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We use a nonequilibrium molecular-dynamics method to compute the Kapitza resistance of three
twist grain boundaries in silicon, which we find to increase significantly with increasing grain
boundary energy, i.e., with increasing structural disorder at the grain boundary. The origin of this
Kapitza resistance is analyzed directly by studying the scattering of packets of lattice vibrations of
well-defined polarization and frequency from the grain boundaries. We find that scattering depends
strongly on the wavelength of the incident wave packet. In the case of a high-energy grain boundary,
the scattering approaches the prediction of the diffuse mismatch theory at high frequencies, i.e., as
the wavelength becomes comparable to the lattice parameter of the bulk crystal. We discuss the
implications of our results in terms of developing a general model of scattering probabilities that can
be applied to mesoscale models of heat transport in polycrystalline systems. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1702100#

I. INTRODUCTION

It has long been recognized that in the presence of a heat
current there is a discontinuity in temperature at an interface
between two different materials.1,2 As a result, interfaces
possess a finite thermal conductance,sK , known as the
Kapitza conductance. The relation between the thermal cur-
rent J and the temperature discontinuity at the interfaceDT
is given as

J5sKDT. ~1!

As a result of the temperature discontinuity at interfaces, a
material will exhibit an effective thermal conductivity that
decreases as the number of interfaces is increased. The
Kapitza resistanceRK51/sK is a measure of the resistance
of an interface to the transport of heat through it.

For phonon-mediated thermal transport, the Kapitza re-
sistance arises from the scattering of phonons at the inter-
face. There are currently two general theoretical frameworks
for understanding the origin of this interfacial resistance. The
first is the acoustic mismatch model~AMM !, in which the
scattering of phonons at the interface arises from the differ-
ence in the acoustic impedances of the materials on the two
sides. The acoustic impedance,Z, is the acoustic analog of

the refractive index and is simply given in terms of the speed
of sound,c, and the density,r, as Z5rc.2,3 The AMM is
derived within continuum acoustics and thus its use becomes
unjustified as the phonon wavelength approaches the lattice
parameter. The key conceptual weakness of the AMM is that
it does not take into account the structure of the interfaces
from which the phonon scattering actually takes place. An-
other approach, similar in spirit to the AMM, is lattice dy-
namics which, since it atomistic in nature, is more appropri-
ate for describing the scattering of phonons with
wavelengths comparable to the lattice parameter.4,5 For lat-
tice dynamics, while the structure of the boundary is consid-
ered, it is only possible to treat interfaces with a rather
simple structure.

The complementary viewpoint is provided by the diffuse
mismatch model~DMM !. In the DMM it is assumed that all
incident phonons are randomly scattered by the interface.
After the scattering event, the scattered waves are emitted
with an energy content proportional to the available density
of states of the material on each side of the interface.2 Re-
markably, for most dissimilar solid/solid interfaces the AMM
and DMM result in rather similar estimates of the Kapitza
conductance. Unfortunately, however, both are usually in
poor agreement with the relatively few available experimen-
tal results, especially at high temperatures.6 A counterexam-
ple, however, is provided by recent data on epitaxial inter-
faces between TiN and single-crystal oxides~MgO and

a!Author to whom correspondence should be addressed; electronic mail:
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Al2O3), which seems to be consistent with the predictions of
the DMM.6 Interestingly, there is essentially no difference in
the thermal conductance of TiN/MgO~001!,
TiN/Al 2O3(0001) and TiN/MgO~111!.6 Costescu, Wall, and
Cahill offer two possible explanations:~i! interface scattering
is so strong at all of these interfaces so that the assumptions
of the DMM are satisfied, and~ii ! there is so little interface
disorder that phonons are hardly scattered from the interfaces
at all.6

By contrast with the AMM and DMM, lattice dynamical
theory does lead to different behavior at high temperatures
because the phonon dispersion is naturally incorporated
within this approach. Nevertheless, lattice-dynamical theory
also often results in significant discrepancies with experi-
mental results for the Kapitza conductance at interfaces be-
tween metals and dielectrics.7

In the case of grain boundaries~GBs!, the situation is
very different. Experimental work has so far been limited to
determining the average Kapitza conductance of the GBs in a
polycrystalline or nanocrystalline system.8,9 The values of
the interfacial conductance determined in these studies differ
very significantly: while the values determined by Yang
et al.9 for yttria-stabilized zirconia are similar to the experi-
mental values for dissimilar interfaces, the values determined
by Nan and Birringer8 for a few different thermoelectric al-
loys are as much as four orders of magnitude smaller. There
is a significant need for systematic experimental data on the
thermal conductivity of both GBs and heterophase interfaces.

The theoretical situation is equally unsatisfactory. For
the AMM, this is exemplified by considering the interfacial
resistance of a symmetric tilt GB. A symmetric tilt GB can
be thought of as being produced simply by the inversion of
the stacking sequence of planes on one side of the interface
with respect to the other. Thus, all of the principle crystallo-
graphic directions are aligned on the two sides. As a result,
the AMM, which is based on the orientation of the elastic-
constant tensors on the two sides, predicts that such an inter-
face should have no interfacial resistance at all. This result
does not seem reasonable. Indeed, molecular-dynamics~MD!
simulations of thermal transport across symmetric tilt grain
boundaries in Si have shown a significant interfacial
resistance.10 The DMM seems equally unsatisfactory for
such GBs since they are highly ordered and are unlikely to
result in diffuse scattering. Another important theoretical ap-
proach applied to grain-boundary interfaces is to analytically
compute the scattering cross section for phonons. However,
these analytical calculations only account for the strain fields
of the grain boundary and neglect the atomic-scale structure
of the boundary.11 As a result, while the analytical results
may be appropriate for long-wavelength phonons scattering
from low-energy and low-angle grain boundaries, they are
unlikely to apply to more general cases.

From the above discussion, it is apparent that there is no
general understanding of the Kapitza conductance and of
grain-boundary phonon scattering. In this article, we take the
first steps towards developing a microscopic understanding
of phonon scattering at interfaces and its relationship to ther-
mal transport. We use MD simulation to directly determine
the Kapitza conductance of three different twist grain bound-

aries in silicon. We find that the structure and energetics of
the boundary have a significant effect on the Kapitza conduc-
tance. We further analyze two of these boundaries by per-
forming phonon wave-packet scattering simulations. This re-
sults in a more complete understanding of the dependence of
phonon scattering on the phonon frequency and the grain-
boundary structure. Furthermore, this direct approach to the
study of phonon scattering can in principle lead to models
that can be used either in analytical calculations or in meso-
cale modeling of thermal transport.

The rest of the article is organized as follows. In Sec. II,
we describe the geometry of the simulation cells used and
the methodology used to determine the Kapitza conductance.
We then present results for the computed Kapitza conduc-
tance for three different grain boundaries. In Sec. III we
present results of wave-packet scattering from two of these
boundaries. The results are compared to the predictions of
the AMM and DMM. Finally, in Sec. IV we discuss our
results, with a comparison to previous theoretical and experi-
mental results. We also describe in Sec. IV how our results
may be used to provide general models of interfacial scatter-
ing to be used in mesoscale models.

II. MOLECULAR-DYNAMICS SIMULATION OF THE
KAPITZA CONDUCTANCE OF SILICON GRAIN
BOUNDARIES

The thermal conductivity of a homogeneous system can
be computed using an equilibrium MD simulation and the
Green–Kubo formalism.12–15 However, for an inhomoge-
neous system, such as the GBs studied here, this approach is
not appropriate, because the Kapitza conductance is a local
property, which cannot be correctly treated under the as-
sumption of the system being homogeneous. Another ap-
proach, more suitable for the study of interfacial properties,
is to use a nonequilibrium MD simulation method.10,13,16The
basic idea is to create a thermal current in the MD simulation
cell, and then use the resulting temperature profile to com-
pute the thermal conductivity. For a bulk perfect crystal, the
temperature gradient in the presence of a thermal current
allows us to calculate the perfect-crystal thermal
conductivity.13 For an interface, the temperature discontinu-
ity DT at the interface can be used to compute the Kapitza
conductance from Eq.~1!. Thus, a nonequilibrium simulation
method can be used to separately compute bulk and interfa-
cial properties.

For this work, we use the nonequilibrium simulation
method of Jund and Jullien.16 We have previously used this
method to compute the thermal conductivity of perfect-
crystal Si, with a direct comparison to the results of the
Green–Kubo approach.13 This approach is also very similar
to that used by Maiti, Mahan, and Pantelides to computesK

for tilt GBs in silicon.10 In Fig. 1 we show a cross section of
the simulation cell. To create a thermal current along the
length of the simulation, we rescale the particle velocities at
each MD time step in two thin slabs each of thicknessd, with
the value ofd chosen to be 2a, wherea is the lattice param-
eter for silicon of 0.543 nm. From one slab centered atz5
2Lz/4 we add energyD« at each MD time step; we remove
energyD« at each MD time step from the other slab centered
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at z5Lz/4, thereby conserving the total energy at all times.
The resulting thermal currentsJz and their directions are
indicated in Fig. 1. The simulation cell also contains two
GBs, located atz50 andz56Lz/2. The latter GB is actu-
ally located along one face of the periodically repeated simu-
lation cell; although this in no way affects the system’s evo-
lution, it means that the two regions close to the GB actually
appear at opposite ends of the figures. Because we know the
exact value of the thermal current flowing in the simulation
cell, we only need to compute the temperature discontinuity
at each GB and use Eq.~1! to determinesK . Throughout
this article, we used the well-tested interatomic potential due
to Stillinger and Weber17 ~SW! with an MD time step of 0.55
fs.

The three-dimensionally periodic simulation cell used
throughout, and sketched in Fig. 1, contains two identical
grains that are misoriented with respect to each other by a
twist rotation about the common GB-plane normal~defining
the z direction!. Because of the periodic border condition in
the z direction, the simulation cell thus contains two crystal-
lographically identical twist boundaries, characterized by the
twist anglesf and2f, respectively. Because of the period-
icity in the x andy directions, both boundaries are infinitely
extended within the GB (x-y) plane. As model systems we
choose three rather different grain boundaries. The well-
studied~100! f543.60°~so-calledS29! twist GB in silicon
is generated by a twist rotation about the^100& GB-plane
normal by the twist anglef543.60°. Its relatively large,
square planar unit cell containsS529 atoms per~001! plane;
its planar unit cell area is therefore 29 times larger than the
primitive planar unit cell of a perfect-crystal~100! plane, i.e.,
prior to the^100& twist rotation. This was chosen as a repre-
sentative high-angle, high-energy GB withEgb51.32 J/m2.18

For a low-angle, intermediate-energy GB, we chose the
~001!, f511.42° ~S101! boundary, which has an energy of
Egb50.91 J/m2.18 Finally, for a high-angle, low-energy GB
we selected the~111!, f542.10°~S31! boundary, which has
an energy ofEgb50.64 J/m2.18 By studying three rather very
different grain boundaries, we will be able elucidate the ef-
fect of structure and energetics on the Kapitza conductance
and phonon scattering properties.

The structures of these grain boundaries differ from each
other considerably. The~001! planes in Si are the third most
widely spaced with a spacing of 0.25a. The ~001!S29, rep-
resentative of a large number of high-energy GBs, consists of
a region of approximately 2 Å thickness that is highly disor-
dered; indeed, by some measures it appears amorphous.18

The ~001!S101 GB, by contrast, consists of a square array of
dislocations, separated by regions of perfect crystal. Analysis
of their structure shows that these dislocation cores are also
highly disordered.18 By contrast, the~111! planes are the
most widely spaced. As a consequence, even high-angle GBs
on this plane, such as thef542.10°S31, have both relatively
low energies and are characterized by a high degree of struc-
tural order.

To obtain system-size independent results, it is necessary
that the simulation cell is quite long in thez direction. Except
for specific cases discussed below, the size in thex-y plane
was set to be the minimum consistent with the periodicity of
the GB, i.e., 29 times, 31 times, and 101 times larger than
that of the perfect crystal for the three GBs. The system
lengthLz for the ~001!S29 and~111!S31 systems were very
similar, being 223 and 224 nm, respectively. Due to the
larger dimension in thex-y plane, the lengthLz of the
~001!S101 was set to be only 114 nm. To generate the cor-
rect ground state structure of the grain boundaries, we used a
high-temperature melting and annealing procedure used in a
previous study of silicon GBs.18 The only difference from
Ref. 18 was that, in this work, both GB regions were subject
to the high-temperature melting and annealing procedure,
and therefore were equivalent. After the high-temperature
melting and annealing, the final ground state structure was
obtained by relaxing the atoms to theT50 K ground state.

The resulting temperature profiles are shown in Fig. 2.
For each case, the energy added and removed at each MD
time step was chosen to result in a thermal-current density of
J515.36 GW/m2. It is immediately apparent from Fig. 2 that
the temperature discontinuity for the~001!S29 boundary is
larger than that of either the~001!S101 or the ~111!S31
boundaries. From this we can conclude that the~001!S29
boundary has the lowest Kapitza conductance. From the
computed temperature discontinuityDT and the thermal cur-
rent Jz , we use Eq.~1! to determine the value ofsK . The
resulting values of the Kaptiza conductance are shown in
Table I. Since the simulations of Maiti, Mahan, and
Pantelides10 for two symmetric tilt GBs in silicon were de-
termined using a very similar method and also for the SW
potential, these results may be compared with ours. These
are also included in Table I. It is remarkable that, in spite of
the wide variety of structures considered, the values ofsK

for the five different GBs are so very similar. While our
results suggest that the amount of disorder in the grain
boundary region can have a significant effect, it is apparent
that sK for the strongly disordered~001!S29 boundary is
actually very close to the results of Maiti and co-workers10

for the tilt GBs, which have a high degree of structural order.
While this may suggest a difference between tilt and twist
GBs, more systematic data are required before a definitive
statement can be made. Finally, it is interesting to note that
the values in Table I are rather close to the experimental

FIG. 1. Schematic representation of the three-dimensional periodic simula-
tion cell for direct computation of the Kapitza conductance. At each MD
time step, energyD« is added to a thin slab of atoms atz52Lz/4. Likewise,
at each MD time step energyD« is subtracted from a thin slab atz
51Lz/4. This results in two identical thermal currents,Jz , along the posi-
tive and negativez axes, as labeled. The two crystallographically equivalent
grain boundaries present in the cell atz52Lz/2 andz50 are labeled as
GB1 and GB2 .
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results of Yanget al.9 for yttria-stabilized zirconia, and there-
fore quite different in magnitude from the values reported by
Nan and Birringer.8

Grain boundaries have two effects on thermal transport.
First, as discussed above they introduce structural disorder
that leads to phonon scattering even when amplitude of the
atomic displacements is small enough that the system re-
mains harmonic. Second, the structural disorder itself
changes the dynamical behavior of the atoms at the interface.

As a result, anharmonic scattering will be more important
even for relatively small atomic displacements. In order to
elucidate the effects of anharmonicity, we studied the effect
of temperature on the thermal conductivity. We first recall
that our previous simulations of bulk Si showed strong tem-
perature dependence, with the thermal conductivity,k, de-
creasing from 119 W/mK at 500 K to 65 W/mK at 1000 K.
By contrast, we see in Table I that the interfacial conduc-
tance, although rather insensitive to temperature, does in-
crease slightly with increasing temperature, i.e., the opposite
of the trend in the bulk thermal conductivity. However, the
differences are fairly small and still within the error inherent
in the calculation ofsK . This suggests that, while anhar-
monic effects may play some role, they are not particularly
important at least within this temperature range. As a result,
it is likely that the computed values ofsK in this temperature
range are due mostly to harmonic scattering at the interface.
On the other hand, it is possible that the amount of anhar-
monic scattering at the boundary occurring atT5500 K is
already rather strong, and increasing the temperature toT
51000 K does not substantially increase the amount of an-
harmonic scattering. In order to systematically address the
issue of the importance of anharmonic scattering, it will be
necessary to simulate the Kapitza conductance over a wider
range of temperatures than we report here.

Finally, we have also elucidated the finite-size effects.
As we previously mentioned, the simulation cell for
~001!S101 GB was chosen to be shorter than the other sys-
tems due to its larger dimension in thex-y plane. It is there-
fore important to determine if the results shown in Table I
depend systematically onLz . To answer this question, we
have simulated the~001!S29 boundary system with a length
Lz of 114 nm, the same as that used for theS101 GB and
about one half the length of the system used to generate the
data in Table I. We find values forsK of 0.8160.10
GW/m2 K at T5500 K and 0.8760.10 GW/m2 K at T
51000 K. Comparising the values forsK for the ~001!S29
boundary computed using the larger system shown in Table
I, we see that changingLz appears to have very little effect.
This indicates that our results for the~001!S101 system can
be directly compared to the results for the other GBs in spite
of the differences inLz .

In this section we have presented the results of MD
simulations used to determine the values ofsK for different
twist grain boundaries in silicon. We observed that the high-
energy, disordered~001!S29 grain boundary has a smaller
value of sK when compared to the lower-energy, more or-
dered grain-boundary systems. This suggests that disorder at
the grain boundary plays an important role in the scattering
of lattice waves. However, we do not yet have any under-
standing of the microscopic mechanisms involved. In the
next section, we will address this issue by scattering wave
packets of lattice vibrations of well-defined frequency and
polarization from grain boundaries.

III. WAVE-PACKET SCATTERING
AT GRAIN-BOUNDARY INTERFACES

The simulations presented in the last section allowed us
to make a direct comparison ofsK for different grain bound-

FIG. 2. Temperature profiles in the presence of an applied thermal current
for the ~a! ~001! f543.60°S29, ~b! ~001! f511.42°S101, and~c! ~111!
f542.10°S31 grain-boundary systems. In each case the location of the
grain boundary coincides with the discontinuous jump in the temperature
profile. The applied thermal current is the same in each case.

TABLE I. Values of the Kapitza conductance for the three twist grain
boundaries studied in this work atT5500 K. For comparison, we also in-
clude in this table values ofsK at 575 K taken from Maiti and co-workers
~see Ref. 10! for two symmetric tilt grain boundaries~STGBs!.

Grain boundary Egb ~J/m2)

sK (GW/m2 K) @
500 K~* !

and 575 K(†)
sK (GW/m2 K) @

1000 K

~001! u543.60°S29 1.32 0.8060.10* 0.9960.10
~001! u511.42°S101 0.91 1.6360.20* 1.9560.20
~111! u542.10°S31 0.64 1.4260.20* 1.4660.20
~310!S5 STGB 0.9† ¯

~510!S13 STGB 0.8† ¯
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aries. However, this did not result in a direct understanding
of the underlying scattering mechanisms. Furthermore, be-
cause the simulations were classical, all modes were equally
excited, and thus these simulations cannot be used to inves-
tigate any possible dependence of the interfacial scattering
on phonon frequency. To address the problem of interfacial
phonon scattering, we describe in this section the results of
simulations of the scattering of phonon wave packets from
two of the GBs investigated above, namely the~001!S29 and
the ~001!S101. The basic idea, as described in detail below,
is to generate well-defined wave packets of lattice vibrations,
using the normal modes of the bulk perfect crystal, and to
allow them to interact and scatter from an interface. We have
previously developed this method and demonstrated its use-
fulness for studying the frequency-dependent scattering from
simple coherent interfaces.19 In this section, we show how
this approach is applied to the study of grain-boundary pho-
non scattering.

We form the phonon wave packets from a linear combi-
nation of vibrational eigenstates using the procedure de-
scribed previously.19 In brief, the initial atomic displace-
ments are described in terms of a linear combination of
eigenstates

uil m~0!5(
lk

alk« imlk exp~ ik"Rl !. ~2!

Here,uil m(0) represents themth Cartesian component of the
displacement for atomi in the unit cell labeled byl. The
polarization vector,« imlk , of the normal mode with wave
vector k in bandl, is determined by diagonalizing the dy-
namical matrix of the bulk perfect crystal. Thealk , which
determine the amplitude of the normal modes, are chosen to
result in vibrational wave packets that are localized in both
real space and wave vector space.19 This is done by localiz-
ing the chosen vibrational mode using a Gaussian envelope.
Given these resulting displacements, the coefficientsalk are
determined by transforming into the space defined by the
normal modes. In the absence of any scattering, the time
dependence of the atomic displacements is exactly given by

uil m~ t !5(
lk

alk« imlk exp~ ik"Rl2 ivlkt !, ~3!

wherevlk is the angular frequency of the normal mode with
wave vectork in bandl. In other words, in the absence of
any scattering, thealk are time-independent constants, and
the shape of the initial wave packet evolves in real space
only very slowly due to phonon dispersion.

The time dependence of Eq.~3! assumes a periodic per-
fect crystal lattice of infinite extent. With the introduction of
grain boundaries, the periodicity of the crystal lattice is de-
stroyed, and as a result the time dependence of the atomic
displacements given by Eq.~3! will not apply. This means
that thealk are no longer time independent but will change
as a result of scattering at the grain-boundary interface. As
was previously discussed, this scattering results in a finite
value of the Kapitza conductance. In terms of the normal
modes of the bulk lattice, the Kapitza conductance can be
written as

sK~T!5
1

V (
lk

\vlk

]n~vlk ,T!

]T

]vlk

]kz
alk , ~4!

whereV is the system volume,n(vlk ,T) is the Bose occu-
pation factor at temperatureT, andalk is the energy trans-
mission coefficient for the interface. Thealk is defined as
the fraction of incident energy in a mode defined by phonon
branchl and wave vectork is transmitted across the inter-
face. Equation~3! suggests that, given an understanding of
the phonon dispersions of the bulk perfect crystal, the value
of sK can be determined if thealk can be computed for each
mode.

In passing, we note that Eq.~4! results in a finite con-
ductance even in the case where there is no boundary and
alk51 for all l andk. However, this apparent paradox has
been resolved by Pettersson and Mahan.5 They showed that
in the case of an imagined interface witha51, the theory
reduces to the standard theory of thermal conduction when
there is no boundary present.

To gain insight into the scattering process, the atomic
positions after the scattering event can be analyzed in terms
of the normal modes of the bulk perfect crystal by Fourier
transforming the atomic positions using the eigenvectors of
the bulk perfect crystal. In other words, given a set of atomic
displacementsuil m(t5t f) at final timet f , we can determine
the amplitudealk of a given mode from

alk5(
i l m

«lkim* uil m~ t5t f !exp~2 ik"Rl !. ~5!

Given the amplitude of each normal mode, it is possible to
directly compute the amount of energy contained in a given
mode. By including only atoms left or right of the grain
boundary, we can study the reflected and transmitted waves
separately.

For the current problem, we have chosen to study the
scattering of incident LA wave packets from the~001!S29
and ~001!S101 grain boundaries. We chose LA modes be-
cause they are the most important branch for thermal trans-
port. In particular, we consider the case where the incident
wave packet has a wave vector perpendicular to the interface.
In other words, the wave vector of the incident phonon is
parallel to thez axis: kzÞ0, whereaskx50 andky50. For
our phonon scattering simulations, we required simulation
cells considerably longer than those needed for the thermal-
conductivity calculations. In both cases, the simulation cell
was at least 1000 unit cells in length, corresponding to about
0.55mm.

To more fully understand the scattering process it is use-
ful to analyze the dynamics at the microscopic level. In Figs.
3~a! and 3~b! we show snapshots at different times of thez
displacement of the atoms as a function of position along the
z direction in the simulation cell for two different incident
wave vectors. Figure 3~a! shows the scattering from the
~001!S29 GB of a phonon wave packet with a very long
average wavelength, 40a0 , corresponding to an average fre-
quency of 0.37 THz and a wave vector ofkz

50.025(2p/a0). It is apparent that this wave packet is al-
most unaffected by the presence of the grain boundary, and
nearly all the incident energy is transmitted to the regionz
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.0. By contrast, the wave packet shown in Fig. 3~b! with an
average wavelength of 2.5a0 and frequency and wave vector
of 5.81 THz andkz50.400(2p/a0) is strongly scattered by
the interface, with a significant amount of the total energy
being reflected back to the regionz,0. The spread in real
space of the atomic displacements seen in Fig. 3~b! at 33.2 ps
suggests that a significant amount of the incident energy has
been scattered into modes different from the incident wave
packet.

In Fig. 4 we show the frequency dependence of the
transmission coefficienta for wave packets comprised of LA
modes scattering from the~001!S29 grain boundary. These
data are compiled from an analysis of snapshots such as
those at the latest time in Figs. 3~a! and 3~b!. Also shown in
Fig. 4 is the reflection coefficientb, which is defined to be
the fraction of the incident energy that is reflected from the
grain boundary to the regionz,0. Since all of the incident
energy is either transmitted to the regionz.0 or reflected to
the regionz,0, a1b51 for each incident frequency.

As we have already seen, along with reflection of the
incident wave, there is significant mode conversion for both
the transmitted and reflected waves. Because the simulation

cell is finite, the possible final states depend on the size of
the simulation cell. This suggests that the results of Fig. 4
may depend on the size of the simulation cell. To determine
the dependence of our results on system size, we also show
results for the energy transmission coefficient of a simulation
cell which is twice as large in thex-y plane. It thus contains
four CSL planar unit cells of the~001!S29 grain-boundary
system. By doubling the cell in thex andy directions, we are
increasing the number of possible vibrational states that can
be excited by a factor of 4. A comparison of these two sys-
tems in Fig. 4 indicates the transmission coefficient is almost
identical for the larger unit cell. Together with our previous
demonstration that the transmission coefficient does not de-
pend onLz , these data establish the system-size indepen-
dence of our results.

It is apparent from Fig. 4 that the scattering depends
strongly, but not smoothly, on the frequency of the incident
wave packet. For very low frequencies, i.e., long wave-
lengths, the transmission coefficient is very close to unity, in
agreement with the AMM. However, the fraction of the en-
ergy transmitted decreases as the frequency of the incident
wave packet is increased; indeed for very high frequencies
the transmission coefficient is close to 0.5, i.e., it is close to
the value expected from the DMM.

To analyze this transition from AMM behavior to DMM
behavior, we have analyzed the reflected and transmitted
waves in more detail. To describe the component of the wave
vector parallel to the interface, we first define a quantity
kxy5Akx

21ky
2. For the incident wave packet, only modes

with kxy50 are used. In Fig. 5, we break up the transmitted
wave from Fig. 3~b! into three components: an unscattered
LA mode, i.e., a mode with the same k vector as the incident
wave packet, a scattered LA mode which haskxy.0, and TA
modes; none of the incident LA modes has sufficient energy
to create optical modes, so they need not be considered here.
From Fig. 5 we see that much of the incident wave packet is
not scattered and remains in LA modes withkxy50. This
unscattered wave packet is closely followed by wave packets
comprised of LA modes with nonzero values ofkxy . Finally,
a significant amount of energy is found in TA modes. The
positions of the wave packets can be understood in terms of
the z component of the group velocities of the different
modes. Although there is a significant amount of mode con-

FIG. 3. Snapshots of thez displacement of atoms for the case of an LA
wave-packet scattering from the~001!S29 grain boundary. In~a! we show
the scattering of an LA wave packet withkz50.025(2p/a0), and in~b! for
a wave packet withkz50.400(2p/a0). The vertical dotted line atz50
indicates the location of the grain boundary.

FIG. 4. Frequency dependence of the energy transmission coefficient,a
~filled circles!, and reflection coefficient,b ~open circles!, for incident LA
wave packets scattered from the~001!S29 GB in Si. Since all energy is
either reflected from or transmitted through the boundary,a1b51. The
squares denotea for a simulation cell containing 232 cells of the~001!S29
grain boundary system.
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version, we find that only modes with vibrational frequencies
equal to the frequency of the incident wave packet are ex-
cited, corresponding to perfectly elastic scattering.

The scattering event can be further analyzed by studying
the fraction of energy scattered into various modes using Eq.
~5!. We first show in Fig. 6 the fraction of energy transmitted
into LA modes withkxy50. For the waves transmitted to the
regionz.0, this represents the portion of the incident energy
that is not scattered by the grain boundary. We see that a
significant fraction of the energy is in fact not scattered by
the grain boundary below a frequency of about 9 THz. How-
ever, for frequencies above 9 THz, most of the incident en-
ergy is scattered.

For the case of scattering that involves normal modes
different from the incident LA mode, it is important to con-
sider the density of states~DOS! for the perfect crystal grain.
For the~001!S29 system, the total DOS is shown in Fig. 7.
By comparing to the DOS for an infinite system shown in the
inset of Fig. 7, it is clear that much of the structure in Fig. 7
is due to the finite size of the simulation cell. We analyze the

scattering into TA modes and LA modes withkxy.0 in Fig.
8. In Fig. 8~a!, we see that significant amounts of the incident
wave packet can be transmitted and reflected into TA modes.
In Fig. 8~b! we show the contribution to the total DOS~see
Fig. 7! that is due to the TA modes. It is clear that the scat-
tering into TA modes can happen only for incident frequen-
cies where there is a finite DOS of TA modes. Figure 8~c!
shows that the energy transmitted and reflected into LA
modes withkxy.0 can be significant, especially for frequen-
cies above 8 THz. As with the TA modes, it can be seen from
Fig. 8~d! that the amount of energy scattered into these
modes depends strongly on the DOS due to these modes.

For the scattering of LA wave packets from the
~001!S101 boundary, the picture is rather different. In Fig. 9
we show the transmission and reflection coefficients for this
boundary. Comparing Fig. 9 to Fig. 4, it is apparent that a
larger fraction of the incident energy is transmitted to the
region z.0. Furthermore, Fig. 10 shows that much of the
transmitted energy remains in LA modes withkxy50, and
hence is not scattered by the grain boundary. For all of the

FIG. 5. Analysis of the transmitted wave packets for a wave packet with
kz50.400(2p/a0) incident on the~001!S29 GB. The displacements in this
picture correspond to those in Fig. 3~b! at t533.2 ps. At the top, we show
the total atomic displacements. In the next panel below, we show only the
components of the wave that correspond to LA modes withkxy50. Because
these modes are the same as those that comprised the incident wave packet,
this part of the transmitted wave is unscattered. We next show the LA modes
that are scattered, i.e., those modes that havekxy.0. Finally, in the bottom
panel we show the displacements that are just due to TA modes.

FIG. 6. The transmission coefficienta and the reflection coefficient can be
understood in terms of the contributions of the various final states. Shown
for incident LA wave packets scattered from a~001!S29 grain boundary are
the fraction of the incident energy that is transmitted~filled circles! and
reflected~open circles! into LA modes withkxy50.

FIG. 7. Total density of states~DOS! for a bulk perfect crystal with the size
and orientation of one of the two grains in the simulation cell used to study
the ~001!S29 grain boundary. The inset shows the total DOS for an infinite
bulk perfect crystal.

FIG. 8. The final states excited after the scattering event depend strongly on
the DOS at the frequency of the incident wave packet. For scattering from
the ~001!S29 grain boundary, the incident LA wave packet can excite TA
modes and also LA modes withkxy.0. We show in~a! the fraction of
incident energy transmitted~filled circles! and reflected~open circles! into
TA modes. In~b! we show the contribution to the total DOS~see Fig. 7! due
to TA modes. The fraction of the incident energy transmitted~filled circles!
and reflected~open circles! into LA modes withkxy.0 is shown in~c!, with
the contribution to the DOS of these modes shown in~d!.
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frequencies shown in Fig. 10, at least 60% of the incident
energy is transmitted without scattering.

Consistent with this, in Fig. 11 we see that only rather
small amounts of energy are transmitted and reflected into
TA modes and LA modes withkxy.0. As with the~001!S29
boundary, the scattering into these modes depends on the
presence of a finite DOS at the frequency of the incident
wave packet. Comparing Fig. 11 with the results for the
~001!S29 boundary system shown in Fig. 8, we can imme-
diately see that the amount of mode conversion is signifi-
cantly less for the~001!S101 boundary. We believe this is
due to the more ordered atomic-scale structure present at the
~001!S101 boundary.

The results presented here for the scattering of bound-
aries show in detail the mechanism of phonon scattering
from grain boundaries. Consistent with our expectations
from the MD simulations of the Kaptiza conductance pre-
sented in Sec. II, we found here that the~001!S29 boundary
scattered phonons more strongly than the~001!S101 bound-
ary. We believe that this difference arises from the more
disordered structure present in the~001!S29 boundary. In
both cases, in the limit of very low frequency, the wave
packet passed through the grain boundary with essentially no
scattering. By contrast, as the frequency of the incident wave
packet was increased, significant mode conversion was
found. Taken together, these results suggest that the scatter-
ing becomes more diffuse as the frequency of the incident
wave is increased. We will address this point in the final
section, where our results will be discussed in the context of
the AMM and DMM.

IV. DISCUSSION AND CONCLUSIONS

Using MD simulation, we have directly determined the
Kapitza conductance for three different twist grain bound-
aries in silicon. Our results indicate that the structure and
energy of the grain boundary is important in determining the
Kapitza conductance. In particular, we found that the highly
disordered ~001!S29 grain boundary has a significantly
lower Kapitza conductance than the more ordered, lower-
energy~001!S101 and~111!S31 grain boundaries.

It is interesting to compare the values obtained here for
the Kapitza conductance of twist grain boundaries in silicon
to other results found in the literature. We have already
shown in Table I that our results are very similar to MD
simulation results for symmetrical tilt grain boundaries in
Si.10 Furthermore, the magnitude of the Kapitza conductance
calculated here appears to be similar to recent experimental
results for grain boundary Kapitza conductance in yttria-
stabilized zirconia.9 By contrast, very low values for the
Kapitza conductance of grain boundaries have been seen in a
few thermoelectric alloys.8 For example, the Kapitza conduc-
tance of grain boundaries in thep-type alloy Bi2Te3 /Sb2Te3

was found to be 0.73104 GW/m2 K,8 or four orders of mag-
nitude smaller than the Kapitza conductances found here. It
is also interesting to compare our results to experimental
measurements of the Kapitza conductance of interfaces be-
tween different materials. For example, the room-
temperature Kapitza conductance of a diamond/Pb interface
was found by Stoner and Maris7 to be about 0.03 GW/m2 K,
significantly lower than the results found here for Si grain
boundaries. That diamond/Pb interfaces have a relatively
small Kapitza conductance is not surprising since diamond
and Pb have very different acoustic properties. However,
there are several examples of interfaces between different
materials that have a Kapitza conductance very similar in
magnitude to the results found in this article for Si grain

FIG. 10. For incident LA wave packets scattering from the~001!S101 grain
boundary, the fraction of the incident energy that is transmitted~filled
circles! and reflected~open circles! into LA modes withkxy50.

FIG. 9. Frequency dependence ofa ~filled circles! andb ~open circles! for
incident LA wave packets scattered from a~001!S101 grain boundary.

FIG. 11. LA modes scattered from the~001!S101 grain boundary:~a! the
fraction of the energy transmitted~filled circles! and reflected~open circles!
into LA modes withkxy.0; ~b! the fraction of the incident energy that is
transmitted~filled circles! and reflected~open circles! into TA modes.
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boundaries: for example, the room-temperature Kapitza con-
ductance of epitaxial TiN/oxide interfaces was found to be
about 0.7 GW/m2 K.6

By using wave-packet dynamics, the underlying scatter-
ing mechanisms responsible for the Kapitza conductance can
be understood in detail. In Sec. III, we presented a detailed
analysis of the scattering in terms of the normal modes of the
bulk perfect crystal. This analysis showed that the scattering
depends strongly on the frequency of the incident wave and
also the structure and energy of the grain boundary. Consis-
tent with the MD results for the Kapitza conductance, we
found that the~001!S29 grain boundary scattered waves
more strongly than the~001!S101 grain boundary.

The strong frequency dependence of the energy trans-
mission coefficient seen in Figs. 4 and 9 was not present in
early analytical work11 because the analytical derivation as-
sumes that phonon scattering is due only to the strain field of
the grain boundary, and not to the atomic-scale structure of
the interface itself. Because analytical approaches do not
treat the details of the atomic structure of the boundary, they
cannot be expected to apply to the limit of small wavelength
and high frequency. The results of Figs. 4 and 9 suggest
interesting consequences for the temperature dependence of
the Kapitza conductance below the Debye temperature of a
material. The frequency-independent energy transmission co-
efficient suggested by analytical methods results in a Kapitza
conductance that increases with increasing temperature asT3

for temperatures well below the Debye temperature. How-
ever, if in fact the energy transmission coefficient is a de-
creasing function of frequency as our results suggest, it is
likely that the Kapitza conductance will increase more
slowly thanT3.

It is useful to compare our results to the predictions of
the AMM and DMM. Since the AMM deals only with the
mass density and elastic constants, it predicts that the grain
boundaries studied here should completely transmit all the
incident energy, i.e.,a51. We see from Figs. 4 and 9 that
this indeed is the case in the limit ofv→0. However, as the
frequency of the incident wave packet increases, the energy-
transmission coefficient becomes significantly less than
unity. For a very disordered interface, such as the~001!S29
grain boundary, it is conceivable that the DMM may be a
good model for the scattering. However, our results suggest
that this is probably not the case for much of the phonon
spectrum. First of all, when applied to GB scattering the
DMM results in a value for the energy transmission coeffi-
cient a of 0.5. As shown in Fig. 4, the energy transmission
coefficienta is more than 0.5 for all but the highest frequen-
cies. The results for the~001!S101 grain boundary shown in
Fig. 9 are significantly higher than 0.5 for the entire fre-
quency range. Second, the amount of energy transmitted
through the grain boundary without scattering is usually
quite significant~see Figs. 6 and 10!. By contrast, the DMM
is predicated on the assumption that essentially all of the
incident energy is scattered from the interface. This limit
appears to be realized only for the very high frequency
phonons~.10 THz! incident on the~001!S29 grain bound-
ary ~see Fig. 6!.

These considerations suggest that the AMM and DMM
represent extreme limits of phonon scattering, and that in
reality, for most of the phonon spectrum, the scattering lies
somewhere in between these limits. For very long wave-
length modes, the AMM appears to describe our results, even
in the case of the disordered~001!S29 grain boundary. As
the frequency of the incident mode is increased, the scatter-
ing becomes progressively more diffuse, with the amount of
diffuse scattering depending strongly on the amount of dis-
order at the grain boundary interface. In fact, our results also
suggest that the diffuse limit is only realized for scattering
from a very disordered interface.

One important question not fully addressed in this article
is the importance of anharmonic effects on interfacial scat-
tering. As noted earlier in Sec. III, the amplitude of the inci-
dent wave packet was always chosen to be small enough so
that there were essentially no anharmonic effects. However,
for a system at finite temperature, scattering due to anharmo-
nicity is likely to be important. We would expect that for a
GB, anharmonicity would result in more scattering at the
interface. This increased scattering would tend to cause the
Kaptiza conductance to decrease with increasing tempera-
ture. If anharmonic effects are significant, this may result in
more diffuse scattering than we found in Sec. III, and hence
better agreement with the predictions of the DMM.

Another well-known effect of increasing the temperature
is to increase the thermal disorder in the GB region;18 such
disorder should result in more scattering and hence a lower
value of the Kapitza conductance. This suggests that the pre-
dictions of the DMM may become more valid at higher tem-
peratures.

Finally, we mention that the results of this article can be
used to develop more realistic models of interfacial scatter-
ing for use in mesoscale simulation approaches. In a mesos-
cale approach, the energy is transported by particles local-
ized in real space meant to represent localized phonon wave
packets.20 To describe transport in a system with interfaces,
rules are required to describe the scattering at interfaces.
From the results presented in this article, one could develop
a simple yet general model to describe grain-boundary scat-
tering. Specifically, our results indicate that any model
should have a transmission coefficient essentially equal to
unity for long-wavelength phonons. The scattering in such a
model should increase with increasing frequency, with the
degree of scattering gradually approaching the DMM limit at
least in the case of disordered grain boundaries. Such a
model would represent an improvement over current ap-
proaches that are limited either to the extremes of the AMM
or the DMM.
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