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We present a detailed experimental and theoretical investigation of the lasing characteristics of
organic photonic crystal lasers. These lasers are based on strongly modulated two-dimensional
polymer surface relief structures on which thin films of optically active organic materials have been
deposited. We determine the in-plane photonic band structure of the corresponding quasiguided
modes within an effective two-dimensional model. In addition, we calculate the total
�three-dimensional� losses associated with these modes. This allows us to identify the lasing
thresholds for square lattice geometries and to understand the emission pattern. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2210589�

I. INTRODUCTION

Photonic crystal lasers offer several unique properties
compared to lasers with homogeneous gain media. In these
systems, the photonic mode structure and associated disper-
sion relation can be tailored through several structural pa-
rameters. This facilitates an unprecedented control over the
radiation dynamics of embedded active materials. In particu-
lar, low-threshold lasers may be realized and even lasers with
unsual emission spectra and photon statistics have been
anticipated.1 One possibility to realize a photonic crystal la-
ser is to use a defect as the laser cavity.2 In this work, we
concentrate on lasers where the photonic crystal provides
higher-dimensional distributed feedback.3–6 Owing to several
attractive features such as broad gain spectra and easy pro-
cessability, we use organic semiconductors as gain media. A
particularly interesting approach lies in the combination of
thin films of organic gain media with replicated plastic sub-
strates, as this brings together two technologies suitable for
low-cost, large-area production. A desirable feature of these
lasers is the possibility of tuning the emission wavelength by
varying the period of the underlying substrate or the thick-
ness of the thin film of laser-active material.

In the following, we further restrict ourselves to second
order lasers. In these lasers, the second diffracted order pro-
vides the necessary feedback, whereas the first diffracted or-

der is coupled out perpendicular to the sample. Compared to
first order lasers, these structures are easier to fabricate, and
they also feature a built-in outcoupling mechanism. The fab-
rication of these devices is described in Sec. II. In order to
obtain lasers with favorable properties, a detailed theoretical
understanding of the linear mode structure and the lasing
mechanism is required. Consequently, the general ideas of
the theoretical description are laid out in Sec. III and are
applied to square lattices in Sec. IV. In addition, Sec. IV
features a detailed comparison between theory and experi-
ment and a very good agreement is obtained.

II. FABRICATION OF ORGANIC PHOTONIC CRYSTAL
LASERS

The microstructured substrates that provide distributed
feedback were fabricated by interference lithography. In our
setup, the laser beam from an Ar+-laser operating at a wave-
length of �=363.8 nm is split into two separate beams.
These two beams are spatially filtered, expanded, and super-
posed on a UV-sensitive sample, typically a glass substrate
coated with photoresist. In the subsequent development step,
the resulting sinusoidal intensity profile is transferred into a
surface relief structure. The period � of the structure de-
pends only on the angle of incidence of the laser beams �
and is given bya�Electronic mail: karen.forberich@jku.at
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� =
�

2 sin �
. �1�

The periods that can be achieved range from �100 �m
down to 200 nm. Two-dimensional patterns can be achieved
by rotating the sample between two consecutive exposures.
A schematic of the setup is shown in Fig. 1. The surface
relief structures in photoresist can be replicated in polymers
using a UV-curable lacquer, either directly or via a nickel
stamp that is obtained from the photoresist through electro-
forming. This setup allows homogeneous structure genera-
tion on large areas for applications such as antireflective
coatings or light management.7 At Fraunhofer ISE, areas of
up to 1 m2 can be fabricated this way. Large area fabrication
combined with replication leads to the possibility of low cost
lasers.

The profile of the exposure dose for a structure with
square symmetry which results from two subsequent expo-
sures with 90° rotation is the sum of two sine functions. Due
to nonlinearities of the development process and the photo-
resist, this shape is distorted during transfer into the photo-
resist. The exact shape depends on several process param-
eters such as sample preparation, resist type, exposure dose,
dilution of the developers etc. It can, in principle, be deter-
mined from scanning electron micropy �SEM� and atomic
force microscopy �AFM� measurements of the actual struc-
ture. A SEM micrograph of a typical structure in photoresist
is displayed in Fig. 2. However, our results in Sec. IV only
show a weak dependance on the exact modeling of the sur-
face relief profile. Therefore, we neglect the nonlinearity and
approximate the profile in photoresist dsquare by the sum of
two sines

dsquare =
dmod

4
�sin�2�x

�
� + sin�2�y

�
� + 2	 . �2�

Here, dmod denotes the full modulation depth, so that dsquare

varies between zero and dmod. For the active laser material,
there are several possible choices such as conjugated
polymers8 or smaller organic molecules such as
spirobifluorenes.9 The measurements presented in Sec. IV
were obtained using the conjugated polymer methyl-

substituted ladder-type poly�para-phenylene� �MeLPPP�, a
very attractive �-conjugated polymer for blue light emitting
diodes10 and lasers11 due to its high luminescence quantum
yield in the solid state ��30% � and strong stimulated emis-
sion band12 at ��490 nm. Our laser theory, however, makes
no particular assumption about the properties of the laser
material and is therefore applicable to many cases.

The laser material can be applied onto the substrate ei-
ther by evaporation or by spin coating, both technologies
being suitable for large area and low cost production.

III. SEMICLASSICAL THEORY OF LASING

The theoretical description of lasing action from the or-
ganic photonic crystal lasers described above has to take into
account the competition between the two-dimensional feed-
back mechanism provided by the structured substrate and the
total, i.e., three-dimensional losses from material absorption
and scattering. Standard distributed feedback �DFB� ap-
proaches that rely on a weakly modulated waveguiding layer
cannot be applied to the present situation. Over the past
years, several theoretical models relevant to lasing in peri-
odic systems with strong modulations have been developed.
However, most of them are either confined to one-
dimensional �1D� or linear systems �modeling the active me-
dium through a complex refractive index� or rely heavily on
direct numerical simulations which permit only limited in-
sight into the underlying physical processes.

Therefore, we apply the recently developed semiclassi-
cal theory of lasing action in photonic crystals13 to the
present situation of lasing from two-dimensional �2D� sur-
face relief structures. This approach utilizes the linear eigen-
modes of the structures as carrier waves and, therefore, al-
lows us to go beyond the weakly modulated case. As a result,
expressions for gain- and saturation-enhancement factors as
well as the cavity losses of finite-sized systems can readily
be evaluated and/or estimated from realistic mode calcula-
tions.

A. Linear eigenmodes

A planar waveguide consisting of a thin film of an or-
ganic lasermaterial on an unstructured substrate supports two

FIG. 1. Schematic of the holographic setup used for the fabrication of laser
substrates. The beam of an Ar+ laser is split into two beams which are
spatially filtered, expanded, and superposed on a UV-sensitive sample. The
intensity profile of the resulting interference pattern is transferred into a
surface relief structure in a subsequent development step. The geometry of
the resulting structure can be varied by changing the incidence angles or by
rotating the sample between consecutive exposures.

FIG. 2. SEM micrograph of a representative surface relief structure with
square symmetry in photoresist. The inset shows the profile in more detail at
a larger magnification.

023110-2 Forberich et al. J. Appl. Phys. 100, 023110 �2006�



types of guided modes which are characterized through their
dominant electromagnetic field component perpendicular to
the waveguide as either TM or TE. For a given thickness d of
such an asymmetric waveguiding structure, the dispersion
relation of TM and TE modes may be determined.14 The
group index at the relevant laser frequency associated with
this dispersion relation then defines the effective index neff

for the corresponding guided modes.
This observation allows us to analyze the surface relief

structures by reducing the problem of propagation of
quasiguided waveguiding modes in the plane of corrugation
to an effective 2D model �Fig. 3�. We achieve this mapping
through translating the actual surface relief profile d�x ,y�
into a corresponding profile of the index of refraction
neff�x ,y� for the quasiguided TM- or TE-like modes. Within
this model, we consider the coupling to radiation modes into
the third dimension as an additional loss associated with
these modes. The spatially varying index neff�x ,y� allows us
to determine the photonic bandstructure, i.e., the linear
eigenmodes, associated with TM- and TE-like guided modes.
Compared to the TE-like modes, the TM-like modes exhibit
a much larger overlap with the substrate, resulting in a
weaker confinement and a higher laser threshold. Therefore,
we subsequently concentrate on the discussion of TE-like
modes.

We approximate the thickness of the polymer layer �see
Fig. 3� as

d�x,y� = d0 + dvar�x,y� , �3�

where depending on the system, dvar=dmod−dsquare with
dsquare given by Eq. �2�. In what follows, we will label the
linear eigenmodes through a composite index �
�n ,k� that
comprises the band index n and the wave vector k. A calcu-
lated band structure for square symmetry is shown in Fig. 5.

B. Losses of the linear eigenmodes

Within the effective 2D model developed in the preced-
ing subsection, the effective cavity loss rate �� associated
with the linear eigenmode � consists of three independent
contributions: material absorption, in-plane losses due to a
finite-sized pumping region, and out-of-plane losses associ-
ated with the coupling of the �in 3D� quasiguided mode � to
the radiation modes of substrate and air

�� = 4�� �
WSC

dxdy�E��x,y��2�eff�x,y� + 2�	�
 + 	�

�� .

�4�

Here, �eff�x ,y� denotes the effective material absorption
within the effective 2D model that is probed by the electric
field profile E��x ,y� of the eigenmode � within a Wigner-
Seitz cell �WSC� of the photonic crystal. Furthermore, for a
finite-sized pumping region, the in-plane losses 	�

 are iden-
tical to the rate of energy flux through the outer boundary of
the pumping region. This flux is determined by the Poynting-
vector S� associated with mode � so that ultimately the in-
plane losses 	�

 can be estimated to be proportional to the
magnitude �v�� of the group velocity and the local intensity I.
In order to determine the out-of-plane losses 	�

�, we have
computed the �three-dimensional� reflection spectra for light
incident onto the surface relief grating using rigorous
coupled wave analysis15 combined with a scattering matrix
technique.16,17 This approach is only valid in the case of
second order lasers and cannot straightforwardly be applied
to first order lasers. The frequency dependence of the reflec-
tion exhibits peaks corresponding to the resonant coupling in
and out of the quasiguided modes, i.e., the eigenmodes � in
the effective 2D model. The spectral width of these peaks is
a direct measure of the quality of these modes, i.e, the out-
of-plane loss rate 	�

�. In order to probe different in-plane
wave vectors, the light is incident under an angle � with
respect to the surface normal and its polarization is chosen so
as to ensure coupling to the mode in question. The in-plane
wave vector kin plane can be converted into the incidence
angle � utilizing the continuity of the tangential component
of the wave vector,

sin � =
kin plane

k0
with k0 =

2�

�0
, �5�

k0 being the vacuum wave vector and �0 the vacuum wave-
length.

C. Lasing behavior in surface relief structures

When we combine the results of the effective 2D model
with the semiclassical theory of lasing action for a two-level
system with transition frequency 
0 in photonic crystals13 we
find that the effect of the photonic structure manifests itself
in a number of effective parameters that are associated with
the linear eigenmodes � with electric field profile E��x ,y�.
Besides the total losses, Eq. �4�, we find an effective unsat-
urated gain coefficient

FIG. 3. Effective 2D model: at each point of the elementary cell, an effec-
tive refractive index neff is determined by calculating the dispersion relation
of planar waveguide with the corresponding thickness d=d0+dvar.

023110-3 Forberich et al. J. Appl. Phys. 100, 023110 �2006�



G� = g�

4��d12�2
0R

����

, �6�

where the gain enhancement factor g� describes how the
eigenmode E��x ,y� with frequency 
�=
0 samples the ef-
fective distribution �eff�x ,y� of active material within the ef-
fective 2D model

g� = �
WSC

dxdy�E��x,y��2�eff�x,y� . �7�

In addition, �� and �, respectively, denote the dipole
dephasing and decay rate of the electric dipole moment d12

of the lasing transition. Finally, R is the incoherent pump rate
at which the atoms or molecules are pumped from the lower
to the upper state of the lasing transition. Likewise, we find a
saturable response that may be expressed through the effec-
tive nonlinear coupling enhancement factor

� =

�
WSC

dxdy�E��x,y��4�eff�x,y�

�
WSC

dxdy�E��x,y��2�eff�x,y�
. �8�

The limiting steady-state value Iss
��� of the intensity is given

by

Iss =
1

�
�G�

��

− 1� , �9�

suggesting that amplification is possible only if G� /���1,
and, therefore, the laser threshold condition for the linear
eigenmode � is identified as G�=��, i.e., the effective unsat-
urated gain compensates the effective losses. In the present
case of a gain medium with a broad gain spectrum, we have
to sweep the frequency 
0 of the two-level system across the
entire emission band in order to determine the overall lowest
laser threshold.

In the next section, we report the results of the experi-
mental investigations of lasing action in surface relief grat-
ings with square symmetry and compare the experimental
data with the results of the calculations based on the linear
eigenmodes within the effective 2D model and their total,
i.e., three-dimensional losses.

IV. RESULTS

For the measurements shown is this section, the lasers
were optically pumped by a frequency doubled regenera-
tively amplified mode-locked Ti:sapphire laser producing
femtosecond laser pulses with a temporal duration of 150 fs
and a wavelength of 400 nm. The emitted light was spatially
and spectrally analyzed using an optical fiber on a translation
stage which was coupled to a spectrometer �Fig. 4�. The
structure parameters that we assumed were nlaser�1.7,
nsubstrate�1.5, a modulation depth dmod�300 nm and a layer
thickness d0�110 nm �see Fig. 3 for the definition of the
above parameters�.

In Fig. 5 we display the photonic bandstructure of TE-
like modes for surface relief structures with square symmetry
calculated within the effective 2D model. The graph shows

the second to fifth band in the vicinity of the � point, corre-
sponding to laser emission perpendicular to the substrate,
and in �-X direction calculated for the above structure pa-
rameters. We notice four modes with vanishing group veloc-
ity vg at the � point. To facilitate comparison with experi-
mental data �Fig. 6�, the wavelength is specified rather than
energy. The experimental data shows angle-resolved photo-
luminescence measurements which can be identified with the
bandstructure.18 Calculations and measurements exhibit very
good qualitative agreement. While the absolute values of the
frequencies differ up to about 5%, the overall wave vector
�angular� dependence is reproduced, the measured data
showing a smaller dependance of the wavelength on the
angle. The spectral resolution of the measurements is not
sufficient to compare details such as the degeneracy at the �
point. The agreement in absolute values could be further im-
proved through a more sophisticated modeling of the surface
relief profile in Eq. �2�, albeit without providing further
physical insight.

All the observed modes are possible candidates for las-

FIG. 4. Schematic of the setup for spatially resolved emission measure-
ments. The angle-dependent emission is analyzed using an optical fiber that
is mounted on a translation stage and coupled into a spectrometer.

FIG. 5. Two-dimensional band structure within the effective index model
for a structure with square symmetry and material parameters nlaser�1.7,
nsubstrate�1.5, a modulation depth dmod�300 nm, and a layer thickness d0

�110 nm. Here, the second to fifth bands are shown in the vicinity of the �
point for values of k corresponding to an angle of about ±5°. The inset
shows the degeneracy at the � point.

023110-4 Forberich et al. J. Appl. Phys. 100, 023110 �2006�



ing modes as they exhibit a vanishing group velocity at the �
point indicating low in-plane losses. The Bloch modes ob-
tained from these bandstructure calculations were used to
obtain the effective gain enhancement for all possible lasing
modes. Considering the results by Florescu et al.13 for struc-
tures with large refractive index contrast, we had expected to
find considerable differences between the different modes.
However, it turns out that these differences amount to only a
few percent. Therefore, for the present weak index contrast
structures the effective gain cannot be responsible for select-
ing the mode with the lowest lasing threshold. Instead, the
out-of-plane losses largely determine the lasing threshold.
Consequently, we determined the effective losses by calcu-
lating the out-of-plane losses using rigorous reflectivity cal-
culations. In Fig. 7 we display a reflection spectrum calcu-
lated for an incidence angle of 0.3° and TE polarization of
the incident light. We observe four peaks with different spec-
tral widths. The corresponding modes can be classified as
either TE-like or TM-like in the waveguide according to the
magnitude of their electric field components. This classifica-
tion does not necessarily agree with the polarization of the
incident light.

Figure 8 shows a “bandstructure” that was obtained from
reflectivity calculations by determining the wavelength of the
observed peaks for different angles of incidence and different
polarizations of the incident light. The full width at half
maximum �FWHM� width of these peaks is indicated by
error bars, enlarged by a factor of 4 for better visibility. It
contains only those modes that were classified as TE-like in
the waveguide. The validity of this approach is supported by
the fact that this bandstructure agrees qualitatively very well
with the results according to the effective index model. This
consistency includes the degeneracy at the � point. We note
that for normal incidence all nondegenerate peaks vanish be-
cause of symmetry reasons. Considering the spectral width
of the observed modes, we notice one mode which is about
one order of magnitude narrower than all other modes �see
also Fig. 7�. This mode can therefore be identified as the
mode with the lowest lasing threshold which can be observed
in experiments. It appears on the long wavelength side of the
band gap.

At pump intensities above the laser threshold, the band-
structure visible in Fig. 6 reduces to a single bright spot at
the � point, as shown in Fig. 9. The resolution of our mea-
surement is not high enough to verify our conclusion that the
experimentally observed laser mode is to be found on the
long wavelength side of the band gap. However, Turnbull et
al.3 have recently reported results for a very similar structure
for which laser emission was found on the long wavelength
side in accordance with our theoretical results.

The far-field image displayed in Fig. 10 also shows one
single bright spot. At very high pump intensities, additional
lines appear that can be attributed to one-dimensional feed-
back which is known to produce a fan-shaped emission
pattern.19 The observed laser emission at the � point is, at
first sight, a contradiction to the fact that the narrow laser
mode is a non-degenerate mode which vanishes at normal
incidence due to symmetry reasons. However, this problem
can be solved if we keep in mind that, differing from the

FIG. 6. Angle-resolved PL measurement for a laser based on a substrate
with square symmetry. This experimentally obtained bandstructure corre-
sponds very well to the calculated ones in Figs. 5 and 8.

FIG. 7. Reflection spectrum calculated for an incidence angle of 0.3° and
TE polarization of the incident light. We observe four peaks with different
spectral widths, corresponding to different Q factors of the corresponding
waveguide modes. The waveguide modes were classified as TE-like or TM-
like in the waveguide according to the magnitude of their electric field
components.

FIG. 8. Bandstructure for square symmetry determined by reflectivity cal-
culations �d0=150 nm, dmod=210 nm�. The in-plane k vector corresponds to
incidence angles between 0° and 0.5°. The FWHM width of the observed
resonances is indicated by error bars. The error bars were enlarged by a
factor of 4 for visibility reasons. We observe one mode at an almost constant
wavelength of ��485.7 nm, which is spectrally narrow for all incidence
angles. This mode �band 3� exhibits a considerably higher Q factor than the
other possible modes and is, therefore, identified as the mode with the low-
est lasing threshold.

023110-5 Forberich et al. J. Appl. Phys. 100, 023110 �2006�



assumption made in the above calculations, the real sub-
strates are never perfectly symmetric because of instabilities
in the fabrication process. In particular, the substrates used
for the measurements shown above have slightly different
modulation depths in x and y direction. On the other hand,
the far-field pattern for a similar structure reported by Heli-
otis et al.20 is annular which leads to the assumption that a
more symmetric substrate was used in this case.

Summary

We have used a semiclassical lasing theory to describe
the lasing behavior in organic, surface-emitting photonic
crystal lasers with two-dimensional distributed feedback for
square symmetry. The central part of our analysis has been
the determination of the possible lasing modes and the cal-
culation of the effective gain and the effective losses for each
mode to identify the mode with the lowest lasing threshold.
The bandstructure and the effective gain were obtained using

an effective index model to project the 3D surface relief
structure into the 2D plane of corrugation. The effective
losses were determined by rigorous reflectivity calculations.
While the effective gain is similar for all possible lasing
modes, we find considerable differences in the Q factors of
the different modes. The mode with the highest Q factor is
therefore identfied as the mode with the lowest lasing thresh-
old. The theoretical results are consistent with each other and
also agree qualitatively well with experimental measure-
ments, showing the validity of our approach.

With this work, it will become possible to optimize the
characteristics of these and similar lasers. Specifically, a ju-
dicious design of the surface relief structure will result in a
significantly lowered lasing threshold. In conjunction with
optimized active materials, this may pave the way towards
electrically pumped, low-cost, and large-area surface emit-
ting lasers and laser displays.
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FIG. 9. Angle-resolved emission measurements for a laser with square sym-
metry for a pump intensity above the laser threshold. We observe one single
bright spot at the � point, corresponding to emission normal to the surface.

FIG. 10. Far-field pattern of the laser emission for square symmetry, from
�Ref. 6�. In addition to the central bright spot, several lines can be observed
at very high pump intensities. These lines can be attributed to one-
dimensional lasing.
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