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Abstract: This paper reviews ongoing progress in the design and fabrication  
of new, on-chip, low loss planar molecular sensors. We report the details  
of device design, material selection and manufacturing processes used  
to realise high-index-contrast (HIC), compact micro-disk resonators.  
These structures have been fabricated in thermally evaporated As- and  
Ge-based chalcogenide glass films with PDMS (polydimethylsiloxane)  
micro-fluidic channels using standard UV lithography. Discussed are findings 
that demonstrate that our novel chalcogenide-based micro-fluidic device can  
be used as highly sensitive refractive index sensors. 

Keywords: chalcogenide glass; thin film; waveguide; sensor; resonator; 
photonic integration; refractometry; absorption spectroscopy; micro-fluidics; 
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1 Introduction 

Recent advances in micro-fabrication technology have enabled a paradigm shift in  
the field of chemical and biological detection. Miniaturised sensing devices can now  
be created that outperform and possibly replace their conventional bulky counterparts. 
These devices build on the knowledge base and technologies developed in  
micro-photonics, micro-fluidics, and micro-electronics and have given rise to 
sensing/characterisation platforms commonly referred to as a ‘sensor-on-a-chip’ or  
‘lab-on-a-chip’ [1]. The competitive advantages of such miniaturised sensing devices  
are three-fold. Firstly, the Moore’s law paradigm that is driving the rapid strides  
of micro-electronics can be applied to revolutionise bio-/chemical detection to leverage 
mature silicon CMOS manufacturing technology to achieve high volume production  
and thus very low cost, as well as scalable performance improvement [2]. Secondly,  
a small device footprint opens up avenues of new device and system applications such  
as remote sensor network deployment. These networks for example are impossible  
(cost prohibitive) with a conventional design. Finally, integration of different functional 
components onto a planar platform enables multi-modal detection and significantly 
enhanced intelligence capabilities.  

Our team’s research strategy aims to address critical challenges for realising such  
a sensor-on-a-chip concept, including development of specialty glass materials and 
surface coatings using engineered glasses with defined (CMOS) process response  
and behaviour, compositionally-tailored polymers that meet demanding response and 
stability performance requirements of advanced gas or liquid phase sensor systems,  
and novel device geometries and platforms capable of providing both high sensitivity  
and specificity, over large areas. Recent efforts in our group have focused on the 
development of a novel, integrated sensor system with low loss, enhanced sensitivity  
and specificity suitable for use in advanced detection in chemical-biological warfare  
and other intelligent sensing applications [3–8]. These efforts have resulted in the 
development of Si-CMOS compatible processing procedures and demonstration  
of viability of manufacturing uniformity to large areas (>6″ diameter wafers) needed  
to evaluate scalability and economics in fabricating and integrating optical structures  
and devices for use in chip-based chemical and/or biological sensors. The novelty of the 
resulting sensor design is three-fold:  

1 Novel high refractive index chalcogenide glass (ChG) materials suitable for  
multi-spectral chemical and biological sensing have been developed which allow 
extension of the operating wavelength range for devices from the UV to visible to far 
infrared; these glasses enable use of a low temperature process to fabricate an  
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ultra-high-Q optical resonant cavity with an atomically smooth surface. Although 
being widely used as phase change materials for optical disks and non-volatile 
random access memories, ChG films are also good candidates for planar integrated 
nonlinear optical devices due to their high nonlinearities and low linear and 
nonlinear loss, their fabrication and structural flexibility, wide range of optical  
and electrical properties, large capacity for doping, and tailorable photosensitivity 
[9–12]. Several micro-photonics devices such as gratings, optical storage units, 
holographic recordings, optical amplifiers and lasers that utilise these unique 
properties of chalcogenides, have already been demonstrated [13]. ChGs exhibit  
a broad optical transparency window stretching from the visible to the far-infrared, 
allowing the realisation of multi-modal optical detection in the same material 
platform, a significant advantage for device processing and integration [14].  
In addition, the high refractive index of chalcogenide glasses enables compact 
photonic integration essential for array-format high-throughput analysis;  
most importantly, their almost infinite capability of compositional alloying enables 
application-specific tailoring of glass properties such as thermo-optic coefficient, 
optical response (damage resistance, photo-induced nonlinear response)  
and chemical compatibility with sensing molecules in different environments. 

2 In conventional bulk optical sensor design, high sensitivity is achieved via increased 
optical path length not amenable to device miniaturisation and scaling [15];  
in contrast, our approach relies on planar optical resonators to enhance the device 
sensitivity utilising strong photon-molecule interactions in a resonant cavity  
while dramatically reducing the sensor footprint. Further, optical resonators offer  
a versatile device platform suitable for cavity-enhanced absorption and fluorescence 
spectroscopy as well as label-free refractometric sensing. Finally, compared to  
fibre-based counterparts, planar ChG-based resonator devices are more mechanically 
robust and amenable to lower cost, larger-scale integration with other on-chip 
photonic and electronic devices, enabling a full spectrum of optical signal read-out 
and processing functions. 

3 The sensor device fabrication strategies developed and optimised in this effort 
employs CMOS compatible processing technology suitable for mass production  
and further scalable performance improvement. Such scalability reduces per sensor 
costs allowing multi-sensor arrays tailorable to single or multi-species detection  
to be deployed for large sampling area evaluation. No other current technology offers 
such possibility. 

In this paper, we review the choice of the materials used for the device fabrication. 
Secondly we discuss the use of a Si CMOS-compatible fabrication technique for the 
production of a chalcogenide glass-based sensor monolithically integrated on a silicon 
platform. We demonstrate the ability to fabricate  

• single-mode waveguides with core sizes down to the sub-micron range possessing 
reduced sidewall roughness using a lift-off technique that has broad applicability  
to a diverse range of non-silica glass compositions and also  

• chalcogenide glass racetrack and micro-disk resonators, the key elements for 
biochemical sensing. 
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Lastly, we describe how these devices can be used as highly sensitive absorption 
spectroscopy and refractometry sensors. 

2 Experimental 

2.1 Glass preparation and film deposition 

The synthesis of the As- and Ge-based glasses used in this study is explained in detail, 
elsewhere [16,17]. All glasses are prepared from high purity elements (As Alfa 99.999%, 
Ge Aldrich 99.999%, Sb Alpha 99.9% and S Cerac 99.999%) with no further 
purification. Starting materials are weighed and batched into quartz ampoules inside  
a nitrogen-purged glove box and sealed under vacuum using a gas-oxygen torch.  
Prior to sealing and melting, the ampoule and batch are pre-heated at 100°C for  
4 h to remove surface moisture from the quartz ampoule and the batch raw materials.  
The ampoule is then sealed and heated for 24 h at between 800°C and 975°C, depending  
on the glass composition. A rocking furnace is used to rock the ampoule during  
melting to increase melt homogeneity. Once homogenised, the melt-containing  
ampoule is air-quenched to room temperature. To avoid fracture of the tube and glass 
ingot, ampoules are subsequently returned to the furnace for annealing for 15 h  
at 40°C below the respective glass transition temperature, Tg, of the glass. Glass samples 
are then cut, optically polished and inspected visually. These bulk glasses are targets  
for subsequent film deposition. Glass composition has been verified using elemental 
dispersive spectroscopy (EDS) and found to be identical to the initial batch composition. 
No loss of sulphur has been observed within the accuracy of the measurement (±2 at%). 
X-ray diffraction (XRD) has been carried out to confirm the amorphous nature of our 
samples. 

As- and Ge-based thin films on oxide-coated Si wafers (6″ Si wafers with 3 µm 
thermal oxide, Silicon Quest International) and glass microscope slides were prepared  
via thermal evaporation and/or pulsed laser deposition methods using bulk glass materials 
as targets. A complete description of the techniques for the As-based film deposition [18] 
and that for Ge-based glasses [6] can be found elsewhere. Most recently, deposition  
of the Ge-based films prepared using thermal evaporation were made at a base pressure 
of 2 × 10–7 Torr using a alumina-coated tantalum baffled source in a custom-designed 
thermal evaporator (model 112 Evaporator-Sputter Station from PVD Products Inc.),  
and the deposition rate is stabilised at 18 Ǻ/s [6]. A thermostat stage is also employed  
to maintain the substrate temperature at 25°C throughout the deposition process.  
Pulsed laser deposition (PLD) film formation is carried out using a mode-locked 
Nd:YVO4 laser operating at third harmonic (355 nm) and delivering ~5 W to the target 
surface [19]. The repetition rate is 28 MHz; pulse duration 12 ps; focal spot size ~15 µm; 
maximum incident intensity ~1010 W/cm2 with the fluence 0.1 J/cm2. The laser beam  
is scanned using x-y scanning mirrors in a constant velocity 2 m/s spiral over the area  
of approx. 2.5 cm2 to prevent drilling craters into the target surface. The substrate  
is located at ~160 mm from the target and rotated to provide a more homogeneous  
film thickness over the substrate area. The base pressure in the deposition chamber  
is 5.0 × 10–7 Torr. No evidence of crystallisation or phase separation has been observed  
in either the As- or Ge-based films. A detailed comparison of glassy films prepared  
by these two techniques is forthcoming [20]. 
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2.2 Characterisation of sensor/resonator 

The morphology of as-fabricated waveguides has been characterised using a  
JEOL 6320FV field-emission high-resolution SEM. A Digital Instruments Nanoscope 
IIIa Atomic Force Microscope (AFM) has been used to measure the roughness of the  
as-patterned waveguides. Measurement scans have been performed parallel to  
the propagation direction of the waveguides using the tapping mode. Waveguide loss 
measurements have been performed on a Newport AutoAlign workstation. Lens-tip fibres 
have been used to couple laser light into and out of the waveguides. Highly reproducible 
coupling between waveguides and fibres can be achieved via an automatic alignment 
system. Waveguide loss has been determined via a standard cutback method using  
paper-clip waveguide patterns. 

3 Glass material down-selection 

To design and fabricate the planar molecular sensor, the candidate infrared (IR) glass  
for the optical resonator structure must possess the following attributes: 

• The glass needs to be stable against devitrification as indicated by a difference 
between crystallisation (Tx) and glass transition (Tg) temperatures larger than 90°C. 
Moreover, Tg needs to be high enough to remain stable during processing of surface 
coatings and to minimise aging for refractometry sensing 

• As most biological and chemical agents have their identification signatures in the  
IR range, the glass candidate needs to have low absorption (including electronic  
and bond vibrational absorption) at the operation wavelengths (for instance, mid- and 
far-infrared wavebands for absorption spectroscopic sensing, near-infrared water 
transparency window for refractometric sensing and fluorophore excitation 
wavelength for fluorescence spectroscopy) for sensitivity improvement,  
which in turns dictates the application-specific glass phonon energy and optical  
band gap. 

• The glass also needs to possess a high linear refractive index to allow compact 
device design and to minimise substrate leakage loss. 

• The process compatibility with large-area film deposition techniques  
(e.g., evaporation or sputtering) is critical for device fabrication; also of importance  
is the thermal/chemical stability during all steps in the lithographic process. 

• Chemical stability and material durability in the sensing environment, and biological 
compatibility for biosensor applications (which could also be possibly achieved 
through appropriate surface coatings using specific polymers) also define further 
material requirements. 

• The optical band gap of the film needs to be low enough to induce effective 2-photon 
absorption when irradiated with near-IR (NIR) [λ = 800 nm] femtosecond laser  
for three dimensional (3D) waveguide writing. 
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• The compositionally-tailored photo-sensitivity should be suitable for NIR fs laser 
structuring with desired photo-induced refractive index change (positive) with no 
photo-induced crystallisation and limited aging effects. 

Several years ago researchers within our team demonstrated that As-based glasses 

• are very stable against crystallisation 

• can be deposited into films using thermal evaporation 

• when exposed to near-IR (800 nm) femtosecond laser exhibit an increase  
of refractive index [16,21]. 

A systematic study [16] examined the compositional dependences of such attributes 
including linear and nonlinear indices and absorption properties and the influence on 
photo-induced structural changes, on these properties. While versatile from the standpoint 
of photosensitivity and high linear and nonlinear indices, many binary and ternary  
ChG glasses in the As-Se, As-S and As-S-Se systems have low glass transition 
temperatures (~200°C), and also exhibit mediocre long-term stability. These limitations 
are driven by the glass’ constituent elements, which while suitable for long wave  
optical transmission within the two colour IR bands, possess thermal-mechanical 
robustness far less than oxide counterparts. Hence, versatility in the IR (bandwidth  
to allow transmission and detection of IR resonant species) is at the expense of good 
processability and long-term performance. To offset this limitation, we have extended the 
stability of glasses by enhancing the coordination of the glass network, making glasses 
with higher thermal stability amenable for use in CMOS processing and high stability 
sensor devices. For this reason, we have included in our study Ge-based glasses  
which not only bring the rigidity of a four-coordinated network former, but also serves  
to eliminate the use of As which is undesirable in CMOS manufacturing environments. 
Ge-containing glass is known to exhibit higher melting and glass transition temperatures 
than the As-based glasses [22]. We have demonstrated that Ge23Sb7S70 glass can be 
reproducibly deposited into thin films using thermal evaporation [20]. While suitable  
for CMOS lithographic processing, this glass cannot be used for direct write waveguides 
as we have shown [23]. Anderson et al. showed that near-IR fs laser irradiation  
at both kHz and MHz repetition rates leads to a decrease of the refractive index  
attributed to a modification of bonding between the glass’ units that form the well 
organised 3D network. This resulting network modification is in agreement with [24].  
As a result, we can use either Ge- or As- based glasses depending on the type  
of structuring/device fabrication we desire. In our current study, we have primarily 
utilised As- and Ge-based glasses for fabrication of waveguides, rings and resonators 
fabricated using lithographic processing; for the 3D waveguide writing using direct  
laser, we have only focused our effort on the As-based glasses system. In this paper,  
we summarise our most recent results on devices fabricated using lithographic 
processing. 

4 Device fabrication 

The novel sensor device discussed above is comprised of three parts: a micro-fluidic flow 
system for analyte transport, an optical sensing unit for generating signals modulated by 
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the presence of targeted chemical or biological species, and peripheral electronics for 
signal read-out and processing. At the core of the device, the optical sensing unit consists 
of several sequential components: a light source to emit the probing light, planar 
waveguides to couple the light into the resonator, polymer coated on-chip  
optical resonators where strong light-chemical interactions take place, and finally  
photo-detectors to receive the signal through waveguides that couple the light. In this 
section, we describe the device fabrication steps from the film deposition through  
the planar waveguide fabrication. 

4.1 Film deposition  

There are several previously reported methods for preparation of ChG thin films 
including, chemical reaction from the vapour phase (CVD) [25], thermal evaporation 
(TE) from bulk target materials [13], sol-gel [26], RF magnetron sputtering [27],  
and pulsed laser deposition (PLD) [19,28,29]. As the physical process and kinetics  
of these techniques are quite different, these deposition techniques can often produce 
films with differing optical and thermal properties. 

Glassy thin films with the composition Ge23Sb7S70 deposited using the thermal 
evaporation and the pulsed laser deposition techniques have been found to have similar 
thermal and optical properties [20]. Using micro-Raman spectroscopy, we showed  
that both as-deposited films have similar network structures, but both differ from that  
of the corresponding parent bulk glass. This we attributed to the fact that the film 
deposition process impacts the film density, specifically the molecular organisation  
of constituents during film formation; the TE and PLD processes yield glassy films 
containing homopolar Ge-Ge bonds, with a decrease in homopolar S-S bonds leading  
to an increase in GeS4/2 units. These observations are in agreement with [28,30,31].  
A comparison of the structural entities associated with each deposition process showed 
that the TE film yields a lower number of S-S bonds and a slightly higher number  
of SbS3/2 units compared to that of the PLD film. These structural features were found  
to be consistent with the observation of a more dense network structure which would 
result in a higher refractive index, with the glass’ optical band gap position shifted  
to longer wavelength. 

In the current study, the thermal evaporation technique has been used for the 
deposition of the films with the composition Ge17Sb12S71 and of the As-based films with 
the composition As42S58 and As2S3. TE was chosen as the method of choice given its  

1 low-cost, large-area uniformity (vs. PLD) and simplicity 

2 high-throughput (compared to sputtering) 

3 minimised step coverage which proves excellent for subsequent lift-off (vs. CVD). 

Thermal evaporation is often a non-congruent vapourisation process which can lead to  
off-stoichiometry films; in this case it is crucial to modify the starting bulk composition 
to compensate for this change to yield films and structures with desired target refractive 
index. 

Using a SEM, the As-based films did not present any obvious signs of local 
compositional variation or phase separation, as evident from uniform elemental maps 
made with energy dispersive spectroscopy (EDS) across multiple 1 mm2 areas of sample 
surface. We demonstrated that the thermal evaporation process results in As-based films 
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with similar composition and thermal properties as compared to those of the parent  
bulk glasses [20]. However, as observed for some Ge-films (Ge23Sb7S70) via Raman 
spectroscopy, the structure of the As-based films, contains a significantly higher number 
of As4S4 molecular units as well as some As4S3 units. We believe these species, found  
to be only present in films, result from the different thermal history (quench rate) induced 
during the film deposition process [20]. 

The study of the structure of the as-deposited As-based and Ge-based films confirms 
that the deposition of glasses into thin films can result in variation of the material 
properties which may affect device performance. Knowledge of the effects of such 
processing conditions on relevant glass properties, such as refractive index, structure  
and glass transition temperature, and definition of means to correct or compensate for 
them, is crucial for the choice of the glasses used for the device design and fabrication. 

4.2 Waveguide and resonator fabrication 

The waveguide, micro-ring and micro-resonator structures have been fabricated using  
the lift-off process. As in a standard lift-off process, a photoresist pattern is first formed 
on a substrate, in the present study, a blank oxide-coated Si wafer. ChG film is then 
thermally evaporated onto the wafer patterned with photoresist, and sonicated in solvent 
(usually acetone) to dissolve the photoresist layer beneath the undesired parts of the film, 
thus lifting it off. Only glass deposited onto areas not covered by photoresist is retained, 
and thus a chalcogenide pattern reversed to that of the photoresist is defined.  
The patterned wafer is then rinsed in methanol and isopropanol to clean the surface.  
To fabricate rib waveguides, a second film deposition is made sequentially on a lift-off 
patterned film. 

In our process, the starting substrates are coated (with a 3 µm-thick thermal oxide)  
6″ Si wafers. Commercially available negative resist NR9-1000PY (Futurrex Inc.) is used 
due to its negative-sloping sidewall profile and superior pattern resolution. The resist  
is spin-coated onto substrates on a manual photoresist coater (Model 5110, Solitec Inc.). 
UV exposure is carried out using a Nikon NSR-2005i9 i-line wafer stepper (minimum 
linewidth 500 nm). Resist pattern development and subsequent baking are both 
completed on an SSI 150 automatic photoresist coater/developer track. The entire 
photolithography process is performed in a class-10 CMOS clean room. To prevent 
surface oxidation, a 3 µm thick layer of SU8 polymer is spin-coated to serve as a top 
cladding after patterning and the devices are subsequently annealed at 140°C for 3 h  
to stabilise the glass structure, whereas no SU8 coatings are applied on the waveguides 
and resonators. Figure 1(a) shows a cross-sectional SEM micrograph of a strip 
Ge23Sb7S70 waveguide before photoresist lift-off and (b) an AFM scan of a 2 µm by 2 µm 
square area showing the surface morphology of a waveguide with a width of 750 nm, 
respectively. 

The AFM measurements yield an average sidewall line RMS roughness value of 
(11 ± 2) nm for as-fabricated waveguides and (1.6 ± 0.3) nm for the strip waveguide’s  
top surface. In comparison, plasma etched Ge23Sb7S70 waveguide sidewalls exhibit  
RMS roughness values typically ranging from 20–150 nm depending on the etching 
parameters [7]. The relatively low sidewall roughness in waveguides fabricated through 
lift-off can be attributed to the fact that the sidewall is defined during a deposition 
process rather than etching. In the lift-off process, we believe the major source of 
sidewall roughness originates only from edge roughness of photoresist patterns. 
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Figure 1 (a) Cross-sectional SEM micro-graph of a sub-micron Ge23Sb7S70 strip waveguide 
before photoresist lift-off and (b) AFM morphological scan of a Ge23Sb7S70 strip 
waveguide fabricated via the lift-off method (see online version for colours) 

 
 (a) (b) 

Figure 2(a) shows the top view of a fabricated As2S3 racetrack resonator and (b)  
a 20 µm-radius As2S3 micro-disk resonator with a bus waveguide in a ‘pulley-type’ 
coupling configuration. Compared to a conventional micro-disk/micro-ring coupler,  
the pulley coupler design increases the coupling length leading to stronger coupling.  
In order to achieve the same coupling strength as a conventional coupler design,  
a wider gap between a resonator and a bus waveguide is possible when a pulley coupler  
is employed. With such performance constraints reduced, lower cost lithography 
techniques can be used for fabrication.  

Figure 2 Top view optical micro-graph of (left) a racetrack As2S3 resonator and (right) an  
As2S3 micro-disk resonator with a pulley coupler configuration (see online version  
for colours) 

 

5 Device testing 

5.1 Waveguide loss measurement 

Transmission loss measurements made at 1550 nm for strip and rib Ge23Sb7S70 
waveguides of different widths and cross-sectional geometry are reported in Table 1. 
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Table 1 Measured optical transmission losses and calculated modal parameters of Ge23Sb7S70 
waveguides at 1550 nm wavelength 

0.75 µm (strip) 1.2 µm (strip) 1.6 µm (strip) 1.2 µm (rib) Waveguide 
width (w) TM TE TM TE TM TE 

Transmission 
loss (dB/cm) 

3.9 ± 0.4 6.4 ± 0.8 3.5 ± 0.3 5.2 ± 0.5 2.3 ± 0.4 <0.5 

Number of 
modes 
supported 

1 1 1 2 1 1 

It can clearly be seen that the Transverse-Magnetic (TM) mode exhibits lower 
transmission loss than the Transverse-Electric (TE) mode in strip waveguides with the 
same width. Moreover, the transmission losses for both modes decrease as the strip 
waveguides become wider. The loss dependence on width is more significant for TE 
mode than for TM mode. The rib waveguides show very low loss for both TE and TM 
modes due to less mode interaction with sidewall roughness in the rib waveguide 
geometry. Statistical analysis reveals that these waveguides have an average loss of  
(2.3 ± 0.4) dB/cm at 1550 nm wavelength, larger than those reported by Madden et al. 
[32] and Choi et al. [33] who measured 0.05 and 0.3 dB/cm optical losses at 1550 nm  
in As2S3 planar rib waveguides with length up to 22.5 cm and in Ge33As12Se55 rib 
waveguides of 3, 4 and 5 µm wide, respectively. The standard deviation of 0.4 dB/cm is 
low enough to confirm the excellent processing uniformity of our lift-off technique, 
indicating that the lift-off is intrinsically a wafer-scale processing technique suitable for 
scale up for mass production. 

Micro-disks with the composition As2S3 and Ge17Sb12S71, a radius of 20 µm and 
varied waveguide-resonator gap separation from 500 nm to 1200 nm have been also 
tested. Table 2 summarises the optical properties of the resonators. 

Table 2 Coupled cavity Q and free spectral range (FSR) of the micro-disk resonators  
at 1550 nm 

Cavity Q (± 10%)  FSR (nm) 
Bulk composition TM TE TM TE 

As2S3 210,000 150,000 7.62 7.82 
Ge17Sb12S71 (in air) 110,000 100,000 8.35 8.92 
Ge17Sb12S71 (in water) 20,000  8.38  

The higher Q factor of TM polarisation suggests that bending loss is insignificant in  
the micro-disk, and thus it is possible to achieve an even smaller cavity mode volume 
without suffering excess radiative loss. The measured transmission spectra of the As2S3 
micro-disk with a gap separation of 800 nm between bus waveguide and micro-disk  
is shown in Figure 3. The transmission spectra feature a set of resonant peaks evenly 
spaced by a well-defined free spectral range, indicative of single-mode resonator 
operation. The micro-disk operates near critical coupling regime for both TE and TM 
polarisations around 1550 nm wavelength, an important advantage for applications in the 
telecommunication bands. 
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Figure 3 (left) Measured transmission spectra of a 20 µm-radius As2S3 microdisk resonator; 
(right) a TM-polarisation transmission spectrum averaged over 32 wavelength sweeping 
scans near a resonant peak: the black dots are experimental data points and the red 
curve is the Lorentzian peak fitted in linear scale (see online version for colours) 

 

5.2 Sensor performance testing 

We have tested two types of sensing mechanisms using the same material platform: 
waveguide evanescent absorption spectroscopy and resonator refractometry. In both 
applications, replica-molded PDMS (polydimethylsiloxane) micro-fluidic channels  
are bonded onto the Ge23Sb7S70 glass waveguides or resonators for fluid analyte transport. 
The details of each design is discussed. 

5.2.1 Testing of the waveguide evanescent absorption sensor performance 

Waveguide evanescent absorption sensor performance is tested by monitoring the optical 
output while injecting a solution of N-methylaniline in carbon tetrachloride into  
the micro-fluidic channel. The N-H bond in N-methylaniline is known to exhibit an 
absorption peak near 1500 nm, which is used as the characteristic fingerprint for chemical 
identification in our test [34]. The absorption (in dB), αL, induced by N-methylaniline  
in our micro-fluidic channel is calculated by taking the ratio of light intensity transmitted 
through a micro-fluidic channel filled with pure carbon tetrachloride (Isolvent) and through 
a channel filled with N-methylaniline solution in carbon tetrachloride (Ianalyte)  
(0.33, volumeric concentration) using:  

solvent
10

analyte

10log IL
I

α =  

where L is the length of the waveguide immersed in analyte solution (cm). The same 
waveguide is used throughout the experiment to eliminate any uniformity  
issue associated with waveguide intrinsic loss. The resultant absorption spectrum  
shown in Figure 4(a) exhibits a well-defined absorption peak at 1496 nm, which is  
in excellent agreement with a traditional absorption measurement carried out on a Cary 
5E UV-Vis-NIR dual-beam spectrophotometer as seen in Figure 4(b). 
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Figure 4 (a) Absorption spectrum showing the N-H bond absorption at 1496 nm wavelength  
in N-methylaniline measured with our waveguide evanescent sensor. (b) Transmission 
spectra of pure N-methylaniline and carbon tetrachloride (CCl4) 

 
 (a) (b) 

Since carbon tetrachloride has no absorption band and is transparent in the investigated 
spectral range, this peak is unambiguously assigned to N-H bond vibrational absorption. 
The peak absorption in dB at 1496 nm is measured for different concentrations of  
N-methylaniline solution in carbon tetrachloride and the result is shown in Figure 5.  
The excellent linear fit suggests that the sensor exhibits linear response when varying 
analyte concentrations in the range investigated. 

Figure 5 Peak absorption of N-methylaniline solution in carbon tetrachloride measured  
as a function of N-methylaniline volume concentration 

 

5.2.2 Testing of the resonator refractometry performance 

For the micro-disk resonator refractometry sensor testing, deionised (DI) water solutions 
of isopropanol (IPA) of varying concentrations are injected into the PDMS channels 
through a syringe pump, and the resonant peak shift due to ambient refractive index 
change is monitored in situ. The measurements with different concentrations of solutions 
are repeated twice to confirm reproducibility. The TM polarisation transmission spectra 
of a Ge17Sb12S71 micro-disk resonator in IPA solutions of various concentrations are 
shown in Figure 6(a). The resonant wavelength shift as a function of IPA concentration 
and corresponding solution refractive index is plotted in Figure 6(a), and a refractive 
index (RI) sensitivity of (182 ± 5) nm/RIU is inferred from the fitted curve slope.  
By applying a Lorentzian fit to the resonant peaks, we show that the resonant wavelength 
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can be determined with an accuracy of ~0.1 pm limited by noise [35], corresponding  
to a refractive index detection limit of 8 × 10–7 Refractive Index Unit (RIU).  
Such a detection limit represents an order of magnitude improvement over commercial 
surface plasmonic resonance sensors. 

Figure 6 (a) TM-polarisation transmission spectra of a Ge-based micro-disk in four IPA solutions 
of different concentrations and (b) Measured resonant peak wavelength shift  
as a function of IPA solution molar concentration and corresponding solution refractive 
index (see online version for colours) 

 
 (a) (b) 

6 Conclusions 

An interdisciplinary team of researchers at Clemson University, MIT and University  
of Central Florida have fabricated and characterised chalcogenide high-index-contrast 
waveguides with core sizes down to the sub-micron range and micro-resonators  
with record cavity Q-factors. As a result of our cross-disciplinary research approach 
blending glass and polymer science, photonic device design and fabrication expertise, 
along with laser fabrication and characterisation, we have demonstrated a micro-fluidic 
waveguide evanescent chemical sensor and a micro-fluidic refractive index sensor  
with an index detection limit of 8 × 10–7 RIU. The micro-resonator device is a promising 
device platform for biochemical sensing and micro-photonics integration. 

Advances in materials for the integrated micro-photonic structures discussed here  
will have a broad impact in the glass materials, sensing and photonics communities. 
Specifically, we have shown: 

• the demonstration of an integrated chalcogenide glass resonator is important for 
applications that involve strong photon-matter interactions including nonlinear optics 
and light emission 

• the superior resolution to refractive index change enabled by the new chalcogenide 
resonator device may lead to new measurement paradigms for glass property 
characterisations and material investigation 
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• the novel photonic designs developed such as the pulley-type coupler are applicable 
to photonic devices in other materials systems 

• the lift-off technique can be employed to pattern a variety of devices in a range  
of oxide and non-oxide glass compositions suitable for diverse infrared sensor 
applications. 
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