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SHOP NOTES
These are ‘‘how to do it’’ papers. They should be written and illustrated so that the reader may easily follow whatever
instruction or advice is being given.
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I. INTRODUCTION

An area of radio frequency~rf! technology has emerged
based on microelectromechanical systems~MEMS!. A defi-
nition of a MEMS device is a miniature device or an array of
devices combining electrical and mechanical components.1

MEMS devices are designed and fabricated by techniques
similar to those of very large scale integration~VLSI! and
can be manufactured by traditional batch processing meth-
ods. The ease of manufacture and the increased development
of VLSI MEMS devices allow engineers to miniaturize sen-
sors and transducers. One example of such an advancement
is in the MEMS accelerometer, now one of the largest single
MEMS applications with its incorporation in air bags. A rf
MEMS device does not necessarily imply that the system is
operating at rf frequencies. In many MEMS devices and
components, the microelecromechanical operation is used
simply for actuation or adjustment of another rf device. One
example of such a device would be a variable capacitor or a
simple switch.

For the air bridge shown in Fig. 1, the bottom metal con-
tact forms a coplanar waveguide~CPW! transmission line. A
rf switch has already been designed by using a distributed
MEMS transmission line~DMTL !.2 For DMTL, the air
bridges over the center conductor are operated in a parallel
configuration. When a bias voltage is applied to the center
conductor of the CPW transmission line, charge distributes
so that an electrostatic force occurs between the center con-
ductor and the air bridge, which attracts the bridge down

toward the bottom contact. When the applied voltage reaches
a threshold valueVth , the tensile force of the metallic air
bridge can no longer withstand the electrostatic force, and
the metal falls abruptly to the bottom contact. When the volt-
age is reduced, the metal bridge releases and returns to the
original position. In Ref. 2, DMTL air bridges were fabri-
cated using photoresist as the sacrificial layer, which is the
layer removed toward the end of the fabrication process. The
photoresist was removed by soaking the wafer in acetone.
The wafer cannot be air dried because the surface tension of
the liquid will pull the MEMS air bridges down. Therefore a
critical point drying system is used to release the MEMS air
bridges.3 A critical point drying system uses liquid CO2 to
replace the solvent. CO2 is employed because when it is
brought past its critical point the liquid immediately vapor-
izes into a gas, thus alleviating any surface tension from a
solvent.

a!Electronic mail: mgritz@creol.ucf.edu
b!Electronic mail: metzler@cnf.cornell.edu
c!Electronic mail: moser@cnf.cornell.edu
d!Electronic mail: spencer@cnf.cornell.edu
e!Electronic mail: boreman@creol.ucf.edu FIG. 1. SEM micrograph of an air bridge.
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In Ref. 2, a DMTL air bridge with a height of 1.5mm has
been used as a true-time-delay phase shifter in the rf portion
of the spectrum. The phase shift is accomplished by applying
a single bias voltage to the center conductor of the CPW
transmission line. The applied voltage causes the height of
the MEMS bridges to be decreased, increasing the capacitive
loading and decreasing the phase velocity. A major advan-
tage to such a design is that only one control voltage is
required. Our structure is a prototype for an infrared true-
time-delay phase shifter. Using Refs. 2 and 4, an estimated
bridge height of 0.5mm is required because a significantly
smaller capacitance is required for use as an infrared-
frequency phase shifter.

In this work, we will describe the electron beam~e-beam!
lithography methods used to fabricate air bridges with a
bridge height of 0.5mm without the need of a critical point
dryer. In our system, poly~methyl methacrylate! ~PMMA!
was chosen as the sacrificial layer. The PMMA was removed
with oxygen plasma using a Branson barrel etcher as an iso-
tropic reactive ion etcher~RIE!. The major advantage to our
method is in the simplification of the fabrication for the air
bridges. By avoiding the critical point dryer, the PMMA sac-
rificial layer can be etched away without any concern regard-
ing maintenance of the proper solvent surface tension. Be-
cause our system uses PMMA as the sacrificial layer, which
is a high resolution e-beam resist, this allows for the possi-
bility of fabricating nano-DMTL air bridges.

II. FABRICATION AND RESULTS

The air bridges were fabricated at the Cornell Nanofabri-
cation Facility using a Cambridge/Leica EBMF 10.5 e-beam
lithography system, with an on-chip resolution of 0.1mm.
On each 10 mm by 10 mm Si chip ten devices were written
with a 730mm center-to-center spacing. Each DMTL device
had 26 air bridges with a center-to-center spacing of 15mm.
The dimensions of the bridges were 8mm long by 8 mm
wide, which is shown in Fig. 2. There were four separate
layers which were fabricated in the following order:

~1! alignment marks,
~2! CPW transmission lines,
~3! PMMA sacrificial layer, and
~4! Au bridge.

The first step in the fabrication process was to write a set of
alignment marks. The alignment marks were made of Au
because the EBMF uses a backscatter detector to detect sec-
ondary electrons for precise alignment, which means that an
element with a highZ number is more effective.

Both local and global alignment marks were written. The
global marks were used to correct for any rotation errors
while loading the substrates into the chuck, while the local
marks were used to correct for any stage drift when moving
from field to field. By using the two sets of alignment marks
extremely precise alignment was possible. A similar align-
ment scheme was employed in Ref. 5, which had an overlay
accuracy of less than 100 nm. Another alignment scheme
used high contrast alignment marks, which were fabricated
by RIE into Si.6 For our alignment scheme, the thickness of

the Au was varied to find the best overlay accuracy. We
found the overlay accuracy to be better than 25 nm when 250
nm of Au was used.

The next step is the fabrication of the CPW transmission
lines, which are the bond pads and the center conductor of
the CPW@see Fig. 3~a!#. The width of the center conductor is
4 mm with 1 mm gaps. These dimensions were chosen for a
design capacitance of 20 fF in the unbiased state. The pro-
cess used to fabricate the CPW transmission lines was a tra-
ditional liftoff process using a bilayer resist profile. First
PMMA–MAA was spun onto the wafer at 3000 rpm, which
has a higher sensitivity. The substrates were baked on a hot-
plate set to 170 °C for 10 min to remove any solvents. Using
an interferometer the resist thickness was measured at 305
nm. After the resist thickness was measured, the second layer
was spun onto the substrates. For this layer PMMA was spun
onto the substrates at 3500 rpm. Next the substrates were
baked on a hotplate set to 170 °C for 10 min. This yielded a
total resist thickness of 460 nm. The patterns were written at
a beam current of 30 nA with a dose of 150mC/cm2. After
the exposure, the substrate was developed in methylisobu-
tylketone~MIBK !:isopropyl alcohol~IPA! 1:1 for 1 min. Af-
ter development the substrates were rinsed with isopropanol
and dried with N2 . The next step was to remove any un-
wanted resist, which may have been left behind after the
development but not seen under an optical microscope. Any
such resist layer was removed by oxygen plasma in a Bran-
son barrel etcher.7 This was done each time immediately af-
ter the development of the substrates. After the development
and the oxygen plasma cleaning of the substrates, a 10 nm
thick adhesion layer of titanium and a 100 nm thick layer of
Au was e-beam evaporated onto the substrate. The unwanted
resist and metallic films were lifted off using methylene
chloride.

The next step in the fabrication process was to fabricate
the PMMA sacrificial layer@see Fig. 3~b!#. This is accom-
plished by first exposing the area where the Au bridge is
desired, which will pattern the base of the bridge. The di-

FIG. 2. Schematic of a single DMTL air bridge with dimensions of 8mm by
8 mm.
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mensions for the base of the bridge were 8mm by 8 mm.
Then the PMMA is overexposed, which causes the resist to
crosslink, in the area where the PMMA will act as the sacri-
ficial layer. The dimensions for the sacrificial layer were 8
mm by 400mm. In order to accomplish this, PMMA resist
was spun on the wafer at 3000 rpm. The substrates were
baked on a hotplate set to 170 °C for 10 min to remove any
solvents. Using an interferometer the resist thickness was
measured at 550 nm. The first set of patterns, which were the
base of the bridges, was written at a beam current of 30 nA
with a dose of 200mC/cm2. The next set of patterns, which
is the sacrificial layer, was written at a beam current of 30 nA
with a dose of 10 000mC/cm2. After the exposures, the sub-
strate was developed in MIBK:IPA 1:1 for 2 min. After the
development, an oxygen plasma etch was performed for 1
min. Then a 50 nm layer of chromium was thermally evapo-
rated onto the substrate to help protect the PMMA from be-
ing washed away by the acetone during the liftoff process of
the gold bridge@see Fig. 3~c!#.

The final step in the fabrication of the air bridges is to
create the Au bridge on top of the PMMA sacrificial layer
using a liftoff process@see Fig. 3~d!#. First PMMA ~PMMA–
MAA ! resist was spun onto the wafer at 3500 rpm. The
substrates were baked on a hotplate set to 115 °C for 30 min.
The temperature was lowered to 115 °C because both
PMMA and PMMA–MAA will re-flow at approximately

120 °C. Using an interferometer the resist thickness was
measured at 560 nm. After the resist thickness was measured,
the second layer was spun onto the substrates. For this layer
PMMA was spun onto the substrates at 3500 rpm. Next the
substrates were baked on a hotplate set to 115 °C for 30 min.
This yielded a total resist thickness of 761 nm. The patterns
were written at a beam current of 30 nA with a dose of
200mC/cm2. The substrate was developed in MIBK:IPA 1:1
for 2 min. After an oxygen plasma etch was performed for 1
min, 10 nm of chromium and 250 nm of Au was e-beam
evaporated onto the substrates. The unwanted resist and me-
tallic films were lifted off using acetone. Acetone was pref-
erable to methylene chloride because methylene chloride was
found to be too aggressive. Next the substrates were placed
in a chrome etchant for 20 s to remove the chromium layer.

Once the chromium was removed, a resist strip was done
using oxygen plasma on a Branson barrel etcher@see Fig.
3~e!#. A barrel etcher is an isotropic etch, which means it
etches equally in all directions. The etch time was set to 4
min in order to ensure that all the PMMA under the Au
bridge was etched away. After the etching of the PMMA, the
air bridges were examined using a scanning electron micro-
scope~SEM!. Micrographs taken from the SEM can be seen
in Fig. 1, clearly indicating an air bridge.

III. SUMMARY

The fabrication of air bridges has been demonstrated us-
ing electron beam lithography using PMMA as the sacrificial
layer. PMMA has a high resolution when used as an e-beam
resist. This process provides the possibility for fabrication of
nano-MEMS air bridges. Furthermore this work demon-
strates the fabrication of air bridges with a Branson barrel
etcher instead of a critical point dryer, which significantly
advances the ease of fabrication for MEMS devices in gen-
eral. This process could be developed to allow for MEMS
tuners, MEMS passive elements, or MEMS phase shifters to
be monolithically integrated onto the same chip.
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FIG. 3. Details of the fabrication process for the air bridges.
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