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ABSTRACT 
 

The glycosylphosphatidylinositol (GPI)-anchored serine protease prostasin (PRSS8) is expressed 

at the apical membrane surface of epithelial cells and acts as a suppressor of tumor invasion 

when re-expressed in highly invasive human prostate and breast cancer cell lines.  To better 

understand the molecular mechanisms underlying the anti-invasion phenotype associated with 

prostasin re-expression in prostate cancer cells, we expressed wild-type human prostasin or a 

serine active-site mutant prostasin in the PC-3 human prostate carcinoma cells.  Molecular 

changes were measured at the mRNA and the protein levels.  The expression of several 

invasion-promoting molecules is regulated by prostasin re-expression, mediated by a 

protein-level down-regulation of the epidermal growth factor receptor (EGFR).  As a result, the 

cellular response to EGF was reduced as shown by the down-regulation of EGF-stimulated 

Erk1/2 phosphorylation.  The expression of Slug, urokinase-type plasminogen activator (uPA), 

urokinase-type plasminogen activator receptor (uPAR), inducible nitric oxide synthase (iNOS), 

cyclooxygenase-2 (COX-2), and granulocyte-macrophage colony stimulating factor (GM-CSF) 

was also down-regulated by prostasin re-expression in the PC-3 cells.   

 

Co-expression of prostasin and its activating protease matriptase with EGFR in FT-293 cells 

induces an apparent proteolytic cleavage of the EGFR in the extracellular domain at two specific 

sites, generating two N-terminally truncated EGFR fragments, named EGFR135 and EGFR110.  

The EGFR110 is constitutively tyrosine-phosphorylated, and in its presence the phosphorylation 

of downstream signaling molecules including Erk1/2 and Akt is increased under serum-free 

conditions.  Neither EGFR135 nor EGFR110 is responsive to EGF stimulation.  Deletions of 
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the EGFR extracellular domain (ECD) were generated to map the matriptase-prostasin cleavage 

sites.  Two candidate sites were localized to regions AA1-273 and AA273-410.  These data 

support a mechanism of action for the matriptase-prostasin epithelial extracellular serine protease 

activation cascade by proteolytically modulating the EGF-EGFR signaling.  

 

Prostasin gene expression is down-regulated in high-grade and hormone-refractory prostate 

cancers.  We investigated the mechanisms by which androgens regulate prostasin expression in 

the prostate and prostate cancer.  We treated the LNCaP human prostate cancer cells with 

dihydrotestosterone (DHT) and measured the mRNA expression of prostasin and potential 

transcription regulators of prostasin predicted by interrogation of the prostasin gene promoter 

sequence.  Prostasin mRNA expression in the LNCaP cells was not responsive to DHT 

treatment.  DHT marginally up-regulated mRNA expression of SREBP-1c, SREBP-2, and 

SNAIL, but not SREBP-1a, while dramatically increased SLUG mRNA expression, in a 

dose-dependent manner.  Co-transfection of a prostasin promoter-reporter and SREBP cDNA in 

HEK-293 cells resulted in stimulation of the promoter activity at ~2 fold by SREBP-1c, and up 

to 6 fold by SREBP-2; while co-transfection with SNAIL or SLUG cDNA resulted in repression 

of the promoter activity to 43% or 59%, respectively.  Co-transfection of the SLUG cDNA 

negated SREBP-2’s stimulation of the prostasin promoter in a dose-dependent manner.  

Transfection of an SREBP-2 cDNA in HEK-293 and DU-145 cells resulted in up-regulation of 

the endogenously expressed prostasin while transfection of a SLUG cDNA in the LNCaP cells 

repressed prostasin expression.  Multiple SREBP-2 binding sites, known as sterol regulatory 

elements (SRE’s), were identified at positions -897, -538, +8, +71, and +98 (named SRE-897, 
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SRE-538, SRE+8, SRE+71, and SRE+98) in the human prostasin gene promoter.  Mutagenesis 

of the five SRE’s was carried out to evaluate their roles in SREBP-2 up-regulation of prostasin.  

SRE+98, a novel functional sterol regulatory element was found to be the major site for the 

stimulatory response of prostasin gene expression to SREBP-2. 

 

CONCLUSIONS:  Prostasin regulates the expression of several invasion-promoting molecules 

in prostate cancer cells by down-modulating the EGF-EGFR signaling pathway.  Active 

prostasin induces proteolytic cleavage in the EGFR ECD at two specific sites.  One of the 

N-terminally truncated EGFR, the EGFR110 is auto-phosphorylated along with increased 

phosphorylation of downstream signaling molecules.  The effect of the androgen DHT on 

prostasin expression in prostate cells is mediated via SREBP’s, which stimulate the promoter, 

and Slug, which represses the promoter.  Slug is up-regulated by DHT and EGF, providing a 

molecular mechanism by which epithelial cell-specific genes are silenced during prostate cancer 

development and progression. 
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CHAPTER ONE GENERAL REVIEW 

 

1.1 Introduction of Prostate Cancer Today 

Cancer has been a major public health problem that is responsible for about one fourth of all 

deaths in the world today (Jemal et al., 2007).  It is a group of diseases characterized by 

uncontrolled division and spread of dysregulated cells.  There are many types of cancers which 

are usually named from the tissues presumed to be the origin of the tumor: Carcinoma refers to 

the malignant tumors derived from epithelial tissues, such as the breast, prostate, lung, and colon.  

Leukemia refers to the malignant tumors derived from blood and bone marrow cells.  Sarcoma 

and Glioma refer to the malignant tumors derived from mesenchymal cells and glia cells, and 

Germinoma and Choriocarcinoma are the malignant tumors derived from the germ cells and 

placenta, respectively. 

 

Currently, prostate cancer is the most frequently diagnosed cancer (with an estimated 218,890 

new cases in 2007) and second leading cause of cancer-related deaths in men in the US (with an 

estimated 27,050 new cases in 2007, American Cancer Society. Cancer Facts and Figures 2007).  

Patients with prostate cancer usually have no symptoms in the early stages.  With progression of 

prostate cancer, patients may experience difficulty controlling urine flow, frequent nocturnal 

urination, voiding pain, or blood in the urine.  Severe pain in the lower back, pelvis, or upper 

thighs may indicate metastasis, caused by the more malignant and dangerous cancer cells which 

are highly invasive and migrate to other tissue sites.  
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The PSA (prostate-specific antigen) blood test and the digital rectal exam (DRE) are two major 

screening tests for early-stage prostate cancer.  A biopsy is indicated if the PSA test and the 

DRE produce inconclusive findings.  A small sample of the prostate tissue is removed for 

pathological examination to assist in diagnosis.  Prostate cancer cells present a different 

histology from normal prostate epithelial cells and the degree of difference is used to determine 

the cancer grade.  The Gleason grading system consists of five distinct patterns that prostate 

cancer cells differ from normal prostate epithelial cells.  The scale runs from 1 to 5, where 1 

represents cells that are very similar to normal prostate cells and well differentiated; while 5 

represents cells that are poorly differentiated (Figure 1-1A).  The Gleason score is determined 

by adding the Gleason grade to the most common pattern of the biopsy sample and the Gleason 

grade to the second most common pattern.  The higher the Gleason score is, the more 

aggressive the cancer cells tend to be.  Prostate cancer is clinically diagnosed by staging, based 

on the tumor size, characteristics of the cells, and the extent of metastasis.  Two systems are 

commonly used for staging prostate cancer: the Jewett-Whitmore system and the TNM (Tumor, 

Node, Metastases) system (Figure 1-1B).  Early-stage prostate cancers are confined in the 

prostate, but late-stage prostate cancers have invaded into the surrounding tissues or to distant 

sites, most frequently, the skeletal bones.  Early-stage prostate cancers are considered curable 

while the prognosis of late-stage prostate cancers is still discouraging.   

 

Current options for treatment of prostate cancer include prostatectomy (surgery to remove all or 

part of the prostate), radiation therapy (killing cancer cells and surrounding tissue cells with 

radioactive exposure), hormone/androgen-deprivation therapy (preventing hormone to act on 
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prostate cancer cells), and chemotherapy (using chemicals to kill or inhibit cancer cells).  

Patients with early-stage prostate cancer which is confined to the prostate usually undergo radical 

prostatectomy.  Radiation therapy is often used as an initial treatment for local and regional 

prostate cancer, and the cure rate has been improved in recent years (Speight and Roach, III, 

2007).  Hormone therapy has been controversial for decades because androgen-deprivation 

therapy usually initiates several biological changes that may induce the development of hormone 

refractory prostate cancers.  But it still remains in practice as an adjuvant therapy to fight 

recurrent and advanced prostate cancers.  Chemotherapy has been used with great success in the 

treatment of advanced or metastatic prostate cancers.  A major drawback, however, is that it 

does not distinguish between tumor cells and normal cells.  Developing molecularly targeted 

therapies that specifically kill the tumor cells but have minimal effects on normal cells, therefore, 

is the main challenge to prostate cancer care and management today.  Understanding the 

molecular mechanisms of prostate cancer is critical to developing specific therapies. 

 

In prostate cancer research, several immortalized and malignant adult human prostatic epithelial 

cell lines have been developed, such as the LNCaP, DU-145, and PC-3 (Webber et al., 1996; 

Webber et al., 1997a; Webber et al., 1997b).  The LNCaP cell line was isolated in 1977 from a 

needle aspiration biopsy of the left supraclavicular lymph node of a 50-year-old Caucasian male 

with confirmed diagnosis of metastatic prostate carcinoma.  It expresses both the androgen 

receptor (AR) and estrogen receptors (ER) and is responsive to 5-alpha-dihydrotestosterone 

(DHT) (Horoszewicz et al., 1980).  The LNCaP cells are tumorigenic in nude mice; the tumor 

take and growth in male mice are significantly higher than that in female mice.  The DU-145 
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cell line was isolated from the brain lesion of a patient with metastatic carcinoma of the prostate 

and a history of lymphocytic leukemia (Stone et al., 1978).  Cytogenetic analysis reveals a 

hypotriploid phenotype with an abnormal Y chromosome and a single copy of X chromosome.  

DU-145 cells are poorly sensitive to hormones and do not express the prostate-specific antigen 

(Papsidero et al., 1981).  The PC-3 cell line was established from the bone metastasis of a grade 

IV prostatic adenocarcinoma from a 62-year-old male Caucasian (Kaighn et al., 1979).  The cell 

line has a greatly reduced dependence on androgens, glucocorticoids, or growth factors when 

compared to normal prostate epithelial cells, and presents a near-triploid phenotype with a modal 

number of 60 chromosomes but a loss of Y chromosome (Chen, 1993).  Both DU-145 and PC-3 

cells are highly tumorigenic and invasive (Mickey et al., 1980).     
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Figure 1-1 Schematic representation of Gleason grade (A) and prostate cancer staging (B). 

Cited from Prostate Cancer Foundation website (http://www.prostatecancerfoundation.org) 

http://www.prostatecancerfoundation.org/site/c.itIWK2OSG/b.47293/k.D232/Diagnosis.htm


 6

1.2 Prostasin: a Multi-functional GPI-anchored Serine 
Protease on the Epithelial Cell Surface 

1.2.1 Prostasin gene structure, expression pattern, and cellular localization 

Prostasin/PRSS8, also named CAP-1 (Channel Activated Protease-1), was originally purified 

from human seminal fluid as a 40-kD active trypsin-like serine protease (Yu et al., 1994).  It is 

abundantly expressed in the bronchus, kidney, lung, prostate and placenta in mice and humans. 

Low-level expression of prostasin can also be found in other tissues including the bladder, colon, 

heart, liver, mammary gland, pancreas, salivary gland and thyroid gland (Yu et al., 1995; 

Vuagniaux et al., 2000a; Fan et al., 2005).  By immunohistochemical staining of prostasin in   

mouse prostate, lung and bladder tissues, protein expression of prostasin was localized mainly to 

the epithelial cells in the tissues (Verghese et al., 2004b; Chen et al., 2006k).  

The human prostasin gene (PRSS8) and the mouse prostasin gene (mCAP-1) are both 

single-copy genes located on human chromosome 16p11.2 and mouse chromosome 7, 

respectively.  The human and mouse prostasin genes share the six-exon and five-intron genomic 

organization, wherein the catalytic triad His-Asp-Ser residues are encoded by different exons 

(Verghese et al., 2004b; Yu et al., 1996).  The human prostasin gene encodes a protein of 343 

amino acids, including a 32-amino acid signal peptide and a 311-amino acid pro-prostasin.  The 

pro-prostasin is further cleaved between Arg12 and Ile13 to generate the two-chain mature form 

of prostasin.  The physiological substrate of prostasin, however, still remains unidentified. 

 

In human prostate and mouse bladder tissue sections, prostasin expression was detected in the 

cytoplasm and at the apical membrane of the epithelial cells (Chen et al., 2006k; Chen et al., 
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2001a).  Epithelial cell lines derived from airway epithelia (Tong et al., 2004) and the cortical 

collecting duct (Vuagniaux et al., 2000a) also express prostasin.  Prostasin localizes at the 

apical surface through a glycosylphosphatidylinositol (GPI) anchor (Chen et al., 2001b) and can 

be secreted from the surface through shedding off by GPI-specific phospholipase D1 (Verghese 

et al., 2006).  All currently-known biological functions of prostasin are dependent on its 

membrane-anchorage with the GPI moiety; the physiological function of the secreted prostasin is 

unclear.  

 

1.2.2 Functions of prostasin in epithelial sodium channel activation 

The epithelial sodium channel (ENaC) plays a critical role in sodium balance at the apical 

surface of epithelial cells lining the cortical and collecting ducts of the kidney, the distal colon, 

the ducts of secretory glands such as prostate and salivary glands, and the respiratory airways 

(Varez de la et al., 2000).  ENaC mediates Na+ absorption with high selectivity (permeability to 

sodium/permeability to potassium > 20), high electric resistance/low unitary conductance (4–5 

picosiemens in the presence of sodium), and high sensitivity to amiloride (inhibition constant: 

0.1 µM) (Rossier, 2004).  ENaC is made of three homologous subunits: α, β, and γ (Canessa et 

al., 1994) and the most common form of ENaC is a heteromultimeric protein consisting of two α 

subunits, one β subunit and one γ subunit (Eskandari et al., 1999).  Each subunit of ENaC 

contains two transmembrane domains, a large extracellular loop with multiple N-glycosylation 

sites, and short cytoplasmic amino- and carboxyl- regions.   
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ENaC activity is mainly regulated by two hormones: aldosterone and vasopressin.  Aldosterone 

is a steroid hormone synthesized in the adrenal cortex and controls Na+ and K+ balance in the 

blood.  Aldosterone acts on the mineralocorticoid receptor to stimulate sodium resorption by the 

epithelial cells lining the cortical collecting ducts and distal colon by activating the ENaC 

expressed in the apical membrane and the Na+/K+ATPase pump expressed in the basolateral 

membrane (Varez de la et al., 2000).  Vasopressin, also known as antidiuretic hormone (ADH), 

is a peptide hormone synthesized in the hypothalamus and transported to the posterior pituitary.  

Vasopressin is released when the body is low on water, and causes the kidney to retain water by 

stimulating the apical absorption of sodium, leading to concentration of urine and increase of 

blood pressure.  Vasopressin increases the ENaC activity through a cAMP-dependent 

mechanism.  Whether the modulation of the ENaC activity is mediated by increase of the open 

probability (Po) or an increased number (N) of the channels on the apical membrane is still 

controversial (Rossier, 2002). 

 

In addition to the classic hormone pathways that regulate ENaC activities, ENaC can also be 

regulated by several other molecules in completely different pathways, including the Channel 

Activated Proteases (CAPs) (Rossier, 2004), the ubiquitin ligase Nedd4 (Staub et al., 1996), and 

the ABC transporter CFTR (Kunzelmann et al., 1997).  The ENaC-activation activity of CAPs 

was first identified in 1997 from the data that the amiloride-sensitive Na+ transport in a Xenopus 

kidney epithelial cell line (A6) was inhibited by the exposure of the apical membrane to the 

serine proteinase inhibitor aprotinin (Vallet et al., 1997).  Xenopus CAP (xCAP-1) was then 

cloned using A6 cells and a functional complementation assay, and its mammalian orthologue 



 9

was identified to be prostasin.  Co-expression of Xenopus prostasin (xCAP-1), mouse prostasin 

(mCAP-1) or rat prostasin with the α-, β-, and γ-subunits of ENaC in Xenopus oocytes showed 

that prostasin significantly increased the ENaC-mediated amiloride-sensitive sodium current 

(Adachi et al., 2001; Vuagniaux et al., 2000b; Vallet et al., 1997).  The serine protease activity 

and the GPI-anchorage but not the N-glycosylation of Xenopus prostasin (xCAP-1) were shown 

to be required for its ENaC activation role (Vallet et al., 2002).  Two additional membrane 

serine proteases that regulate ENaC activity were further identified in a mouse cortical collecting 

duct (CCD) cell line: mCAP-2 and mCAP-3 (Vuagniaux et al., 2002).  mCAP-2 is the mouse 

homologue of TMPRSS3 and mCAP-3 is the mouse homologue of matriptase/MT-SP1/ST14 

found in humans.  Unlike xCAP-1, the catalytic activity of mCAP-1 is not required for it role in 

the ENaC activation (Andreasen et al., 2006).  

 

The precise molecular mechanism by which prostasin activates ENaC remains unclear until 

recently.  Bruns JB et al. reported that prostasin activates ENaC by inducing a cleavage of the 

γ-subunit at a site distal to the furin cleavage site (Bruns et al., 2007).  The ENaC with a 

double-cleaved γ-subunit presents higher open probability and the 43-amino acid peptide 

released by the cleavage serves as an inhibitor of ENaC activity as a feedback regulation.  The 

serine active-site mutant prostasin could also induce the γ-subunit cleavage, consistent with the 

previous finding that the catalytic activity of mCAP-1 is not required for ENaC activation 

(Andreasen et al., 2006).  Prostasin does not activate a mutant ENaC that lacks the 

furin-dependent cleavage site in the γ-subunit, suggesting that its activation of ENaC requires 

pre-processing of ENaC by furin. 
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1.2.3 Functions of prostasin in tumor biology 

Prostasin belongs to a unique subfamily of trypsin-like membrane serine proteases tethered to the 

outer-surface of the plasma membrane through a GPI linkage.  Several new family members 

have been identified by homology cloning (Netzel-Arnett et al., 2003), but only prostasin and 

testisin (Nakamura et al., 2003; Hooper et al., 2000) have been investigated for potential 

functions.  Both prostasin and testisin are lost in expression in advanced cancers and capable of 

suppressing tumor invasion or growth (Hooper et al., 1999; Manton et al., 2005b; Chen et al., 

2001a; Chen and Chai, 2002).  In immunohistochemical analysis of human prostate sections 

from patients with prostate cancer, the protein expression of prostasin was shown to be positive 

in 89% of benign areas and 93% of the low-grade prostate tumors, while percentages of the 

prostasin-positive staining decreased in high-grade prostate tumors, with 44% in Gleason grade 3 

and 15% in Gleason grade 4-5 tumors, respectively (Chen et al., 2001a).  Down-regulation of 

human prostasin gene expression is associated with the hormone-refractory phenotype in prostate 

cancer patients (Takahashi et al., 2003).  In highly invasive human prostate and breast cancer 

lines DU-145, PC-3, MDA-MB-231, and MDA-MB-435, the expression level of prostasin is 

much lower than in the non-invasive cell lines LNCaP or MCF-7; prostasin re-expression 

significantly reduces in vitro invasion of these malignant cancer cells (Chen et al., 2001a; Chen 

and Chai, 2002).  The down-regulation of prostasin expression in the malignant cancer cell lines 

is partly due to hypermethylation at the 5’-flanking region of the prostasin gene, but the prostasin 

gene is not completely silenced by these epigenetic events because it can be up-regulated by 

nerve growth factor (NGF) (Chen and Chai, 2002; Chen et al., 2004).  At the post-translational 

level, several serine protease inhibitors of prostasin have been identified: protease nexin-1 (PN-1) 
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and hepatocyte growth factor activator inhibitor-1B (HAI-1B) (Chen et al., 2004; Fan et al., 

2005).  PN-1 belongs to the serpin family and it forms a SDS/heat-resistant complex with 

prostasin through a covalent linkage.  HAI-1B is a membrane-associated extracellular 

Kunitz-type serine protease inhibitor.  Highly up-regulated expression of these prostasin 

inhibitors has been reported in breast, prostate and pancreatic cancers (Parr and Jiang, 2006; 

Nagakawa et al., 2006; Yekebas et al., 2006), suggesting an imbalance of proteases and inhibitors 

in these malignancies.  The mechanisms by which prostasin suppresses cancer cell invasion and 

is down-regulated in poor-prognosis tumors have not been investigated.   

 

1.2.4 Other functions of prostasin in epithelial cells  

Prostasin also plays several other important roles in the epithelia of different tissues in addition 

to acting as an ENaC activator and tumor invasion suppressor.  

  

(1) Prostasin is required for epidermal permeability barrier function (Leyvraz et al., 2005).  

Conditional knockout mice lacking prostasin expression in the skin died 60 hours after birth due 

to aberrant skin development which lead to impaired skin barrier function and fatal dehydration.  

Prostasin-deficient skin cells present disturbed the stratum corneum (SC) lipid composition, 

abnormal corneocyte morphogenesis, and incomplete processing of profilaggrin.  Loss of 

prostasin expression is also associated with an absence of occludin, a key tight-junction protein, 

suggesting that prostasin is required for the tight junction formation.   
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(2) Prostasin attenuates inflammation-responsive gene expression in the bladder epithelium 

(Chen et al., 2006k).  Prostasin is expressed in the normal epithelium of the mouse bladder, and 

its expression is down-regulated during inflammation induced by lipopolysaccharide (LPS).  

With forced prostasin expression, the LPS-induced up-regulation of the inducible nitric oxide 

synthase (iNOS) gene was significantly reduced. 

 

(3) Prostasin may be involved in endometrial epithelial morphogenesis, tissue remodeling, and 

trophoblastic invasion during early pregnancy (Lin et al., 2006).  Prostasin expression was 

shown to be spatially and temporally regulated during the progress of pregnancy in rhesus 

monkey.  Prostasin is abundantly expressed in the glandular epithelium on Day 12 and 18, 

followed by a significant decrease in expression.  Expression of prostasin was detected in the 

placental villi, trophoblastic column, trophoblastic shell, and fetal-maternal border on Day 18 

and further enhanced on Day 26 of pregnancy.  The expression level of PN-1, the serpin-class 

inhibitor of prostasin, is rather low during these early stages of pregnancy, potentially creating an 

environment favorable for prostasin’s catalytically-related functions during embryo implantation 

and trophoblastic invasion.   

 

(4) Prostasin regulates epithelial monolayer function in cortical collecting duct cells (Verghese 

et al., 2006).  In addition to activating amiloride-sensitive sodium transport, expressing 

prostasin in the M-1 mouse cortical collecting duct cell line regulates transepithelial resistance, 

current and paracellular permeability, requiring its GPI-anchor and proteolytic activity.   
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1.3 Targeting of Epidermal Growth Factor Receptor (EGFR) 
Signaling Pathways in Cancers 

1.3.1 The epidermal growth factor receptor (EGFR) family 

The epidermal growth factor receptor (EGFR), also named (HER1), is a member of the HER 

family of membrane receptor tyrosine kinases (RTK’s), which also includes HER2 (also named 

ErbB2 or HER2/neu), HER3 (also named ErbB3), and HER4 (also named ErbB4).  All four 

RTK’s share similar molecular structures with an N-terminal extracellular ligand-binding domain, 

a single alpha-helix transmembrane domain, and an intracellular tyrosine kinase domain in the 

C-terminal tail (Wells, 1999).  Under physiologic conditions, epidermal growth factor (EGF), 

transforming growth factor α (TGFα), and amphiregulin bind exclusively to EGFR.  

Heparin-binding EGF-like growth factor (HB-EGF), β-cellulin and epiregulin bind to both EGFR 

and HER4, and heregulin binds to HER3 and HER4 (Ono and Kuwano, 2006).  Ligand binding 

leads to EGFR dimerization as a homodimer or a heterodimer with other HER proteins (Yarden 

and Sliwkowski, 2001), further inducing autophosphorylation at specific tyrosine residues inside 

the intracellular domain and activating downstream signaling pathways.  No high-affinity 

ligand has been identified for HER2, but HER2 can form heterodimers with other HER family 

RTK’s.  HER2 is the preferred heterodimerization partner of EGFR as well as other ErbB 

receptors after ligand-induced activation (Graus-Porta et al., 1997), and it is an important 

signaling partner for EGFR.  In a mammary epithelial cell system, the EGFR/HER2 

heterodimer was shown more stable and recycling more rapidly to the cell surface than the 

EGFR/EGFR homodimer, suggesting that HER2 serves as an EGFR signaling amplifier during 

cancer progression (Worthylake et al., 1999). 
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1.3.2 Ligand-induced, receptor mediated dimerization and activation of EGFR 

The full-length human EGFR gene consists of 110-kbp of DNA with 26 exons (Haley et al., 

1987), and encodes a 1210-amino acid precursor protein with a 24-amino acid signal peptide 

(Ullrich et al., 1984).  The 621-amino acid extracellular region of EGFR contains four 

subdomains, designated domains I, II, III, and IV (Bajaj et al., 1987).  Domains I and III (also 

termed L1 and L2) are members of the leucine rich repeat (LRR) family while Domains II and 

IV (also termed CR1 and CR2) contain multiple small disulfide-bonded modules(Burgess et al., 

2003; Abe et al., 1998).  The crystal structure of EGFR showed that the L1 and L2 domains 

form a six-turn right-hander β helix which is capped at each end by an α helix and a disulfide 

bond, and the CR1 and CR2 domains adopt laminin-like folds (Burgess et al., 2003). 

 

It has been established that two EGFR ligands are bound in the ligand-induced dimer, forming a 

2:2 complex with the extracellular regions of EGFR (Domagala et al., 2000).  It was previously 

speculated that EGF induces EGFR dimerization by crosslinking two EGFR molecules, however, 

the crystal structures of ligand-bound sEGFR (extracellular region of EGFR) showed that the 

dimerization is entirely receptor mediated (Garrett et al., 2002; Ogiso et al., 2002).  The two 

ligand molecules in the ligand-EGFR complex could hardly form the dimer interface, and the 

dimer interface is mainly provided by Domain II.  The crystal structure of non-activated sEGFR 

showed that the relationship between Domains II and III dramatically differs from that in the 

activated form (Ferguson et al., 2003).  The intramolecular interaction between the two 

cysteine-rich Domains II and IV restrains the relationship between II and III in the non-activated 

sEGFR and also buries the dimerization arm of Domain II.  The current consensus model of 
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ligand-induced EGFR dimerization is shown in Figure 1-2A.  Without ligands, EGFR is mainly 

presented in a tethered monomer configuration which can only form low-affinity interaction with 

ligands and can not dimerize.  When ligands are present, the ligand binding induces a 130o 

rotation of Domains I and II, traps the extended configuration, and reveals the dimerization arms 

in Domain II for the dimerization. 

 

1.3.3 Tyrosine kinase domain and C-terminal regulatory domain of EGFR, where multiple 
signaling pathways are originated and integrated. 

The intracellular part of EGFR consists of three major subdomains: the juxtamembrane region, 

the tyrosine kinase domain and a C-terminal regulatory domain (Figure 1-2B).  EGFR signaling 

is initiated by ligand binding, followed by homo- or hetero- dimerization of the receptor and 

subsequent autophosphorylation by its kinase domain.  The phosphorylated tyrosine residues in 

the cytoplasmic domain of EGFR serve as docking sites for downstream signaling pathways.  

Unlike many receptor tyrosine kinases (RTKs), the tyrosine kinase domain of EGFR lacks the 

autoinhibitory intracellular interactions (Burgess et al., 2003).  Crystal structure showed that 

EGFR activation loop adopts the conformation normally seen in the activated tyrosine kinases 

even when the center tyrosine residue Y845 is not phosphorylated (Stamos et al., 2002).  

Mutation of the analogous tyrosine in other tyrosine kinase receptor reduces the catalytic activity. 

In contrast, the catalytic activity of EGFR was not affected when the tyrosine residue at position 

485 was substituted by phenylalanine.  The currently accepted model of EGFR activation is that 

the kinase domain of EGFR is constitutively active and the ligand-induced dimerization of  
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EGFR delivers substrates, such as the dimer partner’s C-terminal regulatory region, to the kinase 

active site for the trans-autophosphorylation.   

 

Multiple tyrosine residues of the EGFR cytoplasmic domain are autophosphorylated upon EGFR 

dimerization and further recruit various downstream signaling molecules (Figure 1-2B).  The 

Grb2 (Growth factor receptor-binding protein 2) adaptor protein binds to pY1068 and pY1086, 

the Dok-R adaptor protein binds to pY1086 and pY1148, and the Shc adaptor protein binds to 

pY1148 and pY1173.  The phosphatase PTB-1B can interact with pY992 and pY1148 and the 

SHP-1 phosphatase binds pY1173.  The phospholipase PLC-γ is recruited to pY992 and 

pY1173 while the Abl tyrosine kinase binds to pY1086.  The ubiquitin ligase c-Cbl is recruited 

to pY1045 (Sebastian et al., 2006).  Upon binding to these phosphorylated tyrosine residues, 

these molecules further recruit or activate downstream targets to trigger the signaling pathways.  

For example, an extensively studied EGFR signaling pathway is the mitogen-activated protein 

kinase (MAPK) pathway.  The adaptor protein Grb2 is recruited to the phosphorylated tyrosine 

residues of EGFR through its SH2 domain.  Translocation of the Grb2/Sos complex to the 

plasma membrane further facilitates the Sos-mediated activation of Ras proteins (Lowenstein et 

al., 1992).  The activation of Ras sequentially induces the activation of Raf family kinases, the 

mitogen activated extracellular singal regulated kinases (MEKs), and finally extracellular signal 

regulated kinases (Erk1/2).  Once activated, Erk1 and Erk2 activate major transcription factors 

associated with cell proliferation to stimulate cell growth (Murphy et al., 2002).  In addition to 

the classic EGFR/Ras/Raf/MEK/ERK pathway, several other signaling pathways are also 

triggered by ligand-activation of EGFR: the EGFR/PI3K/PDK1/Akt survival pathway to prevent 
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programmed cell death, promoting sustained proliferation; the EGFR/JAK/STAT pathway to 

up-regulate expression of genes contributing to cancer cell survival; the PLC-γ dependent 

pathway to reorganize actin cytoskeleton; and signaling pathways involved in angiogenesis and 

metastasis (Sebastian et al., 2006).   

 

1.3.4 Vesicular trafficking of EGFR: internalization, degradation, recycling and nuclear 
translocation. 

The function of membrane signaling receptors is tightly regulated through post-translational 

modifications, including internalization, degradation and dephosphorylation.  As for EGFR, 

receptor activation not only triggers multiple positive signaling pathways but also pathways to 

shut down the signaling.  Once the ligands bind to EGFR at the cell surface and activate the 

receptor, the ligand-receptor complexes are internalized through clathrin-dependent or 

clathrin-independent pathways (Sigismund et al., 2005; Gorden et al., 1978).  The 

clathrin-dependent internalization begins with recruitment of soluble clathrin molecules to the 

plasma membrane region where activated EGFR is located, and formation of clathrin-coated pits 

(CCP).  Following EGF binding, activated EGFR recruits the E3 ubiquitin ligase, c-Cbl, to the 

intracellular domain either through direct interaction between phosphorylated tyrosine 1045 or 

via indirect binding through the adaptor protein Grb2 (Huang and Sorkin, 2005).  This leads to 

phosphorylation and a conformational change of c-Cbl, resulting in enhancement of its 

interaction with the Cbl-interacting protein of 85k (CIN85).  CIN85 further recruits disabled2 

(DAB2) and endophilin to drive clathrin assembly and budding (Soubeyran et al., 2002).  The 

ubiquitinated EGFR also serves as docking sites for Esp15 (EGFR pathway substrate 15) and 
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epsin, which in turn recruit clathrin interacting proteins such as AP2 and dynamin-2 to facilitate 

clathrin-coated vesicle (CCV) budding and release.  Following CCV internalization, the 

receptor-ligand complexes are transferred to early endosomes for recycling and degradation.  

The endocytosed EGFRs for degradation remain ubiquitinated and are sorted to multi-vesicular 

bodies (MVBs) which mature to form late endosomes and further fuse with pre-existing 

lysosomes for degradation (Miller et al., 1986).  In addition to the ubiquitination by c-Cbl, 

recent studies have also shown that the dileucine (LL)-motif (679-LL) of EGFR is required for 

EGF-EGFR endosome retention as well as lysosome sorting (Tsacoumangos et al., 2005).  The 

mild acidic environment in the early endosome facilitates dissociation of the ligand-receptor 

complex and recycling of EGFR back to the plasma membrane (Xie et al., 2004).   

 

EGF signaling can be directly transmitted into the nucleus through EGFR nuclear transport (Lo 

and Hung, 2007; Carpenter, 2003).  Ligand stimulation induces accumulation of EGFR in the 

nucleus and detection of EGF and TGF-α in the nucleus of proliferating cells (Raper et al., 1987).  

Interestingly, some of EGFR exists in the nucleus as intact protein (Lin et al., 2001) but the 

mechanism for nuclear transport of the free receptors still remains elusive.  The EGFR 

nuclear-cytoplasmic trafficking is mediated by the importins α1/β1 and exportin CRM1 

(Chromosome Region Maintenance -1), dependent on the putative NLS (nuclear localization 

sequence) with three clusters (underlined) of basic amino acids (645RRRHIVRKRTLRR657) in 

the juxtamembrane region of EGFR (Lo et al., 2006b; Hsu and Hung, 2007).  Nuclear EGFR 

was recently found to function as a transcription co-activator for the cyclin D1 gene and the 

iNOS gene (Lin et al., 2001; Lo et al., 2005).  Cyclin D1 is a key positive regulator of cell 
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proliferation, while up-regulation of the iNOS gene expression has been associated with tumor 

growth and angiogenesis.  Activation of the iNOS gene by nuclear EGFR is dependent on the 

physical interaction between EGFR and STAT3 (signal transducer and activator of 

transcription-3) and EGFR-mediated phosphorylation of STAT3 (Lo et al., 2005). 

 

1.3.5 EGFR signaling in cancers and current therapeutic methods targeting EGFR 

Under normal physiological conditions, EGFR is essential for epithelial cell functions.  

Knock-out mutations of EGFR results in developmental defects in the epithelial structures of 

epidermis, mammary gland, lung, pancreas, intestine, and central nerve system (Miettinen et al., 

1995).  On the other hand, dys-regulation of EGFR signaling is associated with many types of 

cancers including prostate cancer (Bellezza et al., 2006; Lo et al., 2006a; Normanno et al., 2006; 

Ahmed and Salgia, 2006).  By overproducing EGFR ligands like EGF and TGF-α, tumor cells 

stimulate their proliferation through an autocrine loop (Sato, 1999).  Especially for 

hormone-resistant breast and prostate cancers, this autocrine signaling allows the tumor cells to 

grow independently of hormones.  By overexpression of EGFR, tumor cells produce intense 

signal generation and amplification and activation of downstream signaling pathways, resulting 

in more aggressive cell phenotypes.  In prostate cancers, EGFR is weakly expressed in the 

benign tissues and in areas of low-grade PIN (prostatic intraepithelial neoplasia) while it is 

abundantly expressed in high-grade PIN and neoplastic cells (Harper et al., 1998).  EGFR 

signaling functions can be potentiated and enhanced by dys-regulated expression and activation 

of other synergistic signaling molecules including HER2, G-protein coupled receptors, tyrosine 

kinase Src, and hormone receptors (Yarden and Sliwkowski, 2001).  Genetic alterations of 
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EGFR were also found in many cancers.  The mutations are usually deletion and tandem 

duplication of the EGFR gene or site-mutations in the kinase domain (Normanno et al., 2006).  

The most frequent variant of EGFR is the EGFRvIII, characterized by the lack of amino acid 

residues 6-276 in the extracellular ligand-binding domain.  EGFRvIII is a constitutively 

activated tyrosine kinase capable of stimulating cell proliferation without ligand interaction.  

Overexpression of the mutation has been found in many types of human cancers, especially in 

glioblastoma, breast and prostate cancer (Pedersen et al., 2001). 

 

The ultimate goal of cancer therapy is to specifically target cancer cells to stop their proliferation 

and metastasis without affecting normal cells.  Given its causative role in cancer and 

overexpression during cancer development, EGFR has been proposed for an anti-cancer target 

for many years.  Currently, the most extensively studied drugs targeting EGFR are small 

molecules that act on the intracellular tyrosine kinase domain and monoclonal antibodies that 

target the extracellular domain of EGFR (Gschwind et al., 2004; Goel et al., 2002).  The 

monoclonal antibody drugs targeting EGFR such as the ImCloneC225/Erbitux/Cetuximab 

exhibit higher specificity and lower working concentration than the small-molecule compounds 

such as the tyrosine kinase inhibitor ZD1839/Gefinitib, but fail to recognize several EGFR 

mutants, which miss part of the extracellular domain.  Some cancer cells can also develop 

resistance to these drugs by constitutive activation of downstream signaling molecules to bypass 

the receptor (Ono and Kuwano, 2006).  In cells without clearly identified constitutively 

activated downstream effectors, the mechanisms of resistance are unknown.  Understanding not 

only the signal pathways activated by EGFR but also the regulation of the receptor expression, 
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post-translational modification, trafficking and turnover will provide more information on 

designing new anti-cancer therapy methods and improve our ability to predict patient response to 

anti-EGFR therapies.  
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Figure 1-2 Schematic of domain organization of EGFR and ligand-Induce dimerization. 
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(A) Schematic of Ligand-Induced conformational changes in sEGFR and dimerization (cited from Burgess et al., 

2003).  The unactivated (tethered) sEGFR structure is shown on the left.  A model of the EGF-induced dimer is 

shown on the right.  This model uses the coordinates of L domains in the receptor (domains I and III) are colored 

red, and CR domains (domains II and IV) are green. Ligand is colored cyan.  Domains I and III are distinguished 

from one another by the addition of gray to the outer surfaces of strands and helices.  The two subunits in the dimer 

are distinguished by the fogging of the right-hand dimerization partner.  The speculated position of the plasma 

membrane is depicted as a gray bar.  EGF binding is proposed to induce a 130o rotation of a rigid body containing 

domains I and II.  This exposes the dimerization arm and allows dimerization of sEGFR, as depicted on the right. 

(B) Schematic representation of the Domain organization of EGFR. The extracellular domain of EGFR consists of 

four subdomains: domain I and III (L1 and L2, in orange color) and domain II and IV (CR1 and CR2, in green color).  

The cytoplasmic region of EGFR includes a juxtamembrane domain (magenta), tyrosine kinase domain (yellow), 

and C-terminal regulatory domain (purple). Residue numbers for domain boundaries are marked.  Major tyrosine 

residues which are phosphorylated after EGFR activation and the downstream signaling molecules are indicated in 

the right panel.  
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CHAPTER TWO PROSTASIN INDUCES PROTEASE-DEPENDENT 
 AND INDEPENDENT MOLECULAR CHANGES IN THE HUMAN 

PROSTATE CARCINOMA CELL LINE PC-3 

 

2.1 Introduction 

Since its discovery more than a decade ago, prostasin, a glycosylphosphatidylinositol 

(GPI)-anchored extracellular serine protease has been shown to play important roles in epithelial 

physiology.  These functional roles include suppression of invasion (Chen et al., 2001a; Chen 

and Chai, 2002), regulation of gene expression during inflammation (Chen et al., 2006j), and 

activation of the epithelial sodium channel (ENaC) (Bruns et al., 2007). 

 

Activation of ENaC by prostasin is mechanistically the best defined function for prostasin, with 

very recent data consistent with a proteolytic cleavage of the gamma subunit of ENaC by 

prostasin (Bruns et al., 2007).  The other in vitro and in vivo phenotypic changes induced by 

prostasin remain mechanistically undefined.  We undertook the current study to probe into the 

potential molecular mechanisms by which prostasin impacts the cell’s behavior.  We used the 

PC-3 human prostate carcinoma cell line, which has a compromised prostasin expression due 

partly to promoter DNA hypermethylation (Chen et al., 2004).  Upon prostasin re-expression 

the PC-3 cells displayed reduced in vitro invasion through a Matrigel barrier (Chen et al., 2001a).  

We focused on the extracellular tumor cell invasion molecular players that were previously 

established for this cell line, because prostasin is an active serine protease anchored to the 

outside of the plasma membrane (Chen et al., 2001b). 
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The epidermal growth factor receptor (EGFR) was the first member of the erbB family of 

receptor tyrosine kinases to be discovered and the first cell surface receptor to be shown with a 

role in cancer biology (de Larco and Todaro, 1978).  EGFR overexpression is implicated for a 

causative role in ten different types of solid tumor (Nicholson et al., 2001).  The cellular signals 

that are initiated by activation of this receptor tyrosine kinase confer cancer cells with advantages 

in angiogenesis, growth, and motility (Oliveira et al., 2006).  The PC-3 cell line is a high 

expresser of EGFR (Ching et al., 1993), which is a major mediator of prostate cancer cell 

motility and invasiveness (Zhou et al., 2006).  The urokinase-type plasminogen activator (uPA), 

a serine protease, through interactions with its membrane receptor, the GPI-anchored uPAR, also 

promotes prostate cancer invasiveness (Liu and Rabbani, 1995).  The invasion promoting effect 

of the uPA-uPAR signaling route in the PC-3 cell line is modulated by an EGFR tyrosine kinase 

inhibitor (AG1478) (Skogseth et al., 2006), reducing uPA production (Skogseth et al., 2005).  

E-Cadherin, a cell-cell adhesion molecule and a tumor suppressor, is down-regulated in the PC-3 

cell line (Morton et al., 1993), contributing to its invasive behavior (Davies et al., 2000).  The 

PC-3 cell line also expresses the granulocyte-macrophage colony-stimulating factor (GM-CSF), 

which, acts in an autocrine loop to stimulate the tumor cells (Savarese et al., 1998).  GM-CSF 

release is also regulated by the EGFR signaling pathway (Blanchet et al., 2004).  These target 

genes and proteins were investigated in PC-3 cells expressing either a wild-type human prostasin 

or a serine active-site mutant.   

 

The prostasin serine protease can be activated by the type-II transmembrane extracellular serine 

protease matriptase in vitro and in vivo (Netzel-Arnett et al., 2006c).  Inhibition of matriptase 
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expression in the PC-3 cells resulted in suppression of invasion (Sanders et al., 2006).  It is not 

contradictory to the prostasin invasion-suppression phenotype because the prostasin expression is 

almost silenced in PC-3 cells.  Prostasin expression in the prostate is regulated at the 

transcription level partly by promoter DNA methylation (Chen et al., 2004), and partly by 

transcription factors such as the sterol-regulatory element-binding proteins (SREBP’s), the 

SNAIL and the SLUG (Chen et al., 2006l).  SLUG is a well-known E-cadherin expression 

repressor and an inducer of epithelial-mesenchymal transition (EMT) (Moreno-Bueno et al., 

2006).  The inflammation-associated expression of the inducible nitric oxide synthase (iNOS), 

but not of the cyclooxygenase-2 (COX-2) was attenuated in the mouse bladder by prostasin 

(Chen et al., 2006i).  In PC-3 cells expressing the wild-type or the mutant prostasin, we also 

examined the expression states of several cancer cell invasion-related molecules, including these 

regulators of prostasin expression and genes that are regulated by prostasin, for the purpose of 

identifying the signaling pathways affected by prostasin. 

 

2.2 Materials and Methods 

2.2.1 Materials  

The human prostate carcinoma cell line PC-3 (Passage 18) was obtained from the American Type 

Culture Collection (ATCC, Manassas, VA), and cultured in conditions previously described 

(Chen et al., 2001a).  A polyclonal antibody against human prostasin was described previously 

(Chen et al., 2001b).  Polyclonal antibodies to EGFR (sc-03), Erk1/2 (sc-94), and a monoclonal 

antibody to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (sc-32233) were purchased 

from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA).  A monoclonal antibody to E-cadherin 
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(C20820) was purchased from BD Biosciences (San Jose, CA).  A monoclonal antibody to 

human matriptase (M32) was described previously (Oberst et al., 2005b).  A polyclonal 

antibody against phospho-Erk1/2 (V803A) was purchased from Promega (Madison, WI).  A 

recombinant human EGF was purchased from Invitrogen (Carlsbad, CA).   

 

2.2.2 Cell culture and transfection   

PC-3 cells were transfected with episomal expression plasmids carrying a wild-type human 

prostasin cDNA, or an active-site mutant prostasin cDNA, using methods previously described 

(Chen et al., 2001a).  Construction of the episomal expression plasmids and the mutant 

prostasin cDNA was described previously (Chen et al., 2001a; Chen et al., 2006h).  

Transfectants harboring the control plasmid, expressing the wild-type prostasin, or expressing the 

mutant prostasin were plated in 60-mm dishes and cultured to confluence for harvest of the 

culture medium, and the cells. 

 

2.2.3 RNA isolation, and reverse transcription - real-time polymerase chain reactions 
(RT-rtPCR) 

Confluent monolayers were lysed with the Trizol reagent (Invitrogen) for total cellular RNA 

isolation per supplier’s protocol.  Reverse transcription was carried out for each sample using 

the iScript cDNA Synthesis Kit (Bio-Rad, Hercules, CA) per supplier’s protocol.  Real-time 

polymerase chain reaction was carried out for each sample using the iQ SYBR Green Supermix 

(Bio-Rad) per supplier’s protocol.  PCR programs and methods of quantification were described 

previously (Chen et al., 2006g).  The message number of the GAPDH was used as the reference 
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for calculating specific gene messages.  PCR primers for GAPDH and SLUG were described 

previously (Chen et al., 2006f; Chen et al., 2006l).  PCR primers for the following human gene 

transcripts are listed in the order of forward and reverse: 

COX-2:  5’- CCT CCT GTG CCT GAT GAT TG -3’ 

   5’- ACT GAT GCG TGA AGT GCT G -3’  

E-Cadherin: 5’- AGA ATG ACA ACA AGC CCG AAT -3’ 

   5’- CGG CAT TGT AGG TGT TCA CA -3’ 

EGFR:  5’- CTG ACC AAA ATC ATC TGT GCC C -3’ 

   5’- CGT GGC TTC GTC TCG GAA TT -3’   

GM-CSF: 5’- AGC CAC TAC AAG CAG CAC -3’ 

   5’- ACA AGC AGA AAG TCC TTC AG -3’ 

iNOS:  5’- ATC TCT GGT CAA GCT GGA TGC -3’ 

   5’- GCC TTA TGG TGA AGT GTG TCT TG -3’ 

Matriptase: 5’- GTC CTG CTC ATC ACA CTG -3’ 

   5’- GTC AAT GTT GGG TGG GTA G -3’ 

uPA:  5’- GAC ATT GCC TTG CTG AAG -3’ 

   5’- CGG ATA GAG ATA GTC GGT AG -3’ 

uPAR:  5’- CAC TCA GAG AAG ACC AAC AG -3’ 

   5’- GCA CAA GTC TAA CCC ACA C -3’ 

 

2.2.4 Enzyme-linked immunosorbant assay (ELISA) 

A QuantikineTM human GM-CSF immunoassay kit (R&D Systems, Minneapolis, MN) was 
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used for determining the quantities of secreted GM-CSF in the medium collected from the PC-3 

transfectant cultures.  The medium was collected at 48 hours after a fresh medium change over 

sub-confluent cultures.  The assay was performed per supplier’s protocol.  Quantities of 

GM-CSF were expressed as pg/ml after normalizing with the cell number in the culture dishes.  

 

2.2.5 Western blot analysis 

Total cell lysate harvested from each cell type at equal amounts for all cell types, was subjected 

to western blot analysis with appropriate antibodies as described previously (Chen et al., 2001b).  

Each membrane was re-blotted with a GAPDH antibody as a control for protein loading.  For 

each sample, 40 µg of protein were loaded, except for the Erk-phospho-Erk blot for which 20 µg 

of protein per sample were loaded.  The antibodies were used at the following dilution: 

prostasin at 1:5,000, GAPDH (sc-32233) at 1:5,000, EGFR (sc-03) at 1:4,000, phospho-Erk1/2 

(V803A) and Erk1/2 (sc-94) at 1:5,000, matriptase (M32) at 1:2,500, and E-cadherin (C20820) at 

1:2,000.  Appropriate secondary antibodies conjugated to horse-radish peroxidase (HRP) were 

used at 1:10,000, and signals were developed by enhanced chemilluminescence (ECL).  

Specific target protein signals were digitally quantified and normalized against the quantity of 

the GAPDH signal. 

 

2.2.6 EGF treatment of cells and analysis of EGF signaling pathway activation 

Confluent PC-3 transfectants were placed under serum-free medium for overnight, and EGF 

treatment of the cultures was performed for 15 minutes at 50 ng/ml concentration of EGF, diluted 
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in serum-free medium.  The cells were then immediately applied to western blot analysis for 

total Erk1/2 and phospho-Erk1/2.  Relative changes of the phosphorylation state of Erk1/2 were 

determined following digital signal quantification and normalization against total Erk1/2 levels. 

 

2.2.7 Statistical Analysis 

Expression level evaluation using the western blot densitometry data, or the quantitative 

real-time PCR data was performed by comparing the “means”, wherein the data graphed or listed 

in the table represent the Means ± Standard Error (SE).  The Student t-Test (one-tailed, equal 

variance) was employed for assessing statistical difference (defined as when p < 0.05) between 

data groups. 

 

2.3 Results 

2.3.1 EGFR signaling pathway is down-regulated by prostasin 

To understand the molecular mechanism by which re-expression of prostasin inhibits cancer 

cell’s invasion, we expressed wild-type prostasin and a serine active-site mutant in the PC-3 cells 

and used Real-time RT-PCR and western blot to measure molecular changes induced by 

prostasin re-expression. The wild-type and the serine active-site mutant prostasin proteins were 

expressed in the PC-3 cells at equal quantities, as shown by the results of a western blot analysis 

(Figure 2-1). 
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Figure 2-1 Expression of the wild-type and a serine active-site mutant prostasin in PC-3. 

A representative western blot analysis of total lysate from PC-3 cells transfected with a vector control plasmid 

(PC-3/Vec), a wild-type human prostasin cDNA plasmid (PC-3/Pro), and a serine active-site mutant prostasin cDNA 

plasmid (PC-3/ProM). 

 

At the protein level, EGFR expression was down-regulated by the wild-type prostasin and the 

serine active-site mutant prostasin expressed in the PC-3 cells, by 66% and 48%, respectively, 

when compared to cells carrying the control plasmid (Figure 2-2A).  The wild-type prostasin 
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expressed in the PC-3 cells also down-regulated EGFR mRNA expression by 34% when 

compared to cells carrying the control plasmid, while the mutant prostasin did not affect EGFR 

mRNA expression (Figure 2-2B, and Table 2-1, page 46).  At the cellular function level, only 

the wild-type prostasin was able to inhibit EGF-EGFR signaling, with a 61% reduction of Erk1/2 

phosphorylation following EGF stimulation, when compared to cells carrying the control 

plasmid (Figure 2-2C).  The mutant prostasin did not have an effect on Erk1/2 phosphorylation 

after the EGF stimulation. 
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Figure 2-2 Regulation of EGFR expression and EGF-EGFR signaling in PC-3 by the wild-type and the 

mutant prostasin. 

A. Western blot analysis of EGFR in PC-3 transfected with a vector control plasmid (PC-3/Vec), a wild-type human 

prostasin cDNA plasmid (PC-3/Pro), and a serine active-site mutant prostasin cDNA plasmid (PC-3/ProM).  

Relative EGFR expression levels between PC-3/Vec, PC-3/Pro, and PC-3/ProM were determined following 

densitometric measurement of the specific protein bands and normalization against the GAPDH signals, as shown in 

the bar graph to the right.  Calculations were based on data from three independent experiments.  The 
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single-asterisk indicates a statistical difference between the PC-3/Vec and the PC-3/Pro, or between the PC-3/Vec 

and the PC-3/ProM data groups (p < 0.05).  The double-asterisk indicates a statistical difference between the 

PC-3/Pro and the PC-3/ProM data groups (p < 0.05). 

B. Real-time PCR analysis of reverse-transcribed cellular RNA for expression of EGFR.  Experimental groups are 

as indicated under each data column, representing relative levels of expression normalized to the mRNA level of 

GAPDH.  The single-asterisk indicates a statistical difference between the PC-3/Vec and the PC-3/Pro data groups 

(p < 0.05).  Calculations were based on data from four independent experiments. 

C. Western blot analysis of Erk1/2 phosphorylation in response to EGF stimulation.  Relative Erk1/2 

phosphorylation levels between PC-3/Vec, PC-3/Pro, and PC-3/ProM were determined following densitometric 

measurement of the phospho-Erk2 bands and normalization against the total Erk2 bands, as shown in the bar graph 

to the right.  Calculations were based on data from three independent experiments.  The single-asterisk indicates a 

statistical difference between the PC-3/Vec and the PC-3/Pro data groups (p < 0.05).   

 
 

Expression of SLUG, uPA, and COX-2 is down-regulated differentially by the wild-type and the 

mutant prostasin: At the mRNA level, expression of SLUG was down-regulated by the wild-type 

prostasin expressed in the PC-3 cells, by 71%, when compared to cells carrying the control 

plasmid, while the mutant prostasin had no effect on SLUG mRNA expression (Figures 2-3A,  

and Table 2-1, page 46). 

 

For uPA or COX-2, however, both the wild-type and the mutant prostasin were able to 

down-regulate the mRNA expression, but with the wild-type prostasin displaying a more robust 

phenotype (i.e., statistically different from the mutant phenotype).  The wild-type prostasin 

reduced uPA or COX-2 mRNA expression by 72.5% or 79%, respectively; while the mutant 

prostasin was only able to reduce uPA or COX-2 mRNA expression by 31% or 31%, respectively 

(Figures 2-3B and 2-3C, and Table 2-1, page 46). 
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Figure 2-3 Real-time PCR analysis of reverse-transcribed cellular RNA for expression of SLUG (A), uPA (B), 

and COX-2 (C). 

Experimental groups are as indicated under each data column, representing relative levels of expression normalized 

to the mRNA level of GAPDH.  The single-asterisk indicates a statistical difference between the PC-3/Vec and the 

PC-3/Pro, or between the PC-3/Vec and the PC-3/ProM data groups (p < 0.05).  The double-asterisk indicates a 

statistical difference between the PC-3/Pro and the PC-3/ProM data groups (p < 0.05).  Calculations were based on 

data from four independent experiments. 
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2.3.2 Expression of uPAR and iNOS is down-regulated by both the wild-type and the 
mutant prostasin 

At the mRNA level, expression of uPAR was down-regulated equally well, by 27%, by the 

wild-type prostasin, or the mutant prostasin expressed in the PC-3 cells, when compared to cells 

carrying the control plasmid (Figures 2-4A, and Table 2-1, page 46).  For the iNOS mRNA, 

wild-type prostasin down-regulated its expression in the PC-3 cells by 70%, while the mutant 

prostasin down-regulated the iNOS mRNA by 68%, when compared to cells carrying the control 

plasmid (Figure 2-4B, and Table 2-1, page 46).  There is no statistical difference in iNOS 

mRNA expression levels of the cells expressing the wild-type prostasin and those expressing the 

mutant. 

 

2.3.3 Expression of GM-CSF, matriptase, and E-cadherin is up-regulated by the serine 
active-site mutant prostasin 

At the mRNA level, GM-CSF expression was up-regulated by the mutant prostasin expressed in 

the PC-3 cells, to 2.66 fold, when compared to cells carrying the control plasmid (Figures 2-5A, 

and Table 2-1, page 46).  On the other hand, wild-type prostasin expressed in the PC-3 cells 

produced a down-regulation effect on GM-CSF mRNA expression, reducing it to 79% of that in 

the control cells.  The mRNA level changes of GM-CSF expression is reflected by the 

quantitative changes of the secreted GM-CSF in the culture medium (Figure 2-5B).  The mutant 

prostasin increased the amount of secreted GM-CSF to 3.2 fold of that of the control cells, while 

the wild-type prostasin reduced the amount to 69%. 
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For the matriptase mRNA, only the mutant prostasin expressed in the PC-3 cells had an effect on 

its expression, increasing it to 16.8 fold of that in the control cells (Figure 2-5C, and Table 2-1, 

page 46).  At the protein level, only in the mutant prostasin-expressing cells was the matriptase 

band detected in the western blot analysis (Figure 2-5D). 

 

For the E-cadherin mRNA, both the wild-type and the mutant prostasin expressed in the PC-3 

cells had an inducing effect on its expression, increasing it to 1.9 fold and 16.6 fold, respectively, 

of that in the control cells (Figure 2-5E, and Table 2-1, page 46).  At the protein level, the 

changes corresponded to the mRNA changes, with the wild-type prostasin increasing the cellular 

E-cadherin protein to 2.1 fold, and the mutant prostasin, 7 fold, over the level of E-cadherin 

protein in the vector control cells  (Figure 2-5F). 
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Figure 2-4 Real-time PCR analysis of reverse-transcribed cellular RNA for expression of uPAR (A) and iNOS 

(B). 

Experimental groups are as indicated under each data column, representing relative levels of expression normalized 

to the mRNA level of GAPDH.  The single-asterisk indicates a statistical difference between the PC-3/Vec and the 

PC-3/Pro, or between the PC-3/Vec and the PC-3/ProM data groups (p < 0.05).  Calculations were based on data 

from four independent experiments. 
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Figure 2-5 The serine active-site mutant prostasin induces the expression of GM-CSF (A and B), Matriptase 

(C and D), and E-Cadherin (E and F). 

Experimental groups are as indicated under each data column, or over each sample, representing relative levels of 

expression normalized to the mRNA/protein level of GAPDH, whichever appropriate.  The single-asterisk 

indicates a statistical difference between the PC-3/Vec and the PC-3/Pro, or between the PC-3/Vec and the 

PC-3/ProM data groups (p < 0.05).  The double-asterisk indicates a statistical difference between the PC-3/Pro and 

the PC-3/ProM data groups (p < 0.05).  Calculations of the mRNA expression levels were based on data from four 

independent experiments.  Calculations of the protein expression levels were based on data from three independent 

experiments. 
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2.4 Discussion 

In this chapter, we present our initial findings in the efforts of defining the molecular 

mechanisms by which prostasin serine protease, as an extracellular enzyme, impacts epithelial 

cell behavior.  We have previously determined that in human prostate and breast cancer cells 

that lost prostasin expression, an anti-invasion phenotype was associated with the re-expression 

of prostasin, while cell proliferation in vitro or in vivo was not affected (Chen et al., 2001a; Chen 

and Chai, 2002).  Here, we focused our attention on the molecules that play a role in the 

invasive behavior of a model cell line, the human prostate cancer cell line PC-3. 

 

The PC-3 cells were shown to display active prostasin protease on the membrane upon 

re-expression (Chen et al., 2001b).  This cell line also presents the prostasin-activating enzyme, 

matriptase (Sanders et al., 2006), and in our hands we confirmed an mRNA-level matriptase 

expression (Figure 2-5C, and Table 2-1, page 46).  We then used our sublines expressing the 

wild-type or the active-site mutant prostasin to investigate the molecular mechanisms that are 

dependent or independent of prostasin’s protease function. 

 

The first target molecules that we examined are the EGFR and those regulated by the EGFR 

during tumor invasion.  The EGFR was identified as a major player in prostate cancer invasion, 

in vivo, and in vitro in the model cell line PC-3.  The EGF-EGFR signaling initiates on the 

outside of the cells, where prostasin serine protease is located.  We first evaluated the potential 

of prostasin to regulate EGFR protein expression in the PC-3 cells following re-expression.  

The wild-type prostasin produced a 66% reduction of EGFR protein expression when compared 
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to the control cells (Figure 2-2A).  At the mRNA level, a 34% reduction of EGFR expression 

was also observed in the cells expressing the wild-type prostasin (Figure 2-2B, and Table 2-1, 

page 46).  Moreover, the wild-type prostasin but not the serine active-site mutant 

down-regulated EGF-EGFR signaling, as EGF-stimulated Erk1/2 phosphorylation was reduced 

by 61% (Figure 2-2C).  It had been previously shown that EGF-EGFR signaling could regulate 

EGFR mRNA expression in prostate cancer cell lines, including the PC-3 (Seth et al., 1999).  

Our observation on EGFR expression regulation by prostasin is consistent with a model of EGFR 

protein down-regulation followed by EGFR mRNA down-regulation.  In the PC-3 cells, 

activation of the EGF-EGFR signaling pathway does not stimulate cell proliferation (El Sheikh 

et al., 2004).  The Erk1/2 phosphorylation down-regulation by the wild-type prostasin is 

consistent with its anti-invasion but not anti-proliferation phenotype (Chen et al., 2001a). 

 

The serine active-site mutant prostasin also produced a protein-level EGFR down-regulation, at 

48% (Figure 2-2A), but not as great as the down-regulation observed with the wild-type 

prostasin.  The mutant prostasin, however, did not have an effect on the EGFR mRNA 

expression (Figure 2-2B, and Table 2-1, page 46) or EGF-stimulated Erk1/2 phosphorylation 

(Figure 2-2C).  A possible explanation is that the extent of the mutant prostasin-associated 

EGFR protein down-regulation was not at a threshold point to affect the effective number of 

surface receptor presentation to impact receptor binding-activated signaling or EGFR mRNA 

expression.     
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The uPA mRNA was down-regulated by the wild-type prostasin in the PC-3 cells (Figure 2-3B, 

and Table 1, page 46), a result that is consistent with the invasion-suppressing role of prostasin 

(Chen et al., 2001a).  This result is also consistent with an EGF-EGFR-stimulated uPA 

expression (Skogseth et al., 2005) being down-regulated by the wild-type prostasin.  Both the 

wild-type and the mutant prostasin were shown to down-regulate the uPAR mRNA expression 

(Figure 2-4A, and Table 1, page 46), but the mechanism and the impact of this regulation are 

unclear.  It is also difficult to speculate, at present, on the mechanism or impact of the uPA 

expression down-regulation by the mutant prostasin (Figure 2-3B, and Table 2-1, page 46).   

 

We have observed molecular changes associated with the expression of the active-site mutant 

prostasin in PC-3 cells.  It must be emphasized that these molecular changes are experimental 

artifacts because this form of the prostasin protein does not exist in nature.  Its value to our 

investigation is to help identify the proteins that directly interact with prostasin, allowing us to 

establish whether it is a potential substrate of the prostasin serine protease.  Our results on the 

EGFR protein and mRNA expression following prostasin and mutant prostasin re-expression in 

the PC-3 cells are consistent with a proteolytic processing role for prostasin on a new candidate 

substrate, the EGFR.  On the other hand, we can not rule out at present that the EGFR 

expression changes resulted first from a transcriptional regulation.  We did not observe an 

apparent proteolytically processed EGFR band in our western blots.  But the potentially cleaved 

EGFR could be rapidly internalized and degraded.  In next chapter, further research will be 

performed to ascertain the timing and sequence of EGFR expression regulation by prostasin. 
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Bruns et al. (Bruns et al., 2007) recently reported that the proteolytic activation of the gamma 

subunit of the ENaC is carried out by prostasin, but they also noted that the serine active-site 

mutant prostasin produced a similar proteolytic effect.  A potential mechanism was offered to 

explain the apparent proteolytic effect of the serine active-site mutant prostasin on ENaCgamma, 

that it could have retained a residual serine protease activity.  An alternative explanation was 

that the abundance of over-expressed prostasin, wild-type or mutant, could have exhausted the 

supply of serine protease inhibitors, allowing other proteases to take action.  We have observed 

in the PC-3 cells, however, a dramatic inducing effect by the mutant prostasin, on the activating 

serine protease, matriptase.  Matriptase and prostasin share a great deal in substrate preference, 

for example, cleaving the Gln-Ala-Arg-X type of substrates (Chen et al., 2004; Yamasaki et al., 

2003).  It is plausible that in the experiments performed to confirm prostasin cleavage of 

ENaCgamma, the mutant prostasin transfected into the cells also induced matriptase expression 

to cleave ENaCgamma.   

 

The biological relevance of mutant prostasin-induced gene expression requires careful 

consideration as such is the case with the E-cadherin expression.  The wild-type prostasin 

produced a moderate induction effect on E-cadherin expression, a result that is also consistent 

with prostasin’s anti-invasion role.  A robust induction of E-cadherin expression at the mRNA 

level, reflected at the protein level, however, was observed in cells expressing the mutant 

prostasin.  This induction appears to correlate with that of the matriptase expression, suggesting 

that matriptase and prostasin may have an overlapping point in the mechanisms and pathways by 

which they modulate cell signaling.   
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We also investigated two inflammation-induced genes for potential regulation by prostasin, 

namely COX-2 and iNOS.  Induction of bladder iNOS mRNA by inflammation was attenuated 

by prostasin, while induction of bladder COX-2 mRNA was not (Chen et al., 2006e).  Prostasin 

did not regulate inflammation-induced COX-2 expression because it is not co-expressed in the 

COX-2 producing cells (Chen et al., 2006d).  We tested the expression of these two genes in 

response to prostasin re-expression in the PC-3 cells, and found that both the wild-type prostasin 

and the mutant prostasin produced a down-regulation on both COX-2 and iNOS (Figures 2-3C 

and 2-4B, and Table 2-1, page 46).  For COX-2 the down-regulation by the mutant prostasin 

was not as great as that by the wild-type prostasin, but for iNOS, the two versions of prostasin 

were equally effective.  We could reason from these results that prostasin is also capable of 

regulating COX-2 expression, in cells where it is co-expressed with COX-2.  We did not 

observe a down-regulation of iNOS expression by the mutant prostasin in the bladder 

inflammation model (Chen et al., 2006c), but an effect was seen in the PC-3 cells in the present 

study.  It is also possible that an induction of other membrane-type extracellular proteases, such 

as matriptase, were responsible for the COX-2 or iNOS expression down-regulation in PC-3 cells 

expressing the mutant prostasin. 

 

CONCLUSIONS: prostasin re-expression in the PC-3 human prostate carcinoma cells induced 

serine protease-dependent and apparently serine protease-independent molecular changes.  The 

protease-dependent changes are considered biologically relevant, while it will require further 

research investigation to determine the biological relevance of the protease-independent changes. 
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Table 2-1 Gene expression changes in PC-3 evaluated by RT-rtPCR. 

                               
Experiment Group  Gene Evaluated Expression Level   Change versus  
              Normalized to GAPDH  Control (Fold)    
PC-3/Vec    EGFR   7.06 ±0.27 x 10-3    1.0 
PC-3/Pro    EGFR   4.65 ±0.16 x 10-3   0.66* 
PC-3/ProM   EGFR   5.84 ±0.65 x 10-3   nsd 
  
PC-3/Vec    SLUG   1.42 ±0.08 x 10-2    1.0 
PC-3/Pro    SLUG   0.41 ±0.02 x 10-2   0.29* 
PC-3/ProM   SLUG   1.18 ±0.10 x 10-2   nsd 
 
PC-3/Vec    uPA    2.29 ±0.10 x 10-1    1.0 
PC-3/Pro    uPA    0.63 ±0.04 x 10-1   0.275*φ 
PC-3/ProM   uPA    1.59 ±0.03 x 10-1   0.69* 
  
PC-3/Vec    uPAR   2.87 ±0.10 x 10-2    1.0 
PC-3/Pro    uPAR   2.09 ±0.12 x 10-2   0.73* 
PC-3/ProM   uPAR   2.10 ±0.05 x 10-2   0.73* 
 
PC-3/Vec    COX-2   9.69 ±0.51 x 10-4    1.0 
PC-3/Pro    COX-2   1.99 ±0.23 x 10-4   0.21*φ 
PC-3/ProM   COX-2   6.73 ±0.60 x 10-4   0.69* 
 
PC-3/Vec    iNOS   5.55 ±0.97 x 10-5    1.0 
PC-3/Pro    iNOS   1.65 ±0.22 x 10-5   0.30* 
PC-3/ProM   iNOS   1.79 ±0.23 x 10-5   0.32* 
 
PC-3/Vec    GM-CSF   3.60 ±0.21 x 10-4    1.0 
PC-3/Pro    GM-CSF   2.84 ±0.12 x 10-4   0.79*φ 
PC-3/ProM   GM-CSF   9.56 ±0.32 x 10-4   2.66* 
 
PC-3/Vec    Matriptase  3.68 ±0.48 x 10-4    1.0 
PC-3/Pro    Matriptase  3.53 ±0.45 x 10-4   nsd 
PC-3/ProM   Matriptase  6.195 ±0.51 x 10-3   16.8* 
 
PC-3/Vec    E-Cadherin  9.23 ±1.13 x 10-4    1.0 
PC-3/Pro    E-Cadherin  1.79 ±0.10 x 10-3   1.9*φ 
PC-3/ProM   E-Cadherin  1.53 ±0.18 x 10-2   16.6*   
                           
Real-time PCR analysis of reverse-transcribed cellular RNA from PC-3 cells transfected with a control plasmid 
(PC-3/Vec), a wild-type human prostasin cDNA plasmid (PC-3/Pro), and a serine active-site mutant prostasin cDNA 
plasmid (PC-3/ProM).  Experiments were performed at least four times.  Calculations in the table were based on 
data from four representative experiments. 
* Indicates a statistical difference (p < 0.05) between the PC-3/Vec and the PC-3/Pro, or between the PC-3/Vec and 
the PC-3/ProM data groups.   
φ Indicates a statistical difference (p < 0.05) between the PC-3/Pro and the PC-3/ProM data groups. 
nsd: No statistical difference, between the data group indicated and PC-3/Vec. 
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CHAPTER THREE  THE EPIDERMAL GROWTH FACTOR  
RECEPTOR (EGFR) IS PROTEOLYTICALLY MODIFIED BY THE 

MATRIPTASE-PROSTASIN SERINE PROTEASE CASCADE 

 

3.1 Introduction 

In the previous chapter, we have shown that the expression of several invasion-promoting 

molecules is regulated by prostasin re-expression in the PC-3 cells, possibly via down-regulation 

of EGFR and EGF-EGFR signaling.   

 

EGFR, a member of the ErbB (erythroblastic leukemia viral (v-erb-b) oncogene) family of 

membrane receptor tyrosine kinases (RTK’s), is one of the most important membrane molecules 

that plays pivotal roles in many cellular responses ranging from proliferation to apoptosis, 

migration to adhesion, and differentiation to depolarization (Yarden and Sliwkowski, 2001; Wells, 

1999).  Dys-regulation of EGFR by overexpression or mutation resulting in constitutive 

activation is associated with many types of cancers (Bellezza et al., 2006; Lo et al., 2006a; 

Normanno et al., 2006; Ahmed and Salgia, 2006).  The PC-3 cells express an abundance of 

EGFR and its ligands (Morris and Dodd, 1990; Ching et al., 1993), creating an autocrine 

signaling loop to confer the cells with highly invasive properties.  Inhibition of EGFR signaling 

reduced the invasiveness of PC-3 cells either through down-regulation of uPA-uPAR signaling 

(Skogseth et al., 2006; Skogseth et al., 2005) or up-regulation of cell adhesion molecules such as 

the E-Cadherin (Yates et al., 2007).  The PC-3 cell line is not dependent on EGFR signaling for 

proliferation (El Sheikh et al., 2004). 
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Given the extracellular localization of prostasin and the EGF-binding domains of the EGFR, we 

had speculated that a proteolytic modification of the EGFR in its extracellular domain (ECD) 

might be a mechanism for prostasin down-regulation of EGFR expression and signaling in the 

PC-3 cells.  We present biochemical evidence that prostasin induces site-specific cleavages of 

the EGFR ECD following activation by matriptase in the HEK-293 Flp-In TRex (FT-293) cells, 

generating two N-terminally truncated EGFR fragments at 135 kD and 110 kD.  The 

N-terminally truncated EGFR fragments are predicted to have lost the functional EGF-binding 

domain and are no longer responsive to EGF stimulation. 

 

3.2 Materials and Methods 

3.2.1 Materials 

A full-length human EGFR cDNA (Clone No. PR1116_D04, NM_005228) was purchased from 

OriGene (Rockville, MD).  The HEK-293 Flp-In TRex (FT-293) cells and a recombinant 

human EGF were obtained from Invitrogen (Carlsbad, CA).  A polyclonal antibody to EGFR 

(sc-03), a monoclonal antibody to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 

(sc-32233), and a polyclonal antibody to Erk1/2 (sc-94) were purchased from Santa Cruz 

Biotechnology, Inc. (Santa Cruz, CA).  A monoclonal antibody to the HA tag (6E2), and a 

polyclonal antibodies to phospho-EGFR (Tyr1068, #2234) was purchased from Cell Signaling 

Technology, Inc. (Beverly, MA). A monoclonal antibody to phospho-tyrosine (PY-20, #03-7799) 

was purchased from Zymed Laboratories, Inc. (South San Francisco, CA).  Monoclonal 

antibodies to phospho-Akt (#550747) and Akt (#610860) were purchased from BD Biosciences 

(Franklin Lakes, NJ).  A polyclonal antibody to phospho-Erk1/2 (V803A) was purchased from 
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Promega (Madison, WI).  Tyrphostin AG1478 (#658548) was obtained from Calbiochem (San 

Diego, CA). 

 

3.2.2 Construction of expression plasmids 

The cDNA’s of the wild-type human prostasin and the active-site mutant human prostasin (Chen 

et al., 2001a) were subcloned into the pcDNA3 plasmid (Invitrogen, Carlsbad, CA) to generate 

the prostasin expression plasmids pcDNA3-Pro and pcDNA3-ProM for transient expression in 

tissue-cultured cells.  The full-length human EGFR cDNA clone from OriGene was also 

subcloned into pcDNA3, generating the EGFR expression plasmid pcDNA3-EGFR.  A 

modified pcDNA3 plasmid, pcDNA3-HA, was generated by inserting a double-stranded 

oligonucleotide encoding the 9 amino-acid coding sequence of a hemagglutinin (HA) tag 

(YPYDVPDYA) into pcDNA3.  A full-length human matriptase cDNA (Oberst et al., 2005a) 

was then subcloned into the pcDNA3-HA plasmid in frame to generate a C-terminally 

HA-tagged matriptase expression plasmid pcDNA3-Mat-HA.  An active-site mutant of the 

HA-tagged matriptase expression plasmid, pcDNA3-MatM-HA was also generated by 

PCR-based site-directed mutagenesis using the QuikChange Site-Directed Mutagenesis Kit 

(Stratagene, La Jolla, CA). 

   

3.2.3 Cell culture, transfection and western blot 

The FT-293 cells were cultured in the D-MEM (High Glucose) medium supplemented with 10% 

(v/v) FBS (fetal bovine serum).  On day 1, cells were plated on a poly-L-lysine (PLL) coated 



 49

12-well plate at a density of 4 x 105 cells per well.  On day 2, the appropriate expression 

plasmids (0.8µg of total DNA per transfection) were transfected into the cells using the 

Lipofectamine 2000 reagent (Invitrogen, 2µl per transfection) according to the manufacturer’s 

protocol.  Twenty-four hours after transfection, the cells were lysed in the RIPA lysis buffer 

supplemented with a protease inhibitor cocktail.  Twenty µg of total protein lysate were 

subjected to western blot analysis with appropriate antibodies as describes previously (Chen et 

al., 2001b).  Each membrane was also blotted with a GAPDH antibody as a control of protein 

loading. 

 

3.2.4 PN-1 cell binding assay 

Transfected FT-293 cells cultured to confluence were washed with 1x PBS once, scraped off in 

1x PBS and collected by centrifugation.  The cell pellet was then re-suspended in 100 µl of 

25mM Tris-HCl, pH 7.6, and incubated with 5 µl of mouse seminal vesicle fluid at 37oC for 2 

hours as described previously (Chen et al., 2001b).  Following the incubation, the cells were 

re-centrifuged and lysed in the RIPA lysis buffer supplemented with a protease inhibitor cocktail.  

The cell lysate was subjected to western blot analysis with a prostasin antibody.  Active 

prostasin on the cell membrane are indicated by the appearance of a heat-stable SDS-resistant 

complex of prostasin and mouse PN-1.  
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3.2.5 EGF treatment of cells and analysis of EGF-EGFR signaling pathway activation 

Transfected FT-293 cells cultured to confluence were washed with 1x PBS once and placed 

under serum-free medium for overnight.  Serum-starved cell cultures were then treated with 10 

ng/ml of EGF for 10 minutes, or left untreated.  The cells were then immediately lysed and 

subjected to western blot analysis for phospho-EGFR and total EGFR, phospho-Erk1/2 and total 

Erk1/2, and phospho-Akt and total Akt.  Each membrane was also blotted with a GAPDH 

antibody as a control of protein loading.  For EGFR phosphorylation inhibition assays, FT-293 

cells were transfected, serum-starved, and EGF-stimulated in the medium with 2 µM AG1478.  

An equal volume of DMSO was applied to control cultures.   

 

3.2.6 Generation of deletion mutants of EGFR 

To generate EGFR ECD deletion mutants to map the protease cleavage site, the EGFR-pcDNA3 

construct plasmid except the specific deletion regions were re-amplified by polymerase chain 

reaction (PCR) using the Phusion high-fidelity DNA polymerase (New England Biolabs, Beverly, 

MA).  The amplified fragments were then ligated using the T4 DNA ligase (Invitrogen) and 

transformed into the TOPP10 competent cells (Invitrogen).  All deletion mutant constructs were 

verified by DNA sequencing before transfection-quality DNA was prepared using a QIAGEN kit 

(Valencia, CA).  Listed below are the primers used for amplification of the EGFR ECD deletion 

cDNA: 

EGFR∆6-272-3:  5’- TTT CTT TTC CTC CAG AGC CCG ACT CGC C -3’ 

EGFR∆6-272-5:  5’ - AAT TAT GTG GTG ACA GAT CAC GGC TCG TGC GTC -3’ 

EGFR∆272-409-3: 5’- GGG ACA CTT CTT CAC GCA GGT GGC AC -3’ 
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EGFR∆272-409-5: 5’- GGT CAG TTT TCT CTT GCA GTC GTC AG -3’ 

EGFR∆6-409-3:  5'- TTT CTT TTC CTC CAG AGC CCG ACT CGC C -3' 

EGFR∆6-409-5:  5’- GGT CAG TTT TCT CTT GCA GTC GTC AG -3’ 

EGFR∆6-612-3:  5’- TTT CTT TTC CTC CAG AGC CCG ACT CGC C -3’ 

EGFR∆6-612-5:  5’- CCA ACG AAT GGG CCT AAG ATC CCG TCC -3’ 

 

3.3 Results 

3.3.1 Prostasin activated by matriptase induces the cleavage of EGFR in FT-293 cells 

In the previous chapter, a proteolytic mechanism of EGFR regulation by prostasin was suggested 

from the observation that re-expression of prostasin down-regulated the protein expression of 

EGFR in the PC-3 prostate carcinoma cells.  In this chapter, to determine whether EGFR is a 

biological substrate of prostasin, we co-expressed EGFR, prostasin and an HA-tagged matriptase 

in FT-293 cells by transient transfection.  FT-293 cells were derived from the human embryonic 

kidney cell line HEK-293 which does not express significant levels of EGFR, prostasin or 

matriptase (Stern et al., 2007; Chen et al., 2001b).  First, we confirmed the serine protease 

activity of prostasin co-expressed with matriptase (HA-tagged, same hereon) by performing a 

binding assay with PN-1, the specific serpin-class inhibitor for prostasin.  The PN-1 binding 

assay is a reliable method for evaluating prostasin’s serine protease activation state in vitro and 

in vivo (Chen et al., 2001b; Chen et al., 2004; Netzel-Arnett et al., 2006b).  When expressed 

without matriptase, prostasin remains in the zymogen form and no prostasin-PN-1 complex was 

detected, indicating a lack of serine protease activity (Figure 3-1, lane 2).  When co-expressed 

with matriptase, prostasin was shown to be cleaved, apparently by matriptase, to produce a 
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lower-molecular weight prostasin molecule, and at the same time a prostasin-PN-1 complex 

(Figure 3-1, lane 5).  The serine active-site mutant prostasin was also cleaved by matriptase but 

no prostasin-PN-1 complex was observed (Figure 3-1, lane 6).  The serine active-site mutant 

matriptase, expectedly, was unable to cleave and activate the prostasin zymogen (Figure 3-1, lane 

7-9). 

 

 

 

Figure 3-1 Prostasin is activated by HA-tagged matriptase in FT-293 cells. 

FT-293 cells were transfected with cDNA’s encoding EGFR (0.5 µg), wild-type prostasin (Pro, 0.2 µg), serine-active 

site mutant prostasin (ProM, 0.2 µg), HA-tagged matriptase (Mat-HA, 0.1 µg) or HA-tagged serine-active site 

mutant matriptase (MatM-HA, 0.1 µg), or in combinations as indicated in the figure.  Each transfection was carried 

out with an equal amount of total plasmid DNA using the vector plasmid pcDNA3 as a substitute when appropriate.  

At 24 hours post transfection, cells were subjected to PN-1 binding assays with mouse seminal vesicle fluid (mSVF) 

followed by western blot analysis for prostasin under boiling and reducing conditions. The covalent prostasin-PN-1 

complex, uncut prostasin, and cut prostasin are indicated by arrows. The results shown are representative of three 

independent experiments. 

 

 



 53

In a western blot analysis using a polyclonal antibody that specifically recognizes a 

carboxyl-terminal intracellular domain of human EGFR, two apparently amino-terminally 

truncated EGFR fragments were produced when matriptase was co-expressed (Figure 3-2, long 

exposure, lane 4).  These apparent proteolytically modified fragments of EGFR were detected 

at approximately 135 kDa and 110 kDa, and were named EGFR135 and EGFR110, respectively.  

Quantities of the truncated EGFR, EGFR135 and EGFR110 were greatly increased when the 

wild-type prostasin was co-expressed with EGFR and matriptase.  There was a decrease in 

quantities of EGFR135 and EGFR110 when the serine active-site mutant prostasin instead of the 

wild-type enzyme was co-expressed with EGFR and matriptase (Figure 3-2, lane 5 and 6).    

The amount of uncut full-length EGFR (the 170-kDa band) was also reduced with matriptase 

co-expression, and to a much greater extent with the addition of the wild-type prostasin.  In a 

control experiment, we confirmed that the serine active-site mutant matriptase was unable to 

induce any cleavage of EGFR (Figure 3-2, lane 7-9). 

 

To determine whether the membrane anchorage of prostasin is required for the EGFR cleavage, 

we generated a GPI anchor-free but protease competent mutant prostasin and co-expressed it 

with EGFR and matriptase.  The GPI anchor-free mutant produced a similar pattern of EGFR 

cleavage as that seen with the wild-type when co-expressed with matriptase (Figure 3-3), 

suggesting that the GPI membrane anchorage is not required for the prostasin-induced EGFR 

cleavage.  
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Figure 3-2 Prostasin and matriptase induce the cleavage of EGFR in FT-293 cells. 

FT-293 cells were transfected with cDNA’s encoding EGFR (0.5 µg), wild-type prostasin (Pro, 0.2 µg), serine-active 

site mutant prostasin (ProM, 0.2 µg), HA-tagged matriptase (Mat-HA, 0.1 µg) or HA-tagged serine-active site 

mutant matriptase (MatM-HA, 0.1 µg), or in combinations as indicated in the figure.  Each transfection was carried 

out with an equal amount of total plasmid DNA using the vector plasmid pcDNA3 as a substitute when appropriate.  

At 24 hours post transfection, cells were assayed for EGFR protein expression by SDS-PAGE and western blot 

analysis with an anti-EGFR antibody that recognizes a C-terminal intracellular epitope of EGFR.  The membrane 

was re-blotted with a GAPDH antibody as a sample loading control.  The results shown are representative of three 

independent experiments. 



 55

 

Figure 3-3 Prostasin-induced cleavage of EGFR is not dependent on its GPI-anchor in FT-293 cells. 

FT-293 cells were transfected with cDNA’s encoding EGFR (0.5 µg), wild-type prostasin (Pro, 0.2 µg), anchor-free 

mutant prostasin (ProMG, 0.2 µg), or HA-tagged matriptase (Mat-HA, 0.1 µg), or in combinations as indicated in the 

figure.  Each transfection was carried out with an equal amount of total plasmid DNA using the vector plasmid 

pcDNA3 as a substitute when appropriate.  At 24 hours post transfection, cells were assayed for EGFR protein 

expression by SDS-PAGE and western blot analysis as described in previous figure legend.  The results shown are 

representative of three independent experiments. 
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3.3.2 Prostasin-induced EGFR ECD truncation activates EGFR and downstream signals 

FT-293 cells presenting uncleaved or cleaved EGFR following EGFR and double protease 

(prostasin and matriptase) co-transfection were assayed for changes in EGF-EGFR signaling.  

Tyrosine phosphorylation of EGFR was detected via an antibody against phospho-tyrosine or an 

antibody recognizing the phosphorylated EGFR (at tyrosine-1068).  The uncleaved wild-type 

EGFR (170 kDa) remains in the unphosphorylated state under the serum-free culture condition 

and becomes highly tyrosine phosphorylated once stimulated with EGF (Figure 3-4A).  On the 

other hand, the EGFR110 fragment was shown to be tyrosine phosphorylated under serum-free 

culturing conditions, i.e., in the absence of an EGFR ligand (Figure 3-4A, lane 2), but the 

tyrosine phosphorylation of EGFR110 was not responsive to EGF stimulation (Figure 3-4A, lane 

4).  The EGFR135 fragment did not present detectable tyrosine phosphorylation under either 

serum-free or EGF-stimulated conditions.  At the same time, we also examined the 

phosphorylation states of EGFR downstream signaling molecules Erk1/2 and Akt.  In the 

presence of the cleaved EGFR, Erk1/2 and Akt phosphorylation was dramatically increased 

when compared with the cells with only the uncleaved wild-type EGFR (Figure 3-4B). 
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Figure 3-4 Phosphorylation changes of EGFR, Erk and Akt after the EGFR cleavage. 

FT-293 cells were transfected with cDNA’s encoding EGFR (0.05 µg for lane 1 and 3; 0.2 µg for lane 2 and 4), 
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wild-type prostasin (Pro, 0.2 µg), or HA-tagged matriptase (Mat-HA, 0.1 µg), or in combinations as indicated in the 

figure.  Each transfection was carried out with an equal amount of total plasmid DNA using the vector plasmid 

pcDNA3 as substitute when appropriate.  At 24 hours after transfection, cells were placed under serum-free 

medium for overnight and treated with 10ng/ml EGF for 10 minutes (lanes 1 and 2) or left untreated (lanes 3 and 4) 

before harvested for western blot analysis.  (A) The phosphorylation state of EGFR tyrosine residues (pY20) and a 

specific phospho-tyrosine (pY1068) in FT-293 cells presenting wild-type uncleaved or cleaved EGFR under 

serum-free or EGF-stimulated conditions.  (B) The phosphorylation state of Erk1/2 and Akt in FT-293 cells 

presenting wild-type uncleaved or cleaved EGFR under serum-free conditions.  The results shown are 

representative of three independent experiments. 

 

 

3.3.3 Prostasin-induced EGFR cleavage is not dependent on tyrosine-phosphorylation of 
EGFR 

When EGFR is over-expressed in the FT-293 cells, a small portion of EGFR was shown to be 

tyrosine-phsophorylated (Figure 3-5, lane 1).  To test whether this auto-phosphorylation of 

EGFR is required for the prostasin-induced cleavage, we performed similar experiments in the 

presence of AG1478, a potent inhibitor of EGFR kinase activity and auto-phosphorylation.  

Incubation with AG1478 completely eliminated not only the auto-phosphorylation and 

EGF-stimulated phosphorylation of wild-type EGFR but also the cleavage-induced 

phosphorylation of EGFR110 (Figure 3-5, lane 5-8).  On the other hand, the cleavage of EGFR 

induced by prostasin was not affected by the AG1478 treatment (Figure 3-5, lane 5-8 compared 

with lane 1-4), suggesting that the prostasin-induced EGFR cleavage is independent on EGFR’s 

tyrosine phosphorylation.   
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Figure 3-5 Prostasin-induced EGFR cleavage is independent of EGFR phosphorylation. 

FT-293 cells were treated with AG1478 (2 µM, lane 5-8), or with DMSO (solvent control of AG1478, lane 1-4) 

during transfection, serum-starvation and EGF stimulation.  Cells were transfected with cDNA’s encoding EGFR 

(0.2 µg), wild-type prostasin (Pro, 0.2 µg), or HA-tagged matriptase (Mat-HA, 0.1 µg), or in combinations as 

indicated in the figure.  Each transfection was carried out with an equal amount of total plasmid DNA using the 

vector plasmid pcDNA3 as a substitute when appropriate.  At 24 hours after transfection, cells were placed under 

serum-free medium for overnight and treated with 10 ng/ml of EGF for 10 minutes (lanes 3, 4, 7 and 8) or left 

untreated (lanes 1, 2, 5 and 6) before harvested for western blot analysis.  The results shown are representative of 

three independent experiments. 
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3.3.4 Mapping the protease cleavage sites in the EGFR ECD 

In an attempt to map the cleavage sites for matriptase-prostasin in the EGFR ECD, we generated 

several deletion mutant constructs (EGFR∆6-272-pcDNA3, EGFR∆272-409-pcDNA3, 

EGFR∆6-409-pcDNA3, EGFR∆6-612-pcDNA3) and co-expressed them with the wild-type 

prostasin and matriptase,  Apparent proteolytic cleavage patterns of these EGFR deletion 

mutants by matriptase and prostasin are show in Figure 3-6.  The EGFR deletion mutants 

EGFR∆6-272 or EGFR∆272-409, without amino acid residues 6 to 272 or amino acid residues 

272 to 409, respectively, could still be cleaved by the activated prostasin, but only generating one 

cleavage product, suggesting that each deletion region contains one cleavage site.  The EGFR 

deletion mutants EGFR∆6-409 or EGFR∆6-612, without amino acid residues 6 to 409 or amino 

acid residues 6 to 612, respectively, was no longer cleaved by prostasin.   
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Figure 3-6 Mapping protease cleavage sites within the EGFR ECD using deletion mutants. 

(A) FT-293 cells were transfected with cDNA’s encoding appropriate EGFR fragments (EGFR, EGFR∆6-272, 

EGFR∆272-409, EGFR∆6-409, or EGFR∆6-612, 0.2 µg) with or without wild-type prostasin (Pro, 0.2 µg) and 

HA-tagged matriptase (Mat-HA, 0.1 µg) as indicated in the figure.  Each transfection was carried out with an equal 

amount of total plasmid DNA using the vector plasmid pcDNA3 as a substitute when appropriate.  At 24 hours post 

transfection, cells were assayed for EGFR protein expression by SDS-PAGE and western blot analysis.  (B) 

Schematic illustration of the EGFR deletion mutants.  Two potential cleavage sites (Site A and Site B) were 

indicated by arrows.  Four structurally defined domains of the EGFR extracellular region are referred to as L1, 

CR1, L2, and CR2.  Residue numbers for domain boundaries are also indicated. 
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3.4 Discussion 

In this report, we present biochemical evidence that EGFR may be a biological substrate for 

matriptase and prostasin serine proteases in the epithelial cells.  The actions of this serine 

protease activation cascade result in extracellular N-terminal truncation of EGFR, and 

phosphorylation of the truncated receptor, along with up-regulated downstream signals in the 

model cell line FT-293.   

 

Prostasin as a GPI-anchored protein is routed to the apical membrane of the normally polarized 

epithelial cells (Chen et al., 2001b).  EGFR and matriptase are normally routed to the 

basolateral sides of the cells (Hobert and Carlin, 1995; List et al., 2007a).  Topologically 

distinct but coordinate expression of matriptase and prostasin is observed in many terminally 

differentiated epithelial tissues, implicating coordinate roles for these two serine proteases in 

normal epithelial physiology (List et al., 2007b).  But during epithelial carcinogenesis 

expression of matriptase and prostasin begins to show divergent patterns of change, implicating 

diverging and independent roles for the two serine proteases in cancer.  In the prostate and the 

breast, prostasin (PRSS8) is abundantly expressed in the normal tissue, but down-regulated in 

cancers, until its expression is lost in high-grade tumors (Chen et al., 2001a; Chen and Chai, 

2002).  An exception may be the ovarian cancer, which is marked by an up-regulation of 

prostasin (Mok et al., 2001).  For matriptase (also known as MT-SP1), its expression is 

up-regulated in prostate and breast cancers (Jin et al., 2007; Kang et al., 2003), and its 

mechanistic role in cancer is believed to be activating the ligands of the Ron signaling pathway 

(Welm et al., 2007).   
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In terminally differentiated epithelia, EGFR is not expressed in abundance, but over-expression 

of EGFR is commonly associated with cancer.  In the normal tissue, therefore, prostasin and 

matriptase are controlled by topological separation on the plasma membrane, if not also by 

differential expression, i.e., a high abundance of prostasin and a low abundance of matriptase.  

We may view prostasin as a sensor or surveillance agent for epithelial polarity and integrity.  

Once an insult, e.g., inflammation, results in injury of the normal epithelium, depolarization 

ensues and injury repair programs are mobilized.  EGFR is a key player in epithelial injury 

repair (Repertinger et al., 2004) but at some point the cells need to initiate a “stop program” of 

EGFR signaling to allow epithelial differentiation and re-polarization.  The executor of the 

“stop program” appears to be prostasin or related proteases, activated or re-expressed to initiate 

terminal differentiation.  Prostasin’s role in this regard is in complete agreement with the 

observation that in prostasin-knocked-out mouse skin, terminal differentiation of the skin 

epithelium is defective, marked by lack of tight junction formation and absence of occludin 

expression (Leyvraz et al., 2005).  Also in agreement with this model is the observation that 

prostasin expression is down-regulated during inflammation while forced prostasin expression 

attenuates inflammation-induced gene expression (Chen et al., 2006b).  Silencing of prostasin 

by epigenetic events or growth factors and cytokines (Chen and Chai, 2002; Chen et al., 2004; 

Chen et al., 2006a; Chen et al., 2006l), would be a pre-requisite for tumorigenesis and gain of 

aggressive properties such as invasion and metastasis.   

 

The overall impact of the prostasin cleavage of EGFR on the cell is dependent on the rate of 

internalization for the cleaved receptor.  In cells with normal or even accelerated turnover rate, 
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such as the PC-3 (Bonaccorsi et al., 2007), the net effect is inhibition of EGF-EGFR signaling 

due to reduced cell surface receptor presentation.  We predict for cancer cells that are 

EGFR-dependent this will be the predominant phenotype as in these cells the EGF-EGFR 

signaling is tightly coupled with receptor internalization (Carpenter, 2000).  In these cells, the 

rapid receptor internalization also prevented our detection of the cleaved forms of EGFR (Chen 

et al., 2007a).  In cells with impeded receptor internalization, such as the HEK-293 and its 

derivatives (the FT-293) (Johannessen et al., 2001), the net effect is a constitutively activated and 

truncated EGFR remaining on the membrane, activating the downstream signals.  Cells that are 

EGFR-over-expressing but are not EGFR-dependent would potentially present this phenotype.   

 

The HA-tagged matriptase has previously been shown to retain the matriptase protease activity 

and substrate specificity.  We have confirmed its ability to activate prostasin in the FT-293 cells 

when the two proteases are co-expressed from their full-length cDNA’s (Figure 3-1).  

Matriptase is also capable of cleaving the EGFR at apparently the same sites cleaved by 

prostasin, but appeared to be a weaker enzyme in this role (Figure 3-2, compare Lanes 4 and 5).  

Its action on EGFR could be amplified, however, if an abundance of matriptase is expressed, as 

was seen with the serine active-site mutant prostasin transfected PC-3 cells (Chen et al., 2007b).  

In these cells, we now know that the mutant prostasin is incapable of cleaving EGFR (Figure 3-2, 

compare Lanes 5 and 6), but the robustly induced matriptase certainly could.  Several of the 

molecular changes that were induced by both the wild-type and the serine active-site mutant 

prostasins, such as the down-regulation of EGFR (protein), uPA, uPAR, COX-2, and iNOS 

(mRNA) (Chen et al., 2007c), could be attributed to matriptase action.  We must emphasize that 
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we attribute the EGFR ECD cleavages to matriptase and prostasin when they are co-expressed in 

the FT-293 cells because these cells express very little to no EGFR, matriptase, or prostasin.  

We do not at the moment have evidence for a direct interaction between matriptase and EGFR, 

or between activated prostasin and EGFR.  The molecular landscape of the membrane serine 

proteases is still expanding (Netzel-Arnett et al., 2006a), we are limited by our knowledge of this 

new family of proteases to determine whether the EGFR ECD is cleaved by a downstream 

protease activated by prostasin.  We did not observe a significant induction of matriptase 

expression in the FT-293 cells expressing prostasin (data not shown), ruling out a solo matriptase 

action on the EGFR and implicating prostasin in this signal modulation mechanism. 

 

The Erk1/2 or Akt phosphorylation up-regulation observed in the FT-293 cells co-expressing 

EGFR, matriptase, and prostasin was attributed to the auto-tyrosine-phosphorylated EGFR110 

N-terminally truncated fragment (Figure 3-4).  We intended to generate a deletion mutant 

EGFR representing the EGFR110 by determining the precise location of the matriptase-prostasin 

cleavage.  We had attempted N-terminal amino acid sequencing of the purified EGFR110, but 

this fragment was N-terminally blocked, preventing amino acid sequence determination.  The 

N-terminal deletion/truncation experiments shown in Figure 3-6 have allowed us to confirm for 

two independent cleavages by the serine proteases, ruling out other potential mechanisms for the 

observed molecular weight differences between the wild-type EGFR, EGFR135, and EGFR110.  

Efforts are under way for a precise mapping of the two cleavage sites by site-directed 

mutagenesis and ultimately for generating a cDNA encoding the EGFR110 to fully evaluate its 

impact on cell signaling. 
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The EGFR ECD contains the ligand-binding domains that form the target of the monoclonal 

antibody (Mab) drug ImClone C225/cetuximab/Erbitux, approved for advanced head-and-neck 

and colorectal cancers as a third-line treatment option.  The matriptase → prostasin → EGFR 

cascade can play a critical role in anti-EGFR therapies for cancer using Mab drugs targeting the 

ECD.  The cleaved EGFR, EGFR135 and EGFR110, are no longer responsive to EGF 

stimulation (Figure 3-4A), presumably due to the loss of the ligand-binding domains, all or 

partial.  By this reasoning, Erbitux or similar Mab drugs targeting the ligand-binding domains 

of EGFR would no longer be effective.  If the cleaved EGFR is retained on the membrane and 

activates downstream signaling, as we have observed in the FT-293 cells in this study, we will 

expect to see lower sensitivity to the Mab drugs, i.e., requiring higher doses for growth inhibition.  

In this scenario, protease inhibitors specific for the matriptase-prostasin cascade may be 

considered as an appropriate adjuvant.  If the proteolytic cleavage of EGFR results in its rapid 

internalization and turnover, as we have reported for the PC-3 cell line (Chen et al., 2007d), 

EGFR-mediated signaling is expected to be reduced and drug sensitivity to the Mab’s should 

increase, i.e., showing growth inhibition at a lower dose.  In this scenario, prostasin, 

pre-activated or activated upon reaching the cancer cells by their endogenously over-expressed 

matriptase or related proteases, may be used as an adjuvant.  We have shown that the EGFR 

ECD cleavage role of prostasin is not dependent on its membrane anchorage via the GPI (Figure 

3-3), making it a suitable candidate for development of a systemically deliverable agent to treat 

certain cancers that are dependent on over-expressed EGFR for growth and survival signals. 
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CONCLUSIONS: We have identified EGFR as a biological substrate for the epithelial 

extracellular serine protease activation cascade involving matriptase-prostasin.  Cleavage in the 

EGFR ECD induces changes in receptor tyrosine kinase activation and cell signaling changes 

depending on the cell type with regard to receptor internalization rate.  The novel 

protease-activated EGFR signal modulation mechanism may have clinical implications in 

therapies for treating cancers by targeting the EGFR ECD. 
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CHAPTER FOUR  ANDROGEN REGULATION OF PROSTASIN 
GENE EXPRESSION IS MEDIATED BY STEROL REGULATORY 

ELEMENT BINDING PROTEINS AND SLUG 

 

4.1 Introduction 

Prostasin belongs to a unique group of serine proteases that also include testisin (Manton et al., 

2005a) and NES1 (Goyal et al., 1998), which are downregulated in advanced cancers and 

capable of suppressing tumor growth or invasion.  Loss of prostasin expression in human 

prostate and breast cancer cell lines is due partly to DNA methylation in the 5’-flanking region 

and exon 1 of the prostasin gene (Chen and Chai, 2002; Chen et al., 2004).   

 

In human prostate cancers, the loss of prostasin expression is associated with the 

hormone-refractory phenotype (Takahashi et al., 2003). We set out to investigate whether 

androgen regulates prostasin gene expression.  We examined the 5’-flanking region sequence of 

the prostasin gene but did not identify any direct repeats of the consensus androgen response 

element (ARE) half-site TGTTCT (Claessens et al., 2001), or its variants.  Yu et al., (Yu et al., 

1996) had identified a sterol regulatory element (SRE) at position -897 of the prostasin gene by 

sequence homology with a published SRE (Osborne et al., 1988).  The SRE’s are the binding 

sites of mature sterol-regulatory element-binding proteins, or, the SREBP’s, and the SRE’s may 

provide an alternative mechanism for androgen regulation of gene expression (Swinnen et al., 

1997).  First, androgens up-regulate mRNA expression of SREBP-1c and SREBP-2 (Heemers 

et al., 2001c); and second, androgens also significantly increase the expression of 
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sterol-regulatory element-binding protein cleavage-activating protein (SCAP), resulting in an 

increase of mature SREBP’s (Heemers et al., 2001b). 

 

In this chapter, we examined prostasin expression changes in the human prostate cancer cell line 

LNCaP in response to the androgen dihydrotestosterone (DHT).  DHT upregulated SREBP-1c 

and SREBP-2 mRNA expression in the LNCaP cells, but prostasin mRNA expression was not 

affected in response to DHT in this cell line.  The SREBP’s (SREBP-1c and SREBP-2) were 

shown to be capable of up-regulating prostasin’s promoter activity when co-transfected in the 

HEK-293 cells, prompting the search for a potential negative regulator of the prostasin gene 

under DHT treatment.  The Snail family of zinc-finger transcription factors, including Snail and 

Slug, play a key role in epithelial-to-mesenchymal transition (EMT) during embryonic 

development and tumor progression (Hemavathy et al., 2000a; Nieto, 2002b).  Recent research 

has shown that the expression of these factors is dramatically induced during the progression of 

hepatocellular carcinoma (Sugimachi et al., 2003), esophageal squamous cell carcinoma 

(Uchikado et al., 2005), breast cancer (Blanco et al., 2002; Hajra et al., 2002c) and ovarian 

cancer (Kurrey et al., 2005).  Snail and Slug are responsible for the down-regulation of 

E-cadherin expression in tumor cells (Hajra et al., 2002b; Batlle et al., 2000a), resulting in loss of 

cell-cell adhesion, increased motility and invasiveness.  The Snail/Slug repression of 

E-cadherin transcription is mediated by their interaction with a CACCTG sequence (named 

E-Box) in the promoter region (Batlle et al., 2000b; Bolos et al., 2003a) and further recruitment 

of histone deacetylase 1 (HDAC1)/HDAC2 (Peinado et al., 2004).  In addition to 

down-regulating the expression of adheren junction components, Snail represses the expression 
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of several differentiation markers including Na/K-ATPase (Espineda et al., 2004), cytokeratin 18, 

and MUC1 (Guaita et al., 2002b) but activates several mesenchymal genes such as ZEB1 and 

LEF-1 (Guaita et al., 2002a).  Furthermore, Snail family transcription factors up-regulate the 

expression of matrix metalloproteases (MMP’s) (Miyoshi et al., 2004) and confer upon cells 

anti-apoptotic properties (Vega et al., 2004; Tribulo et al., 2004).  A candidate E-box sequence 

is located in the prostasin promoter, providing a potential mechanism for expression regulation 

by these transcription factors.  Indeed, we found that Snail and Slug repress prostasin 

expression, while the Slug mRNA was up-regulated dramatically by DHT in the LNCaP cells.  

Androgen’s effect on the transcription of the prostasin gene is apparently mediated by two 

opposing classes of transcription factors, i.e., the SREBP’s and the Slug. 

 

 

4.2 Materials and Methods 

4.2.1 Cell lines and maintenance 

The PrEC normal prostate epithelial cells were obtained from Clonetics (San Diego, CA).  The 

LNCaP, DU-145, and PC-3 cells were from the American Type Culture Collection (ATCC, 

Manassas, VA).  The HEK-293-EBNA (hereon referred to as HEK- 293) cells were from 

Invitrogen (Carlsbad, CA).  Cell culturing and maintenance procedures were as described 

previously (Chen et al., 2001b; Chen et al., 2001a). 
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4.2.2 Treatment of cells with DHT or EGF 

The LNCaP cells were seeded in RPMI-1640/10% FBS (fetal bovine serum) at 50% confluence 

in 25-cm2 tissue culture flasks for 48 hours.  Cells were washed twice in OPTI-MEM I medium 

(Invitrogen), and placed under fresh OPTI-MEM I medium for 24 hours.  DHT was dissolved in 

95% ethanol but diluted to a working stock solution of 10 µM in 0.95% ethanol before being 

added to the culture media.  A solution of 0.95% ethanol was used as the solvent control.  

Cells were treated for 24 hours in 1 nM, 10 nM, or 100 nM DHT added to the OPTI-MEM I 

before RNA preparation. 

 

DU-145 cells receiving EGF treatment were seeded in RPMI-1640/10% FBS at 50% confluence 

in 25-cm2 tissue culture flasks for 48 hours and washed twice with RPMI- 1640 medium before 

continued culturing under RPMI-1640/0.1% BSA (bovine serum albumin) for 24 hours.  

Recombinant human EGF (Invitrogen) was diluted in 1640/0.1% BSA at a concentration of 10 

ng/ml and used to treat the cells. Cells were harvested for RNA preparation at 6, 12, or 24 hours 

after EGF treatment. 

 

4.2.3 RNA isolation, reverse transcription, and real-time PCR analysis 

Total RNA of cultured cells was prepared using the Trizol reagent (Invitrogen).  Reverse 

transcription was carried out using random primers of the iScript cDNA Synthesis kit (Bio-Rad, 

Hercules, CA) according to the manufacturer’s protocols. 
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Primers used for the real-time PCR analysis of reverse-transcribed mRNA’s were designed with 

the aid of the Beacon Designer 4.0 software (PREMIER Biosoft International, Palo Alto, CA), 

and synthesized by Integrated DNA Technologies (Coralville, IA).  Real-time PCR was 

performed on a Bio-Rad MyiQ system using the iQ SYBR Green Supermix reagents, following 

the manufacturer’s protocols.  The thermal cycling program starts with an initial denaturation 

step at 95°C for 3 minutes, and is followed by 40 cycles between 15 seconds at 95°C and 1 

minute at 60°C.  The relative quantities of gene-specific mRNA expression were determined by 

the comparative CT method: wherein CT refers to the “threshold cycle”, and is determined for 

each experiment with the aid of the MyiQ software.  Amplification of the 18S rRNA was 

performed for each reverse-transcribed sample as an endogenous quantification standard.  ∆CT 

= (Gene-specific CT – 18S rRNA CT); ∆∆CT = (∆CT of experimental conditions - ∆CT of 

control conditions).  The fold-difference in gene expression was determined by 2-(∆∆CT).  

The primers used for real-time PCR are as follows, in the order of forward and reverse: 

 

18S rRNA:    5'- GTA ACC CGT TGA ACC CCA TT -3' 

             5'- CCA TCC AAT CGG TAG TAG CG -3' 

Prostasin:     5’- ATC TTG GAT TAC TCC GGT CGG -3’ 

            5’- ACA CAT GGA CGC CTT CAT AGG -3’ 

PSA:        5'- TAT TGT AGT AAA CTT GGA ACC TTG -3' 

            5'- TTA CAC CAT TTA AGA AAC ACT CTG -3' 

SREBP-1a forward:  5'- ATG GAC GAG CCA CCC TTC A -3' 

SREBP-1c forward: 5'- GGA GCC ATG GAT TGC ACT TTC -3' 
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SREBP-1 reverse for 1a and 1c: 5'- GAA GTC ACT GTC TTG GTT GTT G -3' 

SREBP-2:      5’- GCT GCA ACA ACA GAC GGT AAT G -3’ 

              5’- CTG GTA TAT CAA AGG CTG CTG GAT -3’ 

SNAIL:        5'- TCC CTC TTC CTC TCC ATA CC -3' 

              5'- TGG CAG TGA GAA GGA TGT G -3' 

SLUG:        5’- GAG CAT ACA GCC CCA TCA CTG -3’ 

              5’- AGG AGG TGT CAG ATG GAG GAG -3’ 

 

4.2.4 Cloning of the 5’-flanking region of the human prostasin gene 

An 1,848-bp fragment corresponding to nucleotides 391 to 1838 (5’-flanking region and exon 1) 

of the human prostasin gene (U33446) was amplified using genomic DNA of the LNCaP cells 

and the Advantage-GC Genomic PCR kit (Clontech, Palo Alto, CA).  The forward primer is 5’- 

AAT GCC AGC CTT TGC CAG GCT GTG GTG TGC -3’, and the reverse primer is 5’-CTG 

TCC CCG ACC GGA GTA ATC CAA GAT AGA -3’.  The amplified fragment was subcloned 

into the pGEM-T Easy vector (Promega, Madison, WI), and named pProPro-TA. 

 

 

4.2.5 Plasmid construction and molecular cloning 

The prostasin promoter-luciferase reporter plasmid pProPro1031-GL3 was constructed by 

subcloning a 1,263-bp EcoR I-BamH I fragment from the pProPro-TA.  The sticky ends were 

filled with the Klenow enzyme (Invitrogen) and ligated into Kpn I / Hind III digested, 
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Klenow-filled pGL3-Basic vector (Promega).  This 1,263-bp prostasin promoter fragment 

contains 1,031 bp of the 5’-flanking region and 232 bp of exon 1. 

 

The cDNA fragments encoding the mature forms of human SREBP-1c (amino acids 1 to 436) 

and SREBP-2 (amino acids 1 to 481), and full-length human SNAIL and SLUG were generated 

by RT-PCR using the total RNA of LNCaP cells and the SuperScriptTM III RNase H- reverse 

transcriptase (Invitrogen).  The amplified fragments were subcloned into the plasmid pcDNA3 

(Invitrogen) for transient expression in tissue cultured cells.  The following primers, listed in 

the order of forward and reverse, were used for amplification of the specific cDNA’s: 

SREBP-1c:  5’- GAATTC GCC ATG GAT TGC ACT TTC GA -3’ 

5’- TCA GTC AGG CTC CGA GTC ACT GCC A -3’ 

SREBP-2:  5’- GGG CGA TGG ACG ACA GCG GCG AGC T -3’ 

5’- TCA CCG TGA GCG GTC TAC CAT GCC -3’ 

SNAIL:  5’- GAATTC ACT ATG CCG CGC TCT TTC CTC -3’  

5’- TCA GCG GGG ACA TCC TGA GCA GCC GGA -3’ 

SLUG:   5’- GAATTC AAG ATG CCG CGC TCC TTC CTG -3’  

5’- TCA GTG TGC TAC ACA GCA GCC AGA TTC -3’ 

The underlined sequences are restriction site linkers used for subcloning. 

 

4.2.6 Promoter activity assays 

On day 1, HEK-293 cells were plated on a poly-L-lysine-coated 12-well plate at the density of 4 

x 105 cells per well.  On day 2, the luciferase reporter plasmid (pProPro1031-GL3, 1.3 µg), an 
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pSV-β-Galactosidase reference plasmid (Promega, 0.2 µg) and an appropriate transcription factor 

expression plasmid (pcDNA3-based, 0.1 µg) were transfected into the cells using the 

Lipofectamine 2000 reagent (Invitrogen) according to the manufacturer’s protocols.  

Twenty-four hours after transfection, the cells were lysed with the Reporter Lysis Buffer 

(Promega).  Cell lysate samples were assayed for luciferase activity using a Luciferase Assay 

Kit (Promega).  The β- galactosidase activity was measured using a β-Galactosidase Enzyme 

Assay Kit (Promega) and used to normalize for transfection efficiency. 

 

4.2.7 Transfection of cell lines and analysis of prostasin expression 

Transfection of the HEK-293 cells (4 x 105 cells) with the SREBP-2 cDNA plasmid (2 µg) was 

carried out using the Lipofectamine 2000 reagent.  Transfection of the DU-145 or the LNCaP 

human prostate cancer cells was carried out on a BTX ECM-600 electroporator (Harvard 

Apparatus, Holliston, MA).  Cells were cultured in regular medium to confluence, harvested, 

and re-suspended in OPTI-MEM I medium at a density of 2 x 107/ml.  Six million cells were 

then mixed with 20 µg of cDNA plasmid (SREBP-2 for DU-145, or SLUG for LNCaP) and 

electroporated in 4-mm BTX cuvettes, at 305 V and 700 µF, with 360 ohms resistance. 

 

All transfected cells were then cultured for 48 hours in regular medium before total RNA 

isolation with Trizol, or total protein extraction as described before (Chen et al., 2001a).  Total 

RNA samples were subjected to RT/real-time PCR analysis as described above, and total cell 

lysates were subjected to western blot analysis with a prostasin specific polyclonal antibody as 

described previously (Chen et al., 2001b).  Lysate protein concentration was determined with a 
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DC Protein Assay Kit (Bio-Rad).  An immunoblot with a β–tubulin antibody (Sigma- Aldrich, 

St. Louis, MO; used at 1:4,000) was performed as a control for protein loading. 

 

4.2.8 Statistical analysis 

The Student t-Test (one-tailed, equal variance) was performed for the real-time PCR data and the 

promoter activity data, for which p< 0.05 was used to define statistically significant difference. 

 

4.3 Results 

4.3.1 Prostasin mRNA expression is unaffected by DHT in the LNCaP cells 

We have previously shown that prostasin is expressed in normal prostate epithelial cells (PrEC) 

and the androgen-responsive LNCaP prostate cancer cells, but down-regulated due to prostasin 

promoter DNA hypermethylation in the DU-145 and PC-3 prostate cancer cells (Chen et al., 

2001a; Chen et al., 2004), which are not responsive to androgen.  In this chapter, we used the 

quantitative method of reverse-transcription/real-time PCR to determine the relative expression 

levels of prostasin in these four cell types.  In Figure 4-1A, we show that the prostasin mRNA 

in the LNCaP cell line is expressed at approximately 0.82 (82%) of that in the PrEC cells.  The 

DU-145 and PC-3 cells express very small amounts of the prostasin mRNA, at 0.041 (4.1%) and 

0.095 (9.5%) of that in the PrEC cells. 

 

To determine the effect of androgen on prostasin expression, we treated the LNCaP cells with 1 

nM, 10 nM, or 100 nM DHT for 24 hours as described in Materials and Methods.  Prostasin 
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mRNA expression was measured by reverse-transcription/real-time PCR using the 18S rRNA as 

the reference.  As shown in Figure 4-1B, prostasin mRNA expression in the LNCaP cells was 

unaffected by DHT under these conditions.  The same samples were also applied to a real-time 

PCR analysis of the mRNA encoding the human prostate-specific antigen (PSA) to validate the 

DHT treatment.  PSA mRNA was found to be up-regulated to 4.2 fold at 1 nM, 7.5 fold at 10 

nM, and 8.5 fold at 100 nM (Figure 4-1C), consistent with previously reported findings by others 

that DHT upregulates PSA expression in the LNCaP cell line (Zhu et al., 2003). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-1 Prostasin expression in prostate cells and effect of DHT on expression of prostasin, PSA, SREBP’s, 

SNAIL, and SLUG mRNA in the LNCaP cells. 

Relative prostasin mRNA expression in the PrEC, LNCaP, DU-145, and PC-3 cells is shown in (A). LNCaP cells 
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were treated with 1 nM, 10 nM, or 100 nM DHT for 24 hours followed by RNA extraction. The total RNA samples 

of vehicle- or DHT-treated LNCaP cells were subjected to RT/real-time PCR analysis to quantify the mRNA 

expression level of Prostasin (B), PSA (C), SREBP-1a (D), SREBP-1c (E), SREBP-2 (F), SNAIL (G), and SLUG 

(H). The data are expressed as an x-fold of stimulation or repression of the mRNA expression level in the 

DHT-treated cells as compared to the vehicle-treated cells. The results represent the Mean ± S.D. of three 

independent experiments (two for Panel A). The asterisk (*) denotes a statistically significant difference (p<0.05) in 

the mRNA expression level for the indicated gene between the DHT-treated and vehicletreated LNCaP cells. The 

double asterisk (**) denotes that the SLUG mRNA expression level in the LNCaP cells treated with 100 nM DHT is 

statistically different from that in the cells treated with 10 nM DHT.  

 

 

4.3.2 DHT up-regulates the expression of transcription factors SREBP-1c, SREBP-2, Snail, 
and Slug in the LNCaP cells 

While PSA expression is responding expectedly to the DHT treatment of the LNCaP cells, but 

the prostasin expression did not, we turned to investigate the role of potential alternative 

regulators of prostasin expression.  Based on our sequence analysis in the prostasin promoter 

region, we have identified candidate regulatory sites for the SREBP’s and the Snail family 

transcription factors.  A candidate SRE was previously identified by Yu et al. at position -897 of 

the prostasin promoter (Yu et al., 1996).  We have also identified a candidate E-box sequence, 

CACCTG, at -574 of the prostasin promoter, a potential site for regulation by the Snail family 

transcription factors.  This candidate site is identical to the one that confers repression of the 

E-cadherin gene (Batlle et al., 2000c; Bolos et al., 2003b).  Realtime PCR analysis of the 

DHT-treated LNCaP cells following reverse transcription showed that the mRNA expression of 

SREBP-1c, SREBP-2, Snail, and Slug was upregulated by DHT, at the 10 nM or the 100 nM 

dose, but not at the 1 nM dose.  The change of SREBP-1a mRNA expression under DHT 

treatment was not statistically different at either 10 nM or 100 nM (Figure 4-1D).  The 
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SREBP-1c mRNA was upregulated to 1.5 fold at either 10 nM or 100 nM DHT (Figure 4-1E).  

The SREBP-2 mRNA was up-regulated to 1.37 fold at 10 nM DHT, and 1.66 fold at 100 nM 

DHT (Figure 4-1F).  The Snail mRNA was marginally up-regulated to 1.17 fold at 10 nM DHT, 

but its change at 100 nM DHT was not statistically different (Figure 4-1G).  The up-regulation 

of Snail might be random statistical noise although the p-value was calculated less than 0.05.  In 

contrast, expression of the Slug mRNA was up-regulated dramatically by DHT in a dose 

dependent manner, to 26 fold at 10nM, and 81 fold at 100 nM (Figure 4-1H). 

 

4.3.3 The prostasin gene promoter is regulated by SREBP’s, Snail, and Slug 

Next we set out to evaluate the direct impact of the SREBP’s and the Snail family transcription 

factors on the prostasin promoter, and the impact of combinations of these factors.  We chose 

the HEK-293 cells for the evaluation of the prostasin promoter because this cell line yields high 

and consistent transfection efficiency, especially for multiple plasmids in one cell (e.g., a 

promoter-reporter, two transcription factor expression plasmids, and a β-galactosidase expression 

plasmid).  The HEK-293 cell line is of human kidney epithelial origin where prostasin 

expression is relatively abundant in the native tissue (Verghese et al., 2004a; Yu et al., 1995), 

making this cell line relevant to analysis of prostasin expression. 

 

A prostasin promoter-reporter DNA construct, pProPro1031-GL3, was co-transfected with 

plasmids carrying the cDNA’s coding for the transcription factors SREBP-1c (mature peptide), 

SREBP-2 (mature peptide), Snail, or Slug into the HEK-293 cells.  As a result, the prostasin 

promoter’s activity was up-regulated to 1.88 fold and 6.7 fold, respectively, by SREBP-1c and 
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SREBP-2, but down-regulated to 43% by Snail and to 59% by Slug (Figure 4-2A).  The 

previously reported SRE in the multiple cloning site of the pGL3-Basic vector (Annicotte et al., 

2001) was removed during the construction of pProPro1031-GL3.  The effect of prostasin 

promoter activity up-regulation by the SREBP’s can be attributed to the prostasin promoter. 

In the next set of experiments, we tested the effects of co-transfecting SREBP-2 and SLUG on 

the activity of the prostasin promoter to mimic the effect of DHT on the LNCaP cells, i.e., a 

small up-regulation of a strong positive regulator SREBP-2 but a dramatic up-regulation of a 

moderate repressor SLUG.  We maintained a constant level of the SREBP-2 plasmid while 

gradually increased the amount of the SLUG plasmid in this series of experiments.  The results 

showed that SLUG co-transfection was able to negate SREBP-2’s positive impact on the 

prostasin promoter in a dose-dependent manner (Figure 4-2B).  SREBP-2 up-regulation of the 

prostasin promoter was reduced by 38% at 1:1 molar ratio of SREBP-2/SLUG co-transfection, 

further reduced by 51% at 1:2 molar ratio, and by 59% at 1:4 molar ratio. 
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Figure 4-2 Prostasin promoter activity is regulated by transcription factors SREBP-1c, SREBP-2, SNAIL, 

and SLUG in 293-HEK cells. 

(A) HEK-293 cells were transiently transfected with 1.3µg of the pProPro1031-GL3 plasmid containing the 

luciferase reporter gene under the control of the –1031/+232 fragment of the human prostasin gene promoter-exon 1 

region, 0.2µg of the pSV-β-Galactosidase reference plasmid, and 0.1µg of an appropriate transcription factor 

expression plasmid (SREBP-1c-pcDNA3,  SREBP-2-pcDNA3, SNAIL-pcDNA3, or SLUG–pcDNA3). The empty 

pcDNA3 was used as the control.  (B) Cells were transfected with the pProPro1031-GL3, pSV-β- Galactosidase, 

and a mixture of SREBP-2-pcDNA3 and SLUG-pcDNA3 at the indicated molar ratios.  Luciferase activities were 

determined 24 hours after transfection and normalized with β-galactosidase activities.  The data are expressed as an 
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x-fold of stimulation or repression of the prostasin promoter activity in cells co-transfected with the indicated 

transcription factor expression plasmid, relative to the control cells cotransfected with the pcDNA3 empty vector.  

The results represent the Mean ± S.D. of three independent experiments.  The asterisk (*) denotes a statistically 

significant difference (p<0.05) in the promoter activity between the transcription factor expressing cells and control 

cells. 

 

4.3.4 SREBP-2 or Slug transfection regulates endogenous prostasin expression 

In order to show that SREBP-2 alone can regulate endogenous prostasin expression, we 

transfected the SREBP-2 cDNA into the HEK-293 cells, which do not express prostasin (Chen et 

al., 2001b).  The HEK-293 cells responded to the SREBP-2 transfection with an increase of 

endogenous prostasin mRNA expression to 46 fold (Figure 4-3A), and the expressed prostasin 

protein product was readily detected by a western blot (Figure 4-3B).  Transfection of SREBP-2 

in the DU-145 cell line resulted in an increase of prostasin mRNA expression to 4.68 fold 

(Figure 4-3C).  Again, the increased expression of the prostasin protein product was detected by 

a western blot (Figure 4-3D). 

 

Similarly, we tested if Slug alone can regulate endogenous prostasin expression by transfecting a 

Slug cDNA into the LNCaP cells.  The results showed that a transient transfection of Slug 

cDNA reduced prostasin mRNA expression in the LNCaP cells by 33% (Figure 4-3E).  The 

prostasin protein expression was also reduced (Figure 4-3F).  The transfection efficiency for the 

HEK-293, DU-145, or LNCaP cells using the appropriate methods was evaluated in parallel 

experiments using the pEGFP-N1 plasmid (BD Biosciences, Palo Alto, CA).  Conditions 

chosen for experiments yielded >90% transfection for the HEK-293 cells, and >50% transfection 

for the DU-145 and LNCaP cells (data not shown). 
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Figure 4-3 Prostasin promoter activity is regulated by transcription factors SREBP-1c, SREBP-2, SNAIL, 

and SLUG in 293-HEK cells. 

(A, B) HEK- 293 cells were transiently transfected with pcDNA3 or SREBP-2-pcDNA3 (shown as SREBP-2) using 

Lipofectamine 2000 reagent.  (C, D) DU-145 cells were transiently transfected with pcDNA3 or 

SREBP-2-pcDNA3 (shown as SREBP-2) via electroporation.  (E, F) LNCaP cells were transiently transfected with 

pcDNA3 or SLUGpcDNA3 (shown as SLUG) via electroporation.  Total RNA samples (A, C, E) and whole cell 

lysates (B, D, F) were prepared 48 hours after transfection, RT/real-time PCR (A, C, E) and western blotting (B, D, 

F) were performed to determine the levels of endogenous prostasin expression.  The RT/real-time PCR results 

represent the Mean ± S.D. of three independent experiments.  The asterisk (*) denotes a statistically significant 

difference (p<0.05) in the prostasin mRNA expression level between the transcription factor expressing cells and 

control cells.  The western blot results are representative of duplicate experiments showing the regulation of 

prostasin protein expression by SREBP-2 or SLUG.  For the prostasin western blots, 50 µg of total protein were 

loaded for each HEK-293 sample (without β–mercaptoethanol), 45 µg were loaded for each DU-145 sample 

(without β–mercaptoethanol); and 30 µg were loaded for each LNCaP sample (with β–mercaptoethanol).  For the 

β–tubulin western blots, 40 µg of total protein were loaded for each sample (with β–mercaptoethanol). 
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4.3.5 EGF up-regulates the expression of Snail and Slug in the DU-145 cells 

Because hormone-refractory prostate cancers are marked by their active growth factor autocrine 

signaling (Hofer et al., 1991), we tested if epidermal growth factor (EGF) can affect the 

expression of the transcription factors Snail and Slug as a potential mechanism of prostasin 

down-regulation.  Real-time PCR analysis of the EGF-treated DU-145 cells following reverse 

transcription showed that the Snail mRNA expression was upregulated by EGF to 1.55 fold at 24 

hours of treatment, while the changes of Snail mRNA level at 6 or 12 hours were not statistically 

different (Figure 4-4A).  The Slug mRNA expression was up-regulated at 6 and 12 hours after 

EGF treatment, to 2.26 and 2.91 fold, respectively; while the changes of Slug mRNA level at 24 

hours were not statistically different (Figure 4B). 

 

 

Figure 4-4 EGF up-regulates mRNA expression of SNAIL and SLUG in DU-145 cells. 

DU- 145 cells were treated with EGF (10 ng/ml) for the indicated times. The total RNA samples were subjected to 

RT/real-time PCR analysis to quantify the mRNA expression levels of (A) SNAIL and (B) SLUG.  The results 

represent the Mean ± S.D. of three independent experiments. The asterisk (*) denotes a statistically significant 

difference (p<0.05) in the mRNA expression level between the EGF-treated cells and untreated cells. 
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4.4 Discussion 

The down-regulation of prostasin serine protease, an invasion suppressor, in the 

hormone-refractory prostate cancers (HRPC) suggests a potential cause of the enhanced 

malignance of the HRPC.  The purpose of this chapter’s study was to probe for the molecular 

basis of this down-regulation.  We have previously investigated prostasin down-regulation in 

two androgen-independent, or non-responsive human prostate cancer cell lines, the DU-145 and 

PC-3, and showed that promoter DNA methylation is partly responsible for prostasin gene 

silencing, while nerve growth factor alone could up-regulate prostasin mRNA in these cell lines 

(Chen et al., 2004).  The promoter sequence of the prostasin gene does not contain any 

consensus ARE’s to confer transcription regulation by androgen directly.  This is further 

demonstrated in the hormone-responsive LNCaP human prostate cancer cells that prostasin 

expression did not respond to DHT treatment, while the classic androgen-regulated serine 

protease PSA showed the expected response (Figure 4-1B and 4-1C). 

 

We were prompted, by the previously identified SRE in the prostasin promoter (Yu et al., 1996), 

to investigate the impact of the sterol-regulatory element-binding proteins on prostasin 

expression in response to androgen.  We found that both SREBP-1c and SREBP-2 are capable 

of up-regulating the prostasin gene promoter.  In the case of SREBP-2 the upregulation was 

quite dramatic to 6.7 fold.  It has been shown previously by others using northern blot analysis 

that androgen up-regulates SREBP-1c and SREBP-2, but not SREBP-1a in the LNCaP cells 

(Heemers et al., 2001a), a result confirmed by us in this study using RT/realtime PCR.  We did 

not pursue the role of the SREBP-1a protein because it is unlikely to be a major mediator of 
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androgen’s effect on prostasin gene expression in the LNCaP cells.  We showed that SREBP-2 

expression alone was able to induce a >4-fold increase of prostasin mRNA expression, and a 

corresponding prostasin protein upregulation in the DU-145 cells (Figure 4-3C and 4-3D).  A 

similar effect was observed in the embryonic kidney cells HEK-293 transfected with an 

SREBP-2 cDNA (Figures 4-3A and 4-3B).  It is evident that an SREBP-2 up-regulation is 

sufficient for up-regulation of prostasin expression.  It is then expected that treatment of a 

hormone-responsive cell line like the LNCaP with DHT would result in an increase of prostasin 

mRNA expression because the SREBP’s would be up-regulated and sufficient to up-regulate the 

prostasin gene.  The apparent lack of response of the prostasin gene to the DHT treatment at 

either the 10 nM or the 100 nM dose (Figure 4-1B) indicates that there is a negative regulatory 

factor under these conditions.  Our finding that the transcription repressor SLUG is dramatically 

up-regulated by DHT in the LNCaP cells provides the basis of the expected negative regulation 

of the prostasin gene upon androgen stimulation.  The Slug was shown to repress the prostasin 

promoter in a promoter activity assay (Figure 4-2A), and its transfection into the LNCaP cells 

was sufficient to repress the endogenous prostasin mRNA and protein expression (Figures 4-3E 

and 4-3F).  More important, Slug, at increasing levels, was able to reduce the up-regulation of 

prostasin promoter by SREBP-2 in a dose-dependent manner (Figure 4-2B). 

 

What then, may be the cause of the prostasin down-regulation associated with the HRPC? 

Clearly, promoter DNA methylation can provide only part of the answer because the DU-145 cell 

line, despite its rather extensive methylation in the prostasin promoter-exon 1 region (Chen et al., 

2004), is readily responsive to SREBP-2 up-regulation of prostasin expression (Figures 4-3C and 
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4-3D).  A lower level of SREBP’s in the hormone-independent cell lines would be a potential 

molecular mechanism of prostasin down-regulation, in addition to the effect of promoter DNA 

methylation.  Indeed, it has been reported previously by others that the DU-145 and PC-3 

human prostate cancer cell lines have lower levels of SREBP-2 expression than normal prostate 

epithelial cells (Chen and Hughes-Fulford, 2001).  The fact that Slug itself is highly responsive 

to androgen stimulation (Figure 4-1H) would suggest that in the absence of androgen the 

prostasin promoter is less repressed.  In the HRPC, however, functional cross-talks between the 

AR and growth factor-dependent transmembrane signaling pathways is a molecular mechanism 

for prostate cancer cells to gain growth advantage in the absence of androgen (Culig, 2004).  

These cross-talks result in activation of the AR by phosphorylation, through the actions of 

various kinases.  It is reasonable to postulate that in the HRPC, AR activation by the various 

ligand independent mechanisms may be the molecular basis of sustained up-regulation of Slug 

expression.  Moreover, growth factor signaling may also affect the Slug levels directly, and 

independently of the AR.  In the DU-145 cells, which lack the AR (Culig et al., 1993), EGF was 

able to up-regulate SNAIL mRNA expression to 1.55 fold at 24 hours, and to upregulate Slug 

mRNA expression to 2.91 fold at 12 hours (Figure 4-4), confirming that growth factors can also 

act to sustain an elevated expression of transcription repressors by AR independent mechanisms.  

On the other hand, EGF has also been shown to upregulate SREBP-1c but not SREBP-1a mRNA, 

nor SREBP-2 mRNA (Swinnen et al., 2000; Yang et al., 2003).  In the HRPC, we could reason 

that the conditions favor the expression of a weak positive regulator of prostasin expression, 

SREBP-1c, but not a strong positive regulator, SREBP-2, while these same conditions favor a 

strong up-regulation of a moderate negative regulator, Slug. 
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The Snail and Slug transcription repressors are involved in the process of epithelialto- 

mesenchymal transition (EMT) (Hemavathy et al., 2000b; Nieto, 2002a).  And the result of 

aberrant expression of the Snail family transcription repressors is change of cell-cell adhesion, 

associated with change of motility and invasiveness.  For example, Slug is responsible for 

E-cadherin down-regulation in breast cancer (Hajra et al., 2002a).  In light of the fact that 

prostasin is an invasion suppressor and its expression is repressed by Slug, it will be worthwhile 

to evaluate expression of the Snail family transcription repressors in human prostate cancer.   

 

CONCLUSIONS: We have unveiled a new molecular mechanism by which prostasin expression 

may be down-regulated in hormone-refractory prostate cancers, through the increased expression 

of the transcription repressor Slug.  Expression of Slug was found to be highly responsive to 

androgen stimulation, and also responsive to EGF stimulation, and should be investigated as a 

potential causal factor of prostate cancer development and progression. 

 

 



 89

CHAPTER FIVE  MECHANISMS OF STEROL REGULATORY 
ELEMENT BINDING PROTEIN-2 (SREBP-2) REGULATION OF HUMAN 

PROSTASIN GENE EXPRESSION 

 

5.1 Introduction 

In the previous chapter, we found that androgen treatment regulates human prostasin gene 

expression through up-regulation of transcription factors SREBP-2 and Slug (Chen et al., 2006l).  

Activated SREBP-2 up-regulates either human prostasin gene promoter activity, or endogenous 

prostasin expression at both the mRNA and protein levels in HEK-293 and DU-145 cells.  In 

the LNCaP cells, the stimulatory effects of SREBP-2 were negated by the transcription repressor 

Slug, which is up-regulated dramatically by the androgen dihydrotestosterone (DHT). 

 

Sterol regulatory element-binding protein-2 (SREBP-2) belongs to the SREBP family of 

transcription factors that play a pivotal role in cellular lipid homeostasis (Horton, 2002; Rawson, 

2003).  Two different genes, SREBP-1 and SREBP-2, encode three SREBP isoforms 

(SREBP-1a, SREBP-1c, and SREBP-2) in mammalian cells.  SREBPs are synthesized as 

precursor proteins that are retained in the endoplasmic reticulum when the cellular sterol level is 

high.  When the cellular sterol level drops, the N-terminal domain of an SREBP is released as 

the mature form from the membrane by a two-step proteolytic cleavage.  The mature SREBP 

then enters the nucleus, and binds the sterol regulatory elements (SREs) or E-box sequences to 

enhance the transcription of target genes (Horton J.D. et al., 2002; Osborne, 2000; Shimano, 

2001).  SREBP-1a and SREBP-1c are mainly involved in fatty acid metabolism, while 
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SREBP-2 mainly activates genes related to cholesterogenesis and lipogenesis (Horton et al., 

2003).  

 

In this chapter, we investigated the mechanisms of up-regulation of the human prostasin gene by 

SREBP-2.  We defined an SREBP-2-response region in the 5’-flanking region of the human 

prostasin gene.  Various SRE sites in the prostasin gene promoter were analyzed for their roles 

in the SREBP-2-mediated up-regulation of human prostasin gene expression.   

 

 

5.2 Materials and Methods 

5.2.1 Construction of human prostasin promoter-luciferase reporter plasmids 

The promoter-luciferase reporter plasmid pProPro1031-pGL3 was generated as described 

previously (Chen et al., 2006l).  The construct contains the human prostasin promoter sequence 

located between positions -1031 to +232 relative to the transcription initiation site, and is 

referred to as p-1031-pGL3 in this paper.  DNA fragments extending from –719 to +232, -271 

to +232, -17 to +232, and –1031 to +9 were produced by PCR amplification using p-1031-pGL3 

as the template, and subcloned into the luciferase reporter plasmid pGL3-Basic (Promega, 

Madison, WI).  The new promoter-reporter constructs were designated as p-719-pGL3, 

p-271-pGL3, p-17-pGL3, and p-1031/+9-pGL3.  
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5.2.2 Site-directed mutagenesis 

Mutations at different SRE sites were introduced into prostasin promoter-luciferase reporter 

constructs by PCR-based site-directed mutagenesis using the QuikChange Site-Directed 

Mutagenesis Kit (Stratagene, La Jolla, CA) according to the manufacturer’s instructions.  The 

wild-type promoter-reporter constructs were used as the amplification template, and were then 

digested by the restriction enzyme Dpn I after PCR amplification.  The Dpn I-treated PCR 

products were transformed into super-competent XL-1 Blue E. coli cells and all mutant 

constructs were verified by DNA sequencing.  Listed below are the primers (upper strand 

shown) used for mutagenesis of appropriate SREs. 

SRE-897M: 5’- GCCCAGGCTGGAGTGCAGGAATTCGATCATAGCTCAATGC –3’ 

SRE-538M: 5’- CACTTAGGAAATGTCTGGAATTCGATTGGTGCTGCTCCAC –3’ 

SRE+8M: 5’- GGACTCATGACTTTGTCTTAAAGAGGAGCTGGCGGAGCCC –3’ 

SRE+71M: 5’- GGCGGGCAGGTAGGTGCATAAGATCCTGGGAGGACCCTGC -3’ 

SRE+98M: 5’- CTGGGAGGACCCTGCTCTTACAGACGGTGCTGGTGACTCG –3’ 

 

5.2.3 Cell culture, cell transfection and promoter activity assay 

HEK-293 (EBNA) cells were obtained from Invitrogen (Carlsbad, CA) and cultured in D-MEM 

(High Glucose) medium supplemented with 10% (v/v) FBS (fetal bovine serum).  On day 1, 

cells were plated on a poly-L-lysine-coated 12-well plate at a density of 4 x 105 cells per well.  

On day 2, the appropriate prostasin promoter-luciferase reporter plasmid (1.3 µg), an 

SV-β-galactosidase reference plasmid (pSV-β-gal, Promega, 0.2 µg) and an SREBP-2 expression 

plasmid (pcDNA3-SREBP-2, 0.1 µg) (Chen et al., 2006l), or a control plasmid (pcDNA3, 
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Invitrogen, 0.1 µg) were transfected into the cells using the Lipofectamine 2000 reagent 

(Invitrogen) according to the manufacturer’s protocol.  Twenty-four hours after transfection, the 

cells were lysed with the Reporter Lysis Buffer (Promega).  One hundred micro-liters of cell 

lysate were assayed for luciferase activity using the Bright-Glo Luciferase Assay System 

(Promega).  The β-galactosidase activity was measured by using a β-Galactosidase Enzyme 

Assay Kit (Promega) and used to normalize for transfection efficiency.  The data were 

expressed as the relative prostasin promoter activity and an x-fold of increase of the promoter 

activity in the cells co-transfected with the SREBP-2 expression plasmid (pcDNA3-SREBP-2) 

compared with the cells co-transfected with the empty pcDNA3 vector.  

 

5.2.4 Purification of recombinant SREBP-2 

The cDNA fragment encoding the mature form of SREBP-2 (amino acids 1 to 481) was cloned 

previously (Chen et al., 2006l) and subcloned into the GST-fusion protein expression vector 

pGEX-6P-1 (GE Healthcare Life Sciences, Piscataway, NJ).  A GST-SREBP-2 fusion protein 

was expressed in E. coli (XL-1 Blue) cells and purified.  Briefly, an exponential bacterial 

culture harboring the GST-SREBP-2 expression plasmid was grown in 250 ml of Luria broth 

(LB) at 37°C until A600 reached 0.8 before induction with 0.2 mM 

isopropyl-1-thio-β-D-galactopyranoside (IPTG) for 90 minutes.  The bacterial cells were 

pelleted, re-suspended in ice-cold 1x PBS, and sonicated on ice.  Triton X-100 was added to a 

final concentration of 1% to aid the solubilization of fusion proteins.  After gentle mixing for 30 

minutes, cell lysate was centrifuged at 12,000 x g for 10 minutes at 4°C.  The supernatant was 
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then mixed with glutathione-Sepharose beads (GE Healthcare Life Sciences) for 1 hour at room 

temperature on a rotator.  After incubation, the beads were washed with 1x PBS and then 

incubated with the PreScission Protease (GE Healthcare Life Sciences) in the PreScission 

cleavage buffer (50 mM Tris-HCl, pH7.0, 150 mM NaCl, 1 mM EDTA, and 1 mM dithiothreitol) 

for 4 hours at 4°C.  Following the incubation, the supernatant containing free SREBP-2 without 

GST was collected and used for the electrophoretic mobility shift assay.   

 

5.2.5 Electrophoretic mobility shift assay 

The digoxigenin (DIG) Gel Shift Kit (2nd Generation) from Roche Applied Science (Indianapolis, 

IN) was used to perform the electrophoretic mobility shift assay for testing DNA-protein binding.  

The complementary oligonucleotides were synthesized by Integrated DNA Technologies 

(Coralville, IA), annealed to generate the double-stranded oligonucleotides, and labeled with 

digoxigenin-11-ddUTP according to the manufacturer’s instructions.  The DNA-protein binding 

reaction mixture containing 0.8 ng DIG-labeled oligonucleotides and 100 ng purified recombinant 

SREBP-2 was incubated at room temperature for 15 minutes with or without 0.1 µg (125-fold 

excess) unlabeled wild-type or mutant oligonucleotides.  For the super-shift assay, purified 

recombinant SREBP-2 was pre-incubated with 1 µl of a polyclonal goat anti-SREBP-2 antibody (2 

µg/µl, Santa Cruz Biotechnology, #sc-8151x) or a polyclonal rabbit anti-SREBP-1 antibody (2 

µg/µl, Santa Cruz Biotechnology, #sc-8984x) for 15 minutes at 4°C.  The DIG-labeled 

oligonucleotides were then added in the mixture and incubated at room temperature for an 

additional 15 minutes.  Native polyacrylamide gels (4-6%) in 0.5x TBE (Tris-borate-EDTA buffer) 
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were used for electrophoresis in the EMSA.  After electrophoresis, the separated oligonucleotides 

were electroblotted onto positively charged Immobilon-Ny+ nylon membranes (Millipore, 

Bedford, MA) in 0.5x TBE buffer and fixed by cross-linking at 120 mJ in a UV Stratalinker 

(Stratagene).  DIG-labeled oligonucleotides on the membrane were detected by an anti-DIG 

antibody conjugated with alkaline phosphatase (AP) and visualized by a chemiluminescent 

reaction using the CDP-Star substrate (Roche).    

 

5.2.6 Statistical Analysis 

The Student t-Test (one-tailed, equal variance) was performed for the promoter activity assay 

data, for which p<0.05 was used to define statistical difference. 

 

 

5.3 Results and Discussion 

5.3.1 Two classic SREs are present in the human prostasin promoter 

In previous chapter, we showed that SREBP-2 up-regulates human prostasin gene expression.  

Besides the SRE site at position -897 which was previously identified by Yu et al. (Yu et al., 

1996), we identified another SRE site, located at position –538 in the 5’-flanking region of the 

human prostasin gene (Figure 5-1A) following an extensive interrogation of the DNA sequence.  

Both SRE-897 and SRE-538 are 90% identical to the classic SRE sequence (Shimano, 2001) 

(5’-ATCACCCCAC-3’) found in the promoter region of the human low-density lipoprotein 

(LDL) receptor gene (Briggs et al., 1993).  
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Figure 5-1 Electrophoretic mobility shift assays of SRE-897 and SRE-538 probes with recombinant SREBP-2. 

(A) The nucleotide sequences and locations of SRE-897 and SRE-538 in the human prostasin gene promoter.  
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SRE’s are indicated by filled boxes. SRE-LDLR: the SRE in the human LDL receptor gene promoter.  (B) EMSA 

performed with SRE-897 and SRE-538 probes.  The SRE sequences are underlined and mutated nucleotides are 

presented in italic.   In each binding reaction, 0.8 ng of each DIG-labeled probe was incubated with 100 ng of 

recombinant SREBP-2.  An excess of unlabeled probes (wt: wild-type, mt: mutant, or SRE-LDLR, in 125-fold 

excess) was used as competitors.  Antibodies specific for SREBP-1 (anti-SREBP-1) and SREBP-2 (anti-SREBP-2) 

were used for the super-shift assays.  Free DIG-probes, SREBP-2 shifted probes, and super-shifted probes are 

indicated by the arrows. 
 

 

To test whether SREBP-2 is able to bind SRE-897 and SRE-538 in the human prostasin gene 

promoter, electrophoretic mobility shift assays (EMSAs) were performed using digoxigenin 

(DIG)-labeled double-stranded oligonucleotide probes (shown in Figure 5-1B).  Recombinant 

SREBP-2 in the EMSA shifted the DIG-labeled SRE-897 (Figure 5-1B, Lane 2) and SRE-538 

(Figure 5-1B, Lane 12) as indicated by the arrow. Addition of excess unlabeled SRE-897 and 

SRE-538 probes abolished the band shift (Figure 5-1B, Lanes 3 and 13), but excess unlabeled 

mutant SRE-897 and SRE-538 probes could not compete off the specific binding (Figure 5-1B, 

Lane 5 and 15).  Addition of specific antibodies against human SREBP-2 produced a further 

super-shifted band (Figure 5-1B, Lane 6 and 16), while addition of antibodies against SREBP-1 

had no effect (Figure 5-1B, Lane 7 and 17).  A probe containing the classic SRE from the 

human LDL receptor gene was used as a control (Figure 5-1B, lane 8-10).  An excess of 

unlabeled SRE-LDLR abolished formation of the specific DNA-protein complex between 

SREBP-2 and SRE-897 or SRE-538 (Figure 5-1B, lane 4 and 14).  
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5.3.2 Mapping of the SREBP-2-response region in the 5’-flanking sequence of the human 
prostasin gene 

To test whether SRE-897 and SRE-538 are functionally regulated by SREBP-2 in the human 

prostasin gene promoter, we used the following two approaches: a serial deletion analysis of the 

prostasin promoter and, a mutagenesis analysis with the full-length promoter.  We generated 

four different luciferase reporter constructs which contain unidirectional deletion sequences of 

the human prostasin gene 5’-flanking region (Figure 5-2A).  The p-1031-pGL3 construct 

contains both SRE-897 and SRE-538 while the p-719-pGL3 only contains SRE-538.  The 

p-271-pGL3 and p-17-pGL3 plasmids do not contain any of the two SRE sites.  These four 

serial-deleted promoter-reporter constructs presented similar uninduced promoter activities in 

HEK-293 cells (Figure 5-2A).  The promoter activity of the construct with a deletion of +10 to 

+232 (p-1031/+9-pGL3), however, was completely abolished (Figure 5-2A).  It may be 

suggested that the region from -17 to +232 is required for the uninduced transcriptional activity 

of the human prostasin gene.  Next, we co-transfected these promoter-reporter constructs with 

an SREBP-2 expression plasmid for evaluation of their responses to SREBP-2 (Figure 5-2B).  

SREBP-2 up-regulated the promoter activities of all four promoter-reporter constructs 

(p-1031-pGL3, p-719-pGL3, p-271-pGL3 and p-17-pGL3), the responses of these four different 

constructs to SREBP-2 were not statistically different.  
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Figure 5-2 Promoter activity assays of serial-deleted human prostasin promoter constructs. 

Schematic diagrams of serial-deleted human prostasin promoter-luciferase reporter constructs were shown on the 

left.  The numbers represent the positions relative to the transcription initiation site.  (A) HEK-293 cells were 

transiently transfected with 1.4 µg of the appropriate serial-deleted promoter-reporter plasmid and 0.2 µg of the 

SV40-β-galactosidase reference plasmid.  Luciferase activities were determined at 24 hours after transfection and 

normalized with the β-galactosidase activities.  The data are expressed as relative promoter activity (per serial 
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deletion construct versus the full-length construct p-1031-pGL3 for which the promoter activity was set as 1 

arbitrary unit).  The results represent the Mean ± S.D. of three independent experiments.  (B) HEK-293 cells were 

transiently transfected with 1.3 µg of the appropriate serial-deleted promoter-reporter plasmid, 0.2 µg of the 

SV40-β-galactosidase reference plasmid, and 0.1 µg of the SREBP-2 expression plasmid or the empty pcDNA3 

vector.  Luciferase activities were determined at 24 hours after transfection and normalized with β-galactosidase 

activities.  The data are expressed as an x-fold of increase of the promoter activity in the cells co-transfected with 

the SREBP-2 expression plasmid compared with the cells co-transfected with the empty pcDNA3 vector.  The 

results represent the Mean ± S.D. of three independent experiments.  SRE’s are indicated by filled boxes.  The 

grey box with “LUC” indicates the firefly luciferase gene in the pGL3 Basic vector. 

 

 

 

Mutagenesis was then performed to inactivate these two classic SREs in the full-length human 

prostasin promoter-reporter construct p-1031-pGL3 and the mutant constructs were evaluated for 

their responses to SREBP-2 (Figure 5-3).  Mutations in SRE-897 (p-1031-SRE-897M-pGL3) or 

SRE-538 (p-1031-SRE-538M-pGL3) did not reduce the full-length promoter’s response to 

SREBP-2.  The promoter construct p-1031-SRE-897M/-538M-pGL3 with mutations in both 

SRE-897 and SRE-538 was shown to be further up-regulated by SREBP-2, by 14%, in this set of 

experiments.   

 

It may be suggested from these observations that SREBP-2 regulation of the prostasin gene 

promoter is mediated by the region defined in -17 to +232, and SRE-897 and SRE-538 are not 

necessary for this regulation.   

 



 100

 

Figure 5-3 Evaluation of SRE-897 and SRE-538 in the full-length human prostasin promoter-reporter 

construct. 

HEK-293 cells were transiently transfected with 1.3 µg of the wild-type (p-1031-pGL3) or a mutant 

(p-1031-SRE-897M-pGL3, p-1031-SRE-538M-pGL3, or p-1031-SRE-897M/-538M -pGL3) promoter-reporter 

plasmid, 0.2 µg of the SV40-β-galactosidase reference plasmid, and 0.1 µg of the SREBP-2 expression plasmid or 

the empty pcDNA3 vector.  Luciferase activities were determined at 24 hours after transfection and normalized 

with β-galactosidase activities.  The data are expressed as an x-fold of increase of the promoter activity in the cells 

co-transfected with the SREBP-2 expression plasmid compared with the cells co-transfected with the empty 

pcDNA3 vector.  The level of increase for the wild-type construct was arbitrarily set as 100%.  The results 

represent the Mean ± S.D. of two independent experiments (p-1031-SRE-538M-pGL3 and 

p-1031-SRE-897M/-538M-pGL3) or three independent experiments (p-1031-pGL3 and p-1031-SRE-897M-pGL3).  

The asterisk (*) denotes a statistical difference (p<0.05) in SREBP-2 responses between the mutant and the 

wild-type promoter constructs.  The filled box represents the wild-type SRE while the open box with “X” 

represents the mutated SRE.  The grey box with “LUC” indicates the firefly luciferase gene in the pGL3 Basic 

vector. 
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5.3.3 Identification of SREBP-2 binding sites in the SREBP-2-response region of the human 
prostasin promoter 

We identified three potential novel SREBP binding sites at positions +8, +71, and +98, sharing 

50%~60% identity with the classic SRE, in the SREBP-2-response region (-17 to +232) of the 

human prostasin promoter (Figure 5-4A).  Electrophoretic mobility shift assays were performed 

to test whether SREBP-2 binds these putative SRE-like sites.  Single-shifted DNA-protein 

bands were observed when recombinant SREBP-2 was incubated with the DIG-labeled probes 

containing SRE+8, SRE+71, or SRE+98 (Figure 5-4B).  The specific DNA-protein band-shift 

could be competed off by an excess of unlabeled wild-type probes but not mutant probes.   

 

5.3.4 Evaluation of SRE+8, SRE+71 and SRE+98 in SREBP-2 regulation of the human 
prostasin promoter 

To determine whether SRE+8, SRE+71, and SRE+98 are functional for SREBP-2 regulation, 

mutagenesis of these sites was performed in the human prostasin promoter-reporter construct 

p-17-pGL3.  A mutation in SRE+8 (construct p-17-SRE+8M-pGL3) did not reduce the 

up-regulation by SREBP-2 (Figure 5-5), disqualifying this SRE as a potential functional site for 

SREBP-2 regulation of prostasin expression.  A mutation in SRE+71 (construct 

p-17-SRE+71M-pGL3), however, decreased the SREBP-2 up-regulation by 34% when compared 

with the wild-type construct, for which the extent of SREBP-2 up-regulation was arbitrarily set 

as 100%.  A mutation in SRE+98 (construct p-17-SRE+98M-pGL3) decreased the SREBP-2 

up-regulation by 72% when compared with the wild-type construct.  It appears that SRE+98 is 

the major site required for SREBP-2 regulation of the human prostasin promoter, while the 

reduction of SREBP-2 regulation following the mutagenesis of SRE+71 was not as dramatic.  
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Figure 5-4 Electrophoretic mobility shift assay of SRE+8, SRE+71 and SRE+98 probes with recombinant 

SREBP-2. 

(A) The nucleotide sequences and locations of putative SREs in the SREBP-2-response region (from -17 to +232) of 

the human prostasin gene promoter.  SRE’s are indicated by filled boxes.  (B) EMSA performed with SRE+8, 

SRE+71 and SRE+98 probes (The SRE sequences are underlined and mutant sequences are presented in italic).  In 
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each binding reaction, 0.8 ng of each DIG-labeled probe was incubated with 100 ng of recombinant SREBP-2.  An 

excess of unlabeled probes (wt: wild-type or mt: mutant, in 125-fold excess) was used as competitors.  Free 

DIG-probes and SREBP-2 shifted probes were indicated by the arrows. 

 

 

Mutations in both SRE+71 and SRE+98 (construct p-17-SRE+71M/+98M-pGL3) decreased the 

SREBP-2 up-regulation by 58%.  The double-mutation construct  produced more reduction of 

SREBP-2’s stimulatory effects when compared with the SRE+71 single-mutation construct 

p-17-SRE+71M-pGL3, but less when compared with the SRE+98 single-mutation construct 

p-17-SRE+98M-pGL3.  We presently have no explanation as to why the double-mutation had 

less impact on SREBP-2 regulation than the SRE+98 single mutation.   

 

To evaluate the importance of SRE+98 in the full-length prostasin promoter for SREBP-2 

regulation, the p-1031-SRE+98M-pGL3 mutant construct was generated.  Mutation of SRE+98 

in the full-length prostasin promoter also significantly reduced the up-regulation by SREBP-2, 

by 73%, when compared with the wild-type construct, for which the extent of SREBP-2 

up-regulation was arbitrarily set as 100% (Figure 5-6).  The novel sterol regulatory element 

identified at position +98, GTGGCCAGAC (SRE+98) is, therefore, the major site for the human 

prostasin gene to respond to SREBP-2-mediated up-regulation.  The 14% increase of SREBP-2 

up-regulation observed with the full-length promoter construct containing mutations in both 

SRE-897 and SRE-538 (Figure 5-3) may be the result of a surplus of SREBP-2 for the SRE+98 

and SRE+71 sites because the two classic SRE sites are no longer available to bind the 

transcription factor. 
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Figure 5-5 Evaluation of SRE+8, SRE+71 and SRE+98 in the SREBP-2-response region of the human 

prostasin promoter. 

HEK-293 cells were transiently transfected with 1.3 µg of the wild-type (p-17-pGL3) or a mutant 

(p-17-SRE+8M-pGL3, p-17-SRE+71M-pGL3, p-17-SRE+98M-pGL3 or p-17-SRE+71M/+98M -pGL3) 

promoter-reporter plasmid, 0.2 µg of the SV40-β-galactosidase reference plasmid, and 0.1 µg of the SREBP-2 

expression plasmid or the empty pcDNA3 vector.  Luciferase activities were determined at 24 hours after 

transfection and normalized with β-galactosidase activities.  The data are expressed as an x-fold of increase of the 

promoter activity in the cells co-transfected with the SREBP-2 expression plasmid compared with the cells 

co-transfected with the empty pcDNA3 vector.  The level of increase for the wild-type construct was arbitrarily set 

as 100%.  The results represent the Mean ± S.D. of three independent experiments.  The asterisk (*) denotes a 

statistical difference (p<0.05) in the SREBP-2 responses between the mutant and the wild-type promoter constructs.  

The filled box represents the wild-type SRE while the open box with “X” represents the mutated SRE.  The grey 

box with “LUC” indicates the firefly luciferase gene in the pGL3 Basic vector. 
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Figure 5-6 Evaluation of SRE+98 in the full-length human prostasin promoter-reporter construct. 

HEK-293 cells were transiently transfected with 1.3 µg of the wild-type (p-1031-pGL3) or the mutant 

(p-1031-SRE+98M-pGL3) promoter-reporter plasmid, 0.2 µg of the SV40-β-galactosidase reference plasmid, and 

0.1 µg of the SREBP-2 expression plasmid or the empty pcDNA3 vector.  Luciferase activities were determined at 

24 hours after transfection and normalized with β-galactosidase activities.  The data are expressed as an x-fold of 

increase of the promoter activity in the cells co-transfected with the SREBP-2 expression plasmid compared with the 

cells co-transfected with the empty pcDNA3 vector.  The level of increase for the wild-type construct was 

arbitrarily set as 100%.  The results represent the Mean ± S.D. of three independent experiments.  The asterisk (*) 

denotes a statistical difference (p<0.05) in the SREBP-2 responses between the mutant and the wild-type promoter 

constructs.  The filled box represents the wild-type SRE while the open box with “X” represents the mutated SRE.  

The grey box with “LUC” indicates the firefly luciferase gene in the pGL3 Basic vector. 

 

 

CONCLUSIONS: SREBP-2 activates human prostasin gene expression through the 5’-flanking 

region, specifically, by interacting mainly with a novel sterol-regulatory element, SRE+98.  

Prostasin, as a member of SREBP-2 responsive genes, might also be suggested to play a 

potential role in lipid homeostasis in human cells. 
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APPENDIX 

EXPERIMENTAL PROCEDURES 

 



 107

Mini-Prep of Plasmids (Phenol/CHCl3) 

1. Inoculate single colonies to 2ml LB media with appropriate antibiotics.  Grow the bacteria 

in 37oC incubator at speed of 180~200 rpm for O/N (16~18 hours).  

2. Transfer 2 x 600µl bacteria cultures into 1.5 ml tubes  6,000 rpm x 5 min at room 

temperature. 

3. Discard supernatant  Aspirate the leftover supernatant  Suspend bacteria in 120µl of 

Sol-I mix by pipetting (100µl Sol I, 10µl 10mg/mlRNase A, 10µl 50mg/ml lysozyme; 

Preparing master mix in advance).  Incubate at room temperature for 15 min or longer. 

4. Add 200 µl of Sol II.  Mix gently.  Incubate on ice for exactly 5 min. 

5. Add 150 µl ice-cold Sol III, cap the lid immediately and invert several times to mix the 

solution thoroughly.  Spin at 14,000 rpm for 10 min at room temperature. 

6. Transfer the supernatant to a new 1.5 ml tube.  Add 450µl of “25:24:1” solution. 

7. Shake 50 times to mix well. Spin at 8,000 rpm for 5 min at room temperature. 

8. Transfer the top layer to another new 1.5 ml tube.  Add same volume of chloroform. 

9. Shake 50 times to mix well.  Spin at 8,000 rpm for 1 min at room temperature.  

10. Transfer the top layer to another new 1.5 ml tube.  Add same volume of iso-propanol. 

11. Mix thoroughly by inverting.  Spin at 4oC, 14,000 rpm for 10 min. 

12. Carefully decant the supernatant.  Add 700µl of cold 70% ethanol.  Rotate tubes to wash 

the DNA pellet, decant ethanol (If the pellet is detached from the bottom, re-spin at 9,500 

rpm for 5 min), and air-dry in culture hood for 5 min.  

13. Dissolve the DNA pellet in 50µl sterile ddH2O.  Take 3~5µl of DNA solution for restriction 

enzyme digestion.  
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Sol I: 50mM glucose, 25mM Tris-HCl, pH8.0 10mM EDTA 

(500ml) 4.505g Glucose (Dextrose); 12.5ml 1M Tris (8.0); 10ml 0.5M EDTA (8.0) 

Autoclave Fluid/15min (no longer!) 

Sol II: 1%SDS and 0.15 M NaOH 

(400ml) 20ml 20% SDS; 6ml 10N NaOH 

Sol III: 3M potassium, 5M acetate, pH 4.8 

(500ml) 147.23g KAc dissolved in 400ml H2O  Add in 57.5ml Glacial Acetic Acid  Adjust 

to 500ml.  

1xTE: 10mM Tris-HCl, pH8.0, 1mM EDTA 

“25:24:1”: 

 Thaw the frozen phenol (stored at –20oC near centrifuge) at 50~55oC water bath for 20 ~ 
30 min (until thaw). 

 After thawed, add 25 ml sterile ddH2O (mix, invert 50 times) 
 Spin at top speed for 5 min at room temperature. 
 Remove top layer with plastic transfer pipette. (In sink with cold water on) 
 Add 5xTE Buffer up to 50 ml, mix, wait till phase separate, remove top layer. 
 Add 1xTE Buffer up to 50 ml, mix, wait till phase separate, remove top layer. 
 Adjust the volume of saturated phenol to 25ml. Transfer the extra phenol to the Φ storage 

tube (stored at -20oC). 
 Add 24 ml of chloroform and 1ml Iso-amyl alcohol  Mix. 
 Spin at top speed for 1 min or put in 4oC to let phase separate overnight. 
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Midi-Prep of Plasmids (Phenol/CHCl3) 

1. Inoculate a single colony or 50µl of bacteria culture to 25ml LB media.  Grow the bacteria 

in 37oC incubator at speed of 180~200 rpm for O/N (16~18 hours). 

2. Pour the bacteria culture into polycarbonate tubes (on the top of microwave).  Spin at top 

speed (Clinical centrifuge in the corner) for 10 min, Decant supernatant. 

3. Add 2.5 ml Sol I, 100µl RNase A, 100µl lysozyme to each tube, suspend the pellet 

completely by pipetting and vortexing.  Incubate at room temperature for 20 min. 

4. Add 5.0 ml Sol II to each tube, mix completely by gentle swirling, incubate on ice for 5 min.  

5. Add 3.75 ml Sol III to each tube, mix thoroughly by swirling, incubate on ice for 15 min. 

6. Spin at 12,000 rpm for 20 min @ 4oC. (Precise balance needed!).  

7. Transfer supernatant into 50ml conical organic resistant tubes (red caps).  Add 10.5-11 ml 

“25:24:1”.  Shake 50 times and spin at top speed for 10 min at room temperature. 

8. Transfer top layer into new tubes. (leave some interface) 

9. Add 10.5ml chloroform. Shake 50 times and spin at top speed for 1 min at room temp.  

10. Transfer top layer to DNA tubes (~30ml, near autoclaved glass-tubes).  Add 8ml 

iso-propanol. Balance. Spin at 12,000 rpm for 20 min at 4oC. Decant supernatant carefully. 

11. Add 8ml -20oC 70% ethanol (DNA side up). Turn vertically to wash entire tube. (If DNA 

pellet breaks, must re-spin) 

12. Dry (DNA side up) for 5 min in culture hood. (until white DNA becomes clear)  

13. Dissolve in 0.5~1ml sterilized ddH2O. (No need to measure DNA concentration b/c high 

amount of RNA) 
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Mini-Prep of Plasmid by Qiagen Kit 

(Cat. No. 27104) 

1. Inoculate single colonies to 2ml LB media with appropriate antibiotics.  Grow the bacteria 

in 37oC incubator at speed of 180~200 rpm for O/N (16~18 hours).  

2. Transfer 1.5ml bacteria culture into 1.5 ml tubes  8,000 rpm x 3 min at room temperature. 

3. Discard supernatant  Aspirate the leftover supernatant  Suspend bacteria in 250µl Buffer 

P1 (stored at 4oC) and mix thoroughly by pipetting. 

4. Add 250 µl Buffer P2.  Mix thoroughly by gently inverting 10 times.  

5. Add 350 µl Buffer P3.  Mix thoroughly by gently inverting 10 times. 

6. Spin at 13,000 rpm for 10 min at room temperature. 

7. Apply the supernatant to the QIAprep spin column. Centrifuge for 30~60 seconds (From 

now on, all centrifuges are performed at 13,000 rpm, room temperature.) 

8. Discard the flow-through  Wash the column by 0.5ml Buffer PB  Centrifuge for 30~60s. 

9. Discard the flow-through Wash the column by 0.75ml Buffer PE  Centrifuge for 30~60s. 

10. Discard the flow-through Centrifuge for additional 1 min to remove residual wash buffer. 

11. Place the column in a clean 1.5ml tube  Add 50 µl sterile ddH2O to the center of column  

Incubate at room temp for 1 min  Centrifuge for 1 min (Cut the cap to fit centrifuge). 

12. Transfer to a clean 1.5 tube. DNA samples are ready for measurement of concentration and 

further cell transfection experiments. 
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Midi-Prep of Plasmid by Qiagen Kit 

(Cat. No. 12143) 

1. Inoculate a single colony to two flasks of 25ml LB media.  37oC, 200 rpm, O/N (~16 hours). 

2. Pour the bacteria culture into polycarbonate tubes (on the top of microwave). Spin at top 

speed (old machine) for 10 min. Decant supernatant. 

3. Add 4.0 ml of Buffer P1 (stored at 4oC). Suspend the pellet completely.  

4. Add 4.0 ml of Buffer P2, mix gently but thoroughly by swirling the tube and pipetting 

without vortexing.  Incubate at room temperature for no more than 5 min. 

5. Add 4.0 ml of pre-chilled Buffer P3, mix thoroughly and incubate on ice for 15 min. 

6. Spin at 12,000 rpm for 20 min @ 4oC. (New machine, need precise balance).  

7. Equilibrate a Qiagen-tip 100 by applying 4ml of Buffer QBT, and allow the column to 

empty by gravity flow. 

8. Apply the supernatant from step 6 to the Qiagen-tip through a double layer cheese cloth (with 

a plastic transfer pipette).  Wait till all samples flow through. 

9. Wash the Qiagen-tip with 10ml of Buffer QC twice  Elute DNA with 5ml of Buffer QF. 

10. Repeat the procedure from step 7 to step 10.  Elute DNA in the same tube. 

11. Precipitate DNA by adding 7.0 ml of iso-propanol to the eluted DNA (10ml). Mix, balance 

and centrifuge immediately at 12,000 rpm for 20 min @ 4oC. Decant supernatant carefully. 

12. Add 5 ml of 70% ethanol (stored at –20oC) with DNA side up. Turn vertically to wash entire 

tube. (If DNA pellet breaks, must re-spin) 

13. Air-dry DNA for 5 min in Bio-safety Cabinet. And dissolve in 0.3~0.5ml of sterilized ddH2O.  
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Reverse-Transcription and Polymerase Chain Reaction 

 

Reverse-Transcription (Super-Script III RT, invitrogen) 

(Wear new gloves and do not make skin contacts!)  

1. In one sterile 0.5ml tube mix the following in the order given: 

Reagents     Volume   

DEPC-H2O      µl 

2mM dNTP     5 µl 

3’-primer (2µM)    1 µl 

RNA (total 1µg)     µl   

Total       14 µl 

2. Cap the tube, and then heat the mixture on MJ Research thermocycler at 65oC for 5 minutes. 

3. Place the heated tube on ice for 1 minute.  Spin down the content. 

4. Add the following in the order given: 

Reagents     Volume   

5x First-strand Buffer   4 µl 

0.1 M DTT     1 µl 

SS-III RT     1 µl   

5. Cap the tube and mix the content by finger tapping  spin down the content 

6. Run program “RT55” (1 hour at 55oC followed by 15 minutes at 70oC) on the MJ Reserch 

thermocycler (Check the temperature, when reaches 55oC, then place the tube on it).   

7. When the RT step is over  short spin  mix  re-spin.   

8. Use 2µl as cDNA template for a 50µl PCR to amplify of the target gene. 
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PCR using the Taq polymerase 

In a thin-walled 0.5ml tube, mix the following in the order given: 

Reagents     Volume   
Sterile-ddH2O    34 µl 
2mM dNTP     5 µl 
10x PCR Buffer    5 µl 
5’-primer (25µM)   1 µl 
3’-primer (25µM)   1 µl 
Template     2 µl 
Taq DNA Pol (05/01/02)  2 µl   
Total       50 µl 
 
 
PCR using the Phusion polymerase 

(Cat. No. F-530S, New England) Blunt amplified product.  

 Mix the following in the order given: 

Reagents     Volume      Program: “MaxPCR” 
Sterile-ddH2O    31.5 µl     98oC, 1min 30sec 
2mM dNTP     5  µl      ↓ 
5x HF/GC Buffer   10  µl     98oC, 10sec 
5’-primer (25µM)   1  µl     60oC, 30sec 
3’-primer (25µM)   1  µl     72oC, 25sec/kb extension 
Template (10ng/µl)   1  µl      ↓ 30 cycles 
Phusion Pol     0.5  µl     72oC, 10 min 
Total       50  µl 
 

 Mix content well by gentle vortexing, cover with 3 drops of light mineral oil.  Short spin. 

 Run with appropriate PCR program on MJ Reserch thermocycler. 

 After reaction, add in 30µl CHCl3 and 10µl 5xTAE dye. Mix by vortexing.  Centrifuge 

at 8,000 rpm for 1 min. 

 Load supernatant to agarose gel for electrophoresis and purification. 

 

 



 114

Agarose Gel Electrophoresis and Gel Purification 

Large agarose gel (2x14-well) 

1 Dilute 20 ml 50xTAE to 1000 ml 1xTAE  

2 Weigh 1g of agarose. Put into a 500ml Erlenmeyer. 

3 Pour in 125ml 1xTAE. (No shake) Weigh the Erlenmeyer. 

4 Microwave for about 2 minutes. When boiled, take the Erlenmeyer out. Shake. Put it back. 

Until completely dissolved (no particle seen). 

5 Weigh the Erlenmeyer. Adjust to the previous weight by ddH2O. 

6 Add 25µl EB (1mg/ml), Shake at the speed 3~4 for about 15 minutes to the temperature at 

which your hand won’t feel hot. 

7 Seal the tray, insert the comb, and pour in the gel solution. When gel cools to solid (turn 

white), take off the tape, put the tray in tank (contain 1xTAE) and pull out the comb, add 

1xTAE buffer to sink the gel. 

8 Mix samples with 5xTAE dye. Loading samples and run at 90mA (constant) for 50~60 min. 

 

Small agarose gel (8-well) 

1 Dilute 10 ml 50xTAE to 500 ml 1xTAE  

2 Weigh 0.4g of agarose. Put into a 250ml Erlenmeyer 

3 Pour in 50ml 1xTAE. (No shake) Weigh the Erlenmeyer. 

4 Microwave (70% power) for about 2 minutes. When boiled, take the Erlenmeyer out. Shake. 

Put it back. Until completely dissolved (no particle seen). 

5 Weigh the Erlenmeyer.  Adjust to the previous weight by ddH2O. 

6 Add 10µl EB(1mg/ml), Shake at the speed 3~4 for about 5 minutes to the temperature at 

which your hand won’t feel hot. 

7 Seal the tray (not need to fold back), insert the comb (standing free), pour in the gel solution.  

8 When gel cools to solid (turn white). Comb  Tape  Sink in tank (The buffer solution’s 

surface should be no more than 2mm higher than gel’s surface) 

9 Mix samples with 5xTAE dye. Loading samples at 50mA (constant) for 50~60 min. 
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50 x TAE: 

242g Tris Base; 100ml 0.5M EDTA (8.0); 57ml Glacial Acetic Acid. 

Dissolve and add water to 1 liter. Not necessary to adjust pH. 

 

DNA Extraction from Agarose Gels  

(QIAEXRII Gel Extraction Kit, Qiagen, Cat. No. 20051) 

*All centrifugation steps are at speed 13,000 rpm for 30 sec. 

1. Excise the DNA band from the agarose gel with a clean sharp scalpel.  Transfer to a 

1.5ml tube. 

2. Add 500~750µl Buffer QX1 to the gel.  Dissolve the gel at 50oC for about 5 minutes.  

3. Add in 15µl~25µl of resuspended QIAEX II beads (10µl beads is enough for 2µg DNA 

binding).  Incubate at 50oC for 10 minutes.  Mix by inverting tube several times every 

2 min to keep the beads in suspension. 

4. Centrifuge and remove the supernatant with a pipet. 

5. Wash the pellet with 500µl of Buffer QX1. (Suspend the pellet by pipetting  

Centrifuge  Remove the supernatant with a pipet.) 

6. Wash the pellet twice with 500µl of Buffer PE. 

7. Centrifuge and remove the left supernatant as much as possible. 

8. Air-dry the pellet at room temperature for 5 minutes with cap open. 

9. Add 20~30µl ddH2O and resuspend the pellet by gentle pipetting. Incubate as following: 

(DNA <4kb: room temp. for 5min;  DNA 4-10kb: 50oC for 5 min; DNA >10kb: 50oC for 

10 min) 

10. Centrifuge. Carefully transfer the supernatant to a clean tube. 
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Measure DNA and RNA concentration by Bio-Spectrophotometer 

1. Dilute DNA or RNA samples at ratio 1:100 in 1x TE buffer. (5µl samples + 495µl 1xTE) 

2. Turn on the Bio-Spec. Pre-warm. 

3. Select DNA mode (press 2). Make sure A1=260nm & A2=280nm. 

4. Take cuvettes out carefully (not touch the glass sides).  Add 500µl of 1xTE to each cuvette. 

Wipe the cuvette with Kim-wipes if necessary.  Put cuvettes in machine (letters face out) 

5. Close the lid, press “auto zero”. 

6. Take out the sample cuvette (close lid), aspirate the solution inside.  Add samples (500µl). 

Put it back to the machine. 

7. Press “Start”.  Write down A1, A2 & A1/A2. 

8. Wash the cuvette 3 times by ddH2O.  Put it back to the box. (lean it and close the box cover 

lightly) 

9. Press “Return” and “Mode”.  Close the machine. 

10. Calculate the DNA concentration (A1 x 5µg/µl for dsDNA; A1 x 3.3µg/µl for ssDNA; A1 x 

4µg/µl for RNA; For the oligo-nucleotide synthesized by IDT, use the specific µg/OD260 

number they provide ).  
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Bacterial Transformation 

Preparing Competent Cells  

1. Pick one colony from (TOPP10/XL1-Blue) plate into 2ml LB media. Grow the bacteria in 

37oC incubator at speed of 180~200 rpm for O/N (16~18 hours).   

2. Add 1ml bacteria culture into 25ml LB media.  Grow the bacteria in 37oC incubator at 

speed of 200 rpm for 2 hours.   

3. Prepare 25ml 50mM CaCl2. (1.25ml 1M CaCl2). Pre-chill on ice. 

4. Transfer bacteria culture (grown to mid-log phase) to a 50ml conical tube. Spin at top speed 

(7) for 10 min at room temp. 

5. Decant supernatant. Add 20ml pre-chilled CaCl2 (50mM). 

6. Resuspend cell pellet completely by vortexing mildly. (make solution swirling)  

7. Incubate on ice for more than 30min. 

8. Spin at Speed (5) at room temp for 5 min.  Decant supernatant. 

9. Pour in the rest of 50mM CaCl2 (about 5ml). Resuspend cells by gentle swirling (no vortex) 

until no visible clumps. 

10. Store on ice for more than 1 hour and the competent cells are ready for transformation.  

 

Transformation 

* For one LB plate: 125µl Amp (20mg/ml); 100µl 2%X-gal/DMF; 100µl IPTG (100mM).  

Plate the appropriate solutions before plating the transformation reactions. 

1. Aliquot 200µl of competent cells to a 1.5ml tube on ice. 

2. Add DNA in (plasmid: 0.5µg; ligation: all reaction solution). Mix well by finger tapping.  

3. Incubate on ice for 30 min (No shaking). 

4. Heat shock at 42oC for 45 sec (No shaking).  

5. Put tubes back to ice (No shaking). Incubate on ice for more than 2 min. 

6. Mix the reaction and spread it on LB plate (plasmid: half amount; ligation: all of it) 

7. Incubate plates at 37oC (with bottom up) for overnight (Topp10: 16 hours; XL1-Blue: 18 

hours). 
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2% x-gal/DMF:  

Weigh 0.20g X-gal powder (-20oC top shelf in the middle) 

Dissolved in 10ml DMF (N’-N’ dimethyl formaid) 

 

20mg/ml Ampicillin: 

Weigh 0.20g of Ampicillin (stored at 4oC refrigerator near centrifuge). Pour in a 15ml tube. Add 

10ml of sterile dH2O and one drop of 10N NaOH. Mix solution by vortex. Check the pH after 

dissolving. (pH 7~8) 

 

Prepare LB plates 

1. Weigh 20 g of LB powder in flask (placed under the sink in Room 322).  Add 500ml 

ddH2O in the flask.  Swirl flask to mix the solution by hand. 

2. Weigh 17g Agar (in a blue tank).  Pour in flask.  Add second 500ml ddH2O to wash off the 

agar on the side surface.  Do not shake flask. 

3. Autoclave for 20 min (Fluid). 

4. Shake flask gently to mix the solution. (Do this step on bench. The solution is really hot.) 

5. Agitate at speed 3~4 at room temperature for 45~60 min to let the solution cool down. 

6. The LB plates are stored in Room 346.  Before pour the solution.  Clean bench by alcohol.  

7. Pour media in about half amount of the plate.  5 plates per stack. 

8. Next day, get off the condensation on the top of plates.  Pile the plates up.  The top two 

plates of each stack are piled together, marked No. 1 and No. 2, used at first. 

9. 4~5 days after pouring, check the contamination.  Pack plates in bags and store them at 4oC 

(left top shelf of beer cooler).  
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Molecular Cloning Methods and Reactions 

 

Phenol/CHCl3 extraction: 

1. Add Sterile ddH2O to ~400 µl volume of solution. 

2. Add same volume of “25:24:1” 

3. Shake 50 times to mix well. Spin at 8,000 rpm for 5 min 

4. Transfer the top layer to new tube. Add same volume of chloroform 

5. Shake 50 times to mix well. Spin at 8,000 rpm for 1 min. 

6. Transfer the top layer to new tube  Add 1/10 volume of 3M NaAc  Add same volume of 

iso-propanol. 

7. Mix thoroughly. Spin at 4oC, 14,000 rpm for 10 min. 

8. Carefully decant the supernatant. Add 700µl of cold 70% ethanol. Wash, decant ethanol, 

air-dry, dissolve pellet in water. (Keep eye on DNA pellet) 

 

Preparation of DNA marker 

1. Perform midi-prep to obtain enough amount of pREP8 plasmid. 

2. 400 µl pREP8 digested by Bgl I, 37oC overnight. 

3. 352 µl DNA (midi-prep) + 40µl Reaction buffer (2) + 4µl Bgl I + 4µl RNase (10mg/ml). 

4. 200 µl pREP8 digested by BamH I, 37oC overnight. 

5. 176 µl DNA (midi-prep) + 20µl Reaction buffer (3) + 2µl BamH I + 2µl RNase (10mg/ml). 

6. After overnight digestion, Phenol/Chloroform extraction to get rid of the enzyme (skip the 

precipitation step. 

7. Mix two extracted solutions together and DNA marker is ready for use.  

8. Stored at the –20oC freezer near the cell culture incubator. 

9. Use 5µl marker (with 1.25µl 5x TAE Dye) for a well.    

Fragment Size of each band (From top to bottom) 

11,800   4,565  2,738  1,249  1,093  659  534  195 
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Restrictive enzyme digestion (Mini-prep) 

10 x reaction buffer:     1 µl 

Restriction enzyme:     0.5 µl 

Sterile ddH2O:       5.5 µl 

Mini-prep:       3  µl  

Total volume                     10 µl  

Note: Make master solution  aliquot  add in different mini-prep solution. 

37oC water bath for 1 hour  65oC, 15min (inactivate enzyme)  electrophoresis 

 

 

Klenow reaction 

10 x Reaction Buffer (2):     5 µl 

Large Fragment Polymerase (4~5u/µl):  0.2 µl 

dNTP (2mM):       2 µl 

DNA:         43 µl  

Total volume       50 µl   

Reaction: 37oC, 15min  Phenol/CHCl3 extraction  

 

 

Dephosphorylation with CIP alkaline phosphatase  

10 x NEB Buffer(3):      5 µl 

CIP (10u/µl):        1 µl 

DNA:         44 µl  

Total volume       50 µl   

Reaction: 37oC, 1 hour  Phenol/CHCl3 extraction 

(One unit of CIP can dephosphorylate 2µg DNA.) 
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T vector ligation (Promega) 

2 x ligation buffer:      5 µl 

PCR product (0.05~0.5µg):               µl 

T easy vector (50ng/µl ):       0.5 µl 

T4 DNA ligase:               1 µl  

Sterile ddH2O:                      µl 

Total volume                      10 µl  

Reaction: room temp for more than 2 hours or 4oC for overnight  

Use all reaction to transformation. 

 

Ligation with T4 ligase (Invitrogen) 

5 x ligation buffer:                    2 µl 

Insert (0.1~0.5µg):       µl 

Vector (3:1 insert:vector):           µl  

Ligase:                    0.5 µl  

Sterile ddH2O:           µl 

Total volume                    10 µl  

The 5x ligation buffer should be thawed on ice! 

Ligase:  HC (high concentration) for blunt-end DNA fragment ligation 

       LC (low concentration) for sticky-end DNA fragment ligation 

Reaction: room temp for more than 3 hours or 4oC overnight  

Use all reaction to transformation. 
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RNA Extraction with Trizol Reagent 
1. Aspirate culture media carefully. Add appropriate amount of Trizol Reagent (Stored at 4oC, 

no need to warm up).  ~1ml for a 35mm dish or 6-well or 60mm dish.   
 
2. Rock for 5 min at room temperature. (Until complete cell dissociation) 
 
3. Transfer everything to a sterile 1.5ml centrifuge tube.  
 
4. Centrifuge at 12,000xg (12,500 rpm) at 4oC for 10~15 minutes. (For cell culture: 10min; For 

tissue extraction: 15min.) 
 
5. Transfer the supernatant to a new 1.5 centrifuge tube. 
 
6. Add 0.2ml Chloroform. Shake tubes vigorously for 15~30 seconds. Leave at room 

temperature for 2-3 minutes. 
 
7. Centrifuge at 12,000xg (12,500 rpm) at 4oC for 15 minutes. 
 
8. Transfer the top aqueous phase to a new 1.5ml centrifuge tube. (~0.6ml) 
 
9. Centrifuge at 12,000xg (12,500 rpm) at 4oC for 5~10 minutes. (Optional) 
 
10. Transfer the supernatant to a new 1.5 centrifuge tube. 
 
11. Add 0.5ml Iso-propanol. Mix by inverting for 20 times. Leave at room temperature for 10 

minutes. 
 
12. Centrifuge at 12,000xg (12,500 rpm) at 4oC for 10 minutes. 
 
13. Carefully discard supernatant. Wash the RNA pellet with 1ml 75% EtOH (DEPC). Mix by 

vortexing (make sure pellet suspended). 
 
14. Centrifuge at 7,500xg (9,500 rpm) at 4oC for 5 minutes. 
 
15. Discard supernatant. Dry RNA pellet in the culture hood.   
 
16. Dissolve RNA in appropriate amount of DEPC-water. (Slowly pipetting up and down) (For 

confluent 6-well, dissolve RNA in 70ul. Final concentration will be around 0.5ug/ul) 
 
17. Incubate in 55~60oC water bath for 10 minutes for fully dissolving. 
 
Gently vortex to mix. 14,000rpm x 1min at room temp.  Measurement of RNA concentration. 
(Diluted in 1x TE; conc.=OD260x4; A1/A2 should >1.8) 
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QuikChange Site-Directed Mutagenesis Kit 

(QuikChange Site-Directed Mutagenesis Kit, Stratagene, Cat. No. 200519) 
 

---- Design the primers following the manuscript’s protocol. 
 
----Prepare the stuff for the PCR reaction. 
Primers: diluted to 100ng/µl by ddH2O prior experiment. 
Template:  the DNA should be supercoiled plasmid. Template DNA is diluted to 10ng/µl prior 
experiment. Ensure the template DNA is from a dam+ E.coli strain (including XL1-Blue and 
TOPP10). 
dNTP:   we can use the 2mM dNTP in our lab instead of the one come from the Kit.  
Aliquot the Kit’s dNTP mix after first usage. Thaw the dNTP on ice. 
 
 
----Mutant Strand Synthesis Reaction (PCR) 
*Using the thin-wall tubes. 
*Recipe: 
Sterile ddH2O:       39.5 µl 
10x reaction buffer:     5  µl  
Template (10ng/µl):     1  µl  
Primer #1 (100ng/µl):    1.25 µl   
Primer #2 (100ng/µl):    1.25 µl   
dNTP (2mM):                2  µl  
     ⇓ 
Mix gentle by vortexing  Add 1ul of PfuTurbo DNA polymerase (2.5U/ul). 
     ⇓ 
Mix gently by vortexing  Add 30ul of mineral oil  Short spin. 
     ⇓            
Running the “MUTAGEN” program: 
 
95oC, 30 sec 
     ⇓ 
95oC, 30 sec. 
55oC, 1 min.                            18 cycles 
68oC, 1min/kb of plasmid 
 
Following temperature cycling, place the reaction on ice for 2 min. 
Take out 10ul of PCR product for gel electrophoresis if needed.  
(Using the p10-tip: aerosol-resistant) 
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----Dpn I Digestion of the Amplified Products 

1. Add 1µl of the Dpn I restriction enzyme (10U/µl, Kit) directly to the left PCR reaction 

(~40µl) below the mineral oil overlay using p10 pipet tip.  

2. Gently and thoroughly mix the reaction by pipetting the solution up and down (using p10 

tip, p20 pipetman).  

3. Spin down the reaction mixture at 8,000 rpm x 1 min, room temperature. 

4. Immediately incubate the reaction at 37oC water bath for 1 hour. 

 

---- Transformation of XL1-Blue Supercompetent Cells. 

1. Gently thaw the XL1-Blue Supercompetent cells (Kit) on ice. For each transformation, 

aliquot 50µl of the supercompetent cells to a prechilled 1.5ml microcentrifuge tubes.  

2. Transfer 3µl of the Dpn I-digested DNA to the supercompetent cells. (Use p10 tips, wipe 

away the mineral oil on the tip with Kimwipes papers before adding the DNA into 

supercompetent cells.) 

3. Mix the transformation reactions gently by finger tapping. Incubate on ice for 30 minutes. 

4. Take out the LB-plates stored at 4oC. Warm the plates at room temperature. 

5. Prepare NZY+ broth (0.5 ml for each transformation reaction)  

Recipe:  1ml LB + 12.5µl 1M MgCl2 + 12.5µl 1M MgSO4 + 20µl 1M Glucose 

Mix in 5ml 75 x 12mm tubes. Preheat the broth in 42oC 

6. Heat Pulse the transformation reactions for 45 seconds at 42oC and then place the 

reactions on ice for 2 minutes. 

7. Add 0.5 ml of preheated NZY+ broth and incubate the transformation reactions at 37oC 

for 1 hour with shaking at 225~250 rpm. 

8. Prepare the plates 30 minutes prior to plating:  

      Amp: 125ul of 20mg/ml Ampicilin; 

      X-Gal: 100µl of 2% X-gal in DMF (For color-screening) 

      IPTG: 100µl of 10mM IPTG (For color-screening) 

9. Plate 250µl of transformation reaction on the plates. Incubate at 37oC for > 16 hours. (For 

plasmid transformation, use 30ul of transformation reaction + 220µl NZY+ broth.) 
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Purification of GST fusion protein (PreScission Cleavage) 

1. Inoculate a single colony containing recombinant pGEX plasmid to 5ml of 2XYT medium 

with Amp. 37oC overnight. 

2. Dilute 2ml bacteria culture into 25ml of fresh LB medium with 62.5µl Amp. Grow at 37oC 

with shaking (~220) for about 3.5~4 hours. 

3. Prepare 1liter LB culture media, 2 flask, 500ml/flask, autoclave. (Fluid 20min) 

4. Dilute 13ml bacteria culture into 500ml of fresh LB medium  

(with 1.25ml Amp). Grow at 37oC with shaking (~220, power on, lamp on) for 3 ~3.5 hours. 

(loosen the foil cap) 

5. Measure A600. Between 0.8 is optimal. 

6. Cool bacteria culture down in cold room for about 5~10 min. 

7. Add 1ml 100mM IPTG (-20oC) to each flask. (Final concentration of 0.2mM)  

8. Induction for 60~90 min with shaking (power off, lamp off, door open). Bacteria culture 

can be stored at 4 oC overnight. 

9. Spin down cells in 500ml container at 3,800 rpm x 20 min at 4oC. (Balance) 

10. Decant the supernatant in sink.  Dry the pellet. Wipe inside of container with Kimwipe 

carefully.  (Not touching pellet) 

11. Add 40ml ice-cold 1X PBS. Suspend bacteria pellet by gentle swirling (no frothing) 

12. Pour all suspensions into 50ml conical tubes. 3,800 rpm x 20min, 4oC 

13. Decant supernatant. Resuspend pellet in 25ml cold 1xPBS by vortexing. 

14. Sonication:  (At Dr. Naser’s Lab) 

 Install the large probe 

 Turn on the machine. Press “Tune”. Tuning from 0 to 10. (For small probe, only tune 

0~5)  

 Press “Program” to start sonication. (tune to the scale between 7 and 8 for large probe) 

 The probe should not touch the bottom of the tube during sonication. The value of 

output should be 20~30. If over 30, means too hot, tune lower. 

 Remember to wash the probe by ddH2O (using plastic cup). 

 Put the tube back on ice. (5~10 minutes to cool down) 
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15. Aspirate the foam on the top of solution by the vacuum at sink. (Remember clean the 

vacuum tube after done.) 

16. Add 1.25 ml 20% Triton X-100 (in 1xPBS) to a final concentration of 1%. 

17. Rotate tubes at room temperature for 1 hour. (Facilitate solubilization of the fusion protein.) 

18. Transfer to polycarbonate tubes. Centrifuge at 12,000 rpm for 10 min at 4oC. 

19. Transfer the supernatant to 50ml conical tubes (combine 2 together). 

20. Prepare Glutathione Sepharose 4B beads (For 500ml bacteria culture, 250µl bed volume is 

needed): 

21. Mix beads slurry gently by rotating bottle. (1ml bed volume= 1.33ml 75% slurry. 

22. Add 0.67ml 75% slurry in 10ml 1x PBS in 15ml tube. (For 1L bacteria culture) 

23. Invert tube several times 

24. Spin at speed 5 for 5 min. 

25. Carefully decant supernatant. Add washed beads to sonication supernatant. 

26. Use some sonication supernatant to wash the beads tube and pour back.  

27. Rotating at room temperature for 1 hour. 

28. Pour supernatant/beads mixture into 10ml column. 

29. After all supernatant flow through, Wash by 10ml 1 x PBS for 3 times. (For the first wash, 

pour PBS in mixture tube first and then load to column) 

30. Wash by PreScission cleavage buffer once. 

31. Prepare PreScission Protease mixture. (Protease: Cleavage buffer = 1:24) 

32. Cap the column. Add the same volume of Protease mixture as the bed volume. Cap the top 

end (with parafilm wrapping plug) Make sure no leakage. 

33. Agitation at 4oC for 4 hours. Collect flow-through in 1.5ml tube. 

34. Wash beads by the bed volume of Cleavage buffer, collect the flow-through. 

35. Repeat step 34 twice. 

36. Add 7~8ml 1xPBS. Cap ends. Store the beads at 4oC. 

37. The protein flow-through is stored at –20oC. 
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Cell Culture Media 

HEK-293/FT-239 cells: 

DEME (High Glucose) / 10% FBS (Fetal Bovine Serum) 

293-FT (For lentivirus generation): 

DMEM (High Glucose) / 10% FBS/ 0.1mM NEAA/ 2mM L-Gln/ 1mM Sodium Pyruvate  

with 500ug/ml G418 (100ul 50mg/ml stock in 10ml media) 

PC-3 cells: F12K/ 10% FBS 

DU-145/LNCaP cells: RPMI-1640/ 10%FBS 

MDA-MB-231/MDA-MB-435 cells:  

MEM / 5% FBS/ 0.1mM NEAA/ 2mM L-Gln/ 1mM Sodium Pyruvate/ Vitamin 

 

Drug starting concentration: 

Zeocin: 100ug/ml (5ul of 100mg/ml stock in 5ml) 

Blasticidine: 15ug/ml (7.5ul of 10mg/ml stock in 5ml) 

Hygromycine: 100ug/ml (5ul of 100mg/ml stock in 5ml) 

G418: 500ug/ml (50ul of 50mg/ml stock in 5ml) 

Histidinol: 5mM (0.5ml of 50mM stock in 5ml) 

Tetracycline: 1ug/ml (5ul of 1mg/ml stock in 5ml)  
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Freezing and thawing tissue-cultured cells 

Freezing cells: 

(1) Grow cells to confluent in a T75 flask.  

(2) Trypsinize cells  Add culture media to neutralize trypsinization  Spin down cells. 

(3) Resuspend the cell pellet in 5ml culturing media with 7.5% DMSO 

(4) Aliquot 1ml to Nalgene cryogenic vials 

(5) Put the vials into the Nalgene freezing container with 250ml Iso-propanal. 

(6) Place at -80oC for 24 hours and next day take the frozen vials out and stored at designated 

boxes. 

 

Thawing cells: 

(1) Remove the frozen vial from -80oC freezer, hold the cap portion by hand and submerge the 

entire cell portion of the vial in 37oC water bath. 

(2) Gently shake the vial around to facilitate thawing, the entire content must be thawed before 

removing the vial from water (about 2 minutes).  

(3) Dry off the water and clean with paper towel with 70% ethanol.  

(4) Add 14mls of pre-warmed culture media into a T-75 flask 

(5) Carefully remove the cap off the vial and transfer the entire cell suspension content into the 

14 ml culture media in the T75. 

(6) Mix the cells and media, culture in 37oC incubator for 24 hours. 

(7) Remove the medium with DMSO, change with fresh media and continue with culturing 

and passaging for experiments. 



 129

Cell Staining for β-gal Activity 

1. For 35mm dish or 6-well, rinse cells with 2ml 1x PBS. 

2. Add in 1ml fixative solution. (1ml PBS + 50µl Formalin + 2µl glutaraldehyde) 

3. Room temperature for 5 mins. 

4. Rinse cells with 2 ml PBS x 2 times. 

5. Staining cells with 1ml staining solution. (1ml staining buffer, stored at 4oC) + 50µl 2% 
X-gal/DMF) 

6. Incubate at 37oC for more than 2 hours. Rinse cells with PBS. Observation.  

 

Formalin: 100% (37% v/v Formaldehyde solution) 

Staining Buffer: 5mM K Ferri-cyanide; 5mM K Ferro-cyanide; 2mM MgCl2; in 1x PBS. 

Glutaraldehyde: 25% aqueous (Sigma) 

X-gal: 2% in dimethyl formamide. (Stored at -20oC) 

DMF: N,N,-Dimethyl Formamide 

To store stained cell plates, fix each well with 1ml of 10% formalin in 1xPBS for 10 min at room 

temperature.  Rinse with 1xPBS and store in 1xPBS at 4oC. 
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Gel Preparation for Tris/Glycine SDS-PAGE 

Separating Gel: 
 
7.5%   1ml    5ml    10ml   15ml   20ml 
ddH2O   0.49   2.43   4.85   7.28   9.70 
1.5M Tris (8.8) 0.25   1.25   2.50   3.75   5.00 
30% Acryl. Mix 0.25   1.25   2.50   3.75   5.00 
10% SDS  0.01   0.05   0.10   0.15   0.20 
10% APS  0.005   0.025   0.05   0.075   0.10 
TEMED   0.0005   0.0025   0.005   0.0075   0.01 
 
10%   1ml    5ml    10ml   15ml   20ml 
ddH2O   0.40   2.01   4.02   6.03   8.04 
1.5M Tris (8.8) 0.25   1.25   2.50   3.75   5.00 
30% Acryl. Mix 0.33   1.67   3.30   5.00   6.66 
10% SDS  0.01   0.05   0.10   0.15   0.20 
10% APS  0.005   0.025   0.05   0.075   0.10 
TEMED   0.0005   0.0025   0.005   0.0075   0.01 
 
12%   1ml    5ml    10ml   15ml   20ml 
ddH2O   0.34   1.68   3.35   5.03   6.70 
1.5M Tris (8.8) 0.25   1.25   2.50   3.75   5.00 
30% Acryl. Mix 0.40   2.00   4.00   6.00   8.00 
10% SDS  0.01   0.05   0.10   0.15   0.20 
10% APS  0.005   0.025   0.05   0.075   0.10 
TEMED   0.0005   0.0025   0.005   0.0075   0.01 
 
 
Stacking Gel: 
 
       1ml    2ml    3ml    5ml      8ml 
ddH2O   0.61   1.22   1.83   3.05   4.88 
1.5M Tris (8.8) 0.25   0.50   0.75   1.25   2.00 
30% Acryl. Mix 0.13   0.26   0.39   0.67   1.06 
10% SDS  0.01   0.02   0.03   0.05   0.08 
10% APS  0.005   0.01   0.015   0.025   0.04 
TEMED   0.001   0.002   0.003   0.005   0.008 
 
 

If necessary, the amount of 10%APS can be increased to 150% to facilitate gel polymerization.
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Western Blot Analysis 
 
Cell lysate preparation: 

1) Wash cell by 1x PBS twice. (All steps should be performed on ice) 

2) Add optimal amount of ice-colded RIPA Lysis Buffer. (The protein concentration of 

lysate should be around 1ug/ul.) 

(For 100% confluent cells in 6-well plate: 

293-HEK: 0.6ml; PC-3: 0.3ml; DU-145: 0.3ml; LNCap: 0.3ml)  

RIPA lysis buffer (stored at 4oC) + inhibitors (for 1ml lysis buffer) 

2ul Aprotinin (1mg/ml); 2ul Leupeptin (1mg/ml) 

4ul EDTA (0.5M); 10ul PMSF (100mM); 10ul Na3VO4 (100mM) 

20ul NaF (0.5M); 5ul SBTI (10mg/ml) 

3) Gently rock plates on the agitator at 4oC for 30min. 

4) Scrape cells down by scrapers (if needed). Transfer all to 1.5ml tubes. 

5) Vortex for several seconds.  

6) Centrifuge tubes at 12,000 x g (13,000 rpm) for 10min at 4oC.  

7) Transfer the supernatant (cell lysate) to another new 1.5ml tube. 

8) DC-protein assay to measure the protein concentration. 

 

Electrophoresis and Blotting:  

1) Load 40~60µg whole cell lysate to each well on SDS-PAGE gel.  (with 10x SDS 

loading buffer B-ME; boiling for 5 mins.) 

2) Electrophoresis (200V, 40min) in 1x SDS Running buffer. (MWM: 2ul) 

3) Transfer proteins from the gel to nitrocellulose membrane (100V, 1 hour or 20V 

overnight). 

4) Stain the membrane by ink. (3~5 drops in Washing buffer) for 10~15min. 

5) Rinse membrane by washing buffer. Block the membrane by Blocking solution for 1 

hour. 

6) Change to primary antibody solution (antibodies in blocking solution). Room temperature 

agitation for 1~2 hours. (Or overnight at 4oC) 
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7) Wash membrane by washing buffer for 5~10 min x 3 times.  

8) Change to secondary antibody solution (antibodies in blocking solution). Room 

temperature agitation for 1 hour.  

9) Wash membrane by washing buffer for 5~10min x 3 times 

10) Add 2~3ml ECL solution to membrane surface. Room temperature for 3 min. 

11) Wrap membrane with plastic membrane. Expose to the film for 1~2 min.  

12) Develop the film. 

 

RIPA stock solution (4oC refrigerator near 37oC incubator) 

10mM Tris, pH 8.0; 150mM NaCl; 1%NP40; 0.1% SDS; 0.5% Na deoxycholate. 

10X PBS (7.2): 1.44g KH2PO4 + 90g NaCl + 4.2g Na2HPO4  1L solution  Autoclave. 

10X SDS Running Buffer: 144.4g Glycine + 30.3g Tris-Base + 10g SDS  1L solution. 

Transferring buffer: 100ml 10xRunning buffer + 200ml Methanol + ddH2O to 1L. 

Block solution: 5%-7% milk in washing buffer.  

Washing buffer: 1x TBST (20mM Tris pH7.6; 140mM NaCl; 0.1% Tween-20) 

10 x TBST: 200ml 1M Tris + 280ml 5M NaCl + 10ml Tween-20  1L solution. 
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Silver Staining of SDS-PAGE gel 

 
Note: Wearing gloves all the time! Do not use any metal stuff to touch the gel! 
 
Before staining: 
Get the 100mm glass dish ready. (in the drawer under the pH meter) 
Pre-warm the Development Accelerator Solution (Stored at 4oC) at room temperature. 
All other solutions are stored on the shelf near ventilation hood at room temperature. 
  

1) Prepare 20ml fixative solution in the 100mm dish. (For one gel) 
Methanol                        10ml 
Acetic Acid                       2ml 
Fixative Enhancer Concentrate         2ml    
Sterile ddH2O                     6ml 
Mix by agitation. 
 
2) Fix the gel for 20 mins at room temperature with agitation (speed 3~4) 
 
3) Decant the fixative solution. Rinse the gel with sterile ddH2O for 10mins. 

 
4) Repeat the step (3) 3~4times. 

 
5) Prepare the staining solution (20ml) Decant the water before preparing the staining 

solution. 
Add 7ml sterile ddH2O into a 100ml beaker. 
         ↓ 
Add following reagents in the order of: 
1ml Silver Complex Solution 
1ml Reduction moderator Solution 
1ml Image Development Reagent 
Swirl the beaker to mix when adding the solution. 
         ↓ 
QUICKLY add 10ml Development Accelerator Solution all at once with swirling. 
 
6) Add the staining solution immediately to the rinsed gel. Stain for 20min at room 

temperature with agitation. 
 
7) Change to 40ml stop solution (5% acetic acid) to stop the staining for >15mins. Change 

to sterile ddH2O 
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Promoter Activity Assay 

 

Cell transfection 

(1) Day 1, HEK-293 cells were plated on a poly-L-lysine-coated (0.5 ml of 20ug/ml PLL, 

room temperature for more than half hour) 12-well plate at a density of 4 x 105 cells per 

well.  

(2) Day 2, the appropriate prostasin promoter-luciferase reporter plasmid (1.3 µg), an 

SV-β-galactosidase reference plasmid (pSV-β-gal, Promega, 0.2 µg) and an appropriate 

transcription factor expression plasmid (pcDNA3-based, 0.1 µg) or a control plasmid 

(pcDNA3, Invitrogen, 0.1 µg) were transfected into the cells using the Lipofectamine 

2000 reagent (1.6 ug total DNA in 100ul OPTI + 4ul lipofectamine 2000 in 100ul OPTI) 

according to the manufacturer’s protocol.   

(3) Day 3, twenty-four hours after transfection, the cells were lysed with the Reporter Lysis 

Buffer (Promega).  One hundred micro-liters of cell lysate were assayed for luciferase 

activity using the Bright-Glo Luciferase Assay System (Promega).  The β-galactosidase 

activity was measured by using a β-Galactosidase Enzyme Assay Kit (Promega) and used 

to normalize for transfection efficiency. 

 

Prepare cell lysate with Report Lysis Buffer (RLB) 

(1) Add 4 volumes of water to 1 volume of 5x RLB (stored at 4oC) to produce 1x RLB 

(2) Remove the growth media from cells. Wash cells with 1x PBS twice. 

(3) Add a sufficient volume of 1x RLB to cover cells (250µl per well).  

(4) Rock the dish at room temperature for 15 minutes to completely lyse the cells. 

(5) Scrape all areas of the plate surface. Transfer all the cell lysate to a microcentrifuge tube 

and place the samples on ice. 

(6) Vortex the tube for 10-15 seconds. Centrifuge at top speed for 2 minutes at 4oC. 

(7) Transfer the supernatant to a fresh tube. For measure the protein concentration, use the 

5mg/ml BSA in RLB to prepare the standard curve. 

(8) The lysates may be assayed directly or stored at –80oC for at least 2 month. 
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β-galactosidase activity assay: 

(1) Transfer 20µl ~ 50µl RLB lysates to 96 well plate. 

(2) Add 50µl 2x Assay Buffer + 30~0 µl 1x RLB (Total volume in the well will be 100µl) to 

each well. Mix the solution by pipetting. 

(3) Incubate the plate at 37oC for 60 minutes. 

(4) Terminate the reaction by adding 150µl stop solution (1M Na2CO3). 

(5) Read the absorbance at ~420nm of each sample by plate reader. (Use 405nm filter) 

2x β-gal Assay Buffer (stored at -20oC):  

200mM Sodum Phsphate Buffer (pH 7.3); 2mM MgCl2; 100mM β-ME; 1.33mg/ml ONPG 

For preparation of 10ml: 

2.22ml of 6mg/ml ONPG in 200mM Sodum Phsphate Buffer (pH 7.3) 

0.02ml of 1M MgCl2 

0.07ml β-ME 

7.7ml 200mM Sodum Phsphate Buffer (pH 7.3) 

 

Luciferase activity assay 

(1) Pre-equilibrate the Bright-Glo Luciferase Assay Buffer (Promega, Cat.# E2620, stored at 

-70oC) by placing the tube in a water bath at room temperature. 

(2) Pre-warm the luminometer at Dr. Cole’s lab. 

(3) Add 100µl RLB lysate to 96-well assay plate (Corning, Cat.# 3603).  

(4) Add 100µl Bright-Glo Luciferase Assay Buffer to each well.  

(5) Take the plate immediately to Dr. Cole’lab for measuring the luminescence value (try to 

finish reading in 5 minutes although the luminescence should be stable in half hour.) 

Starting reading time: 1~5 seconds 

P-injection: off 

M-injection: off 
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Gelatinase Assay 

Solutions: 
2.5% Triton X-100: 
Slowly add 12.5ml Triton X-100 into 500ml ddH2O with constant stirring. 
 
Tris Reaction Buffer: 
50mM Tris-HCl (pH7.6), 200mM NaCl, 1µM ZnCl2, 5mM CaCl2 
500ml Solution:  
25ml 1M Tris-HCl (pH7.6) + 20ml 5M NaCl + 50µl 10mM ZnCl2 + 2.5ml 1M CaCl2 
Mix in 452.5ml ddH2O 
 
Glycine Reaction Buffer: 
0.1M Glycine/NaOH (pH 8.3)  (Glycine M.W.: 75.07) 
3.754g  Glycine in 500ml ddH2O  Adjust pH to 8.3 by 10N NaOH. 
 
10% Gelatin Gel: 
 Separating gel:                   5ml                              10ml 
30% Acrylamide (29:1)             1.67ml                           3.33ml 
1.5M Tris (8.8)                    1.25ml                           2.5ml 
1% Gelatin                       0.5ml                              1ml 
10% SDS                         50µl                             100µl 
10%APS (w/v)                     25µl                             50µl 
TEMED                          2.5µl                              5µl 
Sterile ddH2O                    1.51ml                            3.02ml 
Stacking  gel:    Same as normal SDS-PAGE stacking gel. 
 
1% Gelatin: (From Sigma Company, on shelf) 
Weigh 0.4g Gelatin  Pour gelatin powder into ~20ml ddH2O (in a 50ml beaker)  Swirl beaker 
very gently  Microwave for 10 sec.  Take beaker out, swirl gently  Microwave 5sec, Take 
out, Microwave 5 sec… until solution is clear. No boiling!!  Pour the solution into a 50ml 
conical tube  Adjust final volume to 40ml. 
 
Destaining Solution: 
40% Methanol; 10% Acetic Acid 
400ml methanol + 100ml acetic acid (Done in the hood)  Add water to 1000ml (Use bottle’s 
scale)  Mix solution well. 
 
Coomassie Blue Staining buffer: 
0.2% Coomassie Blue R250; 40% Methanol; 10% Acetic Acid. 
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Procedure: 
Seed ~500,000 cells on 60mm dish 

↓ 
Grow cells to 70%-80% confluency in regular culture media 

↓ 
Change to serum-free media or OPTI-MEM. Culture cells at 37oC for 24 hours 

↓ 
Load 35µl conditioned media (with 10X SDS loading buffer no β-ME) to 10%Acryl 

(0.1%gelatin) SDS-PAGE gel 
↓ 

Electrophoresis at 200 V, 50 min in pre-cold (4oC) 1X SDS Running buffer 
↓ 

Rinse gel by ddH2O briefly, 3 x 1min 
↓ 

Rinse by 40ml 2.5%Triton, 2 x 30min (RT) 
↓ 

Deplete Triton solution. Rinse gel by ddH2O briefly, 3 x 1min 
↓ 

Add in 40ml Tris or Glycine reaction buffer. Wrap the container with plastic wrap (prevent 
evaporation) 

↓ 
Incubate at 37oC for 24 hours 

↓ 
Stain gel by Coomassie–blue staining solution, 2 hours 

↓ 
Destain gel by Destaining solution, 1hour.  

↓ 
Store gel in water. 

 
 

Preparation of conditioned media: 
1ml of serum-free culture media  14,000 rpm x 1 min at 4oC  Transfer supernatant to another 
tube  Stored at -80oC. 
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Prepare Nuclear Extract 
Nuclear Extract Kit from Active Motif Cat. No. 40010  

 
Prepare prechilled solutions: 
PBS/Phosphatase inhibitors: (8ml for 1 dish) 
6.8ml ddH2O + 0.8ml 10xPBS +0.4 ml Phosphatase inhibitor (stored at 4oC, warm up in 50oC 
for 10 min to make solution clear) 
1X Hypotonic Buffer: (500µl for 1 dish) 
450µl H2O + 50µl 10 x Hyptonic buffer (stored at 4oC) 
Complete Lysis Buffer: (50µl for 1 dish) 
For 100µl buffer: 89µl Lysis Buffer AM1 (4oC) + 10µl 10mM DTT (-20 oC) + 1.0 µl protease 
inhibitor cocktail (-20 oC) 
 
Procedures: 
1. Wash cells (100mm dish of confluent) with 5 ml ice-cold PBS/Phosphatase Inhibitors. 
Aspirate solution out and add 3 ml ice-cold PBS/Phosphatase Inhibitors. 
 
2. Remove cells from dish by gently scraping with cell lifter. Transfer cells to a pre-chilled 15 ml 
conical tube. Centrifuge cell suspension for 5 minutes at 500 rpm at 4ºC. 
 
4. Discard supernatant. Gently resuspend cells in 500 µl 1X Hypotonic Buffer by pipetting up 
and down several times. Transfer to a pre-chilled 1.5ml tube.  
 
5. Incubate for 15 minutes on ice. 
 
6. Add 25 µl Detergent (4oC) and vortex 10 seconds at highest setting. 
 
7. Centrifuge suspension for 30 seconds at 14,000 x g at 4ºC. 
 
8. Transfer supernatant (cytoplasmic fraction) into a pre-chilled tube. Use the pellet for nuclear 
fraction collection. 
 
9. Resuspend nuclear pellet in 50 µl Complete Lysis Buffer by pipetting up and down. Vortex 10 
seconds at highest setting. 
 
10. Incubate suspension for 30 minutes on ice on a rocking platform set at 150 rpm. (put the tube 
in a box full of ice, agitate at 4oC) 
 
11. Vortex 30 seconds at highest setting. Centrifuge for 10 minutes at 14,000 x g (13,000 rpm) at 
4ºC. Transfer supernatant (nuclear fraction) into a pre-chilled microcentrifuge tube. 
 
13. Aliquot (10µl each tube) and store at –80ºC. Avoid freeze/thaw cycles. 
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DIG Shift Assay 

(DIG Gel Shift Kit, Roche Applied Science, Cat. No. 3 353 591) 

Recipe for solutions: 

20xSSC:  (1L) 

(3M NaCl; 0.3 M Na-Citrate, PH 7.0) 

 Dissolve 175.3g of NaCl and 88.2g of sodium citrate in 800ml of distilled H2O. 

 Adjust the pH to 7.0 with a few drops of 1M HCl. 

 Adjust the volume to 1L with additional distilled H2O. 

 Sterilize by autoclaving. 

 
10x TBE:  (1L) 

108g Tris base + 55g Boric acid + 9.4g EDTA (or 40ml 0.5 M EDTA 8.0) 

 
TEN buffer: (30ml) 

10mM Tris, 1mM EDTA, 0.1M NaCl, PH 8.0 

29ml ddH2O + 300µl 1M Tris (8.0) + 600µl 5M NaCl + 60µl 0.5M EDTA (8.0)   

 
0.5 M EDTA: (200ml) 

29.23g EDTA dissolve in ~200ml H2O. Adjust PH to 8.0 by NaOH.  

 
Maleic Acid Buffer: (1L) 

0.1M Maleic Acid, 0.15M NaCl, PH 7.5 (maleic acid pKa1=1~2; pKa2=6.07) 

 Dissolve 11.61g Maleic Acid and 30ml 5M NaCl in 800ml of distilled H2O. 

 Adjust the pH to 7.5 with more than 6g solid NaOH. 

 Adjust the volume to 1L with additional distilled H2O. 

 Sterilize by autoclaving. 

 
10x Detection Buffer:  (200ml) 

1M Tris-HCl, 1M NaCl, pH 9.5  

24.23g Tris + 40ml 5M NaCl +~200ml H2O Adjust pH to 9.5 by 12N HCl  autoclaving. 
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Washing Buffer:  

Maleic Acid Buffer with 0.3% (v/v) Tween-20. 

(Add Tween-20 to previously sterilized solutions) 

 
10x Blocking solution: 

Dissolve Blocking reagent (bottle 12) 10% (w/v) in Maleic acid buffer under constantly stirring 

on a heating block (65oC).  

Autoclave  Aliquot solution (15ml)  Store at -20oC (same refrigerator to store the restriction 

enzymes).  Thawed solutions can be stored at 4oC for 4 weeks if keep sterile. 

For 1x Blocking solution: dilute 10x solution in Maleic acid buffer. 

 
4-6% native PAGE gel: (For two gels, 3ml 6% at bottom, 4% fill up) 

6% (7ml)    4% (5ml)  

Sterile ddH2O       4.87ml     3.79ml 

30% Acrylamide (29:1)     1.4ml     0.667ml 

10X TBE        0.35ml     0.25ml 

50% Glycerol       0.35ml     0.25ml 

10%APS (w/v)       52.5µl     37.5µl 

TEMED         3.5µl     2.5µl 

 
5x Binding Buffer: 

100mM Hepes, pH 7.6, 5mM EDTA, 50mM (NH4)2SO4, 5mM DTT, 1% Tween-20, 150mM KCl 

40ml solution: 

Sterile ddH2O, 25.2 ml + 0.26g (NH4)2SO4 + 0.4ml Tween-20 + 0.4ml 0.5M EDTA (8.0) + 8ml 

0.5M Hepes/KOH (pH 7.6) + 6ml 1M KCl 

Prepare 1ml aliquots.   

Add 5µl 1M DTT in each tube to a final concentration of 5mM. 
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Annealing oligonucleotides 

1. Dissolve DNA: Briefly centrifuge to spin down the lyophilized DNA powders  

Dissolve DNA in ddH2O (final concentration around 1µg/µl). If original cap doesn’t have 

the black ring inside of it, change to another sterilized cap in the beaker)  Finger 

tapping to mix, Room temperature for 10 min  Vortex 10 sec, short spin.  

2. Measure the concentration: If the value of µg/OD260 is not provided, use 33µg/OD260. 

3. Anneal DNA:  Mix equal amount of both complementary ssDNA together in TEN buffer. 

95oC, 10 min  slowly cool down to 25oC (in 45 mins)  (PCR program “RAMP95”) 

 

  

DIG labeling 

1. For each reaction, add 100ng ds oligonucleotide and sterile double distilled water to a 

final volume of 10µl to a reaction tube. (use vial 6 to do control reaction) 

2. Add the following on ice: 

 

 

 

 

 

3. Mix and spin briefly. 

4. Incubate at 37oC for 15 min, then place on ice. 

5. Stop the reaction by adding 2µl 0.2M EDTA (pH 8.0). 

6. Add 3µl double dist. Water to a final volume of 25ml. (Final concentration: 4ng/µl) 
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DIG shift assay 

1. Perform DNA shift assay on ice (total volume: 15ul). Reaction at RT for 15min 

2. Put tubes back on ice and add 3.75ul 5x loading buffer (w/o dye). 

3. During reaction time, pre-run the 4-6% PAGE gel in 0.5x TBE (stored in 4oC) for 150V, 

10~15 min.  After pre-run, use plastic pipette to clean wells. 

4. Load samples to the gel. Run gel at 150V for 45 min in 0.5X TBE. 

5. Electroblotting  (nylon positive-charged membrane, 8.5cm x 7.5cm) 400mA for 30 min. 

(Transferring buffer: 0.5x TBE) 

6. Air-Dry membrane between 2~3 layers of filter paper at Room temperature for more than 

30 min (can leave overnight). 

7. UV-linking  by Stratalinker at 120mJ (autolink)  

8. Rinse membrane in Washing buffer for 1~5 min. Prepare 1x Blocking buffer. 

9. Block membrane in 20ml 1x Blocking buffer at RT for 30 min. 

10. Change to 7.5 ml Antibody solution (anti-DIG-AP 1:7,500 dilution in 1x Blocking buffer), 

RT agitation for 30min. 

11. Wash membrane by 20ml washing buffer 15min x 2 times. 

12. Equilibrate membrane in 20ml 1x Detection buffer for 3~5 min. 

13. Add 1ml reaction solution (Dilute substrate 1:100 in Detection buffer) onto membrane. 

Cover membrane immediately with plastic wrap. RT, 5min. (keep surface flat.) 

14. Take the membrane out. Put it on another clean plastic membrane. Wrap the membrane. 

15. For CSPD substrate, incubate membrane at 37oC for 10 min to increase the intensity. For 

CDP-Star, skip this step. 

16. Expose to X-ray film for 20min. Develop the film. 
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Deglycosylation Assay 

(Using Enzymatic Protein Deglycosylation Kit, Sigma # E-DEGLY) 

 

(1) Lyse the cells in the lysis buffer with 1% TX-100 (20mM Tris-HCl, pH 8.0; 150mM NaCl).  

Make the final concentration of lysate to be more than 1.0 µg/µl. 

(2) Add 8µl 5x Reaction Buffer and 2µl of Denaturation Solution. Mix gently. 

(3) Prepare the master solution for following reagent: 

 Sterile ddH2O:        3.6 µl 

 15% TX-100:          0.4 µl 

 PNGase F:     0.4 µl 

 O-Glycosidase:    0.4 µl 

 Neuraminidase:   0.4 µl 

 Galactosidase:    0.4 µl 

 Acetylglucosaminidase: 0.4 µl 

 Aliquot 6 µl of mixture solution to each reaction sample.  Mix gently. 

(4) Incubate for 72 hours (3 days) at 37oC 

(5) Regular western blot analysis. 
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Generation of pENTR-Gene Constructs 

 
1. Design the primers for cloning into the pENTR/D-TOPO vector 
 
2. PCR amplification of the gene of interest 

(Using the Fusion Polymerase from New England, stored at -20oC, the same floor as 
restriction enzymes) 

 Total reaction volume: 50ul 
Sterile ddH2O         31.5 ul 
5x HF Buffer             10ul 
2mM dNTP               5ul 
ENTR5 primer (25mM)     1ul 
ENTR3 primer (25mM)     1ul 
Template (10ng/ul)         1ul 
Fusion Polymerase        0.5ul 
 

Program: “Max PCR” 
98oC, 1min 30sec 
↓ 
98 oC, 10sec 
60 oC, 30sec 
72 oC, 45sec (15~30sec/kb extension) 
↓    30 cycles 
72 oC, 10min 

 
3. Gel purification of the amplified fragment by  QIAEX II Agarose Gel Extraction Kit 

(Qiagen) 
 

4. Measure the DNA concentration of the purified DNA fragment 
 
5. TOPO Cloning Reaction 
 The Kit is stored at  -20oC, second floor from bottom. 
 Total volume: 6ul 
 PCR product (diluted to 10ng/ul)      1ul 
 Salt solution                      1ul 
 TOPO vector                  1ul 
 Sterile ddH2O                3ul 
 Room temperature incubation: 15min 
 
6. Put back to ice. Take 1ul to transform the One-Shot Topp10 competent cells (stored at 

-80oC) (Use half amount of the competent cells, heat-shock 30sec) 
 
7. Plate all transformed cell suspension to Kanamycin plate (125ul of 20mg/ml 

Kanamycin per plate) 
 
8. For mini-prep, culture in LB with Kanamycin 50ug/ml. (5ul stock solution in 2ml). 

37oC 200~250rpm for 16 hours. 
 
9. Sequencing primers for pENTR plasmids (M13 Forward and M13 Reverse primers. 
 
10. Alternative way to clone target genes into pENTR vector:   
pENTR-Pro digested by Not I and EcoR I Generate pENTR/Not I + EcoR I 
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Generation of pENTR-shRNA Constructs 
 
1. Design and synthesize complementary DNA oligos containing the overhangs from IDT 

company. (Use the RNAi Designer software on the website www.invitrogen.com/rani ) 
 
2. Dissolve the lyophilized oligos in appropriate amount of sterile ddH2O to a final 

concentration of 200uM. (The quantity accuracy of the oligo synthesized from IDT is 
good enough to skip the step of measuring DNA concentration.) 

*** Annealing at concentration lower than 50uM can significantly reduce the efficiency. Note 
that the annealing step is not 100% efficient. 

Total reaction volume: 20ul 
Top strand oligo (200uM)          5 ul 
Bottom strand oligo (200uM)       5 ul  
10X Oligo Annealing Buffer     2 ul 
DNAse/RNase free Water         8 ul 
 
3. Incubate the reaction at 95 oC for 4 minutes. (Use the PCR machine)  
 
4. Remove the tube to your laboratory bench and let the reaction cool down to the room 

temperature. (About 15 minutes) Short spin. (Final concentration of the annealed ds 
Oligo is 50uM) 

 
5. Add 1ul of 50uM ds oligo into 99ul DNAse/RNase free Water. (diluted to 500nM). And 

dilute the 500nM ds Oligo 100-fold into 1x Anealing Buffer. (Final conc. is 5nM): Store 
the 5nM ds oligo on ice!! 

500nM ds Oligo                        1ul 
10x Oligo Annealing Buffer                  10ul 
DNAse/RNase free Water                    89ul 
 
6. Ligation reaction: (Thaw the reagent on ice) 
Total reaction volume: 10ul 
5x Ligation Buffer                      2 ul 
pENTR/H1/TO (0.75ng/ul)          1 ul  
ds oligo (5nM)                    2.5 ul 
DNAse/RNase free Water             4 ul 
T4 DNA Ligase (1U/ul)          0.5 ul 
Mix reaction well by pipetting up and down. (Do not vortex!!) Incubate for 5 minutes at 

room temperature for 5 minutes. 
 
7. Put tube on ice. Take 1ul to transform the One-Shot Topp10 competent cells (stored at 

-80oC) (Use half amount of the competent cells, heat-shock 30sec) 
 
8. Mini-prep digested by BamH I to check the insert. Sequencing primers for pENTR 

plasmids (H1 Forward and M13 Reverse). 

http://www.invitrogen.com/rani
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Generation of pLenti-DEST vector by LR recombination 

 
**Miniprep DNA is ready to be performed for the LR recombination reaction. But correct 
estimation of DNA concentration is required. 
**Thaw LR Clonase II enzyme mix from -20oC on ice 
 
1. Add following components in 0.5 ml microcentrifuge tubes and mix. 
pENTR mini-prep (50-150ng/reaction) :   usually 0.5 ul is good for the reaction 
pLenti vector  (150ng/ul) :                                         1ul 
(pLenti4/TO/V5-DEST or pLenti4/BLOCKiT-DEST)    
TE buffer (pH8.0):                                                  6.5ul 
 
2. Vortex the LR Clonase II enzyme mix briefly twice (2 seconds each time). 
 
3. Add 2ul of  LR Clonase II enzyme mix. Mix well by pipetting up and down. (Return 

the Clonase mix to -20oC immediately after use) 
 
4. Incubate the reaction at 25oC for more than 2 hours (PCR machine, Program “LR25”) 
 
5. Add 1ul of the Proteinase K solution to each reaction. Incubate for 10 minutes at 37oC. 
 
6. Put back to ice. Take 1.25 ul to transform the One-Shot Stbl3 competent cells (stored at 

-80oC) (Use half amount of the competent cells, heat-shock 30sec) 
 

7. Plate all transformed cell suspension to Ampicilin plate (200ul of 20mg/ml Ampicilin 
per plate) 

 
8. For mini-prep, culture in LB with Ampicilin 100ug/ml. (10ul stock solution in 2ml). 

37oC 200~250rpm for 20 hours. 
 
9. Sequencing primers for pLenti plasmids 
pLenti4/TO/V5-DEST:   pCMV Forward or V5 Reverse primers. 
pLenti4/BLOCKiT-DEST: H1 Forward or V5 Reverse primers.  
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Producing Lentivirus in 293FT Cells 

293FT Culture media:   
D-MEM (HG)/ 10% FBS / 0.1mM NEAA/ 2mM L-Gln/ 1mM Sodium Pyruvate  
with 500ug/ml G418 (100ul 50mg/ml stock in 10ml media)   
 
About 3 x 107 cells when cells are grown confluent. 
Passage: 3x106 cells per T75 flask, 3 days later, ready for next round experiment. 
(One T75 flask of confluent 293FT cells is enough for two transfections.) 
Do not over grow the cells! 
Do not use cells which have been cultured more than 20 passages! 
 
Procedure: 

(1) Add 1.5ml OPTI-MEM media to four 5ml (75x12mm) tubes. 
(2) Add appropriate amount of DNA or Lipofectamine 2000 into the OPTI media 
3ug of pLenti-based DNA + 9ug of the ViraPower Packaging Mix in 1.5 ml OPTI 
36ul of Lipofectamine 2000 in 1.5ml OPTI, mix gently and incubate for 5min at R.T. 
(3) During the 5minute incubation time, Wash the 293FT cells with PBS once. 
(4) Add 1.3ml Trypsin/EDTA to trypsinize cells. 
(5) Combine the diluted DNA and Lipofectamine solutions together. Incubate at room 

temperature for 20 minutes. 
(6) Stop trypsinization by adding regular culture media. Spin down the cells. 
(7) Resuspend cells in 10ml regular media. Count cell number (dilute 3 times) 
(8) Prepare 10~11ml of 293FT cell suspension (2x106 cells/ml, 5ml total will be 1x 107) 
(9) When DNA-lipid 20 minute incubation is over, add the 3ml mixture to a 100mm dish 

containing 5ml fresh culture medium. (Do not include antibiotics!)  
(10) Add 5ml of the prepared 293FT cell suspension to the plate. Mix gently by rocking the 

plate back and forth several times 
(11) Incubate the cells overnight at 37oC. (usually 18 hours) 
(12) The next day. Change the media with 10ml fresh culture media. 
(13) Incubate the cells at 37oC for 48~72 hours. 
(14) Collect the virus-containing media into 15ml sterile tubes and centrifuge at 3000 rpm for 5 

minutes at 4oC (Autoclaving room) 
(15) Aliquot the supernatant into 2ml red-cap-tubes (1ml/tube) (the same shelf as 10xPBS for 

culture). Store the viral stocks at -80oC.
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Titering the Lentiviral Stock Notes 

 
** Viral titers can decrease as much as 10% with each freeze/thaw cycle. So avoid multiple 
freeze/thaw cycles. 
 
** All reagent stock aliquots are stored at -20oC (same refrigerator as restriction enzymes, the 
second floor from bottom) 
Zeocin (100mg/ml): light sensitive 
Blasticidine (10mg/ml): After thawed, store at 4oC (tissue culture refrigerator, bottom floor, 
good for 2 weeks, label the tube with date after thawed.) 
Polybrene (hexadimethrine bromide, 6mg/ml): After thawed, store at 4oC (tissue culture 
refrigerator, bottom floor, good for 2 weeks, label the tube with date after thawed.) 
 
** For Zeocin selection, make sure cells are not greater than 50% confluent. 
 
 
Drug Concentration for cell selection: 
 
 Zeo Conc. Vol. of Stock  Blast Conc. Vol. of Stock 
HEK-293 100ug/ml 5ul for 5ml 15 ug/ml 7.5ul for 5ml 
MDA-231 100ug/ml 5ul for 5ml 15 ug/ml 7.5ul for 5ml 
MDA-435 100ug/ml 5ul for 5ml 15 ug/ml 7.5ul for 5ml 
DU-145 100ug/ml 5ul for 5ml 15 ug/ml 7.5ul for 5ml 
PC-3 50ug/ml 2.5ul for 5ml 20 ug/ml 10ul for 5ml 
A549     
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Generating a ViraPower T-REX Host Cell Line 
 

(1) Plate cells into a 100mm dish in complete growth media as appropriate (~50% confluency). 

(2) On the day of transduction (Day 1), thaw the Lenti6/TR lentiviral stock and dilute (if 

necessary) the appropriate amount of virus into fresh complete medium (If single colony 

picking is wanted, use 10ul of virus; otherwise, use all 1ml virus solution.) Keep the total 

volume of medium containing virus as low as possible to maximize transduction efficiency 

(5ml is good enough for 100mm dish culture). DO NOT vortex. 

(3) Remove the culture medium from the cells. Mix the medium containing virus gently by 

pipetting and add to the cells. 

(4) Add 5ul of Polybrene stock solution to a final concentration of 6 µg/ml (1:1000 dilution). 

Swirl the plate gently to mix. Incubate at 37°C overnight. 

(5) The following day (Day 2), remove the medium containing virus and replace with fresh, 

complete culture medium. 

(6) The following day (Day 3), remove the medium and replace with fresh, complete medium 

containing the appropriate amount of Blasticidin to select for stably transduced cells. 

(7) Replace medium with fresh medium containing Blasticidin every 2-3 days until 

Blasticidin-resistant colonies can be identified (generally 10-12 days after selection). 

(8) Note: Transducing cells with Lenti6/TR lentivirus at a high MOI should result in most of 

the cells being Blasticidin-resistant. In this case, you may not be able to see distinct 

Blasticidin-resistant colonies when performing stable selection. You may also not see many 

non-transduced cells (i.e. dead cells). 

(9) Pick at least 10 Blasticidin-resistant colonies and expand each clone to assay for Tet 

induction abilities. Alternatively, you may pool the heterogeneous population of 

Blasticidin-resistant cells. 
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Generating a pLenti-GENE Cell Line 

 
(1) Plate cells into a 35mm dish in complete growth media as appropriate (~50% confluency). 

(2) On the day of transduction (Day 1), thaw the pLenti4/TO/GENE or pLenti4/BlockiT/RNAi 

lentiviral stock and dilute (if necessary) the appropriate amount of virus into fresh complete 

medium (1ml virus solution + 1ml culture media + 2µl Polybrene). Keep the total volume 

of medium containing virus as low as possible to maximize transduction efficiency (2.5ml 

is good enough for 60 mm dish culture or T25). DO NOT vortex. 

(3) Remove the culture medium from the cells. Mix the medium containing virus gently by 

pipetting and add to the cells. 

(4) Add 2.5ul of Polybrene stock solution to a final concentration of 6 µg/ml (1:1000 dilution). 

Swirl the plate gently to mix. Incubate at 37°C overnight. 

(5) The following day (Day 2), remove the medium containing virus and replace with fresh, 

complete culture medium with Blasticidine. 

(6) The following day (Day 3), Trypsinize all cells in 0.2 ml of Typsin/EDTA and stop the 

digestion by 1.5ml of culture media. Add 1ml of cell suspension to a 100mm dish (or T75) 

containing 9ml of fresh media with appropriate Zeocin. (1:9 dilution seeding) 

(7) Replace medium with fresh medium containing Zeocin every 2-3 days until 

Zeocin-resistant colonies can be identified (generally 10-12 days after selection). 

(8) Pick Zeocin-resistant colonies and expand each clone to assay for Tet-induced expression 

of target genes. Alternatively, you may pool the heterogeneous population of 

Zeocin-resistant cells. 
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Selection of single clone cells 

 

(1) When the visible cell colonies are grown to 2-3mm diameter size, they are ready to be 

trypsinized and expanded. 

(2) Wash the cells with 10ml 1x PBS. 

(3) Apply 40ul of Trypsin/EDTA to digest the cell colony. Scratch and pipet at same time to get 

all cells detached from the dish. 

(4) Transfer all cells to 12-well plate containing 1ml fresh media. 

(5) Next day, Remove the culture media and change with media containing drug. 

(6) Culture cells in 37oC for about 7 days (change media every 2-3 days). 

(7) When the cells are reaching confluent. Wash with PBS and digested in 100ul of 

Trypsin/EDTA. Stop trypsinization by 1ml fresh media. Transfer the cell suspension to 6-well 

plate containing 2ml fresh media.   

(8) Next day, Change with media containing drug. 

(9) When cells are reaching confluent. Passage to T25 and perform further experiments. 
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