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Collapsin Response Mediator Protein 1 Mediates Reelin
Signaling in Cortical Neuronal Migration

Naoya Yamashita,' Yutaka Uchida,' Toshio Ohshima,* Syu-ichi Hirai,> Fumio Nakamura,' Masahiko Taniguchi,®
Katsuhiko Mikoshiba,* Jérome Honnorat,’ Pappachan Kolattukudy,” Nicole Thomasset,® Kohtaro Takei,"*

Takuya Takahashi,’ and Yoshio Goshima'*

Departments of 'Molecular Pharmacology and Neurobiology, 2Molecular Biology, and *Physiology and Neuroendocrinology, Yokohama City University

Graduate School of Medicine, Yokohama 236-0004, Japan, “Laboratory for Developmental Neurobiology, Brain Science Institute, The Institute of Physical

and Chemical Research, Wako 351-0198, Japan, *Department of Biochemistry, Cancer Research Institute, Sapporo Medical University, Sapporo 060-8556,

Japan, SInstitut National de la Santé et de la Recherche Médicale Unité 433, Institut Federatif des Neurosciences de Lyon, Hopital Neurologique, F-69003

Lyon, France, “Biomolecular Science Center, University of Central Florida, Biomolecular Science, Orlando, Florida 32816, and 8Core Research for

Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan

Collapsin response mediator protein 1 (CRMP1) is one of the CRMP family members that mediates signal transduction of axon guidance
molecules. Here, we show evidence that CRMP1 is involved in Reelin (Reln) signaling to regulate neuronal migration in the cerebral
cortex. In crmpl ™’ mice, radial migration of cortical neurons was retarded. This phenotype was not observed in the sema34™'~ and
crmpl ™'~ ;sema3A™'™ cortices. However, CRMP1 was colocalized with disabled-1 (Dabl1), an adaptor protein in Reln signaling. In the
Reln™ cortex, CRMP1 and Dab1 were expressed at a higher level, yet tyrosine phosphorylated at a lower level. Loss of crmp1 in a dabl
heterozygous background led to the disruption of hippocampal lamination, a Reeler-like phenotype. In addition to axon guidance,

CRMP1I regulates neuronal migration by mediating Reln signaling.

Key words: CRMP; Reln; Dab1; tyrosine phosphorylation; neuronal migration; cerebral cortex

Introduction
The development of the neocortex has been of keen interest,
because the cortex is uniquely mammalian and forms the basis
for higher function. The neocortex consists of six layers of neu-
rons that have distinct morphological and functional identities.
The development of these neuronal layers involves the migration
of neurons to their final laminar positions (Bielas et al., 2004).
Reelin (Reln) is a secreted protein that is involved in neuronal
migration (Lambert de Rouvroit and Goffinet, 1998). During
Reln binding to ApoER2/VLDLR receptors, the cytoplasmic
adaptor disabled-1 (Dabl) becomes phosphorylated on tyrosine
residues by Src-type tyrosine kinases (Hiesberger et al., 1999;
Howell et al., 1999a; Bock and Herz, 2003). Perinatal lethality
caused by widespread defects in neuronal migration during CNS
development is evident in mice deficient for cyclin-dependent
kinase 5 (Ohshima et al., 1996). Although how these molecules
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regulate neuronal migration remains obscure, several intracellu-
lar molecules, including Lis 1 (PAFAH1b1), doublecortin, Nudel,
microtubule associated protein (MAP)-1B, MAP-2, and the
small GTPase Racl, have been implicated as mediators of these
molecules and are involved in cytoskeletal organization (Gupta et
al., 2002).

Collapsin response mediator protein (CRMP) was identified
asa signaling molecule of Sema3A (Goshima et al., 1995). CRMPs
are now known to be composed of five homologous cytosolic
proteins; all of the family proteins are phosphorylated and are
highly expressed in developing and adult nervous systems (Wang
and Strittmatter, 1996; Fukada et al., 2000; Inatome et al., 2000,
Yuasa-Kawada et al., 2003). CRMPs also mediate other signaling,
such as NT3, and are involved in many aspects of neuronal cell
development by regulating cytoskeletal organization (Goshima et
al., 1995, 2002; Quach et al., 2004; Arimura and Kaibuchi, 2005;
Uchida et al., 2005; Yoshimura et al., 2005). However, in vivo
roles of CRMPs are mostly unknown.

To elucidate in vivo roles of CRMP1 in the development of the
CNS, we have generated crmpl ~ '~ mice (Charrier et al., 2006).
We demonstrated that CRMP1 mediates Sema3A signaling in
vivo, which is involved in spine maturation (N. Yamashita, A.
Morita, Y. Uchida, F. Nakamura, H. Usui, M. Taniguchi, J. Hon-
norat, P. Kolattukudy, N. Thomasset, K. Takei, T. Takahashi, and
Y. Goshima, unpublished observations). Intense crmpl expres-
sion is observed in the cerebral cortex at the embryonic day 16.5
(E16.5), the period of neuronal migration (Bielas et al., 2004). In
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the present study, we investigated whether CRMP1 plays a role in
neuronal migration in the cerebral cortex. We found that neuro-
nal migration was retarded in the crmpl /" cerebral cortex. In
embryonic Reln™" cortex, CRMP1 was tyrosine phosphorylated
at a lower level and expressed at a higher level when compared
with Reln”* . Furthermore, loss of crmpl in a dab1 heterozygous
background led to the disruption of hippocampal lamination, a
Reeler-like phenotype. We propose that CRMP1 is involved in
radial neuronal migration through Reln signaling.

Materials and Methods

Materials. 5-Bromo-2'-deoxyuridine (BrdU) was purchased from GE
Healthcare (Piscataway, NJ). Anti-Dab1 (B3; rabbit polyclonal) antibody
was a kind gift from B. Howell (National Institute of Neurological Dis-
orders and Stroke, Bethesda, MD). Monoclonal antibodies against
CRMP1 (2C6G and 2E7G) were raised as described previously (N. Ya-
mashita, A. Morita, Y. Uchida, F. Nakamura, H. Usui, M. Taniguchi, J.
Honnorat, P. Kolattukudy, N. Thomasset, K. Takei, T. Takahashi, and Y.
Goshima, unpublished observations). Other antibodies used were anti-
BrdU (mouse monoclonal; MBL, Nagoya, Japan), anti-3-actin (mouse
monoclonal; Sigma, St. Louis, MO), anti-Myc (9E10; mouse monoclo-
nal; Sigma), anti-MAP-2 (2a + 2b) (mouse monoclonal; Sigma), anti-
Nestin (mouse monoclonal; Chemicon, Temecula, CA), anti-p-Tyr
(PY99; mouse monoclonal; Santa Cruz Biotechnology, Santa Cruz, CA),
Cy3-labeled goat anti-Armenian hamster (Jackson ImmunoResearch,
West Grove, PA), and Alexa 488-labeled goat anti-rabbit (Invitrogen,
Cergy Pontoise, France).

Mutant mice. reeler BoC3Fe mice were from The Jackson Laboratory
(Bar Harbor, ME). yotari mice were spontaneous mutants at the dabl
allele (Yoneshima et al., 1997). sema3A and crmpl mutant mice were
generated as described previously (Taniguchi et al., 1997; Charrier et al.,
2006). Genotypes of the offspring of all mutant mice were assessed using
PCR, as described previously (D’Arcangelo et al., 1997; Kojima et al.,
2000; Sasaki et al., 2002; Charrier et al., 2006). Mice were housed in the
standard mouse facility and fed with an autoclaved diet and water. All
procedures were performed according to the guidelines outlined by the
institutional Animal Care and Use Committee of the Yokohama City
University Graduate School of Medicine. Throughout the experimental
procedures, all efforts were made to minimize the number of animals
used and their suffering.

Immunoblot analysis and immunoprecipitation. Brain samples were
homogenized in immunoprecipitation (IP) buffer [20 mwm Tris-HCI, pH
8.0, 150 mm NaCl, 1 mm EDTA, 10 mm NaF, 1 mm Na;VO,, 1% Nonidet
P-40, 50 um p-APMSE (p-amidinophenylmethanesulfonyl fluoride), and
10 pug/ml of aprotinin]. The lysates were centrifuged at 1200 rpm for 15
min at 4°C, and supernatants were normalized for total protein concen-
trations. The samples were then used for immunoblot analysis of anti-
CRMP1 (2E7G; 1:2500), anti-B-actin (1:5000), anti-Dab1 (1:500), anti-
MAP-2 (2a + 2b) (1:2000), and anti-Nestin (1:1000) antibodies. To
detect the tyrosine phosphorylation of CRMP1, the samples were incu-
bated with 1 ug of anti-CRMP1 (2E7G) antibody overnight at 4°C, fol-
lowed by additional incubation with protein G-Sepharose (GE Health-
care) for 2 h at 4°C. After washing three times with IP buffer, the samples
were used for immunoblot analysis of anti-CRMP1 (2E7G) and anti-p-
Tyr (1:5000) antibodies.

In vivo phosphorylation assay. HEK293T cells were seeded at 2.0 X 10°
cells/well in a six-well plate. One day later, the cells were transfected with
CRMP1-Myc with or without the wild-type, constitutive-active or
dominant-negative form of Fyn expression vector using Fugene6 trans-
fection reagent (Roche, Meylan, France). After 24 h, cells were lysed by IP
buffer and then immunoprecipitated with 1 ug of anti-Myc antibody.
The samples were used for immunoblot analysis of anti-Myc (1:2500)
and anti-p-Tyr antibodies.

Immunohistochemistry. Cryostat brain sections (15 um thick) were
treated with 0.1% Triton X-100 in TBS with Tween 20 (TBST) for 10 min
at room temperature. Immunostaining was performed according to
standard protocols using anti-CRMP1 (2C6G; 1:1000) and anti-Dabl
(1:100) antibodies. Hydrolyzed, paraffin wax-embedded sections (6 wm
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thick) were used for immunohistochemistry of anti-MAP-2 (2a + 2b)
(1:200) and anti-Nestin (1:100) antibodies. Slides were analyzed using a
laser-scanning microscope (LSM510) with a water-immersed objective
at 40X (C-Apochromat/1.2W corr) equipped with an Axioplan 2 imag-
ing microscope (Carl Zeiss, Jena, Germany).

BrdU-labeling analysis. For birth-dating analysis, cells were labeled
with BrdU (30 mg/kg) in the E14.5 or E16.5 neocortical wall. Pups were
killed at E18.5, postnatal day 3 (P3) or P10, and brains were fixed in 4%
paraformaldehyde for paraffin wax-embedded sectioning. Hydrolyzed,
paraffin wax-embedded sections (6 wm thick) were heat-treated at 120°C
for 20 min in 10 mm sodium citrate buffer, pH 6.0. Sections were then
treated with 0.1% Triton X-100 in TBST for 10 min and with 1.5N HCI
for 30 min at room temperature. Immunostaining was performed ac-
cording to standard protocols using anti-BrdU antibody (1:1000). Slides
were analyzed using Olympus (Tokyo, Japan) IX-71 microscopy using a
10X objective. For quantitative measurements, comparable sections
were chosen at the somatosensory cortex, which was divided into 10
horizontal bins from the superficial to the deep, and labeled nuclei in
each bin were counted (Teng et al., 2001).

Statistical significance. Data are shown as mean * SEM. The statistical
significance of the results was analyzed using a Student’s ¢ test.

Results

Neuronal migration in crmpl /™ cortex

To examine neuronal migration, we performed BrdU birth-
dating analysis in the crmpl /" cerebral cortex. In the brains of
P10 injected at E14.5 (P10-BrdU-E14.5) crmpl */~ cortex, most
labeled neurons were positioned in the deep layers of the cerebral
cortex destined to form layers IV and V. In crmpl ~/~ mice, the
majority of labeled cells were positioned at layers IV and V. The
percentage of labeled cells positioned in those regions, however,
was decreased, and the percentage of other regions was increased
(Fig. 1A). A similar phenotype was also observed in the P10—
BrdU-E16.5 crmpl ~'~ cortex. Most labeled neurons were posi-
tioned in the upper layers of the cortex, which were destined to
form layers I and 11l in crmpl */ ~ cortex. However, the percent-
age of correctly positioned neurons was decreased, whereas the
percentage of the cells in the other regions tended to be increased
in crmpI™’~ mice (Fig. 1 B). We also investigated E18.5-BrdU—
E14.5 and P3-BrdU-E16.5 crmpl ¥/~ and crmpl ~/~ mouse cor-
tices to observe the radial migration. In both brains, the retarded
phenotype of neuronal migration was observed in the crmpl ~/
cortex (data not shown). We next investigated neuronal differen-
tiation and survival in the crmpl ~ '~ cortex. At E16.5, apoptotic
cells were rarely observed by terminal deoxynucleotidyl
transferase-mediated biotinylated UTP nick end labeling stain-
ing. There was no difference in the proliferation of cortical pro-
genitor cells between crmpl ~' ~ and crmpl ™/~ cortices by BrdU
proliferative analysis (data not shown). Furthermore, immuno-
reactivity and protein expression levels of Nestin and MAP-2 (2a
+ 2b), markers of dividing precursors and of matured neurons,
respectively, in E16.5 crmpl ~’~ mice, were not different from
those in crmpl ™/~ mice (Fig. 1C,D). These results indicate that
CRMP1 plays a major role in neuronal cells at the postmitotic
phase.

We next investigated whether a Sema3A-CRMP1 signaling
cascade was also involved in neuronal migration in the cerebral
cortex. Because most of the serma3A ~ '~ pups died after birth, we
performed only E18.5-BrdU—E14.5 analysis in the sema3A ™"~
cortex. We did not observe any differences between wt,
sema3A "', and sema3A "'~ in the E18.5-BrdU-E14.5 cortices
(Fig. 2A). In addition, double heterozygous crmpl and sema3A
mice did not show any differences compared with crmp1*'~
mice in the E18.5-BrdU-E14.5, P10-BrdU-E14.5, P3-BrdU-
El16.5, and P10-BrdU-E16.5 cortices (Fig. 2B,C) (data not
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Figure 1. Abnormally positioned neuronsin the crmp1 ™~ cerebral cortex. 4, Distribution of cells in the P10 —BrdU—E14.5 crmp7 */ ~ or armp? ~/ ~ coronal cortical sections. The rate of the
BrdU-labeled nuclei of each bin (see Materials and Methods) is shown in b. B, Distribution of cells in the P10—BrdU—E16.5 crmp7 ™/~ and crmp7 ~/ ~ coronal cortical sections. The rate of the
BrdU-labeled nuclei of each bin is shown in b. In all cases, three littermates of each genotype were used for quantification. €, E16.5 crmp7 ™/~ orcrmp7 ™ coronal cortical sections immunostained
with anti-MAP-2 (2a + 2b) (@) and anti-Nestin (b) antibodies. D, Expression levels of MAP-2 (2a + 2b) and Nestin at E16.5 crmp1 ™~ or crmp1~/~ mouse cortex lysates from two individual
embryos of each genotype. Equal amounts of protein were analyzed, as indicated by the loading control (3-actin). Cortical layers are shown on the left. Scale bars: 4, B, 100 wm; €, 10 wm. MZ,
Marginal zone; CP, cortical plate; IZ, intermediate zone; SVZ, subventricular zone; VZ, ventricular zone. *p << 0.05, **p << 0.01 compared with the corresponding value in (rmpi“ .

shown). These results suggest that CRMP1 mediates some signal-
ing molecules other than Sema3A in cortical layer formation.

CRMP1 is involved in Reln signaling

In radial migration in the cerebral cortex, tyrosine phosphoryla-
tion of Dabl by a Reln signaling cascade has been shown to be
essential. Biochemical analysis has revealed a decreased tyrosine
phosphorylation of Dabl in the Reln™" cortex (Howell et al.,
1999a, 2000). One of the tyrosine kinases that is involved in phos-
phorylation of Dab1 is Fyn, an Src-type tyrosine kinase (Bock and
Herz, 2003). Because we found that CRMP1 was tyrosine phos-
phorylated by Fyn in HEK293T cells (Fig. 3A), we assumed that
CRMP1 was one of the substrates phosphorylated by tyrosine
kinases through a Reln signaling cascade. To examine this hy-
pothesis, we immunoprecipitated Reln™" and Reln™" brain ly-
sates with anti-CRMP1 antibody and analyzed tyrosine phos-
phorylation levels of CRMP1 by anti-phospho-tyrosine
antibody. The phosphorylation of CRMP1 at tyrosine residue(s)
was detected in the brain lysate from Reln™”™ mice. The level of
tyrosine phosphorylation of CRMP1 was decreased in the Reln™"
cortex (Fig. 3B). The relative level of tyrosine phosphorylation of
CRMP1 in Reln™" normalized by the amount of immunoprecipi-
tated CRMP1 in Reln™ ™ (100.0 =+ 25.0) was 38.8 + 5.2% (N = 3;

p < 0.05). In addition, the expression of CRMP1 showed a higher
level in Reln™" than in Reln"™™ mice. The CRMP1 expression was
increased to a lesser extent than was the Dabl expression in the
brain lysates from Reln™" mice (Fig. 3C). The relative amount of
CRMP1 normalized by B-actin in Reln™" and Reln™" was
100.0 = 11.8 and 155.8 * 17.3%, respectively (N = 3; p < 0.05).

In Reln™" cortex, reduced Dab1 expression is observed at su-
perplate, whereas its increased expression is observed at cortical
plate (Rice et al., 1998). We examined the protein expression
pattern of CRMP1 in Reln™" and Reln™" cortices. Intense anti-
CRMP1 and Dab1 immunoreactivities were observed at the mar-
ginal zone in Reln™" cortex, whereas reduced immunoreactivi-
ties were observed at superplate in Reln™" cortex. In addition,
increased immunoreactivities of anti-CRMP1 and Dab1 at the
cortical plate were also observed in Reln™" cortex. Increased
CRMP1 expression was observed in some neurons, whereas in-
creased Dabl expression was in almost all of the neurons of the
cortical plate in Reln™" mice (Fig. 3D).

We further attempted to analyze the genetic interaction with
crmpl and dabl; we used yotari mice, one of the spontaneous
mutants of dabl. Nissl staining of the brain at P10 revealed a
disrupted hippocampal lamination in the loss of crmpl in a dabl
heterozygous background (crmpl ' ~;dab’*”"), one of the
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Reeler-like phenotypes (Fig. 3E). This phenotype was not ob-
served in crmpl ~'~ and dab’°”" hippocampus (Fig. 3E) (As-
sadi et al., 2003), implying that CRMP1 and Dab1 were synergis-
tically involved in Reln signaling for neuronal migration.

Yamashita et al.  In Vivo Role of CRMP1 in Neuronal Migration

Discussion

We provide, for the first time, evidence that CRMP1 is involved
in radial neuronal migration through Reln signaling in the devel-
oping cerebral cortex. In Reln™" cortex, CRMP1 as well as Dabl1,
an adaptor molecule in the transduction of the Reln signal, were
expressed at a higher level, yet these were tyrosine phosphory-
lated at a lower level. Loss of crmpl in a dabl heterozygous back-
ground led to the disruption of hippocampal lamination, a typi-
cal Reeler-like phenotype.

In the crmpl~/~ mouse cortex, retardation in neuronal mi-
gration was observed by BrdU birth-dating analysis when com-
pared with the crmpl™’~ cerebral cortex (Fig. 1) (data not
shown). It is possible that Sema3A regulates neuronal migration
in the developing cerebral cortex. Indeed, Sema3A regulates the
tangential migration of GABAergic neurons from ganglionic em-
inence to the cerebral cortex (Marin et al., 2001; Tamamaki et al.,
2003). Expression of nrpl and sema3A were also observed in the
cerebral cortex at E16.5 (Kawakami et al., 1996; Skaliora et al.,
1998). However, it appears that Sema3A signaling is not involved
in radial migration during the period of cortical layer formation,
because the retarded phenotype in radial neuronal migration was
not seen in either the sema3A™’" or double heterozygotes of
crmpl and sema3A mouse cortices (Fig. 2). Consistently, the
overall expression pattern of nrpl was different from that of
crmpl in the cerebral cortex at E16.5 (N. Yamashita, A. Morita, Y.
Uchida, F. Nakamura, H. Usui, M. Taniguchi, J. Honnorat, P.
Kolattukudy, N. Thomasset, K. Takei, T. Takahashi, and Y. Gos-
hima, unpublished observations).

In contrast, the expression pattern of crmp1 was similar to that
of dabl. We clearly showed that the expression of CRMP1 was
increased in the Reln"™" cortex and reduced tyrosine phosphory-
lation of CRMP1 (Fig. 3B, C). Furthermore, the protein expres-
sion pattern of CRMP1 was also similar to that of Dabl at the
marginal zone and the cortical plate. The expression level of
CRMP1 was decreased at superplate and increased at the cortical
plate in the Reln™" cortex, respectively (Fig. 3D). In adult Reln"™"
cerebellum, the number of granule cells was reduced, and tran-
sient reduction of granule cells was observed in crmpl ™'~ cere-
bellum (Rice et al., 1998; Charrier et al., 2006). We found that loss
of crmplinadabl heterozygous background led to the disruption
of hippocampal lamination, a Reeler-like phenotype (Fig. 3E).
Because the mutations in Reln pathway genes cause distinctive
abnormalities in many laminated brain regions, known as the
Reeler phenotype (D’Arcangelo et al.,, 1999; Hiesberger et al.,
1999; Howell et al., 1999b), these findings strongly suggest that
CRMP1 mediates Reln signaling to regulate neuronal migration.

We assumed that Reln regulates neuronal migration through
tyrosine phosphorylation of CRMP1 because decreased tyrosine
phosphorylation of Dab1 is observed in the Reln™" cortex (How-
ell et al., 1999a, 2000), and animals expressing the nonphospho-
rylated Dab1 protein have a phenotype similar to the dabl null
mutant (Howell et al., 2000). Fyn and Fes tyrosine kinases have
also been proposed to be signaling components of Sema3A (Mit-
sui et al., 2002; Sasaki et al., 2002). We found that when CRMP1
and Fyn were introduced into HEK293T cells, CRMP1 was phos-
phorylated at tyrosine residue(s) (Fig. 3A). We tried to detect
phosphorylation of CRMP1 at tyrosine residue(s) in the cultured
cortical neurons treated with Reln. Up to now, we have not yet
obtained clear evidence for tyrosine phosphorylation of CRMP1
after Reln stimulation. The important finding is, however, that
the level of tyrosine phosphorylation of CRMP1 was decreased in
the Reln" cortex (Fig. 3B). Additional studies are required to
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Figure3.  Expression and tyrosine phosphorylation of CRMP1in Reln”" cortex and the genetic interaction between crmp7 and

dab1 in the hippocampus. A, Tyrosine phosphorylation of CRMP1 by Fyn. CRMP1-Myc was introduced with or without the
wild-type (WT), constitutive-active (CA), or dominant-negative (DN) form of Fyn in HEK293T cells. Immunoprecipitation with
anti-Myc antibody was performed and was thereafter immunoblotted with anti-p-Tyr and anti-Myc antibodies. B, Tyrosine
phosphorylation of CRMP1 in Reln™ ™ and Reln™" lysates from mouse cortex at E16.5. Inmunoprecipitation with anti-CRMP1
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delineate phosphorylation site(s) of
CRMP1 and its functional significance in
Reln signaling.

The presence of Reln correlates with re-
duced Dab1 protein levels during embry-
onic development (Rice et al., 1998; How-
elletal., 1999a). Our study showed that the
expression of CRMP1 was higher in
Reln™™ cortex compared with Reln™™
mice (Fig. 3C), suggesting that Reln regu-
lates CRMP1 protein levels in the cerebral
cortex. This further indicates that CRMP1
possesses a biochemical property similar
to Dabl. Interestingly, some neurons ex-
hibited an increased immunoreactivity of
CRMPI1 in the Reln™" cortical plate at
E16.5, whereas Dabl accumulation was
observed in almost all neurons in the cor-
tical plate (Fig. 3D). This result suggests
that CRMP1 may regulate migration of a
subset of the cortical neurons. The neu-
rons exhibiting increased immunoreactiv-
ity of CRMP1 in the Reln™" cortex were
distributed throughout the cerebral cortex
(Fig. 3D). Consistent with this observa-
tion, crmpl~’~ showed a retarded migra-
tion phenotype in both the upper and deep
layers of the cerebral cortex (Fig. 1A,B).
These findings suggest that neurons in
which CRMP1 may regulate their migra-
tion are composed of a heterogeneous sub-
population, being unrelated to a specific
cortical layer. The characterization of the
CRMP1-positive neurons remains to be
determined. The expression pattern of an-
other CRMP family member, crmp2, was
almost similar to that of crmpl (Wang
and Strittmatter, 1996). Both CRMP1 and
CRMP2 are involved in mediating
Sema3A signaling (Uchida et al., 2005).
These findings are consistent with a mild
defect in neuronal migration in the
crmp]f/f cortex, rather than in the
Reln™" cerebral cortex. Indeed, disruption
of a single gene, having overlapping func-

<«

antibody was performed and was thereafter immunoblotted
with anti-p-Tyr and anti-CRMP1 antibodies. C, Expression
levels of CRMP1 at E16.5 Reln™* and Reln™" brain lysates.
Immunoblot analysis of anti-CRMP1 and anti-Dab1 antibod-
ies of three individual embryos of each genotype was
performed. Equal amounts of protein were analyzed, as indi-
cated by the loading control (B3-actin). D, Immunohisto-
chemistry with anti-CRMP1 (magenta) and anti-Dab1
(green) antibodies in E16.5 Reln™ " (a— ) and Reln™" (d—F)
coronal cortical sections. Cortical layers are shown on the left.
MZ, Marginal zone; CP, cortical plate; SPP, superplate. E, Niss|
staining of the brains at P10 of (rmpl”’ (a, d),
ampl ' dab?°"" (b, e), and crmp '~ ;dab V!
(¢, f) mice. Coronal sections of the hippocampus region are
presented. Magnified images of the CA1 regionin a, b, and ¢
areshownind, e, and f, respectively. Scale bars: D, 10 wm; E,
100 pm.
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tions, sometimes does not result in any phenotypic defects in the
mutant animals (Kuo etal., 2005). The combined disruption with
other CRMP family genes will therefore tell us the exact roles of
CRMP1 in the developing cerebral cortex.

This is the first evidence for an important role of CRMP1 in
Reln signaling. It appears that the CRMP family is involved in
cytoskeletal organization by receiving various extracellular cues
that contribute to neuronal development and maturation.
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