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Abstract
We propose a unified approach to addition of some physical quantities (among
which resistors and capacitors are the most well known) that are usually
encountered in introductory physics such that the formulae required to solve
problems are always simply additive. This approach has the advantage of being
consistent with the intuition of students. To demonstrate the effectiveness of
our approach, we propose and solve several problems. We hope that this paper
can serve as a resource paper for problems on the subject.

1. Introduction

All introductory physics textbooks, with or without calculus, cover the addition of both
resistances and capacitances in series and in parallel. The formulae for adding resistances

R = R1 + R2 + · · · , in series, (1)

1

R
= 1

R1
+

1

R2
+ · · · , in parallel, (2)

and capacitances

1

C
= 1

C1
+

1

C2
+ · · · , in series, (3)

C = C1 + C2 + · · · , in parallel, (4)

are well known and well studied in all the books.
In books with calculus there are often end-of-chapter problems in which students must find

R and C using continuous versions of equations (1) and (4) [3, 9, 11–13]. However, we have
found none which includes problems that make use of continuous versions of equations (2)
and (3) [3, 4, 7, 9, 11–13]. Students who can understand and solve the first class of problems
should be able to handle the second class of problems, as well. We feel that continuous
problems that make use of all four equations should be shown to the students in order to give

* This paper is an abridged version of paper [2] posted on the physics archive of www.arXiv.org.
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them a global picture of how calculus is applied to physical problems. Physics contains much
more than mathematics. When integrating quantities in physics, the way we integrate them is
motivated by the underlying physics. Students often forget the physical reasoning and they
tend to add (integrate) quantities only in one way.

In this paper, we introduce an approach to solving continuous versions of equations (2)
and (3) that is as straightforward and logical for the students as solving continuous versions of
equations (1) and (4). We then extend the logic to the addition of other quantities encountered
in undergraduate introductory physics. This demonstrates that the method is not specific to
resistors and capacitors but general and includes all quantities obeying similar addition laws.

The organization of this paper is as follows: section 2 discusses many physical quantities
taken from introductory physics that obey similar addition laws. Among these quantities,
resistance and capacitance are the most well known to students. Inductance is also known but
probably not mastered at the level it should be. Elasticity is somewhat known, but thermal
resistance, diffusion resistance and viscous resistance are almost unknown to students. As
a result, for resistance and capacitance we only remind readers of the basic formulae, while
for the rest of the quantities we expand the discussion to some length so the students will
become familiar with the physical background. In section 3, we present basic applications of
the addition formulae. This section is meant to demonstrate in a simple way how one chooses
the correct addition formula (in series or in parallel), given a problem. In section 4 we solve
several additional problems that make use of the main idea. In each problem, we have chosen
one representative quantity. However, the reader must realize that the same problem can be
stated for any of the quantities given in section 2, not just the chosen quantity.

We hope that this paper will motivate teachers to explain to students the subtle points
between ‘straight integration’ as taught in calculus and ‘physical integration’ to find a physical
quantity.

2. Basic formulae

2.1. Resistance

The basic formula to compute resistance R is the formula of a uniform cylindrical resistor,

R = ρ
L

A
where ρ is the resistivity of the material, L is the length of the conductor and A the cross-
sectional area. Written as conductance1, this is

G = 1

R
,

and

G = σ
A

L
,

where σ = 1/ρ is the conductivity of the material.

2.2. Capacitance

The basic formula to compute capacitance C is that of a parallel-plate capacitor filled with a
uniform dielectric material,

C = ε0κ
A

d
,

1 Often the term conductivity is used for G. However, the term conductance is in uniform linguistic agreement with
the rest of the terminology.
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dx d

w

�

I

I

Figure 1. A parallel-plate inductor. The figure also shows a partition into infinitesimal inductors
connected in parallel.

where κ is the dielectric constant, A is the area of the plates, and d is the distance between the
plates. We will call the inverse of the capacitance

D = 1

C
,

the incapacitance of the capacitor. For a parallel-plate capacitor

D = 1

ε0κ

d

A
.

2.3. Inductance

Calculation of inductance is usually based on the definition

L = �B

I
, (5)

where �B is the flux of the magnetic field produced by the current I; therefore some discussion
is necessary regarding our point of view.

It is well known that the inductance for a parallel-plate inductor is given by

L = µ0
A

w
, (6)

where A = �d is the area of the cross-section and w the width of the parallel wires (see figure 1).
We will call the inverse of the inductance

K = 1

L
,

the deductance of the inductor. Therefore, the deductance of a parallel-plate inductor is

K = 1

µ0

w

A
.

2.4. Transport phenomena

Transport phenomena are irreversible processes that occur in systems that are not in statistical
equilibrium. In these systems, there is a net transfer of energy, matter or momentum.

Imagine a cylinder made from a uniform conducting material whose bases are kept at
different temperatures. Then, due to the temperature difference �T between the bases, heat
will flow from one base to the other. The rate at which heat flows, i.e.

Ith = �Q

�t
,
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A

L

Figure 2. A uniform cylinder of length/height L and base area A comprises the central idea in our
calculations. See table 1 for the formulae of all quantities for such a cylinder (d or w are also used
as alternative symbols for L in that table).

is called the thermal current. It is known, see for example [1, 11], that

Ith = σthA
�T

L
, (7)

where L is the length of the cylinder, A is its cross-section, and σth is a constant characteristic of
the material, called the thermal conductivity. We define the inverse of the thermal conductivity
ρth = 1/σth to be the thermal resistivity of the material. Equation (7) is sometimes referred to
as Fourier’s law for the flow of energy.

The thermal resistance of the cylinder is then defined by

Rth = �T

Ith
. (8)

Note the analogy with the standard resistance: R = �V/I . Potential difference is the reason
electric current flows. Here, temperature difference is the reason behind the thermal current.
Comparing the two formulae (7) and (8) we have written above, we arrive at

Rth = ρth
L

A
, (9)

an expression almost identical to that of the electric resistance for the cylinder.
We define the thermal conductance as

Gth = 1

Rth
.

This implies that for the uniform cylinder

Gth = σth
A

L
(10)

Now, imagine a cylinder filled with gas such that the particle densities n1 and n2 of the
gas at the bases are kept constant at different values. Then, due to the density difference �n

between the bases, particles will flow from one base to the other. The rate at which particles
flow, i.e.

Idiff = �n

�t
,

is called the particle current. It is known, see for example [1], that

Idiff = σdiffA
�n

L
, (11)

where L is the length of the cylinder, A is its cross-section, and σdiff is a constant characteristic
of the material called the diffusion coefficient. Another name, in the spirit of what we have
been discussing, would be diffusion conductivity. The inverse of σdiff, ρdiff = 1/σdiff , is named
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the diffusion resistivity of the material. Equation (11) is sometimes referred to as Fick’s law.
The diffusive resistance of the cylinder is then defined by

Rdiff = �n

Idiff
= ρdiff

L

A
. (12)

Its inverse gives the diffusive conductance:

Gdiff = 1

Rdiff
= σdiff

A

L
.

Now imagine that the thermal agitation (speed) of the molecules at the two bases of the
cylinder is different. Then, due to the speed difference �v between the bases, momentum will
flow from one base to the other. The rate at which speed flows, i.e.

Ivis = �v

�t
,

is called the momentum current. It is known, see for example [1], that

Ivis = σvisA
�v

L
, (13)

where L is the length of the cylinder, A is its cross-section, and σvis is a constant characteristic
of the material called the coefficient of viscosity. Another name, again in the spirit of what we
have been discussing, would be viscous conductivity. The inverse of σvis, ρvis = 1/σvis, is the
viscous resistivity of the material. The viscous resistance of the cylinder is then defined by

Rvis = �v

I
= ρvis

L

A
. (14)

Its inverse gives the viscous conductance:

Gvis = 1

Rvis
= σvis

A

L
.

Formulae (9) and (10), derived in the previous section, are also applicable in the present
cases with the appropriate index changes.

Before we close this section, it is worth mentioning that the linear laws (Fourier’s law,
Fick’s law and equation (13)) discussed above are elementary versions of what is found in a
more general context in (linear) non-equilibrium thermodynamics. The interested reader may
want to consult papers [10] and [6] for additional information.

2.5. Elasticity

The concept of elasticity is more than a mere definition. The behaviour of a rubber band or
the behaviour of a rod or a cable under stress is basically analogous to that of many springs
connected together.

Let us imagine a uniform rod of length L and cross-sectional area A. We focus on an
infinitesimal piece of length dx at distance x from one base as seen in figure 3. If dξ is the
infinitesimal extension of this piece under the force F(x), then Hooke’s law states that

dξ = −F(x) d�,

where d� is the elasticity constant for the piece dx. We can write the above relation as
dξ

dx
= −F(x)

d�

dx
,

where λ = d�/dx is the elasticity per unit length and ε = dξ/dx is the extension of the system
per unit length, known as linear strain. It is known that approximately [1]

dξ

dx
= − 1

YA
F(x),
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A

L

dxx

A

L + ∆L

dx + dξx + ξ

Figure 3. An undeformed and deformed rod.

where A is the cross-section and Y is a constant characteristic of the material known as Young’s
modulus. Combining the last expressions we conclude that

λ = d�

dx
= 1

YA
.

If λ is constant then the elasticity constant is

� = 1

Y

L

A
,

where L is the length of the system. The inverse gives the stiffness:

k = Y
A

L
.

We have thus obtained basic formulae similar to those of resistors and capacitors that allow
the computation of k and � in any geometry. Most probably these formulae are well known to
engineers, but they are not well known among physicists. However, once written down, they
look familiar and natural.

3. Addition formulae

Suppose that there is a (discrete or continuous) sequence either of resistors, capacitors,
inductors, springs or transport conductors (thermal, diffusion or viscous). Either from
introductory physics, or as a straightforward exercise of the definitions, the reader can persuade
himself that when the objects are connected in series

P =
∑

i

Pi, discrete case,

P =
∫

dP, continuous case,
(15)

where

1. if the elements are connected in series P stands for any of R,D,L, �,R;
2. if the elements are connected in parallel P stands for any of G,C,K, k,G;

each symbol having the meaning given in section 2.
In the next section, we will demonstrate the application of the addition formulae by

examining specific examples from resistors and capacitors. Along with the solution, several
comments are made to help the reader understand some of the implicit assumptions and other
details in the solution. In the section that follows, more problems are discussed for the readers
who wish to master the technique.
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r

dr

a

l

Figure 4. The figure shows a cylindrical wire of radius a. A potential difference is applied between
the bases of the cylinder and therefore electric current is running parallel to the axis of the cylinder.

Table 1. This table summarizes the additive physical quantities in the most common cases
encountered in introductory physics. The quantities that are not usually defined in the introductory
books are the conductance G = 1/R, the incapacitance D = 1/C, the deductance K = 1/L, the
elasticity constant � = 1/k, and the the thermal conductance Gtr = 1/Rtr. The index tr stands
for transport and it should be interpreted as a generic name for any of the three cases of thermal
conductance, diffusion or viscosity. The basic formulae refer to the geometry of figure 2.

Connection Resistors Capacitors Inductors Springs Transport conductors

Resistance Incapacitance Inductance Elasticity Thermal resistance

Series Definition R = �V
I

D = �V
Q

L = �B
I

� = ξ
F

Rtr = �Ttr
Itr

Basic formula R = ρ L
A

D = 1
ε0κ

d
A

L = µ0
A
w

� = 1
Y

L
A

Rtr = ρtr
L
A

Conductance Capacitance Deductance Stiffness Thermal conductance

Parallel Definition G = I
�V

C = Q
�V

K = I
�B

k = F
ξ

Gtr = Itr
�Ttr

Basic formula G = σ A
L

C = ε0κ
A
d

K = 1
µ0

w
A

k = Y A
L

Gtr = σtr
A
L

4. Sample problems with solutions

In this section, we pose and solve2 a few problems that will help the reader become fluid in
the application of the quantities in table 1. Some of the problems are well-known, standard
ones found in all textbooks; these problems are re-examined and solved using our technique.

4.1. Cylindrical resistor with voltage applied to its bases

The cylindrical resistor shown in figure 4 is made such that the resistivity ρ is a function of
the distance r from the axis. What is the total resistance R of the resistor?

Solution. We divide the cylindrical resistor into infinitesimal resistors in the form of cylindrical
shells of thickness dr . One of these shells is seen in figure 4.

When the current is flowing along the axis of the cylinder, the infinitesimal resistors are
not connected in series. Instead, all of the infinitesimal cylindrical shells of thickness dr

are connected at the same end points and, therefore, have the same applied potential. In
other words, the shells are connected in parallel and it is the conductance that is important.
Specifically,

G =
∫

cylinder
dG.

2 For an extended version of this paper with additional solved problems, the reader should look at [2].
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h

b

c

z

dz
r

Figure 5. A truncated cone which has been sliced into infinitesimal cylinders of height dz.

For the infinitesimal shell

dG = σ(r)
2πr dr

�
.

Therefore

G =
∫

cylinder
dG = 2π

�

∫ a

0
σ(r)r dr.

For example, if σ(r) = σ0
a
r
, then

G = 2σ0
πa2

�
,

where σ0 = 1/ρ0. The resistance is therefore

R = ρ0

2

�

πa2
.

As another example, we may take σ(r) = σ0
r
a

. We can easily find that in this case the
conductance of the resistor would then be

G = 2πσ0a
2

3�
, (16)

and the corresponding resistance would be

R = 3ρ0

2

�

πa2
.

4.2. Truncated-cone resistor with potential difference applied between its bases

A resistor is made from a truncated cone of material with uniform resistivity ρ. What is the
total resistance R of the resistor when a potential difference is applied between the two bases
of the cone?

Solution. This is a well-known problem found in many of the introductory physics textbooks
(p 631 in [3], p 856 in [9], p 821 in [11], p 708 in [12], p 977 in [13]). We can partition
the cone into infinitesimal cylindrical resistors of length dz. One representative resistor at
distance z from the top base is seen in figure 5. The area of the resistor is A = πr2 and
therefore its infinitesimal resistance is given by

dR = ρ
dz

πr2
.
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From the figure we can see that

z

h
= r − b

c − b
⇒ dz = h

c − b
dr.

The infinitesimal resistors are connected in series and therefore

R =
∫

cone
dR = ρ

h

π(c − b)

∫ c

b

dr

r2
= ρ

h

πbc
. (17)

Comment 1. However, this solution, which is common in textbooks [3, 9, 11–13], tacitly
assumes that the discs used in the partition of the truncated cone are equipotential surfaces.
This is of course not true, as can be seen quite easily. If they were equipotential surfaces,
then the electric field lines would be straight lines, parallel to the axis of the cone. However,
this cannot be the case since, close to the lateral surface of the cone, it would mean that the
current goes through the lateral surface and does not remain inside the resistor. Therefore, the
discs are not equipotential surfaces. One way out of this subtlety is to assume that the discs
are approximate equipotential surfaces as suggested in [12]. This is the attitude we adopt in
this paper as our intention is not to discuss the validity of the partitions used in each problem,
but to emphasize the unified description of resistances and capacitances as additive quantities.
Similar questions can be raised and studied in the majority of the problems mentioned in the
present paper. A reader with serious interest in electricity is referred to the paper of Romano
and Price [8] where the conical resistor is studied. Once that paper is understood, the reader
can attempt to generalize it to the rest of the problems of our paper.

Comment 2. The reader may have noted that the results for a particular geometry are not
specific to the quantity computed, but they can be transferred to other quantities among those
discussed in table 1 due to the similarity of formulae. For the case at hand, think of a capacitor
which is made of two circular discs of radii b and c respectively placed at a distance h such
that the line that joins their centres is perpendicular to the discs. To find the capacitance of this
arrangement, we partition the capacitor into infinitesimal parallel-plate capacitors of distance
dz and plate area A = πr2 exactly as seen in figure 5. These infinitesimal capacitors are
connected in series and therefore the incapacitance is the relevant additive quantity:

dD = 1

ε0

dz

πr2
.

Note that the computation is identical to that of R with the final result:

D = 1

ε0

h

πbc
⇒ C = ε0

πbc

h
. (18)

When b = c, we recover the result of the parallel-plate capacitor.

4.3. Hollow cylindrical capacitor composed of coaxial cylinders

In introductory physics, the capacitance of a cylindrical capacitor is found using the definition
C = Q/�V , where Q is the charge on the positive plate of the capacitor and �V the absolute
value of the potential difference between the two plates. However, this problem requires us
to compute the capacitance using only the formulae giving the capacitance of a parallel-plate,
plane capacitor. In fact, we will discuss more generally the case in which the capacitor is
filled with a dielectric constant κ(r) = crn, where r is the distance from the axis and c, n are
constants.
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r

dr

a

b

h

z

a

b

h

dz

Figure 6. A cylindrical capacitor with radii a and b and height h. In the left picture, we have sliced
it in infinitesimal cylindrical shells, while in the right picture we have sliced it in infinitesimal
annuli.

Solution. As shown in the left side of figure 6, the capacitor is partitioned into small cylindrical
capacitors for which the distance between the plates is dr . For such small capacitors, the
formula of a parallel-plate capacitor is valid. We note though that all infinitesimal capacitors
are connected in series. Therefore

dD = 1

ε0κ(r)

dr

2πrh

and

D =
∫

cylinder
dD = 1

2πε0hc

∫ b

a

dr

rn+1
.

When n = 0, the capacitor is filled with a uniform dielectric. This is the standard case of a
capacitor filled with air found in any book:

D = 1

2πε0hc

∫ b

a

dr

r
= 1

2πε0hc
ln

b

a
.

When n �= 0, the capacitor is filled with a non-uniform dielectric and

D = 1

2πε0hc

∫ b

a

dr

rn+1
= 1

2πε0hc

bn − an

nanbn
.

Therefore, the total capacitance is

C = 1

D
= 2πε0h

ln b
a

,
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if n = 0 and

C = 1

D
= 2πε0hcn

anbn

bn − an
,

if n �= 0.

Comment 1. One might be tempted to partition the cylindrical capacitor into infinitesimal
capacitors as seen in the figure to the right. Such capacitors look simpler than the infinitesimal
cylindrical shell we used above. Furthermore, they are connected in parallel (note that each
capacitor is carrying an infinitesimal charge dQ and

∫
cylinder dQ = Q) and therefore it is

enough to deal with capacitance, C = ∫
cylinder dC, and not incapacitance D.

However, with a minute’s reflection the reader will see that in order to use the parallel-
plate capacitor formula in the infinitesimal case, the distance between the plates must be
infinitesimal which indicates that the infinitesimal capacitors must be connected in series. In
the proposed slicing, the distance between the plates of the infinitesimal capacitor is finite,
namely b − a. The infinitesimal capacitor is still a cylindrical capacitor of infinitesimal height
and therefore its capacitance should be expressed in a form that is not known before the
problem is solved.

Comment 2. The geometry of the problem at hand is identical to that of a cylindrical
conductor from which a smaller coaxial cylindrical piece has been removed and potential
difference applied between the inner and outer surfaces. Then we can slice the conductor in
infinitesimal cylindrical shells as shown in figure 6 with infinitesimal resistance

dR = ρ
dr

2πhr
.

The total resistance will then be

R = ρ

2πh

∫ b

a

dr

r
= ρ

2πh
ln

b

a
,

a well-known result, too.

4.4. Hollow truncated-cone capacitor composed of two annular bases

(a) Two metallic flat annuli are placed such that they form a capacitor with the shape of a
hollow truncated cone as seen in figure 7. Partition the capacitor into infinitesimal capacitors
and show that the capacitance is given by

C = 2πε0
a(c − b)

h

[
ln

c − a

c + a
− ln

b − a

b + a

]−1

.

Show that this result reduces to that of a cylindrical capacitor for c = b. Also, show that it
agrees with the result for a parallel-plate capacitor with a = 0.

(b) Now, fill the two bases with discs of radius a and argue that the capacitance of the
hollow truncated cone equals that of the truncated cone minus the capacitance of the parallel-
plate capacitor that we have removed. This means that the capacitance of the hollow truncated
cone should equal

C = πε0
bc − a2

h
.

How is it possible that this result does not agree with that of part (a)?
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b

hr

z

c

r − b

c− b

dz

a

Figure 7. A partition of the truncated cone in infinitesimal slices.

Solution. (a) We divide the truncated cone into annuli of height dz. These are parellel-plate
capacitors connected in series. Therefore

dD = 1

ε0

dz

π(r2 − a2)
.

As in example 4.2,

dz = h

c − b
dr. (19)

Therefore

dD = 1

ε0π

h

c − b

dr

r2 − a2
= h

2πε0a(c − b)

(
1

r − a
− 1

r + a

)
dr,

and

D = h

2πε0a(c − b)

∫ c

b

(
1

r − a
− 1

r + a

)
dr

= h

2πε0a(c − b)

(
ln

c − a

c + a
− ln

b − a

b + a

)
.

When c = b we apply de L’Hospital’s rule to get

D = h

πε0

1

b2 − a2
.

This is just C = ε0A/h for a parallel-plate capacitor with plate area A = π(b2 − a2).
The case a = 0 is obtained in the same way and yields

D = h

πε0cb
,

as found previously.
(b) We use a parallel-plate capacitor with circular plates of radius a at a distance h to fill

the plates of our capacitor (figure 8). This capacitor has capacitance

Cadd = ε0
πa2

h
.

The conical capacitor we have thus created has capacitance

Ctotal = ε0
πcb

h
.
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a ab
b

c c

+ =

Figure 8. The truncated cone is the sum of the hollow truncated cone plus a cylinder.

The original capacitor and the one we added are connected in parallel since the same voltage
is applied at their plates. Therefore, according to the superposition principle

Ccylinder = C + Cadd ⇒ C = ε0
π(cb − a2)

h
.

Apparently, this result does not agree with that of part (a). The reason is subtle but easy to
find. The superposition principle states that if a problem in electricity can be split in two other
problems, then the solution to the original problem is the sum of the solutions of the partial
problems. But is our problem the exact sum of the two partial ones?

Let us assume that each plate of the truncated cone has a charge of absolute value Q and
constant charge density equal to σ = Q/πb2 on the top plate and equal to σ ′ = −Q/πc2 on
the bottom plate.

Q splits into Q1 and Q2 on the plates of the hollow truncated cone and the cylinder,
respectively, in proportion to the areas of the plates.

On the top plate of the hollow truncated cone we have Q1 = σπ(b2 − a2) and on the top
plate of the cylinder Q2 = σπa2.

On the bottom plate of the hollow truncated cone we have Q′
1 = σ ′π(c2 − a2) and on

the bottom plate of the cylinder Q′
2 = σ ′πa2. However, Q′

1 and Q′
2 are not −Q1 and −Q2

(except when b = c). The only way to ensure this is to change the charge densities on the
plates. But then the problem is not a simple addition of two other problems.

4.5. Spherical capacitor composed of concentric spheres

Re-derive the well-known expression for the capacitance of a spherical capacitor

C = 4πε0
ab

b − a
,

(where a, b are the radii of the spheres with b > a) by partitioning it into infinitesimal
capacitors.

Solution. We partition the capacitor into spherical shells of thickness dr (figure 9). The
infinitesimal shells are connected in series and therefore their incapacitance is

dD = 1

ε0

dr

4πr2
.

The total incapacitance is thus

D =
∫

sphere
dD = 1

4πε0

∫
sphere

dr

r2
= 1

4πε0

b − a

ab
,

from which we find the well-known formula for the capacitance:

C = 4πε0
ab

b − a
.
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rdr

a

b

Figure 9. The partition for a spherical capacitor into infinitesimal shells.

4.6. Parallel-plate inductor

Split the parallel-plate inductor into convenient infinitesimal inductors. Then make use of
equation (5) to derive equation (6).

Solution. The inductor is split in parallel infinitesimal slices as seen in figure 1. Each slice
is similar to a turn of a solenoid; it is carrying an infinitesimal current dI = Js dx. The
infinitesimal slices have a deductance of

dK = dI

�B

,

where �B = BLd = µ0JsLd. Therefore

dK = 1

µ0Ld
dx.

The total deductance is then

K =
∫ w

0

1

µ0Ld
dx = w

µ0Ld
,

and

L = 1

K
= µ0

Ld

w
.

4.7. Cylindrical thermal conductor

A long cylindrical straight pipe of radius a and length � is carrying lubricating oil at some
temperature. To minimize heat loss, the pipe is covered with a cylindrical insulator of radius
b and thermal resistivity ρth. Compute the total thermal resistance of the insulator.

Solution. Ignoring the edge effects at the bases, heat can only flow radially. We can then split
the insulator in infinitesimal thermal insulators in the shape of cylindrical shells as in figure 6.
Each such infinitesimal insulator will present a thermal resistance of

dRth = ρth
dr

2π�r
.
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Then the total thermal resistance will be

Rth = ρth

2π�

∫ b

a

dr

r
= ρth

2π�
ln

b

a
.

Note that the computation is identical to that of the electrical resistance when the current
flows radially.

5. Conclusions

There is probably no need for additional problems. The reader has certainly uncovered the
pattern. All the quantities we have used follow the simple additive law (15). For elements in
the shape of a uniform cylinder of length L and cross-section A whose material is characterized
by the constant p (corresponding to quantity P), we have

if P stands for R,D,L, �,R,

P = p
L

A
, (discrete case), dP = p

dL

A
, (continuous case),

if P stands for G,C,K, k,G,

P = 1

p

A

L
, (discrete case), dP = 1

p

dA

L
, (continuous case).

In all cases of identical geometry, the results will be identical. In fact, in many instances
above we could have saved some computations but we avoided doing so in order to present
the big picture first. Once the reader is aware of the global picture, she can easily use it to
transfer a result for a quantity P in some geometry to a quantity P ′ in a similar geometry. An
example of this is as follows.

Example. A cylindrical cable of radius a and length � is made of a huge number of small
filaments such that the cable may be considered continuous. The filaments have been arranged
in such a way that Young’s modulus for the cable is Y (r) = Y0

r
a

, where r is the distance from
the centre of the cable and c some constant. What is the stiffness of the cable?

The stiffness of an infinitesimal cylindrical shell of radius r is given by

dk = Y (r)
2πr dr

�
.

The stiffness of the cable would then be

k = 2πY0a
2

3�
.

Please note that the geometry is identical to that of the resistance problem in section 4.1.
Knowing this, one could have transferred the result (16) in this case too.

The reader is invited to construct similar problems for quantities in table 1.

Acknowledgments

We thank the referee for a careful and thorough reading of the paper. His comments have
helped improve the presentation and eliminate several typos.



456 C J Efthimiou and R A Llewellyn

References

[1] Alonso M and Finn E J 1996 Physics (Reading, MA: Addison-Wesley)
[2] Efthimiou C J and Llewellyn R A 2001 Adding physical quantities in introductory physics Preprint

physics/0105082
[3] Haliday D, Resnick R and Walker J 2003 Fundamentals of Physics 6th edn (New York: Wiley)
[4] Hecht E 1996 Physics (Pacific Grove, CA: Brooks/Cole)
[5] Knight R D 2004 Physics for Scientists & Engineers: A strategic approach (Reading, MA: Addison-Wesley)
[6] Kondepudi D and Prigogine I 1998 Modern Thermodynamics: From Heat Engines to Dissipative Structures

(New York: Wiley)
[7] Nolan P 1993 Fundamentals of College Physics (Dubuque, IA: Wm C Brown)
[8] Romano J D and Price R H 1996 The conical resistor conundrum: a potential solution Am. J. Phys. 64 1150
[9] Serway R A and Jewett J W Jr 2004 Physics for Scientists and Engineers 6th edn (Philadelphia, PA: Saunders)

[10] Thomson W J 2000 Introduction to Transport Phenomena (Englewood Cliffs, NJ: Prentice-Hall)
[11] Tipler P A and Mosca G 2004 Physics for Scientists and Engineers 5th edn (San Francisco, CA: Freeman)
[12] Wolfson R and Pasachoff J M 1999 Physics for Scientists and Engineers 3rd edn (New York: Addison-Wesley)
[13] Young H D and Freedman R A 2004 University Physics 11th edn (New York: Addison-Wesley)


	Addition laws in introductory physics
	Recommended Citation

	tmp.1570125618.pdf.rKwSN

