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Calligraphic Interfaces
An initial evaluation of MathPad? A tool for creating dynamic
mathematical illustrations

Joseph J. LaViola Jr.

School of Electrical Engineering and Computer Science, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816, USA

Abstract

MathPad? is a pen-based application prototype for creating mathematical sketches. Using a modeless gestural interface, it lets users
make dynamic illustrations by associating handwritten mathematics with free-form drawings and provides a set of tools for graphing and
evaluating mathematical expressions and solving equations. In this paper, we present the results of an initial evaluation of the MathPad?
prototype, examining the user interface’s intuitiveness and the application’s perceived usefulness. Our evaluations are based on both
performance and questionnaire results including first attempt gesture performance, interface recall tests, and surveys of user interface
satisfaction and perceived usefulness. The results of our evaluation suggest that, although some test subjects had difficulty with our
mathematical expression recognizer, they found the interface, in general, intuitive and easy to remember. More importantly, these results
suggest the prototype has the potential to assist beginning physics and mathematics students in problem solving and understanding

scientific concepts.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

MathPad® (see Fig. 1) is a pen-based, Tablet PC
application prototype for creating dynamic illustrations
used for exploring mathematics and physics concepts [1].
The fundamental technology behind MathPad? is mathe-
matical sketching, a pen-based gestural interaction para-
digm for mathematics problem solving that derives from
the familiar pencil-and-paper process of drawing support-
ing diagrams to facilitate the formulation of mathematical
expressions; however, with mathematical sketching, users
can also leverage their physical intuition by watching their
hand-drawn diagrams animate in response to continuous
or discrete parameter changes in their written formulas [2].
Diagram animation is driven by associations that are
inferred, either automatically or with gestural guidance,
from recognized handwritten mathematical expressions,
diagram labels, and drawing elements.

The essential goal in developing the MathPad?® user
interface was that it be as similar and fluid as pencil and
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paper, since mathematics and physics problems are often
solved using this medium. Thus, we did not want to use any
additional hardware (e.g., a modifier key or stylus button)
or software (e.g., buttons) modes. Instead, we wanted all
interaction to be derived from using digital ink. We
developed a gestural user interface for invoking different
operations in MathPad® because we wanted users able to
work as fluidly as possible with the mathematics and
drawings they create. We wanted to explore whether our
choice of gestures, which by themselves are not part of
pencil-and-paper interaction, are thought of as intuitive or
at least complementary.

Given the foundations for MathPad?, we performed an
initial usability evaluation to gauge users’ performances
and reactions to the prototype to validate its design and
potential benefit and determine if further, more in-depth
studies are needed. More specifically, we are interested in
how easy it is for users to use MathPad® with only a visual
demonstration of how to invoke gestural operations, and in
how many mistakes they make in performing various
MathPad? tasks. We are also interested in how well
subjects remember various gestural commands, since this
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Fig. 1. A mathematical sketch, created in MathPad?, illustrating how air
drag affects a ball’s 2D motion. Associations between mathematics and
drawings are color-coded.

is a good indicator of intuitiveness. Using interface
satisfaction [3] and perceived usefulness [4] questionnaires,
we are additionally interested in whether subjects would
use mathematical sketching in their work and why. We
discuss our evaluation criteria and show that, although
some test subjects had some difficulty with our mathema-
tical expression recognizer, subject task performance and
qualitative rankings and feedback suggest most of the
interface is intuitive, and MathPad” is perceived as a
powerful tool for exploring mathematics and physics
concepts.

2. Related Work

The idea of using computers to create dynamic illustra-
tions of mathematical concepts has a long history. One of
the earliest dynamic illustration environments was Born-
ing’s ThinglLab, a simulation laboratory environment for
constructing dynamic models of experiments in geometry
and physics that relied heavily on constraint solvers and
inheritance classes [S]. Other systems such as Interactive
Physics™ and The Geometer’s SketchPad™ also let users
create dynamic illustrations. Interactive Physics'™ uses an
underlying physics engine and lets users create a variety of
2D dynamic illustrations based on Newtonian mechanics.
The Geometer’s SketchPad™ is a general-purpose math-
ematical visualization tool using geometric constraints.
These systems are all WIMP-based (Windows, Icons,
Menus, Pointers) [6] and the resulting mode switching
and loss of fluidity within the interface makes them difficult
to use. Although users of these systems can visualize the
dynamic behavior of their illustrations, it is difficult for
them to gain a solid understanding of the underlying
mathematical phenomena because they cannot write the
mathematics. Since mathematical sketching uses hand-
written mathematical expressions, users can leverage their
knowledge of mathematical notation to create mathematical

sketches. When users actually write the mathematics, they
gain a better understanding of the concepts illustrated and
can learn from their mistakes.

Java applets, providing both interactive and dynamic
illustrations, have been developed for exploring various
mathematics [7,8] and physics [9,10] principles, as well as
algorithm animation [11]. However, these applets are not
general, typically provide limited control over the illustra-
tion, and rarely show the user the mathematics behind the
illustration. In addition, they require a traditional pro-
gramming language to create the dynamic illustrations.

2.1. Special-purpose languages

Special-purpose languages have also been developed to
create dynamic illustrations. For example, Feiner, Salesin,
and Banchoff developed DIAL, a diagrammatic animation
language for creating dynamic illustrations of mathema-
tical concepts [12]. Brown and Sedgewick [13] developed
BALSA, one of the first systems for interactive algorithm
animation. Stasko developed the XTANGO [14] and
SAMBA [15] animation systems that use high-level
scripting languages to create dynamic illustrations, with
algorithm animation the focus. Squeak, based on the
SmallTalk programming language, is a more modern
system for creating dynamic illustrations using a high-level
scripting language [16]. Visual languages for creating
dynamic illustrations have been developed as well
[17-19]. Although these languages are powerful and let
users create a variety of dynamic illustrations, they require
users to learn a new language and do not take advantage of
the naturalness of a pencil-and-paper interaction approach.
In contrast, mathematical sketching requires minimal
learning, since users already know how to write mathema-
tical expressions.

2.2. Gesture-based interfaces

MathPad? utilizes a modeless gestural user interface.
Gestural user interfaces have been used in a variety of
different applications. For example, Damm et al. used a
gestural user interface in their Knight system, a tool for
cooperative objected-oriented design [20], and Gross used
gestures for creating and editing diagrams for conceptual
2D design [21,22]. In the 3D domain, Zeleznik et al. used
gestures for rapid conceptualizing and editing of approxi-
mate 3D scenes [23] and Igarashi et al. used gestures in
creating free-form 3D models [24]. In other examples,
Forsberg et al. used gestures in musical score creation [25]
and Landay and Myers developed a gesture-based system
for prototyping user interfaces [26]. In addition, electronic
whiteboard systems for informal presentations and meet-
ings using gestural interaction have been developed [27,28].

While these gestural interfaces have worked well in their
particular applications, they have two important draw-
backs. First, they require mode switching to invoke
different gestures or to switch between gesturing mode
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and drawing mode. Mode switching in these applications,
whether accomplished using different mouse buttons [23],
keyboard buttons [29], the stylus barrel button [30], and
virtual buttons on the computer screen [31], often disrupts
users’ cognitive interaction flow. Second, these applications
often have limited drawing domains: they focus on one
particular type of drawing input (e.g., just free-form
drawing [22] or gestures for only creating simple 3D
geometric primitives [23]). Unlike these applications,
mathematical sketching strives for a modeless gestural
interface that allows fluid transitions among drawing free-
form shapes, writing mathematics, and performing gestural
actions.

There has been some recent work on building modeless
gestural interface techniques. For example, Saund et al. use
an overloaded mouse drag selection technique in an image-
editing application that lets users select image material
using click selection, a selection rectangle, or a lasso
selection based on where they clicked and their selection
paths [32]. This approach uses the inferred-mode interac-
tion protocol [33] by examining the pen trajectory and
context to determine if object selection or drawing is
intended and uses a button for dealing with ambiguities
(this approach is similar to Igarashi’s suggestive interface
techniques [34]). Although this technique is indeed mode-
less (when the button is not needed), it is limited in scope
compared with mathematical sketching because all gestural
interactions in mathematical sketching are modeless, not
merely a subset.

2.3. Pen-based dynamic illustration

In addition to the WIMP and programmatic approaches
to making dynamic illustrations, pen-based systems have
also been developed. For example, the ASSIST system,
developed by Alvarado, lets users sketch diagrams that
are recognized as drawing primitives and sent to a
mechanical engineering software package for simulation
[35]. A similar system lets users sketch drawings of simple
vibratory mechanical systems; the system recognizes the
primitives and creates a dynamic illustration of the
simulation [36].

The key to these systems is that they use domain
knowledge about Newtonian mechanics and recognize
users’ sketches as specific primitives. Thus, although these
systems provide powerful illustrations of physics and
mathematics concepts, they are limited in their domain
knowledge and in hiding the underlying mathematical
formulations from the user. Since mathematical sketching
uses mathematics as its primary method of telling the
system how drawings should behave, our approach is more
general and users can create more types of dynamic
illustrations.

Pen-based systems have also been developed for other
types of dynamic illustration. For example, Pickering et al.
developed a system for sketching football plays, simulating
them, and then creating a dynamic illustration of the play

outcome [37]. Other pen-based systems have been devel-
oped for creating traditional animations [38—40].

2.4. Computational and symbolic math engines

The primary focus of mathematical software systems
such as MathematicaTM, MapleTM, MathCadTM, and
Matlab™ has been entering mathematics for computation,
symbolic mathematics, and illustration. Graphing calcula-
tors and the myriad of educational math software
applications (see Tall [41] for some examples) can be
considered smaller versions of these systems. These tools
can create dynamic illustrations using mathematics as
input. However, the mathematical notation used in these
systems is one-dimensional, requiring unconventional
notation for concepts that would be intuitive in 2D
handwritten mathematics. In addition, these systems do
not let the user create diagrams in a natural pencil-and-
paper style.

2.5. Mathematical expression recognition and applications

Finally, there has been a significant amount of work in
mathematical expression recognition systems that let users
enter 2D handwritten mathematics [42-45]. Work in this
area began as early as the mid-1960s with expression
recognition systems and algorithms developed by Anderson
[46] and Martin [47]. However, only a few of these systems
go beyond just developing recognition technology.
For example, Chan and Yeung [48] developed a simple
pen-based calculator, while xThink Inc. developed
MathJournal™, a system designed to solve equations,
perform symbolic manipulation, and make graphs. Math-
Journal is the closest in spirit to mathematical sketching
because its animation controls let users write down and
recognize mathematics, make drawings, and assign the
mathematics to the drawings.! However, a key limitation
of MathJournal’s animation control is that users must
keyframe their animations (typically providing a starting
and ending frame), making the user interface less fluid and
contravening how users would make diagrams with pencil
and paper. In addition, MathJournal’s animation control
lacks the iteration and conditional constructs, diagram
rectification, and modeless gestural user interface that
mathematical sketching supports.

3. The MathPad? user interface

To make mathematical sketches in MathPad?, users
write down mathematics, make drawings, and make
associations between the two. Additionally, users can
invoke mathematical tools such as graphing, function
evaluation, and equation solving to help create and
manipulate their sketches. In this section, we describe

"This functionality did not emerge till after mathematical sketching [1]
was first published.
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how users perform these tasks with MathPad? ’s modeless
gestural user interface. A summary of the commands is
found in Fig. 2.

When designing our modeless gestural interface, we
wanted the gestures not to interfere with the entry of
drawings or equations and still be direct and natural
enough to feel fluid. To accomplish this, we use context
sensitivity to determine what operations to perform with a
single gesture. We also use the notion of punctuated
gestures, compound gestures with one or more strokes and
terminal punctuation, to help disambiguate gestures from
mathematics and drawings. We also wanted to ensure that
gestures which seem logical for more than one command
should be used for all of those commands. For example, if
a particular gesture makes sense for two or three different
operations, then we want that gesture to invoke all those
operations. More details on the design of and methodology
behind these gestures can be found in [1,2].

To write mathematical expressions, users simply write
them down using the stylus as if they were using pencil-
and-paper. To have the system recognize a mathematical
expression, users must lasso the expression and make a
tap inside the lasso. Recognized symbols are presented to
users in their own handwriting since MathPad? has hand-
writing samples from individual users as a result of our

Gesture Result Description
Lasso and tap fo recognize
{X + 53,') X -+ 5 a\‘ an expression
) Scribble and tap fo delete ink
>_( + lx . X+Y

Creates a graph, ine staris in
recogmzed math, no cusps or
intersections

Line through math and click on
[drawing makes association,

g
T

Release makes rofation poinl
1 [ - Solves equation, includes
‘5 +. A= +1 =0 simuttaneous and ordinary
| é | Y= - Y differential equations
n — 4 [Evaluate an expression,
X IS J x = X:\ d x = X Includes intergrals, derivatives,
= ) summations, efc.

Makes implicit association
using label family 'P*

P, =3 53
¥ = . ® =

"hln |Mares
ZEIE @ |lt=l57 K&

2| 222f
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Fig. 2. MathPad” ’s gestural commands. Gesture strokes in the first
column are shown here in red. In the second column, cyan-highlighted
strokes provide association feedback (the highlighting color changes each

time a new association is made), and magenta strokes show nail and angle
association/rectification feedback.

Makes implicit associafion
with expilcit tap on object

mplicit angle association and
rectification

Nail iwo drawing elementls by
small circle and tap

Group strokes

Lasso and drag symbol to
change position

writer-dependent mathematical expression recognition en-
gine. When users move the stylus over the bounding box of
the recognized mathematical expression, a green button
appears in the box’s lower right corner, and when pressed,
shows whether the expression was parsed correctly. If a
mathematical expression is recognized incorrectly, users
can simply erase the offending symbols using a scribble
erase gesture followed by a tap and then re-recognize the
expression. Users can also tap on a recognized symbol to
get a list of alternates. If there is a parsing error with the
mathematical expression, users can lasso the offending
symbols and interactively move them to a new location
where the complete expression will be reparsed.

Users make drawings in the same way they write
mathematical expressions except that the ink strokes need
not be recognized. We refer to these ink strokes as drawing
elements and they can be grouped together to form
composite drawing elements. Users lasso the drawing
elements they want to compose and make a tap on the
lasso line. Tapping on the lasso line distinguishes this
operation from recognizing mathematical expressions.
Users can also nail drawing elements together by drawing
a small circle over them and making a tap inside the circle.
Nailing drawing elements together lets users make stretch-
able objects. Note that the drawn circle must not
completely contain any drawing elements in order to be
recognized as a nail gesture. This constraint distinguishes it
from the gesture for making composite drawing elements
and recognizing mathematical expressions.

One of the most important components of MathPad? is
the ability to associate mathematics to drawing elements so
they know how to behave during an animation. Users can
make associations either explicitly or implicitly. Users
make explicit associations by simply drawing a line
through the bounding boxes of all the necessary mathe-
matical expressions and tapping on a particular drawing
element. As the stylus hovers over drawing elements, they
highlight to give users feedback about which drawing
element they will select. These types of associations are
“explicit” because the user has to physically select the
mathematics with the stylus to make an association with a
drawing. Implicit associations are made by labeling a
drawing element with a variable name or constant value
and can be either point or angle associations. Point
associations are made in the same way that mathematical
expressions are recognized except the tap is made on the
drawing element instead of inside a lasso. Angle associa-
tions are made by drawing an angle arc and label. Then
users lasso the label and make a tap whose location on the
arc determines the active line—the line attached to the arc
that will move when the angle changes. The apex of the
angle is then marked with a green dot, and the active line is
indicated with an arrowhead on the angle arc. In either
case, MathPad? uses the label to find all of the required
mathematical expressions that should be associated to the
drawing element. These types of associations are “implicit™
because the user simply has to label the drawing and the
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system uses it to find the required mathematics needed to
make an association.

Finally, MathPad? provides users with a mathematical
toolset for graphing and evaluating functions as well as
solving equations. Users graph functions by simply
drawing a sufficiently long, smooth line with no self-
intersections, starting inside the bounding box of a
recognized mathematical expression, intersecting any other
functions along the way, and ending outside all expression
bounding boxes. This gesture creates a graph control
widget where users can view plots of the functions the
graph gesture has intersected and also change the domain
and range of the functions by writing down the values and
pressing the update button.

Users evaluate mathematical expressions such as inte-
grals, summations, and derivatives by writing an equal sign
to the right of the expression and making a tap inside the
equal sign’s bounding box. The results are then displayed
to the right of the drawn equal sign. Users solve single,
simultaneous, or ordinary differential equations, by mak-
ing a squiggly gesture (see Fig. 2). This gesture is identical
to the graphing gesture except the line must contain two
self-intersections. The results are then displayed under-
neath the last intersected equation.

4. Experiment 1: mathematical expression recognition

The first part of gauging MathPad? ’s overall usability is
to determine how well our mathematical expression
recognizer performs on users’ handwritings. Our mathe-
matical expression recognizer consists of a symbol recog-
nizer and a 2D parser. The symbol recognizer uses a
pairwise AdaBoost classifier along with the Microsoft
handwriting recognizer, and the 2D parser uses a context-
free grammar with 2D rules for determining symbol
dependencies. More information on our recognizer can
be found in [2].

4.1. Experimental design and tasks

Before subjects could participate in the recognition tasks,
they all provided writing samples so the mathematical
symbol recognition portion of the mathematical expression
recognizer could learn their particular writing styles.?
Each subject used a training application and was shown
how to write on the screen, how to erase ink (using the
scribble erase gesture), and how to store writing samples
in the system. Subjects then wrote each symbol 20 times.
The first 10 were written normally and the second 10 were
written as small as possible to help detect when small
symbols are written. Subjects provided writing samples
for 48 different symbols including ¢ —z, 0—9, 2, (, ), —,

2Any new user of the system must provide handwriting samples to train
the recognizer since it is writer dependent.

| R € +

Fig. 3. Example of symbols that needed to be written as shown.

Ve [, {, <, >, +, #, and else.” We chose this particular
symbol set because it is the minimal set needed to
create mathematical sketches or use tools that MathPad?
supports.

To guide subjects in symbol training, they were given a
symbol sheet showing a handwritten version of each
symbol. The sheet showed how certain symbols should be
written. While, in general, subjects could write symbols,
however, they wanted, it is very difficult to distinguish
among certain characters. Therefore, we asked subjects to
provide writing samples for symbols such as “1”°, <1, “t”,
and “+” exactly as they were shown (see Fig. 3) on the
symbol sheet so they were distinguishable. Note that
subjects were encouraged to put down the stylus after
15-20 symbols so their hands would not tire. It took
subjects an average of 50 min to enter their writing samples.

After the training phase, subjects were run through the
mathematical symbol accuracy test. Subjects were in-
structed to write each symbol 12 times when prompted
by the training application, then click on a button to
commit their test data. We asked subjects to perform this
task for several reasons. First, we wanted a normalized test
so that each symbol would have equal weight in determin-
ing the recognizer’s accuracy. Second, we wanted to
evaluate the recognizer’s accuracy without requiring
subjects to write symbols with widely varying sizes, as
occurs frequently when writing mathematical expressions
(e.g., subscripts, integration limits). Finally, from our
observations of how people write mathematics, we wanted
to look for any significant differences between the symbol
recognizer’s performance when subjects write a symbol
repeatedly versus writing them in mathematical expres-
sions. Subjects were encouraged to take short breaks after
every 10-15 symbols. On average, subjects took about
25min to complete this test.

After a short break, subjects were run through the
mathematical expression accuracy test. Before taking the
test, subjects were asked to write a few simple trial
expressions such as x?, xi, 3, /xXyZ, and fozxdx. These
expressions gave subjects a feel for the recognizer and an
idea of how it parses mathematical expressions. Note that
we purposely kept subjects’ practice time to a minimum to
reduce any adaptation they might make to the recognizer.
Since we designed the parsing rules to be general, it was

3The “.” and “:”” symbols are also part of the symbol set but subjects
need not provide samples for them.
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important to evaluate how well subjects’ written expres-
sions fit within those rules.

Subjects wrote 36 different mathematical expressions
(see Appendix A), writing each one when prompted by the
training application. The mathematical expressions were
chosen from a set used in Chan’s recognition experiments
[49] plus expressions of our own design. The test
expressions range from simple to complex and are
representative of the types of expressions users would
write in MathPad®. Subjects were encouraged to take
breaks after writing 10—15 expressions so their hands would
not tire. On average, subjects took about 45min to
complete this test.

4.2. Participants

Eleven subjects (seven males and four females) partici-
pated in the mathematical symbol and expression recogni-
zer accuracy study. Their ages ranged from 19 to 38, and all
were students or staff of Brown University. Subjects
included computer science students and research staff
members as well as physics and applied mathematics
majors. Only one subject was left-handed. Six subjects had
never used a Tablet PC before, while one had used a PDA
and the other four had used Tablet PCs extensively. Of the
11 subjects, 2 of them were considered experts in using our
mathematical expression recognizer, 2 of them had used
our recognizer only in passing, and the remaining 7
subjects had never used the recognizer. We wanted to have
two subjects with expert knowledge of our recognizer to
provide a benchmark for how well users could perform
with extensive training and use of the recognition engine.
All subjects were paid $30 for their time and effort.

4.3. Evaluation measures

We use two measures for evaluating the mathematical
expression recognizer. The first measure is a simple symbol
accuracy metric, defined as the number of correct symbols
divided by the total number of symbols written. This metric
is used in the mathematical symbol recognizer test and the
mathematical expression recognizer test. The second is a
parsing accuracy metric, defined as the number of correct
parsing decisions made divided by the total number of
parsing decisions. This metric is similar to the R, metric in
[50] and is used only in the mathematical expression
recognizer test.

As an example of calculating how many parsing
decisions the algorithm needs to make, consider
y =2x//x. The algorithm must make a total of seven
parsing decisions. First, it needs to decide if the horizontal
line is a fraction delimiter or a minus sign (one decision).
Second, it must determine what symbols are above and
below the fraction line (four decisions). Third, since there is
a square root sign, the algorithm must determine what
symbols should be operated on by the square root (one
decision). Finally, the algorithm must decide whether the x

Table 1
Symbol recognition accuracy from the symbol test (SYM), expression test
(EXP), and the their combination (TOT)

Mathematical symbol recognition accuracy

SYM (%) EXP (%) TOT (%)
Mean 95.7 94.5 95.1
Std. dev. 277 2.49 2.65

Symbol Recognition Accuracy Results

100
98 |
9% |
9 |
92 |
9 |
88 |

Accuracy (%)

82 L - Symbol Test
[ Expression Test

80 N BN N
1 2 3 4 5 6 7 8 9 10 M
Subjects

Fig. 4. The accuracy of our symbol recognizer in the symbol and
expression tests for each subject.

in the numerator is a superscript of the 2 or simply
multiplied by it (one decision).® Note that we do not
include whether symbols are to the left or right of the “="
sign as part of our parsing accuracy metric. Including them
would overly bias the metric in a positive direction, since
we have found that our parser has little if any trouble
making decisions on whether symbols are to the left or
right of “=".

4.4. Results and discussion

Table 1 shows the overall recognition accuracy results
for the mathematical symbol test (SYM) and the symbol
accuracy component of the mathematical expression test
(EXP) for our recognizer. Each subject wrote 576 symbols
in the mathematical symbol test and 703 symbols in the
mathematical expression test. A total of 14,069 symbols
were used to test the recognizer with an overall accuracy
of 95.1%. Fig. 4 shows the recognition accuracy results
for both tests on a subject-by-subject basis. There is
no significant difference between SYM and EXP
(2o = 1.07, p>0.29), indicating that the recognizer deals

“A subscripted number is not possible in our parsing algorithm.
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equally well with isolated symbols and recognizing symbols
in the context of mathematical expressions.

It is difficult to compare our recognizer’s performance
with that of other recognizers in the literature because
many recognizers do not have reported accuracy numbers
and those that do use different test data, test on different
numbers of symbols, and break up their results in different
ways. However, we can make some rudimentary compar-
isons with other recognizers. Li and Yeung [51] achieved
91% accuracy for lower- and upper-case letters and digits.
Chan and Yeung [52] reported 97.4% accuracy for upper-
and lower-case characters, while Connell and Jain [53]
achieved 86.9% accuracy for lower-case characters and
digits. Scattolin and Krzyzak [54] reported 88.67%
accuracy for digits. Garain and Chaudhuri [55] reported
93.77% accuracy for 198 different symbols. Finally,
Matsakis [43] claimed 99% accuracy for 60 symbols for a
single user. From these results, we believe that our symbol
recognizer has comparable accuracy to other recognizers.

The parsing component of our mathematical expression
recognizer made correct parsing decisions 90.8% of the
time with standard deviation of 4.47%. Six hundred and
three parsing decisions had to be made for all 36
mathematical expressions per subject. Thus, 6633 parsing
decisions were used to evaluate the parsing component. In
the best case, the parser achieved an accuracy as high as
99.2% and in the worst case as low as 83.6% (see Fig. 5).
The variability of these results stems from the writer-
independence of the parsing component. Some subjects
performed very well with our parsing rules while others had
more difficulty, indicating that more flexible parsing rules
are probably required. However, with more practice,
subjects adapted better to these parsing rules. Subjects 1
and 2 in Fig. 5 are a benchmark for our parsing system
because they are considered experts with our mathematical
expression recognizer. Thus, accuracies between 95% and
99% should be possible across all subjects with adequate

Parsing Decision Accuracy for the Mathematical Expression Test
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Fig. 5. Parsing decision accuracy across subjects.

use. Having training data on how users write mathematical
expressions could also improve the overall accuracy of the
parsing component.

Comparing other mathematical expression parsing sys-
tems with our own is difficult, especially since many reported
results are from experiments that assume the symbols
coming into the parsing component are 100% correct.
Therefore, making comparisons using these parsing systems
is inappropriate. Both Fukuda et al. [56] and Chang and
Yeung [50] conducted parsing experiments similar to ours.
Fukuda et al. achieved parsing accuracies of 98.46% with
accuracy measured by the number of correctly parsed spatial
relationships between mathematical symbols. In addition,
they restricted subjects to write mathematical expressions in
the correct left-to-right order. Chang and Yeung achieved
accuracies of over 99% using 600 mathematical expressions
as test data, but their automatic error detection and
correction system boosted accuracy dramatically. From
these results, we believe that the parsing component of our
mathematical expression recognizer works well in some
cases but definitely needs improvement.

5. Experiment 2: MathPad? evaluation
5.1. Experimental design and tasks

The goal of our initial usability experiment is to get
users’ reactions to the prototype to validate the user
interface design and its potential benefit as well as
determine if further, more in-depth studies are needed.
More specifically, we wanted to evaluate the intuitiveness
of MathPad?’s user interface and gauge the perceived
usefulness of the tool. Writing down mathematical expres-
sions and making drawings is a fairly intuitive task, and
although our gestural commands need to be taught, we felt
they were designed so that they should be easy to
understand given simple demonstrations of their use.

In the experiment, subjects must complete six tasks
representing common interactions that a student or teacher
would perform with MathPad®. Before a subject performs
each task, the experimenter shows the subject how to
perform the required gestures for that task via demonstra-
tion only. Tasks 1-3 were designed to test how well users
were able to use the graph, equation solving, and
expression evaluation gestures. First, subjects were shown
how to write and recognize mathematical expressions using
the lasso and tap gesture, how to erase ink using the
scribble erase gesture, and how to use the correction user
interface (i.e., erasing and re-recognizing a symbol, tapping
on a symbol to show alternates, moving a symbol for
reparsing). Then, they were shown how to perform each
task specific gesture or command. For task 1 (Graphing),
after being shown the required gestural commands, the

subjects write, recognize, and then graph y =x, y = x°,

and y = cos(x)e*. Then subjects change y = x> to y = x2,
graph the function, and change the function’s domain

from —5...5 to 0...8. For task 2 (Equation Solving),
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subjects write down and recognize x> — 16x 4+ 13 = 0 and
solve the equation. Next, subjects write and recognize
x?y +2y =4 and 3x+ y =2 and solve this set of simul-
taneous equations. For task 3 (Expression Evaluation),
subjects write down the following expressions and evaluate
them:

- 02x2dx
-y = [x?cos(x)dx

dy
dx
dy
dx?

- 252(1— 1)°.
1=0

In all tasks, subjects were instructed to use the correction
user interface if the recognizer incorrectly recognizes
symbols or expressions.

Tasks 4-6 were designed to let users make mathematical
sketches and evaluate whether they prefer to use implicit or
explicit associations. Task 5 also was designed to evaluate
how well subjects can make nails. Note that only task 4
required subjects to write down the necessary mathematical
expressions. Tasks 5 and 6 used prewritten mathematical
expressions because we felt having them write and
recognize these expressions was not needed, given the
many expressions they had already written in the mathe-
matical expression recognition study (see Section 4).
However, with task 4, we wanted to see how well subjects
could make a mathematical sketch from beginning to end.
For these tasks (4-6), the experimenter described the
sketches to each subject orally.

The fourth task (Bouncing Ball) has subjects create
a complete mathematical sketch of an object bouncing

iR a— e
(T | sun | s e | | sva ]
L =5
Pr(€) =4
Py(€) = abs(bsin(4))
t =0 te a3

ie)

Ao

along the ground. Subjects write and recognize the four
mathematical expressions shown in Fig. 6, make a drawing
with a horizontal line representing the ground and a
composite drawing element consisting of three circles
drawn near the start of the horizontal line. Next, subjects
write the number 20 and associate it to the horizontal line.
Finally, subjects associate the mathematics to the compo-
site drawing element, either choosing an explicit associa-
tion or using an implicit association with the letter “p” as a
label, and run the sketch. Note that if MathPad? fails to
recognize subjects’” mathematical expressions after several
attempts, we provide them with prewritten expressions.
However, we do not make them aware of this when the
instructions for this task are given.

The fifth task (Oscillator) had subjects create a mathe-
matical sketch illustrating damped harmonic oscillation.
The experimenter instructs subjects to first draw a line and
make seven nail gestures along that line. This subtask does
not have anything to do with the mathematical sketch
itself, but gives us additional accuracy data on how well
subjects can perform the nail gesture. Subjects make a
drawing consisting of a horizontal line, a spring under-
neath the line, and a box underneath the spring (see Fig. 7).
Subjects then use two nail gestures to nail the horizontal
line to the spring and the spring to the box. Next, subjects
associate the mathematics to the box, using an explicit or
implicit association with the letter “y’’ as a label, and run
the sketch.

In the last task (2D Motion), subjects created a mathe-
matical sketch illustrating 2D projectile motion subject to
air resistance (see Fig. 1). Subjects draw a horizontal line
and a ball near the left side of the horizontal line. They
then associate the number 100 to the horizontal line.
Finally, subjects associate the mathematics to the ball,
using an explicit or implicit association with the letter “p”
as a label, and run the sketch. After all six tasks are
completed, subjects answer a post-questionnaire.

TTI1T1]
b_:3
k= *00
m = IS

— )
hzoexp(-(30)¢)

Y, (&) = hces(w1:+Ls7)
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Fig. 6. The fourth task in the MathPad? usability test.

Fig. 7. Subjects create a damped harmonic oscillator in the fifth task.



548 J.J. LaViola Jr. | Computers & Graphics 31 (2007) 540-553

5.2. Participants

Seven subjects (four men and three women) participated
in our usability evaluation. These subjects also participated
in experiment 1 (subjects 5-11) but were not the subjects
who had prior experience with Tablet PCs or initial
familiarity with our mathematical expression recognizer.
Subjects were recruited from the Brown University under-
graduate population and were either physics or applied
mathematics majors. We chose this particular user
population because MathPad”® was designed for mathe-
matics and physics students. Subjects’ ages ranged from
19 to 23 and all were right-handed; only one had used a
pen-based computer before (a PDA). All seven subjects
were asked prior to the study if they had used mathema-
tical software before and which packages: six subjects
answering yes and had used a variety of different packages
including Matlab, Mathematica, and Maple. All seven
subjects were paid $30 for their time and effort.

5.3. Evaluation measures

We evaluate MathPad® s usability using quantitative
and qualitative data from subjects’ task performances and
from a post-questionnaire. As subjects performed the six
experimental tasks, the experimenter recorded important
information about subjects’ performances in completing
each task, the decisions they made, and counted their
mistakes.” Performance is characterized by whether sub-
jects can complete each task and how well they do on each
subtask. Therefore, the experimenter records whether or
not subjects make the appropriate gestures correctly and, if
so, whether on the first attempt. Knowing how well
subjects perform gestural operations on their first attempt
is an important measure because it tells us how easy the
gestures are to make and remember. The experimenter also
records subjects’ choices of implicit and explicit associa-
tions in tasks 4-6 so as to get a quantitative metric for their
preferences.

After subjects have completed all six tasks they are given
a post-questionnaire designed to get their reactions to the
MathPad?® user interface and its perceived usefulness as
well as assess how well they remember certain gestures. The
post-questionnaire consists of four parts. The first and
second parts are adapted from Chin’s Questionnaire for
User Interface Satisfaction [3] and asks subjects to rate
MathPad? s user interface as a whole and its individual
components. The third part of the post-questionnaire, the
recall test, asks subjects to show what gestures they would
use for six different operations. The fourth part of the post-
questionnaire was adapted from the Perceived Usefulness

SWe could have used a more sophisticated recording setup, such as
videotaping subjects during the experiment. However, subjects used a
Tablet PC that was connected to a monitor so the experimenter could
casily see what subjects were doing without hindering them during trials.
In addition, the experimenter’s recording task was simple enough to be
done in real time.

portion of Davis’s questionnaire for user acceptance [4]
and asks whether subjects would use MathPad® in their
work. After subjects answer the post-questionnaire, the
experimenter reviews it with them to make sure their
answers are clear and to elaborate further on any specific
parts of MathPad>.

5.4. Results and discussion

5.4.1. Task performance results

For the first three tasks, subjects were able to write and
recognize all of the mathematical expressions fairly easily.
In some cases, they had to use the correction user interface
to fix recognition errors, generally getting MathPad” to
recognize their expressions on the second or third attempt.
Twenty-seven out of 28 graphing operations (4 per subject)
were completed on the first attempt. Subjects also had to
change the domain of a graph; they all completed this
operation on the first attempt. Twelve out of 14 equation
solving operations (2 per subject) were completed on the
first attempt. The other two equation solves were correctly
performed on the second attempt. Thirty-four out of 35
expression evaluations (5 per subject) were completed on
the first attempt. One subject, however, did have difficulty
in getting MathPad? to recognize dzy/ dx? and even after
multiple attempts was not able to evaluate the expression.

All seven subjects were able to complete tasks 4-6
making the dynamic illustrations. Subjects also had no
difficulty in making the drawings for each task and only
once did a subject have trouble making a composite
drawing element. In the Bouncing Ball task, 12 out of 14
associations were completed on the first attempt and 8 of
them were done implicitly. Three subjects did have
difficulty in getting MathPad? to recognize the required
mathematical specification for the Bouncing Ball task and,
after multiple attempts (about 10min), were given pre-
written expressions. The difficulty was not in symbol
recognition, but in expression parsing. Two of these
subjects had parsing decision accuracies below 90% in
the mathematical expression test while the other subject’s
accuracy was 92%. This result provides evidence indicating
that higher parsing decision accuracy is needed. In the
Spring task, 56 out of 63 nails (7 per subject) were
completed on the first attempt. Most of the remaining nails
were completed on the second attempt. However, one
subject required several attempts to make the necessary
nails and had to recreate the drawing after inadvertently
erasing part of it when erasing an incorrectly recognized
nail. Subjects had to make one association in this task, and
all seven were completed on the first attempt explicitly. For
the 2D motion task, subjects completed 12 out of 14
associations on the first attempt with all of them made
implicitly. One subject did have some difficulty with the
implicit associations and needed several attempts to make
them correctly.

Overall, subjects did well on all six tasks, considering
they had no hands-on training beforehand. Their first
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Table 2
A breakdown of test subjects’ first attempt gesture performance

First attempt gesture performance summary

Completed Total Percentage (%)
Graphing 27 28 96
Equation Solving 12 14 86
Exp. Evaluation 34 35 97
Nails 56 63 88
Associations 31 35 89
Total 160 175 91.4

attempt performances are summarized in Table 2. Subjects
had no difficulty in making a lasso and tap to recognize
mathematical expressions or in using the scribble erase
gesture. In only one case did a subject not complete part of
a task and this was due to MathPad®’s inability to
recognize an expression correctly. Subjects completed 160
out of the 175 gestural operations correctly (91.4%) on
their first attempt. This number is high considering that
subjects had not practiced any of the gestural commands.
One subject did have some difficulty with implicit associa-
tions due to problems with making taps. The greatest
problem subjects had with the six tasks was obtaining
correctly recognized expressions in certain situations. That
three out of the seven subjects required prewritten
mathematics for the Bouncing Ball task shows that the
mathematical expression recognizer needs improvement.

5.4.2. Post-questionnaire results

Overall reaction. Table 3 summarizes subject’s overall
reaction to MathPad®. It shows that they had a positive
reaction to the prototype. When subjects were asked
why they chose their rankings, most asserted that
MathPad? works well, is easy to use, and would be very
useful for students in a classroom setting and/or doing
homework problems. One subject was ‘“amazed at the
application’s power”. Two subjects claimed MathPad® was
easy to use but could be frustrating when it had trouble
recognizing their handwriting; this frustration explains why
the second and third rankings in Table 3 are slightly below
the first and fourth rankings.

Ease of use. Subjects rated different parts of the
MathPad? user interface from 1 (easy) to 7 (hard). Table 4
summarizes these results and shows that subjects found the
tasks they had to perform easy to do. Subjects gave
recognizing expressions the highest average ranking,
indicating the fact that some users had trouble getting
MathPad? to recognize their handwriting. When asked
about their ranking, they stated that the gesture for
recognizing mathematical expressions (i.e., lasso and tap)
was easy to do, but the results of the recognition operation
led them to choose a worse ranking on the easy (1) to hard
(7) scale.

Association preference. All seven subjects preferred
explicit associations, claiming they were easier to remember

Table 3
Subjects’ average ratings of their overall reaction to MathPad? on a scale
from 1 to 7

Overall reaction to MathPad?

Mean Std. dev.
Terrible = 1, wonderful = 7 6.42 0.54
Difficult = 1, easy = 7 5.57 0.98
Frustrating = 1, satisfying = 7 5.57 1.13
Dull = 1, stimulating = 7 6.14 0.38

Table 4
Subjects’ average ratings of ease of use for different components of the
MathPad? user interface (scale: 1 = easy, 7 = hard)

MathPad? user interface ease of
use

Mean Std. dev.
Writing mathematics 1.43 0.97
Recognizing mathematics 2.57 1.81
Graphing functions 1.0 0.0
Solving equations 1.0 0.0
Evaluating expressions 1.0 0.0
Grouping drawing elements 1.57 0.79
Making associations 1.71 0.76
Making nails 1.57 0.59

and simpler and faster to perform. However, they did say
that when associations need to be made with a drawing
element and a large set of mathematical expressions, the
implicit method is more appropriate. We can thus conclude
that both association methods have their place in mathe-
matical sketching.

Correction user interface. Five out of the seven subjects
tested found the correction user interface helped them. The
two subjects who said no claimed that the alternate lists
gave them no help in correcting recognition errors. One
subject wanted more choices to appear in the alternate lists,
especially in the equation alternate list.

Positive and negative UI aspects. Most subjects identified
the most positive aspect as its ability to quickly make
drawings move as described by mathematical equations.
Two subjects claimed that solving equations was one of the
user interface’s most positive aspect. One subject thought
that the best part of MathPad® ’s user interface was the
scribble erase command; another subject said the user
interface’s simplicity was its most positive aspect. Three
subjects stated that getting MathPad? to recognize certain
symbols and equations correctly was the most negative
aspect of the user interface. Two subjects stated that the
lack of interactive feedback for implicit associations was a
significant drawback, and one subject stated that a negative
aspect was the time necessary to get used to the gestural
commands. Finally, two subjects said that MathPad? s
user interface had no negative aspects.
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Table 5
Subjects’ average ratings of the perceived usefulness of MathPad? in their
work (scale: 1 = unlikely, 7 = likely)

MathPad? perceived usefulness

Mean Std. dev.
Accomplish tasks faster 5.14 1.95
Improve performance 4.71 2.36
Increase productivity 5.0 1.91
Enhance effectiveness 5.14 2.04
Easier to do work 5.57 1.90
Useful in work 5.42 2.37

Overall ease of use. On average, subjects gave MathPad” a
1.86 (1 equals easy and 7 equals hard) with a standard
deviation of 0.69. When they were asked to explain their
ratings, two dominant themes emerged. First, subjects
found the interface easy to use and remember, but were in
some cases frustrated by problems in mathematical
expression recognition. However, the subjects who had
trouble with recognition all felt it would improve with
more practice. Those subjects were also asked if they would
still use MathPad? in spite of their recognition problems;
they all said they could deal with these problems because of
the functionality MathPad® would give them. Second,
subjects felt the interface was easy to use once it was
explained, a result that helps to validate our demonstra-
tion-based teaching protocol.

Gesture recall test. Subject were asked how to invoke
gestural commands for graphing, solving equations,
evaluating expressions, recognizing a mathematical expres-
sion, making nails, and making implicit associations. This
part of the questionnaire took place about 5-10 min after
they used MathPad®. Subjects answered 38 out of the 42
recall questions correctly (six per subject) for a recall rate
of 90%. Of the four questions subjects answered incor-
rectly, three subjects missed the equation solving gesture
(squiggle) and one missed the expression evaluation gesture
(equal and tap). The 90% recall rate indicates that subjects
had little difficulty remembering MathPad?® gestures a
short time after they used the prototype,® except for the
equation solving gesture. Even though three out of the
seven subjects forgot the equation solving gesture, they still
claimed it was easy to use based on their mean ranking in
Table 4.

Likely usage. Table 5 summarizes subjects’ ratings on the
different ““perceived usefulness’ statements, on a scale of 1
(unlikely) to 7 (likely). Most subjects would use MathPad? in
their work. When asked to explain their ratings, four
subjects stated that the application would help them to do

®These results do not extend to the subject’s long-term recall of
MathPad? gestures. Further studies are needed to explore this issue but,
we expect, given extended use of MathPad® and the small size of the
gesture set, subjects would not have difficulty remembering the gestures
between application sessions.

their classwork and obtain a better understanding of
problems and concepts. However, there was no consensus
on whether MathPad”® would speed their understanding of
these problems and concepts. One subject said that the
ability to quickly solve equations and make graphs would
be very beneficial. Two subjects said they did not think they
would use MathPad? in its current form in their work
(explaining the high standard deviations in Table 5). Both
of these subjects work in theoretical physics, one in optics
and the other in modern physics. However, one of these
subject stated she would have used MathPad® during
beginning physics classes while the other stated he would
use MathPad? if it had support for light ray and optics
diagrams. Finally, all seven subjects felt the application
would be a good tool for teachers of introductory
mathematics and physics classes.

5.5. Discussion

The results of our initial MathPad? usability study
suggest that, based on our evaluation criteria, the
MathPad? user interface is, in general, intuitive with
subjects picking up the interface with relative ease. With
only minimal training, most gestures are easy to remember
and use. However, if we examine the first attempt task
performance results (Table 2) in conjunction with the recall
test from our post-questionnaire, we see that the equation
solving gesture has the lowest first attempt accuracy and
was the most difficult to remember. This indicates that this
gesture is not as intuitive as the others. Additionally, if we
look deeper into users’ preferences for making associations,
we see that they preferred explicit associations and
of the four associations that were not completed on their
first attempt, all four were implicit. Again, this result
suggests that explicit associations are more intuitive than
implicit ones. However, given subjects chose to make
implicit associations in all cases for the 2D Motion task
and explicit associations in all cases for the Spring task,
implicit associations seem to be more appropriate for
simple labels and for associations with a large number of
mathematical expressions. First attempt performance for
making nails was also a bit lower than expected, but we feel
this might have been an implementation issue. In terms of
perceived utility, subjects think the application is a
powerful tool that beginning physics and mathematics
students could use to help solve problems and better
understand scientific concepts.

Most subjects performed the tasks with little trouble,
while a few had some difficulty, stemming primarily from
problems with mathematical expression recognition. How-
ever, these subjects also said they were willing to accept
these recognition problems, given what MathPad® can
offer them. This result is somewhat contrary to our ex-
pectations about the negative impact of our mathematical
expression recognizer on MathPad® usability. Nevertheless,
we need better mathematical expression recognition that
will perform robustly across a larger user population.
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Although these results do not tell us how much more
accurate the recognizer needs to be, its clear that a mean
accuracy of 90.8% for making correct parsing decisions is
too low. A better correction user interface could also go a
long way to helping with users’ frustrations when incorrect
recognitions occur. In addition, more interactive feedback
is needed for implicit associations, and the equation solving
gesture should be redesigned.

Although the results of our initial evaluation are
positive, we recognize it can be argued that there are two
limitations with our study. First, we only used seven test
subjects. We could have had more subjects, but we felt
that seven was appropriate for an initial evaluation of
MathPad? and its gestural interface, given one of our main
goals was to determine whether larger studies were needed.
Second, we did not compare MathPad? ’s user interface
with any other interface metaphors. Although this could be
considered a limitation, our goal in this evaluation was to
determine how well users could use the MathPad? inter-
face, not whether it was better than any other interface.
For this work, we feel our experimental design was suited
to answering our intended questions. However, as we
perform future usability tests to gain a deeper under-
standing of the benefits of mathematical sketching, we will
need more comparative experimental designs with larger
subject numbers.

Given our evaluation results, we plan to make improve-
ments to MathPad? by adding more functionality and
improving the weaker points of the interface as well as
improving the parsing component of our mathematical
expression recognizer. Given the generally positive results
of our evaluation, we are confident in pursuing further
MathPad? experimentation. One such study will involve
testing the MathPad? interface under more realistic condi-
tions (as opposed to laboratory conditions). For example,
we would like to test MathPad? ’s interface when subjects
have a real task to perform for its own sake rather than for
the sake of an experimental evaluation. Exploring the
accuracy of our mathematical expression recognizer when
subjects are writing rapidly is another worthwhile pursuit.
We also plan to explore the pedagogical benefits of
MathPad? in a summative evaluation where students will
use MathPad? as part of a mathematics or introductory
physics course.

6. Conclusion

We have presented an initial evaluation of MathPad? a
prototype application for making dynamic illustrations
using the mathematical sketching paradigm, to test its
intuitiveness and perceived utility. Our evaluation suggests
that MathPad® ’s user interface is generally intuitive,
although some parts of the interface need to be reeval-
uated. Additionally, the MathPad? application is perceived
to be a powerful tool for exploring mathematics and
physics concepts. Although some of our test subjects had
some difficulty with getting the system to recognize their

mathematical expressions, they still gave positive feedback
about MathPad? and would use it regardless of these issues
because of its functionality. These results also support
future MathPad® development and the need for longer
term evaluations.
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Appendix A. Mathematical expressions used in
experiment 1

The following equations were used in the mathematical
expression recognition accuracy study:

(ab)* = a*b", (A.1)
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