
University of Central Florida University of Central Florida 

STARS STARS 

Faculty Bibliography 2000s Faculty Bibliography 

1-1-2008 

Numerical analysis of acoustic wave propagation in layered Numerical analysis of acoustic wave propagation in layered 

carbon nanofiber reinforced polymer composites carbon nanofiber reinforced polymer composites 

Li Sun 

Yong Yu 

Gangbing Song 

Jihua Gou 
University of Central Florida 

Find similar works at: https://stars.library.ucf.edu/facultybib2000 

University of Central Florida Libraries http://library.ucf.edu 

This Article is brought to you for free and open access by the Faculty Bibliography at STARS. It has been accepted for 

inclusion in Faculty Bibliography 2000s by an authorized administrator of STARS. For more information, please 

contact STARS@ucf.edu. 

Recommended Citation Recommended Citation 
Sun, Li; Yu, Yong; Song, Gangbing; and Gou, Jihua, "Numerical analysis of acoustic wave propagation in 
layered carbon nanofiber reinforced polymer composites" (2008). Faculty Bibliography 2000s. 1030. 
https://stars.library.ucf.edu/facultybib2000/1030 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Central Florida (UCF): STARS (Showcase of Text, Archives, Research & Scholarship)

https://core.ac.uk/display/236316472?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/facultybib2000
https://stars.library.ucf.edu/facultybib
https://stars.library.ucf.edu/facultybib2000
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/facultybib2000/1030?utm_source=stars.library.ucf.edu%2Ffacultybib2000%2F1030&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


J. Appl. Phys. 104, 043522 (2008); https://doi.org/10.1063/1.2973039 104, 043522

© 2008 American Institute of Physics.

Numerical analysis of acoustic wave
propagation in layered carbon nanofiber
reinforced polymer composites
Cite as: J. Appl. Phys. 104, 043522 (2008); https://doi.org/10.1063/1.2973039
Submitted: 07 April 2008 . Accepted: 23 June 2008 . Published Online: 27 August 2008

Li Sun, Yong Yu, Gangbing Song, and Jihua Gou

ARTICLES YOU MAY BE INTERESTED IN

Shock-wave propagation through pristine -SiC and carbon-nanotube-reinforced -SiC matrix
composites
Journal of Applied Physics 106, 014311 (2009); https://doi.org/10.1063/1.3152587

Free transverse vibration of the fluid-conveying single-walled carbon nanotube using nonlocal
elastic theory
Journal of Applied Physics 103, 024302 (2008); https://doi.org/10.1063/1.2822099

Wave propagation in carbon nanotubes via nonlocal continuum mechanics
Journal of Applied Physics 98, 124301 (2005); https://doi.org/10.1063/1.2141648

https://images.scitation.org/redirect.spark?MID=176720&plid=1007075&setID=379065&channelID=0&CID=326256&banID=519757311&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=c32a5000ced618b0abcb732cad8a3763ffcaf8ac&location=
https://doi.org/10.1063/1.2973039
https://doi.org/10.1063/1.2973039
https://aip.scitation.org/author/Sun%2C+Li
https://aip.scitation.org/author/Yu%2C+Yong
https://aip.scitation.org/author/Song%2C+Gangbing
https://aip.scitation.org/author/Gou%2C+Jihua
https://doi.org/10.1063/1.2973039
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.2973039
https://aip.scitation.org/doi/10.1063/1.3152587
https://aip.scitation.org/doi/10.1063/1.3152587
https://doi.org/10.1063/1.3152587
https://aip.scitation.org/doi/10.1063/1.2822099
https://aip.scitation.org/doi/10.1063/1.2822099
https://doi.org/10.1063/1.2822099
https://aip.scitation.org/doi/10.1063/1.2141648
https://doi.org/10.1063/1.2141648


Numerical analysis of acoustic wave propagation in layered carbon
nanofiber reinforced polymer composites

Li Sun,1,a� Yong Yu,1 Gangbing Song,1 and Jihua Gou2

1Department of Mechanical Engineering, University of Houston, Houston, Texas 77204, USA
2Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando,
Florida 32816, USA

�Received 7 April 2008; accepted 23 June 2008; published online 27 August 2008�

Polymer composites reinforced by carbon nanofibers �CNFs� in the form of paper sheet show
significant vibration and acoustic damping improvement when compared to pure matrix materials.
Without looking into the microscopic energy dissipation mechanisms, this paper analyzes the wave
propagation in the composites from a macroscopic point of view. The CNF nanocomposites in this
study were treated as stacking of alternating layers of pure polymer and CNF reinforced polymer.
Analyses of acoustic wave propagation focused on revealing the effects of acoustic impedance
discontinuity at the interfaces of the layered structure. Plane wave transmission coefficient has been
calculated as a function of the number of the layer repeats and thickness at different wave
frequencies. Oscillations in the transmission coefficient have been observed when the acoustic
wavelength is on the same order of the bilayer thickness, indicating the possibility of designing the
nanocomposite structure to optimize noise reduction characteristics. The numerical analysis
converges with effective media theory when acoustic wavelength is much larger than the layer
thickness. © 2008 American Institute of Physics. �DOI: 10.1063/1.2973039�

I. INTRODUCTION

Fiber reinforced polymer matrix composites �PMCs� are
widely used due to their light weight, high specific strength,
corrosion/fatigue resistance, and chemical stability. Starting
from the 1950s, high performance PMCs reinforced by con-
tinuous carbon microfibers or carbon black particles have
been developed for aerospace and military applications.
These composites now can be found in commercial aircrafts,
industrial structures such as wind blades, pressure vessels,
and sports and leisure equipments.1 With the discovery of
carbon nanomaterials in 1980s, there have been increasing
interests and efforts in the development and application of
PMCs using carbon nanostructures. Majority of the research
have been focused on using carbon nanotubes �CNTs� as
fillers to take advantage of their large surface area, superior
mechanical properties, unique electrical and thermal proper-
ties, and thermal/chemical stability. Recent studies showed
that these CNT-PMCs could also have improved vibration
and acoustic damping properties.2–6 Vibrations are normally
undesirable for structures, due to the need for structural sta-
bility and dynamic response, position control, and durability.
At the same time, long-term exposure to even relatively low
levels of acoustic signals has been shown to be potentially
harmful to humans. Thus both vibration and acoustic damp-
ing are important issues for PMC applications.

Energy dissipation in composites can come from the in-
trinsic viscoelasticity of the matrix and filler, as well as the
dynamic interface interactions between the filler and the ma-
trix. Equally important, the wave propagation and reflection
can also influence performance of the material. In most of
the recent studies, PMCs with nanoscale fillers have been

synthesized by direct mixing7–10 or in situ polymerization11,12

in order to control nanomaterial distribution �Fig. 1�b��. The-
oretical analyses of the wave propagation and attenuation
showed that in composites with uniformly distributed fillers,
when the acoustic wavelength was several orders larger than
the filler characteristic size, Rayleigh-like scattering domi-
nates and the acoustic attenuation caused by nanoscale fillers
is negligible.13,14 Wave attenuation due to scattering only be-
comes significant when the size of the inclusions is compa-
rable with acoustic wavelength.15–18

In this study, loose carbon nanofibers �CNFs� were first
assembled into interconnect and self-supportive sheets �Fig.
1�c�� before being incorporated into PMCs.19–21 This ap-
proach not only improves the efficiency of material handling
and synthesis reproducibility, more importantly, the porosity
and the electrical conductivity CNF sheets can be controlled.
After introducing carbon paper sheets, the PMCs showed
significant vibration damping ratio increase.22 The introduc-
tion of CNFs sheet as reinforcement creates drastic differ-
ences in the mechanical responses of pure polymer and rein-

a�Electronic mail: lsun4@uh.edu.
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FIG. 1. Schematics of the two CNF structures. �a� Loose powerlike CNFs,
�b� uniformly distributed composite, �c� assembled CNF sheets, �d� compos-
ites reinforced by CNF sheets, and �e� CNF sheet reinforced composite
modeled as layered structure.
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forced layers and thus results in discontinuity in acoustic
impedance at the interfaces. Considering the similar wave
propagation characteristics as photonic structures,23,24 this
paper reports on the study of wave propagation in a layered
structure �Fig. 1�e�� to evaluate the effects of these CNF
sheets in the matrix.

II. ACOUSTIC WAVE PROPAGATION THEORY

The wave scattering cross section of one single spherical
obstacle is proportional to k4a6, where k �=2� /�, � is the
wavelength� is the wave vector and a is the particle radius.
When the particle size is much smaller than the wavelength,
the normalized scattering cross section in the Rayleigh limit
is very small and independent of particle shape. Due to the
fact that acoustic wavelength is normally �even for super-
sonic frequencies� several orders of magnitude larger than
the CNF sizes, the continuous solid media approximation is
valid where the composite structure can be viewed as the
stacking of two types of homogenous layers. Multiple scat-
tering becomes important only when the scatter size becomes
comparable to the wavelength. Discussion on the acoustic
wave propagation in a medium containing a random array of
obstacles �or scatters� can be found in Ref. 17.

To simplify the discussion, only the normal incident
plane wave propagation is considered here. In this case, only
longitudinal wave propagates in the material when continu-
ous medium approximation can be satisfied. The normal in-
cident plane acoustic wave propagation in a bilayer structure
with infinite lateral dimensions is considered �Fig. 2�. A fixed
bilayer structure is assumed to exist throughout the sample
with perfect interfacial bonding. Since all plane acoustic
waves can be represented by the superposition of a series of
plane harmonic waves through Fourier transformation, the
problem is simplified by investigating plane harmonic wave
propagation.

Based on the wave propagation theory,25,26 the acoustic
wave field in the air can be described by a displacement
function u�z , t� when the wave is propagating along the z
direction as

u�z,t� =
���z,t�

�z
, �1�

where ��z , t� is defined as the longitudinal wave potential
and satisfies the relation

�2�

�t2 = ca
2�2�

�z2 , �2�

where ca is the acoustic wave speed in the air. A general
solution for the wave potential with arbitrary amplitude A,
angular frequency �, and wave number ka is given as

��z,t� = Aei�kaz−�t�, with ka =
�

ca
and ca =

�

�
1/2, �3�

where � is one of the Lame’s constants and � is the air
density.

Similarly, the acoustic wave field in the two nanocom-
posite constituents can be described by the displacement
function u�z , t� determined by the Lame’s constants and den-
sity of the two constituent layers as

ci = ��i + 2�i

�i
�1/2

, i = 1,2. �4�

The normal strain and the normal stress are assumed to be
continuous at interfaces in the layered structures. As a result,
the interfacial boundary conditions can be expressed as �u�
=0 and �T33�=0, where T33 is the normal tensile stress and
can be written in terms of wave potential as

T33 = �� + 2��
�u

�z
= �� + 2��

�2�

�z2 . �5�

Based on this, the boundary conditions at the interfaces can
be written as

� ��

�z
� = 0, ��� + 2��

�2�

�z2 � = 0. �6�

In the layered structure, the wave in each layer is considered
to be the summation of a forward propagation wave and a
backward reflective wave. Based on this consideration, the
one-dimensional wave potential can be expressed as

�i = Aie
i�kizi−�t� + Bie

i�−kizi−�t�, Vi = Bi/Ai, �7�

where Vi is defined as the reflection coefficient.
When considering a composite to contain a total number

of L layers, following relationships can be established:

�0 = A0ei�k0z−�t� + B0ei�−k0z−�t�, �8�

�1 = A1ei�k1z−�t� + B1ei�k1z−�t�, �9�

�2 = A2ei�k2z2−�t� + B2ei�k2z2−�t�, z2 = z − h1, �10�

�L = ALei�kLzL−�t� + BLei�kLzL−�t�,

�11�
zL = z − L � h1/2 − �L/2 − 1� � h2,

where ki is the wave number in the ith layer, and h1 and h2

are the thickness of the two constituent layers. For the trans-
mitted wave back into the air, there is no reflection and the

.....

11111 ,,,, hρυµλ

00 , ρλ

Transmitted wave

air

air

22222 ,,,, hρυµλ

0

z

FIG. 2. Schematics of the normal incident plane wave propagating through
a layered structure.
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wave potential only contains the forward propagation wave
as

�L+1 = AL+1ei�kL+1zL+1�t�, zL+1 = z − L � h1/2 − L � h2/2,

�12�

where kl+1 is the wave number in the air and a wave trans-
mission coefficient W of the whole structure can be defined
using wave amplitude of the exiting and the incident wave as

AL+1 = W � A0. �13�

The wave amplitude and stress amplitude at the nth interface
can be expressed in terms of the coefficients of the potentials
as

u�n� = ikn�An − Bn� , �14�

T33
�n� = ��n + 2�n��− kn

2��An + Bn� , �15�

where n denotes the nth interface between �n−1�th layer and
nth layer. Based on above equations, the wave amplitudes
and the stress amplitudes obey the relations

�u�n+1�

T33
n+1 � = 	 cos knhn

sin knhn

��n + 2�n�kn

− ��n + 2�n�kn sin knhn cos knhn



��u�n�

T33
�n� � . �16�

Based on the 2–2 matrix of M�n� as defined above, relation
between two layers can be established as

�u�n�

T33
�u� � = M�n−1�M�n−2� . . . M�1��u�1�

T33
�1� � = N�n��u�1�

T33
�1� � . �17�

Wave amplitude can now be written as

An =
1

2
�Q11

�n� + Q12
�n� + Q21

�n� + Q22
�n��A0 +

1

2
�− Q11

�n� + Q12
�n�

+ Q21
�n� + Q22

�n��B0, �18�

Bn = −
1

2
�Q11

�n� + Q12
�n� + Q21

�n� + Q22
�n��A0 +

1

2
�− Q11

�n� + Q12
�n�

+ Q21
�n� + Q22

�n��B0, �19�

where

Q11
�n� =

k0

kn
N11

�n�,

Q12
�n� = i

k0
2

kn
��0 + 2�0�N12

�n�,

Q21
�n� = − i

k0

kn
2��n + 2�n�

N21
�n�,

Q22
�n� =

k0
2��0 + 2�0�

kn
2��n + 2�n�

N22
�n�, �20�

Solving Eqs. �17� and �18� gives the expressions for the co-
efficients of wave potentials in an arbitrary layer. n=L+1
define the last interface between the composite and air. As
discussed previously, for the transmission wave AL+1=W
�A0 and BL+1=0. The numerical results for the transmis-
sion coefficients have been described in the next section.

III. NUMERICAL ANALYSIS RESULTS AND
DISCUSSION

Physical properties of polypropylene �PP� and CNF-
reinforced PP �CNF-PP� were used as an example for acous-
tic wave propagation analysis. Since there is no CNF sheet
reinforced PP data available, data for PP with uniformly dis-
tributed CNF as listed in Table I were adopted for
calculation.27 Due to the different material properties, dis-
continuity in acoustic impedance is introduced at the layer
interface. The wave speed was calculated to be 1.01
�103 m /s in PP and 1.39�103 m /s in CNF-PP. A reflec-
tion coefficient, defined as the ratio between the difference of
the two acoustic impedances and the sum of the acoustic
impedances, is calculated to be 0.33. The increase in the
number of layers can affect the transmission coefficient. In
the calculation, the total composite sample thickness is fixed
to be 1 cm. In each repetitive bilayer, thickness of the PP
layer is set to be four times that of the CNF-PP layer. For
example, when n=1, there is one layer of PP with a thickness
of 0.002 m and one layer of CNF-PP with a thickness of
0.008 m in the composite.

Figure 3 shows the calculated wave transmission coeffi-
cients as a function of the number of layer repeats for in-
creasing acoustic wave frequencies. In the calculation, it is
found that the sequence of two layers has no effects on the
results. As shown in Fig. 3, the wave transmission coefficient
has increasing number of oscillations for higher frequencies
before converges to a stable value. This indicates that the
layer structure can actually modulate the wave propagation
and the resulted transmission coefficient can be controlled to
certain extent with fixed total polymer and CNF contents.

The transmission coefficient modulation effect is closely
related to the acoustic wavelength in the layers and the re-
spective layer thickness. Table II lists the wavelengths in the
PP and CNF-PP layers at different wave frequencies. With an
incident wave angular velocity of �=105 rad /s, both �PP

TABLE I. Density and mechanical property of PP, CNF-PP, and air. The density of CNF-PP is an approxima-
tion.

� �Pa� � �Pa� Density�kg /m3� Poisson’ ratio

PP 6.3�108−4.8�107i 2.9�108−2.2�107i 1.2�103 0.34
CNF-PP 1.7�109−1.1�108i 8.2�108−5.3�108i 1.75�103 0.34
Air 1.01�105 0 1.2 ¯
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and �CNF-PP are much larger than the total thickness of the
structure. With increasing number of repeats, the PP/CNF-PP
bilayer thickness decreases, and no modulation of transmis-
sion coefficient can be identified �Fig. 3�a��. On the other
hand, when the incident wave angular velocity increases to
�=107 rad /s, the wavelengths in the materials become com-
parable or smaller than the layer thickness when there is a
small number of repeats. In this region, the effects of layered
structure become significant and lead to transmission coeffi-
cient modulation �Figs. 3�b�–3�d��. With increase number of
layers and a fixed total sample thickness, the structural
modulation effects will disappear and the transmission coef-
ficient stabilizes. In other words, the analysis indicates that in
the CNF paper sheet reinforced polymer composites, the bi-
layer thickness becomes the important length scale, and
modulation on the wave propagation can happen at much
lower frequencies than in the composites with uniformly dis-
tributed nanofillers.

According to the traditional wave propagation theory,8

when the acoustic wavelength is much longer than the bi-
layer thickness, the effects of the finely separated interfaces
can be neglected and the sample can be treated as a homog-
enous effective media. The physical properties of the effec-
tive media are calculated from the volume fraction of the two
constituent layers. Figure 4 shows the transmission coeffi-
cient calculated from the effective media theory. Clear agree-
ment can be found when compared to the stable transmission
coefficients obtained from layered structure analyses.

In the numerical analysis, mechanical properties of the
materials reported by other researchers were used. In reality,
viscoelastic properties of materials should exhibit frequency

dependences which could quantitatively affect the analysis
results. Normally, dynamic mechanic analyzer or dynamic
mechanic thermal analyzer manufactured are used to charac-
terize the viscoelastic properties of polymers. However, these
measurements can only provide low frequency �less than
several hundreds hertz� data. High frequency vibration mea-
surements are needed to characterize the dynamic properties
of the materials.

IV. CONCLUSIONS

A normally incident plane harmonic acoustic wave
propagation through a layered nanocomposite structure is
studied. The calculated acoustic wave transmission coeffi-
cient oscillates when layer repeat thickness is comparable to
wavelength. This indicates the possibility of control noise
reduction by optimizing the layered structure. The study also
shows that when the thickness of the layer repeat in compos-
ite is much smaller than the wavelength, the interface imped-
ance mismatch will not have significant effects on the wave
propagation and acoustic damping can be analyzed by con-
sidering the layered structure as a homogeneous effective
media. There are reports28,29 on the wave propagation in lay-
ered media consisting of alternative layers of steel and plas-
tics. It is also observed that when the wavelength is much
larger than the thickness of the layers, the medium behaves
as a homogeneous material. Also, strong transmission attenu-
ation has been observed at high frequencies. We are currently
synthesizing layered structures with controlled polymer and
CNF composite layers for measurements.

The current model analyzes the normal incident wave
across a one-dimensional layered structure where only lon-
gitudinal wave propagates in the material. A more general
case should be the propagation of an obliquely incident
wave. Under such a condition, in the air, still only exists the
longitudinal wave; but both longitudinal and transverse
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FIG. 3. Calculated acoustic wave transmission coefficient vs the number of
layer repeats in the composite for different wave frequencies.

TABLE II. Acoustic wavelength in the pure PP and nanofiber-reinforced PP layers with various �

� �rad/s� 105 5�105 106 5�106 107 5�107

�PP �m� 0.06 0.013 0.006 0.0013 0.0006 0.0001
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FIG. 4. �Color online� Comparison of the calculated long wavelength trans-
mission coefficients based on layered structure and the effective media
theory.
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waves will be exited in the layered composite. Further study
of the angular dependent acoustic wave transmission is
needed.
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