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Extensions of Operators
D. HAN, D. LARSON, Z. PAN & W. WOGEN

ABSTRACT. We introduce the concept of the extension spec-
trum of a Hilbert space operator. This is a natural subset of the
spectrum which plays an essential role in dealing with certain
extension properties of operators. We prove that it has spectral-
like properties and satisfies a holomorphic version of the Spectral
Mapping Theorem. We establish structural theorems for alge-
braic extensions of triangular operators which use the extension
spectrum in a natural way. The extension spectrum has some
properties in common with the Kato spectrum, and in the final
section we show how they are different and we examine their in-
clusion relationships.

0. INTRODUCTION

Let B(H) be the algebra of all bounded operators acting on a separable complex
Hilbert space H. An extension of an operator A ∈ B(H) by an operator C ∈ B(K)
is an operator of the form

(∗) T =
(
A B
0 C

)
,

acting on H ⊕ K for some B ∈ B(K,H). The extension is called null if C is the
zero operator on K. The extension is called finite if the extension space K is finite
dimensional. An operator T in B(H) is called triangular if H has an orthonormal
basis {e1, e2, . . . } with the property that Ten ∈ span{e1, . . . , en} for each n ∈ N.
Then T is said to be triangular with respect to {en}. This article has its roots in
the earlier papers [14,15,21]. In [21] the fourth author proved several counterex-
amples which answered some old open questions in operator theory. A few of the
counterexamples had the form of finite extensions of triangular operators. Further
investigation of these and other examples led to the papers [14], [15] and [12],
and subsequently [16], [17] and [7]. The term semitriangular was first used in
[14] to denote a finite extension of a triangular operator.
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1152 D. HAN, D. LARSON, Z. PAN & W. WOGEN

An operator is called algebraic if it satisfies a nontrivial polynomial identity. Al-
gebraic operators are easily shown to be triangular, and in fact have a wide family
of triangular bases. A finite extension of an algebraic operator is algebraic, hence
is triangular. However, it is a curious fact that finite extensions of triangular op-
erators need not be triangular. Indeed, this “fact” is at the bottom of some of
the interesting pathology mentioned above (including several of the counterex-
amples to well-known open questions) that has been discovered concerning single
operators on Hilbert space and their invariant subspace and reflexivity properties
(cf. [3, 4, 9, 12, 14, 15, 21]). We refer to [2], [8] [10], [18] and [19], etc. for
more related work on reflexivity and triangularization of operators and subspaces
of operators.

This paper is a new, much improved version of an earlier unpublished article
“The triangular extension spectrum and algebraic extensions of operators” which
dealt only with extensions of operators which were triangular. This paper su-
percedes that article and is far less restrictive. We found to our surprise that many
of the concepts and results make sense and are valid for arbitrary operators, some-
times with only a slight degree of increase in technical difficulty of proofs, and
other times with the need for new innovative techniques. So this present version
is more general, and also more natural. Likewise, although much of our interest
lies in finite extensions of operators, we discovered that many proofs go through
sometimes with no more difficulty, for the wider class of extension by algebraic
operators; i.e., the case where C in (∗) satisfies a polynomial identity. So when
appropriate we state and prove our results in the wider context.

This paper is organized as follows: In Section 2 we shall prove a spectral map-
ping theorem and two stability results for the extension spectrum. The stability
results are needed in obtaining the structural theorems for algebraic extensions of
triangular operators in Section 3. Section 4 is devoted to examining the relation-
ship between the extension spectrum and the Kato spectrum of operators.

1. PRELIMINARIES

Semi-triangular operators frequently fail to be triangular. For instance, if A =
diag(1, 1

2 ,
1
3 , . . . ), B is the column vector with entries (1, 1

2 ,
1
3 , . . . ), and C is the

one-dimensional zero matrix, then it is not hard to show that there is no orthonor-
mal basis for the direct sum space for which the operator T in (∗) is triangular
(The operator T is triangular in the generalized sense of having a multiplicity free
nest of invariant subspaces, but not in the standard, more restrictive, sense of tri-
angularity defined in the first paragraph). In fact, one of the main results in [12]
states that if a triangular operator is not algebraic, then it has a 1-dimensional ex-
tension which is not triangular. (And hence some scalar translate of A has a null
extension which is not triangular.)

For the special case where A is triangular we define the extension spectrum
of A, denoted by σ∆(A), to be the set of all complex numbers λ such that A −
λI has a 1-dimensional null extension which is not triangular. So an algebraic
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operator has empty extension spectrum, and the above mentioned result from
[12] implies that a non-algebraic triangular operator has non-empty extension
spectrum. For a general (not-necessarily-triangular) operator T the appropriate
definition of extension spectrum is necessarily a bit more abstract (see Definition
2.1). With this more general definition, it remains true (see Remark 2.4) that the
extension spectrum is non-empty for an arbitrary non-algebraic operator. This is
a consequence of a result in [12, Corollary 2.6], which was one of the motivating
factors for the present paper.

A vector x in H is called an algebraic vector for an operator A ∈ B(H) if there
is a non-zero polynomial p in one variable satisfying p(A)x = 0. We use EA
to denote the set of all algebraic vectors for A. Clearly EA is an invariant linear
manifold of H. Let [X] denote the closed linear span of X for any subset X ⊆ H.
It is known that A is triangular if and only if [EA] = H, and A is semi-triangular
if and only if [EA] has finite co-dimension in H.

The following observation, and its ”converse”, will be useful: Let T ∈ B(H)
have the form (∗) with respect to a decomposition H = M ⊕K with A ∈ (∆) and
C algebraic. ThusM⊕0 = [EA]⊕0 ⊆ [ET ]. Let p be a non-zero polynomial such
that p(C) = 0. Then we have that p(T)H ⊆ M⊕0 ⊂ [ET ]. This has a converse: if
T ∈ B(H) is an operator such that p(T)H ⊂ [ET ] for some non-zero polynomial
p, then T has the form (∗) with M = [ET ] and A ∈ (∆) and C algebraic. Indeed,
since [ET ] is an invariant subspace of T , it follows that T has the form (∗). Thus
every element in ET is an algebraic vector for A. So A is triangular. We claim that
p(C) = 0. In fact, for any x ∈ [ET ]⊥, we have p(T)x = y ⊕ p(C)x ∈ [ET ] for
some y ∈ [ET ]. However, p(C)x ∈ [ET ]⊥. Thus p(C)x = 0. So p(C) = 0.

If T is an algebraic extension of a triangular operator, the fact that there exists
a nonzero polynomial p such that p(T)H ⊆ [ET ] implies that there is a unique
monic polynomial which is minimal with respect to this property. We denote this
by pT . It is clear that if p is any polynomial with p(T)H ⊆ [ET ], then pT divides
p.

We will define the triangular part of an operator T ∈ B(H) to be T |[ET ], and
we will call [ET ] the domain of triangularity of T . We write i∆(T) = codim[ET ].
This generalizes the index of semitriangularity, which was written iS∆(T) in [12],
to operators that are not necessarily semitriangular. An operator is semitriangular
precisely when i∆(T) <∞.

An operator T is said to be bi-triangular if both T and T∗ are triangular. We
use (∆) to denote the set of all triangular operators. For an operator T ∈ B(H),
we also use σ(T) and σe(T) to denote the spectrum and essential spectrum of T ,
respectively.

Let A ∈ (∆) and let

T =
(
A B
0 C

)

be an algebraic extension of A onH⊕K. We call T a minimal algebraic extension of
A onH⊕K if [ET ] = H⊕0. In this case pT is precisely the minimal polynomial of
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the “pure extension part” C. It is useful to note that an algebraic extension T of a
triangular operator A is a minimal algebraic extension if and only if the triangular
part of T is A.

2. THE EXTENSION SPECTRUM

The extension spectrum of a triangular operator was defined in Section 1. The fol-
lowing is the corresponding definition of the extension spectrum for an arbitrary
operator.

Definition 2.1. Let A ∈ B(H) be an operator. The extension spectrum of A,
denoted by σ∆(A), is the set of all λ ∈ C for which there exists b ∈ B(C,H) with
the property that ET = EA ⊕ 0, where

(∗∗) T =
(
A b
0 λ

)
.

Loosely put, λ is an element of the extension spectrum of A if and only if T
and A have the “same” domain of triangularity when one regards H as a subspace
of H ⊕ C. In the case when A is triangular, [EA] = H and so λ ∈ σ∆(A) if
and only if [ET−λI] = H ⊕ 0, which is in turn equivalent to the condition that
A−λI has a 1-dimensional null extension that is not triangular. So this definition
is consistent with the extension spectrum of triangular operators given in Section
1. The following lemma will be frequently used in the rest of the paper.

Lemma 2.2. Let A ∈ B(H). Then
(i) λ ∈ σ∆(A) if and only if EA + ran(λI −A) ≠ H.

(ii) λ ∉ σ∆(A) if and only if there exists an n0 such that ker(λI−A)n0 + ran(λI−
A) = H.

(iii) Let A ∈ B(H). If EA + ran(λI − A) = H, then EA + ran(λI − A)n = H for
all positive integers n.

Proof. (i) Let T =
(
A b
0 λ

)
. Then it follows from Corollary 2.2 of [12] that

ET = EA ⊕ 0 if and only if b ∉ ET + ran(A− λI).
(ii) “ ⇐ ” Clearly, for any n we have that ker(λI − A)n + ran(λI − A) ⊆ EA +
ran(λI−A) ⊆ H. If there exists an n0 such that ker(λI−A)n0+ran(λI−A) = H,
then EA + ran(λI −A) = H. By (i), λ ∉ σ∆(A).
(ii) “ ⇒ ” Suppose that λ ∉ σ∆(A). By (i), EA + ran(λI − A) = H. Note that
EA = EλI−A. Therefore, EλI−A + ran(λI − A) = H. By Theorem 2.4(i) in [12],
H = ⋃∞

1 (ker(λI − A)n + ran(λI − A)). Let Pn be the orthogonal projection
on to ker(λI − A)n. Then H = ⋃∞

1 (ranPn + ran(λI − A)). By Theorem 2.2
in [6], ranPn + ran(λI − A) = ran

√
(λI −A)(λI −A)∗ + PnP∗n . Thus, each

subspace ker(λI − A)n + ran(λI − A)) is an operator range and hence an Fσ set.
An application of the Baire Category Theorem shows that there exists an n0 such
that ker(λI −A)n0 + ran(λI −A) = H.
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(iii) Suppose that EA + ran(λI − A) = H. Let x ∈ H be arbitrary. Write x =
e1 + (λI − A)y and y = e2 + (λI − A)z for some e1, e2 ∈ EA and some y ,
z ∈ H. Then x = e1+ (λI−A)e2+ (λI−A)2z. Note that e1+ (λI−A)e2 ∈ EA.
So x ∈ EA + ran(λI − A)2. Repeating the above process, we have that x ∈
EA + ran(λI −A)n for all n. ❐

Note that from Lemma 2.2(i) we immediately have σ∆(A) ⊆ σ(A).
Theorem 2.3. For any T ∈ B(H), σ∆(T) is a closed subset of σ(T). If T is

triangular, then σ∆(T) is contained in σe(T).

Proof. As noted above, σ∆(T) ⊆ σ(T). To show that σ∆(T) is closed, let
λ ∉ σ∆(T). We will show that there is a neighborhood of λ which has empty
intersection with σ∆(T). Without losing generality, we can assume that λ = 0. So
ET+ranT = H. By Lemma 2.2(ii), there exists k such that kerTk+ranT = H. Let
P be the orthogonal projection ofH onto (kerTk)⊥. Then P(ranT) = ran(PT) =
PH, so ran(PT) is closed.

It follows that there exists ε > 0 such that

ran(PT − µP) = PH = ran(PT)

for all µ with |µ| < ε. To see this, let Q = support(PT) = proj((ker(PT))⊥).
By the open mapping theorem, PT |QH is invertible as a mapping from QH onto
PH, so for sufficiently small µ, (PT −µP)|QH is also invertible as a mapping onto
PH. Hence PT − µP has range PH.

Now for |µ| < ε, since ET−µI = ET ⊇ kerTk, we have that

ET−µI + ran(T − µI) ⊇ kerTk + ran(T − µI)
= (I − P)H + (I − P) ran(T − µI)+ P ran(T − µI)
⊇ P⊥H + ran(P(T − µI)) = H.

So, by Lemma 2.2(i), µ ∉ σ∆(T) for all |µ| < ε.
Thus σ∆(T) is closed.
In the case T is triangular, ET is dense in H. If λ ∈ ρe(T), then λI − T

is a Fredholm operator so has closed range with finite codimension. It follows
that ET + ran(λI − T) = H. Therefore λ ∉ σ∆(T) by Lemma 2.2(i). Hence
σ∆(T) ⊆ σe(T). ❐

Remark 2.4. We note that the extension spectra of all non-algebraic operators
are non-empty. This follows from Lemma 2.2(i), and a result from [12, Corollary
2.6], which states that if ET + ran(T −λI) = H for all values of λ in the boundary
of the essential spectrum of T , then T must be algebraic.

Also, if T is not triangular, then σ∆(T) need not be contained in σe(T). For
instance, let T be the forward unilateral shift. Then σe(T) is the unit circle, σ(T)
is the unit disk, and ET = {0}. Moreover, ran(T − λI) ≠ H for all |λ| ≤ 1. Since
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λ ∈ σ∆(T) if and only if ET + ran(T − λI) ≠ H, it follows that σ∆(T) is the unit
disk.

Proposition 2.5. If T ∈ B(H) is a compact operator which is not algebraic, then
σ∆(T) = {0}.

Proof. If T is triangular, this follows from Theorem 2.3. Suppose T ∉ (∆)
and λ ∈ σ∆(T) is nonzero. Then λ is an isolated point of σ(T). Let Pλ be the
spectral idempotent corresponding to {λ}. Then Pλ is finite rank and PλH, P⊥λ H
are invariant for T . Also (T − λI)|P⊥λ H is invertible. We have PλH ⊂ ET , and also

P⊥λ H = (T − λ)P⊥λ H ⊆ (T − λI)H.

Hence ET + ran(T − λI) = H, which implies λ ∉ σ∆(T), a contradiction. ❐

Proposition 2.6. If T is a diagonal operator, then σ∆(T) is the set of limit
points of σ(T). For any compact set K in C, there is a triangular operator T such that
σ∆(T) = K.

Proof. Write T = diag(λ1, λ2, . . . ) with respect to an orthonormal basis ofH.
Let Ω = {λ1, λ2, . . . } and let Ω′ be the set of limit points of Ω. We need to show
σ∆(T) = Ω′. Note that ker(T − λI)+ ran(T −λI) = H if and only if λ ∈ C \Ω′.
If λ ∈ σ∆(T), then

ker(T − λI)+ ran(T − λI) ⊆ ET−λI + ran(T − λI) ≠ H.

Thus λ ∈ Ω′.
Conversely, if λ ∉ σ∆(T), then ET−λI + ran(T − λI) = H. By Lemma 2.2,

there is a positive integer k such that ker(T − λ)k + ran(T − λI) = H. Since
ker(T − λI) = ker(T − λI)k for our case, we get ker(T − λI)+ ran(T − λI) = H,
which implies that λ ∈ C \Ω′. For the second statement, use the fact that every
compact set is the set of limit points of some bounded countable set, and let T be
the diagonal operator with the elements of an enumeration of the countable set as
diagonal terms. ❐

The classical Spectral Mapping Theorem states that if f is holomorphic in a
neighborhood G of σ(T), then σ(f(T)) = f(σ(T)), where f(T) is defined
by the Riesz functional calculus. If f is a constant function, then σ∆(f (T)) and
f(σ∆(T)) can be different simply because the extension spectrum of a scalar op-
erator is the empty set. However, we can prove an ”Extension Spectral Mapping
Theorem” valid for arbitrary holomorphic functions f such that f is not constant
on each component of G which meets σ(T).

Lemma 2.7. Let f be holomorphic on G such that f is not constant on each
component of G which meets σ(T). Then ET = Ef(T). Thus T is triangular if and
only if f(T) is triangular.
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Proof. We first show that ET is the linear span of the generalized eigenvectors
of T . That is,

ET = span{ker(T − λ)n | n ∈ N, λ ∈ σ(T)}.

In fact, if x ∈ ET and if M = {p(T)x | p is a polynomial}, then M is finite
dimensional. The Jordan decomposition of T |M tells us that M is the linear span
of the generalized eigenvectors of T |M . Thus x is contained in the linear span of
all the generalized eigenvectors of T . The inverse inclusion is obvious.

Now we show that ET = Ef(T) using the previous paragraph. Suppose that
(T−λ)nx = 0 for some λ ∈ C and somen ∈ N. Write f(z)−f(λ) = (z−λ)g(z)
for some holomorphic function g on G. Then (f (T)−f(λ)I)nx = (g(T))n(T−
λI)nx = 0. Thus x ∈ Ef(T).

Conversely, suppose that (f (T) − µI)nx = 0 for some µ ∈ C, n ∈ N, and
x ≠ 0. Thus µ ∈ σ(f(T)). Note that by the assumption on f , f(z) − µ has
finitely many roots in σ(T). Thus there is a finite subset {λ1, λ2, . . . , λk} of σT
such that

f(z)− µ =
k∏
j=1

(z − λj)g(z),

where g is holomorphic on G and g(z) ≠ 0 on σ(T). Hence g(T) is invert-
ible. But (g(T))n

∏k
j=1(T − λj)nx = 0 implies that

∏k
j=1(T − λj)nx = 0. So

x ∈ ET . ❐

Theorem 2.8 (Extension Spectral Mapping Theorem). Let T , f , G be as in
Lemma 2.7. Then σ∆(f (T)) = f(σ∆(T)). In particular, if T is invertible, then
ET−1 = ET and σ∆(T−1) = {1/λ | λ ∈ σ∆(T)}.

Proof. Suppose that λ ∈ σ∆(T). Then ET + ran(T − λI) ≠ H by Lemma
2.2. As in the proof of Lemma 2.7, we can write f(z)− f(λ) = (z − λ)g(z).

Note that ET = Ef(T) by Lemma 2.7. We have

Ef(T) + ran(f (T)− f(λ)I) = ET + ran((T − λI)g(T))
⊆ ET + ran(T − λI).

Thus Ef(T) + ran(f (T) − f(λ)I) ≠ H, which implies that f(λ) ∈ σ∆(f (T)) by
Lemma 2.2.

Conversely, assume that µ ∈ σ∆(f (T)). Then, again by Lemma 2.2, Ef(T) +
ran(f (T)− µ) ≠ H. As in the proof of Lemma 2.7 we write

f(z)− µ =
k∏
j=1

(z − λj)g(z),
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with g holomorphic and g(z) ≠ 0 on σ(T). We show that at least one of the
numbers λj must be in σ∆(T). Suppose, to the contrary, that none of λj is in
σ∆(T). Then ET + ran(T − λjI) = H for each j by Lemma 2.2. Thus

H = ET + (T − λ1I)H
= ET + (T − λ1I)(ET + (T − λ2)H)
⊆ ET + ET + (T − λ1)(T − λ2)H
= ET + (T − λ1)(T − λ2)H.

Iterating this step k times gives us H = ET +p(T)H, where p(z) =∏k
j=1(z−λj).

But (f (T)−µI)H = p(T)g(T)H = p(T)H since g(T) is invertible. So we have
ET + (f (T) − µ)H = H, contradicting our assumption on µ. Thus λj ∈ σ∆(T)
for some j, which implies that µ = f(λj) ∈ f(σ∆(T)), as required. ❐

Next, we prove two stability results for the extension spectrum. The first one,
Proposition 2.9, is needed in the proof of Theorem 3.5; and the second one,
Theorem 2.12, shows that certain finite dimensional extensions of an operator
can be made without changing the extension spectrum.

Proposition 2.9. Let A ∈ B(H) and let

T =
(
A B
0 C

)
,

with B ∈ B(K,H) and C ∈ B(K). If C is algebraic, then σ∆(T∗) = σ∆(A∗).
Proof. If A is algebraic, then σ∆(A∗) = σ∆(T∗) = ∅. So we assume that A

is not algebraic. Let λ ∈ σ∆(A∗). Then there exists b ∈ B(C,H) such that

Ā =
(
A∗ b
0 λ

)

satisfies EĀ = EA∗ ⊕ 0. Let us consider the operator

T̄ =
A∗ 0 b
B∗ C∗ 0
0 0 λ

 .
For any x ⊕ y ⊕ z ∈ ET̄ , there exists a non-zero polynomial p such that
p(T̄ )(x ⊕ y ⊕ z) = 0. Since C is algebraic, we can also require that p(C∗) = 0.
If we write

p(Ā) =
(
p(A∗) d

0 p(λ)

)
,
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then

p(T̄ ) =
p(A∗) 0 d

∗ 0 0
0 0 p(λ)

 .
Thus x ⊕ z ∈ EĀ = EA∗ ⊕ 0, so z = 0. This implies that ET̄ = ET∗ ⊕ 0.

Therefore λ ∈ σ∆(T∗).
Conversely, let λ ∈ σ∆(T∗). Then there exist b1 ∈ B(C,H) and b2 ∈

B(C, K) such that

L =
A∗ 0 b1
B∗ C∗ b2
0 0 λ


satisfying EL = ET∗ ⊕ 0. We show that

Â =
(
A∗ b1
0 λ

)

satisfies EÂ = EA∗ ⊕ 0. Indeed, for any x ⊕ z ∈ EÂ, there exists a non-zero
polynomial p such that p(Â)(x ⊕ z) = 0 and p(C∗) = 0. This implies that
p(L)2(x ⊕ 0 ⊕ z) = 0. Thus x ⊕ 0 ⊕ z ∈ EL = ET∗ ⊕ 0, so z = 0. Hence
σ∆(T∗) ⊆ σ∆(A∗). ❐

Lemma 2.10 ([12, Lemma 2.4]). If the linear manifold EA + ran(A− λI) has
finite codimension in H, then it is closed. If it has infinite codimension in H, then it
is contained in an operator range of infinite algebraic codimension in H.

Lemma 2.11. Let A ∈ B(H) and λ ∉ σ∆(A). Then σ∆(A) = σ∆(T), where

T =
(
A b
0 λ

)

for any b ∈ B(C,H).
Proof. Suppose λ1 ∈ σ∆(A). Then there is an operator b1 ∈ B(C,H) so that

T1 =
(
A b1
0 λ1

)

satisfies ET1 = EA ⊕ 0. Let

S =
A b b1

0 λ 0
0 0 λ1

 ∈ B(H ⊕C⊕C).
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We show that ES = ET ⊕ 0, and thus λ1 ∈ σ∆(T). In fact, let x ⊕ y ⊕ z ∈ ES .
Then there is a non-zero polynomial p so that p(S)(x ⊕ y ⊕ z) = 0. Thus
p(S)(S − λI)(x ⊕y ⊕ z) = 0. Write

p(T1) =
(
p(A) d

0 p(λ1)

)
.

Then

p(S) =
p(A) ∗ d

0 p(λ) 0
0 0 p(λ1)

 .
Note that (S − λI)(x ⊕ y ⊕ z) = u ⊕ 0 ⊕ (λ1 − λ)z for some element u ∈ H.
Then, from p(S)(S − λI)(x ⊕y ⊕ z) = 0, we obtain that(

p(A) D
0 p(λ1)

)(
u

(λ1 − λ)z
)
= 0.

This means that u ⊕ (λ1 − λ)z ∈ ET1 . By the assumption on T1, we have
(λ1 − λ)z = 0, which implies that z = 0 since λ1 ≠ λ. Thus ES = ET ⊕ 0,
as claimed.

Conversely, let λ1 ∈ σ∆(T). Then ET + ran(T − λ1I) has infinite algebraic
codimension in H⊕C, by Lemmas 2.2 and 2.10. It follows that EA+ran(A−λ1I)
also has infinite algebraic codimension in H. By Lemma 2.2, λ1 ∈ σ∆(A). ❐

Theorem 2.12. Let A ∈ B(H). Suppose that

T =
(
A B
0 C

)

is a finite dimensional extension of A on H ⊕K such that σ(C)∩σ∆(A) = ∅. Then
σ∆(T) = σ∆(A).

Proof. The conclusion follows by applying induction on the dimension n of
K, since, by Lemma 2.11, it is true for n = 1. ❐

3. ALGEBRAIC EXTENSIONS

Given a triangular operator A ∈ B(H) and an algebraic operator C ∈ B(K), we
show that C is the pure extension part for a minimal algebraic extension T of A
on H ⊕K if and only if the spectrum of C is contained in the extension spectrum
of A.

Theorem 3.1. Let A ∈ B(H) be a triangular operator and let C be an algebraic
operator on K. Then there is an operator B ∈ B(K,H) such that

T =
(
A B
0 C

)
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is a minimal algebraic extension of A on H ⊕ K if and only if σ(C) ⊆ σ∆(A).
We will complete the proof of this theorem by proving several lemmas.

Lemma 3.2. Let A, H and K be as in Theorem 3.1 and let C ∈ B(K). Suppose
that σ(C) = {λ} for some λ ∈ σ∆(A). Then there is an operator B ∈ B(K,H) such
that ET = EA ⊕ 0, where

T =
(
A B
0 C

)
.

Proof. Since λ ∈ σ∆(A), we have that EA + ran(A − λI) ≠ H by Lemma
2.2. So from [EA] = H and by Lemma 2.10, we get that EA + ran(A − λI) has
infinite algebraic codimension and moreover, there is a dense operator range M of
infinite algebraic codimension such that EA + ran(A− λI) ⊆ M. By [6], there is a
unitary operator U satisfying M ∩UM = {0}. Choose B ∈ B(K,H) such that B is
injective and ran(B) ⊆ UM. We claim that B will satisfy our requirements.

Let x⊕y ∈ ET . We need to prove that y = 0. Let p be a nonzero polynomial
such that p(T)(x ⊕y) = 0. First assume that p(t) = (t − λ)m for some positive
integer m. Note that

p(T) =
(
(A− λI)m q(T)

0 (C − λI)m
)
,

where q(T) is

(A− λI)m−1B + (A− λI)m−2B(C − λI)
+ · · · + (A− λI)B(C − λI)m−2 + B(C − λI)m−1.

Thus p(T)(x ⊕ y) = 0 implies that (A − λI)mx + q(T)y = 0. Hence we have
that

(A− λI)mx + (A− λI)m−1By

+ · · · + (A− λI)B(C − λI)m−2y = −B(C − λI)m−1y,

which belongs to M ∩ UM = {0}.
So we obtain

(A− λ)[(A− λI)m−1x + (A− λI)m−2By + · · · + B(C − λI)m−2y] = 0.

This implies

(A− λI)m−1x + (A− λI)m−2By + · · · + B(C − λI)m−2y ∈ EA.

Thus B(C − λI)m−2y ∈ ran(A− λI)+ EA ⊆ M and also B(C − λI)m−2y ∈
UM. Therefore B(C−λI)m−2y = 0. Repeating the above process, we obtain that
By = 0. Thus y = 0, since B is injective.
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Now consider an arbitrary non-zero polynomial p such that p(T)(x ⊕y) =
0. If p(λ) ≠ 0, then p(C) is invertible by the assumption. In this case, from
p(T)(x ⊕y) = 0, we obtain p(C)y = 0. Hence y = 0, as expected.

Suppose that p(t) = (t − λ)mr(t) with m > 0 and r(λ) ≠ 0. Then

r(T) =
(
r(A) ∗

0 r(C)

)
.

So r(T)(x⊕y) = w⊕r(C)y for somew ∈ H and (T −λI)m(w⊕r(C)y) = 0.
Therefore, by the first part of the proof, we have that r(C)y = 0. Hence y = 0,
since r(C) is invertible. ❐

Lemma 3.3. Let A ∈ B(H) be a triangular operator and let Ck ∈ B(Hk) be
algebraic operators with minimal polynomials (t−λk)mk for k = 1, 2, . . . , n. Suppose
that λk are distinct and λk ∈ σ∆(A) for all k. Then there exist Bk ∈ B(Hk,H) such
that ET = EA ⊕ 0, where

T =


A B1 B2 · · · Bn

C1 0 · · · 0
C2 · · · 0

· · · ·
Cn

 ∈ B(H ⊕H1 ⊕ · · · ⊕Hn).

Proof. Let

Tk =
(
A Bk
0 Ck

)

be constructed as in Lemma 3.2 such that ETk = EA ⊕ 0 ⊂ H ⊕Hk.
Suppose that y = x⊕x1⊕ · · ·⊕xn ∈ ET . We need to show that xk = 0 for

all k. Let p be a non-zero polynomial such that p(T)y = 0. We note that if

p(Tk) =
(
p(A) Dk

0 p(Ck)

)
,

then

p(T) =


p(A) D1 D2 · · · Dn

p(C1) 0 · · · 0
· · · ·

p(Cn)

 .
Let pk =

∏
i≠k(t − λi)mi . Then, by pk(Ci) = 0 for i ≠ k, we obtain that

pk(T)y = w ⊕ 0⊕ · · · ⊕ 0⊕pk(Ck)xk ⊕ 0⊕ · · · ⊕ 0 for some element w ∈ H.
Thus, from p(T)pk(T)y = pk(T)p(T)y = 0, we obtain(

p(A) Dk
0 p(Ck)

)(
w

pk(Ck)xk

)
= 0.
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This implies that pk(Ck)xk = 0 by Lemma 3.2. Hence xk = 0 since pk(Ck) is
invertible. Since k is arbitrary, we have that y ∈ EA ⊕ 0. ❐

Lemma 3.4. Let M be a finite dimensional Hilbert space and let S ∈ B(M) be
a strictly upper-triangular matrix with respect to an orthonormal basis ofM. Let A be
a triangular operator on H. Then σ∆(A) is equal to the set of all λ with the property
that there exists B ∈ B(M,H) such that

T =
(
A B
0 λI + S

)

is a minimal algebraic extension of A on H ⊕M.

Proof. Let {f1, . . . , fn} be an orthonormal basis for M so that S has the form
S = (sij), with sij = 0 when i ≥ j, with respect to this basis.

Suppose that λ is a number such that T is a minimal algebraic extension of A
on H ⊕M and write B = (b1, . . . , bn). If x⊕αf1 (α ∈ C) is an algebraic element
for (

A b1
0 λ

)
,

then x⊕αf1⊕0⊕· · ·⊕0 is an algebraic vector for T . Thus α = 0, which implies
that λ ∈ σ∆(A).

Conversely, let λ ∈ σ∆(A). We use induction on n to complete the proof.
We write Mk = span{f1, . . . , fk}.

By the definition of σ∆(A), there is an element b1 ∈ H such that

T1 =
(
A b1
0 λ

)

has index 1. Thus ET1 = EA ⊕ 0 and moreover, ran(A− λI)+ EA ≠ H by Lemma
2.2. But [EA] = H. Thus Lemma 2.10 implies that ran(A− λI)+ EA has infinite
algebraic codimension in H. Hence (ran(A− λI)⊕ 0)+ ET1 +C(b1 ⊕ 0) also has
infinite algebraic codimension in H ⊕M1.

Assume that

Tk =


A b1 b2 · · · bk

λ s1i · · · s1k
· · · ·

λ


has been constructed so that ETk = EA ⊕ 0 and (ran(A − λI) ⊕ 0) + ETk +
span{c1, . . . , ck} has infinite algebraic codimension in H ⊕Mk, where c1 = b1 ⊕
0⊕· · ·⊕0, ci = bi⊕s11⊕· · ·⊕si−1,i⊕0⊕· · ·⊕0 ∈ H⊕Mk, i = 2, . . . , k. Hence
Q = (ran(A− λI)⊕ 0)+ ETk + span{c1, . . . , ck} + (0⊕Mk) has infinite algebraic
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codimension inH⊕Mk. Take bk+1⊕0 ∉ Q. Then, by Lemma 2.2 in [12], we have
that ETk+1 = ETk⊕0 = EA⊕0 and also (ran(A−λI)⊕0)+ETk+1+span{c1, . . . , ck+1}
has infinite algebraic codimension. Therefore, we complete the induction argu-
ment. ❐

Proof of Theorem 3.1. Let σ(C) = {λ1, . . . , λn}.
“ ⇒ ” We assume that C has the Jordan form C = λ1I0⊕

∑
k(λ1Ik+Jk)⊕C1 with

σ(C1) = {λ2, . . . , λn}. Write

T =


A B0 B1 · · · B∞

λ1I0 0 · · · 0
λ1I1 + J1 · · · 0

· · · ·
C1

 .

If I0 acts on a non-zero space, then

(
A B0
0 λ1I0

)

is not triangular since ET = EA ⊕ 0. Hence λ1 ∈ σ∆(A).
Suppose that I0 acts on the zero space. Then there is a k so that Ik acts on a

non-zero space. We consider

Dk =
(
A Bk
0 λ1Ik + Jk

)
.

Then Dk is a minimal extension of A. Thus, by Lemma 3.4, λ1 ∈ σ∆(A). Simi-
larly, λk ∈ σ∆(A) for k = 2, . . . , n.

“ ⇐ ” Let C have the Jordan form C1 ⊕ C2 ⊕ · · · ⊕ Cn with σ(Ck) = {λk} for
k = 1, . . . , n. Then the conclusion follows from Lemma 3.3.

A general algebraic operator C is bi-triangular. By [5], C is quasisimilar to its
Jordan form. Then the conclusion follows easily. ❐

Theorem 3.5. Let A ∈ B(H) be a bi-triangular operator and let C1 ∈ B(K1)
and C2 ∈ B(K2) be algebraic operators. Then there exist X, Y , D such that

T =
C1 X Y

0 A D
0 0 C2

 ∈ B(K1 ⊕H ⊕ K2)

has the property that [ET ]⊥ = K2 and [ET∗]⊥ = K1 if and only if σ(C∗1 ) ⊆ σ∆(A∗)
and σ(C2) ⊆ σ∆(A).
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Proof. “ ⇒ ” Let

T1 =
(
C1 X
0 A

)
and T2 =

(
A D
0 C2

)
.

By Proposition 2.9, σ∆(T∗2 ) = σ∆(A∗). We also have that σ∆(T1) = σ∆(A) since
C1 is algebraic.

By Theorem 3.1, we have σ(C2) ⊆ σ∆(T1) and σ(C∗1 ) ⊆ σ∆(T∗2 ). Thus the
necessity follows.

“ ⇐ ” By Theorem 3.1, there exists D ∈ B(K2,H) so that

T2 =
(
A D
0 C2

)

has the property that ET2 = EA ⊕ 0. Since T∗2 is triangular, again by Theorem 3.1,
there exist X, Y such that

T∗ =
C

∗
1 0 0
X∗ A∗ 0
Y∗ D∗ C2


has the property that ET∗ = 0 ⊕ ET∗2 . Thus we get [ET ]⊥ = K2 and [ET∗]⊥ =
K1. ❐

Using Theorem 3.1, we can prove the following:

Corollary 3.6. Suppose that T is an algebraic extension of a triangular operator
and A is the triangular part of T . Then σ∆(T) = σ∆(A).

Proof. Let

T =
(
A B
0 C

)

with respect to the Hilbert space decomposition H ⊕K.
Suppose that λ ∈ σ∆(T). Then there exist two elements, b1 ∈ H and b2 ∈ K,

such that A B b1
0 C b2
0 0 λ


is the minimal algebraic extension of T , and so it is the minimal algebraic exten-
sion of A. Thus, by Theorem 3.1, λ ∈ σ∆(A).

Conversely, let λ ∈ σ∆(A). By similarity, we can assume that C has the the
form diag(C1, . . . , Cn) such that σ(Ci) = {ti} and t1, t2, . . . , tn are distinct. Now
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if λ is different from ti for all i, then, as in Lemma 3.3, we can find b ∈ H ⊕ K
such that (

T b
0 λ

)

is a minimal algebraic extension of A, and so it is a minimal algebraic extension of
T since [ET ] = [EA]⊕ 0. Thus λ ∈ σ∆(T).

If λ ∈ σ(C), we can assume that C has the form(
D 0
0 F

)

such that σ(F) = {λ} and (F − λI)k = 0 for some positive integer k. Write

T =
(
G B1
0 F

)
.

Then ET+ran(T−λI)k ≠ H⊕K. So, by Lemma 2.2(iii), ET+ran(T−λI) ≠ H⊕K.
Thus λ ∈ σ∆(T) by Lemma 2.2(i). ❐

4. THE KATO SPECTRUM

We recall (cf [1]) that an operator T ∈ B(H) is said to be of Kato type of degree d,
where d is a positive integer, if there exist two closed subspaces M, N, invariant
under T , such that the following properties hold:
(a) H =M ⊕N (here ⊕ means Banach space direct sum).
(b) If T0 denotes the restriction T |M of T on M, then ran(T0) is closed and the

inclusion ker(Tn0 ) ⊆ ran(T0) holds for all positive integer n.
(c) The restriction T |N is nilpotent of degree d.
The pair (M,N) is called a Kato decomposition associated with T . For any operator
T ∈ B(H), the Kato spectrum, denoted by σK(T), of T is defined by

{λ ∈ C | T − λI is not of Kato type}.

It was known that the Kato spectrum of an operator T is empty if and only if T
is algebraic (cf [1]). We also know that T is algebraic if and only if σ∆(T) is empty.
These properties suggest that there might be some connection between the Kato
spectrum and the extension spectrum, although the definitions are completely
different. For triangular operators we have the following result.

Theorem 4.1. Suppose that T is a triangular operator. Then the extension spec-
trum is contained in the Kato spectrum.

Proof. Suppose that λ ∉ σK(T). We need to show that λ ∉ σ∆(T). Without
loss of generality we can assume that λ = 0. Let T be of Kato type of degree d,
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and let (M,N) be a Kato type decomposition associated with T and d. We claim
that TdH =M.

In fact, since M ∈ LatT , we have TdM ⊂ M. Note that TdN = 0. Thus
TdH = TdM ⊂M. To get the other inclusion, it suffices to show that TM = M.

Note that TM is closed. Let M1 = M 	 TM. For arbitrary x ∈ ET , write
x = x1 + x2 with x1 ∈ M and x2 ∈ N ⊆ kerTd ⊆ ET . Then x1 = x − x2 ∈ ET .
Let p(t) =∑n

i=0 aiti be a non-zero polynomial such that p(T)x1 = 0. If a0 ≠ 0,
then x1 ∈ (p(T) − p(0))M ⊆ TM. If a0 = 0, we write p(t) = tkp1(t) with
p1(0) ≠ 0. Then p1(T)x1 ∈ ker(T |M)k ⊆ TM. Thus

x1 ∈ ker(T |M)k − (p1(T)− p1(0))M ⊆ TM.

Since ET is dense in H, we have that M1 = {0}. Thus TM =M and so TdH =M,
which implies that ran(T)+ kerTd = H. By Lemma 2.2, 0 ∉ σ∆(T). ❐

The following result is an easy consequence of the proof of Theorem 4.1.

Corollary 4.2. If T is triangular and of Kato type, then TdH is closed for some
d ≥ 1 and Tk+dH = TdH for all k ∈ N.

The following examples show that in general there are no definite inclusion
relations between the extension spectrum and the Kato spectrum. Example A also
shows that the Kato spectrum and the extension spectrum can be different for
triangular operators.

Example A. Let H be an infinite dimensional Hilbert space and W ∈ B(H)
such that the range of W is not closed. Let

T =


0 W 0 0 · · ·

0 I 0 · · ·
0 I · · ·

· · · ·
·


be in B(K), where K is the direct sum of infinitely many copies of H. Then T is
triangular. Clearly the range of Tn is not closed for all n ≥ 1. Since ran(T) +
kerT = K, we have 0 ∉ σ∆(T). We claim that T is not of Kato type. It follows
from Corollary 4.2 that if a triangular operator T is of Kato type of degree d, then
ran(Td) is closed. Hence 0 ∈ σK(T). Therefore σK(T) È σ∆(T).

Example B. Let S ∈ B(H) be the forward shift operator defined by Sen =
en+1. Then kerSn = {0} for all n ≥ 1 and ran(S) = H 	 Ce1. Thus kerSn +
ran(S) ≠ H. Thus 0 ∈ σ∆(S). Since ran(S) is closed and ker(Sn) = {0} for all
positive integers n, we have that (H,0) is a Kato decomposition associated with
S. Thus S is of Kato type and so 0 ∉ σK(S). Therefore σ∆(S) È σK(S).
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