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Diffusion data are presented for 18 elements implanted in SiO2 layers thermally grown on silicon
and annealed at temperatures ranging from 300 to 1000 °C. Most species studied,~e.g., Be, B, Al,
Sc, Ti, V, Zn, Ga, and Mo!, showed negligible diffusion over the examined temperature range. In
general, this study has shown that the diffusivity of dopants or impurities in SiO2 is significantly
smaller than that in silicon. However we also observed that several elements~e.g., Rb and In! have
a higher diffusivity in SiO2 than in Si. Because Ga and In are both used as sources for focused ion
beam analyses, the lack of Ga diffusion and the movement of In in SiO2 is of interest. ©2003
American Institute of Physics.@DOI: 10.1063/1.1624487#

I. INTRODUCTION

The study of diffusion of impurities in solids continues
to be an area of significant interest. Knowledge of the man-
ner in which different species diffuse in a material provides
information that is required to determine the impurities that
will be most likely to negatively impact the desired proper-
ties of the material. Decisions can then be made on the con-
taminants that need to be removed and those that can be
tolerated in a matrix. The transport of an impurity in a ma-
terial may not be the same even when compared with a ma-
trix that would appear to be similar. Addition of other impu-
rities to the matrix may retard or advance the ability of a
species to diffuse. SiO2 is an important insulating material
with broad applications in the semiconductor and glass in-
dustries, and ion mobility in silicate structures can affect the
physical properties of the glasses.

Diffusion of impurities in silicon has been studied exten-
sively since the 1960s, primarily by the method of surface
deposition followed by anneals.1–3 Because of the techno-
logical importance of silicon, a large body of data exists on
the diffusion of dopants and impurities in silicon.4–6

Diffusion of impurities in SiO2 was much less studied
than Si.7 Ghozzo and Brown8 reviewed the diffusivities of
doping elements such as B, Ga, P, As, and Sb. Besides a few
summary papers,9–11 most diffusion data of impurities in
SiO2 are scattered throughout the literature.12–26 The net-

work structure of vitreous SiO2 also suggests the importance
of self diffusion of O2 and Si in SiO2 . In the early 1980s,
Brebecet al.27 and Schaeffer28 reported on the self diffusion
of Si and O2 in SiO2 . Pfeffer and Ohring29 has shown the
importance of oxygen exchange between SiO2 network and
H2O molecule in the diffusion mechanism of H2O diffusion
in SiO2 thin films. More recently, bothab initio calculation
of oxygen self diffusion ina-quartz30 and secondary ion
mass spectrometry~SIMS! measurements of network oxygen
in vitreous SiO2

31 have reconfirmed the earlier work.27,28

Ion implantation presents a flexible approach to the
study of diffusion. The depth of the peak implant concentra-
tion can be regulated by the implantation energy and the
concentration by the implanted dose. The implant dose can
be varied to provide a concentration range from ppm to a few
atomic percent. All elements and isotopes can be implanted.
Therefore, ion implantation can be used for diffusion studies
of a surface layer, a sublayer, or the interface between layers.
It is important to recognize that the implant dose can affect
the diffusion, especially if the dose is sufficient to amorphize
the matrix under investigation.32

The results for nondopant elements implanted into sili-
con have not been as comprehensive as expected, and this
realization helped initiate our recent work in this area.33

From literature data, we anticipate that for most impurities
diffusion in silica would take place at a lower rate than for
silicon. Studies of implanted elements in silica have been
limited and were done mostly at high doses (1015 atoms/cm2

and higher! implanted at high energies with analyses made
a!Author to whom correspondence should be addressed; electronic mail ad-
dress: chow@ucf.edu
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using Rutherford backscattering spectrometry~RBS!. For ex-
ample, van Ommen has studied the diffusion behavior of
implanted As, Ga, Tl, and Sb in silica using RBS.34–38

The intent of the current study is to extend the study of
diffusion in SiO2 , using ion implantation to introduce the
impurity and SIMS for characterization of the implanted and
annealed samples. The elements of interest are implanted at
doses that keep the maximum concentration below 0.1 at. %.
The consideration of amorphizing dose is less significant
here because the silica layer is already amorphous. The ion
implantation is made into a thermally grown silica layer on a
silicon substrate. SIMS has the sensitivity and depth resolu-
tion required for this analysis, but mobility of species during
analysis must be taken into account, especially for alkali
elements.39,40 It has been noted that other species, such as N,
can also move during analysis.41

II. EXPERIMENTAL PROCEDURE

The substrates used in this work werep-type ~100! ori-
ented Si wafer with a nominal resistivity of 10–20V cm.
The growth of oxide layer was carried out in a steam furnace.
The elements shown in Table I were separately implanted
into 0.49mm thick thermally grown silica layers at approxi-
mately 1014 atoms/cm2 using a variety of implanters. Dose
accuracy was checked from analysis of identical samples im-
planted into silicon. The implants in silicon were checked
against existing standards. The dose was specifically chosen
to study the movement of a low concentration~about 0.1
at. % maximum! of a species in silica and to permit a good
dynamic range of detection using SIMS. The implant energy
was selected to locate each species within the silica layer,
and ranged between 50 and 210 keV. The Be implant energy
put the peak of the Be implant near the silica/silicon inter-
face. However, the diffusion data obtained from the part of
the implant that was in the silica still provides useful infor-
mation.

Anneals were made at 300, 500, 700, 900, and 1000 °C
in a Lindberg furnace. All anneals were for 30 min with a

constant flow of high purity argon gas~99.999%!. The
samples were placed in a quartz tube that was moved into the
center of the furnace for heating, and pulled out to be cooled
to room temperature, all within an argon environment.

The samples were analyzed using three SIMS instru-
ments. Most samples with high positive secondary ion yields
under oxygen bombardment were analyzed using a CAM-
ECA IMS-3f magnetic sector analyzer with 10 keV O2

1 pri-
mary beam, impact energy of 5.5 keV, and effective impact
angle of 42° from normal. A typical primary beam current
was 120 nA rastered over a 250mm by 250mm area with
secondary ions detected from a 60mm diam circle at the
center of the raster. Charge neutralization was accomplished
with an oblique incidence electron gun, with an energy of
approximately 5 keV, and impact energy of approximately 10
keV because of the additional effect of the positive 4.5 keV
sample potential. Some samples were analyzed using a
CAMECA IMS-6F with O2

1 primary beam and charge neu-
tralization with normal incidence electron gun. Elements
with high negative secondary ion yields under cesium bom-
bardment were analyzed using a Physical Electronics
ADEPT 1010 quadrupole analyzer with a 3 keV Cs1 primary
beam at 60° from normal. For these analyses, the typical
primary beam current was 100 nA rastered over a 200mm by
200mm area with negative secondary ions detected from the
center 10% of the raster. Charge neutralization was made
with an unrastered 5mA 3 keV electron beam centered on
the ion beam raster.

SIMS analysis of the as-implanted samples provided a
check on distortions that might be present as a result of
analysis using a charged beam because the as implanted pro-
file should have a Gaussian shape.

III. RESULTS AND DISCUSSION

Figures 1–3 show SIMS depth profiles for nine elements
as implanted and after anneal. As we can see from these
figures, the peak of the distributions ranges between 0.1 and
0.25 mm from the film surface, except for9Be, which has a
peak concentration close to the SiO2 /Si interface. The major
feature of the diffusion behavior of these nine elements is
that even after a 1000 °C anneal for 30 min, these elements
diffuse sparingly, if at all. In Fig. 1~a! we can see that the
as-implanted sample showed that part of the implanted Be is
present in the crystalline Si. Following annealing at 500 °C,
these Be ions begin to move. Note that the Be implanted in
the Si will not be accurately quantified by the implant in
SiO2 because of significantly lower secondary ion yield in
the Si compared with the SiO2 . At 700 °C anneal, almost all
Be ions have diffused out of the Si region just below the
SiO2 layer, but the Be in the SiO2 layer shows essentially no
movement in the temperature range of 300– 1000 °C.

Even though the profiles in Figs. 1–3 show little diffu-
sion, it was still possible to obtain an upper bound for diffu-
sion coefficients for several elements using the following
procedure. We assume that the impurity concentration will
have a joint half Gaussian distribution.35 Since the near-

TABLE I. Implantation parameters.

Element Energy~keV! Dose (cm22)

9Be 70 1.031014

11B 50 1.031015

19F 50 5.031014

27Al 50 1.031014

35Cl 150 5.031014

40Ca 150 1.031014

45Sc 150 1.031014

48Ti 150 1.031014

51V 150 1.031014

55Mn 150 1.131014

64Zn 180 3.331014

69Ga 180 8.031013

79Br 180 1.231014

80Se 180 1.931014

85Rb 180 7.531013

98Mo 180 8.931013

115In 210 9.231013

127I 180 8.831013
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surface region will have more damage and defects that could
affect diffusion and also impurity species near the surface
could evaporate from the surface, we will only use the con-
centration profile from the concentration peak to the SiO2 /Si
interface for the calculation of diffusion coefficients. This
procedure has been previously documented.35,37The concen-
tration profile after anneal is given by

C~x!5C8 expS 2~x2xm!2

2~s212Dt ! D , ~1!

wherexm is the peak position ands is the standard deviation
of the as-implanted impurity distribution.

The diffusion coefficients of these elements were calcu-
lated from the semilog plots of the SIMS concentration pro-
files of the as-implanted and 1000 °C anneal data. In Fig.
1~a!, because the concentration peak is too close to the
SiO2 /Si interface, we did not calculate the diffusion coeffi-
cient of Be in silica. Both B and Al implanted in SiO2 have

been studied before.42,43 For B (1000 °C) and Al (1200 °C)
in SiO2 , the diffusion coefficients of 4.4310218 and 1.65
310216 cm2/s, respectively, have been reported. Our data
from Fig. 1~b! yield a diffusion coefficient of 6.061.0
310218 cm2/s for B, which is in good agreement with pre-
viously published data mentioned above. Figure 1~c! yields a
diffusion coefficient of,5310218 cm2/s for Al in SiO2 at
500 °C. This value should be compared with 1.65
310216 cm2/s at 1200 °C obtained by La Ferlaet al.43

In Figs. 2~a!, 2~b!, and 2~c! the diffusion behavior of Sc,
Ti, and V implanted into the SiO2 layer are shown. Here we
notice that near the end of the implantation range, these ele-
ments showed higher concentration than expected from the
normal detection limit. Even though mass interferences, such
as29Si16O with 45Sc, can be resolved, no significant interfer-
ence should exist for51V. We have used only the data that
have an impurity concentration of>1017 atoms/cm3 for our
calculations. We obtained diffusion coefficients of
,1.1(0.3)310218, ,6310219, and ,1.8(0.2)
310217 cm2/s for Sc, Ti, and V respectively. The lack of Ti
diffusion in SiO2 should be of interest for LiNbO3– SiO2

FIG. 1. SIMS depth profiles of:~a! 9Be ~70 keV, 1E14 atoms/cm2), ~b! 11B
~50 keV, 1E15 atoms/cm2), ~c! 27Al ~50 keV, 1E14 atoms/cm2): ~d! as
implanted,~s! 300 °C,~m! 500 °C,~n! 700 °C,~3! 900 °C,~h! 1000 °C.

FIG. 2. SIMS depth profiles of:~a! 45Sc ~150 keV, 1E14 atoms/cm2), ~b!
48Ti ~150 keV, 1E14 atoms/cm2), ~c! 51V ~150 keV, 1E14 atoms/cm2): ~d!
as implanted,~s! 300 °C, ~m! 500 °C, ~n! 700 °C, ~3! 900 °C, ~h!
1000 °C.
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structures where Ti diffusion is used to change index of re-
fraction for lightwave technology devices.

In Figs. 3~a!, 3~b!, and 3~c!, SIMS depth profiles of Zn,
Ga, and Mo implanted in SiO2 are shown. Here again, the
implanted species do not diffuse significantly when annealed
at 300– 1000 °C. Using the procedure described above, we
obtained diffusion coefficients of,6310218 and ,8
310219 cm2/s for Ga and Mo, respectively, at 1000 °C. The
diffusion behavior of Ga in silica has been studied before.35

Van Ommen demonstrated that at 1015 Ga/cm2 dosage, after
annealing in N2 ambient for 30 min at 1000 °C, the im-
planted Ga is immobile. The SIMS data for Zn implanted
into silica showed some diffusion at low temperature an-
neals, but at higher temperatures such as 1000 °C, the Zn
profile actually became narrower than that of the as-
implanted sample. This narrowing of the concentration pro-
file is believed to be due to the formation of impurity clus-

ters. This type of impurity clustering behavior has been
observed previously in our laboratory.44

In Table II, the diffusion coefficients are presented for
seven out of the nine elements shown in Figs. 1–3. In addi-
tion, we also obtained values of diffusion coefficients for Ca
and Mn in SiO2 discussed below. We can see that the diffu-
sion coefficients varied from 10216 to 10219 cm2/s at
1000 °C. For most elements that do not move appreciably,
we only obtain an upper bound for the diffusion coefficients.
In general, our results indicate that these elements have sig-
nificantly less diffusion in silica than for the corresponding
implants in silicon.

In Figs. 4~a! and 4~b!, we showed that both Ca and Mn
have a measurable diffusion coefficient in the 900– 1000 °C
temperature range. In Fig. 4~a!, Ca starts to show movement
during the 900 °C anneal. At 1000 °C, from the depth profile
we calculated a diffusivity of 3.560.1310216 cm2/s.

In Fig. 4~b!, Mn did not move until the 1000 °C anneal.
We again use procedures described in Ref. 16 and determine
the diffusion coefficient of Mn in SiO2 at 1000 °C to be
960.2310217 cm2/s. In Fig. 4~c!, the Se profiles show sta-
bility up to 700 °C anneal. After 900 °C anneal, the tail end
of the profile starts to diffuse deeper into the oxide. After
1000 °C anneal, the profile distribution of Se impurity is
similar to the Ca or Mn after 1000 °C anneal. Because of the
scatter in the SIMS data we did not obtain a diffusion coef-
ficient for Se.

Next we will examine the more mobile species in our
current study. For Rb, after a 300 °C anneal, the depth profile
changes very little compared to the as-implanted sample. But
with a 500 °C anneal, it can be seen that Rb starts to diffuse.
The maximum to minimum concentration ratio of Rb inside
the SiO2 layer has decreased by a factor of 1000 from the
300 °C anneal to the 700 °C anneal. After a 1000 °C anneal,
the Rb concentration becomes constant inside the SiO2 layer.
We noted that the Rb background has increased going from
SiO2 to silicon. This may be due to a mass interference with

FIG. 3. SIMS depth profiles of:~a! 64Zn ~180 keV, 3.3E14 atoms/cm2), ~b!
69Ga ~180 keV, 8E13 atoms/cm2), ~c! 98Mo ~180 keV, 8.9E13 atoms/cm2):
~d! as implanted,~s! 300 °C, ~m! 500 °C, ~n! 700 °C, ~3! 900 °C, ~h!
1000 °C.

TABLE II. Diffusion coefficient of several elements in SiO2 .

Element
D (@1000 °C) (cm2/s)
~from literatures data!

D (@1000 °C) (cm2/s)
~present work!

B 4.4310218a ,6310218

Al 1.65310216b ,5310218c

Ca ¯ 3.560.2310216

Sc ¯ ,1.1310218

Ti ¯ ,6310219

V ¯ ,1.8310217

Mn ¯ 8.860.1310217

Ga Immobiled ,6.0310218

Mo ¯ ,8310219

Si 9.8310219e

1.3310218f

O 2.2310216g

aSee Ref. 42.
bAt 1200 °C, see Ref. 43.
cAt 500 °C.
dSee Ref. 35.
eAt 1200 °C, see Ref. 27.
fAt 1200 °C, see Ref. 46.
gAt 1200 °C, see Ref. 47.
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28Si2
29Si that is more significant in Si than in SiO2 . It is

noted that while most elements have a smaller diffusion co-
efficient in SiO2 than in silicon, Rb is an exception. The
diffusion coefficient of Rb in SiO2 seems to be much larger
than that in Si.14 Presumably this may have to do with the
strong chemical reaction between Rb and oxygen and the
fact that Rb seems to form clusters in Si.

In Fig. 5~b!, depth profiles of In implanted in SiO2 are
shown. Up to 700 °C, there is not much movement of the In.
Following a 900 °C anneal, the In impurity has clearly dif-
fused toward the SiO2 /Si interface. After a 1000 °C anneal,
the concentration of In impurity from 0.15 to 0.5mm is
almost uniform.

Diffusion of halide elements in silicon is rapid at el-
evated temperatures. Even a high dose of BF2 shows almost
no F remaining after a 700 °C anneal.45 The results for F, Cl,
Br, and I in SiO2 indicate that impurity movement starts at

700 °C ~see Figs. 6 and 7!. By 900 °C, all of the halide
atoms have diffused out of the oxide and are not detected in
a SIMS depth profile. It is notable that this pattern of diffu-
sion holds true for elements as different in mass as F and I.

Of particular interest are the results showing no diffusion
of Ga in SiO2 @Fig. 3~b!#. Gallium is the source used in
focused ion beam~FIB! systems for sputtering of materials at
high lateral resolution. The gallium diffusion data are impor-
tant because they support the concept of analysis of a pat-
terned silicon wafer using FIB and then reinsertion of the
wafer back into the manufacturing process. A significant con-
cern has been the contamination of the process instrumenta-
tion, such as gate oxide deposition or diffusion furnaces, by
the gallium from the FIB. Another study41 has also shown
the lack of diffusion of Ga in SiO2.

IV. SUMMARY

Analyses of implanted species annealed in thermally
grown SiO2 show significantly less diffusion than that seen
for the same species in silicon. The results are important to
determine which contaminants are mobile and presumably
more threatening to the performance of a semiconductor
structure. Note that most anneals after oxide deposition in
silicon technology are less than 500 °C, and hence the lack
of movement of most species examined here can be viewed
as a positive result if these elements are under consideration
for introduction into the integrated circuit manufacturing
process. Similarly, Ga ions, frequently used in chip process-

FIG. 4. SIMS depth profiles of:~a! 40Ca ~150 keV, 1E14 atoms/cm2), ~b!
55Mn ~150 keV, 1.1E14 atoms/cm2), ~c! 79Se~180 keV, 1.9E14 atoms/cm2):
~d! as implanted,~s! 300 °C, ~m! 500 °C, ~n! 700 °C, ~3! 900 °C, ~h!
1000 °C.

FIG. 5. SIMS depth profiles of:~a! 85Rb ~180 keV, 7.5E13 atoms/cm2), ~b!
115In ~150 keV, 9.2E13 atoms/cm2): ~d! as implanted,~s! 300 °C, ~m!
500 °C, ~n! 700 °C, ~3! 900 °C, ~h! 1000 °C.
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ing repairs and sample preparation made using a FIB instru-
ment, exhibited minimum diffusion with anneal. It is in-
tended to expand this study to bulk SiO2 and to determine
the effect of the addition of other components to SiO2 .
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