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Multifractal analysis of geomagnetic storm and solar

flare indices and their class dependence

Zu-Guo Yu,1,2 Vo Anh,1,3 and Richard Eastes3

Received 30 October 2008; revised 23 February 2009; accepted 19 March 2009; published 23 May 2009.

[1] The multifractal properties of two indices of geomagnetic activity, Dst (representative
of low latitudes) and ap (representative of the global geomagnetic activity), with the solar
X-ray brightness, Xl, during the period from 1 March 1995 to 17 June 2003 are
examined using multifractal detrended fluctuation analysis (MF-DFA). The h(q) curves of
Dst and ap in the MF-DFA are similar to each other, but they are different from that of Xl,
indicating that the scaling properties of Xl are different from those of Dst and ap.
Hence, one should not predict the magnitude of magnetic storms directly from solar X-ray
observations. However, a strong relationship exists between the classes of the solar X-ray
irradiance (the classes being chosen to separate solar flares of class X-M, class C, and
class B or less, including no flares) in hourly measurements and the geomagnetic
disturbances (large to moderate, small, or quiet) seen in Dst and ap during the active
period. Each time series was converted into a symbolic sequence using three classes. The
frequency, yielding the measure representations, of the substrings in the symbolic
sequences then characterizes the pattern of space weather events. Using the MF-DFA
method and traditional multifractal analysis, we calculate the h(q), D(q), and t (q) curves
of the measure representations. The t (q) curves indicate that the measure representations
of these three indices are multifractal. On the basis of this three-class clustering, we
find that the h(q), D(q), and t (q) curves of the measure representations of these three
indices are similar to each other for positive values of q. Hence, a positive flare storm class
dependence is reflected in the scaling exponents h(q) in the MF-DFA and the multifractal
exponents D(q) and t (q). This finding indicates that the use of the solar flare classes
could improve the prediction of the Dst classes.

Citation: Yu, Z.-G., V. Anh, and R. Eastes (2009), Multifractal analysis of geomagnetic storm and solar flare indices and their class

dependence, J. Geophys. Res., 114, A05214, doi:10.1029/2008JA013854.

1. Introduction

[2] An important aim of solar-terrestrial physics is under-
standing the causes of geomagnetic activity in general and
geomagnetic storms in particular. Although coronal mass
ejections (CME) are the clear cause of most major geomag-
netic storms [Schwenn et al., 2005; Yermolaev et al., 2005;
Zhang et al., 2007], they are difficult to observe or predict.
Since solar flares are coincident with many CMEs [see, e.g.,
Zhang et al., 2007], they are useful for prediction of
geomagnetic storms [Park et al., 2002; Yermolaev et al.,
2005] owing to the shorter propagation times of solar
photons. In a recent study, Howard and Tappin [2005]
found a dependence relationship between the classes of
solar flare (using X-ray measurements from GOES) and

geomagnetic storm (using the Dst and ap indices) based on
the statistics from 103 events. However, in another analysis,
Y. I. Yermolaev and M. Y. Yermolaev (Geomagnetic storm
dependence on the solar flare class, arXiv:physics/
0601197.20062006, 2006), suggested that only a slight
positive correlation between the classes of solar flare and
geomagnetic storm is likely to be observed under more
typical conditions. Yermolaev and Yermolaev (online arti-
cle, 2006, pp. 1) argued that the conclusion by Howard and
Tappin [2005, pp. 380] that ‘‘there is a tendency for large
flares to be associated with very large storms’’ would be too
strong, and maintained that ‘‘the class of solar flares could
not predict the magnitude of magnetic storm’’. In this paper,
we look into the flare storm dependence issue more rigor-
ously using the tools of multifractal analysis. In fact, we
convert the time series of Xl, Dst, and ap into symbolic
sequences (as described in section 2) in which an event is a
string or a word in the symbolic sequence. We then study
the dependence relationship of the indices in the form of
symbolic sequences via (1) their representations as proba-
bilities of occurrence of events (K strings) and (2) the
multiscaling properties of these representations. This ap-
proach provides more detailed information on the relation-
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ship between solar flares, as seen in the solar X rays and
geomagnetic disturbances than traditional correlation stud-
ies. Our results support the finding of Howard and Tappin
[2005].
[3] While the studies mentioned above have focused on a

relatively small number of events, �10 per year with large
magnitudes, the analyses performed in this paper utilize
hourly data over the period March 1995 to June 2003.
Consequently, contributions from corotating interaction
regions (CIRs) are included. The use of hourly data also
helps avoid biasing the results through the data selection
process. The period used overlaps with the period from
which Howard and Tappin [2005] selected, namely January
1998 to August 2004, but their analysis concentrated on 103
events. The more recent study described by Zhang et al.
[2007] also used data from a similar period, January 1996 to
December 2005, and concentrated on 88 events. From
existing flare and solar wind observations, a unique associ-
ation of CME to interplanetary coronal mass ejection
(ICME) can be observed for only about half of all ICME
events [Zhang et al., 2007], primarily because of the
difficulty in making one-to-one correspondence with events
on the Sun, owing to the complexity of interplanetary flows.
With the techniques used in the following analysis, signif-
icant insights can be obtained even without establishing the
one-to-one correspondence.
[4] In the following analysis, fractal methods are used to

characterize the scaling properties in each time series.
Multifractal analysis was initially proposed to treat turbu-
lence data and is a useful way to characterize the spatial
heterogeneity of both theoretical and experimental fractal
patterns [Grassberger and Procaccia, 1983; Halsy et al.,
1986]. Fractal and multifractal approaches have been quite
successful in extracting salient features of physical process-
es responsible for the near-Earth magnetospheric phenom-
ena in the recent literature [Lui, 2002]. Examples include a
method to describe the multiple scaling of the measure
representation of the Dst time series provided by Wanliss et
al. [2005]; a prediction method based on the recurrent
iterated function system in fractal theory detailed by Anh
et al. [2005] together with some evaluation of its perfor-
mance; and a two-dimensional chaos game representation of
the Dst index for prediction of geomagnetic storm events
was proposed by Yu et al. [2007].
[5] Peng et al. [1994] introduced the detrended fluctua-

tion analysis (DFA), which has become a widely used
technique to determine the fractal scaling properties of,
and to detect the long-range correlations in, stationary and
nonstationary time series [Hu et al., 2001; Chen et al.,
2002]. The multifractal detrended fluctuation analysis (MF-
DFA) proposed by Kantelhardt et al. [2002] is a modified
version of the DFA to detect multifractal properties of time
series. It allows a reliable multifractal characterization of
nonstationary time series typical of geophysical phenomena
[Kantelhardt et al., 2002].
[6] In this paper, we use MF-DFA and traditional multi-

fractal analysis to study the scaling properties of Dst, ap, and
the solar X-ray measurements from the Geostationary
Operational Environmental Satellites (GOES) during the
March 1995 to June 2003 period. These analyses indicate
that there are significant similarities between the scaling
properties of the classes of geomagnetic disturbances and

those of X-ray flare brightness which have not been
previously identified. It should be possible to use these
similarities to improve the prediction of classes of storms
using classes of solar X-ray measurements.

2. Data

[7] The solar X-ray data used are hourly measurements
from the GOES space environment monitor. Data from
GOES 6, 7, 8, 9, 10, 11, and 12 were downloaded from
the National Geophysical Data Center (NGDC, http://
spidr.ngdc.noaa.gov/spidr/index.jsp) and combined, using
the later satellites to fill, whenever possible, any gaps in
the data from the earlier satellites. No attempt was made to
compensate for differences in calibration between the meas-
urements or to average the measurements. By using multiple
satellites, gaps in the observations are reduced significantly.
During the period covered by GOES 8 (1 March 1995 to
30 June 2003) the number of hours where observations are
unavailable is reduced from 1496 to 77 for the longer
wavelength, Xl, observations (1–8 Å). Most of the remain-
ing gaps in the hourly measurements span multiple hours,
even a full 24 h. Since they are present even though there
are usually three satellites providing observations, they are
probably the result of geomagnetic storm effects at Earth.
Although the solar measurements may be missing during a
storm, any flare(s) associated with a storm is typically
observed, since it occurred hours earlier.
[8] The hourly Dst time series and the interpolated hourly

(originally 3 hourly) time series of ap for the period 1 March
1995 to June 2003 were downloaded from the SPIDR Web
site. Both of the geomagnetic indices and the Xl data are
shown in Figure 1.
[9] The empirical probability densities of the three indi-

ces are plotted in Figure 2 (left). From the top and bottom
plots in Figure 2 (left), we see that the empirical probability
densities of ap and Xl have the shape of the inverse Gaussian
distribution whose density is of the form [Chhikara and
Folks, 1989]

f x;l;mð Þ ¼ l
2p

� �1=2

x�3=2 exp � 1

2

l x� mð Þ2

m2x

( )
1 0;1ð Þ xð Þ; m

> 0;l > 0:

[10] A method to estimate the parameters m and l in the
inverse Gaussian distribution is given by Chhikara and
Folks [1989], and Anh et al. [2008]. Here the estimated
values of m and l are 12.3849 and 11.4611 for ap, 9.9716e-
007 and 2.9793e-008 for Xl respectively. But the inverse
Gaussian distribution does not fit well the empirical prob-
ability density of Dst. Hence, we propose to use the a-stable
distribution. A Lévy skew a-stable distribution or just stable
distribution is specified by the scale parameter g, exponent
a, shift d and skewness parameter b. The exponent a
controls the kurtosis and must lie in the range (0,2]. The
value a = 2 corresponds to a Gaussian distribution (for any
b), while the values a = 1, b = 0 correspond to a Cauchy
distribution. The skewness parameter b must lie in the range
[�1, 1] and when it is zero, the distribution is symmetric
and is referred to as a Lévy symmetric a-stable distribution.
The scale parameter g must be larger than zero and equals to
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half the variance in that Gaussian case (i.e., when a = 2).
The shift d is a location parameter, which is the mean when
1 < a � 2 and the median when 0 < a < 1 [NiKias and
Shao, 1995]. The Lévy skew stable probability distribution
is defined by the Fourier transform of its characteristic
function [Nolan, 2009]:

f x;a; b; g; dð Þ ¼
Z 1

�1
8 xð Þe�itxdt;

where 8 (t) is given by

8 tð Þ ¼ exp idt � gjtja 1þ ibsign tð Þw t;að Þ½ �f g;

and

w t;að Þ ¼ tan ap
2
; if a 6¼ 1;

2
p log jtj; if a ¼ 1;

�

sign tð Þ ¼
1; if t > 0;
0; if t ¼ 0;
�1; if t < 0:

8<
:

We use the maximum likelihood method to estimate the
parameters a, b, g and d in the a-stable distribution and fit
the empirical probability density function (PDF) of the Dst

time series. The estimated parameters are a = 1.5944, b =
�0.9053, g = 10.8678 and d = �10.0418. From the middle
plot in Figure 2 (left), it is seen the a-stable density fits well
the empirical PDF of the Dst. But similar exercises indicate
that the a-stable density does not fit the empirical densities
of ap and Xl. These fittings confirm that ap, Dst and Xl are all
non-Gaussian. The heavy tail behavior is more pronounced
in the log form of these densities (see Figure 2 (right)). The

presence of this non-Gaussianity in the time series of ap, Dst

and Xl suggests that the traditional multifractal analysis is
not appropriated for a study of their scaling. Instead, a
multifractal detrended fluctuation analysis (described in
section 4.2) will be suggested and performed on these time
series.

3. Measure Representation Based on Classes

[11] In this paper, we also examine the multiple scaling of
the time series via their measure representation. We outline
here the method [Yu et al., 2001a] used in deriving the
measure representation of each time series. First we define a
map f1 as follows.
[12] For the Dst time series, in nanoTeslas (nT),

f1 ¼
0; if Dst � �30;
1; if �50 < Dst < �30;
2; if Dst � �50:

8<
:

Because there are only a few big storms in the time period
analyzed, they are grouped with the medium storms into one
class. Therefore, the values 2, 1 and 0 correspond to
medium or large storms, small storms, and quiet conditions
respectively in map f1, which was described and used by
Anh et al. [2005].
[13] For the ap time series, in nT,

f1 ¼
0; if ap � 30;
1; if 30 < ap < 60;
2; if ap � 60;

8<
:

according to the classification of ap given in Table 1 of
Howard and Tappin [2005].

Figure 1. The hourly time series of the Dst, ap, and Xl indices from 1 March 1995 to 17 June 2003.
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[14] For the Xl time series, in Wm�2,

f1 ¼
0; if Xl � 10�6;
1; if 10�6 < Xl < 10�5;
2; if Xl � 10�5;

8<
:

according to the classification of Xl given on the web page
http://www.spaceweather.com/glossary/flareclasses.html.
The values 2, 1, and 0 correspond to flares of class M or X;
class C; and class B of smaller flares (including times when
there are no flares) respectively in map f1.

Figure 2. (left) Empirical probability densities and the fitted curves from an inverse Gaussian density or
a -stable density for Dst, ap, and Xl. (right) The log form of the probability densities on the left.
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[15] Using map f1, we convert the Dst, ap, and Xl time
series into symbolic sequences with alphabet {0, 1, 2}. We
call any string made up of K numbers from the set {0, 1, 2}
a K string. For a given K there are in total 3K different K
strings, and 3K counters are needed to count the number of
K strings in a given time series. We divide the interval [0,1)
into 3K disjoint subintervals, and use each subinterval to
represent a counter. Letting h = h 1. . .hK, hi 2{0, 1, 2}, i =
1,. . .,K, be a substring with length K, we define

xl hð Þ ¼
XK
i¼1

hi
3i
; xr hð Þ ¼ xl hð Þ þ 1

3k
:

[16] We then use the subinterval [xl(h), xr(h)) to represent
the substring h. Let N(h) be the number of times a substring
h appears in the time series counted by a sliding window
with width K (sliding one position each time along the
symbolic sequence). If the time series has length L, we
define F(h) = N(h)/(L�K + 1) to be the frequency of
substring h. It follows that S{h}F(h) = 1. We can now view
F(h) as a function of x and define a measure n on [0,1) by n
(x) = g (x) dx, where g(x) = 3KF(h), x 2 [xl(h), xr(h)). We call
n the measure representation of the given time series. It is
noted that this histogram-type representation will have a
different shape according to the order of the K strings on the
interval [0,1), but it is unique for each time series once this
order is fixed (usually the dictionary order is used). This
concept is an extension of the usual histogram, where each
substring consists of a single value.
[17] As examples, the measure representations of the

active and quiet periods of ap, Dst and Xl with K = 8 using
map f1 are plotted in Figure 3. The presence of the same
substrings in the ap and Dst series as seen in the active
period of the Xl time series may indicate a dependence on
the Xl time series.

4. Multifractal Analyses

4.1. Traditional Multifractal Analysis

[18] The most common algorithms of traditional multi-
fractal analysis are the so-called fixed size box-counting
algorithms [Halsy et al., 1986]. In the one-dimensional case,
for a given measure n with support E � R, we consider the
partition sum

Z� qð Þ ¼
X

n Bð Þ6¼0

n Bð Þ½ �q; ð1Þ

q 2 R, where the sum is evaluated over all different
nonempty boxes B of a given side � in a grid covering of the
support E:

B ¼ k�; k þ 1ð Þ�½ Þ: ð2Þ

The exponent t (q) is defined by

t qð Þ ¼ lim
�!0

ln Z� qð Þ
ln �

; ð3Þ

and the generalized fractal dimensions of the measure are
defined as

D qð Þ ¼ t qð Þ= q� 1ð Þ; for q 6¼ 1; ð4Þ

and

D qð Þ ¼ lim
�!0

Z1;�

ln �
; %for q ¼ 1; ð5Þ

where Z1,� = Sn(B) 6¼0n (B) ln n (B). The generalized fractal
dimensions are numerically estimated through a linear
regression of (ln Z�(q))/(q�1) against ln � for q 6¼ 1, and
similarly through a linear regression of Z1,� against ln � for
q = 1. The value D(1) is called the information dimension
and D(2) the correlation dimension. The D(q) corresponding
to positive values of q give relevance to the regions where
the measure value is large. The D(q) corresponding to
negative values of q deal with the structure and the
properties of the regions where the measure value is small.
[19] If the t (q) curve is a straight line, we infer that the

time series is a monofractal process, otherwise it is a
multifractal process.

4.2. Multifractal Detrended Fluctuation Analysis

[20] The traditional multifractal analysis has been devel-
oped for the multifractal characterization of normalized,
stationary time series. This standard formalism does not
give correct results for nonstationary time series which are
affected by trends. Multifractal detrended fluctuation anal-
ysis, which is a generalization of the standard DFA, is based
on the identification of the scaling of the qth-order moments
of the time series, which may be nonstationary [Kantelhardt
et al., 2002]. DFA has been used to study the length
sequences of complete genomes [Yu et al., 2001b] and the
classification problem of protein secondary structures [Yu et.
al., 2006].Movahed et al. [2006] used the MF-DFA to study
sunspot fluctuations. Picoli et al. [2007] used the DFA and
MF-DFA to investigate the fractal and multifractal proper-
ties of Dst. Anh et al. [2007] also used the DFA and MF-
DFA to study the orthogonal field components from the
global INTERMAGNET stations.
[21] We first summarize the MF-DFA technique.

Consider a time series {X1, X2, . . .,XN} of length N. For
an integer s� 0, we divide the time series into [N/s] segments
of equal length s, where [N/s] is the integer part ofN/s. In each
segment j, we compute the partial sums Y(i) =Sk=1

i Xk, i =
1,2, . . .,s, fit a local trend yj (i) to Y(i) by least squares, then
compute the sample variances of the residuals:

F2 s; jð Þ ¼ 1

s

Xs
i¼1

Y j� 1ð Þsþ ið Þ � yj ið Þ
� �2

; j ¼ 1; . . . ; N=s½ �:

ð6Þ

Note that linear, quadratic, cubic, or higher-order poly-
nomials yj(i) can be used in the local trend fitting, and the
DFA is accordingly called DFA1, DFA2, DFA3,.. In the
following we use only DFA1.
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[22] The qth-order fluctuation function is then defined as
the average over all segments:

Fq sð Þ ¼ 1

N=s½ �
XN=s½ �

j¼1

F2 s; jð Þ
� �q=2 !1=q

: ð7Þ

Since the segments are all of the same length, the second-
order fluctuation function F2 (s) is equivalent to the sample
variance of the entire series. This is not so for the general

case q 6¼ 2. We will assume that Fq(s) is characterized by a
power law:

Fq sð Þ / sh qð Þ: ð8Þ

The scaling function h(q) is then determined by the
regression of log Fq(s) on log s in some range of time
scale s.
[23] For fractional Brownian motion, Movahed et al.

[2006] showed that the Hurst index H = h(2) �1. Using
this relationship (or H = h(2) for the stationarity case) and
the estimate of h(2) from the regression of log F2(s) on log

Figure 3. The measure representations of hourly Dst, ap, and Xl with K = 8 using map f1 from 1 March
1995 to 17 June 2003 for the (a) active and (b) quiet periods.
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s, an estimate of the Hurst index H, and hence the extent of
long memory in the time series, is obtained. For Brownian
motion (with uncorrelated increments), the scaling exponent
H is equal to 1/2. The range 1/2 < H < 1.0 indicates the
presence of long memory/persistence, while the range 0 < H
< 1/2 indicates short memory/antipersistence.

5. Data Analysis

[24] Using the multifractal analyses described in section
4, we will now examine the scaling properties of the Dst

index, the X-ray flare brightness (Xl), and the ap index

during the period from 1 March 1995 to 17 June 2003. As
seen in Figure 1, the behavior of Xl, at the earlier times,
before t = 22000, differs from its behavior at the later times.
The first will be referred to as the quiet period and the
second as the active period. It is clear from an examination
of the data that in the earlier, quiet period, the minimum
values obtained were never below the sensitivity threshold
of the instrument, which decreases the observed fluctuations
in the data. Consequently, reliable conclusions about the
behavior of the X-ray flares cannot be obtained from the
earlier data. However, conclusions can be drawn from
analysis of the later part of the time series.

Figure 4. The log-log plots of Fq(s) versus s of hourly ap, Dst, and Xl from 1 March 1995 to 17 June
2003 for the (a) active and (b) quiet periods. The unit on the x axis is hour.
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[25] Because the traditional multifractal analysis cannot
be used in a nonstationarity context indicated by Figure 4,
which seems apparent for Dst and X, the MF-DFA technique
is used to analyze the multifractal property of the three time
series. Shown in Figure 5 are the results for the Dst, ap and
Xl time series during the active period using the MF-DFA1
method for small scales 5 < s < 34. As seen in Figure 5, the
curves for Dst and ap have similar magnitudes and shapes
throughout the range considered, indicating that their scal-
ing properties are similar. Previous comparisons [e.g., Jurac
and Richardson, 2001] of solar wind parameters indicated
similar second-order correlations (0.6–0.9) for both Dst and
ap. The behavior of Xl differs significantly, indicating the

scaling properties are different. Hence, the scaling behavior
shown in Figure 5 indicates the prediction of magnetic
storm magnitudes directly from flare observations would be
imprecise, although a significant relationship may exist.
[26] In order to look at the scaling property for the flare

storm class dependence problem, we used the measure
representations of the three indices obtained from the map
f1 (for three classes). With regard to the value of K in the
measure representations, if K is too small, there are not
enough K strings to yield statistical meaning; on the other
hand, if K is too large, many probabilities of occurrence of
the K strings will be equal to 0, which is not suitable for
analyses either. Here we take K from 6 to 10 for the three-

Figure 5. The h(q) curves of hourly Dst, ap, and Xl from 1 March 1995 to 17 June 2003 for the (a) active
and (b) quiet periods.
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class case. We can also regard these measure representations
of Dst, ap, and Xl as time series. Then the MF-DFA
technique is used to detect their multifracal behavior as
shown in Figure 6 for ap for example. The h(q) curves of the
measure representations with different K values are close to
each other. This means that the results will not be affected
by the choice of K (for example, from 6 to 10 in the three-
class case). Therefore, the h(q) curves, for the three-class
case with K = 8, are used for the measure representations of
the three indices, which are shown in Figure 7.
[27] It is seen that the curves are close and similar to each

other. In the measure representations, we consider only the
classes of these three indices, not their magnitudes. This
result indicates that the scaling exponents h(q) in the MF-
DFA reflect a positive dependence between the flare classes
and the storm classes. Our results are consistent with the
finding of Howard and Tappin [2005].
[28] In order to confirm that there is a positive flare storm

class dependence, we also performed the traditional multi-
fractal analysis on the measure representations of the three
indices. We obtained 0.5 < h(2) < 1.0 for the measure
representations, indicating that they are stationary and
normalized measures. Therefore, the traditional multifractal
analysis is suitable. As examples, the D(q) and t(q) curves
for the three-class case with K = 8 of the measure repre-
sentations are shown in Figures 8 and 9.
[29] The curves D(q) and t (q) of the measure represen-

tations of the three indices are almost the same for positive q
(i.e., for those frequent events or K strings). This confirms
that there is a positive flare storm class dependence. For
negative q (i.e., for those rare events or K strings), the D(q)
and t (q) curves are the same for Dst and Xl in the active
period but differ during the quiet period. This indicates that
the changes in Xl are more closely related to those of Dst in
the active period than in the quiet period. Since the instru-
ments measuring Xl do not measure the lower X-ray

irradiances during the quiet period, the relationship is
weaker, as expected, during that period. There is also an
indication that there is a statistically significant difference
between the response of Dst and ap to changes in Xl.

6. Discussion

[30] While the scaling behaviors of the time series of Dst

and ap (Figure 5) are similar and the behaviors for both
differ from that of Xl, the scaling behavior of the measure
representations gives different results. The scaling behaviors
of the measure representations of Dst and Xl during the
active period are similar, indicating these two have the
closest relationship. The similarity of Dst and ap shown in
Figure 4, and the difference between their scaling behaviors
and that of Xl is consistent with the solar wind being the
primary influence for both. Although the solar wind varies
with solar activity, solar flares are sufficiently localized that
the solar wind is not expected to be dependent on their
frequency. The similarity between the probability measures
shown in Figure 3 for Dst and Xl during the active period
indicates similar random patterns are present in both sets of
data. The scaling behavior captured in the multifractal
analysis is consistent with this conclusion. The results also
indicate fractal techniques could be used for modeling this
relationship.
[31] While the models currently used for prediction of Dst

rely on solar wind observations and do not incorporate a
dependence on solar flares, a dependence on flares is
consistent with what is known about the effects of solar
flares. Large flares affect both the neutral and ion densities,
and the strongest changes, on the order of 50%, occur near
the equator [e.g., Mendillo et al., 1974; Liu et al., 2007].
While most previous works concentrated on the largest
flares, of magnitudes which occur only �10/year, short
wavelength measurements indicate that small (class B)

Figure 6. The h(q) curves of the measure representations of the ap index with different values of K in
the three-class case.
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flares occur �5 times each day (T. Woods, personal com-
munication, 2007) and class C flares typically occur daily.
Although the response of the thermosphere-ionosphere to
small and medium flares is less than the response to the
largest flares, medium sized flares are orders of magnitude
more numerous and they would be expected to influence the
neutral and ion densities, just as the large flares do.
Although the use of hourly data decreases the sensitivity
of the analysis to the smaller C class flares (the smallest
used in the analysis), these flares play a dominant role in the
results. Larger M and X class flares are lumped together
since the frequency of the X class flares alone is too low for
meaningful results. Regardless of the size of the flare, it
heats the neutral atmosphere and increases the ion density.

When the atmospheric expansion, which results from the
heating, drives ions across the magnetic field, the electric
fields within the thermosphere-ionosphere system are also
affected. These changes should influence the Dst index. The
analysis presented here indicates it does.
[32] The measure representations allow one to compare

the behavior of different series, without the interdependence
within the individual data series. By reducing each series to
a limited number of discrete levels and looking for similar
sequences of events one can identify whether the naturally
occurring, random combinations of solar irradiance levels
are also seen in Dst and ap. While both Dst and ap have a
significant dependence on the solar wind, the results of the
analysis show that the random pattern of solar irradiance

Figure 7. The h(q) curves in the three-class case with K = 8 for the measure representations of Dst, ap,
and Xl for the (a) active and (b) quiet periods.
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levels is seen more clearly in Dst than in ap. This means Dst

has a measurable dependence on the solar irradiance
changes, in addition to its dependence on the solar wind.
However, current models for Dst rely on solar wind param-
eters and have no dependence on the solar (X-ray) irradi-
ance [e.g., Temerin and Li, 2002, 2006]. Owing to the
sensitivity of Dst to changes in the solar irradiance, includ-
ing it would improve the prediction of Dst.

7. Conclusions

[33] The analysis performed indicates there is a signifi-
cant relationship between the classes of the solar X rays, Xl,
and the Dst indices. This relationship is stronger than that

seen between any other combination of the three indices Xl,
Dst, and ap. However, when comparing the raw data, Dst and
ap have the most significant relationship. The scaling
properties (from the h(q) curves) of Dst and ap are similar
and they differ substantially from that of Xl. Dramatically
different results are obtained when using the measure
representations. Using a three-level classification, for pos-
itive values of q (where the scaling behavior is more
relevant for the high frequent events) the h(q), D(q), and
t (q) curves for all three indices are similar. And the scaling
properties, as shown by the D(q) and t (q) curves for
negative q (which represents the scaling behavior of the
low frequent K strings or events), of the measure represen-
tations indicate the scaling behaviors of the Dst and Xl series

Figure 8. The D(q) curves in the three-class case with K = 8 for the measure representations of Dst, ap,
and Xl for the (a) active and (b) quiet periods.
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in the active period are similar. These suggests there is a
significant relationship, for high frequent events in all three
indices and for low frequent events in the active period of
Dst and Xl, between their classes and hence a positive flare
storm class dependence. The measure representations of Dst,
ap, and Xl are multifractal, just as the raw data are. In the
selected range of values for K, the multifractal curves do not
change noticeably, meaning that the choice of values of K
does not affect the results on scaling and class dependence.
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