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Density functional theory study of water adsorption at reduced
and stoichiometric ceria (111) surfaces

Santosh Kumar and Patrick K. Schellinga)
Advanced Material Processing and Analysis Center, University of Central Florida, Orlando,
Florida 32816 and Department of Physics, University of Central Florida, Orlando, Florida 32816

(Received 28 July 2006; accepted 24 October 2006; published online 27 November 2006)

We study the structure and energetics of water molecules adsorbed at ceria (111) surfaces for 0.5 and
1.0 ML coverages using density functional theory. The results of this study provide a theoretical
framework for interpreting recent experimental results on the redox properties of water at ceria (111)
surfaces. In particular, we have computed the structure and energetics of various absorption
geometries at the stoichiometric ceria (111) surface. We find that single hydrogen bonds between the
water and the oxide surface are favored in all cases. At stoichiometric surfaces, the water adsorption
energy depends rather weakly on coverage. We predict that the observed coverage dependence of
the water adsorption energy at stoichiometric surfaces is likely the result of dipole-dipole
interactions between adsorbed water molecules. When oxygen vacancies are introduced in various
surface layers, water molecules are attracted more strongly to the surface. We find that it is very
slightly energetically favorable for adsorbed water to oxidized the reduced (111) surface with the
evolution of H,. In the event that water does not oxidize the surface, we predict that the effective
attractive water-vacancy interaction will result in a significant enhancement of the vacancy
concentration at the surface in agreement with experimental observations. Finally, we present our
results in the context of recent experimental and theoretical studies of vacancy clustering at the (111)

ceria surface. © 2006 American Institute of Physics. [DOI: 10.1063/1.2400034]

|. BACKGROUND AND INTRODUCTION

The behavior of water at oxide surfaces is critical to
many areas of science and technology. For example, in many
catalyst applications, water is often present either as a reac-
tant or a spectator. Electrochemical reactions often occur at
the interface between water and an oxide passivation layer.
The chemistry of water at oxide surfaces is also critical to
gas sensors and geochemistry. To begin to understand the
complex behavior of these systems, it is essential to develop
an atomic-scale description of structure and dynamics.

In recent years, atomic-scale simulations have increas-
ingly been used to fill this important need. For example,
first-principles methods based on density functional theory
(DFT) have been used to study water at various oxide sur-
faces, including, for example, dissociative and molecular ad-
sorptions at TiOz,]_3 Sn02,4 and a-alumina’ surfaces. In ad-
dition to DFT studies, there have also been inventive and
useful applications of classical molecular dynamics (MD)
simulations.>® More recently, there has been an effort to
apply self-consistent tight-binding (SCTB) models to this
area, with the important goal of treating systems on a longer
length and time scale than traditional DFT approaches.g’10 In
summary, atomic-scale simulation is an important tool for
understanding the properties of water-oxide interfaes.

Ceria is an important material for support of metallic
nanoparticles for catalyst applications.” One especially im-
portant application of ceria is for catalysis of the water-gas
shift (WGS) reaction, described by the overall reaction,
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CO+H20—>C02+H2. (1)

Ceria is a very good catalyst support material due to its abil-
ity to easily shift oxidation states.'*"? Recently, experiments
have shown that redox chemistry of water at ceria surfaces
may depend strongly on the particular surface orientation. In
particular, early work suggests that under most conditions
water will tend to oxidize reduced ceria films and
powders.M_16 In contrast to these studies, there is a report of
water causing further reduction of a thin ceria film on a Pt
(111) surface.!” However, these studies did not offer the pos-
sibility of systematically studying the relationship between
chemistry and surface morphology. Recently, more carefully
controlled experiments have revealed that, in fact, the (111)
face is likely different from other low-index faces.' In par-
ticular, water appears to further reduce rather than oxidize
reduced (111) ceria surfaces. Experiments have shown that
the vacancy concentration at the (111) surface increases in
the presence of water vapor. As noted by the authors of Ref.
18, this presents the interesting possibility that materials with
more than one facet exposed to a reducing/oxidizing envi-
ronment may undergo simultaneous reduction and oxidation
reactions. This observation may have significant implications
for catalyst applications.

In this paper, we apply DFT calculations to elucidate the
behavior of water at the ceria (111) surface. In the case of
stoichiometric surfaces, we find that a single hydrogen bond
with oxygen on the surface is favorable, resulting in a bind-
ing energy in good agreement with experimental
temperature-programed desorption (TPD) results.'® When an
oxygen vacancy is added to the surface, the water molecule

© 2006 American Institute of Physics
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binds more strongly to the surface indicating an effective
attractive interaction between water molecules and oxygen
vacancies. We find, in general agreement with experiment,18
that the ground-state energy of water in the presence of an
oxygen vacancy at the (111) surface is quite low, and water-
vacancy complexes might be stable with respect to oxidation
reaction with the evolution of H, gas. In particular, we find
that oxidation of the surface by water is only weakly exo-
thermic. By calculating the energetics of vacancies at the
surface both in the presence and absence of a low concentra-
tion of water molecules, we are able to predict the magnitude
of the enhancement of vacancy concentration at the surface
due to a layer of adsorbed H,O molecules.

In the next section, we detail the theoretical method, in
particular, DFT, applied to this problem. Section III describes
the results obtained for oxygen vacancies at ceria surfaces
and the adsorption of water molecules at stoichiometric and
reduced ceria (111) surfaces. In Sec. IV we conclude with a
discussion of the implications of our results and some pos-
sible directions for future inquiry.

Il. THEORETICAL METHODOLOGY

In recent years it has been shown that DFT methods can
be successfully applied to lanthanide and actinide
compounds.19 The ability to deal with lanthanide and ac-
tinide compounds was the result of a careful application of
existing and well-established techniques, including ultrasoft
pseudopotentials and gradient corrections to the exchange
and correlation functionals. For example, it has been shown
that DFT can be used to describe several lanthanide com-
pounds including CeOz.19 More recently, the projector-
augmented wave method” (PAW) with gradient-corrected
functionals has been applied to lanthanides including
CeOz.zl’22 The combination of the PAW approach with gen-
eralized gradient approximation (GGA) for the exchange-
correlation energy represents an accurate and computation-
ally efficient approach for studying lanthanide oxides such as
CeO,.

Most of the basic technical details of the calculation de-
scribed in this article are identical to those used in a previous
study of stoichiometric and reduced ceria surfaces.”' In par-
ticular, the Kohn-Sham DFT calculations were performed us-
ing the Vienna ab initio simulation package (VASP).” > The
PAW method™ was implemented. The GGA functional due
to Perdew er al.”® was used to describe the exchange and
correlation interactions. The energy cutoff for the plane-
wave basis set was 408 eV. For the cerium atoms, the 5s, 5p,
5d, 4f, and 6s electrons were explicitly included as valence
electrons. The oxygen sites included 2s and 2p electrons.
The calculations were done allowing for the possibility of
electron spin polarization, which, while not important for
stoichiometric ceria, may be important for reduced ceria. As
described in Ref. 21, this approach yields good agreement
with experimental measurements for the lattice parameter
and bulk modulus of ceria. In particular, we find that the
lattice parameter computed by VASP is 5.45 A compared with
the experimental value of 5.41 A7 For the bulk modulus,
we obtain a value of 194 GPa, compared with the experi-
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FIG. 1. Slab model used to study the stoichiometric ceria (111) surface. The
white and gray spheres represent the O and Ce ions, respectively. The actual

simulation cell used in our calculations is repeated here along the [112]
direction for clarity. The simulation supercell used in the calculations in-
cluded a total of 24 ions.

mental values of 204 GPa in Ref. 28 and 236 GPa from Ref.
29. The previous ceria calculations®' using VASP found a lat-
tice parameter of 5.45 A and bulk modulus of 193.5 GPa, in
good agreement with the calculations presented here. Con-
sistent with the observations of Yang et al.,21 we find that
spin polarization has only a small effect on the energetics
even for the case of reduced ceria surfaces.

lll. RESULTS

A. Stoichiometric (111) surface structure
and energetics

Ceria is found in the cubic fluorite structure with eight
oxygen neighbors for each cerium ion. The (111) surface of
this structure is formed on the most dense lattice plane, and
as a result can be expected to be the lowest-energy surface.
From a somewhat different point of view, the structure of the
(I11) surface for the fluorite lattice breaks only one of the
eight Ce—-O bonds characteristic of bulk-coordinated ceria.
The structure used in our study to describe the stoichiometric
(I11) surface is shown in Fig. 1. To simulate a surface, we
considered a slab geometry with a vacuum layer of thickness
25 A added to the simulation cell. For comparison, the work
described in Ref. 21 used only 10 A of vacuum space. How-
ever, we found that the energy and structure did not depend
significantly on the thickness of the vacuum layer beyond a
thickness of 10 A. The structure used in the simulation con-
tained 8 Ce ions and 16 O ions. To perform integration of the
electronic states across the Brillouin zone, we used
Mokhorst-Pack grids.30 We found that a Monkhorst-Pack
mesh of 4 X4 X 1 k points was adequate for the convergence
of the electronic structure. Using this k-point mesh resulted
in a surface energy of 0.042 eV/A2. By increasing the mesh
of k points to 6 X6 X 1 the surface energy changed by only
0.05%. Furthermore, the work in Ref. 21 used a 10X 10
X 1 mesh of k points and found 0.037 eV/A? for the surface
energy, indicating that our much smaller mesh results in
quite reasonable accuracy. Another recent DFT study using
VASP obtained results very close to the results presented here.
In particular, in Ref. 31 the surface energy of the (111) sur-
face was found to be 0.043 eV/A2. For the stoichiometric
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TABLE 1. The displacement of ions along [111] directions due to relaxation
of the stoichiometric ceria [111] surface. Atom numbers correspond to those
in Fig. 1.

Ton number (111) displacement (A)
1 -0.011
2 0.040
3 -0.007
4 0.027

(111) surfaces, our results are closer to those of Ref. 31 than
those in Ref. 21. However, the differences are quite small
and the overall qualitative picture is very consistent. There
are no experimental results for the surface energy that can be
used for comparison.

In agreement with Ref. 21, we found that the magnitude
of the surface relaxations for the stoichiometric (111) surface
is very small. We show in Table I the displacements of the
ions along the (111) direction for the first few layers. The ion
numbers in Table I correspond to the labels in Fig. 1. The
very small displacements are consistent with the fact that, as
several different studies have shown, the (111) surface is the
most stable of the low-index surfaces. Two recent DFT cal-
culations have shown relaxations of similar magnitude to our
results.”"! In qualitative agreement with recent DFT results,
we find a slight decrease in the separation between the out-
ermost Ce and O planes.zl’31 Studies using empirical poten-
tials tend to result in qualitatively similar behavior.”? We find
that ionic relaxation lowers the surface energy by less than
1073 eV/A2, in good agreement with previous studies.?"!

B. Atomic structure and energetics of single
vacancies on the (111) surface

By removing an oxygen atom from ceria, a vacancy site
will be created. As a result of the oxygen vacancy, electrons
are believed to localize on the cerium ions neighboring the
vacancy site in a 4f orbital state, thereby reducing the cerium
ions from Ce,, to Ces, ions and populating a defect state
near the bottom of the conduction band.*! Experimental stud-
ies have imaged the reduced (111) surface using scanning
tunneling microscopy (STM).'*** One of the important con-
clusions of experimental observations and DFT analysis is
that oxygen vacancies tend to group together in clusters."
For the present study, however, we consider only the case of
isolated oxygen vacancies. Due to the limited size of the
simulation cell (see Fig. 1), in fact, the apparent vacancy
concentration is quite high. However, we do not consider
vacancy clusters as was done in Ref. 13.

As in Ref. 21, we consider removing a single oxygen
atom each of the first three oxygen layers. In particular, re-
ferring to Fig. 1, the oxygen ions removed correspond to ion
1 for the outermost layer, 3 for the second layer, and 4 for the
third layer. We compute the zero-temperature vacancy for-
mation energy E,,. from the equation

Eoc= E(Ceo2vac) + I/ZE(OZ) - E(Ceoz) P (2)

where E(CeO,,,.) is the total energy of the slab with the
vacancy, E(Ce0O,) is the total energy of the slab computed

J. Chem. Phys. 125, 204704 (2006)

TABLE II. Computed E, in eV for the ceria (111) slab compared with the
results in Ref. 21

Vacancy position Ref. 21 This work
First layer 3.98 3.36
Second layer 3.80 3.24
Third layer 3.96 3.36

for the stoichiometric slab, and E(O,) is the computed bind-
ing energy for an O, molecule. Because we are primarily
interested in how the vacancy formation energy depends on
the location of the vacancy and the resulting relaxed struc-
ture, it is acceptable to use this form which neglects the
oxygen chemical potential. In general, formation energies for
vacancies also depend on the O, chemical potential which
can be related to the O, partial pressure. For our consider-
ations, it is more significant that we have neglected the vi-
brational contribution to the energy and hence the formation
energies computed using Eq. (2) are zero-temperature quan-
tities. The results of this calculation are shown in Table II
along with a comparison to prior theoretical results. Overall,
the formation energies found in our study are somewhat
lower than found by Yang et al.*! We believe that this is due
to the fact that we did not fix the atoms in the bottom six
layers of the slab as was done in Ref. 21. While there are
quantitative differences between our results and those in Ref.
21, the general trend of the dependence of the vacancy for-
mation energy on the atomic plane where the vacancy resides
is verified by our study. In particular, we find in agreement
with Ref. 21 that the lowest-energy structure corresponds to
the case where the oxygen vacancy is placed in the second
layer (i.e., the subsurface layer of oxygen).

One of the most striking results that was not noted ex-
plicitly in Ref. 21 is the extremely large outward relaxation
of 1.07 A for the oxygen ion just below a vacancy created in
the outermost layer of oxygen. When an oxygen vacancy is
created in the first or outermost layer of oxygen, an oxygen
ion from the layer below relaxes until it actually occupies a
position beyond (i.e., towards the vacuum) the outermost
layer of cerium ions. Because the oxygen ion relaxes out-
wards to such a large extent, the resulting structure is in
somewhat similar to the structure that results when the oxy-
gen vacancy is created in the second (i.e., subsurface) oxy-
gen layer. However, these structures are, in fact, different as
can be seen in Fig. 2.

C. Water adsorption at stoichiometric ceria
(111) surfaces

Water adsorption on the stoichiometric (111) surface is
expected to occur above the cerium ions, with the Ce-O
bond between the surface and the water molecule having a
length comparable with the Ce—O bond length in bulk ceria.
As noted by Henderson et al.,18 there are three possible con-
figurations for the water molecule to adsorb on ceria (111)
surface. We show the possible configurations schematically
in Fig. 3. One possibility is that the water may adsorb with
the hydrogen atoms pointing directly out from the surface.
This configuration, which has been called the C,, geometry
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FIG. 2. Slab models obtained after the relaxation of reduced ceria (111)
surface with oxygen vacancies present in (a) the first layer and (b) the
second layer. Oxygen atom present in the first layer and second layer. The
“V” represents the position of the oxygen vacancies. In (a), the label 1
indicates the oxygen ion that relaxes outward by 1.07 A.

in reference to the point-group symmetry of the H,O mol-
ecule, was suggested by Henderson et al."® to be the most
likely adsorption geometry. In this case, the symmetry axis
of the water molecule is coincident with the [111] surface
normal. However, there is no symmetry argument that favors
this geometry. In particular, the symmetry of the ceria sur-
face itself corresponds to a Csy point-group symmetry. As a
result, a water adsorbed in the so-called C,, geometry will
experience a different environment for both of the two hy-
drogen ions. It therefore seems likely that the symmetry axis
of the H,O molecule will tilt somewhat away from the [111]
surface normal. If the tilting is significant, the possibility
exists that the water molecule will form one or two hydrogen
bonds with surface oxygen ions. These two cases are also
shown in Fig. 3.

Using several different initial configurations, we have
relaxed the surface with a single water molecule until the
largest forces are less than 0.01 eV/A. The resulting struc-
tures and energies show conclusively that a single hydrogen
bond is favored over the C,, geometry and over the case of
two hydrogen bonds. We found that starting configurations
corresponding to Figs. 3(a) and 3(c) were unstable with re-
spect to forming a single hydrogen bond. For example, be-
ginning with no hydrogen bonds for the C,, geometry, the
water molecule tilts downward to form a single hydrogen
bond. As noted previously, this is possible because the sur-
face itself does not share the C,;, symmetry of the water
molecule, resulting in a different environment for the two H

FIG. 3. Schematic representation of the possible configurations for a water
molecule adsorbed on a stoichiometric (111) ceria surface. We show in (a)
two hydrogen bonds, in (b) a single hydrogen bond, and in (c) no hydrogen
bonds corresponding to the so-called C,, geometry.

J. Chem. Phys. 125, 204704 (2006)

TABLE III. Adsorption energies E, 4 and hydrogen bond lengths for 0.5 ML
of water adsorbed on the stoichiometric (111) surface for the two different
geometries shown in Fig. 4.

Geometry E,q4 (V) H-bond length (A)
Fig. 4(a) 0.56 1.94
Fig. 4(b) 0.58 1.74

ions. Similarly, a starting structure with two hydrogen bonds
present spontaneously breaks one of the hydrogen bonds to
lower the energy of a single hydrogen bond. Because our
simulation was a T=0 K relaxation, these processes must
occur without any activation barrier. As a result, it is not
possible to compute a meaningful adsorption energy for the
configurations shown in Figs. 3(a) and 3(c). In other words,
the only configuration found to be stable in our simulation
corresponds to the geometry depicted in Fig. 3(c).

We find that there are two possible final configurations
for the adsorbed H,O molecule that differ somewhat in en-
ergy and structure in spite of the fact that they both possess a
single hydrogen bond with the surface. The adsorption en-
ergy E,4 of the H,O molecule and the bond length for the
hydrogen bond for these two structures are given in Table III.
The reasons for these differences are made clear by Fig. 4. In
fact, the difference arises due to a finite-size effect that re-
sults in a difference between the two surface oxygen sites.
Because of this finite-size effect, we find that it is slightly
more favorable for the hydrogen bond to form with the sur-
face oxygen ion labeled with a number 2 in Fig. 4. In par-
ticular, E, g4 for the configuration shown in Fig. 4(b) is larger
by about 0.02 eV than the configuration shown in Fig. 4(a).
There are also small differences in the bond length for the
hydrogen bonds between these two configurations. These are
also shown in Table III. Because we are primarily interested
in the global minima, we will refer in the remainder of the
article to the lowest-energy structure [i.e., Fig. 4(b)]. Finally,
we find that it is possible to obtain as a final state the struc-
ture corresponding either to that shown in Fig. 4(a) or Fig.
4(b) depending on how the initial structure was generated.

The most notable feature seen in experiment is the pres-
ence of a fairly strong coverage-dependent desorption
energy.18 If water indeed forms hydrogen bonds at the sur-
face, competition for bonding sites represents a possible

(a) (b)
o (¥
oc O¢
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FIG. 4. Two structures studied for 0.5 ML of water adsorbed on the surface.
Due to a finite-size effect, these two structures result in slightly different
energies. The gray, white, and black spheres represent the Ce, O, and H ions,
respectively. In addition to the adsorbed water, only the first layers of O and
Ce ions are depicted.
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FIG. 5. Computed ground-state structure for 1.0 ML water adsorbed on the
(111) surface.

mechanism for the observed coverage dependence. This,
however, only seems likely in the event that two hydrogen
bonds are formed for each adsorbed water molecule. In par-
ticular, each cerium ion at the surface is coordinated with
three surface oxygen ions. However, each of the surface oxy-
gen sites is shared by three surface cerium ions. As a result,
in the instance that water molecules form double hydrogen
bonds with the surface, all available oxygen sites will be
saturated at 0.5 ML coverage. Because we predict single hy-
drogen bonds, it is possible to have 1.0 ML coverage without
competition for available oxygen sites. Based on our results,
therefore, competition between available sites seems an un-
likely explanation of the experimentally observed coverage
dependence.

Another possible explanation for the coverage depen-
dence in the experimental TPD results is the increasing im-
portance of water dipole-dipole interactions as the coverage
increases. To explore possibility, we studied the energetics of
a complete monolayer of water adsorbed to the surface. The
second water molecule was added in different starting con-
figurations to a structure with 0.5 ML of water already ad-
sorbed. As with the 0.5 ML case, we find that it is energeti-
cally favorable for each adsorbed water molecule to form a
single hydrogen bond at the surface. This result was indepen-
dent of the starting configuration of the second water mol-
ecule added to the surface. While the adsorption energy E, 4
of the second water molecule is less than that of the adsorp-
tion energy of the first water molecule, the differences are
very small (~0.03 eV), but possibly large enough to explain
the coverage dependence seen in Ref. 18. In particular, the
adsorption energy of the second water molecule on the (111)
surface was found to be 0.55 eV for the ground-state struc-
ture shown in Fig. 5. Finally, we note that an estimate of the
dipole-dipole electrostatic interaction energy of neighboring
water molecules is about 0.04 eV for each dipole pair. This is
comparable to the differences observed in the adsorption en-
ergies for the first and second adsorbed water molecules.
However, it is important to note that long range dipole-dipole
interactions, which may become important at higher concen-
trations, are not accounted for with the periodic potentials
employed in a standard DFT calculation. In other words,
there may be long range interactions and correlations that are
not appropriately accounted for in our calculations. The com-
puted adsorption energy can be directly related to the experi-
mental value of 0.53 eV determined from an analysis of the
TPD experiments.18 The good agreement is an indication that
the DFT results are providing a realistic description of the
system. However, it is important to remember that vibra-
tional effects have been neglected here. A more comprehen-
sive treatment would include either MD simulation or alter-

J. Chem. Phys. 125, 204704 (2006)

TABLE IV. Adsorption energy E,4 for 0.5 ML of water on the reduced
(111) ceria surface with different positions of O vacancies. Corresponding
structures are shown in Fig. 6.

Vacancy location E,q4 (eV)
First layer [Fig. 6(a)] 0.64
First layer [Fig. 6(b)] 0.55

Second layer [Fig. 6(c)] 0.61
Third layer [Fig. 6(d)] 0.72

nately a calculation of the vibrational modes and an
evaluation of the vibrational entropy. However, the fact that
the agreement is quite good, along with the fact that the
simulation predicts only one adsorption geometry is stable,
suggests that the prediction of a single hydrogen bond is an
appropriate description for sub-1.0 ML of adsorbed H,O.

D. Water adsorption at the reduced ceria (111) surface

The presence of oxygen vacancies is expected to in-
crease the adsorption energy of water. This is due to the fact
that under coordinated Ce ions will have more electrons
available for binding. Another important consideration is that
oxygen vacancies are, at least locally, in some sense compa-
rable to positively charged defects, and as such will tend to
attract the negatively charge oxygen ion of the H,O mol-
ecule. In particular, by removing an oxygen atom, the site is
no longer occupied by a negative ion that tends to repel the
oxygen ion in water. Note, however, that vacancies are cre-
ated by removing a neutral atom, so that overall neutrality is
retained. In short, there should be an effective attractive in-
teraction between water molecules and oxygen vacancies.
However, it is not clear whether oxygen vacancies at the
surface and water molecules form a stable complex or not. It
may be that water will oxidize the surface, thereby eliminat-
ing oxygen vacancies with the evolution of hydrogen gas. It
is therefore evident that there are two competing mecha-
nisms which, depending on relative energetics, can lead to
either enhancement or depletion of surface oxygen vacancies
(i.e., reduction or oxidation) due to the presence of adsorbed
water molecules.

We have studied several possible configurations of water
molecules on ceria surfaces in the proximity of a single oxy-
gen vacancy in either the first, second, or third oxygen lay-
ers. We have considered several different initial positions of
the water molecule on the defective surface, including di-
rectly above the cerium ion nearest to the vacancy, and also
directly above the vacancy. In each case, the water molecule
prefers to be adsorbed directly above the cerium ion rather
than above the vacancy site. In Table IV we show the com-
puted E,q4 for the 0.5 ML of water on the reduced ceria (111)
surface for different O-vacancy positions. The corresponding
relaxed structures for different vacancy configurations are
shown in Fig. 6. In each case, we find that the water prefers
to form a single hydrogen bond with the surface oxygen ions.
For the case of a vacancy in the first oxygen layer, we con-
sidered two distinct configurations corresponding to Figs.
6(a) and 6(b). Somewhat surprisingly, we find that the struc-
ture corresponding to Fig. 6(b) actually leads to a slight de-
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FIG. 6. Structures considered for a single water molecule adsorbed on a
surface with a single oxygen vacancy in different locations. The structures
(a) and (b) correspond to variants of a single oxygen vacancy in the first
oxygen layer. Structure (c) corresponds to a vacancy in the second oxygen
layer, and structure (d) corresponds to a vacancy in the third layer directly
below the adsorbed water molecule. Only the first layers of O and Ce are
shown explicitly, although the vacancy sites in each case are represented by
a“v.”

crease in E,3, when compared to adsorption at the stoichio-
metric surface. On the other hand, E, 4 for the structure in
Fig. 6(a) is increased significantly due to the vacancy. We
note that for the structure in Fig. 6(a), due to the finite cell
size and periodic boundary conditions, there are in effect two
vacancies neighboring the water adsorption site. For vacan-
cies located in the second and third oxygen layers, there is a
significant increase in E,4. The largest adsorption energy
occurs when the oxygen vacancy is in the third layer from
the surface and the water molecule is adsorbed on the cerium
ion directly above the oxygen vacancy. This structure is
shown in Fig. 6(d). In this geometry, the adsorption energy
of the H,O molecule is 0.72 eV. However, while this is the
largest adsorption energy that we have found, Fig. 6(d) is not
the lowest-energy structure. The ground-state structure for an
adsorbed water molecule occurs when the oxygen vacancy is
in the second layer from the surface as shown in Fig. 6(c).
This is due to the fact that significantly less energy is re-
quired to create a vacancy in the second layer compared to
the third layer. We compute E_ 4, of 0.61 eV for the structure
in Fig. 6(c). We find that the total energy of the configuration
corresponding to Fig. 6(c) is lower by 0.01 eV compared to
the structure in Fig. 6(d). This is a very small difference and
it seems likely that at finite temperature both configurations
will be prevalent. When the oxygen vacancy is in the first
layer corresponding to the structure shown in Fig. 6(a), the
energy is about 0.08 eV higher than the ground-state energy
found for the configuration in Fig. 6(c). The structure shown
in Fig. 6(b) is higher in energy by another 0.09 eV. This
indicates that water adsorption with oxygen vacancies in the
first layer of oxygen is substantially less important than ad-
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sorption with vacancies in the second and third oxygen lay-
ers. However, the energetic differences between the different
structures shown in Fig. 6 are comparable to k3T at room
temperature, and as a result we expect that each of these
structures should be present at some appreciable concentra-
tion.

We next consider the enhancement of oxygen vacancies
at the surface due to a layer of adsorbed water. This phenom-
enon has been observed previously in experiment and inter-
preted to be due to the effective attraction between vacancies
and adsorbed water molecules or OH groups.18 The com-
puted increase in the adsorption energy of water on the re-
duced surface represents an effective attractive interaction
between vacancies and adsorbed water molecules. We ob-
serve increases in the adsorption energy AE, 4 due to vacan-
cies of 0.03 eV for second layer vacancies and 0.14 eV for
third layer vacancies. For the present discussion, we assume
that vacancies in the first layer are not present in significant
concentrations due to the higher energy computed for the
structures shown in Figs. 6(a) and 6(b). Assuming that
vacancy-vacancy interactions are relatively small, which
should be true as long as the effective vacancy concentration
is no greater than what we simulate, then the relative in-
crease in oxygen vacancies should be given by a factor
exp(AE,q/kgT). For the range of values we have computed
for AE,q, we predict that at room temperature the surface
vacancy concentration will increase by a factor of about 3 for
second layer vacancies and 300 for third layer vacancies. If
the predicted vacancy concentrations become too great, then
it is likely that vacancy-vacancy repulsive interactions will
limit the accumulation of vacancies, and the predictions by
our simple model will be invalid. While the enhancement
due to adsorbed water is largest for vacancies in the third
layer, the actual concentration of vacancies in the second
layer should be somewhat greater. For the first layer, it ap-
pears as though there may be very little enhancement except
for the case when multiple vacancies are present. In sum-
mary, the predicted enhancement in the surface vacancy con-
centration is a significant effect which may explain the ex-
perimental observations.'® However, it is also important to
note that the experimental TPD spectra do not indicate in-
creased adsorption energies for the water molecules.'® In par-
ticular, there does not appear to be a significant temperature
shift in the desorption peaks due to vacancies. This may
point to the possibility that some other stabilization or reduc-
tion mechanism is important.

Finally, we have addressed the question of whether water
will tend to oxidize the reduced surface. This effect should
directly compete with the vacancy stabilization mechanism
considered above. To explore this effect, we consider the
energy required to oxidize the reduced surface and evolve
hydrogen gas (H, molecules). In other words, we compute
the energetics of the reaction,

CegOy5 + (Hy0),q5 — CegOy6+ H,. (3)

The binding energy of the H, molecule (not including zero-
point energy) was computed to be 4.53 eV in reasonable
agreement with experiment and prior DFT calculations.** For
the water adsorbed at the reduced surface, if we consider the
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ground-state structure with the oxygen vacancy in the second
layer from the surface, the reaction above is predicted to be
weakly exothermic. In other words, it is energetically favor-
able for the water to oxidize the surface with the production
of hydrogen gas. The energy evolved during the reaction is
predicted to be 0.04 eV. However, we stress that these are
zero-temperature quantities which may not be representative
of the true reaction enthalpy. Nevertheless, the zero-
temperature results suggest that while vacancy stabilization
by adsorbed water molecules is a significant effect, the re-
sulting clusters are not stable with respect to the oxidation
reaction. Another possibility is that water molecules bind
even more strongly to vacancy clusters which have not been
considered here. This effect might result in water molecule-
vacancy structures that are stable with respect to oxidation of
the surface by water.

Another possibility is that the low-energy structure we
found for water adsorbed on the defective surface is not the
true ground state. To determine whether or not we have iden-
tified the true ground-state structures, we performed MD
simulations for water adsorbed at the surface of a reduced
ceria surface. Three different starting configurations were
studied corresponding to oxygen vacancies in the first, sec-
ond, and third layers from the surface. The MD simulations
were run starting at 7=300 K, and the temperature was
gradually reduced to 7=100 K over a simulation time of
1.15 ps. Finally, the system was relaxed until the forces on
the atoms were below 0.05 eV/A. The final energy and
structures obtained were identical to the lowest-energy struc-
tures we obtained by relaxation at 7=0 K and shown in Fig.
6. When there was a local minimum with a slightly higher
energy, the simulated annealing successfully found the
lowest-energy structure.

In summary, we predict that adsorbed water will increase
the concentration of vacancies at the (111) surface of reduced
ceria. This effect is caused by the effective attractive inter-
action between adsorbed water and oxygen vacancies. The
ground-state structure corresponds to a H,O molecule ad-
sorbed to the surface with the oxygen vacancy in the second
atomic layer from the surface. However, the calculations also
predict that oxidation of the surface by water is weakly exo-
thermic. We did not consider vacancy clusters which may
bind water even more strongly to the surface. Furthermore,
the calculations were performed at zero temperature and
hence vibrational and entropic effects were not considered.

IV. DISCUSSION AND CONCLUSIONS

We have elucidated the structure and energetics of water
molecules adsorbed at stoichiometric and reduced ceria sur-
faces. In all cases, single hydrogen bonds are formed be-
tween the water and the surface. We predict that the
coverage-dependent TPD spectra observed in experiment are
most likely due to dipole-dipole interactions between water
molecules. Vacancies increase the adsorption energy of water
molecules in most cases. This effect might explain the appar-
ent increase in vacancy concentration observed on the sur-
face in the presence of water vapor. However, we also pre-
dict that oxidation of the surface by water to be weakly
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exothermic. On the other hand, there is a possibility that
vacancy clusters could produce an even stronger interaction
with adsorbed water molecules. In this case, the water mol-
ecules can indeed result in the apparent enhancement of sur-
face oxygen vacancies observed experimentally at the ceria
(111) surface.'

It is important to consider the limitations of the current
simulations. We believe that the reliance on zero-temperature
calculations to be the most significant shortcoming. It may
be that some qualitative features depend strongly on vibra-
tional and entropic effects. However, another important con-
sideration is the choice of theoretical approach to describe
electronic interactions including exchange and correlation ef-
fects. For example, the local density approximation (LDA)
and GGA approaches may result in a poor description of
electronic screening of oxygen vacancies in reduced ceria. In
particular, the f-electronic orbitals on the cerium ions lie
lower in energy than the other conduction band states, and
are also usually thought to have very localized orbitals. This
has led, for example, Skorodumova et al.** to suggest that a
more accurate approach to understanding the reduction of
ceria is to place the electrons freed by removing an oxygen
for a stoichiometric system into localized f orbitals on two
neighboring cerium ions. It has been suggested that the in-
ability of DFT to treat oxidation states from Ce,O5 to CeO,
within a uniform set of approximations is an indication of the
need of a different approach to correctly identify the ground-
state electron structure. This led Fabris and co-workers'*™ to
explore the electronic structure of ceria and reduced ceria
using the LDA+U approach, which is believed to be more
predictive for strongly correlated electron systems. It is hard
to speculate on the significance of strong correlations to the
present work. However, it would be important and revealing
to repeat a study of water adsorption using the LDA+U
approach.
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