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We determine the dependence of the interfacial conductance on twist angle for �001� symmetric
twist grain boundaries �GBs� in diamond. We find that the conductances are extremely large, ranging
from 7.7 to 17.6 GW/m2 K. Nevertheless, when normalized to the single-crystal conductivity, the
resulting Kapitza lengths are actually longer in diamond than in Si, indicating that the diamond GBs
are relatively worse conductors of heat. This result is consistent with the poorer bonding across the
diamond grain boundaries. We find that the interfacial conductance and Kapitza length can be well
fitted by an extended Read-Shockley model. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2779289�

I. INTRODUCTION

The relentless drive to faster and smaller microelectron-
ics is leading to dramatic increases in the thermal load on
functional nanostructures.1 A detailed understanding of ther-
mal transport in such nanostructures is therefore imperative.
As system sizes decrease to nanometer scales, the dominant
phonon scattering mechanism changes. For relatively large-
grain sized materials, phonon-phonon and phonon-point de-
fect scatterings are the dominant mechanisms. However, the
dimensions of nanostructures are becoming of the order of,
or even smaller than the phonon mean free path ��150 nm
in diamond at room temperature, shorter in other materials�.
As a result, while phonon-point defect interactions remain
important, phonon-phonon interactions become relatively
less important. On these length scales, the scattering of
phonons from the microstructure, particularly surfaces and
grain boundaries �GBs�, becomes a key process in determin-
ing the effectiveness of heat flow.2

Since the experimental investigation of thermal transport
at individual interfaces is extremely difficult, there is an ex-
cellent opportunity for simulation to provide important in-
sights. Indeed, over the last few years, there has been con-
siderable activity in simulating heat transport both in
traditional materials and in nanodimensioned materials. For
example, the effect of nanodimensions has been explored in
some detail in simulations of thermal transport in
superlattices2 and, more recently, in nanowires.3,4 While
there have been simulations of some individual grain
boundaries,5,6 no study has systematically explored the effect
of the structure of the interface itself on thermal transport. In

this paper, we elucidate how the interfacial conductance
changes with the crystallography of the grain boundary. Dia-
mond is an ideal laboratory in which to characterize these
effects since it has the largest thermal conductivity of any
material; thus, the detrimental effects of the grain boundaries
can be expected to be particularly evident. In addition, dia-
mond is of considerable technological interest.6–9 From our
simulations, we find that the interfacial conductance is ex-
tremely high; however, when appropriately normalized, it is
less than that of the corresponding grain boundaries in sili-
con, a result that we can understand in terms of the bonding
at the interfaces. Moreover, we find that the interfacial resis-
tance is an approximately linear function of the GB energy.
As a consequence, we find that it is possible to construct a
Read-Shockley type model for the thermal conductance of
these boundaries.

II. SIMULATION METHODS

In this work, diamond is simulated using the potential by
Tersoff,10 a well-known and well-characterized many-body
potential for covalently bonded materials such as C, Si, and
Ge. The Tersoff potential works particularly well for carbon
because of its capability to describe both sp2 and sp3 hybrid-
izations.

The thermal conductivity simulations have been per-
formed using the direct method by Jund and Jullien.11 As
Fig. 1 shows, and as has been discussed in detail elsewhere,5

in the direct method, a small region of the bulk is heated to
act as the heat source, while another region is cooled to act
as the heat sink. A fixed amount of energy is removed from
the heat sink region and an identical amount of energy is
added in the heat-source region; thus, the total energy of the
system is conserved.a�Electronic mail: sphil@mse.ufl.edu
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For a spatially homogeneous system, such as a perfect
crystal, this process results in a thermal gradient dT /dx being
set up in the system. The thermal conductivity � can then be
calculated from Fourier’s law,

J = − �dT/dx , �1�

where J is the heat current density. In general, � is a rank-
two tensor; however, it is treated as a scalar in the case of
one-dimensional heat flow as in our simulations.

For a system containing a grain boundary, the interfacial
thermal conductance GK can be calculated in a similar fash-
ion from the temperature drop �T across the interface,

J = GK�T . �2�

This method was also used in our earlier study of Si grain
boundaries and was shown to work.12

III. INTERFACIAL CONDUCTANCE OF „001… TWIST
GRAIN BOUNDARIES

The diamond crystal structure is characterized by four
covalent bonds pointing along the �111� directions. A grain
boundary on an arbitrary plane will thus have two covalent
bonds projecting back into the grain itself and two bonds
across the grain boundary.13 These latter two bonds can be
expected to be significantly different from the bonds in the
bulk due to the structural disorder at the grain boundary. If
we examine the principal planes in the diamond lattice, grain
boundaries on the �111� plane have three bonds back into the
crystal and one across the interface; grain boundaries on the
�011� plane have one bond pointing back into the crystal, two
parallel to the interface, and one pointing across the inter-
face. Neither of these is similar to the typical grain boundary
described above. However, grain boundaries on the �001�
plane have two bonds pointing back into the crystal and two
pointing across the interface. A high-angle twist boundary on
the �001� plane may thus be considered as being, to a con-
siderable extent, representative of the grain boundaries in
polycrystalline and nanocrystalline diamond.13 Therefore, to
elucidate the structure-property relationship for a generic
grain boundary in diamond, we determine how the thermal
conductance of �001� GBs varies with twist angle.

The diamond lattice has a twofold symmetry axis in the
�001� direction. Thus, on forming symmetric twist bound-
aries on this plane, a rotation of one semicrystal with respect
to the other by 180° will result in a single crystal. Therefore,

to probe the full range of grain boundaries, we only need to
consider twist angles from 0° to 90°. We have simulated the
thermal-transport properties of 12 such GBs, with twist
angles ranging from 8.80° to 90.0°. These GBs were formed
by cutting a single crystal along an �001� plane and rotating
one-half of the crystal with respect to the other. The unit cells
for the GBs considered range in areal dimensions from being
equal to that of the perfect crystal ��=90° and �=1� to being
101 times larger ��=11.42° and �=101�.

The 90° GB is a special case and is actually a symmetric
twin GB. In the �001� direction, the stacking of the perfect
crystal can be written as ¯AaBbAaBbAb¯, where the Aa
layers come from the fcc Bravais lattice with a basis of two
atoms at �0,0,0� and �0.25,0.25,0.25�. The 90° twist GB then
corresponds to a stacking sequence of ¯AaBbAbBaAb¯, in
which we can see that the stacking sequence is symmetric
about one of the A planes. Full crystallographic details of all
of the GBs considered and a summary of the simulation re-
sults are given in Table I.

To prepare the GBs for the thermal conductivity simula-
tions, the unrelaxed GB structures were heated to 2000 K to
minimize the stress, then slowly cooled to near 0 K in a
stepwise fashion; equilibrium T=0 K structures were then
determined by steepest descent quenches to minimize the
energies and to reduce the forces and stresses to negligible
values. This process was determined to be appropriate in an
earlier work.13 A detailed analysis showed that the coordina-
tion of atoms within the typical high-angle high-energy GB,
�29�001�, agrees very well with our previous results.13 To
minimize the computer time, the relaxation process was per-
formed on simulation cells that were only 16 unit cell long.
After the relaxed structure was obtained, perfect crystal re-
gions were inserted to form structures long enough in the z
direction for the thermal conductivity simulations. von
Alfthan et al.14 investigated the zero-temperature structures
of Si GB structures by removing atoms from the GB region
and found GB structures with energies lower than what was
previously reported. We have explored this effect by per-
forming the same procedure on a �29�001� GB in diamond,
but we did not find any structures with energies lower than
those formed by the process described above. The �29�001�
GB has one of the highest energies and is thus one of the
most likely to undergo reconstruction since the potential en-
ergy saving is the largest. Because our simulations on this
grain boundary showed no reconstruction, it is unlikely that
the other, lower energy grain boundaries will lower their en-
ergies by reconstruction.

Before discussing the dependence of the thermal-
transport properties on the twist angle, we examine the rep-
resentative case of the �001� �=43.60° ��29� GB. Because
the simulation is set up as a three-dimensional �3D� periodic
system with crystallographically identical GBs at the center
of the unit cell and at the edge, the heat source and heat sink
are equidistant between the two grain boundaries. We per-
formed seven test runs with heat current densities ranging
from 1�10−4 and 8�10−4 eV/nm2 per MD step. The maxi-
mum difference in the conductivity values was 10% and
there was no systematic trend. A similar weak dependence on
the heat flux was observed in our previous work on Si GBs.12

FIG. 1. �top� Simulation cell setup for the direct method for simulating
thermal conductivity. The heat source and sink are located at a quarter of the
cell length away from the center of the cell. The same amount of energy ��
is added to the atoms in the heat source and removed from those in the heat
sink. This setup results in two equivalent heat currents J in opposite direc-
tions along the z axis.
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Moreover, our previous studies12 for perfect crystals showed
quantitative agreement for the predicted thermal conductivity
between the imposed heat current method and a Green-Kubo
approach, in which there is no heat current at all. The heat
current density for subsequent simulations was kept constant
at 2.5�10−3 eV/nm2 fs. The resulting temperature profile in
Fig. 2 clearly shows the symmetry of the simulation setup.

In our simulation, temperature at each location in the
simulation cell is defined by the average kinetic energy per
atomic plane averaged over the last 560 ps. The temperature
drop across a GB is determined in the following manner. �i�
The temperature profiles in the bulk regions surrounding the
interface are fitted linearly, with the range of z values deter-
mined by minimizing the difference between the absolute
values of the slopes. The linear fits are made over the region
between 12 and 25 nm, depending on the size of the simula-

tion cell. The regions are considered bulk when r2 of the fit is
above 0.95. Because of the symmetry of the structure, all the
slopes are found to be the same within small error bars. �ii�
The temperature jumps are determined from the equations to
the linear fits. Analysis from the linear fits yields the values
of 21.1 and 23.8 K for the temperature drops at the two
crystallographically identical grain boundaries. The average
temperature drop from these two GBs is determined to be
22.5 K, and the corresponding thermal conductance is
8.8±0.6 GW/m2 K, with the estimated uncertainty in the
conductance coming from the difference in the two tempera-
ture drops.

The size of the simulation cell has a considerable effect
on the calculated thermal conductivity of perfect crystals.12,15

The origin of this effect is the restriction on the maximum
phonon mean free path set by the length of the periodic
simulation cell.

To explore the possibility of an analogous size effect for
the interface conductance, we have determined the tempera-
ture drop at the interface and the corresponding interfacial
conductance for the �29 GB for simulation cells ranging
from 14.3 to 287 nm in length. As Fig. 3 shows, there is a
strong system size dependence; however, it appears that �T
reaches an asymptotic value. To confirm this, we have fitted
these data by a shifted exponential,

�T = �T� + A exp�− Lz/L0� . �3�

Figure 3 shows that this functional form fits the data
well. The values of parameters A and L0 obtained from the fit
are 60.9 K and 70.7 nm, respectively. The formal description
of the Kapitza conductance is given by Stoner and Maris16 as
an integration over the wave vector summed over all the
branches. Due to the complexity of phonon density of states
and dependence of transmission coefficients as a function of
dispersion relation, extracting the analytical expression of
the size dependence is not straightforward. At present, we do
not have a theoretical argument for this functional form but
simply justify its use a posteriori by the quality of the fit

TABLE I. Summary of the diamond �001� GB properties. � indicates the size of the coincident site lattice
�CSL� planar unit cell of the GB. � is the twist angle in deg, EGB is the grain boundary energy, and �V is the
volume expansion in units of lattice parameter a0. GK is the calculated thermal conductance, lK is the Kapitza
length defined by lK=� /GK, where � is the thermal conductivity of the perfect crystal diamond. �C� is the
average coordination number of the atoms within the GBs, and Cn is the fraction of n coordinated atoms within
the GBs.

�

�
�deg�

EGB

�J /m2�
�V
�a0�

GK

�GW/m2 K�
lK

�a0�
�C�
�-�

C2

�%�
C3

�%�
C4

�%�

85 8.80 3.66 0.28 17.6 75.9 3.24 0.00 76.5 23.46
101 11.42 4.34 0.30 13.3 100.3 3.19 0.48 80.2 19.33

41 12.68 4.18 0.30 13.3 100.3 3.17 0.57 82.4 17.05
25 16.26 4.87 0.31 13.9 96.0 3.15 0.97 83.5 15.53
13 22.62 5.10 0.32 11.2 119.7 3.12 2.33 83.7 13.95
17 28.07 5.36 0.35 10.1 132.8 3.13 0.00 87.1 12.86

5 36.87 5.84 0.38 11.7 113.7 3.12 0.00 87.8 12.2
29 43.60 6.19 0.37 8.8 151.2 3.11 3.31 82.6 14.05

5 53.13 5.98 0.36 8.4 157.8 3.18 1.25 80.0 18.75
17 61.93 6.38 0.38 7.6 174.2 3.18 1.47 85.3 13.24
25 73.74 5.21 0.31 9.9 135.0 3.21 0.00 78.9 21.09

1 90.00 2.60 0.24 10.9 122.4 3.17 1.56 79.7 18.75

FIG. 2. A typical temperature profile of a system with grain boundaries, in
this case, �001� �=43.60° �29 symmetric twist boundaries. The grain
boundaries are located at the center and the edge of the simulation cell. The
average temperature drop across the grain boundaries is 22.5 K.
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shown in Fig. 3. The infinite limit temperature drop �T� is
17.6 K. The calculated interfacial conductances show a cor-
responding increase with an asymptotic value of
12.3 GW/m2 K. Interestingly, we saw no such effect in our
previous �albeit less extensive� simulations of this effect for
Si GBs;5 however, the thermal conductivity of single-crystal
Si is much lower than that of single-crystal diamond and the
bonding of atoms at the interfaces is quite different, as will
be shown later.

Because the simulations for the longer systems are ex-
tremely computer-time intensive, for our systematic studies
of the effects of crystallography, we have used a unit cell of
142.4 nm �400 unit cells� in length. The values of the inter-
facial conductances discussed below are thus �30% lower
than the asymptotic values we would predict for a simulation
cell of infinite length.

In addition to effects of the length of the simulation cell,
we have also considered the effect of its cross section. In the
previous study on Si single crystal, the dependence on the
width of simulation cell was found to be very weak beyond
3�3 unit cells for the cross section.12 The periodic planar
unit cell is � times larger for GBs than for the single crystal
as characterized. As a result, the smallest cross sectional area
is �3.5�3.5 square units, with most of the simulation cells
have larger cross sectional areas.

For the case of the �29 GB, we have also determined
the temperature dependence of the interfacial conductance.
As Fig. 4 shows, the interfacial conductance increases almost
linearly with the temperature up to 1250 K, above which it
decreases. This increase is in strong contrast to the bulk ther-
mal conductivity which decreases strongly with temperature.
We can understand this in a qualitative manner as arising
from the significant obstacle that the grain boundary offers to
heat transport. As such, there is poor coupling of the phonon
modes on opposite sides of the interface. As the temperature
increases, the anharmonicity of the system increases, which
increases the coupling of previously weakly coupled phonon
modes across the interfaces, thereby enhancing the thermal

transport. This increase with temperature is consistent with
experiments and simulation on a wide range of
heterointerfaces.2,17,18 Detailed analysis shows that the drop
in the conductance at 1500 K is due to the structural change
at the interface, rather than a change in the thermal-transport
mechanism itself.

IV. INTERFACIAL THERMAL CONDUCTANCE:
DIAMOND VERSUS SILICON

To determine the effect of crystallography on the inter-
facial conductance, Fig. 5 shows the calculated thermal con-
ductances at 1000 K of the twelve diamond grain boundaries
as a function of the twist angle for a simulation cell length of
142.4 nm. The interfacial conductance decreases from about
17 GW/m2 K for low twist angles to 9 GW/m2 K for �
=43.6°, before increasing again to 12 W/m2 K for the
90°�1 grain boundary. The uncertainties in the calculated
values are represented by the error bars, which are typically
±1.3GW/m2 K.

FIG. 3. Size dependence of the thermal conductance of the �29 �
=43.60° GB fitted to a shifted exponential. �T� is the asymptotic tempera-
ture drop in the infinite size limit indicated by the dotted line.

FIG. 4. Temperature dependence of the thermal conductance of the �29 �
=43.60° GB. The conductance increases almost linearly with the tempera-
ture up to about 1250 K. The drop at 1500 K is due to the change in
structure.

FIG. 5. Thermal conductance as a function of twist angle for diamond �001�
symmetric twist grain boundaries. The values determined previously for two
Si GBs are also shown.
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This significant structural dependence, which we analyze
in detail below, is quite reasonable since the degree of struc-
tural disorder at the GB, for which the energy is a measure, is
lowest at small and high twist angles, for which dislocation
models of grain boundaries are appropriate, and highest at
intermediate twist angles.

In an earlier paper on structure and mechanical
behavior,13 we found that a comparison of the structure and
properties of diamond and silicon grain boundaries to be
quite instructive. In particular, diamond readily forms sp2

graphitic bonding at grain boundaries, while Si strongly fa-
vors the retention of sp3 bonding at the interface, even at the
expense of the generation of a significant amount of struc-
tural disorder. Therefore, in addition to results for diamond,
Fig. 5 also includes our previously determined values for the
interfacial conductance of two �001� twist grain boundaries
in Si. These values are close to an order of magnitude lower
than for the corresponding diamond GBs, which should not
be too surprising since the room-temperature thermal con-
ductivity of bulk Si is also much less than that of diamond
�150 versus 2000 W/m K�. This difference in bulk properties
can be taken into account through the Kapitza length, lK

=� /GK, which is the thickness of perfect crystal offering the
same thermal resistance as the grain boundary. Figure 6
shows the Kapitza length, given in terms of the lattice pa-
rameter of the respective materials, as a function of twist
angle. We see that due to their lower single-crystal thermal
conductivity and their larger lattice parameter, the Si grain
boundaries actually have somewhat lower Kapitza lengths,
indicating that Si GBs actually allow more efficient heat flow
than the corresponding diamond GBs.

To understand the origin of these differences in interfa-
cial conductances, it is necessary to consider the structure of
the grain boundaries in more detail. Figure 7 shows edge-on
views of the �29 GBs in both Si and C. It is evident from the
figure, and quantified in Table II, that there is considerably
less bonding across the interface in diamond than in silicon.
In particular, in diamond, only 14% of atoms at the GB have
two bonds across the interface, while in Si, 82% of atoms
have two bonds across the interface. Thus structurally, the Si
GB is much better connected. This extra bonding across the
Si interface naturally makes it easier for vibrational excita-
tions, i.e., heat, to cross the interface also.

V. AN EXTENDED READ-SHOCKLEY MODEL FOR
INTERFACIAL THERMAL CONDUCTANCE

The Read-Shockley �RS� model describes the energies of
low-angle GBs in terms of dislocation cores and an associ-
ated strain field.19 Wolf have made an empirical extension to
the RS model—the extended Read-Shockley �ERS�
model20—which fits the energies of grain boundaries over
the full range of twist angle. For the case of twofold rota-
tional symmetry as on the �001� plane of diamond, the ERS
model is given by

EGB = � sin 2��Ec
	 − Es

	 ln�sin 2���/b for 0 ° 
 � 	 45°

ESTGB + sin�180 ° − 2��	Ec
� − Es

� ln�sin�180 ° − 2���
/b for 45 ° 
 � 	 90 ° .
� �4�

Ec and Es are the energies associated with dislocation core
and strain field, respectively. E	 and E� are used to indicate
the parameters for angles smaller and larger than 45° twist
angle, respectively. ESTGB is the energy of the symmetric

twin grain boundatry �STGB� ��=90 ° �. b and � are Burger’s
vector and twist angle, respectively.

Figure 8 shows the calculated GB energy for a large
number of �001� diamond twist GBs. �There are many more

FIG. 6. Kapitza lengths in units of their respective lattice parameters as a
function of twist angle for both diamond and Si. Filled circles ��� are for
diamond, and the open circles ��� are for Si. The solid line is the extended
Read-Shockley fit to the diamond data. The dashed line is the dislocation
core contribution, while the dash-dot line is the strain field contribution.
Both points for Si are about 30a0 lower than diamond.

FIG. 7. �Color online� Visualization of �29�001� GBs for diamond �left�
and Si �right�. Freedom for C atoms to choose sp2 and sp3 hybridization
results in the rather open structure within the grain boundary. The dashed
lines indicate the location of the grain boundaries.
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data points in this plot than in the plot for the Kapitza con-
ductance because the GB energy calculations are not compu-
tationally very demanding.� The solid line in Fig. 8 is the
ERS fit to the data, which quite well reproduces the trend in
the energies.

Also shown in Fig. 8 are the contributions to the energy
from the dislocation core �dashed line� and the strain field
�dash-dot line� as determined from the extended Read-
Shockley equation. At most twist angles, the structural con-
tribution, which at low angles is due to dislocation cores,
dominates the energy. Particularly at 45° and 90°, there is no
strain field contribution. The only boundary condition that
restricts the values of these coefficients is the continuity of
the two functions at 45°, which yields the constraint, EC

	 /b
=EC

� /b−ESTGB. EGB at 0°, and dEGB/d� at 45° are 0 by
default. The parameters of the ERS model obtained from the
fit are

EC
	/b = 5.94 J/m2, ES

	/b = 5.24 J/m2,

EC
�/b = 4.19 J/m2, ES

�/b = 5.42 J/m2,

ESTGB = 1.75 J/m2. �5�

Interestingly, the general trend in the Kapitza length
shown in Fig. 6 is similar to that of the GB energy shown in
Fig. 8. To show this correlation more clearly, Fig. 9 shows
that the Kapitza length depends approximately linearly on
the GB energy; the slope of the linear fit is 85.3 m3/J.

This approximate linear relation indicates that the
Kapitza length should also be describable by an ERS model,

lK = � sin 2��lc
	 − ls

	 ln�sin 2��� for 0 ° 
 � 	 45°

lSTGB + sin�180 ° − 2��	lc
� − ls

� ln�sin�180 ° − 2���
 for 45 ° 
 � 	 90 ° .
� �6�

The solid line in Fig. 6 is an ERS fit to the Kapitza length. In
analogy with the energy of the dislocation core and the strain
field energy, it is natural to identify the coefficients of this
ERS model as the Kapitza lengths associated with the struc-
tural disorder in the GBs and with the strain field.

From the fit obtained from the EGB, we determine the
coefficients of lK to be the following:

lC
	 = 134.3a0, lS

	 = 105.3a0, lC
� = 13.4a0,

lS
� = 71.1a0, lSTGB = 121.0a0 �7�

As in the case of the energy, the ERS form forces the con-
dition lSTGB+ lC

�= lC
	 by continuity. The strain contributions to

the Kapitza length differ by �30% in contrast to the corre-
sponding values for the energy that differ by only 5%.

TABLE II. Comparison of the grain boundary energies and coordination of
the atoms at the interface in diamond and Si.

Diamond Si

EGB �J /m2� 6.19 1.62
�C� 3.11 4.02

C2 �%� 3 0
C3 �%� 83 8
C4 �%� 14 82
C5 �%� 0 10

FIG. 8. Grain boundary energy �symbols� and the fit to the extended Read-
Shockley model �solid line�. The dashed line is the dislocation core contri-
bution to the GB energy. The dash-dot line is the strain field contribution.

FIG. 9. The Kapitza length is a reasonably linear function of the grain
boundary energy.
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VI. DISCUSSION

The work presented here has shown that the interfacial
�Kapitza� resistance of �001� twist grain boundaries in dia-
mond depends systematically on the twist angle. Importantly,
the Kapitza length is proportional to the energy of the grain
boundary, allowing us to fit it with an extended Read-
Shockley model.

These results suggest that the energy of a grain bound-
ary, which is easily calculated, might be used as a surrogate
quantity for the interfacial conductance, which is more diffi-
cult and computationally very expensive to determine. Fur-
ther work on different grain boundaries in diamond, and on
different materials systems, is required to establish if this is a
general behavior or if it is particular to this system.

Regardless of the specific details, however, this work
does suggest that it should be possible to determine an em-
pirical relationship for the interfacial conductance as a func-
tion of the crystallography of the material. Such a relation-
ship will be of considerable value as input to mesoscale
simulations of thermal transport.
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