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ABSTRACT 

Being faster is good. Being predictable is better.  A faithful model of a system, loaded to 

reflect the system’s current state, can then be used to look into the future and predict 

performance.  Building faithful models of processes with high degrees of uncertainty can be 

very challenging, especially where this uncertainty exists in terms of processing times, queuing 

behavior and re-work rates. Within the context of an electronic, multi-tiered workflow 

management system (WFMS) the author builds such a model to endogenously quote due dates.   

A WFMS that manages business objects can be recast as a flexible flow shop in which 

the stations that a job (representing the business object) passes through are known and the 

jobs in the stations queues at any point are known.  All of the other parameters associated with 

the flow shop, including job processing times per station, and station queuing behavior are 

uncertain though there is a significant body of past performance data that might be brought to 

bear.  The objective, in this environment, is to meet the delivery date promised when the job is 

accepted. 

To attack the problem the author develops a novel heuristic algorithm for decomposing 

the WFMS’s event logs exposing non-standard queuing behavior, develops a new simulation 

component to implement that behavior, and assembles a prototypical system to automate the 

required historical analysis and allow for on-demand due date quoting through the use of 

embedded discrete event simulation modeling. 



iv 
 

The developed software components are flexible enough to allow for both the analysis 

of past performance in conjunction with the WFMS’s event logs, and on-demand analysis of 

new jobs entering the system.  Using the proportion of jobs completed within the predicted 

interval as the measure of effectiveness, the author validates the performance of the system 

over six months of historical data and during live operations with both samples achieving the 

90% service level targeted. 
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CHAPTER ONE: INTRODUCTION 

In flush economic times, the elements of excellence that characterize the practice of 

Industrial Engineering -- reducing cycle-times, decreasing variability, and  increasing 

predictability can mean the difference between a growing business and a struggling one.  This is 

a distinction that can be argued by pundits extolling the competing values of flexibility and 

control.  In leaner times, however, the consequences are more Boolean - the business survives, 

or it fails.  In this latter case, the discussion is rarely friendly and usually not between pundits.  It 

is much more likely to be characterized as a morose recrimination between laid-off employees 

and their former employers, or between the company leadership and their investors, or in 

some cases the discussion takes place in front of a judge or an oversight committee.   

If the preceding premise can be accepted, why then would companies not uniformly 

pursue these key performance enhancers provided by rigorous process?  The answer is, of 

course, that these pursuits cost money and are perceived to add to development cost and 

delivery time without returning sufficient value.  In flush times, the argument against process is 

that this money is better used investing in infrastructure, acquiring key resources or intellectual 

property (through research or acquisition), or maintaining a strong debt posture.  In lean times 

it is difficult to justify creating processes that add overhead in the face of shrinking margins, 

falling sales, and imminent layoffs.  Part of this prejudice is based on the historical tools and 

techniques for improving performance often corralled together under the umbrella title of 

"Systems Management".   This set of practices is undeniably successful and is often cited as 
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critical to the US Space Program.  Effective Systems Management implementations added 15% 

to the cost of a program while returning highly managed risk [1].   

When operating in the comfortable embrace of our Nation's generational goal, this 

trade of cost for minimal risk made good sense.  However, after the successful completion of 

the Space Race the 15% premium was deemed too much to bear for programs concerned 

simply with developing the next fighter aircraft, the latest main battle tank, or a new nuclear 

submarine.  Through the conclusion of the Cold War, the Systems Engineering approach 

became ascendant with its slimmer, 10% price point.  Now, with the former Soviet Union 

broken up and the People's Republic of China seemingly more interested in competing in the 

marketplace than on a battlefield even the 10% cost of Systems Engineering often seems 

burdensome [2].  Today there are several lower priced alternatives to Systems Management 

and Systems Engineering, such as Lean Six Sigma which purports to offer sufficient process with 

a more attractive 5% price point. Today, the twin tines of exploding technology and increasing 

economic pressure continue to force out even the narrow safety wedge that rigorous process 

provides.  Corporations now routinely operate on the edge of failure, knowing full well that a 

single slip might precipitate a chain reaction of insolvency litigation that might bankrupt the 

business and disemploy its workforce. The bewildering proliferation of disruptive technologies 

force businesses to shorten their response cycles or be lost in last month's technology.  The 

coincident decline of sales means that businesses rarely have the luxury of deep Research and 

Development budgets to explore leap-frogging technologies as hedges against market 
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disruption.  To reclaim some maneuver room, individuals, corporations and governments have 

all turned to outsourcing as a way to reduce cost and shift risk.  This is a reasonable technique 

but requires one, significant caveat – the right outsourcing provider must be selected.  Selecting 

an unqualified provider may reduce short-term costs but only because risk has been shifted 

such that one has limited control over it. 

Outsourcing 

Outsourcing Source Selection is, in every sense, a critical process – it is vitally important, 

complicated, and expensive. Whether it is a consumer selecting someone to paint their house, 

a multi-billion dollar corporation deciding to whom they will outsource their IT support, or the 

Federal Government choosing a contractor to provide services to the Department of Defense – 

the choice of source directly affects quality, cost and risk.  Source selection is rarely a simple 

decision made by a single person -- it is usually made within the context of some sort of 

business process. 

A given selection process can be either simple or complex.  The simple process costs 

little in terms of time or effort but often selects less than ideal sources.  The complex process is 

often very expensive but can yield a better source selection.  Therefore, balancing the cost of 

the selection process with the benefit of selecting the most qualified source is vital.  The 

complexity of the most suitable process is very much related to the nature of the product being 

selected.  If one is buying 60-watt light bulbs, then a check of price per hour of life is probably 
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sufficient, and requires practically no time to execute.  Seasoned grocery shoppers perform this 

type of source selection all of the time.  However, when the perceived quality of the product is 

important, some other (often non-quantitative) criteria must also be applied.  As price and 

complexity increase, the process becomes even more cumbersome both in terms of complexity 

(more criteria applied), and scale (an outsourcing proposal worth tens of millions [106] of 

dollars can consume the equivalent of thousands of sheets of paper).  And there are both fixed 

and variable costs associated with these types of selection processes that affect how often an 

outsourcing supplier should be selected, but both corporations and governments seem to have 

settled on a minimum of a five year term and as long as ten years to make outsourcing viable 

both in terms of the cost of the competition but also to make the deal worthwhile to the 

suppliers. 

Flexible Ordering Models 

This potential reduction in total cost (cost of selection + cost of performance) has led, in 

recent years, the US Government to move away from traditional, "Full and Open" contract 

awards (i.e., define requirements, develop specification, seek sources, qualify sources, publish a 

Request for Proposal, evaluate proposals received, award contract, execute contract, re- 

evaluate requirements, repeat). Instead, the government has exhibited a preference for IDIQ 

(Indefinite Delivery, Indefinite Quantity) contracts where the sources selected are capable of 

performing across a broad scope of possible tasks.  The corresponding construct in the 



5 
 

commercial market are sometimes termed “Blanket Ordering Agreements” or “Blanket 

Purchase Orders”.  These IDIQ awards may be to a single contractor or to multiple contractors.  

They are typically executed over a span of many years and may have very high funding ceilings 

(some measured in billions [109] of dollars).  Within these contracts (because of the pre-

negotiated rates) the task award process for a specific piece of work is considerably more 

streamlined than the traditional full and open competition.  This can result in a more efficient 

use of the government’s funds with more of the funding available to do work because less is 

expended in the competition process.  An additional benefit to the agency requiring goods or 

services, often cited in their justification for the acquisition, is that the agency can expect that 

their delivery times would be much shorter. 

Though the program that will provide the context and data for this research also 

provides support to the US Government, the techniques and attendant benefits described are 

applicable to any organization that provides, or seeks to provide, broad-scope, outsourcing 

services. 

Context System 

A recent single-award IDIQ contract was awarded to a major defense contractor to 

support world-wide training operations.  The award has a ceiling on the order of $10 billion 

over a 10 year period.  A base task order to that award accounts for approximately 20 percent 
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of the $10 billion ceiling.  The remaining 80 percent of the ceiling is set aside to cover additional 

task orders within the broad scope of work awarded.   

As the senior managing engineer for the recipient of the above award, the author has 

been deeply involved in the development of the extended business processes required to 

support this new contract vehicle.  Central to the IDIQ contract type is a business process to 

handle order management.  This order management process runs across the entire enterprise 

from field customer, through contracting agency, and then through nearly all of the various 

functional and operational sub organizations of the contractor team.  The quantity of dollars 

was mentioned above, but perhaps the more telling metric is the number of individual orders 

that must be processed by the combined government-contractor team.  During the first two 

years of execution, the business processed on the order of 1,200 task orders per year (100 per 

month, or 5 per business day).  If the orders were for books or other packaged consumer goods, 

then an Amazon-like model could have been used.  If the orders had been for cars – allowing 

for some limited buyer configuration, then a model based on the auto industry might have 

been appropriate.  And while there is some limited similarity to the construction industry, the 

price variance for the individual orders is greater than five orders of magnitude. The author has 

been tasked with developing the system to responsively schedule the delivery of the proposal, 

not the product itself. 

From a historical perspective, the resources required to execute the corresponding 

process on the preceding contract amounted to “X” Full Time Equivalents (FTEs).  As the volume 
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of orders has increased by nearly 1,500% one might expect the upper bound on the resources 

required would be on the order of 15X FTEs.  By implementing some of the techniques 

described in the following, the upper limit on resources has remained under 2X FTEs.  Even at 

service industry rates, for an effort of this magnitude this reduction in required resources 

equates to millions [106] of dollars annually.  This process and system for capturing the 

remaining ceiling onto this IDIQ contract will provide the practical backdrop for this research. 

Generalized Problem 

Recast in more general terms and in a broader sense, this process begins with the 

identification of a requirement by a consumer and contracted by his agent through a broker.  It 

ends with the work completed on-time, the final bill submitted, and the broker as well as its 

suppliers paid an amount less than or equal to that proposed.  Each of these orders requires 

considerable effort by both the sales agent and the broker with statements of work and order 

packages being developed and staffed by the sales organization and proposals being generated 

by the broker and his suppliers.  The proposals must be reviewed and, if accepted, activated by 

the agent, and then subcontracted, in many instances, to existing or new suppliers. This flow is 

depicted in the sequence diagram at Figure 1. 
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Figure 1 - UML Event Trace Diagram 

As a complement to the existing project management literature which covers the 

performance segment of the diagram above, the existing supply chain literature that covers the 

Order and Deliveries sections, and the existing finance and accounting literature that covers the 

Invoicing, Billing and Payment sections, the area of focus for this research will be on the order 

and proposal sections of this process, as shown in Figure 2.   

While this diagram is representative of the aforementioned government contracting 

vehicle, it is noteworthy that a custom home builder might draw a similar diagram with the 

consumer being interested in a custom home, the sales agent filling out the order form 

Consumer Sales Agent Broker Service Suppliers

Requirements

Credit Check
Order Sheet

Request(s) for Quote
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Proposal

Notification of price

Funds Transfer
Order

Order(s)

Deliveries

Invoices
Performance
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describing the customer’s desires, and the broker (general contractor) evaluating the order 

(with its suppliers) to determine a final cost and schedule for the home.   

Based on historical data for the test system, these orders must flow (in a steady state, 

steady flow process sense) through the consolidated order and proposal process at a nominal 

rate of five per day.  As a starting point, a notional (without analysis) cycle time of 21 calendar 

days was set.  It is this cycle time that most neatly captures the efficiency of the combined 

Agent-Broker-Supplier process. 

 

Figure 2 - UML Event sub-trace for subject system 

Unfortunately, measures of central tendency tell very little of the story in this situation.  

Lower than required mean cycle times on the order of 10 days obscure the variance, with 

minimum cycle times and maximum cycle times differing by at least two orders of magnitude.  

Traditional, manufacturing-centric, quality-based wisdom suggests that this variation should be 

vigorously stamped out by eliminating the sources of variation.  And, in fact, many of the 

reducible sources have been and continue to be attacked.  However, the single largest 

Sales Agent Broker Service Suppliers

Order Sheet
Request(s) for Quote

Quote(s)
Proposal
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contributing factor to variability is the scope of the order being processed.  Orders are taken 

whose final proposed values vary between hundreds of dollars and tens of millions of dollars.  

Further complicating the management of these order efforts are a significant collection of 

variables including requirement completeness, requirement maturity, mission lead time, task 

complexity, risk (cost, schedule, and performance), task order type (Time and Material or Fixed 

Price), location where work is to be performed, customer priority and many others.  Some of 

these are neatly captured on the order sheet provided by the Sales Agent, but several, most 

notably those respecting requirements, only become visible upon semantic review of the 

supporting documents.   

Now, finally recast as a generalized problem – there is a flexible flow shop in which the 

stations that a job passes through are known and the jobs in the stations queues at any point 

are known.  All of the other parameters associated with the flow shop, including job processing 

times per station, job value, and station queuing behavior are uncertain though there is a 

significant body of past performance data that might be brought to bear.  The objective, in this 

environment, is to meet the delivery date promised when the job is accepted.   

With the continued success of the contractor hanging in the balance, the author 

proposes to perform data collection and analysis to measure the performance of the existing 

business process, build a suitable model of the process as a baseline of comparison, and then 

develop an embedded process model coupled with nondeterministic algorithms to improve 

predictability of this critical process. 
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Prior Work 

Prior to the start of execution of the contract, which employed the author in 2008, the 

procuring government agency approached the author, and asked that the author develop a tool 

to assist the agency in tracking its internal business process for generating and issuing order 

sheets.  The author agreed and developed the initial version of that tool.  While developing this 

tool for the agency to use (though developed at contractor expense and hosted in the 

contractor’s data center) the author recognized the logical benefit of extending the tool to 

encompass the contractor’s emergent business process for preparing and delivering proposals 

in response to the agency’s order sheets.  The generalized nature of the process for developing 

such a system is depicted in Figure 3. 
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Figure 3 - Initial phase of business tracking system development process 

The author recognized the potential power of gathering transactional data as the 

documents were executed through the paired agency-contractor processes.  It was with these 

goals in mind that the author wrote the initial workflow tool and documented the 

corresponding initial business processes.  Central to this workflow management approach was 

the accountability that is enforced by the transactions that are recorded - for each change in 

state of the affected document, the date and time of the change, and the person effecting the 

change are recorded. [3] 
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After the process and tool had been running for six months, a consolidated performance 

review was held.  During that meeting questions were raised by the agency about order 

processing times.  The author was able to answer in objective terms about the mean processing 

times by individual process step and by the category of services provided.  The results, while 

not necessarily pleasant for all involved were both illuminating and beneficial.  To allow greater 

visibility, the author then had this processing time report recast as a multi-segmented bar chart 

(Figure 4) which was made continuously available to all parties within the agency and to the 

contractor.   

 

Figure 4 - Multi-segmented bar chart of processing time 

The positive effects of this transparency were remarkable to both the contractor and 

the customer. Simply measuring what was being done by both the agency and the contractor, 

and making the results continuously visible through a web-based tool drove combined 

processing times (inclusive of agency processing and contractor processing) from 88 days down 

to 48 days without applying any particular pressure to any point of the system.  Overall 
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efficiency was improved as well as customer satisfaction by making the answer to most 

questions regarding status immediately available from any web enabled computer. 

During the subsequent two years, the process and the tool have continued to receive 

updates to streamline processing and allow for additional categorical information to be 

captured on the order sheets.  It is on this now firm foundation that the author proposes to 

build an engine that will allow for accurate prediction of proposal delivery time for new orders.  

The overall process for this research is presented in Figure 5. 

 

Figure 5 - 10-Step system development process 

Research Objectives 

The overall goal of this research is (1) to extend the literature with respect to the use of 

embedded modeling and automated data mining to enhance predictability in uncertain 
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processes while specifically addressing techniques for dealing with realistic tracking and 

performance data through output-ordered queue analysis and empirical queues, (2) develop a 

prototype embedded model combined with automated analysis techniques to improve the 

predictability of a representative, multi-tier business process with dynamic behavior, and (3) 

conduct a feasibility study of these techniques by deploying the prototype into a production 

environment to validate the benefits of the combined process on predictability.  At the 

conclusion of the research, a proficient practitioner should be able to apply this approach to 

similar multi-tiered, electronic workflow management systems.  For the researcher, the non-

standard queuing components, both for analysis and simulation, should provide fertile ground 

for the exploration of system optimizations outside the well studied First Come-First Served 

(FCFS) queuing policy. 

Subsequent Chapters 

As the development of the theoretical and practical portions of this research have been 

intertwined with the author’s professional pursuits and portions of the results have already 

been published, accepted for publication, or submitted for publication, an alternative 

organization of the remaining chapters is utilized. Chapter Two describes in detail the proposed 

10-step process presented in Figure 5.  Chapter Three describes the proposed heuristic 

algorithm developed to decompose the event logs from the test workflow management system 

(WFMS).  Chapter Four contains a published paper in which the author begins the logical 
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argument for a new approach to Due Date Quoting in complex systems, particularly those that 

do not use an FCFS queuing policy.  This chapter focuses on Steps 4 and 5 of the 10-step 

process.  Chapter Five contains a paper, currently in review for presentation, that presents the 

development of the prototype implementation of this new approach (Steps 6 and 7) and the 

initial predictive results.  Chapter Six contains a paper, accepted for publication, which extends 

the results from Chapter Five by incorporating an error distribution into the predictive process 

against historical workflow orders.  Chapter Seven is a paper, submitted for publication review, 

which details the results of the predictive prototype in setting accurate due dates for a 

production order processing system – completing Steps 8, 9 and 10.  Conclusions are drawn and 

suggested areas for further research enumerated in Chapter Eight.  The gap in the existing 

literature is bounded in the extended literature review in Appendix A.  A listing of practical 

considerations discovered while following the proposed 10-step methodology is provided at 

Appendix B. 

The reader should note that Chapters Four, Five, Six, and Seven are written as 

standalone papers and included in their entirety.   As a consequence, certain material in these 

chapters (i.e., mathematical formulations, descriptions of the test system, etc.) are redundant. 
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CHAPTER TWO: RESEARCH METHODOLOGY 

The overall goals of this research are (1) to extend the literature with respect to the use 

of embedded modeling and automated data mining to enhance predictability in uncertain 

processes while specifically addressing techniques for dealing with realistic tracking and 

performance data through output-ordered queue analysis and empirical queues, (2) develop a 

prototype embedded model combined with automated analysis techniques to improve the 

predictability of a representative, multi-tier business process with dynamic behavior, and (3) 

conduct a feasibility study of these techniques by deploying the prototype into a production 

environment to validate the benefits of the combined process on predictability.   To achieve 

these goals the author executes the tasks summarized in the 10-step flow diagram in Figure 6, 

provides the graphical outline for the remainder of this chapter. 

 

Figure 6 - Embedded model development process 



18 
 

At the end of this 10-step process, the author expects to have a system capable of 

answering the specific question: “Given the descriptive attributes of an object and the current 

state of the business process system, when will the object exit the system with 90% 

confidence?” Though the question is stated in terms of a 90% service level, the resulting 

prototype could as easily be tuned for other services levels.  Throughout this chapter, a series 

of graphics highlight the portions of the system under study or development and their 

interrelationships.  This series culminates with a pictorial representation of a system the author 

offers that is capable of answering the question above. 

Step 1 - Describe the Business Process 

In order to begin the process described in Figure 6, the practitioner must first capture 

the business process in question.  Depending on the circumstance, the practitioner will have 

some degree of familiarity with the process to be captured.  This familiarity will range from 

highly familiar in the case of an in-house practitioner to limited familiarity for a consulting 

practitioner.  In the case of the in-house practitioner, one should be careful not to assume that 

tenure equates to understanding – 15 years of requisitioning light bulbs does not qualify the 

practitioner as an expert in the Supply Chain functions of ordering, receiving, and stocking light 

bulbs.  Similarly problematic, the consulting practitioner should avoid forcing the process now 

under consideration into a previous consultancy’s pattern as a shortcut to developing the 

process documentation required. 
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There are several different representations that can successfully be used to capture 

business processes and much literature exists citing the virtues of one scheme over another.  

Any representation that can capture the behavior of the process in question is sufficient.  This 

author is primarily concerned with capturing the process as efficiently and unobtrusively as 

possible.  To that end, a sufficient modeling paradigm that the practitioner is well experienced 

with is as important as any other concern in selecting a representation.  As this author is most 

experienced with an Object-Actor-Action (OAA) framework, it is that framework that will be 

used for capturing processes and their behavior throughout the research. 

An OAA diagram is analogous to a Unified Modeling Language (UML) Activity Diagram 

combined with a UML Use Case diagram to indicate the actions taken on an object but also 

annotating the user (or user class) responsible for the action.  It also captures status changes to 

the object as the process progresses.  The opening phrase of the subject process is provided as 

a brief example in Figure 7.  In this example, the object that flows through the workflow system 

is an “Order Sheet”. 
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Figure 7 - Sample Object-Actor-Action diagram 

The author has found that an appreciation for the overall process is useful before 

delving into the details of the individual steps in the process.  This activity of capturing the top-

level business process is often chaotic as complex organizations may not have an internally 

consistent view of how they conduct their own business.  This tends to lead to confusion and 

often contention among the functional and operational Subject Matter Experts (SMEs) gathered 

to assemble this artifact.  When complete, this top-level view of the process quickly highlights 

the interpersonal and inter-organizational interfaces.  Perhaps of even greater value is the 

highlighting of significant gaps (lack of interface) between organizational elements.  These gaps 

usually become obvious as places where the diagram is discontinuous. 

As best stated, “The greatest leverage in architecting is at the interfaces” [4].  The things 

that traverse these interfaces are the objects that the process functions upon - usually 

documents (whether paper or electronic) in the business process context.  The enumeration of 

the interfaces will usually provide the statuses applied to the objects (usually written in the past 
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tense, e.g. “Supplier Quotation(s) Received”). Similarly, the people processing the objects 

between the interface steps are the actors.  

It is these interfaces that must be clearly understood when capturing the attributes of 

the object(s) that are processed.  With a draft top-level process view established, the individual 

actors in the process can then be efficiently interviewed to confirm the object attributes that 

they require in performing their step(s) in the process.  It is important not to lose sight of the 

individual actor’s actual requirements when attempting to consolidate their collective inputs as 

this is a sure way to end up with not only disenfranchised users but potentially uncontrolled 

portions of the business process as well [5]. 

Along with the attributes of the objects, the responsibility for managing the objects 

must also be captured.  For any non-trivial business process executed by a complex 

organization there will be some separation of duties and responsibilities which will be referred 

as a role in this context and denotes authority or permission across all instances of various 

object types.  Disentangling these ownership/authority boundaries is a challenging practice, the 

consequences of which are noted by Larsen and Klischewski [6].  As the resources (number of 

actors) applied to a process increase it is sometimes advantageous to associate particular users 

with particular objects (a sales representative with a particular customer, etc.).  This is 

described as an assignment and would denote authority or permission across the subset of 

object instances to which the actor is assigned. With these definitions, the practitioner can then 

determine the object permissions by role and/or assignment.  The author prefers to use the 
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CRUD method [7] to catalog which users or user classes have permission to Create, Read, 

Update, and Delete instances of objects in the system though other methodologies could 

certainly be employed. 

While all of the above activities may seem to be focused in the virtual world, it is critical 

that the corresponding physical portions of the process are not overlooked.  During the 

interviews the practitioner must elicit all of the actions (real or virtual) required after each step 

in the process – from sending a notification email to physically stamping a paper form, each of 

the actions must be cataloged so that the potential of leveraging automation systems 

(Enterprise Resource Planning, etc.) can be explored. 

The final step in this cycle of capturing the business process is to consolidate the data 

collected and review it with the collected set of actors. 

Step 2 - Build a Workflow Tool for the Business Process 

After the process under study is well understood and well described the next step is to 

build an information system to facilitate the measurement of that process.  To construct such a 

system three phases organize the task manageably: database design, application development, 

and report creation.  In this context “Database Design” encompasses both the logical design of 

the database (its abstract schema) as well as the instantiation of that abstract schema as a 

concrete schema against a particular database engine.  Similarly “Application Development” 

encompasses evolution of the architectural elements (logical, security, network, and physical), 
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which informs the technology selection, which underpins the actual encoding of logic in the 

specified language.  And while listed last, the “Report Creation” phase must remain fixed as a 

design driver throughout the database and application development processes – ensuring the 

database design and the application developed readily support the required reports. 

Define the schema to contain objects – during this portion of the logical database design 

process the practitioner creates a table for each distinct object type discovered within the 

business process elicitation.  In addition to a unique, system generated, primary key for each 

object, all of the attributes associated with the object are encoded either within the table itself 

or within companion tables (when the objects and attributes form a “one to many” 

relationship).  Care must be taken to thoughtfully establish which attributes are required and 

which are optional.  This partitioning may change as the object changes state. For example, a 

new order request object may simply need a customer and a sales representative (in addition 

to its unique key value, and its creation date – both system generated) to allow object creation, 

but will certainly require that additional attributes are populated before it can be submitted for 

bid processing.   

Define schema to capture transactions – this extension of the database design process 

extends the object schema.  The object schema alone simply reflects the state of the system at 

the current time but as a “workflow” system, it must account for time as well.  Transactional 

tables are a means of reflecting time (in this usage – history) within a database.  At their 

simplest, transactional tables provide a framework to record the identification (ID) of an object, 
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the date of the transaction, which actor effected the change in state, and the new (or old) 

status of the object.  Depending on the network and physical implementation of the database 

and application it may be desirable to disambiguate the order of transactions with a system 

generated unique key on the transactions as well.   

Define schema to identify actors – this portion of the database design defines the 

structure that will represent all of the entities that can change the status of an object or who 

are interested in such changes.  A user key, user name, and email address are required in such a 

schema though many other attributes are likely to be desired such as a phone number (or 

numbers), physical addresses, company affiliations, and so on. 

Define schema to identify actions – if the practitioner has been thorough in 

understanding the business process, this schema should be simple to define and the data to 

populate simple to create.  In the author’s implementation, the table that implements the 

action schema has three fields: a unique, numeric ID, and abbreviation for the state of the 

object, and a long description of the object state.  These states, or statuses, are simply the 

enumeration of the steps in the business process as elicited in step 1.  Depending on the 

number of unique object types to be handled in a system it may be possible to use a single 

table to reflect the statuses of multiple object types, though this small efficiency is likely 

outweighed by the added complexity of keeping the statuses of the various objects out of 

conflict. 
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Define schema to support security – this step in designing the database is simple to 

overlook, especially for a small implementation, but failure to adequately address this aspect of 

the overall system within the database schema will cause the application portion of the system 

to be much more cumbersome to develop and maintain than necessary.  As described in step 1 

above, security can be based on roles, assignments, or both.  The simplicity of implementation 

for purely Role-Based Access Control (RBAC) scheme can lead to unauthorized access when 

users are promoted to overcome RBAC limitations [8].  There are several sufficient patterns that 

can be used to provide a security structure.  The criteria involved in choosing an appropriate 

pattern are associated with the number of actors using the system, the availability of an 

existing user directory external to the application, the geographic and organizational diversity 

of the collection of actors, and others.  Successful patterns may, based on the criteria above, 

range from a local user table with application enforced credential policies to enterprise-wide 

directories containing both internal and external actors.  As the security aspects of a well 

designed system tend to pervade the implementation, care should be taken to account for the 

potential growth of the process – a process that today might run comfortably with a dozen 

actors in one warehouse might be vastly inadequate when the process scales to run with 

hundreds of employees located at several geographically dispersed locations. 

Normalize schema – as a routine part of any database design, after an initial, logical 

database schema has been developed it should be normalized to minimize data redundancy (a 

seasoned practitioner may perform this task sufficiently during the development of the 
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individual portions of the schema above such that this step is simply a validation of 

normalization).  In addition to the database-centric benefits of normalization, the author finds 

the hands-on process of normalizing the schema to be of value in pre-defining data to be 

entered – thus minimizing the quantity of free text entry required (or allowed) in the 

application. 

With the database schema logically defined and implemented against a database 

engine, the next task is to define the application environment that will implement both the 

business logic of the business process and controlled access, in accordance with the CRUD 

matrix, to the object store.  As the strategic and tactical requirements, corporate security 

strictures, and customer infrastructure details that informed the larger architectural 

development are beyond the scope of this research, a short summary of the salient points is 

appropriate – external users should have the same experience as internal, no software beyond 

a web-browser could be assumed on the client machines, and thousands of users should be 

expected across (nearly) every time zone.  These points lead quickly to a web based solution 

with some form of server-side scripting.   

Of the many choices available (Java Server Pages [JSP], Active Server Pages [ASP], and 

PHP: Hypertext Preprocessor [PHP] to name a few), PHP was selected as the server side 

language for this project based on the author’s familiarity with it.  It was coupled with 

Microsoft’s SQL Server as the database engine – similarly, any database engine capable of 

handling the required transactional loading could be used.  Both internal and external users 
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make use of Microsoft’s Internet Explorer as their web browser which serendipitously 

shortened the development effort by obviating multi-browser integration issues.  These tools 

were required to interact with the Enterprise user directory necessitating the creation and 

management of internal and external user accounts in a single data store.   

With the above architectural decisions made, the next task was the creation of the web 

application itself.  A cursory review of the requirements of such an application demands a 

consolidated list of objects, a view to add an object, one to edit an existing object and a read-

only view.  The practitioner is then faced with the choice of hand coding the pages or using a 

third party tool to generate the pages described above.  Based on perceived framework 

flexibility the author selected a code generation tool that produced PHP pages based on the 

already defined database schema.  The choice to use a code generator saved many hours of 

HTML and PHP development, however the constraints of placing the workflow code within the 

tool’s required framework may have outweighed the time savings associated with the 

automatic page generation.  The tool selected was eventually extended by its author to support 

role-based security based on a local user table.  This capability was found to be insufficient and 

was subsequently replaced by a hybrid integration combining locally defined roles and 

assignments in conjunction with enterprise user and credential management.  All of the 

available code generation tools reviewed by the author worked directly on the object tables, 

none of them supported any sort of automation to facilitate transaction or audit history 

creation – these capabilities must be added by the practitioner. 
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As the application is being developed it is appropriate to begin to formulate the queries 

and display layouts for an initial set of reports. Some reports are obvious such as count of 

objects by current status, objects by actor assignment, and objects by creator.  Other reports 

are more subtle and might provide insight into things like the time spent by objects in various 

statuses.   

Thoughtfully considering the perspective of the various actors may lead to additional 

aggregating attributes.  As an example, each of the actors in Figure 7 is a distinct customer from 

the broker’s perspective, and each would likely desire a differing aggregation.  The Sales Agent 

would like to see orders for all of his clients, while the Business Manager might want to see 

orders by product, or Sales Agent, or payment terms.  There are cases where the attributes will 

be hierarchical – each of the Account Representatives works for only one Account Manager.  In 

other instances, the attributes will not align with organizational boundaries as in the case 

where clients may work with multiple Account Representatives for different products.  The key 

is to remain flexible to differing reporting (especially aggregation) requirements depending on 

the customer’s perspective. 

The WFMS that serves as the test bed for this research implements all of the 

architectural and design consideration described in this section.  Critical to the analysis step 

(Step 4), the test WFMS implements transaction logs that are written out to the WFMS 

repository (a Microsoft SQL Server, in this case).  These transaction logs record the arrival times 

and locations for each order as it transits the system. 
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Step 3 - Review the Process Data and the Business Process 

 

Figure 8 - Phase 1 of the system development 

With the business process in question well defined, documented and communicated 

and the supporting tool developed and tested it is appropriate to run the workflow tool in a 

production environment.  The reader should note the feedback arrows from Step 3 back to 

Steps 1 and 2.  Irrespective of the time and effort invested in performing Steps 1 and 2, there 

will be issues that arise when the process/tool combination is put into production.   

The key to this third step is to look at the data frequently, and talk to the users 

frequently.  The point of doing so is to make sure the system, the data and reality match, if they 

do not the practitioner must modify the process, the tool, or both until they do. 

As a result of this step, the author implemented several changes but as examples, 

consider the following three: (1) a facility to require actors to enter comments when an object 

is moved backwards in the workflow (or more bluntly, rejected), (2) several additional reports 
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exposing action times, and (3) a mechanism to capture (in an auditable sense) the quality 

control checks performed on the object before its final delivery. 

In the case of the subject system Steps 1, 2, and 3 took 18 months to bring the 

processes and tools to the current state where they have now been operating for an additional 

18 months. 

Step 4 - Analyze the Instrumentation Data 

In preparation for building the Discrete Event Simulation (DES) models for Step 5 and 

Step 6, the data collected by the system is mapped to typical DES data sets, e.g., Inter-arrival 

Times (IATs), Processing times, etc.  Depending on design decisions in Steps 2 and 3, this task 

may be straightforward or complicated. Figure 9 provides a pictorial representation of this step 

and its two immediate successors.  

 

Figure 9 - Phase 2 of the system development 
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In the case of the test system, the raw IATs are trivial to extract from the transactional 

tables; however, extracting the net IATs (discounting nights, weekends and holidays) is more 

challenging since processing can take place at anytime but as a practical matter largely occurs 

between 7 AM and 7 PM in the Eastern US time zone and Monday through Friday.  These net 

IATs are required to adequately create additional objects in the DES behind the object in 

question when there are multiple processing stations across multiple process steps such that 

jobs may overtake others during processing.  The complexities of this relationship are described 

mathematically in Chapter Three. 

Similarly, and as a consequence of “Practical Consideration #2” (APPENDIX B: PRACTICAL 

CONSIDERATIONS), basic workflow process events (when an object reaches a station’s queue, 

and when it leaves the station) have to be decomposed to distinguish between queuing time 

and processing time. Since the actual start of processing is not captured and the queuing 

behavior is not necessarily First in First out (FIFO) or Last in First out (LIFO), but somewhat 

arbitrary, the decomposition requires a non-trivial approach and some effort to design and 

implement.  The description of this portion of the process follows in Chapter Four. 

As a note, the author has chosen to implement the analytical and modeling aspects of 

the subject system in Java.  The reasons for this selection are more practical than theoretical as 

there are several existing DES frameworks written in Java, and the author is reasonably 

comfortable coding in Java.  A practitioner could as easily choose to implement the analytical 
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and modeling aspects in another language as there is no elements of the solution that require 

Java or even an Object Oriented programming language. 

These processing times are a critical input to the embedded modeling process that will 

generate a predicted delivery schedule for the object. Analysis of the data  also aids in 

determining how jobs are handled at the various processing stations – an initial analysis of a 

sample of data for  one step of the process indicated that jobs were being handled in a 

predominantly LIFO fashion for that step.  The complete results of this analysis are portrayed in 

Figure 17, in Chapter Four. 

The final activity in this step is to automate the analyses performed above so that the 

analyses can be orchestrated to run as required by the workflow system.  To keep the 

development manageable, the author also coded these development tools in Java.   The manual 

analysis of the target system consumed two weeks and the re-creation of the analytical process 

as an automated task took several more.   

For steps in the process that exhibit readily identifiable queuing behavior, the analysis 

and automation will be more straightforward, however, the real-world nature of the process 

may lead to inconsistent behavior which would be considerably more challenging to model, 

especially in an automated sense.  
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Step 5 - Create a Discrete Event Simulation Model 

With the  Object-Actor-Action diagrams created in step 1 and validated by the end of 

step 3, and armed with IAT distributions, queue behaviors, and processing times extracted 

during step 4, a DES model can be readily encoded in a discrete event simulation tool (Arena, 

ProModel, etc.) for visualization, verification and validation.  The only exception to this may be 

queuing behavior if the completed analysis from step 4 indicates non-standard behavior across 

the stations.  In this case, it might be necessary to build modules for the DES framework to 

provide this behavior (see Chapter Three).  After the model is built, operational validity will be 

established using historical data validation [9]. In this method, arrivals, processing times, and 

queuing behavior taken from the actual system will be used to stimulate the model. To 

determine this validity objectively, confidence intervals will be computed for both the historical 

and model generated cycle times, and these will be compared for statistically significant 

differences between the means [10]. 

It will be important to capture the entities and all of their attributes so that they may be 

fed into the embedded model from the upcoming step 6 to ensure the model behavior is 

consistent irrespective of the random variate seed behavior between the standalone DES 

environment and the Java-based DES framework. If the practitioner simply wants to conduct 

off-line simulations of the workflow process, he might stop here. 
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Step 6 - Create an Embedded Version of DES Model 

In order for the DES model to be used to its greatest extent, it must remain 

synchronized with the production system.  In this case re-coding the model, or alternatively 

building the initial model within a toolset that allows for stand-alone and embedded operation, 

is required.  With the fully defined and validated behavior of the DES model from step 5 (as well 

as the full recording of its entities and attributes), the author coded a DES model using JSIM 

(one of several available Java DES frameworks) and re-ran the verification and validation with 

the recorded data from step 5 using the methodology previously described.  At this point the 

Java-based, automated, analytical tools and the Java-based DES model will be ready for 

integration to the workflow system developed in step 2. 

Step 7 - Integrate Model and Data Analysis Tools to Workflow Tool 

As represented in Figure 10, the data required to update the machine learning process, 

pre-load the queues of the DES, and inform new object creation within the DES are all stored in 

the database that provides persistence for the workflow system.  As a practical consequence, 

the integration of both the data analysis tools and the embedded DES model largely devolve to 

(1) connecting these items to the database, and (2) providing some mechanism to initiate their 

functions programmatically.   
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More specifically, the author will integrate the data analysis tools from step 4 with the 

transactional data from the workflow system to allow on-the-fly regeneration of the best 

machine learning model (described in Step 4) and provide updated IAT and attribute 

distributions.  This portion of the process is required when a new object arrives, though it is not 

dependent on the object itself and so can be called without parameters.  With an updated 

machine learning model the next task is to assign processing times to the newly arrived object 

based on its attributes. Since this task is clearly dependent on the new object a mechanism is 

required that refers the analysis to the object in question. The predicted processing times 

output from the machine learning model for the object will be stored with the object in the 

database.  The penultimate task in the integration is to start the DES model with the current 

workflow system state loaded, the new object as the next arrival, and subsequent, synthetic 

objects created behind the object in question based on previous system behavior.  To achieve 

this effect, the system need only call the DES model with the object in question being specified, 

and then only by reference.  The final task is to output the predicted exit times for the object 

from each step in the business process to some level of prediction confidence.  This output 

should be stored in the database with the object. 
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Figure 10 - Phase 3 of the system development 

The details of executing steps 6 and 7 for the prototype are provided in Chapter Four. 

Step 8 - Run Model in Non-Intrusive Mode 

With the predictive subsystem integrated and tested in a development environment, 

what follows is the mundane migration of the prediction subsystem into the production 

environment.  In a well designed and implemented development control system, this should 

require little more than the installation of the code on the production servers and modification 

of either an environment variable or initialization script to point at the production database 

instead of the development instance. 
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Figure 11 - Phase 4 of the system development 

Until the quality of prediction versus actual performance has been validated, it is wise to 

keep the predictions out of view of the actors (as depicted in Figure 11) in the system (1) to 

avoid poor first impressions, and (2) to keep from skewing the results by providing intermediate 

target dates that are either too aggressive or too conservative (though this becomes an 

interesting capability to introduce in the final solution, aiming for an aggressive 80% confidence 

target while advertising to meet a conservative 90% confidence goal). 

Step 9 - Validate Predictive Capabilities 

After the predictive subsystem has been exercised in the production environment for a 

period of time, the actual intermediate and final dates for the objects processed in that time 

can be compared to the predicted dates generated by the prediction subsystem.  Given the 
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throughput observed on the subject system, a period of 30 calendar days (22 business days) 

should provide approximately 100 new objects.  From a practical standpoint the actual dates 

will be compared to the prediction intervals constructed for each object and will be deemed 

acceptable if, in fact, the actual dates fall within the intervals at the rate specified, e.g. 90 of 

100 dates predicted fall within the 90% confidence prediction intervals. 

Inadequacies at the individual step level, if discovered, may need to be addressed within 

the model (queuing behavior in particular) or within the analysis processes that build the 

machine learning model or output the processing times.  Depending on the scope of the 

changes required to achieve acceptable performance, it may be necessary to return as far back 

as step 4 and cycle through some or all of the intervening Steps before re-executing step 8.  The 

final results of steps 8 and 9 for the prototype are included in Chapter Five. 

Step 10 - Activate Model for Process Scheduling 

Once predictions match measured performance as described above, the workflow 

system will be reconfigured to publish the output of the prediction subsystem to the 

production scheduling table(s) as shown in Figure 12.  With these promised delivery dates 

available in the system we can, with customer concurrence, switch our performance based 

metrics away from the existing gross measures of central tendency to measuring individual 

performance against discrete orders. 
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Figure 12 - Phase 5 of the system development 

The following chapters will catalog the results of executing the 10-step process 

described in this section. 
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CHAPTER THREE:  A HEURISTIC FOR DECOMPOSING TRANSACTION LOGS FROM 
WORKFLOW SYSTEMS 

Introduction 

The execution of Step 4 of the 10-step process described in Chapter Two brought to 

light the need for a non-deterministic method of decomposing the collection of transactions 

from the WFMS’s logs into two vectors of observations – one representing the processing times 

for the jobs processed at a given station, and the other representing the queuing behavior of 

that station.  This chapter describes the author’s solution to this problem. 

Formulation 

To summarize the problem at-hand, consider the following formulation: 

ni: number of operations for job i 

pij: processing time for job i at step j in its flow shop routing 

wij: waiting time for job i at step j 

fij: flow time for job i at step j, fij = pij + wij 

fi: flow time for job i 

ei: margin of error associated with job i, ei=di -     

ri: release date for job i, i.e., the date that job i enters the WFMS 

   : quoted due date for job i,              
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Refactoring this formulation as shown in Equation 3.1 allows for segregation of data 

elements that are required for due date quoting based on the source and uncertainty of the 

data.  The release date is given.  The processing times are drawn for an appropriate 

distribution.  The error may be assumed or estimated from historical performance, and the 

waiting times are related to the number of jobs in queue and queuing behavior. 

           
  
        

  
              (3.1) 

Equation 3.2 summarizes the salient difficulty in predicting turn-around times (TATs) in a 

system with non-standard queuing behavior. 

        
  
                          .       (3.2) 

Where IAT is the inter-arrival time for jobs that appear after the arrival of job i, and 

                   are the vectors of processing times, queuing behaviors, and rework rates 

respectively for the other jobs in the system.  Note that the arrival process need not be 

stationary, and in fact, is not in the subject system [11]. 

Relevant Literature 

There is generally a significant quantity of attribute data associated with the objects 

entering and flowing through a WFMS.   van der Aalst, Reijers et al. make the point that modern 

information systems (and specifically workflow systems) capture much of the necessary data to 

perform data mining on the process information, which they termed “process mining” without 
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having to resort to external data collection though there have been few real-world 

exploitations of this capability captured in the literature [12].    Rozinat, Wynn et al. proposed 

to extend this concept through the use of a pair of open source tools -- YAWL (Yet Another 

Workflow Language) and ProM (Process Miner). They described the potentially tight coupling 

theoretically possible between a workflow system and a simulation model that represents that 

system.  This coupling would be accomplished by describing the workflow system in YAWL, 

running the resultant workflow description through the YAWL runtime, and then developing 

plug-ins for ProM that would (1) allow it to ingest the system design and (2) interpret the 

transaction and state information.  Rozinat successfully created an example of this coupling 

using a simple credit processing workflow.  It is important to note Rozinat’s conclusion -- that 

while the concept seems valid, the creation of a generalized process for achieving coupling was 

not yet obtainable [13].  In addition to the limitations imposed by the developmental nature of 

Rozinat’s plug-ins for reading YAWL information into ProM, there are also limitations based on 

ProM itself in that there currently are not facilities to support the generalized queues that are 

necessary to support certain real-world processes such as the one under consideration. 

Methodology 

The author’s proposed solution to determining Wi is then to (1) construct an embedded 

DES model, (2) determine the parameters for that model applicable at the point in time where 

job i enters the system, (3) determine the properties of job i necessary for representation 



43 
 

within the model, and (4) to repeatedly execute the model until an acceptable margin of error 

on predicting its time in system can be achieved.  In order to effect this methodology, however, 

the vectors             must be determined.   

Assumptions 

The proposed methodology is developed based on the following list of assumptions: (1) 

there is exactly one processor at each step, (2) there is no forced idle time at the processors at 

the steps, and (3) the resultant processing times for each step may be represented using a 

distribution function. 

Queuing Behavior 

The author’s formulation for attacking     from Equation 3.2 is, conceptually, similar to 

executing a discrete event simulation (DES) in reverse.  When conducting a discrete event 

simulation, the release time for a job, the processing time for a job, and the queuing policy for a 

station are specified as inputs (either deterministically or stochastically), and the output for the 

job is the departure time from the station. The flow time fij for job i at station j (or cycle time) is 

the difference between the departure time and the release time (see Figure 13).   
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Figure 13 - Normal inputs and output from a DES Server 

In the case where the transactional logs from the WFMS are given, however, the release 

and flow times are known and the result of the heuristic analysis are the processing time for the 

job, and the queuing behavior of the station (see Figure 14).   

 

Figure 14 - Revised inputs and outputs available from virtual DES Server 
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departure time.  Executing this process one job at a time, it is possible to determine the queue 

insertion location at the station, and the accumulated processing time for the job.  

Heuristic Example 

As an example of this process, consider the following sequence:  Job 1, which arrives at 

Server j at time 0 and is known to have departed at time = 20, finds Server j empty and idle; 

since the server is empty and idle, Job 1 is immediately placed in service (location = 0, queue 

depth = 0) and begins to accumulate processing time.  Job 2 (arrives at time = 5, will depart at 

time = 21) arrives at Server j; since the server is not idle the departure time of the newly arrived 

job is compared to that of the job in service; since Job 2 will depart after Job 1, it is placed in 

queue; since the queue is empty, Job 2 is queued at location = 1, queue depth =1.  Job 3 (arrives 

at time = 10, will depart at time = 30) arrives at Server j; since Job1 is still in service, departure 

times for Jobs 1 and 3 are compared; Job 3 will depart after Job 1, so Job 3 is queued; since Job 

3 will depart after Job 2, it is queued after Job 2 at location 2 and queue depth = 2.  Job 4 

(arrives at time = 15, will depart at time = 25) arrives at Server j; since its departure time is after 

Job 1 (still in service), Job 4 will be queued; since Job 4 will depart after Job 2 and before Job 3, 

it is queued at location = 2, queue depth = 3 which is recorded in as ‘2/3’.  Executing this 

scenario, and stopping at time = 15 is represented graphically in Figure 15. 



46 
 

 

Figure 15 - Queue position determination 

In pseudo-code, the virtual Server performs the following top-level tasks: 

Read previous 180 days of Transactions for Server; 

Create Arrival Events and Departure Events based on  

       transactions for completed jobs; 

loop through events in time order {  

   if (arrival event) Push(event); 

   else if (departure event) Pop(event); 

} 

 

The pseudo-code above references 180 days of transactions as the look-back window 

which is appropriate in the author’s business environment.  Depending on the circumstances of 

the practitioner’s environment the look-back window might be appropriately specified in terms 

of days, or in terms of a number of transactions. 
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The virtual Server Push method performs the following: 

new_job = get_job_from_event(event); 

if (server idle)  

   in_progress_job = new_job;  

   new_job.arrival_location = 0; 

   new_job.arrival_queue_depth = 0; 

else (server busy) 

   if (new_job.departure < in_progress_job.departure) 

      in_progress_job.add_processing_time_to_date(); 

      queue.add(in_progress_job); 

      in_progress_job = new_job; 

      new_job.arrival_location = 0; 

      new_job.arrival_queue_depth = queue.size(); 

   else  

      queue.add(new_job); 

      new_job.arrival_location = queue.find(new_job); 

      new_job.arrival_queue_depth = queue.size(); 

 

The corresponding virtual Server Pop method performs the following: 

in_progress_job.add_processing_time_to_date(); 

if (queue not empty) 

   in_progress_job = queue.next(); 

else 

   server idle = true; 

 

The output of this function, which is accomplished by the “Push” method of the virtual 

server, is three parameters per station specifying the fraction of jobs that preempt, queue at 

the head-of-line, and queue at the tail-of-line.  Jobs that do not meet any of the three criteria 

are assumed to be randomly placed in the queue between head-of-line and tail-of-line. 
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Processing Times 

The second output of the process is the determination of the processing time for a job i 

at a particular Server j.  And with these values in hand, the author can then fit the processing 

times with a statistical distribution.  This statistical distribution addresses, in conjunction with 

the server simulation component, the     component from Equation 3.2.     

 

Figure 16 - Processing time determination 

During the manual analysis process of step 4, the author used Rockwell Software’s Input 

Analyzer (a component of their Arena product suite) to fit the processing time distributions and 

assess their “goodness of fit”.   

Summary 

At the end of this process, the author faithfully captured the queuing behavior and 

processing time distributions which were then used as parameters in the stand-alone DES 

model for Step 5 which is described in Chapter Four.  In Step 7, the entire analysis process 
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(extraction of queuing behavior, segregation of processing times, distribution fitting, goodness 

of fit testing, and time-based exponential smoothing) was automated through code written in 

Java.  The use of this analytical process is described, along with the model output in Chapters 

Five and Six. 
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CHAPTER FOUR: PROCESSING PREDICTIONS THROUGH EMBEDDED SIMULATION 

The following material was presented at the 2010 Software Engineering and 

Applications conference held by the International Association of Scientific and Technology for 

Development (IASTED), and published in the conference proceedings [11].  

Abstract 

Being faster is good. Being predictable is better.  A faithful model of a system, loaded to 

reflect the actual system’s state at a given point in time, can then be used to look into the 

future and predict performance.  Building faithful models of processes with high degrees of 

uncertainty can be very challenging, especially where this uncertainty exists both in terms of 

processing times, and queuing behavior. The author will discuss the potential benefits of using a 

discrete event simulation to quote due-dates in a business process/work flow environment. 

Introduction 

In flush economic times the elements of excellence that characterize the practice of 

Industrial Engineering -- reducing cycle-times, decreasing variability, and  increasing 

predictability can mean the difference between a growing business and a struggling one. In 

leaner times the consequences are more Boolean - the business survives, or it fails. The benefits 

of such pursuits are recognized. And these pursuits are common, though not ubiquitous in 
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manufacturing but appear much less frequently in human-centric business processes.  Perhaps 

the reason for this discrepancy lies in the difficulty of capturing the seemingly capricious 

behavior of the humans in such a setting.  In non-trivially complex business systems, the 

humans that perform functions within the business process do so with some measure of 

autonomy.  This autonomy can lead to behavior, especially in the order that queued tasks are 

handled, that is difficult to capture and therefore to analyze. In this chapter the author asserts 

that a discrete event simulation (DES) model can be used to capture such behavior when 

augmented with a novel queuing component that allows for the flexible ordering of tasks within 

a queue. 

Problem Formulation 

To describe the situation mathematically, consider the following definitions and 

relationships: 

ni: number of operations for job i 

pij: processing time for job i at step j in its flow 

wij: waiting time for job i at step j 

fi: flow time for job i 

ei: margin of error associated with job i 

li: lead time associated with job i  

ri: release date for job i, i.e. the date that job i enters the system 
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   : quoted due date for job i 

di: actual delivery date for job i 

Li: Lateness of job i with respect to its quoted due date 

q: number of jobs in process or in queue when job i enters the system 

Assuming that there is no down time at the steps and that there is no transportation 

time between steps, then the flow time for a job, fi, is simply the sum of the expected 

processing times for the steps for that job, pij, and the expected waiting time per step for that 

job, wij. 

             
  
            (4.1) 

Then the lead time, li, used to quote a due date for that job is the flow time, fi, plus 

some margin of error, ei, associated with the estimation of the processing and waiting times. 

                                                        (4.2) 

 The predicted due date for the job,    , is then the release date for the job into the 

system, ri, plus the estimated lead time, li. 

                                                   (4.3) 

Refactoring this formulation as shown below allows for a more straightforward 

segregation of data elements that are required for due date quoting based on the source and 

uncertainty of the data.  To wit: the release date is given, the processing times are drawn for an 

appropriate distribution, the error may be assumed or estimated from historical performance, 

and the waiting times are related to the jobs in queue and queuing behavior. 
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                                                                                         (4.4) 

It is this relationship between the jobs in queue, the queuing behavior by job or by step, 

and the waiting times that can make this a challenging problem.   

        
  
                                (4.5) 

Where IAT is the inter-arrival time for jobs that appear after job i arrives, and               are 

the vectors of processing times, queuing behaviors, and re-work actions respectively for the 

other jobs in the system.   

Completing the formulation, the lateness of a job, Li, with respect to its quoted due date 

is simply the difference between the actual delivery date, di, and the quoted due date,    . 

                                          (4.6) 

The square of this lateness will be used as the measure of performance in the 

experiment described in Test Methodology section. 

Related Literature 

The following subsections summarize pertinent instances of the existing literature with 

respect to Due Date Quoting, and Business Process Modeling and Mining.   
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Due Date Quoting 

Cheng and Gupta [14] produced a survey of the existing research with respect to due 

date determination.  In this survey, Cheng and Gupta open by pointing out that meeting due 

dates is extremely important to practicing managers.  They then utilize a classification scheme 

first proposed by Elion [15] which has six (6) dimensions:  (1) Static versus Dynamic, (2) 

Deterministic versus Stochastic, (3) Single-product versus Multi-product, (4) Single-processor 

versus Multi-processor, (5) Theoretical versus Practical, and (6) Exogenous due-dates versus 

Endogenous due-dates. Since exogenous due-dates obviate due-date quoting and lead directly 

to sequencing and scheduling problems, Cheng and Gupta focus their attention on endogenous 

due-dates.  Using the above classification scheme they conclude that there is very little extant 

research on Dynamic, Complex, Multi-processor systems. And after noting that better 

predictors would be beneficial, if practical, they conclude that there is a need for more practical 

and applied research in this area. 

Alfieri [16] proposes two new quoting policies based on setting a static Safety Time (ST) 

parameter analogous to ei in the formulation above noting that setting this parameter 

dynamically could be time consuming. The performance of these quoting policies, which both 

presuppose a First-Come-First-Served (FCFS) ordering, is compared to the Total Work Content 

(TWK) policy when jobs are sequenced by Shortest Processing Time (SPT), Earliest Due Date 

(EDD) and First-In-First-Out (FIFO).  These comparisons are predicated on batch scheduling 

(ignoring subsequent arrivals), deterministic processing times and non-permutation 
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sequencing.  With these simplifications, her results indicate that TWK outperforms both of her 

proposed policies.  She notes that estimating flow times for more complicated systems is a 

suitable topic for future research.   

Subsequent to the survey conducted with Gupta discussed above, Cheng [17] describes 

an efficient and optimal sequencing algorithm when using the slack due-date quoting policy.  

Cheng simplifies the system under consideration by assuming that once a set of jobs is 

sequenced, no subsequent jobs will affect the systems performance, there will be no re-

sequencing of the jobs between stations and all of the earliness and tardiness costs are 

constant.  In effect, the lack of consideration of arrivals and non-permutation scheduling 

becomes a presupposition of FCFS.  In this scenario Cheng concludes that an SPT sequence is 

optimal although this conclusion is at odds with the findings of Duenyas and Hopp below. 

Duenyas and Hopp [18] propose an analytical framework for evaluation of various job 

sequencing rules given that flow times can be optimally predicted.  Working through a series of 

increasingly more generalized scenarios they conclude that an EDD sequence is optimal if the 

tardiness penalty is constant for all customers and proportional to the tardiness which seems to 

contradict Cheng [17] above.  To achieve this result Duenyas and Hopp only assume that pre-

emption does not take place.  The result of an EDD sequence being optimal is useful in that it 

provides direction for redesigning the workflow system in this author’s construct to encourage 

EDD processing order but is not helpful in determining the optimal due-dates. 
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Similar to Duenyas and Hopp above, Lawrence [19] presupposes that the practitioner 

either has a simple system with closed-form flow time estimates, or has some way to 

determine flow times for complex systems.  With that as a precondition, he describes an 

analytical approach to setting due-dates based on previously observed forecasting errors.  

While Lawrence proposes to fit the forecasting errors, which he refers to as “G”, using a 

Ramberg-Schmeiser distribution, he concludes that Erlang and Gaussian distributions worked 

equally well in his research.  Lawrence makes three observations that are particularly germane 

in this context:  (1) exponential smoothing of the forecasting error distribution parameters 

enhances the accuracy of the fit, especially in time-dynamic situations, (2) various measures of 

performance lead to differing uses of the error distribution, e.g. Mean Absolute Lateness is 

minimized by adding the median of the error distribution to the predicted flow time, Mean 

Square Lateness (MSL) is minimized by adding the mean of the distribution to the predicted 

flow time, and service level matching is met by adding the target percentile of the distribution 

to the predicted flow time, e.g. G-1(0.9) for a 90% Service Level, and (3) the analytic due date 

quoting policies that include information about the current system state outperform those that 

do not, at least in the simple scenarios that the author specifically evaluates.  Additionally, 

Lawrence’s paper provides a good summary of the most common analytic quoting policies 

which will be useful for comparison with this author’s proposed modeling-based approach. 

Van Ooijen and Bertrand [20] introduce a distinction in terminology intended to allow 

some leeway between the tightly estimated Internal Due Date (IDD) and the slightly looser 
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External Due Date (XDD).  To set this difference, which is analogous to ei in the problem 

description above, or the Safety Time from Alfieri, or Lawrence’s error distribution, G, the 

authors propose to adjust the XDD using the ratio of the current level of work in progress 

(acwip) to the average level of work in progress (nwip).  Using variations of this quoting policy 

various sequencing rules were applied and the optimal cost per order was established over a 

variety of relative earliness/tardiness combinations.  Van Ooijen and Bertrand’s results bring 

some closure to the disagreement between Cheng [17] and Duenyas [18] by noting that when 

earliness and lateness penalties are of similar magnitude then SPT sequencing works best; 

however, when tardiness penalties are much larger than earliness costs a Due Date sequencing 

rule is best.  Another interesting conclusion that can be drawn from the data is that in spite of 

the dependence on FCFS sequencing in much of the literature, FCFS provided among the worst 

performance of the sequencing rules tested. 

Rajasekera, Murr, et al [21] open by observing that including more information into the 

dynamic flow time prediction process produces better results. Much of the paper subsequently 

focuses on an analytical description of a load-balancing algorithm that could be implemented in 

an information system integrated with the manufacturing system.  The authors conclude that 

after applying their load balancing procedure and assuming FCFS processing, then setting due-

dates is straightforward even when taking into account the jobs already in the system.  As a 

parting note, the authors concede that more complex work centers would require more 

complex queuing decomposition methods and further analysis. 
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Business Process Modeling and Mining 

van der Aalst, Reijers et al.  make the excellent point that modern information systems 

(and specifically workflow systems) capture much of the necessary data to perform data mining 

on the process information, which they term “process mining” without having to resort to 

external data collection though there have been few real-world exploitations of this capability 

captured in the literature [12].     

Rozinat, Wynn et al. propose to extend the preceding concept through the use of a pair 

of open source tools -- YAWL (Yet Another Workflow Language) and ProM (Process Miner). 

They describe the potentially tight coupling theoretically possible between a workflow system 

and a simulation model that represents that system.  This coupling would be accomplished by 

describing the workflow system in YAWL, running the resultant workflow description through 

the YAWL runtime, and then developing plug-ins for ProM that would (1) allow it to ingest the 

system design and (2) interpret the transaction and state information.  Rozinat successfully 

created an example of this coupling using a simple credit processing workflow.  It is important 

to note Rozinat’s conclusion that while the concept seems valid, the creation of a generalized 

process for achieving coupling was not yet obtainable [13].  In addition to the limitations 

imposed by the developmental nature of Rozinat’s plug-ins for reading YAWL information into 

ProM, there are also limitations based on ProM itself in that there currently are not facilities to 

support the generalized queues that are necessary to represent certain real-world processes 

such as the one under consideration. 
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Given the ongoing difficulties in creating an automated method of utilizing the workflow 

output logs to build a model of the system, this author is left with little choice but to build a 

discrete event simulation model of his system by hand. 

Necessity Of A Novel Approach 

As mentioned in the introduction, the author asserts that better predictive performance 

in quoting due dates should be achieved by making a faithful model of the system into which a 

new job is then introduced.  The motivation for doing so, as well as the argument to support 

this assertion follows in two parts: Modeling versus deterministic assessment and Real-world 

versus ideal queuing behavior.  

Necessity of Modeling 

Meeting promised due dates is critical to customer satisfaction [14, 18, 19, 21]. 

Promised due dates are readily met when arbitrarily long lead times are set.  However, 

quoting arbitrarily long lead times to ensure service levels dilutes customer appeal while overly 

optimistic lead times erodes customer confidence [16]. Based on this, more accurate due dates 

(with narrower confidence intervals) are better (more pleasing to customers) as long as the 

mechanism is practical to implement [14]. 
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As expressed in the Problem Formulation section, the due-date for a job is dependent 

on that job’s processing times and waiting times, and should also include some safety margin 

[16, 17, 19]. 

Also from the Problem Formulation section, the dominant feature of the due-date 

setting problem is estimating the wait time for a given job [14]. 

The wait times for a job are obviously dependent on the jobs already in the system, 

though the particular relationship is also dependent on the queuing scheme assumed [16, 18, 

19]. 

Including more information about the current state of the system leads to better 

predictions of due dates [14, 16, 18-21]. 

Analytical methods are suitable for simple cases with ideal assumptions, but more 

complicated systems require more complicated analysis typically involving simulation [14, 16, 

18]. 

A detailed discrete event simulation model of the actual system will allow more 

information on the system (design, historical performance, and current state) to be brought to 

bear on the estimation of waiting times. 
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Necessity of Real-world Queuing Behavior 

The data observed from the subject system for this author’s research exhibits job 

insertion at head of line preemptively, head of line without preemption, tail of line, and other 

locations in the middle of the queue as depicted in Figure 17.  

 

Figure 17 - Flexible Queue 

Since the insertion location for a given job determines the minimum number of jobs that 

will be processed before that job, it provides a lower bound for the wait time of the target job 

at that step, but this determination is not complete, as subsequent jobs may arrive after the job 

in question and be queued in front of the target job increasing its wait time at that step. 
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Figure 18 - Relative percentage of jobs inserted into queues by position 

   

As mentioned in the Problem Formulation section, several thousand historical 

transactions are available for analysis of the system under test.  By decomposing the 

transactions into corresponding arrival and departure events and then processing those events 

in departure order it is possible to glean the relative insertion position of jobs at each step.  The 

results of this analysis are applied to the model of the system under test for this paper and 

expressed as the relative frequency of job insertion location by step as shown in Figure 18. 

These relative frequencies will be used in the empirical queuing implementation described in 

the System Under Test section.  While all of the existing queuing models provide equivalent, 

average, system-level performance prediction, the author’s goal is to accurately model the 
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behavior of a single, discrete job within the context of its fellow jobs, and therefore a more 

flexible model is required. 

Argument Summation 

In summary, more accurate assignment of due dates will make customers more likely to 

continue to place their orders using the system.  Outside of certain idealized systems, 

incorporating more detail in the prediction process can make those predictions more accurate.  

A DES model allows for incorporating more system detail than any of the existing mechanisms 

and incorporating real-world queuing behavior is a key aspect of that mechanism.  It is 

therefore worthwhile to study the forecasting performance of a faithful DES model against 

existing, deterministic policies. 

System Under Test 

The actual system that this example is based upon is a workflow system that supports a 

business process. It is similar to a flexible flow shop in which the stations that a job passes 

through are known (11 in this example) and the jobs in the stations’ queues at any point are 

known.  All of the other parameters associated with the job shop, including job processing 

times per station and station queuing behavior are uncertain though there is a significant body 

of past performance data that is brought to bear to determine input distributions. 
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This system was modeled in DES form using Rockwell’s Arena package and an overview 

of the resultant model is depicted in Figure 19.  A source module was instantiated which 

implements a Poisson arrival process for new orders and is labeled “New Orders” in Figure 19.  

 

Figure 19 - Model of system 

After the orders arrive in the system they are assigned processing times and queue 

behaviors using an assignment module based on the distributions as listed in Table 1 and Table 

2 respectively.  These values are stored in attributes associated with each order.  Eleven servers 

were then instantiated, labeled “Step 1” through “Step 11”, and connected serially as depicted.   

The processing times for each order and at each server are read from the attributes 

assigned above.  Associated with each server is a queue that can be configured to process 

orders as FIFO, Last In-First Out (LIFO), or in priority order based on an assigned attribute.  The 

model is completed by instantiating an order sink which disposes of the orders after processing 

is complete – this component is labeled “Submit Proposal” in Figure 19. To capture the actual 
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departure dates from the system and aid with the experiment a series of output modules (not 

shown) are instantiated.  These modules allow for the capture of the squared lateness by job 

with respect to each of the due date quoting policies previously mentioned.   

As mentioned in the Necessity of a Novel Approach section, transactions from the actual 

workflow system were decomposed into arrival and departure events.  In addition to providing 

data for queuing behavior, this event processing also partitioned the time each job spent at a 

server into processing time and waiting time.  Using Rockwell’s Input Analyzer, the processing 

time data was fitted.  The outputs of this process are the following processing time distributions 

as listed in Table 1.  

Table 1 - Processing times by step 

Step Processing Time Distribution 
Step 1 WEIB(0.146, 0.389) 

Step 2 WEIB(1.19, 0.425) 

Step 3 WEIB(0.404, 0.304) 

Step 4 WEIB(0.709, 0.407) 

Step 5 WEIB(0.928, 0.417) 

Step 6 WEIB(0.573, 0.342) 
Step 7 WEIB(0.821, 0.386) 

Step 8 WEIB(0.505, 0.34) 

Step 9 WEIB(0.373, 0.331) 

Step 10 WEIB(0.918, 0.405) 

Step 11 WEIB(1.32, 0.463) 

 

Similarly, the following Queuing Distributions (see Table 2) were also fitted using Input 

Analyzer based upon the previously described convolution of the historical data such that the 

input position is mapped to fall between 0 for head of line and 1 for tail of line.  
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Table 2 - Queuing behavior by step 

Step Processing Time Distribution 

Step 1 WEIB(0.00947, 0.33) 

Step 2 BETA(0.413, 1.49) 

Step 3 WEIB(0.00474, 0.399) 

Step 4 LOGN(2.37, 187) 
Step 5 BETA(0.355, 0.86) 

Step 6 WEIB(0.0257, 0.373) 

Step 7 WEIB(0.0978, 0.415) 

Step 8 WEIB(0.0276, 0.328) 

Step 9 WEIB(0.0119, 0.33) 

Step 10 BETA(0.401, 1.14) 
Step 11 LOGN(1.1, 70.7) 

 

As a detail of the implementation, both the Processing Times and Queuing Behavior 

distributions were assigned unique random variate streams (avoiding Arena’s default stream of 

10).  Note that the Queuing Behavior distributions only affect the model when the Queue Mode 

is set to prioritize the queue by lowest attribute value. 

Additional entity attributes were defined and assigned in an Arena “Assignment” 

module to capture the calculated due dates based on the JIQ (Jobs In Queue), SLK (Slack 

assignment), NOP (Number of Operations), and TWK (Total Work Content) policies as described 

by Cheng and Gupta [14].  These policies are represented by the following formulae: 



67 
 

JIQ:                              
  
        (4.7) 

SLK:                    
  
          (4.8) 

NOP:                          (4.9) 

TWK:                   
  
          (4.10) 

Note that each of the policies has one or more coefficients (JIQK1, JIQK2, SLKK, NOPK, 

TWKK) which must be adjusted based on the actual model. The due dates captured in these 

attributes were then used to calculate the Squared Lateness of the entities by due-date quoting 

policy and then recorded as outputs of the model. 

Test Methodology 

Before comparison of the due-date quoting policies could be undertaken, the adjusting 

parameters for each of the policies had to be tuned.  Rockwell’s Process Analyzer was used to 

adjust the coefficients for each policy (JIQK1, JIQK2, SLKK, NOPK, TWKK) while minimizing its 

Mean Square Lateness performance.  After these coefficients were tuned, the model was set up 

to run with a 90 day warm up and 365 days of simulation in each of three queuing modes: FIFO, 

LIFO, and Empirical.  It is in this last mode that the Queuing Behavior attributes (listed in Table 

2) come into play by prioritizing the entities by the value drawn from that distribution for that 

step.  
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The model was executed for 30 replications in each mode and the output captured.  

Since the Mean Square Lateness was recorded as an “Output” Arena politely exports the mean 

and 95% confidence half-widths directly in the output file. 

Test Results 

The following three figures display the relative performance of the four due date 

quoting policies that were tested using this model.  Given the assumptions taken when these 

policies were developed, it is not surprising that the results of the first test case align 

reasonably with that summarized from the literature under the section titled Due Date Quoting 

as shown in Figure 20 below using Microsoft Excel’s High-Low-Close Stock chart to handily 

portray the confidence interval for the MSL per policy. 
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Figure 20 - Mean Squared Lateness – FIFO 

Similarly, Figure 21 shows the relative performance of the policies when the queuing 

behavior is switched for FIFO to LIFO.  As argued above in the section titled Necessity of a Novel 

Approach, this drastic reduction in performance when the system does not conform to the 

simplifying assumptions is not surprising. It is worth noting that not only does the performance 

suffer greatly, but that the variance in the squared lateness is large enough that the policies are 

no longer distinguishable statistically. 



70 
 

 

Figure 21 - Mean Squared Lateness - LIFO 

And finally, in Figure 22, the corresponding results are portrayed when the queuing 

mode incorporates the fitted distributions from Table 2.  Given that the distributions indicate 

behavior between FIFO and LIFO in an approximate 40%/60% split the results below are 

between the two previous results sets. 
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Figure 22 - Mean Squared Lateness - Empirical 

The broad confidence intervals of the latter two test cases dictate larger than 

reasonable margins required to meet desired service levels. 

One of the test cases that the author had intended to address was the addition of pre-

emption for head of line insertions.  Unfortunately, Arena does not readily support pre-emptive 

processing with its built-in queuing component. 
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Conclusion And Future Research 

All of the tested due-date quoting policies tested suffered when applied to systems that 

did not inherently provide FCFS behavior.  Clearly there is room for additional research on 

setting due dates in non-FCFS systems such as those that are prevalent in more human-centric 

systems.  As borne out by the test results, in such situations the relationship between the jobs 

in queue, the queuing behavior, and the wait times for the orders is too complex to be 

adequately captured by the prevalent due date quoting policies and should benefit from the 

computational flexibility provided by a discrete event simulation. 

An additional source of complexity in the production system could be represented in a 

DES model by the inclusion of a 3-way decision block that represents the likelihood that a given 

job will be accepted (and thus passed to the next step), rejected (and returned to the previous 

step), or returned to the customer with no further action – this behavior was omitted from the 

model used in this experiment but is implemented in the embedded models described in 

Chapters Five, Six and Seven. 

The author has also created and incorporated a more robust queuing component that 

will support random queue placement as well as pre-emption for use in embedded DES 

simulations and the prototype system described in the following chapters. 
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CHAPTER FIVE: PREDICTING BUSINESS PROCESS PERFORMANCE WITH ‘REAL 
WORLD’ QUEUING 

The following material has been submitted for presentation at the 2011 

Interservice/Industry Training, Simulation and Education Conference. 

 Introduction 

Accurate determination of due dates for the delivery of bespoke items based on non-

technical specifications is a challenging task.  Limiting fixed staffing levels to control costs is at 

odds with having sufficient resources necessary to quote these due dates in a timely fashion.  

An environment that is extremely contentious with respect to the necessary resources and 

offering little in the way of firm prioritization only exacerbates the situation. And finally, when 

customers demand both demonstrably strict dates and penalties for exceeding those dates the 

situation becomes nearly untenable.  The author proposes that an artful combination of 

automated analysis and efficient simulation might be successful in resolving this stark situation. 

Prerequisites 

In order to apply the methodology described here, a practitioner should already have (1) 

developed a functional, transaction-based workflow system, (2) performed an initial, manual 

data analysis of the processing times, queuing behavior and rework rates, and (3) built a 

representative discrete event simulation (DES) model of the workflow process to validate 
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understanding of the practitioner’s system.  In this author’s case, the model of the system at 

hand is depicted in Figure 23. 

 

Figure 23 - Detailed DES model of system 

Scope of Problem 

To summarize the problem at-hand, consider the following abbreviated formulation: 

ni: number of operations for job i 

pij: processing time for job i at step j in its flow 

wij: waiting time for job i at step j 

ei: margin of error associated with job i 

ri: release date for job i, i.e. the date that job i enters the system 

   : quoted due date for job i 
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Refactoring this formulation as shown below allows for a more straightforward 

segregation of data elements that are required for due date quoting based on the source and 

uncertainty of the data.  To wit: the release date is given, the processing times are drawn for an 

appropriate distribution, the error may be assumed or estimated from historical performance, 

and the waiting times are related to the number of jobs in queue and queuing behavior. 

           
  
        

  
       .      (5.1) 

The following relationship summarizes the salient difficulty in predicting turn-around 

times (TATs) in a system with non-standard queuing behavior. 

        
  
                          .      (5.2) 

Where IAT is the inter-arrival time for jobs that appear after job i arrives, and 

                     are the vectors of processing times, queuing behaviors, and rework rates 

respectively for the other jobs in the system.  Note that the arrival process need not be 

stationary, and in fact, is not in the subject system [11]. 

The author’s proposed solution to determining Wi is then to (1) construct an embedded 

DES model, (2) determine the parameters for that model applicable at the point in time where 

job i enters the system, (3) determine the properties of job i necessary for representation 

within the model, and (4) to repeatedly execute the model until an acceptable margin of error 

on predicting its time in system can be achieved.  
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Relevant Literature 

The following sections will highlight some of the salient literature that bears upon this 

topic from the areas of due date quoting, predictive use of models, and embedded modeling. 

Due Date Quoting 

Cheng and Gupta [14] produced a survey of the existing research with respect to due 

date determination.  In this survey, Cheng and Gupta open by pointing out that meeting due 

dates is extremely important to practicing managers.  They then utilize a classification scheme 

first proposed by Elion [15] which has six (6) dimensions:  (1) Static versus Dynamic, (2) 

Deterministic versus Stochastic, (3) Single-product versus Multi-product, (4) Single-processor 

versus Multi-processor, (5) Theoretical versus Practical, and (6) Exogenous due dates versus 

Endogenous due dates. Since exogenous due-dates obviate due-date quoting and lead directly 

to sequencing and scheduling problems, Cheng and Gupta focus their attention on endogenous 

due-dates.  Using the above classification scheme they conclude that there is very little extant 

research on Dynamic, Complex, Multi-processor systems. And after noting that better 

predictors would be beneficial, if practical, they conclude that there is a need for more practical 

and applied research in this area. 

Alfieri [16] proposes two new quoting policies based on setting a static Safety Time (ST) 

parameter analogous to ei in the formulation from Chapter Three noting that setting this 
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parameter dynamically could be time consuming. The performance of these quoting policies, 

which both presuppose a First-Come-First-Served (FCFS) ordering, is compared to the Total 

Work Content (TWK) policy when jobs are sequenced by Shortest Processing Time (SPT), 

Earliest Due Date (EDD) and First-In-First-Out (FIFO).  These comparisons are predicated on 

batch scheduling (ignoring subsequent arrivals), deterministic processing times and non-

permutation sequencing.  With these simplifications, her results indicate that TWK outperforms 

both of her proposed policies.  She notes that estimating flow times for more complicated 

systems is a suitable topic for future research.   

Subsequent to the survey conducted with Gupta discussed above, Cheng [17] describes 

an efficient and optimal sequencing algorithm when using the slack due date quoting policy.  

Cheng simplifies the system under consideration by assuming that once a set of jobs is 

sequenced, no subsequent jobs will affect the systems performance; there will be no re-

sequencing of the jobs between stations and all of the earliness and tardiness costs are 

constant.  In effect, the lack of consideration of arrivals and non-permutation scheduling 

becomes a presupposition of FCFS.  In this scenario Cheng concludes that an SPT sequence is 

optimal although this conclusion is at odds with the findings of Duenyas and Hopp below. 

Duenyas and Hopp [18] propose an analytical framework for evaluation of various job 

sequencing rules given that flow times can be optimally predicted.  Working through a series of 

increasingly generalized scenarios they conclude that an EDD sequence is optimal if the 

tardiness penalty is constant for all customers and proportional to the tardiness which seems to 
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contradict Cheng [17] above.  To achieve this result Duenyas and Hopp only assume that 

preemption does not take place.  The result of an EDD sequence being optimal is useful in that 

it provides direction for redesigning the workflow system in this author’s construct to 

encourage EDD processing order but is not helpful in determining the optimal due dates. 

Similar to Duenyas and Hopp above, Lawrence [19] presupposes that the practitioner 

either has a simple system with closed-form flow time estimates, or has some way to 

determine flow times for complex systems.  With that as a precondition, he describes an 

analytical approach to setting due dates based on previously observed forecasting errors.  

While Lawrence proposes to fit the forecasting errors, which he refers to as “G”, using a 

Ramberg-Schmeiser distribution, he concludes that Erlang and Gaussian distributions worked 

equally well in his research.  Lawrence makes three observations that are particularly germane 

in this context:  (1) exponential smoothing of the forecasting error distribution parameters 

enhances the accuracy of the fit, especially in time-dynamic situations, (2) various measures of 

performance lead to differing uses of the error distribution, e.g. Mean Absolute Lateness is 

minimized by adding the median of the error distribution to the predicted flow time, Mean 

Square Lateness is minimized by adding the mean of the distribution to the predicted flow time 

, and service level matching is met by adding the target percentile of the distribution to the 

predicted flow time, e.g. G-1(0.9) for a 90% Service Level, and (3) the analytic due date quoting 

policies that include information about the current system state outperform those that do not 

at least in the simple scenarios that the author evaluates specifically.  Additionally, Lawrence’s 
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paper provides a good summary of the most common analytic quoting policies which will be 

useful for comparison with this author’s proposed modeling-based approach. 

Van Ooijen and Bertrand [20] introduce a distinction in terminology intended to allow 

some leeway between the tightly estimated Internal Due Date (IDD) and the slightly looser 

External Due Date (XDD).  To set this difference, which is analogous to ei in the problem 

description from section 1.2, or the Safety Time from Alfieri, or Lawrence’s error distribution, G, 

the authors propose to adjust the XDD using the ratio of the current level of work in progress 

(acwip) to the average level of work in progress (nwip).  Using variations of this quoting policy 

various sequencing rules were applied and the optimal cost per order was established over a 

variety of relative earliness/tardiness combinations.  Van Ooijen and Bertrand’s results bring 

some closure to the disagreement between Cheng [17] and Duenyas [18] by noting that when 

earliness and lateness penalties are of similar magnitude then SPT sequencing works best; 

however, when tardiness penalties are much larger than earliness costs a due date sequencing 

rule is best.  Another interesting observation that can be made from the data is that in spite of 

the dependence on FCFS sequencing in much of the literature, FCFS provided among the worst 

actual performance of the sequencing rules tested – it does however provide the best 

predictions of performance. 

Rajasekera, Murr, et al. [21] open by observing that including more information into the 

dynamic flow time prediction process produces better results. Much of the paper subsequently 

focuses on an analytical description of a load-balancing algorithm that could be implemented in 
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an information system integrated with the manufacturing system.  The authors conclude that 

after applying their load balancing procedure and assuming FCFS processing, then setting due-

dates is straightforward even when taking into account the jobs already in the system.  As a 

parting note, the authors concede that more complex work centers would require more 

complex queuing decomposition methods and further analysis. 

Predictive use of DES Modeling 

Much of the existing literature talks about using models of systems to conduct 

experiments where the objective is to optimize system performance by adjusting resources or 

queuing behavior [22, 23].   

There is some literature that seeks to use the model to evaluate differing courses of 

action such as selecting a sequence of jobs to be scheduled. For example, Azzaro-Pantel, 

Bernal-Haro et al. describe using a combination of discrete event simulation and a genetic 

algorithm to optimally dispatch tasks in a job shop environment, with the genetic algorithm 

generating the sequences and the DES model evaluating each sequence [24]. In a related 

fashion, Reijers discusses using short-term simulations coupled with work flow to provide 

decision support, i.e. scheduling additional resources during peak loads [25].  Much less of the 

literature discusses the potential for use of the faithful model to make predictions about the 

system just the way it is.  Rojanapibul and Pichitlamken make some excellent observations 

about using embedded simulations to calculate prediction intervals in a flow shop environment 
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[26].  Cates and Mollaghasemi describe the use of simulation to predict project completion 

dates and thereby enhance visibility of risk to better manage completion of complex projects 

[27].  In both of these cases, though, the job parameters were reasonably established before 

predictions were made. 

Developmental Details  

The author’s prototype solution for implementing this methodology is composed of two 

distinct, but closely interrelated components.  The first component, which replicates the 

previously mentioned manual analysis as an automated process, uses historical data to 

determine descriptive parameters.  The second component is an embedded simulation model 

that makes use of these descriptive parameters to replicate the behavior of the target system.  

It is important to note that the predictive power of this construct is dependent on both 

components, which must act in concert. 

Automated Analysis 

The automated analysis component performs five major functions: (1) decompose the 

departure transactions (by job and by station) from the workflow system into Departure and 

Arrival events, (2) using the correlated Departure and Arrival events determine the rework rate 

of the sample of jobs by station, (3) using the correlated events by station, determine the 

queuing behavior for that station, (4) using the correlated events by station, decompose the 
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total time at a station for a job into waiting time and processing time and fit the processing 

times to a valid statistical distribution, and (5) utilizing the transaction logs, determine the inter-

arrival rate per month.  The last four functions output their results as a series of parameters to 

be used by the embedded simulation. 

The first function is a pre-processing step facilitating the remaining functions. As 

mentioned, the system in question is an electronic workflow system.  As such, there is no 

perceptible transportation delay.  Without transportation delay, the decomposition of the 

departure transactions simply requires the creation of a departure event from the current 

station, and an arrival event at the next station visited by the job.  The times of occurrence for 

each of these events are identical; the only complicated aspect is determining the next station 

visited.  As this complication is purely self-inflicted by the author’s implementation of 

transactions, recording the details of overcoming this particular hurdle will be glossed over.  A 

sage practitioner would be well served to capture both the source and destination stations 

within the departure transaction and thus avoid this step entirely.  As the output of this step is 

only used as the input for the subsequent three steps, there is no need to store these results 

back to the database. 

The second function uses the correlated departure and arrival events created by the 

first function to determine rework rates.  This is accomplished simply by implementing a two-

level, nested, case construct which takes at the outer-level the source station, and at the inner-

level the destination station.  The rework status per job is then captured as a logical action, in 



83 
 

the author’s case a job is accepted, rejected or returned without further action.  The relative 

frequencies of these actions are recorded by station as model parameters in the database and 

are used by the branch components to correctly route jobs from one station to the next – this 

pairing of analytical and simulation components directly addresses     from Equation 5.2. 

The third function, determining the queuing behavior, is considerably more interesting 

to describe, and is in fact, half of the novel aspect of the author’s formulation for attacking     in 

Equation 5.2.  In general terms, the concept of the function is similar to executing a DES in 

reverse.  In a normal DES, both the processing time for a job, and the queuing policy for a 

station are specified and the result for the job is the departure time from the station.  In this 

case, however, the arrival and departure times are known and the results of the analysis are the 

processing time for the job, and the queuing behavior of the station.  More specifically, the 

historical jobs arriving at a given station are processed in time-order of their arrival at the 

station but the jobs are placed in the queue based on their, known a priori, departure time.  

Executing this process one input job at a time, it is possible to determine the queue insertion 

location at the station, and the accumulated processing time for the job.  

As an example of this process consider the following sequence:  job 1, which arrives at 

station X at time 0 and is known to have departed at time 20, finds station X empty and idle; 

since the server is empty and idle, job 1 is immediately placed in service (location = 0, queue 

depth = 0) and begins to accumulate processing time.  Job 2 (arrives at time = 5, will depart at 

time = 21) arrives at station X; since the station is not idle the departure time of the newly 
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arrived job is compared to that of the job in service; since job 2 will depart after job 1, it is 

placed in queue; since the queue is empty, job 2 is queued at location = 1, queue depth =1.  Job 

3 (arrives at time = 10, will depart at time = 30) arrives at station X; since job1 is still in service, 

departure times for jobs 1 and 3 are compared; job 3 will depart after job 1, so job 3 is queued; 

since job 3 will depart after job 2, it is queued after job 2 at location 2 and queue depth = 2.  Job 

4 (arrives at time = 15, will depart at time = 25) arrives at station X; since its departure time is 

after job 1 (still in service), job 4 will be queued; since job 4 will depart after job 2 and before 

job 3, it is queued at location = 2, queue depth = 3 which is recorded in Figure 24 as ‘2/3’.  

Executing this scenario, and stopping at time = 15 is represented graphically in Figure 24. 

 

 

Figure 24 - Queue position determination 
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In pseudo-code, the virtual Server performs the following top-level tasks: 

Read previous 180 days of Transactions for Server; 

Create Arrival Events and Departure Events based on 

transactions for completed jobs; 

loop through events in time order {  

   if (arrival event) Push(event); 

   else if (departure event) Pop(event); 

} 

 

The virtual Server Push method performs the following: 

new_job = get_job_from_event(event); 

if (server idle)  

   in_progress_job = new_job;  

   new_job.arrival_location = 0; 

   new_job.arrival_queue_depth = 0; 

else (server busy) 

   if (new_job.departure < in_progress_job.departure) 

      in_progress_job.add_processing_time_to_date(); 

      queue.add(in_progress_job); 

      in_progress_job = new_job; 

      new_job.arrival_location = 0; 

      new_job.arrival_queue_depth = queue.size(); 

   else  

      queue.add(new_job); 

      new_job.arrival_location = queue.find(new_job); 

      new_job.arrival_queue_depth = queue.size(); 

 
The corresponding virtual Server Pop method performs the following: 
in_progress_job.add_processing_time_to_date(); 

if (queue not empty) 

   in_progress_job = queue.next(); 

else 

   server idle = true; 

 

The output of this function, which is accomplished by the “Push” method of the virtual 

server, is three parameters per station specifying the fraction of jobs that preempt, queue at 
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the head-of-line, and queue at the tail-of-line.  Jobs that don’t meet any of the three criteria are 

assumed to be randomly placed in the queue between head-of-line and tail-of-line. 

The fourth function separates the processing time from the waiting time and then fits 

the processing times to a statistical distribution.  This statistical distribution addresses, in 

conjunction with the server simulation component, the     component from Equation 5.2.  In the 

author’s implementation, the first portion of this function – separating processing and waiting 

times for a job at a station – is accomplished by a combination of the “Push” and “Pop” virtual 

server methods described above.    

 

Figure 25 - Processing time determination 

The second portion of the function uses a well known formulation to convolve the 

resulting processing times at a given station such that a linear, least-squares regression of the 

convolved data exhibits the shape and scale parameters of a Weibull distribution fitted to the 
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combined using exponential smoothing – as in the second and third functions – with the 
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two parameters per station. Unlike the previous implementations above, however, a 

Kolmogorov-Smirnov goodness of fit test is executed between the source data and the fitted 

distribution, and the newly calculated parameters are only combined with the existing 

parameters if the test statistic is less than the adjusted critical value for the sample size [22]. 

As the reader may have already surmised, the fifth function, calculating the inter-arrival 

rates by month, when coupled with the source component of the simulation, completes the 

input parameters to Equation 5.2, namely IAT.  This function is executed very simply using an 

SQL query which aggregates the arrivals by month for the previous 12 months.  The more 

interesting aspects of this function reside in the simulation component discussed below. 

Embedded Simulation 

The Source component uses parameters from the database to implement a non-

stationary, Poisson arrival process which varies month-by-month. At each arrival event the 

Factory Component (see below) is used to generate an order entity which is sent to the output 

component of the source which would normally be either a Branch or a Server.  

The following pseudo-code initializes the non-stationary arrival process: 

Query database for monthlyIAT[month]; 

hours = (lastDay[current_month] - today) * 24; 

for (month = 0..6) { 

   ‘IATBin<month>Hours’ =  hours; 

   ‘IATBin<month>Rate’ = monthlyIAT[month]; 

   Hours += lastDay[month] * 24; 

} 
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While the following pseudo-code implements the non-stationary arrival process: 

in scheduleArrival()... 

for (month in 0..6) { 

   if (simulation time < IATBin<month>Hours) { 

      IATRate = IATBin<month>Rate; 

   } 

} 

IATgenerator.setRate(IATRate); 

nextArrivaltime = simulation time +  

                                 IATgenerator.draw(); 

The Factory component produces, on demand, entities of type Order with processing 

times per step drawn from Weibull distributions whose parameters are taken from the 

analytical component.  The Factory is also capable of creating a special “target” Order. 

The Order component extends the Entity class and implements the Comparable 

interface.  It also contains a Properties object that is used to capture the history of the event as 

it traverses the model. 

The Server component, in conjunction with its Queue, implements the empirical 

queuing behavior specified by the parameters from the analytical component.  

 

 

 

 

 

 

 



89 
 

Pseudo-code for Preemptive, LIFO, FIFO, and Random queuing: 

new_job = get_job_from_event(event); 

new_job.queue_behavior = uniform.draw(); 

if (server idle)  

   in_progress_job = new_job; 

   schedule_departure(new_job, new_job.process_time); else 

   if (new_job.queue_behavior < preepmt) 

      calendar.remove_depart_event(in_progress_job); 

      in_progress_job.process_time -= 

                          processing_time_to_date(); 

      queue.add(in_progress_job,HEAD_OF_LINE); 

      in_progress_job = new_job; 

      schedule_departure(new_job, 

                         new_job.process_time); 

   else if (new_job.queue_behavior < LIFO) 

      queue.add(new_job,HEAD_OF_LINE); 

   else if (new_job.queue_behavior < FIFO) 

      queue.add(new_job,TAIL_OF_LINE); 

   else 

      queue.add(new_job,RANDOM_LOCATION); 

 

The Queue component utilizes the CompareTo() method of the Order entities to queue 

the Orders based on the value set for the Order by the Queuing Behavior method of the server. 

The Branch component implements routing of incoming Orders to one of two or more 

destinations based on the rework parameters form the analytical component.  The author’s 

implementation adds special treatment for the “target” Order – it is not allowed to exit through 

the “return without further action” sink. 

The Sink component disposes of non-target Orders as they depart the simulation, and 

store the target Orders in a static collection when they exit.  The Sink also signals a 

SimulationEnd event when the target Order exits.  
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System Under Test 

The model of the system under test is implemented as a top-level simulation object.  

This object has one source component implementing non-stationary arrivals as indicated above 

and containing an order factory producing orders in accordance with the processing time 

distributions based on the Weibull     parameters, including the special “target” order. The 

simulation object instantiates 11 servers which, in conjunction with their attendant queues, 

implement empirical queuing behavior in accordance with the     parameters from the analytical 

component.  It also instantiates 11 branches (3-way) that implement rework based upon the     

parameters. Finally, the simulation implements two sink components, one for capturing objects 

successfully traversing the system and a second for objects that are returned to the customer 

without further action. 

These components are instantiated, logically connected as pictured in Figure 23, 

initialized with the parameters as mentioned above, the queues pre-loaded with jobs according 

to the current date’s queues.  At this point the target job is introduced to the system, and the 

simulation clock started.  The simulation run terminates when the target job exits via the first 

sink. 

To facilitate statistical analysis, the target jobs from each replication of the simulation 

are maintained until the desired number of replications has been executed.  At that point the 
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collection of target jobs can be summarized, in this case by determining the upper confidence 

limit for the mean of the turn-around time. 

Test Methodology 

As the actual system under test is, in fact, a transactional workflow system, it is possible 

to roll the systems state back to any point in time covered by the transaction log.  Utilizing this 

capability it is possible to (1) determine actual turn-around times for jobs entering the system 

on any given day, and (2) to execute both the analytical and simulation components against the 

data that was available on that same day.  With both data sets available simultaneously it is 

possible to compare the actual and predicted data side-by-side. 

The actual turn-around times were gleaned from the workflow system through an SQL 

query of the database that provides persistence to the workflow system.  This query was 

structured such that the output consisted of the date, the mean turn-around time of the jobs 

that entered the system on that date, and the number of jobs entering on that date.  Using this 

data it was then a simple bit of manipulation in Microsoft Excel to generate a time-weighted 

average turn-around time looking back 10 days to smooth the necessarily jagged plot of mean 

turn-around times. 

The predicted turn-around times were generated by providing a “main” function that 

specified a date for simulation such that the analytical component could execute as if it were 

that date and looking 180 days into the past to calculate the simulation parameters, and then 
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using that same date, the simulation component could execute 200 replications of the model 

capturing the upper confidence limit (UCL) of the mean turn-around time.  After the analytical 

and simulation components had executed for the date specified, the date was incremented by 

1 and the process repeated until the desired end date was reached.  The output of the 

components was adjusted such that the output was the date, the number of jobs in queue on 

that date, and the UCL of the time in system for a new job on that date. 

With the two data sets described it is a simple matter to match the actual data and the 

predicted data by date, again using Microsoft Excel. 

Results 

Initial results of the tests conducted indicate an expected result – that the turn-around 

time predicted for a given job is closely correlated (ρ = 0.76) to the number of jobs in queue 

when the new job enters the system as shown in Figure 26.  The red line in the figure 

represents the 90% UCL for the mean turn-around time predicted by the model, while the blue 

line – plotted against the secondary y-axis – represents the total number of jobs in the system 

when the target job arrives.  The correlation is not perfect due to the location of the jobs in the 

system. If, for example, the 100 jobs in the system are evenly distributed across the 11 servers, 

then one would reasonably expect that the target job would end up getting queued in several 

of the steps along its processing journey.  The results would be very different if most of the 100 

jobs were about to exit the system, perhaps at server 11.  In this case the target job would race 
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through stations 1 through 10 without queuing (unless previous jobs were inserted, due to 

rework, into previous queues), not slowing until step 11. And, depending on the relative 

processing times for the 100 jobs queued at step 10, it is possible, though unlikely, that the 

target job could run through the entire system without experiencing any queuing whatsoever. 

 

 

Figure 26 - Correlation between WIP and TAT 

Of more practical benefit is the indication of a good correlation between the predicted 

turn-around times for a given day, and the actual, observed turn-around times for jobs entered 

on that day as shown in Figure 27.  The red line is the same as in Figure 26 – the 90% UCL for 
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the mean, but the green line represents the mean turn-around time for the actual jobs that 

entered the system on that day. 

 

 

Figure 27 - Predicted versus Actual TAT 

The performance indicated in Figure 27 above is actually quite good.  Simply using the 

UCL of the mean flow time for predicting the due dates yields a service level of approximately 

65%.   Adjusting the flow time by adding in some multiple of the standard deviation of the 

forecasting error ei (1.285σe) allows the achievement of a 90% service level.  And while 

achieving at least a 90% score is desirable for the process owner, it may be more attractive to a 

customer to tune the predictive subsystem for an 80% service target (0.841σe) and incentivize 
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the process owner to achieve the next 10%.  An interesting side benefit of this methodology is 

that it provides a ready mechanism for continuous improvement, i.e. if the processor is 

successful in achieving 90% during this period, future job flow times will be based on this 

tighter standard. 

Conclusions 

The author’s previous work indicated that the existing, deterministic methods of 

quoting due dates suffered when applied to systems not based on FCFS queuing and argued 

that investigation of a stochastic approach was warranted.  This paper documents that 

investigation, and indicates that a carefully crafted mix of automated analytics and embedded 

simulation might indeed provide a practical alternative for higher-fidelity due date quoting in 

systems with non-standard queuing behavior and high levels of rework.  The author is currently 

performing additional research based on a prototypical implementation integrated to a 

production workflow system to validate these results in a practical setting. 

In the experiment described in the following chapter, this research was extended to 

incorporate the error distribution described in the results section, above. 
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CHAPTER SIX: REAL-TIME ASSIGNMENT OF DUE DATES WITHIN WORKFLOW 
MANAGEMENT SYSTEMS 

The following material has been accepted for presentation and publication at the 2011 

Institute of Industrial Engineers (IIE) Industrial Engineering Research Conference (IERC) [28]. 

Abstract 

This research presents the application of real-time simulation to assign due dates within 

a multiprocessor, electronic workflow management system. The workflow system under study 

accepts from customers external requests (called orders) for work to be done. Upon receiving 

an order from a customer, the workflow system immediately quotes that customer a date by 

when the review of the order will be completed and a customized proposal against the order is 

generated. The customer fully expects the review of the order to be completed by the due date, 

and severe penalties are incurred if the review is completed before or after the quoted due 

date. Therefore, accurate determination of due dates for the delivery of this service is critical. 

The authors present an innovative approach to perform real-time sequencing of customer 

orders. Using machine learning concepts and discrete event simulation, the approach minimizes 

the deviation between actual proposal delivery dates and the quoted due dates. 
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Introduction 

Today, organizations face unprecedented levels of intense competition and these 

organizations are motivated to improve their competitive advantage through increased 

productivity, improved customer service and strict conformity to standards. As a result, 

information technology solutions that support and automate internal business processes have 

become critically important and serve as the backbone of the modern-day firm. These business 

processes, which describe key procedures within an organization, often involve multiple steps, 

several people, and significant resources. Workflow is the term that describes the logical steps 

that comprise a business process, i.e., the sequence of steps and the required tasks, resources 

(people and machines), tools and information needed for each step. It is this sequence of steps 

that creates or adds value to a firm’s activities. 

The information technology software solutions that support the automated coordination of 

the steps of a business process are called workflow management systems (WFMSs). The 

modern WFMS is a computerized system that is composed of a set of applications and tools 

that helps to define, create, and manage the tasks, resources, tools, and information associated 

with the workflows. WFMSs are generally responsible for the scheduling and execution of the 

tasks associated with the processes, where the core capabilities supported in most of today’s 

workflow technology solutions are: database management, document management, project 

management, electronic messaging, and directory services. For example, in a manufacturing 

environment, a product design specification originating from design engineer might be 
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automatically routed for approval through the WFMS to the project leader then to a technical 

director then to the production engineer and then back to the initiating design engineer. At 

each step in the design specification document workflow, one individual or a group of people is 

responsible for a specific task. 

At each step within its workflow, the order can be placed in one of four positions in the 

queue of orders: (1) at the head (first) position of the queue, (2) at the tail (last) position of the 

queue, (3) at a random position in the queue, or (4) it can preempt the order that is in process 

at the step. Once the task is complete, the workflow management system ensures that the 

individuals responsible for the next task are notified and receive the information they need to 

execute their associated steps of the process. It is important to note that, if a correction to an 

order needs to be made, it is sent to previous steps to be reworked, before it continues through 

its workflow. The nature of a WFMS depends on the type of workflow that is to be supported – 

either content-based or activity-based. Content-based workflow places a content object (e.g., a 

document) as the focal point of the process. Activity-based workflow focuses on a task. The 

focus of this research is content-based workflow. 

 

Description of the Problem 

The WFMS that inspires this research is a content-based, multiprocessor, electronic 

production workflow management system. The system accepts external customized requests 
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(called orders) from customers over time for work to be done. Upon receiving an order from a 

customer, the workflow system immediately quotes that customer a date by when the review 

of the order will be completed and a customized proposal against the order is generated. The 

customer fully expects the review of the order to be completed by the due date, and severe 

penalties are incurred if the review is completed before or after the quoted due date. The 

customers demand both demonstrably strict dates – that is to say that orders should not be 

delivered significantly before quoted due dates as this lends the impression that the due dates 

have been over-inflated, detracting from the credibility of this methodology.  Moreover, 

penalties for not meeting quoted delivery dates tend to be severe as they effect the likelihood 

of customers accepting the final order. Therefore, accurate determination of due dates for the 

delivery of this service is critical, and the desire is to minimize the deviation between actual 

proposal delivery dates and the quoted due dates, or the mean squared lateness. However, 

accurate determination of due dates for the delivery of customized work based on non-

technical specifications is a challenging task, and due date assignment is simply a difficult 

problem given the dynamic nature of most productive environments. 

In this chapter, the authors propose a new due date assignment method, where the method 

uses real-time simulation to predict the actual delivery date of the customized work to the 

customer. As can be imagined, the queue priority discipline at each step, i.e., the position in 

which the order is placed in queue at each of its steps as the order progresses through its 
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workflow, greatly influences the order’s delivery date. Therefore, it is imperative that any due 

date quoting approach consider this in its prediction. 

The remainder of this chapter is organized as follows. Section 2 summarizes the previous 

research highlighting some of the salient literature from the areas of due date quoting, and 

predictive use of simulation models. Section 3 presents the formulation of the problem under 

study. Section 4 describes the proposed due date assignment methodology, and Section 5 

illustrates the performance of the proposed method within a real-world WFMS.  The chapter is 

concluded in Section 6 with a summary and a discussion of future research. 

Previous Related Work 

Cheng and Gupta [14] survey the existing research with respect to due date determination. 

In this survey, Cheng and Gupta [14] open by pointing out that meeting due dates is extremely 

important to practicing managers due to the customer service implications. They then utilize a 

classification scheme first proposed by Elion [15], which has six dimensions: (1) Static vs. 

Dynamic, (2) Deterministic vs. Stochastic, (3) Single-product vs. Multi-product, (4) Single-

processor vs. Multi-processor, (5) Theoretical vs. Practical, and (6) Exogenous due dates vs. 

Endogenous due dates. Since exogenous due dates obviate due date quoting and lead directly 

to sequencing and scheduling problems, Cheng and Gupta [14] focus their attention on 

endogenous due dates. Using the above classification scheme, they conclude that there is very 

little extant research on dynamic, complex, multi-processor systems. 
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Subsequent to the survey conducted by Cheng and Gupta [14], Cheng [17] describes a 

sequencing algorithm when using the slack due date quoting policy. He simplifies the system 

under consideration by assuming that once a set of jobs is sequenced, no subsequent jobs will 

affect the system’s performance, there will be no re-sequencing of the jobs between stations 

and all of the earliness and tardiness costs are constant. In effect, the lack of consideration of 

dynamic arrival of jobs and non-permutation scheduling becomes a presupposition of first 

come, first serve (FCFS). Cheng [17] concludes that a shortest processing time (SPT) sequence is 

optimal, although this conclusion does not fully support the findings of Duenyas and Hopp [18], 

who propose an analytical framework for evaluation of various job sequencing rules given that 

flow times can be optimally predicted. Working through a series of increasingly generalized 

scenarios, they conclude that an earliest due date (EDD) sequence is optimal if the tardiness 

penalty is constant for all customers and proportional to the tardiness, which seems to 

contradict Cheng [17]. To achieve this result Duenyas and Hopp [18], only assume that 

preemption does not take place. 

Similar to Duenyas and Hopp [18], Lawrence [19] presupposes that the practitioner either 

has a simple system with closed-form flow time estimates, or has a method to determine flow 

time for complex systems. With that as a precondition, he describes an analytical approach to 

setting due dates based on previously-observed forecasting errors. While Lawrence [19] 

proposes to fit the forecasting errors, which he refers to as “G”, using a Ramberg-Schmeiser 

distribution, he concludes that Erlang and Gaussian distributions worked equally well. He makes 
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a key observation that is particularly germane in this context. Various measures of performance 

lead to differing uses of the error distribution. For example, mean absolute lateness is 

minimized by adding the median of the error distribution to the predicted flow time. Mean 

squared lateness is minimized by adding the mean of the distribution to the predicted flow 

time, and service level matching is met by adding the target percentile of the distribution to the 

predicted flow time, e.g., G-1(0.9) for a 90% service level. 

Van Ooijen and Bertrand [20] introduce a distinction in terminology intended to allow some 

leeway between the tightly-estimated Internal Due Date (IDD) and the slightly looser External 

Due Date (XDD). The difference between the two is analogous to a margin of error ei, Alfieri’s 

Safety Time, or Lawrence’s G. The authors propose to adjust the XDD using the ratio of the 

current level of work in progress (acwip) to the average level of work in progress (nwip). The 

results of Van Ooijen and Bertrand [20] bring some closure to the disagreement between Cheng 

[17] and Duenyas and Hopp [18] by noting that when earliness and lateness penalties are of 

similar magnitude, then SPT sequencing works best; however, when tardiness penalties are 

much larger than earliness costs, a due date sequencing rule is best. Another interesting 

observation that can be made from the data is that, in spite of the dependence on FCFS 

sequencing in much of the literature, FCFS is among the worst performers of the sequencing 

rules tested. It does, however, provide the best predictions of performance. 

Much of the existing literature discusses using models of systems to conduct experiments, 

where the objective is to improve system performance by adjusting resources or queuing 
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behavior [22, 23]. There is some literature that seeks to use the model to evaluate differing 

courses of action such as selecting a sequence of jobs to be scheduled. For example, Azzaro-

Pantel, Bernal-Haro et al. [24] describe using a combination of discrete-event simulation and a 

genetic algorithm to optimally dispatch tasks in a job shop environment, with the genetic 

algorithm generating the sequences and the DES model evaluating each sequence. In a related 

fashion, Reijers [25] discusses using short-term simulations coupled with workflow to provide 

decision support, i.e., scheduling additional resources during peak loads. Much less of the 

literature discusses the potential for use of the faithful model to make predictions about the 

system just the way it is. Rojanapibul and Pichitlamken [26] make some excellent observations 

about using embedded simulations to calculate prediction intervals in a flow shop environment. 

Cates and Mollaghasemi [27] describe the use of simulation to predict project completion dates 

and thereby enhance visibility of risk to better manage completion of complex projects. In both 

of these cases, though, the job parameters are reasonably established before the predictions 

are made. 

This review of the literature illustrates the bounds of the current literature and highlights 

the lack of coverage for due date quoting in systems (in research and in practice) that do not 

implement rigid queuing disciplines and where job preemption and job recirculation is 

permissible and commonplace. 
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Problem Formulation 

We now provide the formulation of the due date quoting problem as it relates to the 

WFMS in this study. First, however, the relevant notation is given. 

 

Notation: 

N: set of orders to be scheduled and for which due dates are quoted, where order 

i = 1, …, |N| 

Si: set of steps for customer order i, where step j = 1, …, |Si| 

Mj: set of processors at step j 

ri: release date for customer order i, i.e., the date that order i arrives to the 

system to receive a due date quote 

pij: processing time for order i at step j in its workflow 

wij: waiting time for order i at step j 

   : quoted due date for order i 

ei: margin of error associated with order i 

The estimated, or quoted, due date     of an order i is a function of four key elements, as 

shown in Equation 6.1, 

           

    

   

     

    

   

     (6.1) 
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Each term in Equation 6.1 is either obtained from source data or derived from the 

uncertainty of the data. The quoted due date for an order i is a function of its release date ri. 

The quoted due date for order i is also a function of its processing times at its |Si| workflow 

steps,     
    
   , where the actual processing time pij values are drawn from a random 

probability distribution. The error ei may be assumed or estimated from historical performance, 

and the waiting times of order i     
    
    are a function of the number of orders in queue at 

each step and the queuing discipline at each step.  The salient difficulty in predicting 

completion times, i.e., turn-around times (TATs), which ultimately determine due dates, in a 

system with stochastic processing times and dynamic queuing priority disciplines is summarized 

in Equation 6.2, 

        
  
                       ,   (6.2) 

where                      is the waiting time function for order i, and the order waiting time is a 

function of IAT, which is the interarrival time for orders that arrive to the system after order i, 

and                 , which are the vectors of processing times, queuing priority disciplines, and 

rework probabilities, respectively, at each step for the other orders in the system. Note that the 

order arrival process need not be stationary. Estimating Wi is the greatest challenge in quoting 

due dates due to the inherent stochastic nature of the WFMS. 

The authors’ proposed method to determine Wi involves: (1) constructing an embedded 

discrete-event simulation (DES) model, (2) determining the parameters for the DES model that 
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are applicable when a new order i enters the WFMS, (3) determining the properties of order i 

necessary for representation within the DES model, and (4) repeatedly running the model until 

an acceptable margin of error on predicting its TAT, thus, its estimated delivery date, is 

determined. The measure of performance is the mean squared lateness, or 

   
 

   
   

 

   

 
 

   
       

  
 

   

  

where ci is the actual completion time of order i, and ci = ri + TATi. 

 

Proposed Methodology 

The authors now describe the proposed due date assignment methodology and its three 

main phases – (1) Update, (2) Record, and (3) Simulate. However, before describing the 

methodology, the assumptions on which it is based are provided. The proposed methodology is 

developed based on the following list of assumptions: (1) there is exactly one processor at each 

step, (2) there is no forced idle time at the processors at the steps, and (3) the processor times 

at each step follow a Weibull distribution. 

Phase 1 of the proposed method, the Updating phase, uses historical order data from the 

WFMS. The number of past orders n or the past t time periods is used to update the 

parameters of the embedded DES model by executing the heuristic developed that effectively 

reverses the discrete-event simulation and records the behavior of the WFMS using the 
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historical data. The desired value of n or t is set by the user of the WFMS. The parameters of 

the DES model that are updated include the Weibull shape  and scale  parameters for the 

processing times, and the order rework probabilities at each step. Most importantly, the 

queuing discipline at each step is determined. Recall that, at each step within its workflow, an 

order can be placed in one of four positions in the queue of orders: (1) at the head (first) 

position of the queue, (2) at the tail (last) position of the queue, (3) at a random position in the 

queue, or (4) it can preempt the order that is in process at the step. A probability parameter Pk 

for each position k at a step is computed based on the historical order data, and     
 
       

for each step j. 

Each of the DES model parameter values is exponentially smoothed against the previously 

stored values using the smoothing parameter . For the processing time parameters, however, 

an additional step is executed before the exponential smoothing. A Komolgorov-Smirnov 

Goodness of Fit test is performed for the newly-calculated distribution to ensure that the new 

parameters fit the processing time distribution. If they fit (with α = 0.05), the exponential 

smoothing takes place. If the parameters do not fit, the new processing time values are 

discarded, and an exception is logged. After the DES model parameter values are updated, they 

are stored in a centralized database for later reference and updating. This updating phase 

occurs at a frequency F set by the user of the WFMS. 

Phase 2 of the proposed method, the Record phase, records a “snapshot” of the current 

orders in the WFMS whenever a new customer order i arrives to the system. This snapshot 
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records the current orders that are in queue at each step as well as which processors are busy. 

These orders are used to populate the queues at the steps in the embedded DES model. 

Additionally, the past n orders (or the orders that arrived during the past t periods) are used in 

Phase 3 to inform the non-stationary arrival process. 

Finally, Phase 3, the Simulate phase, places the arriving order i in the first queue in its 

workflow either at the head (first) position, at the tail (last) position, at a random position or 

the order preempts the order currently in process at the step based on the queuing probability 

parameters for that step, as determined in Phase 1. With the embedded model now loaded to 

match the current system’s state, and the new order i inserted, the simulation model is run 

using the historical n orders (or the orders that arrived during the past t periods) until the new 

order i completes all of its |Si| workflow steps. 

A user-specified number of replications R are run, and the average completion times 

(and associated confidence intervals) for the new order i at each step are recorded. After the 

replications are completed, the step completion times are summarized, including the 

completion time of the last step in order i’s workflow. This value is the predicted value for the 

TAT, and ultimately the quoted due date    , for the new order. 
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Experimental Study 

Description of WFMS under Study 

The proposed due date assignment methodology is evaluated within a workflow 

management system that supports a real-world business process and one that inspired this 

research. It is similar in logic to a reentrant flow shop in which the sequence of steps that an 

arriving order passes through is known and orders may return to previous steps (based on a 

probability) before exiting the system. There are 11 steps in the workflow that this particular 

WFMS supports (see Figure 28). 

 

Figure 28 - Workflow sequence of orders in the WFMS under study 

The Updating phase occurs once per day, i.e., the updating frequency F = 1 day. The 

historical data used to update the parameter values for the embedded DES model is from the 

past six months of data, i.e., t = 6 months, which uses approximately 145 days of production 
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workflow logs  (from 2/1/2010 to 6/6/2010). During this period, 572 orders are received, 

processed, and returned to the originating customer. 

Experimental Data 

After each order arrives to the system, it is assigned a vector of processing times, which 

are derived from the historical order data. The processing time distributions for this 

experimental study are summarized in Table 3, and, in fact, the times can be described by the 

Weibull distributions fitted with α = 0.05. 

Table 3 - Processing times by step, which are derived from historical data 

Step 

Processing Time Distribution 

[ WEIB(Scale , Shape ) ] 

1 WEIB(0.15, 0.39) 

2 WEIB(1.19, 0.44) 

3 WEIB(0.40, 0.30) 

4 WEIB(0.71, 0.41) 

5 WEIB(0.93, 0.42) 

6 WEIB(0.57, 0.34) 

7 WEIB(0.82, 0.39) 

8 WEIB(0.51, 0.34) 

9 WEIB(0.34, 0.33) 

10 WEIB(0.92, 0.41) 

11 WEIB(1.32, 0.46) 
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The logic of the current WFMS presents to the processor at each step a list of the orders 

requiring processing with the newest orders at the top of the list. In other words, the WFMS 

processes an order at each step in last in, first out (LIFO) order. As each order is completed, the 

error between the predicted and actual flow times is captured and the standard deviation of 

the expanded sample is re-calculated. The upper confidence limit of the mean TAT is also 

calculated for each new order. 

Discussion of Results 

Initial results of the experiments conducted indicate an expected result – that the predicted 

TAT for a given order is closely correlated (ρ = 0.76) to the number of orders in queue when the 

new order enters the system as shown in Figure 29. The red line in the figure represents the 

90% Upper Confidence Limit (UCL) for the mean TAT predicted by the model, while the blue line 

– plotted against the secondary y-axis – represents the total number of orders in the system 

when the new order arrives. Of more practical benefit is the indication of reasonable predictive 

performance (65% of the actual jobs were delivered before the predicted date) of the predicted 

TATs for a given day, and the actual, observed turn-around times for orders entered on that day 

as shown in Figure 30.  The red line is the same as in Figure 29. The 90% UCL for the mean, but 

the green line represents the mean TAT for the actual orders that entered the system on that 

day. 
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Figure 29 - Correlation between customer order WIP and TAT 

 

Figure 30 - Predicted TAT vs. Actual TAT 
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The unadjusted performance shown in Figure 30 is actually quite reasonable. Simply 

using the UCL of the mean flow time for predicting the due dates yields a service level of 

approximately 65%. Adjusting the flow time by adding in some multiple of the variance of the 

forecasting error ei (1.285σe) allows the achievement of a 90% service level.  Figure 31 depicts 

the same actual due date performance (green line) versus the error-adjusted predicted due 

date (in red). The implementation of Lawrence’s methodology achieved 92% during the 

historical period analyzed. And, while achieving at least a 90% score is desirable for the process 

owner, it may be more attractive to a customer to tune the predictive subsystem for an 80% 

service target and incentivize the process owner to achieve the next 10%.  An interesting 

benefit of this methodology is that it provides a ready mechanism for continuous improvement, 

i.e., if the processor is successful in achieving 90% during this period, future order flow times 

will be based on this tighter standard. 
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Figure 31 - Predicted versus Actual flow time 

Summary and Future Work 

The authors’ previous work indicates that the existing, deterministic methods of quoting 

due dates suffer when applied to systems not based on FCFS queuing and argues that 

investigation of a stochastic approach is warranted. This paper documents that investigation, 

and indicates that a carefully-crafted mix of automated analytics and embedded simulation 

might indeed provide a practical alternative for higher fidelity due date quoting in systems with 

non-standard queuing behavior and high levels of rework. The authors are currently performing 
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additional research based on a prototypical implementation integrated to a production WFMS 

to validate these results in a practical setting. 

Future work includes publication of a thorough description of the heuristic developed to 

decompose the WFMS historical logs, and analysis of the most appropriate exponential 

smoothing constant , which the authors suppose will vary with the number of historical data 

points available and which are used to determine the DES modeling parameters. 

The following chapter describes the extension of this research to encompass the live, 

production workflow system operating in real-time, with results reported after 75 days of 

operation during which 119 orders were processed. 
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CHAPTER SEVEN: RESULTS OF INTEGRATING MACHINE LEARNING AND 
SIMULATION TO PREDICT DELIVERY TIMES UNDER UNCERTAINTY 

The following material has been submitted for review in the Information Systems 

Frontiers journal. 

Abstract 

This research presents a methodology for, and the results of a prototypical 

implementation of the application of real-time simulation to assign due dates within a 

multiprocessor, electronic workflow management system. The workflow system under study 

accepts orders from external customers for work to be done. Upon receiving an order from a 

customer, the workflow system’s embedded simulation immediately quotes that customer a 

date by when a customized proposal against the order will be generated. The customer fully 

expects to receive the proposal by the due date, and severe penalties are incurred if the 

proposal is delivered after or significantly before the quoted due date. The customers demand 

both demonstrably strict dates – that is to say that orders should not be delivered significantly 

before quoted due dates as this lends the impression that the due dates have been over-

inflated, detracting from the credibility of this methodology.  Moreover, penalties for not 

meeting quoted delivery dates tend to be severe as they effect the likelihood of customers 

accepting the final order. Therefore, accurate determination of due dates for the delivery of 

this service is critical. Using machine learning concepts including a heuristic algorithm for 
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determining queuing behavior and discrete-event simulation including a component that 

implements non-standard queuing, the approach minimizes the deviation between actual 

proposal delivery dates and the quoted due dates. 

Introduction 

Accurate determination of due dates for the delivery of bespoke items based on non-

technical specifications is a challenging task.  Limiting fixed staffing levels to control costs is at 

odds with having sufficient resources necessary to reliably quote these due dates in a timely 

fashion.  An environment that is extremely contentious with respect to the necessary resources 

and offering little in the way of firm prioritization only exacerbates the situation. And finally, 

when customers demand both demonstrably strict dates and penalties for exceeding those 

dates the situation becomes nearly untenable.  The authors propose that an artful combination 

of automated analysis and efficient simulation might be successful in resolving this stark 

situation. 

Prerequisites 

In order to apply the methodology described here, a practitioner should already have (1) 

codified the business process to be modeled, (2) developed a functional, transaction-based 

workflow system, (3) performed an initial, manual data analysis of the processing times, 
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queuing behavior and rework rates, and (4) built a representative discrete event simulation 

(DES) model of the workflow process to validate understanding of the practitioner’s system.   

The diagram at Figure 32 represents a stylized representation of the business process 

under consideration showing the documents that map to the order and proposal and the actors 

involved in the process. 

  

Figure 32 - Stylized business process 

With the business process identified, it is then mapped to a workflow system that 

facilitates the flow of information, enforces the business logic, and functions as a common tool 

for situational awareness.  This mapping is shown, conceptually, in Figure 33. 
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Figure 33 - Mapping the business process to the workflow system 

In order to undertake the analysis of the workflow system’s performance, the 

transactional events from the workflow system are decomposed into arrival and departure 

events.  In the author’s case, SQL queries and Java code were written to facilitate this 

decomposition which is depicted at Figure 34. 
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Figure 34 - Transactions to events 

With the decomposed events as inputs, three distinct analytical steps are undertaken to 

determine the queuing behavior at each step, the processing times for orders at each step, and 

the re-work rates per step.  The results of these analyses are combined and stored as 

parameters that will be inputs to both the stand alone and embedded DES models. This process 

is depicted at Figure 35.   
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Figure 35 - Consolidation of analytical results 

In this authors’ case, the manual analysis was completed with some interesting results 

which will be detailed in the section titled “Necessity of Real-world Queuing Behavior” and 

which precluded a complete validation of the standalone model’s behavior as in queue 

preemption is not readily achievable in the modeling tools available to the author. 

Based on the results of the analysis, the standalone model of the system at hand is 

depicted in Figure 36. 

Accept/Reject/Return

Decision for Prop Z

at Step X

Queue Insertion for Prop Z at Y/W

at Step X

Processing Time for Prop Z

at Step X

Output of these 

processes is written 

to ModelParameters 

table

BranchYAcceptFraction

BranchYRejectFraction

StepYPreemptFraction

StepYLIFOFraction

StepYFIFOFraction

StepYProcessingShape

StepYProcessingScale

Java Process reads and analyzes 

ModelParameters

· Relative Frequency analysis for 

Accept/Reject/Return Decisions

· Relative Frequency analysis for 

Queue Insertion Position

· Weibull Least Squares estimate 

for Processing Times

Output written to ModelProperties 

table

Note:  Exponential 

Smoothing is 

applied to each of 

these parameters 

as they are updated



122 
 

 

Figure 36 - Detailed DES model of system 

With the prerequisites in place, the authors’ prototypical scheduling subsystem to the 

workflow system was constructed.  The diagram at Figure 37 depicts the major components of 

the amended workflow system. 
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Figure 37 - Components of the amended workflow system 

Mathematical Formulation 

To describe the situation mathematically, consider the following definitions and 

relationships: 
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li: lead time associated with job i  

ri: release date for job i, i.e. the date that job i enters the system 

   : quoted due date for job i 

di: actual delivery date for job i 

Li: Lateness of job i with respect to its quoted due date 

q: number of jobs in process or in queue when job i enters the system 

Assuming that there is no down time at the steps and that there is no transportation 

time between steps, then the flow time for a job, fi, is simply the sum of the expected 

processing times for the steps for that job, pij, and the expected waiting time per step for that 

job, wij. 

             
  
            (7.1) 

Then the lead time, li, used to quote a due date for that job is the flow time, fi, plus 

some margin of error, ei, associated with the estimation of the processing and waiting times. 

                                                        (7.2) 

 The predicted due date for the job,    , is then the release date for the job into the 

system, ri, plus the estimated lead time, li. 

                                                   (7.3) 

Refactoring this formulation as shown below allows for a more straightforward 

segregation of data elements that are required for due date quoting based on the source and 

uncertainty of the data.  To wit: the release date is given, the processing times are drawn for an 
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appropriate distribution, the error may be assumed or estimated from historical performance, 

and the waiting times are related to the jobs in queue and queuing behavior. 

           
  
        

  
                                                                                         (7.4) 

The following relationship summarizes the salient difficulty in predicting turn-around 

times (TATs) in a system with non-standard queuing behavior.   

        
  
                                (7.5) 

Where IAT is the inter-arrival time for jobs that appear after job i arrives, and               are 

the vectors of processing times, queuing behaviors, and rework rates respectively for the other 

jobs in the system. Note that the arrival process need not be stationary, and in fact, is not in the 

subject system [11].  

Completing the formulation, the lateness of a job, Li, with respect to its quoted due date 

is simply the difference between the actual delivery date, di, and the quoted due date,    . 

                                          (7.6) 

The author’s proposed solution to determining Wi is then to (1) construct an embedded 

DES model, (2) determine the parameters for that model applicable at the point in time where 

job i enters the system, (3) determine the properties of job i necessary for representation 

within the model, (4) to repeatedly execute the model until an acceptable margin of error on 

predicting its time in system can be achieved, and (5) adjust the predicted due date based on 

the error distribution observed from previously scheduled jobs. With this methodology 

instantiated against a workflow system, the practitioner may readily answer the relevant 
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question: “Given a new order today, when can I expect to receive the corresponding proposal 

(with 90% confidence)?” 

Related Literature 

Cheng and Gupta [14] survey the existing research with respect to due date determination. 

In this survey, Cheng and Gupta [14] open by pointing out that meeting due dates is extremely 

important to practicing managers due to the customer service implications. They then utilize a 

classification scheme first proposed by Elion [15], which has six dimensions: (1) Static vs. 

Dynamic, (2) Deterministic vs. Stochastic, (3) Single-product vs. Multi-product, (4) Single-

processor vs. Multi-processor, (5) Theoretical vs. Practical, and (6) Exogenous due dates vs. 

Endogenous due dates. Since exogenous due dates obviate due date quoting and lead directly 

to sequencing and scheduling problems, Cheng and Gupta [14] focus their attention on 

endogenous due dates. Using the above classification scheme, they conclude that there is very 

little extant research on dynamic, complex, multi-processor systems. 

Subsequent to the survey conducted by Cheng and Gupta [14], Cheng [17] describes a 

sequencing algorithm when using the slack due date quoting policy. He simplifies the system 

under consideration by assuming that once a set of jobs is sequenced, no subsequent jobs will 

affect the system’s performance, there will be no re-sequencing of the jobs between stations 

and all of the earliness and tardiness costs are constant. In effect, the lack of consideration of 

dynamic arrival of jobs and non-permutation scheduling becomes a presupposition of first 
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come, first serve (FCFS). Cheng [17] concludes that an shortest processing time (SPT) sequence 

is optimal, although this conclusion does not fully support the findings of Duenyas and Hopp 

[18], who propose an analytical framework for evaluation of various job sequencing rules given 

that flow times can be optimally predicted. Working through a series of increasingly generalized 

scenarios, they conclude that an earliest due date (EDD) sequence is optimal if the tardiness 

penalty is constant for all customers and proportional to the tardiness, which seems to 

contradict Cheng [17]. To achieve this result Duenyas and Hopp [18], only assume that 

preemption does not take place. 

Similar to Duenyas and Hopp [18], Lawrence [19] presupposes that the practitioner either 

has a simple system with closed-form flow time estimates, or has a method to determine flow 

time for complex systems. With that as a precondition, he describes an analytical approach to 

setting due dates based on previously-observed forecasting errors. While Lawrence [19] 

proposes to fit the forecasting errors, which he refers to as “G”, using a Ramberg-Schmeiser 

distribution, he concludes that Erlang and Gaussian distributions worked equally well. He makes 

a key observation that is particularly germane in this context. Various measures of performance 

lead to differing uses of the error distribution. For example, mean absolute lateness is 

minimized by adding the median of the error distribution to the predicted flow time. Mean 

squared lateness is minimized by adding the mean of the distribution to the predicted flow 

time, and service level matching is met by adding the target percentile of the distribution to the 

predicted flow time, e.g., G-1(0.9) for a 90% service level. 
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Van Ooijen and Bertrand [20] introduce a distinction in terminology intended to allow some 

leeway between the tightly-estimated Internal Due Date (IDD) and the slightly looser External 

Due Date (XDD). The difference between the two is analogous to a margin of error ei, Alfieri’s 

Safety Time, or Lawrence’s G, the authors propose to adjust the XDD using the ratio of the 

current level of work in progress (acwip) to the average level of work in progress (nwip). The 

results of Van Ooijen and Bertrand [20] bring some closure to the disagreement between Cheng 

[17] and Duenyas and Hopp [18] by noting that when earliness and lateness penalties are of 

similar magnitude, then SPT sequencing works best; however, when tardiness penalties are 

much larger than earliness costs, a due date sequencing rule is best. Another interesting 

observation that can be made from the data is that, in spite of the dependence on FCFS 

sequencing in much of the literature, FCFS is among the worst performers of the sequencing 

rules tested. It does, however, provide the best predictions of performance. 

Much of the existing literature discusses using models of systems to conduct experiments, 

where the objective is to improve system performance by adjusting resources or queuing 

behavior [22, 23]. There is some literature that seeks to use the model to evaluate differing 

courses of action such as selecting a sequence of jobs to be scheduled. For example, Azzaro-

Pantel, Bernal-Haro et al. [24] describe using a combination of discrete-event simulation and a 

genetic algorithm to optimally dispatch tasks in a job shop environment, with the genetic 

algorithm generating the sequences and the DES model evaluating each sequence. In a related 

fashion, Reijers [25] discusses using short-term simulations coupled with workflow to provide 
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decision support, i.e., scheduling additional resources during peak loads. Much less of the 

literature discusses the potential for use of the faithful model to make predictions about the 

system just the way it is. Rojanapibul and Pichitlamken [26] make some excellent observations 

about using embedded simulations to calculate prediction intervals in a flow shop environment. 

Cates and Mollaghasemi [27] describe the use of simulation to predict project completion dates 

and thereby enhance visibility of risk to better manage completion of complex projects. In both 

of these cases, though, the job parameters are reasonably established before the predictions 

are made. 

This review of the literature illustrate the bounds of the current literature and highlight 

the lack of coverage for due date quoting in systems (in research and in practice) that do not 

implement rigid queuing disciplines and where job preemption and job recirculation is 

permissible and commonplace. 

Necessity of A Novel Approach 

As mentioned in the introduction, the author asserts that better predictive performance 

in quoting due dates should be achieved by making a faithful model of the system into which a 

new job is then introduced.  The motivation for doing so, as well as the argument to support 

this assertion follows in two parts: modeling versus deterministic assessment and real-world 

versus ideal queuing behavior [11].  
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Necessity of Modeling 

Meeting promised due dates is critical to customer satisfaction [14, 18, 19, 21]. 

Promised due dates are readily met when arbitrarily long lead times are set.  However, 

quoting arbitrarily long lead times to ensure service levels dilutes our customer appeal while 

overly optimistic lead times erodes customer confidence [16]. Based on this, more accurate due 

dates (with narrower confidence intervals) are better (more pleasing to customers) as long as 

the mechanism is practical to implement [14]. 

As expressed in the Problem Formulation section, the due-date for a job is dependent 

on that job’s processing times and waiting times, and should also include some safety margin 

[16, 17, 19]. 

Also from the Problem Formulation section, the dominant feature of the due-date 

setting problem is estimating the wait time for a given job [14]. 

The wait times for a job are obviously dependent on the jobs already in the system, 

though the particular relationship is also dependent on the queuing scheme assumed [16, 18, 

19]. 

Including more information about the current state of the system leads to better 

predictions of due dates [14, 16, 18-21]. 

Analytical methods are suitable for simple cases with ideal assumptions, but more 

complicated systems require more complicated analysis typically involving simulation [14, 16, 

18]. 
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A detailed discrete event simulation model of the actual system will allow more 

information on the system (design, historical performance, and current state) to be brought to 

bear on the estimation of waiting times. 

Necessity of Real-world Queuing Behavior 

The data observed from the subject system for this author’s research exhibits job 

insertion at head of line preemptively, head of line without preemption, tail of line, and other 

locations in the middle of the queue as depicted in Figure 38.  

 

Figure 38 - Flexible Queue 

Since the insertion location for a given job determines the minimum number of jobs that 

will be processed before that job, it provides a lower bound for the wait time of the target job 

at that step, but this determination is not complete, as subsequent jobs may arrive after the job 

in question and be queued in front of the target job increasing its wait time at that step. 
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Figure 39 - Relative percentage of jobs inserted into queues by position 

   

As mentioned in the Problem Formulation section, several thousand historical 

transactions are available for analysis of the system under test.  By decomposing the 

transactions into corresponding arrival and departure events and then processing those events 

in departure order it is possible to glean the relative insertion position of jobs at each step.  The 

results of this analysis are applied to the model of the system under test for this paper and 

expressed as the relative frequency of job insertion location by step as shown in Figure 39. 

These relative frequencies will be used in the empirical queuing implementation described in 

the “System Under Test” section.  While all of the existing queuing models provide equivalent, 

average, system-level performance prediction, the author’s goal is to accurately model the 
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behavior of a single, discrete job within the context of its fellow jobs, and therefore a more 

flexible model is required. 

Argument Summation 

In summary, more accurate assignment of due dates will make customers more likely to 

continue to place their orders using the system.  Outside of certain idealized systems, 

incorporating more detail in the prediction process can make those predictions more accurate.  

A DES model allows for incorporating more system detail than any of the existing mechanisms 

and incorporating real-world queuing behavior is a key aspect of that mechanism.  It is, 

therefore, worthwhile to study the forecasting performance of a faithful DES model against 

existing, deterministic policies [11]. 

Methodology 

The author’s prototype solution for implementing this methodology is composed of two 

distinct, but closely inter-related components.  The first component performs an automated 

analysis of historical data to determine descriptive parameters for a discrete event simulation.  

The second component is an embedded simulation model that makes use of these descriptive 

parameters to replicate the behavior of the target system.  It is important to note that the 

predictive power of this construct is dependent on both components, which must act in 

concert. 
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Automated Analysis 

The automated analysis component performs five major functions: (1) decompose the 

departure transactions (by job and by station) from the workflow system into Departure and 

Arrival events, (2) use the correlated Departure and Arrival events to determine the rework rate 

of the sample of jobs by station, (3) use the correlated events by station, to determine the 

queuing behavior for that station, (4) use the correlated events by station, to decompose the 

total time at a station for a job into waiting time and processing time and fit the processing 

times to a valid statistical distribution, and (5) utilize the transaction logs, to determine the 

inter-arrival rate per month.  The last four functions output their results to a database as a 

series of parameters to be used by the embedded simulation. 

The first function is a pre-processing step facilitating the remaining functions. As 

mentioned, the system in question is an electronic workflow system.  As such, there is no 

perceptible transportation delay.  Without transportation delay, the decomposition of the 

departure transactions simply requires the creation of a departure event from the current 

station, and an arrival event at the next station visited by the job.  The times of occurrence for 

each of these events are identical; the only complicated aspect is determining the next station 

visited.  As this complication is purely self-inflicted by the author’s implementation of 

transactions, recording the details of overcoming this particular hurdle will be glossed over.  A 

sage practitioner would be well served to capture both the source and destination stations 

within the departure transaction and thus avoid this step entirely.  As the output of this step is 
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only used as the input for the subsequent three steps, there is no need to store these results 

back to the database. 

The second function uses the correlated departure and arrival events created by the 

first function to determine rework rates.  This is accomplished simply by implementing a two-

level, nested, case construct which takes at the outer-level the source station, and at the inner-

level the destination station.  The rework status per job is then captured as a logical action, in 

the author’s case a job is accepted, rejected or returned without further action.  The relative 

frequencies of these actions are recorded by station as model parameters in the database and 

are used by the branch components to correctly route jobs from one station to the next – this 

pairing of analytical and simulation components directly addresses     from Equation 7.5. 

The third function, determining the queuing behavior, is considerably more interesting 

to describe, and is in fact, half of the novel aspect of the author’s formulation for attacking     in 

Equation 7.5.  In general terms, the concept of the function is similar to executing a DES in 

reverse.  In a normal DES, both the processing time for a job, and the queuing policy for a 

station are specified and the result for the job is the departure time from the station.  In this 

case, however, the arrival and departure times are known and the results of the analysis are the 

processing time for the job, and the queuing behavior of the station.  More specifically, the 

historical jobs arriving at a given station are processed in time-order of their arrival at the 

station but the jobs are placed in the queue based on their, known a priori, departure time.  
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Executing this process one input job at a time, it is possible to determine the queue insertion 

location at the station, and the accumulated processing time for the job.  

For details of this process, including pseudo-code for implementation, see [28].  The 

concept is represented graphically in Figure 40. 

 

Figure 40 - Queue position determination 

In pseudo-code, the virtual Server performs the following top-level tasks: 

Read previous 180 days of Transactions for Server; 

Create Arrival Events and Departure Events based on 

transactions for completed jobs; 

loop through events in time order {  

   if (arrival event) Push(event); 

   else if (departure event) Pop(event); 

} 

 

The pseudo-code above references 180 days of transactions as the look-back window 

which is appropriate in the author’s business environment.  Depending on the circumstances of 
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the practitioner’s environment the look-back window might be appropriately specified in terms 

of days, or in terms of a number of transactions. 

The output of this function, which is accomplished by the “Push” method of the virtual 

server, is three parameters per station specifying the fraction of jobs that preempt, queue at 

the head-of-line, and queue at the tail-of-line.  Jobs that do not meet any of the three criteria 

are assumed to be randomly placed in the queue between head-of-line and tail-of-line. 

The fourth function separates the processing time from the waiting time and then fits 

the processing times to a statistical distribution.  This statistical distribution addresses, in 

conjunction with the server simulation component, the     component from Equation 7.5.  In the 

author’s implementation, the first portion of this function – separating processing and waiting 

times for a job at a station – is accomplished by a combination of the “Push” and “Pop” virtual 

server methods described above.    

 

Figure 41 - Processing time determination 

The second portion of the function uses a well known formulation to convolve the 
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convolved data exhibits the shape and scale parameters of a Weibull distribution fitted to the 

unprocessed data. Similar to the implementation(s) above, the newly calculated parameters are 

combined using exponential smoothing – as in the second and third functions – with the 

existing parameter values and the resultant, smoothed values stored back into the database, 

two parameters per station. In addition, a Kolmogorov-Smirnov goodness of fit test is executed 

between the source data and the fitted distribution, and the newly calculated parameters are 

only combined with the existing parameters if the test statistic is less than the adjusted critical 

value for the sample size [22]. 

As the reader may have already surmised, the fifth function, calculating the inter-arrival 

rates by month, when coupled with the source component of the simulation, completes the 

input parameters to Equation 7.5, namely IAT.  This function is executed very simply using an 

SQL query which aggregates the arrivals by month for the previous 12 months.  The more 

interesting aspects of this function reside in the simulation component discussed below. 

Simulation Components 

To build the embedded model used to simulate the workflow system, a series of lower-

level modeling components had to be written in Java.  They are described below, and shown 

with their key parameters in Figure 42 at the bottom of this section. 

The Source component uses parameters from the database to implement a non-

stationary, Poisson arrival process which varies month-by-month. At each arrival event the 
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Factory Component (see below) is used to generate an order entity which is sent to the output 

component of the source which would normally be either a Branch or a Server.  

The Factory component produces, on demand, entities of type Order with processing 

times per step drawn from Weibull distributions whose parameters are taken from the 

analytical component.  The Factory is also capable of creating a special “target” Order. 

The Order component extends the Entity class and implements the Comparable 

interface.  It also contains a Properties object that is used to capture the history of the event as 

it traverses the model. 

The Server component, in conjunction with its Queue, implements the empirical 

queuing behavior specified by the parameters from the analytical component.  

The Queue component utilizes the CompareTo() method of the Order entities to queue 

the Orders based on the value set for the Order by the Queuing Behavior method of the server. 

The Branch component implements routing of incoming Orders to one of two or more 

destinations based on the rework parameters from the analytical component.  The author’s 

implementation adds special treatment for the “target” Order – it is not allowed to exit through 

the “return without further action” sink. 

The Sink component disposes of non-target Orders as they depart the simulation, and 

stores the target Orders in a static collection when they exit.  The Sink also signals a 

SimulationEnd event when the target Order exits.  
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Figure 42 - Modeling components 

Embedded Simulation 

The top-level Java process which implements the simulation first connects to the 

workflow system’s database.  This connection is used to (1) read in the parameters generated 

by the analytical functions above, and (2) to determine the current state of the workflow 

system. A graphical representation of the embedded model is shown in Figure 43.  
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Figure 43 - Embedded model with parameters 

 The top-level process then instantiates the required types and quantities of modeling 

components using the analytical parameters.  The instantiated modeling objects are then 

connected to each other using member functions that allow for the efficient execution of the 

event driven simulation.  The objects are then initialized with the current state of the workflow 

system.  At this point, the new, target order is created and enters the simulation at the first 

station and the simulation clock is started.  The simulation runs until the target order exits the 

system at which point the target order and its history are added to an array of results.  For 

multiple replications, the objects may be re-initialized (which does not reset their random 

number streams), a new target Order created, and the simulation again run until completion.  
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After the desired number of replications has been executed, statistics may be drawn from the 

set of resulting target Orders. 

The final modification to the predictive subsystem was to incorporate the error 

distribution in the predictive process.  After the second Order is completed, the final term in 

the expression for the predicted due date, ei, can be included in the predictive process.  Based 

on Lawrence’s formulation, the target percentile of the observed error distribution for the 

desired service level is added to the modeled flow time [19].  If the number of completed 

Orders is too low, care must be taken when calculating the target percentile.  If however, there 

are sufficient Orders completed to justify the assumption of normality (both pn ≥ 4, and qn ≥ 4), 

then simply using the product of the standard deviation of the errors and an appropriate z-

value is sufficient.  In this case, given a sample size greater than 40, a z-value of 1.285 

(corresponding to a single-tailed, 90% area) multiplied by the standard deviation would be used 

for ei to achieve a 90% service level. 

Results 

The prototype of the Predictive Subsystem described ran against its corresponding, 

production workflow system for 75 days.  During this period, 119 orders were received, 

processed, and returned to the originating customer. As each order is completed, the error 

between the predicted and actual delivery dates is captured and the standard deviation of the 

newly expanded sample is re-calculated. 
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To assess the validity of the predictive process, the proportion of the orders completed 

within the predicted due dates,    (p-hat), is compared to the target proportion, p0 (p-zero, 

which is 0.9 in this case).  Instead of simply calculating the statistic for a single point in time, the 

authors took a time-series approach to the analysis by calculating a critical value of    based on 

the sample size.  In the figure below, the results of this time series approach are shown.  The 

series labeled p-hat is the observed proportion of orders that are delivered on or before the 

predicted due-date. The     (p-hat-critical) series graphically depicts the lower bound for an 

observed value of    that would be statistically indistinguishable from p0. 

 

Figure 44 - Predictive performance versus job history, P0 = 0.90 
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The p-hat-critical series is calculated as         
    

 
 . 

Based on the 119 complete data points available, the authors verified Lawrence’s 

formulation for targeted service levels between 55% and 90% in 5% increments.  In each case, 

the value of    ended above the     value indicating that the observed service level is 

indistinguishable from the targeted service level.  The following table lists the z-values 

corresponding to the p0 values and the associated figures depicting the results. 

 

Table 4 - Result figures by P0 

P0 Z value Figure 

0.55 0.125 Figure 45 

0.60 0.253 Figure 46 

0.65 0.390 Figure 47 

0.70 0.525 Figure 48 

0.75 0.675 Figure 49 

0.80 0.841 Figure 50 

0.85 1.036 Figure 51 

0.90 1.285 Figure 44 
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Figure 45 - Predictive performance versus job history, P0 = 0.55 

 

Figure 46 - Predictive performance versus job history, P0 = 0.60 
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Figure 47 - Predictive performance versus job history, P0 = 0.65 

 

Figure 48 - Predictive performance versus job history, P0 = 0.70 
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Figure 49 - Predictive performance versus job history, P0 = 0.75 

 

Figure 50 - Predictive performance versus job history, P0 = 0.80 
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Figure 51 - Predictive performance versus job history, P0 = 0.85 

Discussion 

As the reader may have observed, the achievement of an arbitrary service level is trivial 

in the endogenous due date case, i.e. if the manufacturer of a widget is allowed to determine 

his own due date for delivery within the bounds of some service level he may simply quote a 

date far enough in the future such that no readily conceivable circumstance might cause him to 

miss his due date - ten times the duration of the worst case scenario, for example.  In practice, 

these extravagant delivery times tend to alienate customers.  Depending on the circumstances 

of both the customer and the supplier, a balance must be reached between arbitrarily inflated 

delivery times and missed deliveries.  In the case of goods, there is often a cost associated with 
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early delivery, such as storage – either held before delivery by the manufacturer, or stored until 

required by the customer – in either case, there is a measurable cost of storage space over 

some period of time to be accounted for.   

With services however, the cost of early delivery is less tangible.  There is no measurable 

cost associated with the storage of a simple electronic document for an additional week or two. 

In the services case, especially with endogenous due dates, the cost for early delivery lies in the 

realm of perceptions.  If the service provider consistently and extravagantly overestimates the 

delivery date, the customer may resent paying the premium associated with a “guaranteed 

service level”, especially when the provider appears to be padding his estimates.  Compounding 

the problem, there is also no measurable cost for the service provider to hold on to an 

electronic file until the quoted due date.   

The authors’ approach to this dilemma is to share as much of the raw processing data 

and due-date quoting methodology as possible with current and prospective customers.  It is 

only in this transparency that trust can be formed. 

Conclusions and Future Research 

Given the success of the prototypical implementation, future work will focus on the 

implementation of this methodology in a production system such that a premium may be 

charged for the meeting of specified service levels.  As mentioned in the discussion section 

above, of equal importance to the implementation of the production system will be the 
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transparent communication of the fairness of the quoted due dates.  The authors expect that 

continued research on this topic will lend credibility to this methodology. 
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CHAPTER EIGHT: CONCLUSIONS AND FURTHER RESEARCH 

The due date quoting methodology proposed and implemented in this research has 

been effective in providing accurate delivery targets for the orders processed through the 

target workflow system.  Since the implementation of this methodology on the production 

system, the delivery predictions have been met in accordance with the service level specified.  

In addition to simply specifying a final delivery date, the system also produces step-by-step 

milestones leading to the predicted due date.  This capability has improved management 

confidence in meeting our service targets and provided the framework for efficient 

measurement of progress.  Management of this performance is handled simply through a daily 

review of expected progress, expressed as the predicted milestones against the actual progress 

of the orders.  A reporting tool was developed and deployed that produces an up to date view 

of pending and late steps across all of the orders in the system.  The tool also allows 

subordinate managers and functional workers to continually monitor their progress on their 

orders. 

Practical Implications 

Within the next three to nine months the predicted dates may well become 

contractually binding.  If and when the decision is made, it will be mutually agreed to by our 

customers and management.  To effect this change, an additional output capability will be 
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activated which will send email notification to the requesting customer and the responsible 

manager of the new orders promised delivery date. 

During the development of the workflow system that underlies this research as well as 

the predictive subsystem which is its subject, a series of practical considerations were collected.  

These considerations are predominantly concerned with human behavior, business process 

definition, and software usability.  As these topics are important to successfully repeating the 

process described in Chapter Two they have been included in this document.  However, as they 

are outside the author’s academic background they have been included in an appendix 

(APPENDIX B: PRACTICAL CONSIDERATIONS) instead of within the body of this document.  

Readers wishing to implement the subject methodology are encouraged to refer to this section 

before beginning work. 

Future Work 

Performance of the modeling component will be improved through the thoughtful 

incorporation of multi-threading support whilst maintaining the appropriate control on the 

several random number streams used.   

An optimization method will be incorporated into the prediction system such that the 

error term used in calculating the delivery date may be adjusted for unequal earliness and 

tardiness penalties.  The preliminary implementation will allow for a system wide parameter 

indicating the relative value of the penalties, e.g. the tardiness penalty is five times as large as 
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the earliness penalty.  Subsequent implementations may allow for the parameter to be set on a 

job-by-job basis. 

The author was fortunate in having thousands of historical records upon which to 

predicate his analysis.  If the described process were undertaken from scratch, parameters such 

as the exponential smoothing factor (usually denoted by α) would have to be set carefully to 

achieve reasonable performance until such point that sufficient jobs might consistently be 

available in the historical window to dilute the criticality of this parameter.  Similarly, the 

determination of historical window sizes for the determination of queuing behavior, processing 

times, rework rates, and error distributions should be parameterized for other applications. 

Given the strong correlation between the number of jobs in work and the processing 

time for a new job entering the system (see Figure 26), it may be possible to reduce the 

simulated complexity heuristically to a formula that relates the flow time for a job, fi to some 

sort of cross product between the queuing behaviors at each server (Q), and the total 

processing time for all of the jobs at that server (P) such that the due date could be quoted as   

di = ri + QxP + zei.  

As postulated by Ferreira and Ferreira [29], the author will look for a suitable, standards-

based, workflow framework to rehost the subject business process.  However, before any 

rehosting can be considered, such a framework must demonstrate similar capabilities (web 

access, open development, extensible data structures, and clear integration points) to the 

developmental system described herein.  If such a commercial product cannot be found, then 
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following through with Milainovic, et al.[30] and several of the other sources a better 

developmental solution may be pursued. 
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APPENDIX A: LITERATURE REVIEW 
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There exists an extensive body of research on Discrete Event Simulation, Business 

Process modeling, workflow systems, data mining and optimization.  This review will touch on 

the existing literature in this area but predominantly focus on highlighting the gaps in that 

literature with respect to the modeling of systems with high levels of non-deterministically 

defined parameters and using the resultant models to make specific predictions about 

individual jobs as opposed to general system performance.  The structure of the literature 

review will parallel the 10-step system development process introduced in the first chapter and 

each section will have a separate grid cataloging the articles. 

Business Process Modeling 

Discrete Event Simulation modeling has been predominantly focused on manufacturing 

and other production systems where the individual steps in the process are well defined and 

often repeated.  As our society transitions away from production and towards services, the 

tools of the Industrial Engineer must adapt. Gladwin and Tumay stated that a business process 

is a collection of logically interrelated activities that consume resources to achieve specific 

objectives [31].  Within that context, they explored modeling business processes within 

simulation tools and applying those simulation tools to improve performance of business 

processes outside of manufacturing where such tools have been predominantly used.  Of 

course, before such a model might be created it is necessary to capture the business process 

often with the intent of building an information system to support the process.  Cook, Rozenblit 
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et al. described their use of UML diagrams to capture a desired business process management 

system [32]. The evaluation of business processes with the intent of improving speed or 

efficiency is often referred to as Business Process Re-Engineering.  Bae, Jeong et al. discussed 

the potential linkage between a business process model and a correlated simulation as a means 

of analyzing the impacts of proposed changes to the business process as part of a business 

process re-engineering exercise [33].  Ghanmi  provided a solid, real-world example of how this 

correlation between process and model can be drawn in a product-centric environment [34].  

Similarly, Jianhua, Zhibin et al. presented a case study for a parallel situation in a more service-

centric environment [35]. 

It is commonly considered that one of the key distinctions between a manufacturing 

process and a business process is that business processes may involve mechanical or 

technological components but is predominately a human-centric endeavor and, therefore, 

inherently more difficult to model than the more mechanical processes that dominate the 

manufacturing world.  As a practical consequence of this, Gladwin and Tumay made good 

points about accounting for non-deterministic processing times and variable processing 

capacity [31]. 

The benefits of capturing an extended business process and creating a workflow around 

the process is nicely described by Abecker, Bernardi et al. and Kayser, McIntosh et al. in which 

they rightly concluded that this exercise, even before any more extensive changes are made to 

the business process, is of tremendous benefit to all of the parties involved through enhanced 



158 
 

communications [36, 37].  As a counterpoint to this, however, Reijers, Song et al. concluded 

that a collaborative workflow system is not solely sufficient to level the communications 

gradient across geographically distributed work forces [38]. 

 

Figure 52 - Business Process literature grid 

Title Primary Author Bu
si

ne
ss

 P
ro

ce
ss

 M
od

el
in

g

W
or

kf
lo

w
 S

ys
te

m
s

Da
ta

 M
in

in
g

Di
sc

re
te

 E
ve

nt
 S

im
ul

at
io

ns

Em
be

dd
ed

 S
im

ul
at

io
ns

Pr
ed

ic
tiv

e 
us

e 
of

 S
im

ul
at

io
ns

Information supply for business processes: 

Coupling workflow with document analysis and 

information retrieval Abecker, A. X X

Meta-Manager: A requirements analysis Cook, Jay F. X X

Modeling and analysis of a Canadian Forces 

Geomatics division workflow Ghanmi, Ahmed X X

Workflow management based on process model 

repositories Gruhn, Volker X X

Comparative research of modeling methods for 

workflow process Jiang, Guoyin X X X

A surgical management information system driven 

by workflow Jianhua, Qi X X

New generation well project management 

application improves cycle time, workflow 

efficiency, corporate compliance, and knowledge 

sharing (and people like it!) Kayser, H. X X

Process ownership challenges in IT-enabled 

transformation of interorganizational business 

processes Larsen, Michael Holm X

Modelling business processes with workflow 

systems: An evaluation of alternative approaches Mentzas, Gregory X X

Integrating light-weight workflow management 

systems within existing business environments Muth, Peter X X

A user-oriented design for business workflow 

systems Pourabdollah, Amir X X

Analysis of a collaborative workflow process with 

distributed actors Reijers, Hajo A. X X

Workflow simulation for operational decision 

support Rozinat, A. X X X X

Research and implementation of workflow 

interoperability crossing organizations Wan, Dingsheng X X



159 
 

Workflow 

As a logical precursor for the workflow system’s development, Jiang and Dong  

compared different frameworks that can be used for creating the workflow model from the 

business process [39].  Correspondingly, Mentzas, Halaris et al. reviewed various available 

workflow systems for suitability, highlighting the strengths and limitations of each [40]. 

Gruhn and Schneider pointed out that workflow tools and frameworks have existed for 

some time but that they had not been widely exploited owing, in their estimation, to the lack of 

building blocks from which to build reasonably complex systems.  Their proposed solution was 

to provide a repository of such sub-process snippets which they deemed helpful in building up 

more complex workflows for well structured processes such as software development [41]. 

Ames, Burleigh et al. discussed the concept of a web-based workflow management 

system and provided some example applications that have been developed [42].  Liang, Wu et 

al. reviewed the, then extant, techniques in web-based workflow management [43]. Hong Va, 

Kei Shiu et al. refined this discussion by describing the potential use of CORBA as a 

representative “distributed object management” means of allowing for the encapsulation of 

distinct pieces of the process logic while facilitating interoperability [44].  As CORBA fades from 

the modern parlance, Jin, Wu et al. and Wan, Li et al. presented corresponding web services 

cases [45, 46].  As an alternative to integrating functional systems into the workflow system, 

Muth, Weissenfels et al. proposed what they term a light-weight workflow implementation for 

use within existing business automation environments [47].  This author prefers to make this 
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distinction ontologically by referring to such constructs as instrumentation systems.   Huang 

made an excellent observation that the modern marketplace is replete with interwoven 

consumer-supplier relationships and supply chains.  Huang then concluded that a distributed 

workflow system is required in this environment [48].  Similarly, Sayal, Casati et al. proposed 

that existing Business-to-Business statndards might be leveraged to that purpose [49].  This 

author would argue that a single shared workflow solution is also an acceptable solution to this 

problem given the requisite infrastructure and security means are available. 

Botha and Eloff rightly cautioned that access control within workflow systems needs to 

be rooted in the underlying business process, however, they somewhat naively settle on using a 

purely role-based acess control (RBAC) scheme overlooking the importance of some robust, 

assignment based extension to that scheme [50]. Lin, Zhan et al. proposed an extension of the 

basic RBAC framework that would be organizationally aware [51]. Yu, Chen et al. described a 

multi-policy access scheme that extends RBAC by providing access controls at the object level 

[8]. Alternatively, Chen and Feng  described an extension of RBAC that extends to a Digital 

Rights Management (DRM) level of granularity as a way of overcoming an RBAC system’s 

limitations [52].  

As a practical consequence of knowing which users are executing process steps within 

the workflow, it is possible to use the system to verify that particular actions were completed.  

Dallien, MacCaull et al. discussed the value of this “verifiability” in a medical context [3].  It is 
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always remarkable to the author that providing a person with a very precise date-time-action 

reference is an excellent aid to their memory. 

 

Figure 53 - Workflow literature grid 

Data Mining 

As brought out initially in the introduction, there is a significant quantity of attribute 

data associated with the objects entering and flowing through the workflow system in question 
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van der Aalst, Reijers et al.  made the excellent point that modern information systems (and 

specifically workflow systems) capture much of the necessary data to perform data mining on 

the process information, which they termed “process mining” without having to resort to 

external data collection though there have been few real-world exploitations of this capability 

captured in the literature [12].    Rozinat, Wynn et al. proposed to extend this concept through 

the use of a pair of open source tools -- YAWL (Yet Another Workflow Language) and ProM 

(Process Miner). They described the potentially tight coupling theoretically possible between a 

workflow system and a simulation model that represents that system.  This coupling would be 

accomplished by describing the workflow system in YAWL, running the resultant workflow 

description through the YAWL runtime, and then developing plug-ins for ProM that would (1) 

allow it to ingest the system design and (2) interpret the transaction and state information.  

Rozinat successfully created an example of this coupling using a simple credit processing 

workflow.  It is important to note Rozinat’s conclusion -- that while the concept seems valid, the 

creation of a generalized process for achieving coupling was not yet obtainable [13].  In addition 

to the limitations imposed by the developmental nature of Rozinat’s plug-ins for reading YAWL 

information into ProM, there are also limitations based on ProM itself in that there currently 

are not facilities to support the generalized queues that are necessary to support certain real-

world processes such as the one under consideration. 

One of the complexities associated with exploiting this process mining capability is the 

high dimensionality of the attributes and more specifically the dominance of nominal 
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dimensions over both ordinal and real.  There are several approaches to this complex problem 

which are well represented in the literature so the author will only touch on the highlights here.  

Basic topics in simple and multiple regression are well covered in fundamental texts such as 

“Statistics for Engineering and the Sciences” [10]. These tools are a reasonable point of 

departure for simple datasets but rapidly become unwieldy as dimensionality grows.  More 

advanced techniques seek to incorporate some dimensionality reduction schemes into the 

approach minimizing the amount interaction required by the practitioner.  Given the high 

nominal dimensionality of the author’s data two approaches will be given further treatment, 

Classification And Regression Trees and Artificial Neural Networks.  Beginning with their original 

monograph, Breiman, et al. [53] described their novel approach to an automated process for 

dealing with high-dimensionality data sets through the use of what they called Classification 

And Regression Trees (CART™).  While quite good at classifying data sets, CART’s ability to 

provide accurate models where the dependent variable is real-valued is limited.  Artificial 

Neural Networks, e.g. Multi-Layer Perceptrons (MLPs) and Support Vector Machines (SVMs) 

often provide better results with real-valued outputs at the cost of a less easily understood 

model.  Additional detail on MLPs can be found in Cybenko’s work [54]. Similarly, a description 

of the SVM is found in Vapnik’s paper [55]. An explanatory paper by Bennet and Campbell lent 

some clarification to the underlying principles behind the support vector [56].  While Chen, Ma, 

et al. provided a practical example of using SVMs to mine consumer credit card data [57].   
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 Chiu, Tien et al. performed generalized comparative analyses of the various techniques 

commonly used in data mining and dimensionality reduction and proposed some interesting 

hybrid approaches to increasing accuracy while maintaining the ability to automate the process 

[58].  A similar comparison was conducted by Meyer, D., F. Leisch, et al. which compared 

various classification and regression techniques to SVMs and came to similar conclusions – 

namely that different techniques work better depending on the situation [59].  Given the array 

of such tools and their complex sets of strengths and weaknesses, the author has shortened his 

lines by choosing to employ a package called WEKA (Waikato Environment for Knowledge 

Analysis) which provides a generalized framework for evaluating the output of many of these 

algorithms against a given data set.  As an added benefit WEKA will create executable Java 

modules which encapsulate the selected output model greatly simplifying automation [60]. 
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Figure 54 - Data Mining literature grid 
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such a text [22].  Since the basis of the field is well settled, the author will forego any detailed 

review of this segment of literature which encompasses what the author will refer to as 

classical DES modeling and includes queue types, processing and server types and 
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configurations, validation and verification of models, and distribution fitting.  Detailed 

discussion of the author’s approach to validation and verification will follow in chapter 3, but 

will fall generally in line with accepted techniques as covered in [9, 22]. 

While the central aspects of DES modeling are stable, there are aspects that continue to 

be refined such as the representation of observed data in some mechanism allowing for the 

generation of similar data.  This is most often done by analyzing the observed data with some 

software, e.g. ExpertFit, and selecting one of the recommended distributions that closely 

approximates the observed data.  There are times, though, that the observed data is intractable 

to such analysis and building an empirical distribution is a better solution [61, 62].  In this 

author’s case it appears that it is not only the input distributions that have to be addressed, but 

also the queuing behavior.  Normally queues are modeled as First In First Out (FIFO), Last In 

First Out (LIFO) or some form of priority queue [23].  This limitation could induce unacceptable 

errors when real-world queuing behavior is not as cleanly exhibited.        

Embedded Modeling And Simulation 

The creation of DES models outside of an Integrated Development Environment can be 

done from the ground up, however, several software frameworks are available that provide 

most of the infrastructure required for robust DES model development.  These models can then 

be embedded into other systems to provide a modeling capability.  Often that capability can 

then be used to evaluate the “goodness” of a particular job or batch sequence through a 
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system.  As with the basic foundations of simulation, embedded DES is a well covered topic 

with good texts such as Garrido’s “Object-Oriented Discrete-Event Simulation with Java – A 

Practical Introduction” as evidence [63]. 

Predictive Use Of DES Modeling 

Much of the existing literature talks about using models of systems to conduct 

experiments where the objective is to optimize system performance by adjusting resources or 

queuing behavior [22, 23].   

There is some literature that seeks to use the model to evaluate differing courses of 

action such as selecting a sequence of jobs to be scheduled.  For example, Azzaro-Pantel, 

Bernal-Haro et al. described using a combination of a discrete event simulation and a genetic 

algorithm to optimally dispatch tasks in a job shop environment, with the genetic algorithm 

generating the sequences and the DES model evaluating each sequence [24]. In a related 

fashion, Reijers discussed using short-term simulations coupled with work flow to provide 

decision support, i.e. scheduling additional resources during peak loads [25].  And as mentioned 

in the Data Mining section above, Rozinat, Wynn et al., as part of their work with YAWL and ProM, 

described a methodology that should allow for the creation of the model from the description and 

output of the system and then using that simulation to make decisions about the system.  With the 

coupled simulation model created and loaded it should then be possible to use the simulation 
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to answer system level performance questions and conduct “what-if” experiments to evaluate 

changes in resource levels that might affect overall system performance [13].  

Much less of the literature discusses the potential for use of the faithful model to make 

predictions about the system just the way it is.  Rojanapibul and Pichitlamken made some 

excellent observations about using embedded simulations to calculate prediction intervals in a 

flow shop environment [26].  Cates and Mollaghasemi described the use of simulation to 

predict project completion dates and thereby enhance visibility of risk to better manage 

completion of complex projects [27].  In both of these cases, though, the job parameters were 

reasonably established before predictions were made. 

 

Figure 55 - Simulation literature grid 
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A two-stage methodology for short-term batch 

plant scheduling: discrete-event simulation and 

genetic algorithm Azzaro-Pantel, Catherine X X X X X X X X

Integration of workflow management and 

simulation Bae, Joon-Soo X X X X X X

Object-oriented discrete-event simulation with 

Java: a practical introduction José M. Garrido X X X X

Empirical discrete distributions in queueing 

models Jewkes, Elizabeth M. X X X

Comparative research of modeling methods for 

workflow process Jiang, Guoyin X X X X X X X X

Simulation with Arena W. David Kelton X X X X X

Simulation Modeling and Analysis Averill M. Law X X X

Short-Term Simulation:  Bridging the Gap between 

Operational Control and Strategic Decision Making Reijers, H.A., van der Aalst, W.M.P. X X X X X X X

Workflow simulation for operational decision 

support Rozinat, A. X X X X X X X X X X

Empirical input distributions: an alternative to 

standard input distributions in simulation 

modeling Shanker, A. X X X X
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Due Date Quoting 

Cheng and Gupta [14] produced a survey of the existing research with respect to due 

date determination.  In this survey, Cheng and Gupta opened by pointing out that meeting due 

dates is extremely important to practicing managers.  They then utilized a classification scheme 

first proposed by Elion [15] which has six (6) dimensions:  (1) Static versus Dynamic, (2) 

Deterministic versus Stochastic, (3) Single-product versus Multi-product, (4) Single-processor 

versus Multi-processor, (5) Theoretical versus Practical, and (6) Exogenous due-dates versus 

Endogenous due-dates. Since exogenous due-dates obviate due-date quoting and lead directly 

to sequencing and scheduling problems, Cheng and Gupta focused their attention on 

endogenous due-dates.  Using the above classification scheme they concluded that there is very 

little extant research on Dynamic, Complex, Multi-processor systems. And after noting that 

better predictors would be beneficial, if practical, they concluded that there is a need for more 

practical and applied research in this area. 

Alfieri [16] proposed two new quoting policies based on setting a static Safety Time (ST) 

parameter analogous to ei in the formulation from Chapter Three noting that setting this 

parameter dynamically could be time consuming. The performance of these quoting policies, 

which both presuppose a First-Come-First-Served (FCFS) ordering, is compared to the Total 

Work Content (TWK) policy when jobs are sequenced by Shortest Processing Time (SPT), 

Earliest Due Date (EDD) and First-In-First-Out (FIFO).  These comparisons were predicated on 

batch scheduling (ignoring subsequent arrivals), deterministic processing times and non-
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permutation sequencing.  With these simplifications, her results indicated that TWK 

outperforms both of her proposed policies.  She noted that estimating flow times for more 

complicated systems is a suitable topic for future research.   

Subsequent to the survey conducted with Gupta discussed above, Cheng [17] described 

an efficient and optimal sequencing algorithm when using the slack due-date quoting policy.  

Cheng simplified the system under consideration by assuming that once a set of jobs is 

sequenced, no subsequent jobs will affect the systems performance, there will be no re-

sequencing of the jobs between stations and all of the earliness and tardiness costs are 

constant.  In effect, the lack of consideration of arrivals and non-permutation scheduling 

becomes a presupposition of FCFS.  In this scenario Cheng concluded that an SPT sequence is 

optimal although this conclusion is at odds with the findings of Duenyas and Hopp below. 

Duenyas and Hopp [18] proposed an analytical framework for evaluation of various job 

sequencing rules given that flow times can be optimally predicted.  Working through a series of 

increasingly more generalized scenarios they concluded that an EDD sequence is optimal if the 

tardiness penalty is constant for all customers and proportional to the tardiness which seems to 

contradict Cheng [17] above.  To achieve this result Duenyas and Hopp only assumed that pre-

emption does not take place.  The result of an EDD sequence being optimal is useful in that it 

provides direction for redesigning the workflow system in this author’s construct to encourage 

EDD processing order but is not helpful in determining the optimal due-dates. 
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Similar to Duenyas and Hopp above, Lawrence [19] presupposed that the practitioner 

either has a simple system with closed-form flow time estimates, or has some way to 

determine flow times for complex systems.  With that as a precondition, he described an 

analytical approach to setting due-dates based on previously observed forecasting errors.  

While Lawrence proposed to fit the forecasting errors, which he refers to as “G”, using a 

Ramberg-Schmeiser distribution, he concludes that Erlang and Gaussian distributions worked 

equally well in his research.  Lawrence made three observations that are particularly germane 

in this context:  (1) exponential smoothing of the forecasting error distribution parameters 

enhances the accuracy of the fit, especially in time-dynamic situations, (2) various measures of 

performance lead to differing uses of the error distribution, e.g. Mean Absolute Lateness is 

minimized by adding the median of the error distribution to the predicted flow time, Mean 

Square Lateness is minimized by adding the mean of the distribution to the predicted flow time, 

and service level matching is met by adding the target percentile of the distribution to the 

predicted flow time, e.g. G-1(0.9) for a 90% Service Level, and (3) the analytic due date quoting 

policies that include information about the current system state outperform those that do not 

at least in the simple scenarios that the author evaluates specifically.  Additionally, Lawrence’s 

paper provided a good summary of the most common analytic quoting policies which will be 

useful for comparison with this author’s proposed modeling-based approach. 

van Ooijen and Bertrand [20] introduced a distinction in terminology intended to allow 

some leeway between the tightly estimated Internal Due Date (IDD) and the slightly looser 
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External Due Date (XDD).  To set this difference, which is analogous to ei in the problem 

description from Chapter Three, or the Safety Time from Alfieri, or Lawrence’s error 

distribution, G, the authors proposed to adjust the XDD using the ratio of the current level of 

work in progress (acwip) to the average level of work in progress (nwip).  Using variations of 

this quoting policy various sequencing rules were applied and the optimal cost per order was 

established over a variety of relative earliness/tardiness combinations.  Van Ooijen and 

Bertrand’s results brought some closure to the disagreement between Cheng [17] and Duenyas 

[18] by noting that when earliness and lateness penalties are of similar magnitude then SPT 

sequencing works best; however, when tardiness penalties are much larger than earliness costs 

a Due Date sequencing rule is best.  Another interesting conclusion that can be drawn from the 

data is that in spite of the dependence on FCFS sequencing in much of the literature, FCFS 

provided among the worst performance of the sequencing rules tested. 

Rajasekera, Murr, et al [21] opened by observing that including more information into 

the dynamic flow time prediction process produces better results. Much of the paper 

subsequently focused on an analytical description of a load-balancing algorithm that could be 

implemented in an information system integrated with the manufacturing system.  The authors 

concluded that after applying their load balancing procedure and assuming FCFS processing, 

then setting due-dates is straightforward even when taking into account the jobs already in the 

system.  As a parting note, the authors conceded that more complex work centers would 

require more complex queuing decomposition methods and further analysis. 
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Figure 56 - Due Date Quoting literature grid 

Conclusion 

What appears to be missing in the literature is using simulation to make predictions 

about the system when the job parameters and specific queuing behavior are unknown and the 

historical data that describes these factors is intractable to all but robust data mining 

techniques to describe.  The preceding tables summarize the literature reviewed by the author 

and makes clear the gap described.  
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APPENDIX B: PRACTICAL CONSIDERATIONS 
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A note about balancing detailed data collection with human behavior -- the author has 

many years and many negative experiences developing and delivering “ideal” solutions to real 

users and achieving sub-par performance.  Specifically, requiring the users of systems to enter 

data, or perform synthetic tasks for something other than the direct benefit of the user. In light 

of this, the author eschewed the notion of having users of this new system indicate all of the 

gruesome details of their processing of the documents and went simply with a single recorded 

step of when the user was finished with his portion of the processing.  As a result, the 

transactional data that captures the trajectory of a document through the system must first be 

processed before it can be dealt with using classical modeling techniques. 

Practical consideration #1 - Limit auditable steps to inter-personal boundaries – no 

process steps/status changes while the object is still in the possession of one actor.  This 

technique, in combination with the transparency of reporting, makes the system self-

regulating.  Each actor is judged on the amount of time that objects spend in their care so it 

behooves them to complete their steps efficiently and flow the object to its next step so as to 

“stop the clock”.  When actor #1 completes a step and flows the object to actor #2, actor #1 is 

asserting that his step is complete and ready for actor #2 to begin.  However, because actor #2 

is now responsible for the processing time of the object he is motivated to ensure that the 

previous step was, in fact, completed and if not, actor #2 can return the object for completion 

or rework to actor #1 placing the processing time onus back on actor #1.  Because the actors 

are self interested (trying to avoid the baleful eye of the process owner) they are internally 
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motivated to flow the objects through the process as quickly and accurately as possible, but this 

is regulated by the downstream actors not wanting objects stacked in their queues that are not 

ready for processing. 

Practical consideration #2 - Limit imposition of “extra” button clicking to maximize 

success – As mentioned in the introduction of this work, the author’s experience has lead him 

to build systems that minimize the requirement for users to perform synthetic, i.e. non-direct-

value added, tasks. In light of this, the subject system simply records when the user finishes 

with his portion of the processing.  Button presses that seek to capture information beyond 

what is minimally required will be “fudged” unless you can automate the capture of the event 

(selecting which object is being acted upon though this assumes serial processing, when in 

reality several objects are in play simultaneously). 

Practical consideration #3 - Determine useful metrics to measure the process – avoid 

the pitfall of pulling numbers that are easy to capture but do not provide any real insight into 

the business process. 

Practical consideration #4 - Selection of the data type for dates and times.  The author 

has found it much easier to err on the side of selecting a higher precision data type and not 

making full use of the precision when not needed, than attempting to overcome the limitations 

of a less-precise data type – especially after the system has been in production for some time. 

Practical consideration #5 – it is possible that a human-centric (a.k.a. smart) identifier 

may be applied to an object in addition to its system generated ID.  If such an identifier is 
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required, the practitioner should carefully consider the mechanism by which it is generated, 

and that mechanisms relation to attributes of the associated objects, i.e. if one of the attributes 

of an object is changed -- does that change the identifier?  Or alternatively, once defined should 

the identifier be static?  In particular and if at all possible, such an identifier should NOT be used 

as a foreign key either within the workflow system or, even more importantly, across system 

boundaries. 

Practical Consideration #6 – the actors performing the process will all have differing 

ideas about the best way to communicate their requirements.  In the first case, the users will 

focus on the requirements of the routine execution of the process and fail to mention the steps 

necessary for extraordinary circumstances leading to unhandled cases during execution.  

Conversely, there will be users who will focus on all of the possible extreme cases, no matter 

how unlikely, and fail to adequately describe the normal process.  Users in either of these 

camps are best interviewed in multiple sessions. 
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