresponding web services

cases [45, 46]. As an alternative to integrating functional systems into the workflow system,

Muth, Weissenfels et al. proposed what they term a light-weight workflow implementation for

use within existing business automation environments [47]. This author prefers to make this

160

distinction ontologically by referring to such constructs as instrumentation systems. Huang

made an excellent observation that the modern marketplace is replete with interwoven

consumer-supplier relationships and supply chains. Huang then concluded that a distributed

workflow system is required in this environment [48]. Similarly, Sayal, Casati et al. proposed

that existing Business-to-Business statndards might be leveraged to that purpose [49]. This

author would argue that a single shared workflow solution is also an acceptable solution to this

problem given the requisite infrastructure and security means are available.

Botha and Eloff rightly cautioned that access control within workflow systems needs to

be rooted in the underlying business process, however, they somewhat naively settle on using a

purely role-based acess control (RBAC) scheme overlooking the importance of some robust,

assignment based extension to that scheme [50]. Lin, Zhan et al. proposed an extension of the

basic RBAC framework that would be organizationally aware [51]. Yu, Chen et al. described a

multi-policy access scheme that extends RBAC by providing access controls at the object level

[8]. Alternatively, Chen and Feng described an extension of RBAC that extends to a Digital

Rights Management (DRM) level of granularity as a way of overcoming an RBAC system’s

limitations [52].

As a practical consequence of knowing which users are executing process steps within

the workflow, it is possible to use the system to verify that particular actions were completed.

Dallien, MacCaull et al. discussed the value of this “verifiability” in a medical context [3]. It is

161

always remarkable to the author that providing a person with a very precise date-time-action

reference is an excellent aid to their memory.

Figure 53 - Workflow literature grid

Data Mining

As brought out initially in the introduction, there is a significant quantity of attribute

data associated with the objects entering and flowing through the workflow system in question

as well as several thousand historical performance records associated with previous objects.

Title Primary Author Bu
sin

es
s P

ro
ce

ss
 M

od
el

in
g

W
or

kf
lo

w
Sy

ste
m

s

Da
ta

 M
in

in
g

Di
sc

re
te

 Ev
en

t S
im

ul
at

io
ns

Em
be

dd
ed

 Si
m

ul
at

io
ns

Pr
ed

ict
ive

 us
e o

f S
im

ul
at

io
ns

Applications of Web-based workflow Ames, Chuck X

Integration of workflow management and

simulation Bae, Joon-Soo X X

A framework for access control in workflow

systems Botha, Reinhardt A. X

Study of information security in workflow

management system Chen, Liwan X

Initial work in the design and development of

verifiable Workflow Management Systems and

some applications to health care Dallien, Jeff X

Developing a reusable workflow engine Ferreira, Diogo M. R. X

Web-based workflow framework with CORBA Hong Va, Leong X

Distributed manufacturing execution systems: A

workflow perspective Huang, Chin-Yin X

Service-oriented workflow model Jin, Yueping X

From semantic to object-oriented data modeling Kilov, Haim x

Research of Web-based workflow management

system Liang, H. X

Improved RBAC model based on organization chart Lin, Lin X

On some problems while writing an engine for

flow control in workflow management software Milainovic, Boris X

Short-Term Simulation: Bridging the Gap between

Operational Control and Strategic Decision Making Reijers, H.A., van der Aalst, W.M.P. X X X

Integrating workflow management systems with

business-to-business interaction standards Sayal, Mehmet X

Business process mining: An industrial application van der Aalst, W. M. P. X X

Multi-policy access control model for workflow

management system Yu, Ling X

162

van der Aalst, Reijers et al. made the excellent point that modern information systems (and

specifically workflow systems) capture much of the necessary data to perform data mining on

the process information, which they termed “process mining” without having to resort to

external data collection though there have been few real-world exploitations of this capability

captured in the literature [12]. Rozinat, Wynn et al. proposed to extend this concept through

the use of a pair of open source tools -- YAWL (Yet Another Workflow Language) and ProM

(Process Miner). They described the potentially tight coupling theoretically possible between a

workflow system and a simulation model that represents that system. This coupling would be

accomplished by describing the workflow system in YAWL, running the resultant workflow

description through the YAWL runtime, and then developing plug-ins for ProM that would (1)

allow it to ingest the system design and (2) interpret the transaction and state information.

Rozinat successfully created an example of this coupling using a simple credit processing

workflow. It is important to note Rozinat’s conclusion -- that while the concept seems valid, the

creation of a generalized process for achieving coupling was not yet obtainable [13]. In addition

to the limitations imposed by the developmental nature of Rozinat’s plug-ins for reading YAWL

information into ProM, there are also limitations based on ProM itself in that there currently

are not facilities to support the generalized queues that are necessary to support certain real-

world processes such as the one under consideration.

One of the complexities associated with exploiting this process mining capability is the

high dimensionality of the attributes and more specifically the dominance of nominal

163

dimensions over both ordinal and real. There are several approaches to this complex problem

which are well represented in the literature so the author will only touch on the highlights here.

Basic topics in simple and multiple regression are well covered in fundamental texts such as

“Statistics for Engineering and the Sciences” [10]. These tools are a reasonable point of

departure for simple datasets but rapidly become unwieldy as dimensionality grows. More

advanced techniques seek to incorporate some dimensionality reduction schemes into the

approach minimizing the amount interaction required by the practitioner. Given the high

nominal dimensionality of the author’s data two approaches will be given further treatment,

Classification And Regression Trees and Artificial Neural Networks. Beginning with their original

monograph, Breiman, et al. [53] described their novel approach to an automated process for

dealing with high-dimensionality data sets through the use of what they called Classification

And Regression Trees (CART™). While quite good at classifying data sets, CART’s ability to

provide accurate models where the dependent variable is real-valued is limited. Artificial

Neural Networks, e.g. Multi-Layer Perceptrons (MLPs) and Support Vector Machines (SVMs)

often provide better results with real-valued outputs at the cost of a less easily understood

model. Additional detail on MLPs can be found in Cybenko’s work [54]. Similarly, a description

of the SVM is found in Vapnik’s paper [55]. An explanatory paper by Bennet and Campbell lent

some clarification to the underlying principles behind the support vector [56]. While Chen, Ma,

et al. provided a practical example of using SVMs to mine consumer credit card data [57].

164

 Chiu, Tien et al. performed generalized comparative analyses of the various techniques

commonly used in data mining and dimensionality reduction and proposed some interesting

hybrid approaches to increasing accuracy while maintaining the ability to automate the process

[58]. A similar comparison was conducted by Meyer, D., F. Leisch, et al. which compared

various classification and regression techniques to SVMs and came to similar conclusions –

namely that different techniques work better depending on the situation [59]. Given the array

of such tools and their complex sets of strengths and weaknesses, the author has shortened his

lines by choosing to employ a package called WEKA (Waikato Environment for Knowledge

Analysis) which provides a generalized framework for evaluating the output of many of these

algorithms against a given data set. As an added benefit WEKA will create executable Java

modules which encapsulate the selected output model greatly simplifying automation [60].

165

Figure 54 - Data Mining literature grid

Simulation, Modeling And Analysis

Modeling, especially Discrete Event Simulation (DES) modeling is a well documented

field as evidenced by the availability of textbooks for teaching the subject at the undergraduate

and graduate levels. Law and Kelton’s “Simulation Modeling and Analysis” is a good example of

such a text [22]. Since the basis of the field is well settled, the author will forego any detailed

review of this segment of literature which encompasses what the author will refer to as

classical DES modeling and includes queue types, processing and server types and

Title Primary Author Bu
si

ne
ss

 P
ro

ce
ss

 M
od

el
in

g

W
or

kf
lo

w
 S

ys
te

m
s

D
at

a
M

in
in

g

D
is

cr
et

e
Ev

en
t S

im
ul

at
io

ns

Em
be

dd
ed

 S
im

ul
at

io
ns

Pr
ed

ic
ti

ve
 u

se
 o

f S
im

ul
at

io
ns

H
eu

ri
st

ic

St
oc

ha
st

ic

Performance comparison of trained multi-layer

perceptrons and trained classification trees Atlas, Les X X X

Support Vector Machines: Hype or Hallelujah? Kristin P. Bennet X X X

Classification And Regression Trees Leo Breiman X X X

Mining the customer credit using hybrid support

vector machine technique Chen, Weimin X X X

Construction of clustering and classification

models by integrating Fuzzy ART, CART and neural

network approaches Chiu, Chih-Chou X X X

Approximation by superpositions of a sigmoidal

function Cybenko, G. X X X

The WEKA Data Mining Software: An Update Mark Hall X X X

The support vector machine under test Meyer, David X X X

Empirical input distributions: an alternative to

standard input distributions in simulation

modeling Shanker, A. X X X X

Business process mining: An industrial application van der Aalst, W. M. P. X X X X

Support vector method Vapnik, V. N. X X X

166

configurations, validation and verification of models, and distribution fitting. Detailed

discussion of the author’s approach to validation and verification will follow in chapter 3, but

will fall generally in line with accepted techniques as covered in [9, 22].

While the central aspects of DES modeling are stable, there are aspects that continue to

be refined such as the representation of observed data in some mechanism allowing for the

generation of similar data. This is most often done by analyzing the observed data with some

software, e.g. ExpertFit, and selecting one of the recommended distributions that closely

approximates the observed data. There are times, though, that the observed data is intractable

to such analysis and building an empirical distribution is a better solution [61, 62]. In this

author’s case it appears that it is not only the input distributions that have to be addressed, but

also the queuing behavior. Normally queues are modeled as First In First Out (FIFO), Last In

First Out (LIFO) or some form of priority queue [23]. This limitation could induce unacceptable

errors when real-world queuing behavior is not as cleanly exhibited.

Embedded Modeling And Simulation

The creation of DES models outside of an Integrated Development Environment can be

done from the ground up, however, several software frameworks are available that provide

most of the infrastructure required for robust DES model development. These models can then

be embedded into other systems to provide a modeling capability. Often that capability can

then be used to evaluate the “goodness” of a particular job or batch sequence through a

167

system. As with the basic foundations of simulation, embedded DES is a well covered topic

with good texts such as Garrido’s “Object-Oriented Discrete-Event Simulation with Java – A

Practical Introduction” as evidence [63].

Predictive Use Of DES Modeling

Much of the existing literature talks about using models of systems to conduct

experiments where the objective is to optimize system performance by adjusting resources or

queuing behavior [22, 23].

There is some literature that seeks to use the model to evaluate differing courses of

action such as selecting a sequence of jobs to be scheduled. For example, Azzaro-Pantel,

Bernal-Haro et al. described using a combination of a discrete event simulation and a genetic

algorithm to optimally dispatch tasks in a job shop environment, with the genetic algorithm

generating the sequences and the DES model evaluating each sequence [24]. In a related

fashion, Reijers discussed using short-term simulations coupled with work flow to provide

decision support, i.e. scheduling additional resources during peak loads [25]. And as mentioned

in the Data Mining section above, Rozinat, Wynn et al., as part of their work with YAWL and ProM,

described a methodology that should allow for the creation of the model from the description and

output of the system and then using that simulation to make decisions about the system. With the

coupled simulation model created and loaded it should then be possible to use the simulation

168

to answer system level performance questions and conduct “what-if” experiments to evaluate

changes in resource levels that might affect overall system performance [13].

Much less of the literature discusses the potential for use of the faithful model to make

predictions about the system just the way it is. Rojanapibul and Pichitlamken made some

excellent observations about using embedded simulations to calculate prediction intervals in a

flow shop environment [26]. Cates and Mollaghasemi described the use of simulation to

predict project completion dates and thereby enhance visibility of risk to better manage

completion of complex projects [27]. In both of these cases, though, the job parameters were

reasonably established before predictions were made.

Figure 55 - Simulation literature grid

Title Primary Author B
u

si
n

e
ss

 P
ro

ce
ss

 M
o

d
e

li
n

g

W
o

rk
fl

o
w

 S
ys

te
m

s

D
at

a
M

in
in

g

D
is

cr
e

te
 E

ve
n

t
Si

m
u

la
ti

o
n

s

Em
b

e
d

d
e

d
 S

im
u

la
ti

o
n

s

P
re

d
ic

ti
ve

 u
se

 o
f

Si
m

u
la

ti
o

n
s

H
e

u
ri

st
ic

St
o

ch
as

ti
c

R
e

al
 t

im
e

P
re

p
ro

ce
ss

O
p

ti
m

iz
a

ti
o

n

P
re

d
ic

ti
o

n

P
ro

ce
ss

in
g

ti
m

e
s

kn
o

w
n

 a
 p

ri
o

ri

o
r

ra
n

d
o

m
ly

 s
e

le
ct

e
d

P
ro

ce
ss

in
g

ti
m

e
s

an
d

q
u

e
u

in
g

b
e

h
av

io
r

in
fe

rr
e

d

A two-stage methodology for short-term batch

plant scheduling: discrete-event simulation and

genetic algorithm Azzaro-Pantel, Catherine X X X X X X X X

Integration of workflow management and

simulation Bae, Joon-Soo X X X X X X

Object-oriented discrete-event simulation with

Java: a practical introduction José M. Garrido X X X X

Empirical discrete distributions in queueing

models Jewkes, Elizabeth M. X X X

Comparative research of modeling methods for

workflow process Jiang, Guoyin X X X X X X X X

Simulation with Arena W. David Kelton X X X X X

Simulation Modeling and Analysis Averill M. Law X X X

Short-Term Simulation: Bridging the Gap between

Operational Control and Strategic Decision Making Reijers, H.A., van der Aalst, W.M.P. X X X X X X X

Workflow simulation for operational decision

support Rozinat, A. X X X X X X X X X X

Empirical input distributions: an alternative to

standard input distributions in simulation

modeling Shanker, A. X X X X

169

Due Date Quoting

Cheng and Gupta [14] produced a survey of the existing research with respect to due

date determination. In this survey, Cheng and Gupta opened by pointing out that meeting due

dates is extremely important to practicing managers. They then utilized a classification scheme

first proposed by Elion [15] which has six (6) dimensions: (1) Static versus Dynamic, (2)

Deterministic versus Stochastic, (3) Single-product versus Multi-product, (4) Single-processor

versus Multi-processor, (5) Theoretical versus Practical, and (6) Exogenous due-dates versus

Endogenous due-dates. Since exogenous due-dates obviate due-date quoting and lead directly

to sequencing and scheduling problems, Cheng and Gupta focused their attention on

endogenous due-dates. Using the above classification scheme they concluded that there is very

little extant research on Dynamic, Complex, Multi-processor systems. And after noting that

better predictors would be beneficial, if practical, they concluded that there is a need for more

practical and applied research in this area.

Alfieri [16] proposed two new quoting policies based on setting a static Safety Time (ST)

parameter analogous to ei in the formulation from Chapter Three noting that setting this

parameter dynamically could be time consuming. The performance of these quoting policies,

which both presuppose a First-Come-First-Served (FCFS) ordering, is compared to the Total

Work Content (TWK) policy when jobs are sequenced by Shortest Processing Time (SPT),

Earliest Due Date (EDD) and First-In-First-Out (FIFO). These comparisons were predicated on

batch scheduling (ignoring subsequent arrivals), deterministic processing times and non-

170

permutation sequencing. With these simplifications, her results indicated that TWK

outperforms both of her proposed policies. She noted that estimating flow times for more

complicated systems is a suitable topic for future research.

Subsequent to the survey conducted with Gupta discussed above, Cheng [17] described

an efficient and optimal sequencing algorithm when using the slack due-date quoting policy.

Cheng simplified the system under consideration by assuming that once a set of jobs is

sequenced, no subsequent jobs will affect the systems performance, there will be no re-

sequencing of the jobs between stations and all of the earliness and tardiness costs are

constant. In effect, the lack of consideration of arrivals and non-permutation scheduling

becomes a presupposition of FCFS. In this scenario Cheng concluded that an SPT sequence is

optimal although this conclusion is at odds with the findings of Duenyas and Hopp below.

Duenyas and Hopp [18] proposed an analytical framework for evaluation of various job

sequencing rules given that flow times can be optimally predicted. Working through a series of

increasingly more generalized scenarios they concluded that an EDD sequence is optimal if the

tardiness penalty is constant for all customers and proportional to the tardiness which seems to

contradict Cheng [17] above. To achieve this result Duenyas and Hopp only assumed that pre-

emption does not take place. The result of an EDD sequence being optimal is useful in that it

provides direction for redesigning the workflow system in this author’s construct to encourage

EDD processing order but is not helpful in determining the optimal due-dates.

171

Similar to Duenyas and Hopp above, Lawrence [19] presupposed that the practitioner

either has a simple system with closed-form flow time estimates, or has some way to

determine flow times for complex systems. With that as a precondition, he described an

analytical approach to setting due-dates based on previously observed forecasting errors.

While Lawrence proposed to fit the forecasting errors, which he refers to as “G”, using a

Ramberg-Schmeiser distribution, he concludes that Erlang and Gaussian distributions worked

equally well in his research. Lawrence made three observations that are particularly germane

in this context: (1) exponential smoothing of the forecasting error distribution parameters

enhances the accuracy of the fit, especially in time-dynamic situations, (2) various measures of

performance lead to differing uses of the error distribution, e.g. Mean Absolute Lateness is

minimized by adding the median of the error distribution to the predicted flow time, Mean

Square Lateness is minimized by adding the mean of the distribution to the predicted flow time,

and service level matching is met by adding the target percentile of the distribution to the

predicted flow time, e.g. G-1(0.9) for a 90% Service Level, and (3) the analytic due date quoting

policies that include information about the current system state outperform those that do not

at least in the simple scenarios that the author evaluates specifically. Additionally, Lawrence’s

paper provided a good summary of the most common analytic quoting policies which will be

useful for comparison with this author’s proposed modeling-based approach.

van Ooijen and Bertrand [20] introduced a distinction in terminology intended to allow

some leeway between the tightly estimated Internal Due Date (IDD) and the slightly looser

172

External Due Date (XDD). To set this difference, which is analogous to ei in the problem

description from Chapter Three, or the Safety Time from Alfieri, or Lawrence’s error

distribution, G, the authors proposed to adjust the XDD using the ratio of the current level of

work in progress (acwip) to the average level of work in progress (nwip). Using variations of

this quoting policy various sequencing rules were applied and the optimal cost per order was

established over a variety of relative earliness/tardiness combinations. Van Ooijen and

Bertrand’s results brought some closure to the disagreement between Cheng [17] and Duenyas

[18] by noting that when earliness and lateness penalties are of similar magnitude then SPT

sequencing works best; however, when tardiness penalties are much larger than earliness costs

a Due Date sequencing rule is best. Another interesting conclusion that can be drawn from the

data is that in spite of the dependence on FCFS sequencing in much of the literature, FCFS

provided among the worst performance of the sequencing rules tested.

Rajasekera, Murr, et al [21] opened by observing that including more information into

the dynamic flow time prediction process produces better results. Much of the paper

subsequently focused on an analytical description of a load-balancing algorithm that could be

implemented in an information system integrated with the manufacturing system. The authors

concluded that after applying their load balancing procedure and assuming FCFS processing,

then setting due-dates is straightforward even when taking into account the jobs already in the

system. As a parting note, the authors conceded that more complex work centers would

require more complex queuing decomposition methods and further analysis.

173

Figure 56 - Due Date Quoting literature grid

Conclusion

What appears to be missing in the literature is using simulation to make predictions

about the system when the job parameters and specific queuing behavior are unknown and the

historical data that describes these factors is intractable to all but robust data mining

techniques to describe. The preceding tables summarize the literature reviewed by the author

and makes clear the gap described.

Title Primary Author B
u

si
n

e
ss

 P
ro

ce
ss

 M
o

d
e

li
n

g

W
o

rk
fl

o
w

 S
ys

te
m

s

D
at

a
M

in
in

g

D
is

cr
e

te
 E

ve
n

t
Si

m
u

la
ti

o
n

s

Em
b

e
d

d
e

d
 S

im
u

la
ti

o
n

s

P
re

d
ic

ti
ve

 u
se

 o
f

Si
m

u
la

ti
o

n
s

D
u

e
 D

at
e

 Q
u

o
ti

n
g

H
e

u
ri

st
ic

D
e

te
rm

in
is

ti
c

St
o

ch
as

ti
c

Fi
rs

t
C

o
m

e
, F

ir
st

 S
e

rv
e

d

G
e

n
e

ra
l

Due date quoting and scheduling interaction in production lines Alfieri, A. X X X

Optimal assignment of slack due-dates and sequencing of jobs with

random processing times on a single machine Cheng, T.C.E. X X X

Survey of scheduling research involving due date determination

decisions Cheng, T.C.E. X X

Quoting customer lead times Duenyas, I. X X X1

Production scheduling Elion, S. X X

Estimating flowtimes and setting due-dates in complex production

systems Lawrence, S.R. X X X

A due-date assignment model for a flow shop with application in a

lightguide cable shop Rajasekera, J.R. X X X

Economic due-date setting in job-shops based on routing and workload

dependent flow time distribution functions van Ooijen, H.P.G. X X X

Literature Segment Solution Queuing

174

APPENDIX B: PRACTICAL CONSIDERATIONS

175

A note about balancing detailed data collection with human behavior -- the author has

many years and many negative experiences developing and delivering “ideal” solutions to real

users and achieving sub-par performance. Specifically, requiring the users of systems to enter

data, or perform synthetic tasks for something other than the direct benefit of the user. In light

of this, the author eschewed the notion of having users of this new system indicate all of the

gruesome details of their processing of the documents and went simply with a single recorded

step of when the user was finished with his portion of the processing. As a result, the

transactional data that captures the trajectory of a document through the system must first be

processed before it can be dealt with using classical modeling techniques.

Practical consideration #1 - Limit auditable steps to inter-personal boundaries – no

process steps/status changes while the object is still in the possession of one actor. This

technique, in combination with the transparency of reporting, makes the system self-

regulating. Each actor is judged on the amount of time that objects spend in their care so it

behooves them to complete their steps efficiently and flow the object to its next step so as to

“stop the clock”. When actor #1 completes a step and flows the object to actor #2, actor #1 is

asserting that his step is complete and ready for actor #2 to begin. However, because actor #2

is now responsible for the processing time of the object he is motivated to ensure that the

previous step was, in fact, completed and if not, actor #2 can return the object for completion

or rework to actor #1 placing the processing time onus back on actor #1. Because the actors

are self interested (trying to avoid the baleful eye of the process owner) they are internally

176

motivated to flow the objects through the process as quickly and accurately as possible, but this

is regulated by the downstream actors not wanting objects stacked in their queues that are not

ready for processing.

Practical consideration #2 - Limit imposition of “extra” button clicking to maximize

success – As mentioned in the introduction of this work, the author’s experience has lead him

to build systems that minimize the requirement for users to perform synthetic, i.e. non-direct-

value added, tasks. In light of this, the subject system simply records when the user finishes

with his portion of the processing. Button presses that seek to capture information beyond

what is minimally required will be “fudged” unless you can automate the capture of the event

(selecting which object is being acted upon though this assumes serial processing, when in

reality several objects are in play simultaneously).

Practical consideration #3 - Determine useful metrics to measure the process – avoid

the pitfall of pulling numbers that are easy to capture but do not provide any real insight into

the business process.

Practical consideration #4 - Selection of the data type for dates and times. The author

has found it much easier to err on the side of selecting a higher precision data type and not

making full use of the precision when not needed, than attempting to overcome the limitations

of a less-precise data type – especially after the system has been in production for some time.

Practical consideration #5 – it is possible that a human-centric (a.k.a. smart) identifier

may be applied to an object in addition to its system generated ID. If such an identifier is

177

required, the practitioner should carefully consider the mechanism by which it is generated,

and that mechanisms relation to attributes of the associated objects, i.e. if one of the attributes

of an object is changed -- does that change the identifier? Or alternatively, once defined should

the identifier be static? In particular and if at all possible, such an identifier should NOT be used

as a foreign key either within the workflow system or, even more importantly, across system

boundaries.

Practical Consideration #6 – the actors performing the process will all have differing

ideas about the best way to communicate their requirements. In the first case, the users will

focus on the requirements of the routine execution of the process and fail to mention the steps

necessary for extraordinary circumstances leading to unhandled cases during execution.

Conversely, there will be users who will focus on all of the possible extreme cases, no matter

how unlikely, and fail to adequately describe the normal process. Users in either of these

camps are best interviewed in multiple sessions.

178

LIST OF REFERENCES

[1] S. B. Johnson, The secret of Apollo: systems management in American and European
space programs. Baltimore: The Johns Hopkins University Press, 2002.

[2] H. E. McCurdy, Faster, better, cheaper: low-cost innovation in the U.S. space program.
Baltimore: The Johns Hopkins University Press, 2001.

[3] J. Dallien, W. MacCaull, and A. Tien, "Initial work in the design and development of
verifiable Workflow Management Systems and some applications to health care,"
Budapest, Hungary, 2008, pp. 78-91.

[4] M. W. Maier and E. Rechtin, The Art of Systems Architecting, 2nd ed. ed. Boca Raton:
CRC Press LLC, 2000.

[5] A. Pourabdollah, T. Brailsford, and H. Ashman, "A user-oriented design for business
workflow systems," Berlin, Germany, 2007, pp. 285-297.

[6] M. H. Larsen and R. Klischewski, "Process ownership challenges in IT-enabled
transformation of interorganizational business processes," Big Island, HI., United states,
2004, pp. 4047-4057.

[7] H. Kilov, "From semantic to object-oriented data modeling," Morristown, NJ, USA, 1990,
pp. 385-393.

[8] L. Yu, B. Chen, and J.-M. Xiao, "Multi-policy access control model for workflow
management system," Xitong Gongcheng Lilun yu Shijian/System Engineering Theory
and Practice, vol. 29, pp. 151-158, 2009.

[9] R. G. Sargent, "Verification and validation of simulation models," in Proceedings of the
39th conference on Winter simulation: 40 years! The best is yet to come Washington
D.C.: IEEE Press, 2007.

[10] W. Mendenhall and T. Sincich, Statistics for Engineering and the Sciences, 4th ed. ed.
Upper Saddle River: Prentice Hall, Inc., 1995.

[11] J. S. DeKeyrel, "Processing predictions through embedded simulation," in Proceedings of
the IASTED International Conference, Software Engineering and Applications (SEA 2010),
Marina del Rey, CA, 2010, pp. 412-418.

179

[12] W. M. P. van der Aalst, H. A. Reijers, A. J. M. M. Weijters, B. F. van Dongen, A. K. Alves
de Medeiros, M. Song, and H. M. W. Verbeek, "Business process mining: An industrial
application," Information Systems, vol. 32, pp. 713-732, 2007.

[13] A. Rozinat, M. T. Wynn, W. M. P. van der Aalst, A. H. M. ter Hofstede, and C. J. Fidge,
"Workflow simulation for operational decision support," Data and Knowledge
Engineering, vol. 68, pp. 834-850, 2009.

[14] T. C. E. Cheng and M. C. Gupta, "Survey of scheduling research involving due date
determination decisions," European Journal of Operational Research, vol. 38, pp. 156-
166, 1989.

[15] S. Eilon, "Production scheduling," in Operational Research '78: Eighth IFORS
International Conference on Operational Research, North-Holland, Amsterdam, 1978,
pp. 237-266.

[16] A. Alfieri, "Due date quoting and scheduling interaction in production lines,"
International Journal of Computer Integrated Manufacturing, vol. 20, pp. 579-587, 2007.

[17] T. C. E. Cheng, "Optimal assignment of slack due-dates and sequencing of jobs with
random processing times on a single machine," European Journal of Operational
Research, vol. 51, pp. 348-353, 1991.

[18] I. Duenyas and W. J. Hopp, "Quoting customer lead times," Management Science, vol.
41, pp. 43-43, 1995.

[19] S. R. Lawrence, "Estimating flowtimes and setting due-dates in complex production
systems," IIE Transactions (Institute of Industrial Engineers), vol. 27, pp. 657-668, 1995.

[20] H. P. G. van Ooijen and J. W. M. Bertrand, "Economic due-date setting in job-shops
based on routing and workload dependent flow time distribution functions,"
International Journal of Production Economics, vol. 74, pp. 261-268, 2001.

[21] J. R. Rajasekera, M. R. Murr, and K. C. So, "A due-date assignment model for a flow shop
with application in a lightguide cable shop," Journal of Manufacturing Systems, vol. 10,
pp. 1-7, 1991.

[22] A. M. Law and W. D. Kelton, Simulation Modeling and Analysis, 3rd ed. ed.: McGraw-Hill,
2000.

[23] W. D. Kelton, R. P. Sadowski, and D. T.Sturrock, Simulation with Arena, 3rd ed. ed. New
York: McGraw Hill, 2004.

180

[24] C. Azzaro-Pantel, L. Bernal-Haro, P. Baudet, S. Domenech, and L. Pibouleau, "A two-
stage methodology for short-term batch plant scheduling: discrete-event simulation and
genetic algorithm," Computers and Chemical Engineering, vol. 22, pp. 1461-1481, 1998.

[25] H. A. Reijers, van der Aalst, W.M.P., "Short-Term Simulation: Bridging the Gap between
Operational Control and Strategic Decision Making," in IASTED International Conference
- Modeling and Simulation (MS '99), Philadelphia, Pennsylvania - USA, 1999, pp. 417-
421.

[26] K. Rojanapibul and J. Pichitlamken, "Assessing risk in a job schedule: Integrating a
scheduling heuristic and a simulation model to a spreadsheet," Orlando, FL, United
states, 2005, pp. 2136-2140.

[27] G. R. Cates and M. Mollaghasemi, "The project assessment by simulation technique,"
EMJ - Engineering Management Journal, vol. 19, pp. 3-10, 2007.

[28] J. DeKeyrel, C. Geiger, L. Malone, S. Lackey, and M. Mollaghasemi, "Real-Time
Assignment of Due Dates within Workflow Management Systems," in (pre-press)
Industrial Engineering Research Conference, Reno, NV, 2011.

[29] D. M. R. Ferreira and J. J. P. Ferreira, "Developing a reusable workflow engine," Journal
of Systems Architecture, vol. 50, pp. 309-324, 2004.

[30] B. Milainovic, K. Fertalj, and I. Nizetic, "On some problems while writing an engine for
flow control in workflow management software," Dubrovnik, Croatia, 2007, pp. 489-
494.

[31] B. Gladwin and K. Tumay, "Modeling business processes with simulation tools," Buena
Vista, FL, USA, 1994, pp. 114-121.

[32] J. F. Cook, J. W. Rozenblit, A. K. Chacko, R. Martinez, and H. L. Timboe, "Meta-Manager:
A requirements analysis," Journal of Digital Imaging, vol. 12, pp. 186-188, 1999.

[33] J.-S. Bae, S.-C. Jeong, Y. Seo, Y. Kim, and S.-H. Kang, "Integration of workflow
management and simulation," Computers and Industrial Engineering, vol. 37, pp. 203-
206, 1999.

[34] A. Ghanmi, "Modeling and analysis of a Canadian Forces Geomatics division workflow,"
European Journal of Operational Research, vol. 170, pp. 1001-1016, 2006.

[35] Q. Jianhua, J. Zhibin, Z. Guotong, M. Rui, and S. Qiang, "A surgical management
information system driven by workflow," Shanghai, China, 2006, pp. 1014-1018.

181

[36] H. Kayser, J. McIntosh, I. Williamson, and J. Hanson, "New generation well project
management application improves cycle time, workflow efficiency, corporate
compliance, and knowledge sharing (and people like it!)," Amsterdam, Netherlands,
2008, pp. 88-99.

[37] A. Abecker, A. Bernardi, H. Maus, M. Sintek, and C. Wenzel, "Information supply for
business processes: Coupling workflow with document analysis and information
retrieval," Knowledge-Based Systems, vol. 13, pp. 271-284, 2000.

[38] H. A. Reijers, M. Song, and B. Jeong, "Analysis of a collaborative workflow process with
distributed actors," Information Systems Frontiers, vol. 11, pp. 307-322, 2009.

[39] G. Jiang and L. Dong, "Comparative research of modeling methods for workflow
process," Guangzhou, China, 2008, pp. 976-980.

[40] G. Mentzas, C. Halaris, and S. Kavadias, "Modelling business processes with workflow
systems: An evaluation of alternative approaches," International Journal of Information
Management, vol. 21, pp. 123-135, 2001.

[41] V. Gruhn and M. Schneider, "Workflow management based on process model
repositories," Kyoto, Jpn, 1998, pp. [d]379-388.

[42] C. Ames, S. Burleigh, S. Mitchell, and T. Huynh, "Applications of Web-based workflow,"
Big Island, HI, USA, 1998, pp. 79-87.

[43] H. Liang, Q. Wu, and J. Shi, "Research of Web-based workflow management system,"
High Technology Letters, vol. 7, pp. 55-58, 2001.

[44] L. Hong Va, H. Kei Shiu, and W. Lam, "Web-based workflow framework with CORBA,"
Concurrent Engineering Research and Applications, vol. 9, pp. 120-130, 2001.

[45] Y. Jin, Z. Wu, S. Deng, and Z. Yu, "Service-oriented workflow model," Taipei, Taiwan,
2005, pp. 484-488.

[46] D. Wan, Q. Li, and G. Chen, "Research and implementation of workflow interoperability
crossing organizations," Nanjing, China, 2005, pp. 397-402.

[47] P. Muth, J. Weissenfels, M. Gillmann, and G. Weikum, "Integrating light-weight
workflow management systems within existing business environments," Proceedings -
International Conference on Data Engineering, pp. 286-293, 1999.

182

[48] C.-Y. Huang, "Distributed manufacturing execution systems: A workflow perspective,"
Journal of Intelligent Manufacturing, vol. 13, pp. 485-497, 2002.

[49] M. Sayal, F. Casati, U. Dayal, and M.-C. Shan, "Integrating workflow management
systems with business-to-business interaction standards," San Jose, CA, United states,
2002, pp. 287-296.

[50] R. A. Botha and J. H. P. Eloff, "A framework for access control in workflow systems,"
Information Management and Computer Security, vol. 9, pp. 126-133, 2001.

[51] L. Lin, Y.-Z. Zhan, and Y. Nian, "Improved RBAC model based on organization chart,"
Jiangsu Daxue Xuebao (Ziran Kexue Ban) / Journal of Jiangsu University (Natural Science
Edition), vol. 27, pp. 147-150, 2006.

[52] L. Chen and D. Feng, "Study of information security in workflow management system,"
Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, vol. 28, pp. 432-436, 2007.

[53] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification And Regression
Trees. Boca Raton: Chapman & Hall/CRC, 1984.

[54] G. Cybenko, "Approximation by superpositions of a sigmoidal function," Mathematics of
Control, Signals, and Systems, vol. 2, pp. 303-314, 1989.

[55] V. N. Vapnik, "Support vector method," in Proceedings of the 1997 7th International
Conference on Artificial Neural Networks, ICANN'97, Oct 8 - 10 1997. vol. 1327 Lausanne,
Switzerland, 1997, pp. 263-263.

[56] K. P. Bennet and C. Campbell, "Support Vector Machines: Hype or Hallelujah?," SIGKDD
Explorations, vol. 2, pp. 1-13, 2000.

[57] W. Chen, C. Ma, and L. Ma, "Mining the customer credit using hybrid support vector
machine technique," Expert Systems with Applications, vol. 36, pp. 7611-7616, 2009.

[58] C.-C. Chiu, C.-C. Tien, and Y.-C. Chou, "Construction of clustering and classification
models by integrating Fuzzy ART, CART and neural network approaches," Journal of the
Chinese Institute of Industrial Engineers, vol. 22, pp. 171-188, 2005.

[59] D. Meyer, F. Leisch, and K. Hornik, "The support vector machine under test,"
Neurocomputing, vol. 55, pp. 169-186, 2003.

[60] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, "The WEKA
Data Mining Software: An Update," SIGKDD Explorations, vol. 11, 2009.

183

[61] A. Shanker and W. D. Kelton, "Empirical input distributions: an alternative to standard
input distributions in simulation modeling," in Simulation Conference, 1991.
Proceedings., Winter, 1991, pp. 978-985.

[62] E. M. Jewkes and A. S. Alfa, "Empirical discrete distributions in queueing models,"
Marina Del Rey, CA, United states, 2004, pp. 42-45.

[63] J. M. Garrido, Object-oriented discrete-event simulation with Java: a practical
introduction. New York: Kluwer Academic/Plenum Publishers, 2001.

	Improving Throughput and Predictability of High-volume Business Processes Through Embedded Modeling
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	CHAPTER ONE: INTRODUCTION
	Outsourcing
	Flexible Ordering Models
	Context System
	Generalized Problem

	Prior Work
	Research Objectives
	Subsequent Chapters

	CHAPTER TWO: RESEARCH METHODOLOGY
	Step 1 - Describe the Business Process
	Step 2 - Build a Workflow Tool for the Business Process
	Step 3 - Review the Process Data and the Business Process
	Step 4 - Analyze the Instrumentation Data
	Step 5 - Create a Discrete Event Simulation Model
	Step 6 - Create an Embedded Version of DES Model
	Step 7 - Integrate Model and Data Analysis Tools to Workflow Tool
	Step 8 - Run Model in Non-Intrusive Mode
	Step 9 - Validate Predictive Capabilities
	Step 10 - Activate Model for Process Scheduling

	CHAPTER THREE: A HEURISTIC FOR DECOMPOSING TRANSACTION LOGS FROM WORKFLOW SYSTEMS
	Introduction
	Formulation
	Relevant Literature
	Methodology
	Assumptions
	Heuristic Example
	Processing Times

	Summary

	CHAPTER FOUR: PROCESSING PREDICTIONS THROUGH EMBEDDED SIMULATION
	Abstract
	Introduction
	Problem Formulation
	Related Literature
	Due Date Quoting
	Business Process Modeling and Mining

	Necessity Of A Novel Approach
	Necessity of Modeling
	Necessity of Real-world Queuing Behavior
	Argument Summation

	System Under Test
	Test Methodology
	Test Results
	Conclusion And Future Research

	CHAPTER FIVE: PREDICTING BUSINESS PROCESS PERFORMANCE WITH ‘REAL WORLD’ QUEUING
	Introduction
	Prerequisites
	Scope of Problem

	Relevant Literature
	Due Date Quoting
	Predictive use of DES Modeling

	Developmental Details
	Automated Analysis
	Embedded Simulation

	System Under Test
	Test Methodology
	Results
	Conclusions

	CHAPTER SIX: REAL-TIME ASSIGNMENT OF DUE DATES WITHIN WORKFLOW MANAGEMENT SYSTEMS
	Abstract
	Introduction
	Description of the Problem
	Previous Related Work
	Problem Formulation
	Proposed Methodology
	Experimental Study
	Description of WFMS under Study
	Experimental Data

	Discussion of Results
	Summary and Future Work

	CHAPTER SEVEN: RESULTS OF INTEGRATING MACHINE LEARNING AND SIMULATION TO PREDICT DELIVERY TIMES UNDER UNCERTAINTY
	Abstract
	Introduction
	Prerequisites
	Mathematical Formulation

	Related Literature
	Necessity of A Novel Approach
	Necessity of Modeling
	Necessity of Real-world Queuing Behavior
	Argument Summation

	Methodology
	Automated Analysis
	Simulation Components
	Embedded Simulation

	Results
	Discussion
	Conclusions and Future Research

	CHAPTER EIGHT: CONCLUSIONS AND FURTHER RESEARCH
	Practical Implications
	Future Work

	APPENDIX A: LITERATURE REVIEW
	Business Process Modeling
	Workflow
	Data Mining
	Simulation, Modeling And Analysis
	Embedded Modeling And Simulation
	Predictive Use Of DES Modeling
	Due Date Quoting
	Conclusion

	APPENDIX B: PRACTICAL CONSIDERATIONS
	LIST OF REFERENCES

