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A STRUCTURE THEOREM FOR THE

GROMOV-WITTEN INVARIANTS OF KÄHLER

SURFACES

Junho Lee & Thomas H. Parker

Abstract

We prove a structure theorem for the Gromov-Witten invariants
of compact Kähler surfaces with geometric genus pg > 0. Under
the technical assumption that there is a canonical divisor that is a
disjoint union of smooth components, the theorem shows that the
GW invariants are universal functions determined by the genus
of this canonical divisor components and the holomorphic Euler
characteristic of the surface. We compute special cases of these
universal functions.

Much of the work on the Gromov-Witten invariants of Kähler surfaces
has focused on rational and ruled surfaces, which have geometric genus
pg = 0. This paper focuses on surfaces with pg > 0, a class that includes
most elliptic surfaces and most surfaces of general type. In this context
we prove a general “structure theorem” that shows (with one technical
assumption) how the GW invariants are completely determined by the
local geometry of a generic canonical divisor.

The structure theorem is a consequence of a simple fact: the “Image
Localization Lemma” of Section 3. Given a Kähler surface X and a
canonical divisor D ∈ |KX |, this lemma shows that the complex struc-
ture J on X can be perturbed to a non-integrable almost complex struc-
ture JD with the property that the image of all JD-holomorphic maps
lies in the support of D. This immediately gives some striking vanish-
ing theorems for the GW invariants of Kähler surfaces (see Section 3).
More importantly, it implies that the Gromov-Witten invariant of X for
genus g and n marked points is a sum

GWg,n(X, A) =
∑

GW loc
g,n(Dk, Ak)

over the connected components Dk of D of “local invariants” that count
the contribution of maps whose image lies in or (after perturbing to a
generic moduli space) near Dk. These local invariants have not been
previously defined. The proof of their existence relies on using non-
integrable structures and geometric analysis techniques.

The second author was partially supported by the N.S.F.
Received 01/26/2006.
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484 J. LEE & T.H. PARKER

Our structure theorem characterizes the local invariants by expressing
them in terms of usual GW invariants of certain standard surfaces. For
this we make the mild assumption that one can deform the Kähler
structure on X and choose a canonical divisor D so that all components
of D are smooth. With this assumption, the restriction of KX to each
component Dk of multiplicity mk is the normal bundle Nk to Dk, and

Nmk+1
k = KDk

,

that is, Nk is a holomorphic (mk + 1)-th root of the canonical bundle
of the curve Dk. The local invariants are given by universal functions

Li(t) ∈
∏

g,n

H∗(Mg,n × Dn
k ) [[t, λ]],(0.1)

depending only on topological invariants of the pair (Dk, Nk). Four
types of such universal functions are relevant. Each is defined in terms
of the GW invariant of a rational surface or a local GW invariant of
a line bundle over a curve (they can also be defined using obstruction
bundles, but we do not pursue that approach here). There is one univer-
sal function L0(t) for exceptional curves. This enters into the blow-up
formula for GW invariants proved in Section 5. The blow-up formula
reduces the computation of the GW invariants to the case of minimal
surfaces. In light of the vanishing results given in Section 3, there are
only two types of minimal surfaces to consider: properly elliptic surfaces
and surfaces of general type.

A minimal properly elliptic surface can be deformed to guarantee the
existence of a canonical divisor whose support is the union of smooth
elliptic fibers. The structure theorem separates these into two types :
regular fibers and multiple fibers with multiplicity m ≥ 2; the corre-
sponding universal functions are L1(t) and L2

m(t) respectively. For a
minimal surface of general type all canonical divisors are connected; we
assume that one such divisor D is smooth and reduced. By the adjunc-
tion formula, D has genus h = K2

X +1. The GW invariant is then given
by one of two universal functions L3

h,±(t) for this h.

The GW invariants of a Kähler surface X can be regarded as a power
series in formal variables tA with A ∈ H2(X; Z) as described in Section
1. Each smooth component Dk of the canonical class, we can replace t
by tDk

in the appropriate universal function (0.1), taking h to be the

genus Dk. Pushing forward under the map (ιDk
)∗ : H∗(Mg,n × Dn

k ) →

H∗(Mg,n × Xn) induced by the inclusion Dk →֒ X then gives a series
(suppressing (ιDk

)∗ in the notation)

Li(tDk
) ∈

∏

g,n

H∗(Mg,n × Xn)[[tDk
, λ]],

which gives the local contribution of Dk to the GW series. For each
surface, only a few of these series are needed. The structure theorem
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lists the possibilities. The contribution GW 0
X of the class A = 0 (that

is, the evaluation of (1.4) at t = 0) must be separated out. Note that
GW 0

X has been explicitly computed (see [16]). Also note that surfaces
with pg > 0 have a unique minimal model ([4], p. 243).

Theorem 0.1 (Structure Theorem). Let X be a closed Kähler surface
with pg > 0 and smooth canonical divisor D. Write D =

∑

i Ei + D′

where {Ei} are the exceptional curves in D. Then the GW invariant of
X is a sum

GWX = GW 0
X +

∑

Ei

L0(tEi
) + GW ′

X ,

where GW ′
X is given as follows according to the type of the minimal

model X ′ of X:

1) If X ′ is K3 or abelian, then GW ′
X = 0.

2) If π : X ′ → C is properly elliptic, we can assume that the canonical
divisor D′ has the form

∑

njFj +
∑

(mk − 1)Fk for regular fibers
Fj and smooth multiple fibers Fk of multiplicity mk. We then have

GW ′
X = kπ L1(tF ) +

∑

k

L2
mk

(tFk
),

where F is a regular fiber, tmk

Fk
= tF , and kπ = χ(OX) − 2χ(OC).

3) If X ′ is general type and we can choose D′ to be smooth with
multiplicity 1, then D′ has genus h = K2

X′ + 1 ≥ 2 and

GW ′
X =

{

L3
h,+(tD′) if χ(OX) is even

L3
h,−(tD′) if χ(OX) is odd.

A more detailed version of the structure theorem is given, with proofs,
in Sections 4–7. Section 8 contains some analytic results about the
linearization of the Jα-holomorphic map equation, which has some re-
markable properties. Those are used in Sections 9 and 10 to explicitly
compute the contribution to the GW invariants of special types of cov-
ers. We do this for double covers, then for all etale covers of elliptic
fibers.

The structure theorem shows that, under the stated hypotheses, the
GW invariants are determined by the map H∗(X, Q) → H∗(D, Q) in-
duced by the inclusion D ⊂ X and by the parity of the holomorphic
Euler characteristic, which is given in terms of the Betti numbers by
χ(OX) = 1

2(1 − b1 + b+). In the case when X is a simply-connected
surface of general type with a smooth reduced canonical divisor, this
information is determined by the homology and Seiberg-Witten invari-
ants of X, and hence depends only on the differentiable structure of X.
Furthermore, the SW invariants are equivalent to Taubes’ Gr invariants,
which correspond to a subset of GW invariants [23], [12]. But we learn
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from the structure theorem that the full set of GW invariants contain
exactly the same information as the Gr and SW invariants.

Our structure theorem applies for surfaces with pg > 0. This is
exactly the case when the dimension of the spaces of stable maps differs
from the dimension of the generalized Severi variety, and thus the GW
invariants are not enumerative invariants. The Jα-holomorphic map
equation can also be used to define a set of “Family GW invariants”
that are directly related to enumerative invariants. That context is
explained in [17], [18] and [19].

One might hope that the structure theorem extended to non-Kähler
symplectic manifolds with b+ > 1. Unfortunately, as M. Usher observed
([24], page 4), McMullen and Taubes have constructed a symplectic
four-manifold whose GW invariant is not the sum of local invariants
supported on the components of the canonical class.

We thank R. Pandharipande for useful and encouraging conversa-
tions, and in particular for pointing out the role of spin curves. R.
Friedman generously helped us with elliptic surface theory. We also
thank F. Catanese, E. Ionel and Bumsig Kim for helpful comments.

1. Gromov-Witten invariants

We will use the definitions and notation of [14] for stable maps and
the Gromov-Witten invariants; these are based on the approach devel-
oped by Ruan-Tian [22] and Li-Tian [20]. In summary, the key defi-
nitions go as follows. A bubble domain B is a finite connected union
of smooth oriented 2-manifolds Bi joined at nodes together with n
marked points, none of which are nodes. Collapsing the unstable com-
ponents to points gives a connected domain st(B) with some arithmetic
genus g. Let Ug,n → Mg,n be the universal curve over the Deligne-
Mumford space of genus g curves with n marked points. We can put a
complex structure j on B by specifying an orientation-preserving map
ϕ0 : st(B) → Ug,n, which is a diffeomorphism onto a fiber of Ug,n. We
will often write C for the curve (B, j). A (J, ν)-holomorphic map from
B is then a map (f, ϕ) : B → X × Ug,n where ϕ = ϕ0 ◦ st and which
satisfies

∂̄Jf = ϕ∗ν

(here the perturbation ν is a tensor on X ×Ug,n; see [14]). Such a map
is a stable map if the restriction of (f, ϕ) to each component of B is non-
trivial in homology. For generic (J, ν) the moduli space Mg,n(X, A) of
stable (J, ν)-holomorphic maps representing a class A ∈ H2(X) is a
smooth orbifold of (real) dimension

−2KX · A + (dim X − 6)(1 − g) + 2n.(1.1)
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Its compactification carries a (virtual) fundamental class whose push-
forward under the map

Mg,n(X, A)
st×ev
−→ Mg,n × Xn(1.2)

defined by stabilization and evaluation at the marked points is the
Gromov-Witten invariant

GWg,n(X, A) ∈ H∗(Mg,n × Xn).

This is equivalent to the collection of “GW numbers”

(1.3) GWg,n(X, A)(µ; γ1, . . . , γn)

obtained by evaluating on classes µ ∈ H∗(Mg,n) and γj ∈ H∗(X) whose
total degree is the dimension (1.1) of the space of stable maps. The
number (1.3) is obtained by choosing (generic) geometric representatives
M ⊂ Mg,n and Γi of the classes Poincaré dual to µ ∈ H∗(Mg,n) and
γi ∈ H∗(X) and counting, with sign, the finite set of maps f : C → X
in st(C) ∈ M and f(xi) ∈ Γi for each marked point xi.

It is convenient to assemble these into a single invariant by intro-
ducing variables λ to keep track of the Euler class and tA satisfying
tAtB = tA+B to keep track of A. The GW series of (X, ω) is then the
formal series

(1.4) GWX =
∑

A,g,n

1

n!
GWg,n(X, A) tA λ2g−2.

2. Jα-holomorphic maps into Kähler surfaces

Fix a Kähler surface (X, J, g). On X, holomorphic sections of the
canonical bundle are holomorphic (2, 0) forms, and the dimension of
the space H2,0(X) of such forms is the geometric genus pg of X. We
will always assume that pg > 0. Each α ∈ H2,0(X) can be identified
with an element of the 2pg-dimensional real vector space

H = Re
(

H2,0 ⊕ H0,2
)

.

Using the metric, each α ∈ H defines an endormorphism Kα of TX by
the equation

(2.1) 〈u, Kαv〉 = α(u, v).

These endomorphisms Kα are central to our discussion, and we will
frequently use the following properties. Denote by ∇ the Levi-Civita
connection of the given metric.

Lemma 2.1. The Kα are skew-adjoint and anti-commute with J
(KαJ = −JKα). Furthermore,

(a) ∇Kα = K∇α and (b) K2
α = −|α|2Id.
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Consequently, they satisfy the pointwise Clifford relations

KαKβ + KβKα = −2〈α, β〉 Id.

Proof. The first two statements and (a) are immediate from (2.1).
The Clifford relations follow by polarization from (b), which is easily
proved (cf. [17]). q.e.d.

Now consider holomorphic maps f : C → X from a connected com-
plex curve with complex structure j into X. It is standard in geomet-
ric analysis to consider solutions of the perturbed J-holomorphic map
equation

∂Jf = ν,

where ∂Jf = 1
2(df + Jdfj) and where ν is an appropriate perturbation

term. In [17] the first author observed that, on a Kähler surface with
pg > 0, there is a natural family of such perturbations parameterized
by H. Specifically, we can consider the pairs (f, α) satisfying

(2.2) ∂Jf = Kα∂Jfj.

This can equally well be viewed as a set of unperturbed holomorphic
map equations for a family of almost complex structures {Jα} parame-
terized by H. For each α ∈ H the endomorphism JKα is skew-adjoint,
so Id+JKα is injective, and hence invertible. Thus there is a family of
almost complex structures

(2.3) Jα = (Id + JKα)−1J (Id + JKα)

on X parameterized by α ∈ H. A simple computation shows that (2.2)
is equivalent to the Jα-holomorphic map equation

(2.4) ∂Jαf = 0

for maps f : C → X. Our structure theorem for GW invariants will
emerge from studying the solutions of this equation for a fixed α ∈ H.
Note that while α itself is holomorphic, the corresponding almost com-
plex structure Jα need not be integrable. On the other hand, Jα is
generally not a generic almost complex structure on X, so the moduli
space of Jα holomorphic maps does not directly define the GW invari-
ants.

3. The Localization Lemma and vanishing results

The discussion in this section builds on the following simple principle
about Gromov-Witten invariants.

Vanishing Principle 3.1. If for some ω-tamed almost complex
structure J , a class A ∈ H2(X) cannot be represented by a J-holo-
morphic curve of genus g, then GWg,n(X, A) vanishes.
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The proof is straightforward: if some GWg,n(X, A) were not zero,
we could choose sequences {Jn} of generic almost complex structures
converging to J for which there were Jn-holomorphic maps represent-
ing A. But then, by the compactness theorem for pseudo-holomorphic
maps, a subsequence of those maps would limit to a J-holomorphic map
representing A, contradicting the assumption. As a simple application,
note that for a Kähler surface (X, J), any J-holomorphic curve repre-
sents a (1,1) class, so GWg,n(X, A) = 0 unless A is a (1,1) class. This
observation allows us to restrict attention to (1,1) classes for all our
results.

Lemma 3.2 (Image Localization Lemma). Fix a Kähler surface
(X, J) with pg > 0 and α ∈ H. If f : C → X is a Jα-holomorphic
map with connected domain that represents a (1, 1) class A 6= 0, then f
is in fact a J-holomorphic map whose image f(C) lies in the support of
the zero divisor Dα of α.

Proof. For any C1 map f : C → X we have the pointwise equality

(3.1) 〈∂f, Kα∂fj〉 dvol = f∗α

(see Proposition 1.3 of [17]). Integrating over the domain and using
(2.2) gives

∫

C

|∂f |2 =

∫

C

〈∂f, Kα∂fj〉 =

∫

C

f∗α.

Because α is closed, the last integral is the homology pairing α[A]. This
vanishes on the (1,1) class A because α is a linear combination of (2, 0)
and (0, 2) forms. Thus ∂f ≡ 0 on C. Then using (2.2), Lemma 2.1 and
the equality |df |2 = |∂f |2 + |∂f |2, we obtain

(3.2) 0 =

∫

C

|∂f |2 =

∫

C

|Kα∂fj|2 =

∫

C

|α|2 |df |2.

Since A 6= 0, there is at least one irreducible component of C with
df 6≡ 0. On each such component Ci, df has finitely many zeros, so
(3.2) implies that f(Ci) lies in the support of Dα. Each of the remaining
components is taken to a single point by f ; since C is connected those
points also lie in the support of Dα. q.e.d.

Lemma 3.2 leads directly to some striking vanishing results for GW
invariants. For example, K3 and abelian surfaces have trivial canonical
bundle, so they admit (2,0) forms that vanish nowhere. Lemma 3.2 and
Principle 3.1 then give:

Corollary 3.3. For K3 and abelian surfaces, all GW invariants
GWg,n(X, A) vanish for A 6= 0.

We also obtain a vanishing result for the GW numbers (1.3). This
follows from the Vanishing Principle and the geometric interpretation
of the GW numbers.
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Corollary 3.4. On a Kähler surface X with pg > 0, any GW in-
variant constrained to pass through (generic) points or circles vanishes.
Equivalently, GWg,n(X, A)(µ; γ1, . . . , γk) = 0 whenever one of the γj

lies in H3(X) or H4(X).

Proof. When PD(γj) is a point or 1-dimensional class, we can fix
a geometric representative Γj disjoint from Dα. Then, if the invariant

GWg,n(X, A)(γ1, . . . , γk) were not zero, we could find a sequence {Jn} of
generic almost complex structures converging to Jα and Jn-holomorphic
maps {fn} representing A with fn(xi) ∈ Γi for all i and n. The compact-
ness theorem would then yield a limit Jα-holomorphic map f satisfying
f(xj) ∈ Γj , contradicting Lemma 3.2. q.e.d.

The Image Localization Lemma allows us to localize the GW invari-
ants for Kähler surfaces with pg > 0. When X is such a surface and
α ∈ H, the support of the zero divisor Dα of α is a union of disjoint
topological components Dk

α. Lemma 3.2 implies that, for generic (J, ν)
near (Jα, 0), the image of any (J, ν)-holomorphic map with connected
domain lies in an open neighborhood Uk of one and only one of the
Dk

α. Thus the compactified moduli space of (J, ν)-holomorphic maps
representing a non-zero class A is a disjoint union

(3.3) Mg,n(X, A) =
∐

Mg,n(Uk, Ak)

over all Ak with (ιk)∗Ak = A under the inclusion ιk : Uk → X. Note that
each Uk is an open symplectic four-manifold with H∗(Uk) = H∗(D

k
α).

As in Section 1, the image of each Mg,n(Uk, Ak) under the map (1.2)
defines a homology class

(3.4) GW loc
g,n(Dk

α, Ak) ∈ H∗(Mg,n × Dn
k )

that we call the local GW invariant of Dk
α for the (non-zero) class Ak.

These local invariants depend on the choice of the canonical divisor
Dα, rather than on the choice of α itself. Indeed, if β ∈ H also has
zero divisor Dα, then β = c α for some constant. Thus, Jα and Jβ are
connected by a path Jt = Jαt with α0 = α and α1 = β, for which
every Jt-holomorphic map lies in the support of Dα. The standard cor-
bodism argument then shows that the local invariants GW loc

g,n(Dk
α, Ak)

associated with Jα and Jβ are the same.
We remark in passing that the local invariants (3.4) can also be re-

garded as elements of the homology of the space Mg,n(Dk
α, dk(A)) of

stable maps into the curve Dk
α with degree determined by the equation

(ιk)∗Ak = dk(A)[Dk
α]. From that perspective, (3.4) is the image of the

local invariant under the homology map induced by the evaluation map
(1.2) with X = Dk

α.
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Pushing (3.3) forward under the evaluation map (1.2) and passing to
homology shows that, for A 6= 0,

(3.5) GWg,n(X, A) =
∑

(ιk)∗Ak=A

GW loc
g,n(Dk

α, Ak)

for any choice of the canonical divisor Dα. This formula is the first
step toward our structure theorem. It shows that the GW invariants
can be expressed as a sum of local contributions associated with the
components of a canonical divisor.

4. Local GW invariants

The local invariants in the sum (3.5) depend, at least a priori, on the
local geometry of Jα around the components of the canonical divisor Dα.
In the rest of this paper we will write Dα =

∑

mkDk and assume that
the Dk are smooth and disjoint. We will show that the local invariants
depend only on discrete data g, n, d and the multiplicities mk. When
Dk is smooth every map with image in Dk represents a multiple d of
[Dk], so we will write the local invariant (3.4) as

GW loc
g,n(Dk, mk, d)

or simply GW loc
g,n(Dk, d) when mk = 1. Then, for A 6= 0, equation (3.5)

reads

(4.1) GWg,n(X, A) =
∑

dk[Dk]=A

GW loc
g,n(Dk, mk, dk).

Using arguments like those in the previous section, one can also define
local GW invariants of some open complex surfaces. Fix a smooth curve
D with canonical bundle KD and a line bundle π : N → D satisfying
Nm+1 = KD. The total space of N is a complex manifold; from the
exact sequence 0 → π∗N → TN → π∗TD → 0 we see that its canonical
bundle is

(4.2) KN = ∧2T ∗N = π∗KD ⊗ π∗N∗ = π∗Nm+1 ⊗ π∗N∗ = π∗Nm.

The bundle π∗N has a tautological section σ whose zero divisor is ex-
actly D. Then α = σm is a section of the canonical bundle KN , and so is
a holomorphic (2,0)-form on N . The argument used to prove Lemma 3.2
then shows that the image of any Jα-holomorphic map into N lies in D.
On the other hand, an open neighborhood U of D ⊂ N is isomorphic to
some open neighborhood V of the zero section D0 in the projectiviza-
tion P = P(N ⊕OD) by an isomorphism taking D to D0. The pull-back
of the Kähler form on V by that isomorphism gives a Kähler form on
U . Thus, for any generic (J, ν) sufficiently close to (Jα, 0), the moduli
space Mg,n(U, d[D]) can be compactified by standard geometric analysis
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techniques. Taking the image as in (1.2) yields homology classes

(4.3) Lg,n(N, m, d) ∈ H∗(Mg,n × Dn)

that we call the local GW invariants of N associated with mD for maps
representing d[D], d > 0. When m = 1 we will often write (4.3) as
simply Lg,n(N, d). These local invariants depend on the zero divisor of
α but not on α itself by the following reasoning. Let β be a section of
the canonical bundle KN , defined on a neighborhood U of D ⊂ N , such
that the zero divisor of β is mD. Then β = hα for some holomorphic
function h whose restriction of h to D is a non-zero constant. Hence,
after shrinking U if necessary, Ja and Jβ can be connected by a path Jαt

where the zero divisor of each αt on U is mD. As in the previous section,
the usual corbordism argument then shows that the local invariants
associated with Jα and Jβ are the same.

A similar corbodism argument gives the following fact.

Lemma 4.1. If {(Nt, Dt)}0≤t≤1 is a smooth path of line bundles

satisfying Nm+1
t = KDt then

Lg,n(N0, m, d) = Lg,n(N1, m, d).

Thus the local invariants (4.3) depend only on the discrete data g, n,
and d and the deformation class of the pair (N, D).

Example 4.2. Consider the line bundle O(−1) on P1. The complex
structure J0 on the total space of O(−1) is not of the form Jα, but
nevertheless has the property that any J0-holomorphic map representing
the class d[P1] has an image in the zero section in the total space of
the bundle O(−1). The argument used above thus applies for J0 as
well as for Jα, showing that J0 itself defines the local GW invariants
Lg,n(O(−1), d).

We can relate the local invariants of Dk defined in (3.4) with the local
invariants of its normal bundle defined in (4.3), as follows.

Lemma 4.3. Let X be a Kähler surface with pg > 0 and Dα =
∑

mkDk be the zero divisor of α ∈ H. If Dk is smooth with normal
bundle Nk and Dk ∩ Dℓ = ∅ for all ℓ 6= k, then

GW loc
g,n(Dk, mk, d) = Lg,n(Nk, mk, d).

Proof. Fix D = Dk. By the adjunction formula, the normal bundle
N of D satisfies Nm+1 = KD with m = mk. Let Z be the blow-up
of X × C along D × {0}. The projection X × C → C lifts to a map
p : Z → C whose fibers Zλ = p−1(λ) are isomorphic to X for λ 6= 0 and
whose central fiber Z0 is a singular surface X ∪D P where P is the ruled
surface P(N ⊕OD) → D defined by fiber projectivization. The proper

transform of D×C is a smooth divisor D̃ ⊂ Z, disjoint from the proper
transforms D̃ℓ of the other Dℓ×C, and α gives rise to a section α̃ of the
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canonical bundle KZ of Z whose zero divisor is mD̃ +
∑

ℓ6=k mℓD̃ℓ + P.

Now fix a tubular neighborhood U of D̃ that is disjoint from the D̃ℓ. Let
κ be the line bundle of the divisor mD̃, and let β ∈ Γ(κ) be a section

with zero divisor mD̃. For each λ, the intersection Uλ = U ∩ Zλ is a
tubular neighborhood of Dλ = D̃ ∩ Zλ. The restriction

κλ = κ|Uλ

is the line bundle on Uλ with divisor mDλ. Observe that:

• For λ 6= 0, the normal bundle Nλ to Zλ in Z is trivial. Restricting
the exact sequence 0 → TZλ → TZ → Nλ → 0 to Uλ then shows
that the canonical bundle of Uλ is the restriction of the canonical
bundle of Z, which is the bundle of the divisor mD̃ ∩ Uλ = mDλ.

• For λ = 0 we use a different argument. By the definition of blow-
up, U0 is biholomorphic to a neighborhood of the zero section in
the total space of the bundle N → D; in fact, this identifies the
zero section with D0. But by (4.2) the canonical bundle of N has
a tautological section whose divisor is m times that zero section.

Thus, κλ is the canonical bundle of Uλ for each λ.

Restricting β to Uλ gives a section βλ of κλ whose zero divisor is
mDλ, and a corresponding almost complex structure Jλ = Jβλ

on Uλ.
Then the image of any Jλ-holomorphic map lies in Dλ, so Jλ determines
local invariants GW loc

g,n(Dλ, m, d) of Uλ for the class d[Dλ] (with d > 0).
Because βλ and Jλ vary smoothly in λ, we then have

GW loc
g,n(Dλ, m, d) = GW loc

g,n(D0, m, d)

for each λ. The righthand side of the above equals Lg,n(N, m, d) by

definition, while for λ 6= 0 the lefthand side is GW loc
g,n(D, m, d) because

Zλ is biholomorphic to X by a map that takes Dλ to D. This completes
the proof of the lemma. q.e.d.

Example 4.4. Let π : E(m + 2) → P1 be an elliptic surface with
12(m+2) singular fibers which are all nodal. This surface is K3 if m = 0
and properly elliptic if m > 0. By the canonical divisor formula (see
(6.1) below) the canonical bundle of E(m + 2) is π∗O(m). Thus the
generic canonical divisor is the sum of m disjoint regular fibers Fi, and
for any regular fiber F the divisor mF is also a canonical divisor. Using
Lemma 4.3 and equation (4.1), we then have

Lg,n(O, m, d[F ]) = GWg,n(E(m + 2), d[F ]) = mLg,n(O, d[F ]).

5. Exceptional curves and blowups

This section establishes a “blowup formula” that reduces the prob-
lem of computing GW invariants to the case of minimal surfaces. This
extends some previous partial blowup formulas, cited at the end of this
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section. In our approach the blowup formula is a consequence of the
localization Lemma 3.2.

First consider a closed symplectic 4-manifold X with an almost com-
plex structure J and an exceptional J-holomorphic curve E. We can
then consider the (global) invariants

GWg,n(X, d[E]),(5.1)

which give the contributions to GWX of all maps whose image represents
a multiple of [E]. Fix a diffeomorphism ι : P1 → E and let ι∗ denote
the map H∗(Mg,n × (P1)n) → H∗(Mg,n × Xn) induced by ι.

Lemma 5.1. For d > 0, (5.1) is given by the local invariant of
Example 4.2:

GWg,n(X, d[E]) = ι∗Lg,n(O(−1), d).

Proof. Since E2 = −1, any J-holomorphic curve representing a class
d[E] has an image in E. Thus,

GWg,n(X, d[E]) = GW loc
g,n(E, d).

After rescaling the symplectic form on P1 we may assume that ι : P1 →
E is a symplectomorphism. By the Symplectic Neighborhood Theorem
this extends to a symplectomorphism ϕ : U → V from a neighborhood
U of the zero section in O(−1) → P1 to a neighborhood V of E in X.
Pushing the standard complex structure J0 on O(−1) forward by ϕ gives
an almost complex structure J ′

0 on V that makes ϕ an isomorphism of
almost complex neighborhoods. Furthermore, E is a J ′

0 holomorphic
curve, so the local invariant above can be calculated using J ′

0. Thus,
when d > 0,

GW loc
g,n(E, d) = ι∗Lg,n(O(−1), d).

q.e.d.

Let X be a compact Kähler surface with pg > 0 and let π : X̃ →
X be the blowup of X at a point p. Different choices of the point p
yield surfaces X̃ that are symplectic deformation equivalent, so the GW
invariants of X̃ are independent of the choice of p. Note that every
A ∈ H2(X̃) can be uniquely written as A = B +dE where E is the class
of the exceptional curve and B ·E = 0 and the invariant GWg,n(X, π∗B)

can be regarded as a homology class in H∗(Mg,n × (X \ {p})n).

Proposition 5.2. Let X be a compact Kähler surface with pg > 0

and let π : X̃ → X be its blowup at a point p. Then the GW invariant
of each class A = B + dE as above is given by

(5.2) GWg,n(X̃, A) =











Lg,n(O(−1), d) if A = dE with d > 0

π′
∗GWg,n(X, π∗A) if A · E = 0

0 otherwise
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where π′
∗ is the induced homology map by the composition of the isomor-

phism X \ {p} → X̃ \ E and the inclusion X̃ \ E → X̃.

Proof. Fix a holomorphic (2, 0) form α on X̃ with zero divisor D ∈
|KX | and a blowup point p /∈ D. Then α̃ = π∗α is a holomorphic (2, 0)

form on X̃ whose zero divisor D̃ ∈ |KX̃ | is the disjoint union of π∗(D)

and the exceptional curve E. Each class A ∈ H2(X̃) with non-zero GW

invariant can be represented by a Jα̃-holomorphic map f : C → X̃ from
a connected curve C. By Lemma 3.2, the image of f lies in D̃. Hence
either A · E = 0 or A = dE with d > 0. The case A = dE was done in
Lemma 5.1.

If A · E = 0, choose a sequence of almost complex structures Jℓ con-
verging to Jα̃. As ℓ → ∞, the Jℓ-holomorphic maps converge pointwise
to Jα̃-holomorphic maps. These limit maps lie in D̃ but not in E because
of the condition A · E = 0. Thus for large ℓ the images are bounded
away from E; in fact, they are uniformly bounded away from E for f

in the compact space M
Jℓ

g,n(X̃, A) of stable maps. Consequently, the
condition that Jℓ is generic for this space of stable curves is the same as
the condition that an almost complex structure that agrees with π∗Jℓ

outside a sufficiently small neighborhood of the blowup point is generic
for the corresponding space of stable maps into X. When both are
generic, composition with π gives a diffeomorphism

MJℓ
g,n(X̃, A)

≈
→ MJℓ

g,n(X, π∗A)

that respects orientations and the stabilization and evaluation maps.
Hence the corresponding GW invariants are equal. q.e.d.

Remark 5.3. The hypothesis pg > 0 is needed in Proposition 5.2.
For example, when X is P2 and L is the class of the line, the invari-
ants GWg,n(X̃, aL+ bE) with b > 1 are non-zero: they are enumerative
counts of the curves in P2 satisfying certain contact and tangency con-
ditions at the blowup point (see Gathmann [7]). Jianxun Hu showed
that the part of Proposition 5.2 pertaining to classes A with A · E = 0
and A ·E = 1 hold on any symplectic manifold ([11]). For other classes,
however, the contrast between Proposition 5.2 and Gathmann’s results
for P2 shows that any universal blowup formula for GW invariants must
distinguish rational surfaces from those with pg > 0.

The first part of the Structure Theorem 0.1 is a version of the blowup
formula (5.2). Given a compact Kähler surface X with pg > 0, let
π : X → X ′ be the projection to the minimal model. By perturbing
the blowup points, we can insure that there is a canonical divisor on X
whose support is a disjoint union of exceptional curves {Ek} and other
curves Dℓ. Define a formal power series with coefficients in H∗(Mg,n ×



496 J. LEE & T.H. PARKER

(P1)n) by setting

L0(t) =
∑

d>0

∑

g,n

1

n!
Lg,n(O(−1), d) td λ2g−2(5.3)

and another with coefficients in H∗(Mg,n × Xn) by

GW ′
X =

∑

A 6=0

∑

g,n

1

n!
π′
∗GWg,n(X, π∗A) tA λ2g−2.(5.4)

The blowup formula then gives the following succinct equation (cf. The-
orem 0.1).

Proposition 5.4. The GW invariant of X is a sum

GWX = GW 0
X +

∑

Ei

L0(tEi
) + GW ′

X .

6. The Structure Theorem for properly elliptic surfaces

In light of the blowup formula of the previous section, we can hence-
forth assume that all surfaces X are minimal. Furthermore, the GW
invariants of a K3 or abelian surface are trivial by Corollary 3.3. The
Enriques-Kodaira classification then shows that, among minimal sur-
faces with pg > 0, there are two cases left to consider: minimal properly
elliptic surfaces and minimal surfaces of general type. We will consider
these separately.

Let π : X → C be a minimal properly elliptic surface. Then the sheaf
L = (R1π∗OX)−1 is a line bundle on C with deg L = χ(OX) ≥ 0, and
the canonical bundle is

KX = π∗(L ⊗ KC) ⊗ O(
∑

k

(mk − 1)F ′
k),

where F ′
k are multiple fibers of multiplicity mk ([6] pages 47-49). Cor-

respondingly, each canonical divisor of X has the form

(6.1)
∑

j

njFj +
∑

k

(mk − 1)F ′
k

where
∑

njFj is the pullback of a divisor in |L + KC | of degree kπ =
χ(OX) − 2χ(OC). In general, the fibers Fj need not to be smooth or
disjoint from the F ′

k.

Proposition 6.1. Every minimal properly elliptic surface π : X → C
can be deformed to a minimal properly elliptic surface whose generic
canonical divisor has the form (6.1) where the Fj and F ′

k are disjoint
smooth fibers.
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Proof. By a theorem of Moishezon X can be deformed to a minimal
properly elliptic surface whose only singular fibers are reduced nodal
curves and multiple fibers with smooth reduction (see [6] p. 113 and [4]
p. 266). This deformed X is obtained by log transforms on an elliptic
surface π : S → C without multiple fibers whose canonical bundle is
KS = π∗(L + KC) for the same line bundle L ([6] pp. 102–103). By
deforming the fibers on which the logarithmic transformations are done,
we can assume that none of the fibers F ′

k lie over the base points of the
linear system |L + KC |, and hence the generic canonical divisor of X
has the form (6.1) with Fj ∩F ′

k = ∅ for all j and k. It therefore suffices
to prove Proposition 6.1 for the surface S.

Next note that |L+KC | is empty when deg(L+KC) = deg L+2g(C)−
2 ≤ 0 and has a base point at p ∈ C if and only if h0(L + KC − p) =
h0(L + KC) (see [10] p. 308). By Riemann-Roch and Serre duality,
this last condition is equivalent to h0(p − L) = h0(−L) + 1. Hence,
|L + KC | has no base points when deg L ≥ 2, and also when deg L = 1
and L 6= O(p) for any p ∈ C. In these cases Bertini’s Theorem implies
the generic canonical divisor is the disjoint union of distinct smooth
fibers. This leaves only two specific cases:

a) deg L = 0 and g = g(C) ≥ 2, and
b) L = O(p) for some p ∈ C and g ≥ 1.

In fact, case a) occurs only when S has no singular fibers ([6], p. 48).
Thus the proposition is true in case a).

In case b), choose points p, q ∈ C that are not linearly equivalent,
and let L be any one of the 22g line bundles on C with L2 = O(p + q).
Following [6] p. 60, one can construct an elliptic surface πL : SL → C
with section with (R1πL∗OSL

)−1 = L whose only singular fibers are
the fibers over p and q. It follows from Seiler’s Theorem (Corollary
I.5.14 of [6]) that each SL is deformation equivalent to S. Since L is
not isomorphic to O(p) or O(q), the generic element of |L + KC | has
support disjoint from p and q. The corresponding canonical divisor of
SL is then a union of smooth fibers. q.e.d.

Remark 6.2. R. Friedman (private communication) has proved a
stronger version of Proposition 6.1: one can assume, after further defor-
mations, that nj = 1 for all j. This is a more natural statement, but is
not needed for our purposes in light of the calculation of Example 4.4.

Proposition 6.1 is useful because Kähler surfaces that are deformation
equivalent as complex surfaces have the same GW invariants. This is
true because deformation equivalent surfaces are smoothly isotopic ([6]
page 18) and, because the space of Kähler forms with a fixed orientation
is convex, that isotopy lifts to give a symplectic deformation equivalence.
Consequently, the GW invariants are the same.
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Thus we may assume that the generic canonical divisor D has the
form (6.1) where

• each Fj is a regular fiber with holomorphically trivial normal bun-
dle, and

• smooth multiple fiber Fmk
whose normal bundle Nk is torsion of

order mk in the group Pic0(Fmk
) of line bundles of degree zero

(cf. Section III.8 of [4]). Then for a regular fiber Fj with nj = 1, we
have the local GW invariants (4.3) with m = 1 and N = O. These
define a function L1 as follows.

Definition 6.3. Let O is the trivial line bundle over T 2 and set

L1(t) =
∑

d>0

∑

g,n

1

n!
Lg,n(O, d) td λ2g−2.

For a regular fiber Fj with nj > 1, one can form the corresponding
power series with Lg,n(O, d) replaced by Lg,n(O, nj , d). The result is
simply njL

1(t) by the calculation of Example 4.4.

For multiple fibers, we will define similar functions L2
m(t) in terms

of the GW invariants of a “model space” constructed by a logarithmic
transformation. To that end, fix an elliptic K3 surface X → P1, a
regular F of X and a torsion line bundle ξ ∈ Pic0(F ) of order m > 1.
Applying the logarithmic transformation defined by this data yields an
elliptic surface X(F, ξ). This surface

• is simply connected and therefore Kähler (see [8] and Theorem 3.1
of [4]), and

• has χ(OX) = 2, so by (6.1) its canonical divisor D = (m − 1)F ′
m

is supported on a single multiple fiber F ′
m of multiplicity m.

Changing the choices of X, F and ξ yields a surface that is deformation
equivalent to X(F, ξ) (Theorem I.7.6 of [6]) and hence has the same
GW invariants. We will write K3(m) for the generic surface in this
deformation class.

Definition 6.4. With K3(m) and F ′
m as above, set

L2
m(t) =

∑

d>0

∑

g,n

1

n!
GWg,n(K3(m), d[F ′

m]) td λ2g−2.

The following proposition shows that the local invariants at any
smooth multiple fiber Fm of multiplicity m can be expressed in terms
of GW invariants of K3(m) that are encoded in the function L2

m(t).

Proposition 6.5. Let X be a properly elliptic surface with a smooth
multiple fiber Fm of multiplicity m ≥ 2. Then

GW loc
g,n(X, m − 1, d[Fm]) = GWg,n(K3(m), d[F ′

m]).
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Proof. Recall that there is a local model for a neighborhood U of Fm

(cf. Prop. 6.2 of [6]). Specifically, there is a (smooth) elliptic fibration
π0 : U0 → ∆ over a unit disk ∆ ⊂ C and a torsion line bundle ξ of
order m on π−1

0 (0) such that U is isomorphic, as an elliptic fibration, to
the elliptic fibration obtained by performing the m-logarithmic trans-
formation defined by ξ on the central fiber π−1

0 (0). In particular, π0 and
ξ completely determine the m-spin curve (Fm, Nm), that is, determine
the curve Fm and a normal bundle Nm satisfying Nm

m = KFm .
Furthermore, there is a holomorphic function h0 on ∆ satisfying

Im h0(s) > 0 such that π0 : U0 → ∆ is the quotient (C×∆)/(Z×Z) → ∆
with the action of Z × Z given by

(m, n)(z, s) = (z + m + nh0(s), s)

(p. 202 of [4]). Now fix a normal neighborhood of a smooth fiber of
K3 → P1. One can then choose an isomorphic (smooth) elliptic fibration
π1 : U1 → ∆ over the unit disk ∆ under which the fixed smooth fiber of
K3 corresponds to the central fiber π−1

1 (0). As above, this fibration is
determined by a holomorphic function h1 on ∆ with Imh1(s) > 0.

Since for each t ∈ [0, 1] the function ht = (1 − t)h0 + th1 is holomor-
phic on ∆ and satisfies Imht(s) > 0, using ht one can obtain a family
of elliptic fibrations πt : Ut → ∆. Then, performing m-logarithmic
transformation on each fiber π−1

t (0) using a family of line bundles ξt of
order m on π−1

t (0) with ξ0 = ξ shows that the m-spin curves defined by
Fm ⊂ X and a multiple fiber F ′

m ⊂ K3(m) are deformation equivalent.
Therefore, we have

GW loc
g,n(X, m − 1, d[Fm]) = GW loc

g,n(K3(m), m − 1, d[F ′
m])

= GWg,n(K3(m), d[F ′
m]),

where the first equality follows from Lemmas 4.1 and 4.3, and the second
follows from (3.5) and the fact that the canonical divisor of K3(m) is
(m − 1)F ′

m. q.e.d.

The structure theorem for minimal properly elliptic surfaces follows
immediately from (4.1), Lemmas 4.1 and 4.3, and Proposition 6.5. The
result is the following case of Theorem 0.1.

Theorem 6.6. If X is a minimal properly elliptic surface whose
canonical divisor D is given as in (6.1), then

GWX = GW 0
X + kπL1(tF ) +

∑

k

L2
mk

(tFk
),

where F is a regular fiber and tmk

Fk
= tF .
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7. The Structure Theorem for surfaces of general type

When X is a minimal surface of general type, every canonical divisor
is connected and has arithmetic genus h ≥ 2 ([4]). Unlike the case of
elliptic surfaces, it is not always possible to deform a surface of general
type to insure the existence of a smooth canonical divisor. For example,
Bauer and Catanese have shown that there is a surface S with pg = 4,
K2 = 45 that has no complex deformations and such that each canonical
divisor is singular and reducible ([3]). It is not presently understood how
common such examples are. To avoid this complication we make the
following assumption.

Assumption. For some Kähler structure in the deformation class of
X, there is a smooth canonical divisor D with multiplicity 1.

(Of course, if this is true for some Kähler structure then it is true for
the generic one.) When D is smooth with multiplicity 1, the adjunction
formula shows that the normal bundle N of D is a holomorphic square
root of KD:

N2 = KD.(7.1)

Recall that a theta characteristic on a smooth curve D is a line bundle
N with N2 = KD. In the special case when KD = O is trivial, the set
S(D) of all theta characteristics is the same as the group J2(D) of points
of order 2 in the Jacobian. In general, S(D) is a principal homogeneous
space for J2(D) with the obvious action: if N is a theta characteristic
and L2 = O, then N ⊗L is another theta characteristic. Since J2(D) is
naturally isomorphic to H1(D; Z2), there are 22h theta characteristics
on a curve of genus h. A theta characteristic N is even or odd according
to the parity of h0(D, N).

A spin curve is a pair (D, N) consisting of a curve with a theta
characteristic. The spaces Sh,+ (resp. Sh,−) of all genus h even (resp.

odd) spin curves have compactifications Sh,±. The following three facts
are classical.

Proposition 7.1 (see [1], [2], and [5]). Let D be a smooth curve of
genus h.

(a) There are 2h−1(2h + 1) even and 2h−1(2h − 1) odd theta charac-
teristics.

(b) h0(Dt, Nt) mod 2 is constant along any smooth family (Dt, Nt) of
spin curves.

(c) Sh,± is an irreducible projective variety and ∂Sh,± = Sh,± \ Sh,±

is a proper analytic subvariety.

Corollary 7.2. The invariants Lh,n(N, d), defined by (4.3) when
m = 1, depend only on the genus h and the parity of h0(D, N).
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Proof. Since Sh,± is irreducible, the smooth part S
∗
h,± is connected

([9] page 21), and hence S
∗
h,±\∂Sh,± is connected. Thus any two smooth

spin curves of the same parity can be joined by a path of spin curves.
The corollary then follows from Lemma 4.1. q.e.d.

For our case — a surface of general type with a smooth canonical
divisor D with multiplicity 1 — the parity of h0(D, N) is actually a
global invariant, as the following lemma shows.

Lemma 7.3. If X is a minimal surface of general type and D ⊂ X
is a smooth canonical divisor with normal bundle N , then

h0(D, N) ≡ χ(OX) (mod 2).

Proof. Since N is the restriction of K to D, there is an exact sequence

0 → OX
m
→ OX(K)

r
→ OD(N) → 0, where m(f) = fα and r(β) = β|C .

This induces a long exact sequence of cohomology which, using the
isomorphisms H0,1(X) ∼= H1(OX) and H1(K) ∼= H2,1(X), begins

0 → H0(OX) → H0(K) → H0(N) → H0,1(X)
m∗→ H2,1(X) → · · ·

where m∗ is given by m∗(λ) = λ ∧ α. The hermitian inner product on
H0,1(X) gives an orthogonal splitting H0,1(X) = kerm∗⊕V and, by the
above sequence, h0(N) = pg + q−1−dim V . Since χ(OX) = 1− q +pg,
it suffices to show that V is even dimensional. After composing with
the star operator, L = ∗m∗ : H0,1(X) → H0,1(X) satisfies

(7.2) 〈λ , L(δ) 〉 = −〈 δ , L(λ) 〉.

Thus, L induces a nondegenerate sympletic pairing on H0,1(X)/ker m∗
∼= V , so dim V is even. q.e.d.

We can proceed as we did for elliptic surfaces. Again, we first define
invariants associated with a spin curve.

Definition 7.4. For each smooth genus h ≥ 2 spin curve (D, N), let
Lg,n(N, d) be the local GW invariant (4.3) and set

L3
h,±(t) =

∑

g,n

∑

d≥1

1

n!
Lg,n(N, d) tdλ2g−2.(7.3)

This notation incorporates the fact that, by Corollary 7.2, this series
depends only on h and the parity of (D, N).

For minimal surfaces of general type, the statement of the structure
theorem is especially simple because the canonical divisor of X has a
single component. The GW series is obtained from one of the series
(7.3).
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Theorem 7.5. Suppose that X is a minimal surface of general type
with a smooth, multiplicity 1 canonical divisor D. Let h = K2

X + 1 be
the genus of D. Then (again suppressing inclusion maps)

GWX = GW 0
X +

{

L3
h,+(tD′) if χ(OX) is even

L3
h,−(tD′) if χ(OX) is odd.

Consequently, the GW series of X depends only on h and χ(OX).

Proof. This follows directly from (4.1), Lemma 4.3, Corollary 7.2 and
Lemma 7.3. q.e.d.

8. Moduli spaces and linearizations

For each fixed α ∈ H, we can consider the linearization Df of the
Jα-holomorphic map equation at each Jα-holomorphic map f : C → X.
This operator is important for local descriptions of the moduli space.
After a brief discussion of moduli spaces, we will write down the formula
for Df and show that it has some remarkable analytic properties.

Consider a smooth component D of a canonical divisor of X. When
D has multiplicity 1, we have N2 = KD as in (7.1). When D = Fm is
a multiple elliptic fiber with multiplicity m, the normal bundle satisfies
Nm = OD. Taking Chern classes, both cases give the formula

c1(N)[D] = h − 1.(8.1)

Lemma 8.1. Fix a smooth genus h component D ⊂ X of a canon-
ical divisor. Then the (formal real) dimensions of the moduli spaces
Mg(D, d) (of degree d genus g covers of the curve D) and Mg(X, d[D])
(of maps from a genus g curve representing d[D] ∈ H2(X)) are

(8.2) dim Mg(D, d) = 4β and dim Mg(X, d[D]) = 2β

where β = d(1 − h) + g − 1.

Proof. The restriction of TX to D decomposes as TD ⊕ N . Using
(8.1) we then have KX ·D = KD ·D − c1(N)[D] = h− 1. Both parts of
(8.2) then follow from the dimension formula (1.1). q.e.d.

To interpret the number β geometrically, consider a Jα-holomorphic
map f : C → D from a smooth genus g curve onto D. The canonical
classes of C and D are then related by the Riemann-Hurwitz formula
KC = f∗KD +B where B is the ramification divisor. Consequently, the
number of branch points, counted with multiplicity, is

|B| = 2β where β = d(1 − h) + g − 1.(8.3)

To proceed, we need explicit formulas. By a standard calculation
(cf. [15], [21]), the linearization of the Jα-holomorphic map equation,



A STRUCTURE THEOREM FOR THE GW INVARIANTS ... 503

evaluated at a map f and applied to a variation ξ of the map and a
variation k of the complex structure on the domain, is

Df (ξ, k) = Lf (ξ) + Jαdfk(8.4)

where the operator Lf : Ω0(f∗TX) → Ω0,1(f∗TX) is given by

Lf (ξ)(w) = ∂fξ(w) +

(

1

2
J∇ξJ + ∇ξKα

)

(dfjw) + Kα(∇ξ)jw

for each w ∈ Ω0(TC) (here ∂fξ(w) is 1
2 (∇wξ + J∇jwξ)). In our case

∇J = 0 and α vanishes along the image of f , so that

Lf = ∂f + Rα(8.5)

with

Rα(ξ) = −(∇ξKα) ◦ df ◦ j.(8.6)

Lemma 8.2. Let D be a smooth component of a canonical divisor
Dα and N be the normal bundle of D. Then, for each p ∈ D, u ∈ Tp D
and ξ ∈ Np we have

(a) ∇uKα = 0, (c) ∇JξKα(u) = −J∇ξKα(u),

(b) ∇ξKα(u) is orthogonal to Tp D, (d) |∇ξKα(u)|2 = |∇α|2|ξ|2|u|2.

Proof. Since α ≡ 0 along D, (a) follows from Lemma 2.1a. Next, the
fact α is a closed 2-form and ∇uα = 0 gives the formula

0 = dα(u, ξ, η) = (∇ξα)(η, u) − (∇ηα)(ξ, u)

for any η ∈ Tp X. Applying the definition of Kα, this becomes

(8.7) 〈η,∇ξKα(u)〉 = 〈ξ,∇ηKα(u)〉.

When η ∈ Tp D, we have ∇ηKα = 0 and thus (8.7) shows (b). Then,
because J is skew-adjoint with ∇J = 0, and KαJ = −JKα, (8.7) implies
that

〈η,∇JξKα(u)〉 = 〈Jξ,∇ηKαu〉 = 〈ξ,∇ηKα(Ju)〉

= 〈η,∇ξKα(Ju)〉 = −〈η, J∇ξKα(u)〉.

This gives (c). Finally, noting ∇Kα(Ju) = −J∇Ka(u) and using (c),
the fact TD and N are J-invariant and Lemma 2.1, we have

|∇ξKα(u)|2 = |∇Kα|
2|ξ|2|u|2 = |∇α|2|ξ|2|u|2.

q.e.d.

As an immediate corollary, we have:
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Corollary 8.3. If f : C → D is a Jα-holomorphic map onto a smooth
component D of a canonical divisor Dα, then Rα vanishes on f∗TD and
defines a (real ) bundle map

Rα : f∗N → T 0,1C ⊗ f∗N,

where N is the normal bundle to D. This Rα satisfies RαJ = −JRα

and

(8.8) |Rα(ξ)|2 = |∇α|2 |ξ|2 |df |2.

On a Kähler surface X, each α ∈ H has an associated almost com-
plex structure Jα and canonical divisor Dα. Let V is a smooth com-
ponent of the support of Dα. Following [13], one can use the space of
(Jα, ν)-holomorphic maps to define the relative GW invariant for the
pair (X, V ) provided (Jα, ν) is a generic “V -compatible” pair as defined
in Section 3 of [13].

Corollary 8.4. Let V be a smooth component of the support of Dα.
If ∇α ≡ 0 on V , then (Ja, 0) is a V -compatible pair, while if ∇α 6≡ 0
then (Jα, ν) is V -compatible for no choice of ν.

Proof. Let πN denote the orthogonal projection onto the normal bun-
dle N of V . A pair (Jα, ν) is V -compatible if it satisfies three conditions :
Jα preserves TV , ∇Jα satisfies

(8.9) πN [(∇ξJα + Jα∇JαξJα)(u)] = πN [(∇uJα + Jα∇JαuJα)(ξ)]

for all u ∈ TD and ξ ∈ N , and ν and ∇ν satisfy conditions that are
automatically true when ν = 0. Since α = 0 along V , the definition
(2.3) of Jα shows that Jα = J and ∇Jα = −2∇Kα at each point in V .
Thus V is Jα-holomorphic. One can then use Lemma 8.2 to see that
Condition (8.9) is equivalent to

∇ξKα(u) = 0 ∀u ∈ TD, ∀ξ ∈ N.

Lemma 8.2 d then implies that V -compatibility conditions hold only if
∇α = 0 along V , and that if ∇α = 0 along V then (Ja, 0) satisfies the
V -compatibility conditions. q.e.d.

The two terms of the operator (8.5) satisfy a remarkable property
under the L2 pairing:

Lemma 8.5. Let D be a smooth component of a canonical divisor Dα

with normal bundle N . Then for each Jα-holomorphic map f : C → D
we have

∫

C

〈∂ξ, Rαη〉 +

∫

C

〈∂η, Rαξ〉 = 0 ∀ ξ, η ∈ Ω0(f∗N).
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Proof. Let fs,t be a 2-parameter family of deformations of the map

f = f0,0 with d
ds

f |s=t=0 = ξ and d
dt

f |s=t=0 = η. Then ∂fs,t = ∂(sξ +
tη) + Q(s, t) where Q is at least quadratic in (s, t). Since the image of
f represents a multiple of the (1,1) class [D], equation (3.1) gives

0 =

∫

f∗α =

∫

〈∂f, Kα(dfj)〉

for each f = fs,t. Now differentiate this equation with respect to both

s and t and evaluate at s = t = 0, noting that ∂f and Kα(dfj) both
vanish at s = t = 0. The result is

0 =

∫

〈∂ξ, ∇ηKα(dfj)〉 +

∫

〈∂η, ∇ξKα(dfj)〉.

The lemma follows by the definition of Rα. q.e.d.

We finish this section by discussing the operator given by the normal
component of the linearization (8.5). For each map f : C → D as
in Corollary 8.3 the pullback f∗TX of the tangent bundle decomposes
orthogonally as f∗TX = f∗TD ⊕ f∗N . Let πN be the projection onto
f∗N . The normal component πN ◦ ∇ of the connection on f∗TX is a

hermitian connection on f∗N ; its (0,1) part defines an operator ∂
N

f and

hence a holomorphic structure on f∗N . The restriction of ∂f to f∗N
then has the form

∂f

∣

∣

f∗N
= ∂

N

f + A

where A is a bundle map f∗N → T 0,1C ⊗f∗TD (which vanishes if f∗N
is a holomorphic subbundle; see [9] pg. 78). On the other hand, since
f∗TD is a holomorphic subbundle, the restriction of ∂f to f∗TD is an

operator ∂
T

f on f∗TD which is the usual ∂-operator. Corollary 8.3 then
implies that the linearization (8.4), as an operator

Df : Ω0(f∗TD ⊕ f∗N) ⊕ H0,1(TC) → Ω0,1(f∗TD ⊕ f∗N),

is given by

(8.10) Df =

(

∂
T

f A

0 LN
f

)

⊕ Jdf

where LN
f = ∂

N

f + Rα. The next result shows that LN
f is injective.

Proposition 8.6. Suppose that f : C → D is a Jα-holomorphic map
from a smooth curve onto a smooth component D of a canonical divisor

Dα, and that either (i) ∇α 6= 0 somewhere on D, or (ii) ker ∂
N

f = 0.
Then

(8.11) kerLN
f = 0.
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Proof. Suppose there is a non-zero ξ ∈ kerLN
f . Then the integral

‖LN
f ξ‖2 = ‖(∂

N

f + Rα)ξ‖2 =

∫

C

|∂
N

f ξ|2 + |∇α|2 |ξ|2 |df |2

vanishes (here we have used (8.8) and noted that, because Rαξ is normal

and Aξ is tangent, Lemma 8.5 holds with ∂fξ = ∂
N

f ξ + Aξ replaced by

∂
N

f ξ). But both ξ and f satisfy elliptic equations, so by the Unique

Continuation Theorem for elliptic equations |ξ|2 |df |2 is not zero on any

open set. We conclude that ∂
N

f ξ = 0 and ∇α ≡ 0 along D. q.e.d.

9. Zero-dimensional spaces of stable maps

The simplest GW invariants are those associated with a space of
stable maps whose formal dimension is zero. Such stable maps are es-
pecially simple: Lemma 9.1 below shows that they are unramified maps
from smooth domains, and that the linearization Df is invertible. Thus
all zero-dimensional GW invariants are signed counts of the number of
connected etale covers. This section establishes some basic facts needed
to make these counts. Specific computations are done in Section 10.

The formal dimension of a space Mg,n(X, A) of stable maps is the
index of linearization Df at each f ∈ Mg,n(X, A). Calculating as in the
proof of Lemma 8.1, one finds that index Df = 2β + 2n and similarly

index LN
f = −2β + 2n. Consequently, when the space of stable maps is

formally 0-dimensional and the domain curve is smooth, we have

index Df = index LN
f = 0.(9.1)

Now fix a smooth canonical divisor satisfying the conditions of Prop-
osition 8.6. The Image Localization Lemma 3.2 implies that all invari-
ants GWg,n(X, A) vanish unless A is a multiple d[D] of the class of a
component D of that canonical divisor. These invariants also vanish
whenever the formal dimension of Mg,0(X, A) is negative because the

space Mg,0(X, A), and therefore Mg,n(X, A), is then empty for generic
(J, ν). Thus, using the dimension formula of Lemma 8.1, we may assume
that A = d[D] and

β = n = 0 with β = d(1 − h) + g − 1,(9.2)

where h is the genus of D.

Lemma 9.1. Suppose that D ⊂ X is a smooth component of a canon-
ical divisor Dα. Then any non-constant stable map f : C → D satisfying
(9.2) is an etale cover from a smooth curve C and the linearization Df

is invertible.

Proof. By (9.2) we have g = dh − d + 1. Suppose that C has ℓ
irreducible components {Ci}. Restricting f to each component and
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lifting to the normalization gives maps f̃i : C̃i → D. Suppose that
exactly k of these have degree [f̃i] = di > 0. Then

∑

di = d and (8.3),
applied to each Ci, gives

g = dh − d + 1 ≤
∑

(dih − di + 1 + βi) =
∑

g′i ≤
∑

gi ≤ g

where βi is the ramification index of f̃i, g′i is the geometric genus of Ci,
and gi is the arithmetic genus of Ci. This shows that k = 1 and C1 has
the same geometric and arithmetic genus. Consequently, C1 is smooth
of genus g and the remaining ℓ − k components have genus 0. Stability
then implies that ℓ − k = 0. Thus C is smooth and f : C → D has no
critical points.

Recall that the linearization Df is given by (8.10). The normal oper-

ator LN
f is injective by (8.11) and hence is surjective by (9.1). Further-

more, Jdf induces an isomorphism from H0,1(TC) to H0,1(f∗TD) =

coker ∂
T

f , and therefore

∂
T

f ⊕ Jdf : Ω0(f∗TD) ⊕ H0,1(TC) → Ω0,1(f∗TD)

is also onto. Thus Df is surjective with index zero, so is an isomorphism
between the appropriate Sobolev spaces. q.e.d.

When Df is invertible, there is an associated invariant: its mod 2
spectral flow. That spectral flow is computed in the next proposition.
This calculation is crucial to the discussion in the next section.

The mod 2 spectral flow of Df is determined by choosing a path Dt of
first order elliptic operators from an invertible complex linear operator
D0 to D1 = Df so that Dt is invertible except at finitely many ti along
the way, and taking

(9.3) SF (Df ) =
∑

i

dim kerDti (mod 2).

This is a homotopy invariant of the path, and is independent of D0

because any two choices of D0 can be connected by a path Dt of complex
linear first order elliptic operators, and at each point along such a path
ker Dt is even-dimensional.

Proposition 9.2. Under the conditions of Lemma 9.1,

(9.4) SF (Df ) ≡ h0(f∗N) (mod 2).

Proof. First deform Df to a diagonal operator along the path

Dt =

(

∂
T

f tA

0 LN
f

)

⊕ Jdf.
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Because both ∂
T

f ⊕Jdf and LN
f are surjective, each Dt is surjective with

index zero, so ker Dt = 0 for all t. Noting that ∂
T

f ⊕ Jdf is complex-
linear, we then have

SF (Df ) = SF (D0) = SF (LN
f ).

Next, since LN
f is invertible by Lemma 8.6, SF (LN

f ) = SF (LN
f +B) for

any sufficiently small compact perturbation B. Now write LN
f as ∂+Rα

with ∂ = ∂
N

f . Because index ∂ = 0 for etale covers, we can choose a

complex-linear isomorphism B̄ : ker ∂ → coker ∂ and set B = B̄P where
P is the L2 orthogonal projection onto ker ∂. Then

Dt = ∂ + δB + tRα

is a path from D0 = ∂ + δB to D1 = LN
f + δB. Using Lemma 8.5, we

have
∫

|Dtξ|
2 =

∫

|∂ξ|2 + |(δB + tRα)ξ|2.

This shows that D0 is invertible and that kerDt lies in ker ∂ and in
ker (δB̄ + tRα) for each t. Taking δ sufficiently small, we then have

SF (LN
f ) = SF (D1) = SF (δB̄ + R̄α)

where R̄α is the restriction of Rα to ker ∂. But R̄α is injective and
anti-commutes with J by Lemma 8.3. Furthermore, its image is L2

perpendicular to the image of ∂ by Lemma 8.5 and index ∂ = 0, so R̄α :
ker ∂ → coker ∂ is an isomorphism. This means that SF (δB̄+R̄α) is the
same as SF (R̄α) and, from the definition (9.3), the same as SF (B̄−1R̄α).
Here B̄−1R̄α is an isomorphism of H0(C, f∗N) that anti-commutes with
J . The lemma is completed using two simple facts about the spectral
flow of finite-dimensional matrices:

(a) (−1)SF (A) = sign det A for all A ∈ GL(n, R).
(b) If A ∈ GL(2n, R) satisfies JA = −AJ then SF (A) = n mod 2.

To see (a), choose a path At in the space of n × n matrices from A to
Id; for a generic such path each kernel in (9.3) is 1-dimensional, so the
spectral flow is the number of sign changes in detAt. For (b), choose a
basis {v1, Jv1, . . . , vn, Jvn} and set wi = Avi. Then v1 ∧ Jv1 ∧ · · · ∧ Jvn

and w1∧Jw1∧· · ·∧Jwn both represent the complex orientation, so the
calculation

det A · v1 ∧ JV1 ∧ · · · ∧ Jvn = Av1 ∧ AJv1 ∧ · · · ∧ AJvn

= (−1)nw1 ∧ Jw1 ∧ · · · ∧ Jwn

shows that sign det A = (−1)n. q.e.d.

In Gromov-Witten theory, the GW invariant associated with a zero-
dimensional space of stable maps is the signed count of the maps in
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that space with the sign of each map f specified by the mod 2 spectral
flow of the linearization Df (provided each Df is an isomorphism). By
Proposition 9.2 this sign is

(−1)SF (Df ) = (−1)h0(f∗N).(9.5)

This sign is well-defined even though h0(f∗N) may change under
deformations of the holomorphic structure on f∗N . This is because, for
etale covers f : C → D, we have f∗KD = KC and hence the equation
N2 = KD0

pulls back to (f∗N)2 = KC . Thus (C, f∗N) is a spin curve,
so by Lemma 7.1 the parity of h0(f∗N) does not change as (D, N) is
deformed.

Formula (9.5) is a key difference between GW invariants in two and
four dimensions. The finite set of etale covers of D contribute to both
the Gromov-Witten invariants of the curve D, and to the GW invariants
of X through the inclusion D ⊂ X. But in the first case, each etale cover
contributes +1/|Aut(f)| to the invariant, while in the second case the
signs vary according to (9.5).

10. Zero-dimensional GW invariants: computations

The facts established in the previous section are enough to compute
the contributions of etale covers to the GW series in some cases. We
do this for the canonical class itself, for double covers, and for general
etale covers for elliptic fibers.

The canonical class.

When X and D are as in Lemma 7.3, D is an embedded genus g =
K2 + 1 curve representing the canonical class K. For that genus, the
GW invariant has dimension 0 by (1.1) and is immediately computable
using (4.1), Proposition 9.2, and Lemma 7.3:

GWg(X, K) = GW loc
g (D, 1) = (−1)h0(N) = (−1)χ(OX).

This fact is well-known from other perspectives. In the context of
Taubes’ Gr invariant (see [23]), g = K2 + 1 is the “embedded genus”
case. In that case the Gr invariant is the same as the Seiberg-Witten
invariant and is given by Gr(K) = SW (K) = (−1)χ(OX). On the other
hand, because D is embedded and connected, we also have Gr(K) =
GWg(X, K).

Double covers.

The etale double covers of a curve D are classified by either H1(D; Z2)
or, equivalently, by J2(D). In fact, if the square of a line bundle L is
trivial, then L has a bisection s satisfying s2 = 1 and the image of s
is a smooth unramified double covering f : CL → D that is connected
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whenever L 6= OD. Such double coverings satisfy f∗OCL
= OD ⊕ L−1,

and thus for any line bundle N on D

h0(CL, f∗N) = h0(D, f∗f
∗N) = h0(D, N ⊗ f∗OC̃L

)(10.1)

= h0(D, N) + h0(D, NL−1).

Now suppose that D is a smooth component of a canonical divisor of
genus h with normal bundle satisfying N2 = KD. Since each map
f in the moduli space M(D, 2) of etale double covers with connected
domains has automorphism group Z2, each contributes ±1

2 to the GW
invariant, with the sign given by Proposition 9.2. Thus Proposition 7.1a,
Lemma 7.3 and equation (10.1) yield

GW loc
g (D, 2) =

∑

f∈M(D,2)

1

2
(−1)h0(f∗N)(10.2)

=
1

2

[

(−1)h0(N) 2h − 1
]

,

where g = 2h−1. For surfaces of general type the sign (−1)h0(N) can be
calculated from the global invariant χ(OX) = 1− q + pg by Lemma 7.3.

Example 10.1. Exceptional curves have no etale double covers,
while elliptic fibers have three connected double covers, all etale with
genus 1. Thus (10.2) gives

1) A regular fiber F has trivial normal bundle, so GW loc
1 (F, 2) = −3

2 .

2) A multiple fiber F2 of order 2 has h0(N) = 0, so GW loc
1 (F2, 2) = 1

2 .
3) Formula (10.2) does not apply to multiple fiber Fm with multi-

plicity m > 2 because the normal bundle to Fm is not a theta
characteristic, but instead satisfies Nm = O. Nevertheless, we
have h0(f∗N) = 0 for each of the three nontrivial double covers f
of Fm, so

GW loc
1 (Fm, m − 1, 2) =

3

2
.

4) When D is a smooth multiplicity 1 canonical divisor in a surface
of general type, D has genus h = K2 + 1 and a connected double
cover C → D is etale if and only if C has genus g = 2K2 + 1. By
(10.2) the genus g = 2h − 1 invariant is

GWg(X, 2K) = GW loc
g (D, 2) =

1

2

[

(−1)χ(OX) 2h − 1
]

.

Etale Covers of Elliptic Fibers.

When (X, J) is a generic complex structure on a minimal properly
elliptic surface, the generic canonical divisor has components of two
types: smooth elliptic fibers and multiple fibers with smooth reduction.
The simplest cases are regular fibers and multiple fibers of multiplicity
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two. For those, we can give explicit formulas for the contributions to
the GW invariants of smooth etale covers.

Regular Fibers. Every holomorphic map f : C → F onto a regular
elliptic fiber has f∗N = O, so h0(f∗N) = 1. Such a map f is an
etale cover if and only if C has genus g = 1. The stable moduli space
M1,0(F, d) consists of σ(d) points, where σ(d) =

∑

k|d k is the sum

of the divisors of d. Each of these is a generic as Jα-holomorphic map
(Lemma 9.1 implies that kerDf = 0) with automorphism group of order
d, and each is counted with a minus sign by Lemma 9.2 because f∗N =
OC . Thus the contribution of the etale covers to the local GW invariant
of F is

∑

d>0

GW loc
1 (F, d) tdF = −

∑

d>0

σ(d)

d
tdF = −

∫

G(tF )

tF
dtF ,

where

G(t) =
∑

σ(d) td =
∏

k>0

ktk

1 − tk
.

F2 Fibers. As in (6.1), every elliptic fiber F2 of multiplicity 2 is a
component of each canonical divisor Dα with multiplicity 1. In partic-
ular, ∇α does not vanish identically along F2. Thus, by Lemma 9.1,
ker Df = 0 and cokerDf = 0 for every Jα-holomorphic etale cover
f : C → F2. Consequently, the (local) GW invariants of etale covers are
determined by their Taubes’ type. Since the degree 1 map has positive
sign, and two of (nontrivial) double covers have positive sign and one
has negative sign, we have

∑

d>0

GW loc
1 (F2, d) tdF2

=
∑

d>0

1

d

[

σ(d) − 2 σ
(d

2

)

]

tdF2

=

∫

G(tF2
) − 2G(t2F2

)

tF2

dtF2

(see Proposition 4.4 of [12]).
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