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Molecular dynamics simulations are used to study the scattering of phonon wave packets of
well-defined frequency and polarization from individual point defects and from a field of point
defects in Si. The relative amounts of energy in the transmitted and reflected phonon fields are
calculated and the parameters that influence the phonon scattering process are determined. The
results show that the fractions of transmitted and reflected energies strongly depend on the
frequency of the incident phonons and on the mass and concentration of the defects. These results
are compared with the classic formula for the scattering strength for point defects derived by
Klemens, which we find to be valid when each phonon-defect scattering event is independent. The
Klemens formula fails when coupled multiple scattering dominates. The phonon density of states is
used to characterize the effects of point defects on mode mixing. © 2008 American Institute of
Physics. �DOI: 10.1063/1.2959840�

I. INTRODUCTION

The scattering of phonons from point defects is one of
the key mechanisms limiting the thermal conductivity of
electrical insulators. These point defects range from isotopic
defects to impurities to intentional dopants. The effect of
point defects on the thermal transport properties is exempli-
fied by diamond, in which isotopically purified diamond
�0.001% 13C� has a thermal conductivity at 80 K almost ten
times higher than that of natural diamond �1.1% 13C�.1 This
effect is also important in other materials. Particularly rel-
evant for this study, the thermal conductivity of 28Si epitaxial
films is 16�5% larger than the thermal conductivity of natu-
ral Si.2

Klemens3 analyzed the effects of a single isotopic defect
and determined the inverse relaxation time for phonon scat-
tering, 1 /�single, as

1

�single
=

a3

G
�mi − mav

mav
�2 �4

4�v3 , �1�

where � is the phonon angular frequency, a3 is the atomic
volume, G is the number of atoms in the crystal, � is the
velocity of waves with �=� /k, and k is the wave vector. In
deriving Eq. �1�, Klemens3 made the assumption that the
material was a Debye solid. The �2 in the Debye density of
states4 �DOS� leads to two powers of the frequency in Eq.
�1�, with the other two powers coming from the integration
over k-vectors. The true densities of states of materials are
significantly more complex than that of a Debye solid and

can be expected to lead to a more complex phonon-defect
scattering behavior.

More recently, Morelli et al.5 characterized the potential
strength of isotopic defects in terms of the scattering coeffi-
cient �, which was defined in 1957 by Slack6 as

� = �
i

ci�mi − mav

mav
�2

, mav = �
i

cimi, �2�

where ci is the atomic fraction of a component i, whose mass
mi deviates from the average, mav. Under this assumption
that multiple dopants act as independent scatterers, the scat-
tering rate depends linearly on the dopant concentration; Eq.
�1� can then be rewritten for multiple scatters in terms of
scattering coefficient � as

1

�multi
=

a3�

4��3�4. �3�

Cahill et al.7 recently measured the thermal conductivities of
epitaxial layers of Si doped with up to 1 at. % Ge and found
that the dependence of the thermal conductivity on tempera-
ture and concentration is consistent with Eq. �3� even at these
rather high dopant concentrations. This result is somewhat
surprising because the Klemens3 formula is derived under
the assumptions that the defects are isolated and isotopic in
nature, neither of which is true for Ge-doped Si. Abeles8

demonstrated good agreement between experiment and
theory using the Callaway model and scattering rate for point
defects given by Eq. �3� in the high-temperature limit for
alloys of SixGe1−x with x spanning the entire range from 0 to
1. This suggests that even for extremely high defect concen-
trations, the independent scattering model works at least rea-
sonably well.

a�Author to whom correspondence should be addressed. Electronic mail:
sphil@mse.ufl.edu.
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In this paper, we use molecular dynamics �MD� simula-
tion to explicitly simulate phonon-defect scattering pro-
cesses. We determine the range of concentrations, relative
masses, and frequencies over which the Klemens3 formula
�Eq. �3�� is valid and identify the reasons for its breakdown.

The paper is organized in the following manner. Section
II contains a brief discussion of the simulation methodolo-
gies. Phonon scattering from a single mass defect is dis-
cussed in Sec. III. Section IV elucidates the influence of
concentration of dopant on phonon scattering. The frequency
dependence for high dopant concentration is presented in
Sec. V. The effects of mass difference, dopant field, and the
size of the simulation cell on phonon scattering are addressed
in Sec. VI; Sec. VII contains our final discussion.

II. SIMULATION METHODOLOGY

The simulation methods used here are similar to those
that we have used previously for the simulation of phonon
wave packet scattering at interfaces.9 The basic idea, shown
in Fig. 1, is to construct a wave packet of phonons taken
from a single branch and of a narrow frequency range. This
wave packet is then launched from a region of perfect crystal
at a point defect or into a field of point defects of well-
defined concentration. This field of defects is taken to have a
finite thickness, such that some fraction of the incident vi-
brational energy is transmitted, with the rest reflected. To
monitor the scattering process itself, the time evolution of
the energy transmitted through the dopant field is character-
ized, as are the energies reflected from it and the polariza-
tions of both transmitted and reflected phonons. This wave
packet dynamics is carried out using conventional MD meth-
ods. The incident phonons have sufficiently low amplitude
that anharmonic coupling to other lattice modes is so weak
that phonons propagate in the perfect crystal without any
perceptible spreading or scattering; the ambient temperature
of the system is 0 K.

Silicon is used as a model system. For simplicity and to
separate the isotope effect alone, the dopant atoms only dif-
fer from Si in having a mass four times larger. While such a
mass difference is not of course physically achievable, it
amplifies the isotope effect, making it more amenable to
analysis. For real Ge-doped Si the ratio of atomic masses is
2.58 �i.e., 72.59 amu/28.09 amu�. The interatomic interac-
tions among the Si atoms and the dopant atoms are all de-
scribed by the well-known and well-characterized
Stillinger–Weber10 potential.11 The Si crystal is oriented such
that the x, y, and z axes correspond to the �100�, �010�, and

�001� directions in the diamond lattice; the lattice constant is
a=0.543 nm. The sides of the simulation cell have lengths
of Lx=Ly =2a=1.08 nm and Lz=1500a and 6000a
�0.81 �m and 3.26 �m�, depending on the specific simula-
tion. Periodic boundary conditions are applied in all three
spatial directions. Thus the system contains no surfaces;
however as discussed below we take advantage of the small
lateral dimensions to manipulate the phonon DOS and hence
the phonon-defect scattering processes. As discussed at the
appropriate points, for a few simulations we choose Lx=Ly

=4a.
The doped region has a thickness �z=z1−z2 �see Fig. 1�.

For Lx=Ly =2a the doped region of thickness �z=200a �used
in most of the simulations� contains a total of 6400 atoms;
replacing 1, 2, 5, 25, 50, and 100 Si atoms with dopant atoms
corresponds to concentrations of 0.016, 0.031, 0.08, 0.39,
0.78, and 1.56 at. %. The effect of the thickness of the
doped layer is explored in Sec. VI.

The incident phonons are longitudinal acoustic �LA�
phonons with frequencies f ranging from 0.5 to 10 THz.
Because the MD simulation places no restriction on the sym-
metry and frequency of the scattered phonons, the reflected
and scattered contributions are analyzed so as to distinguish
the LA from the transverse acoustic �TA� contributions. The
energy of the incident LA phonons is not sufficient to pro-
duce optical phonons, so they need not be considered.

Figure 2 shows the amplitudes of the atomic displace-
ments during a representative phonon scattering event, in this
case for a dopant concentration of 1.56 at. %. At t=0, the
initial LA wave packet, with frequencies in the range of
0.025 THz around a mean value of 2.964 THz �i.e., 2.952–
2.977 THz� and centered at z=−250a, is launched toward the
doped region. The leading edge of the wave packet reaches
the doped region and hits the first dopant at t=10.2 ps �not
shown�. The leading edge of the unscattered component of
the wave packet emerges from the dopant field at t
=26.3 ps, by which time a reflected wave is already evident.

FIG. 1. �Color online� Schematic of the simulation cell showing the doped
region. The fraction of energy reflected and transmitted are R and T, respec-
tively. The fraction of energy remaining in the dopant region is L.

FIG. 2. Snapshots from the scattering of an incident LA phonon with fre-
quency of 2.96 THz from a region containing 1.56 at. % concentration of
dopants. The total length of the periodic simulation cell in the z direction is
6000a=3.26 �m; the doped region spans the region −100a	z	100a, i.e.,
has a thickness of �z=108.6 nm.
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By t=60.1 ps a number of pulses of transmitted and re-
flected waves have emerged; however, there is still a signifi-
cant amount of energy trapped in the doped region. By t
=201.3 ps, the transmitted and reflected waves are ap-
proaching each other on the side of the periodic unit cell far
from the doped region; at this time the simulation is stopped.
Very little energy remains inside the defected region, allow-
ing us to determine the reflection and transmission coeffi-
cients with high precision.

After this scattering process is over, the total energy E of
the incident phonon wave packet may be divided into three
parts: the reflected energy Er, the transmitted energy Et, and
the energy that remains trapped in the doped region EL, as
illustrated in Fig. 1. The fraction of reflected energy is de-
fined as R=Er /E, the fraction of transmitted energy as T
=Et /E, and the fraction of trapped energy as L=EL /E, with
R+L+T=1.

The traditional theoretical analysis based on the
Klemens3 result is posited in terms of the scattering time,
whereas our results are naturally analyzed in terms of the
reflection and transmission coefficients. While intuitively we
expect them to be related, it is not a priori obvious that there
is a linear relationship between them. However, as we shall
see, the consistency of the analyses of our results will pro-
vide an a posteriori justification for treating the scattering
time and the reflection coefficient essentially interchange-
ably.

III. SCATTERING OF PHONONS FROM A SINGLE
DEFECT

As discussed in Sec. I, one of the predictions of the
Klemens3 formula is that the phonon-defect scattering rate
increases as the fourth power of the frequency. In this section
we explicitly simulate the case of phonon scattering from a
single dopant and analyze it in terms of the Klemens3 result.

Figure 3 shows the frequency dependence of T and R for
a single defect. We see that they are complicated functions of
the frequency. Generally, T is close to unity for f 	3 THz
and for f 
4 THz but drops to approximately 0.5 at around
3.5 THz.

We first analyze the low-frequency regime �f 	3 THz�.
As Fig. 4 shows, in this regime, the reflection coefficient
increases monotonically with frequency. Although the solid
line clearly indicates that the frequency dependence of the
reflection coefficient is close to the Klemens3 �4 depen-
dence, the log-log plot in the inset, for which the best-fit
exponent is 3.9, shows that the data do deviate systematically
from a simple power law. We thus conclude that in this low-
frequency regime, the Klemens3 result is reproduced at the
semiquantitative level.

The most interesting region is f =3–4 THz �see Fig. 3�,
over which we see a considerable dip in the transmission
coefficient, to a value of approximately 0.5 at 3.5 THz, with
the reflection coefficient increasing to a similar value. To
understand this reduction in the transmission coefficient, it is
necessary to examine the phonon DOS in some detail. Figure
5�a� shows the calculated contribution from acoustic modes
to the DOS of a large �i.e., essentially infinitely sized� single
crystal. The DOS is determined by diagonalizing the dy-
namical matrix for a single unit cell for a set of wave vectors
corresponding to the reciprocal lattice vectors of the super-
cell used in the dynamical simulations. LAzero corresponds to
LA modes in which kx=ky =0, of which there are so few that
they cannot be seen on this figure. LAkxy corresponds to LA
modes for which kx�0 and/or ky �0. As expected, the DOS
shows Debye-like behavior at lower frequencies; this DOS
agrees well with that previously published for the
Stillinger–Weber10 potential.9,11

The size and shape of the simulation cell can have a
significant effect on the DOS. In particular, the periodic sys-
tem that we are using for our phonon/defect scattering simu-
lations is 2�2�N �N
2000�. As shown in Fig. 5�b�, the
TA modes no longer show Debye behavior. Indeed, below 4
THz, the only TA phonon modes present are the very few
that correspond to wave vectors with kx=ky =0. However, at
frequencies just above 4 THz, modes with nonzero kx and ky

FIG. 3. Frequency dependence of transmission �T� and reflection coeffi-
cients �R� of phonon scattering from a single defect. The inset shows the
fraction of the reflected energy in LA and TA modes. For all frequencies, the
amount of trapped energy is negligible.

FIG. 4. Reflection coefficient at low frequencies and the best fit to a fourth
power. The inset shows the log-log plot with a slope corresponding to a
power exponent of 3.9.
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begin to appear in the spectrum, resulting in a large increase
in the DOS due to TA modes. In the absence of significant
DOS in the region of �3.5 THz, the significant reduction in
the transmission coefficient cannot thus be understood in
terms of mode mixing between LA and TA modes.

The origin of the dip in the transmission coefficient ac-
tually lies with the dopants themselves. In particular, the
dopants have a significant effect on the phonon DOS, as
shown in Fig. 6, both for the 2�2�N system �Fig. 6�a�� and
for the large single crystal �Fig. 6�b��. Of particular impor-
tance, in the frequency range of 3–4 THz, there are addi-
tional modes for the doped systems �green and red� that are
not present in the perfect crystal �blue�. To identify the origin
of the modes, it is instructive to compute the local DOS
�LDOS� associated with these modes. The LDOS at an
atomic site i for a given frequency � is given by

Di��� = �
��

i��
� i����� − ��� , �4�

where i�� are the components of the phonon polarization
vector with frequency �� and � labels the components of the
phonon polarization vector. Figure 7, the LDOS for f
=3.4–3.6 THz, indicates that these new modes are strongly
associated with specific atoms in the system. For the small
unit cell analyzed in this DOS analysis, 1.56% defect con-
centration corresponds to a single mass defect. Examination

of the structure shows that atom 29, at which there is a single
strong peak, is the dopant atom, while the four smaller peaks
�atoms 8, 25, 38, and 55� correspond to the first nearest
neighbors of the dopant. There is thus a strong, spatially

FIG. 5. Phonon DOS for �a� a large periodic perfect Si crystal �only shown
up 10 THz with LA and TA modes in which the DOS of LAzero is too small
to be visible� and �b� a perfect Si crystal with dimensions of 2�2�N �N
=100�. FIG. 6. �Color online� DOS as a function of dopant concentration for sys-

tems with sizes of �a� 2�2�N, �N=100�, and �b� 20�20�20.

FIG. 7. Local DOS at f =3.4–3.6 THz associated with the dopant atoms.
The locations of taller peaks correspond to the dopant atoms. For 1.56%
doping �a single dopant out of 64 atoms� the four small peaks are contrib-
uted by four nearest neighbors of the dopant atom. For 6.25% the four tall
peaks correspond to the dopant atoms. �For clarity the 6.25% curve has been
shifted 80 units upward along the Intensity axis.�
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local resonant excitation in the region of the defect at this
frequency. Such resonance scattering from a low-frequency
local mode associated with the scattering of phonons by a
localized perturbation in the lattice was previously seen by
Klein.12 Moreover, Walker and Pohl13 observed that resonant
scattering with the frequency lying in the acoustic continuum
in a solid solution of KCl containing impurities resulted in a
decrease in the thermal conductivity. We can then understand
the strong change in the transmission and reflection coeffi-
cients as arising from the scattering of the LA mode from
these point-defect resonant states. Also, as shown in Fig. 7,
for 6.25% doping the four dopants randomly placed among
64 Si atoms result in the four green peaks. The four large
peaks, corresponding to the dopant atoms themselves, are of
different heights because of their differing positions relative
to each other. This large amplitude vibration in the proximity
of the point defect will tend to couple directly to other pho-
non modes, with the results that the incident phonon is re-
emitted �i.e., scattered� in the backward and forward direc-
tions with almost equal amplitude.

At yet higher frequencies, the absence of these defect
resonances might be expected to yield a return to
Klemens-like3 behavior, with a transmission coefficient that
continues to decrease strongly with frequency. However, the
assumption of a Debye-like DOS is not valid in this fre-
quency regime. Indeed, as Fig. 5�b� showed, for frequencies
of 4–7 THz almost all of the DOSs arise from TA modes. We
thus interpret the response on the system in this frequency
regime as arising primary from scattering into the TA modes.
This is evidenced in the inset to Fig. 3, which shows that
essentially all of the reflected energies in the frequency range
of 4–7 THz is in the form of TA phonons. However, more
than 85% of the transmitted energy is contributed as an un-
scattered LA mode; the remaining transmitted energy is in
the form of TA vibrations. Since scattering into the TA
modes involves a complete change in the nature of the vibra-
tions, it is not surprising that very similar amounts of energy
are contained in the transmitted and reflected TA channels.

Finally, the DOS in Fig. 5�b� shows that LAkxy modes
appear in the spectrum at �7 THz. These appear to offer an
easier path to transmission than do the TA modes, as evi-
denced by the increase in the transmission coefficient to a
value close to unity at this frequency �see Fig. 3�.

In conclusion, this analysis shows that the complex fre-
quency dependence of a single point defect on phonon
propagation arises from a subtle interplay among the incident
LA phonons, on the one hand, and the TA modes, LAkxy

modes, and defect resonance modes on the other. With this
mechanistic understanding of the effects of phonon scatter-
ing from a single defect, we now examine the effects of
multiple defects on the phonon-transport properties.

IV. DOPANT CONCENTRATION DEPENDENCE

As a reference basis for the analysis of a system contain-
ing multiple dopants, we first estimate the transmission and
reflection coefficients of a dopant field based on an indepen-
dent scattering model. For randomly placed dopants, it is
reasonable to assume that interference is incoherent, equally

likely to be constructive and destructive, resulting in the
scattering events being effectively independent of each other.
However, as the dopant concentration increases, interference
between successive scattering events can be expected to be-
come more coherent, with the effect that the independent
scattering model will break down. The sole inputs to this
simple model are the above results for a single dopant. We
also assume that transmission and reflection coefficients for
each individual defect in a field of defects are the same as the
single defect values, regardless of the actual concentrations
of defects. The total transmission and reflection coefficients
are then determined from the effects of multiple independent
such scattering events. An essentially identical argument was
previously used to predict the transmission coefficient for
superlattices.14

Let T1 and R1 be the transmission and reflection coeffi-
cients of single defect, as calculated in Sec. III. For two
scattering events, we obtain the formulas of T2 and R2 �with
the subscript denoting the number of events� as14

T2 =
T1

1 + R1
or T2 =

T1

2 − T1
. �5�

Likewise for N scattering events,

TN =
T1

N − �N − 1�T1
. �6�

Figure 8�a� compares the transmission coefficients cal-
culated by Eq. �6� �solid lines� with the simulation results for
frequencies of 2.96, 3.53, 3.68, and 5.5 THz. As shown in
Fig. 8�a�, the predictions of Eq. �6� are consistent with the
results from multiple defects for low concentrations; for
higher concentrations, the MD values depart significantly
from the predictions.

We have analyzed the results in Fig. 8�a� in terms of the
phonon wavelength and the mean distance between defects
�easily determined from the concentration�. With the bubble
size indicating the deviation between MD results and inde-
pendent scattering model, Fig. 8�b� shows a map in the space
of phonon wavelength and mean defect separation in which
three regions can be identified. The “independent scattering”
regime corresponds to defect concentrations in which the
predictions match the MD simulations to within 5%. The
intermediate scattering regime corresponds to the regime in
which the independent scattering predictions are at least
semiquantitatively correct �to within 5%–50%�. The “strong
scattering” regime then corresponds to that region in which
the independent scattering fails significantly �
50% error�.
We see that the independent scattering model is well obeyed
when the separation of defects is considerably larger than the
phonon wavelength. As the defect separation decreases the
scattering becomes stronger, resulting in larger differences
between the results of MD and the independent scattering
model when the separation of dopants is similar to or less
than the phonon wavelength.

We now turn to direct simulations of the scattering from
multiple dopants. Figure 9�a� shows T and R calculated from
MD simulations as a function of concentration up to 1.6%
for f =2.96 THz. We can characterize this behavior in terms
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of three regimes. The low-concentration region �up to
�0.4%� corresponds to the independent and intermediate
scattering discussed above. In the second concentration re-
gime, 0.4%–0.8%, the transmission coefficient slowly de-
creases. Although not reproduced by the independent scatter-
ing model, this seems to be consistent with multiple
scattering events. The third concentration regime, from
0.9%–1.6%, is marked by the considerable drop in transmis-
sion coefficient at a concentration of �0.9%, followed by a
slow recovery with further increasing frequency. Figure 9�b�
shows that this drop is also correlated with the onset of mode
conversion from LA to TA modes in both reflection and
transmission. The question is then why is this mode conver-
sion not present at all concentrations? Analysis of the DOS
again provides the answer. We saw in Fig. 6 that as the

dopant concentration increases, the frequency of the local
modes associated with the defects decreases. We thus inter-
pret the onset of scattering into TA modes in Fig. 9�b� as
arising from the lowest frequency defect state decreasing to
2.96 THz at a concentration of �0.8%. The nearly equal
transmission and reflection coefficients from the TA modes
in this regime are consistent with the phonons being scat-
tered sufficiently often in the doped region that they lose any
“memory” of where they came from. Thus, consistent with
the diffuse mismatch model for phonon-interface scattering,
the vibrational energy is emitted from the doped region ac-
cording to the available DOS in the forward and backward
directions. Because the doped region is surrounded by per-
fect crystal on both sides, the DOS is the same in both di-
rections; thus the reflection and transmission coefficients for
the TA modes should thus be equal, as they almost are. This
mode mixing into the TA modes is accompanied by a signifi-
cant drop in the LA transmission coefficient, as shown in
Fig. 9�c�. The increase in T of TA modes and decrease in T of
the LA modes results in a nearly concentration independent
transmission and reflection behavior in the high concentra-
tion regime �c
 �1%�.

To characterize the scattering process from a different
perspective, we have determined the time over which the
phonon wave packet actually interacts with the dopant field.
The idea behind this is that the more scattering events the
phonon wave packet undergoes, the more time it will remain
in the dopant field; moreover, the more scattering events the
wave packet undergoes, the more likely it is to undergo a
significant amount of mode mixing. To precisely determine
the scattering time, time is counted from the instant that the
center of incident wave packet hits the first defect. Figure 10
shows the fraction of energy L �the “trapped energy”� re-
maining in the doped region at any given time as a function
of the time. L decreases as time increases, a result of the
energy emerging from the dopant region into the transmitted
and reflected packets. The data in Fig. 10 are reasonably well
fit by the exponential function

L = exp�−
t − t0

�
� , �7�

from which we can define a trapping time �. Figure 11�a�
shows the concentration dependence of �. We see that the
trapping time tracks quite well with the reflection coefficient
�line: taken from Fig. 9�a��, indicating that they are measur-
ing essentially the same physical effect. This provides the
promised a posteriori justification for the use of the reflec-
tion coefficient as a surrogate quantity for the scattering
time.

The phonon diffusivity D can be determined from the
above scattering times obtained directly from the MD simu-
lation,

D =
��z�2

�
, �8�

where �z is the length of doped zone in the z axis. An inde-
pendent analytic estimate of the diffusion constant can be
obtained from

FIG. 8. �Color online� �a� Comparison of transmission coefficients directly
from MD simulation �data points� and from the independent scattering
model �lines� at various frequencies. The MD simulation results �data
points� are for structures with 2, 4, 8, 16, 32, 50, and 64 dopants, corre-
sponding to concentrations of 0.015, 0.03, 0.06, 0.13, 0.25, 0.5, 0.78, and
1.0 at. %, respectively. The legend is frequency in the unit of terahertz. �b�
Bubble map in the space of phonon wavelength and average defect separa-
tion. The rightmost line shows the deviation of MD simulation and predic-
tion by independent scattering model is less than 5%. The leftmost line
shows that the deviation is around 50%. The diagonal shows the line for
which the average defect separation is equal to the phonon wavelength.
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D = �2�multi, �9�

where � is the group velocity of phonon, which is �
=7896 m /s for LA phonon of 2.96 THz. �multi can be calcu-
lated from Eq. �3�. The two independent estimates of the
diffusion constant are compared in Fig. 11�b�. Given the
rather simple analyses that yielded these estimates, the agree-
ment between the two is very satisfactory: both are of a
similar order of magnitude, and both show the same trend
with concentration, albeit with the theoretical formula yield-
ing consistently higher values.

V. FREQUENCY DEPENDENCE FOR HIGH DOPANT
CONCENTRATION

We have seen that the Klemens3 formula gives the fre-
quency dependence reasonably well for a single defect at low
frequencies. In this section we examine the situation of high
concentrations and high frequencies.

Figure 12�a� shows the frequency dependence of the
transmission coefficient for defect concentrations of 0.25%,
0.78%, and 1.56% respectively. The response at lower fre-
quencies is rather similar to that for the single dopant case. In
particular, the transmission coefficient generally decreases at
low frequencies. As shown in a log-log plot �Fig. 13� this

low-frequency regime �f 	3 THz� is also reasonably well
fitted by a power law. However, the power dependence is no
longer close to the Klemens3 value of 4, but 2.53 and 2.39
for 0.78% and 1.56%, respectively. For comparison, the
single defect case with the exponent of 3.9 is also reproduced
from Fig. 4. These show that as the concentration increases,
the frequency dependence of the phonon scattering de-
creases.

As in the single defect case, there is a significant drop in
the transmission coefficient in the region of 3.5 THz. How-
ever, for these larger concentrations the effect is much larger,
with the transmission coefficient actually dropping to almost
zero, as compared to 0.5 for the case of the single dopant.
These near-zero values for the transmission coefficient at 3.5
THz are a direct result of the 0.5 transmission coefficient for
a single point defect that arises from the local resonant state.

FIG. 9. Concentration dependence of phonon scattering
�2.96 THz, �z=200a�. �a� Reflection and transmission
coefficients, R and T, vary with the dopant concentra-
tion. �b� The fractions of reflected and transmitted en-
ergies of the TA mode vary with the dopant concentra-
tion. �c� The fractions of reflected and transmitted
energies of the LA mode vary with the dopant
concentration.

FIG. 10. Fraction L of trapped energy as a function of the time. The labels
are the dopant concentration in at. %. The phonon frequency is fixed at 2.96
THz.

FIG. 11. �a� The phonon trapping time as a function of the concentration.
The phonon frequency is fixed at 2.96 THz. For comparison the reflection
coefficient R taken from Fig. 9�a� as a function of the concentration is
replotted. �b� The diffusion constants obtained by theoretical analysis via
Eqs. �3� and �9� �solid symbols� and from the trapping time fit to the MD
results via Eq. �8� �open symbols�.
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In particular 0.25%, 0.78%, and 1.56% correspond to 16, 50,
and 100 defects, respectively. For these concentrations, the
independent scattering model of Eq. �6� yields transmission
coefficients of 0.059, 0.020, and 0.01. The actual transmis-
sion coefficients are actually somewhat lower, as we expect
when the independent scattering approximation becomes
poor: 0.038 for 0.25% and almost zero for 0.78% and 1.56%.
The increase in the transmission coefficient above the reso-
nance is also analogous to that seen for the single dopant
case and is again related to mode mixing. The new feature at
these high dopant concentrations is the large drop in the fre-
quency range above 4 THz. We can see in Figs. 12�b� and
12�c� that the fraction of transmitted and reflected energies in
the TA modes increases rapidly above 4 THz �consistent with
DOS in Fig. 5�, reaching a maximum of �0.7 at just below 6
THz. The increase in the transmission coefficient above
�7 THz is again largely the result of the availability of LAxy

modes in the DOS �see Fig. 5�. It should be noted that L, the
fraction of trapped energy, increases to more than 10% when

the concentration increases especially for 0.78 and
1.56 at. %. Therefore, at higher frequencies �above
�4 THz� the curve in Fig. 12 should be viewed more as a
trend than as highly precise values for T and R.

VI. EFFECTS OF MASS AND DISTRIBUTION OF
DOPANTS AND SIMULATION CELL SIZE

Up to this point, we have taken the mass of the dopant
atoms to be four times that of Si. To explore the effect of
different masses, we have also simulated systems with a dop-
ant mass of only twice that of silicon. As is to be expected,
the lighter dopants modify the phonon DOS to a lesser de-
gree than the heavier dopants. In particular, as shown in Fig.
14�a�, the lighter mass results in resonant states that are
closer to the lower edge of the continuum states than for the
heavier mass. The consequence of this is that the drop in the
transmission coefficient due to the resonance is at a higher
frequency, approximately 4 THz as shown in Fig. 14�b�, than
it was for the heavier dopant. Moreover, this weaker dopant
effect results in a somewhat smaller decrease in the overall
transmission coefficient at the minimum.

For all of the studies described above, we arbitrarily
chose the doped region to be of thickness 200a, and the
distribution of dopants to be uniform within this range. In
order to explore the effect of the thickness of the doped
region, �z, in Fig. 15 we compare the frequency dependence
for two different thicknesses of dopant region, but for the
same concentration. Reassuringly, the trends in T are not
affected by the thickness, albeit with the smaller �z giving a
slightly larger T, which is reasonable since for a fixed con-
centration there are one-fifth the total number of dopants in
the 40a thick region than the 200a region. We have also
examined the effects of a graded rather than uniform distri-
bution of dopants �not shown�; we find that variations in the
dopant distribution have little effect on the overall transmis-
sion and reflection coefficients.

All the results shown so far have been for a periodic
simulation box of Lx=Ly =2, Lz=6000 �2�2�6000� unit

FIG. 12. Frequency dependence of phonon scattering
��z=200a=108.6 nm� with different concentrations of
dopant. �a� The fraction of total transmitted energy T.
�b� The fraction of transmitted energy for the TA mode.
�c� The fraction of reflected energy for TA mode. The
legend is the dopant concentration in unit of at. %.

FIG. 13. Log-log plot of reflection coefficient vs frequency for f 	3 THz
and different concentrations. The single defect data are taken from the inset
of Fig. 4.
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cells, in which the dopants are randomly distributed in a
region of thickness �z=200a. It is also of interest to examine
the effects of different choices of Lx, Ly because, as Fig. 5
showed, these lateral dimensions have a significant effect on
DOS. However, we need not be concerned with the effect of
length in the z direction since simulations show that increas-
ing Lz has no effect on the results.

To explore the effect of the area of a simulation cell, we
use a simulation cell of 4�4�N instead of 2�2�N. Fig-
ure 16�a� shows the DOS for the 4�4�N system; here there

are new states at frequencies below those previously present
in the 2�2�N DOS. However, the dopants still result in
additional contributions to the DOS in the frequencies
around 3.5 THz, plus an additional contribution below the
lowest continuum state at �2 THz. This modifies the scat-
tering behavior of the systems, as shown in Fig. 16�b�. In
particular, there is now an additional decrease in the trans-
mission coefficient just above 2 THz, which is consistent
with the presence of phonon states in this frequency range
that were absent in the 2�2�N system. To understand the
results in Fig. 16�b�, the local DOS with 6.25% dopant con-
centration for the 4�4�100 system were determined at
2.0–2.2, 2.9–3.1, and 3.6–3.8 THz, which correspond to the
three dips in the transmission coefficient in Fig. 16�b� for the
4�4�100 system. In each case the LDOS showed peaks on
the dopant atoms and their neighbors, confirming that the
dips are resonant effects.

VII. DISCUSSION

This study provides a detailed analysis of the domain of
applicability of the Klemens3 analysis of phonon-defect scat-
tering. The Klemens3 analysis is predicated on the indepen-
dent scattering of phonons from isolated defects in the ab-
sence of mode mixing. By constraining the cross section of
the simulation cell, by looking at low frequencies, and by
exploring the low-concentration limit, we constructed the
simulations to come as close to these conditions as possible.
For this somewhat artificial scenario we have indeed estab-
lished that Klemens’3 prediction of �4 dependence of the
scattering rate is obeyed, at least semiquantitatively. How-
ever, more realistic simulation conditions lead to both quan-
titative and qualitative breakdowns in this behavior. First, we
found that scattering events are only independent of each

FIG. 14. Effect of atomic mass of dopants on the phonon scattering. �a� The
DOS for dopant with two times the mass of Si with different dopant con-
centrations. �b� The fraction of total transmitted energy T for c
=0.78 at. %. The labels 2 times and 4 times correspond to the atomic mass
for dopants that are two times and four times the atomic mass of Si,
respectively.

FIG. 15. The effect of the thickness of the dopant region �z �0.78 at. %� on
the fraction of total transmitted energy T.

FIG. 16. �Color online� The effect of the area of the simulation box size in
the x and y directions. �a� The DOS for the 4�4�100 system with and
without defects �show only up to 5 THz�. �b� The transmission coefficients
for the 2�2�1500 and 4�4�1500 systems �c=0.78 at. %, �z=40a�. L
denotes the fraction of trapped energy.
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other if the separation of the defects is at least of the order of
the phonon wavelength, a situation that is reasonably well
obeyed for low defect concentrations. This, however, leads to
a decrease in the exponent of the Klemens3 frequency depen-
dence but does not lead to the complete breakdown of
Klemens-like3 behavior. Second, mode mixing at low fre-
quencies was suppressed by using a simulation cell with a
very small cross section, thereby cutting off the low-
frequency TA modes. However, we saw that for simulation
cells with larger cross sections, the frequency range in which
Klemens-like3 behavior is seen was significantly reduced.
Third, the introduction of resonant modes in the vibrational
properties due to the presence of the dopant is not accounted
for in the Klemens3 model. As we have also seen, these
resonant modes can lead to a significant modification of the
phonon-defect scattering behavior over a frequency range of
�1 THz or more.

Finally, returning to the experiments that motivated this
work, the atomic mass ratio of dopant Ge to Si is 2.58 and
the highest dopant concentration studied was 1.0 at. %. Fol-
lowing the idea that Klemens-like3 independent and interme-
diate scattering regimes are valid for lower dopant concen-
tration and for frequencies below the resonant frequency,
they can be expected to over a wider frequency and concen-
tration domain for Ge-doped Si than for our model defects.
We may thus interpret the experimental behavior of the Ge-
doped Si as predominantly arising from phonon-defect inter-
actions that correspond to the independent and intermediate
scattering regimes.
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