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NUCLEAR SPECTRA OF COMET 28P NEUJMIN 1
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ABSTRACT

We present visible and near-infrared spectra of the nucleus of comet 28P/Neujmin 1, obtained in 2001, 2002, and
2003, while it had no detectable coma. The spectra show no strong features in this wavelength range, which prevented
the identification of specific compounds on the surface of comet 28P. We found evidence for spectral variability, as our
2002 near-infrared spectrum has a significantly steeper slope than those obtained in 2001 and 2003. We compare the
spectra of 28P with published spectra of other comet nuclei, with primitive asteroids and with meteorites. At near-
infrared wavelengths, all the comet nuclei show spectra with “red”’ slopes and the 2002 spectrum of comet 28P is among
the reddest even when compared with Trojan asteroids. Three of the four properly observed Jupiter-family comets have
significantly redder spectral slopes in the near-infrared than the one Halley-type comet in this sample. We found rea-
sonably good matches among Trojan asteroids to the albedo and spectral shape of comet 28P. Such similarities are con-
sistent with an analogous formation and evolutionary environment for Trojan asteroids and Jupiter-family comets, as
proposed by Morbidelli and coworkers. One CI meteorite showed a partial fit to our 2003 near-infrared spectrum of
comet 28P; however, no close spectral matches to our target were found among chondritic meteorites.

Key words: comets: individual (28P) — infrared: solar system

1. INTRODUCTION

Jupiter-family comets are of particular interest for several rea-
sons. These comets are the most accessible by spacecraft; in fact,
four Jupiter-family comets are, or have been, targets of spacecraft
missions. Jupiter-family comets are also believed to be the pre-
cursors to some Earth-crossing asteroids, and possibly the parent
bodies of some meteorites (e.g., Campins & Swindle 1998). Be-
cause most Jupiter-family comets are relatively faint they have
not been studied in as much detail as Oort Cloud comets. On the
other hand, Jupiter-family comets present the best opportunities
to study directly the nuclear surfaces of comets. The character-
ization of cometary nuclear surfaces and their comparison with
those of related populations such as extinct comet candidates,
Centaurs, near-Earth asteroids (NEAs), trans-Neptunian objects
(TNOs), and Trojan asteroids is essential to understanding the
origin and evolution of small solar system bodies.

Direct observations of cometary nuclear surfaces are made dif-
ficult by gas and dust in the coma generally present when comets
are close to the Sun, and by the faintness of comet nuclei at large
heliocentric distances. A growing number of studies are over-
coming these challenges and yielding new information on the
albedos, sizes, reflectances, thermal inertias, and even compo-
sition (e.g., Abell et al. 2005; A’Hearn et al. 2005; Campins et al.
2006b; Fernandez et al. 2006; Lamy et al. 2004; Licandro et al.
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2003, 2006; Sunshine et al. 2006; and references therein). The
1-2.5 pum spectral region can be diagnostic of the surface compo-
sitions of comets and asteroids; however, spectroscopy of come-
tary nuclei in this region had not been achieved until very recently
(Licandro et al. 2003; Abell et al. 2005; Sunshine et al. 2006;
Campins et al. 2006b). We have continued our study of comet
nuclei in the near-infrared, and in this work we present visible and
near-infrared spectra of comet 28P Neujmin 1.

Comet 28P/Neujmin 1 is among the largest (10 km effective
radius) and least active of the Jupiter-family comets; it has an ef-
fective active area equivalent to only 0.1% of'its surface (Campins
et al. 1987; Campins & Fernandez 2000). Therefore, it offers a
good opportunity to characterize the nuclear surface of a comet
using Earth-based telescopes. Unlike most Jupiter-family comets,
this comet has a rather stable orbit that has remained nearly con-
stant due to avoidance of the perturbing influence of Jupiter. It
has a Tisserand parameter with respect to Jupiter of 2.166. The
Tisserand invariant is a constant of the motion in the restricted
three-body problem (with Jupiter). This parameter is often used
to differentiate dynamically between Jupiter-family comets (2 <
T < 3), most asteroids (7 > 3), and Halley-type comets (7' < 2)
(e.g., Carusi et al. 1987; Levison 1996). The brightness of this
comet along its orbit behaves essentially like that expected for an
asteroid (Marsden 1974; Tancredi et al. 2000; Ferrin 2005 ); how-
ever, near perihelion weak activity has been observed. In 1984
August, at 1.7 AU from the Sun and approximately 2 months
before perihelion there was no evidence for a dust coma but gas-
eous emissions from OH, CN, C,, and C; were detected (Campins
etal. 1987). By 1984 December, at 1.8 AU from the Sun, a clearly
detectable dust coma was observed (Birkett et al. 1987). Delahodde
etal. (2001) used extensive observations at a large range of helio-
centric distances and phase angles to refine the rotation period
(12.75 £ 0.03 hr) and determine a phase function.

2. OBSERVATIONS

We obtained near-infrared (1-2.5 pm) and visible spectra
of comet 28P. The observing geometry for these dates and the
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TABLE 1
OBSERVING GEOMETRY FOR 28P/NEUIMIN 1

R A Phase Angle
UT Date V' Magnitude (AU) (AU) (deg) Air Mass Instrument/ Telescope
2001 Apr 11.086.............. 19 5.73 4.74 1.7 1.52 DOLORES/TNG (visible)
2001 Jun 02.008 .............. 19 5.41 4.80 9.1 1.42 NICS/TNG (near-infrared)
2002 Apr 26.163 16 3.08 2.20 10.6 29 NICS/TNG (near-infrared)
2003 Aug 25.225 17 3.05 3.36 17.3 1.39 NICS/TNG (near-infrared)
2003 Nov 15. 151............ 17 3.69 291 10.8 1.05 ISIS/WHT (visible)

instruments used are presented in Table 1. Table 2 lists the de-
tails on the standard stars.

2.1. Near-Infrared Spectra

We obtained three low-resolution near-infrared spectra of
comet 28P in 2001 June, 2002 April, and 2003 August (Table 1).
We used the 3.56 m Telescopio Nazionale Galileo (TNG), with
the Near-Infrared Camera Spectrometer (NICS; see Baffa et al.
2001). All three nights were photometric and had stable seeing
conditions. Among the observing modes offered by the NICS in-
strument is a high-throughput, low-resolution spectroscopic mode
with a prism disperser (Oliva 2000; Rayner et al. 2003). This mode
yields a complete 0.8—2.4 um spectrum in a single exposure. A
1.5” width slit was used, corresponding to a spectral resolving
power of 34 and quasi-constant along the spectrum. The low reso-
lution, together with the high efficiency of the Amici prism (about
90% in this spectral range), allowed us to obtain spectra of faint
objects like this comet nucleus, and with the advantage of having
the whole spectral range measured simultaneously.

The object was identified at the predicted position and with the
expected motion and brightness. The guider images did not show
any evidence of coma activity at the time. We were unable to ob-
tain imaging frames for quantitative limits on possible coma con-
tribution to the flux. The slit was oriented in the parallactic angle
(the position angle for which the slit is perpendicular to the hori-
zon) to avoid problems with differential atmospheric refraction,
and the tracking was at the comet’s motion. The acquisition con-
sisted of a series of images in one position (position A) of the slit
and then offsetting the telescope by 10” in the direction of the slit
(position B). This process was repeated and a number of ABBA
cycles were acquired. The total exposure times for each of the
three dates were 3240, 4080, and 720 s.

The reduction and calibration of all the near-infrared spectra
was done as described in Licandro et al. (2006). Flat-field images
and wavelength calibrations were obtained periodically through-

TABLE 2
SoLAR ANALOGS FOR 28P/NEuIMIN 1

UT Date Star Air Mass ¥ Magnitude
2001 Apr 11 HD 30246 1.71 8.3
2001 Jun 2...... P117D 1.06 and 1.33 13.5
2001 Jun 2..... P330E 1.27 13.0
2002 Apr 26... Land 102-1081 1.17 9.9
2002 Apr 26... Land 110-361 1.59 124
2002 Apr 26 Land 112-1333 1.62 10.0
2003 Aug 25 Land 107-998 1.26 10.4
2003 Aug 25.. Land 112-1333 1.14 10.0
2003 Aug 25.. Land 115-271 1.48 9.7
2003 Aug 25.. Land 93-101 1.19 9.7
2003 Nov 15 Land 98-978 1.15 10.5

out the observations. To correct for telluric absorption and to ob-
tain the relative reflectance, the standard stars P117D and P330E
(Colina & Bohlin 1997) and Landolt SA 93-101, SA 102-1081,
SA 107-998, SA 110-361, SA 112-1333, and SA 115-271 (Landolt
1992) were observed. These stars have colors very similar to those
of the Sun (for example, the V' — I colors of these stars are uni-
form to within 2%; Landolt 1992) and were observed during the
same nights and at a similar air mass as the comet (Table 2). The
Landolt stars and the solar analog P330E (Colina & Bohlin 1997)
showed similar spectra in the near-infrared region; therefore, we
used the Landolt stars as local solar analogs. The flat-fielded and
wavelength-calibrated spectral frames were shifted to align and
stacked to provide combined frames from which the spectra were
extracted. In order to obtain the relative reflectances for all three
dates, plotted in Figure 1, the near-infrared spectra of the comet
were divided by the mean spectrum of the solar analog stars and
normalized at 1.6 pym. The 2001 and 2003 spectra were nor-
malized to unity at 1.6 pm, while the 2002 spectrum was offset
and normalized to a reflectance of 2.0 at 1.6 pm for clarity (this is
a vertical offset not a multiplicative one, i.e., this shift does not
change the slope). The random errors for these spectra are indi-
cated by the point-to-point variability in each spectrum and for
clarity we do not show the error bars in Figure 1. Telluric con-
ditions can vary between the comet spectra and the standard star
spectra, introducing false spectral features, particularly in the two
deepest bands near 1.35—1.45 ym and 1.80-2.0 pm. The spectral
points in these two telluric bands are not shown in Figure 1 and are
not used in the analysis of the spectra. In the near-infrared, we see
no evidence for spectral structure greater than the uncertainties. In
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Fic. 1.—Three near-infrared reflectance spectra of comet 28P obtained in 2001
(asterisks), 2002 (triangles), and 2003 (circles), normalized at 1.60 ymto 1.0 (2001
and 2003) and to 2.0 (2002); this is a vertical offset, not a multiplicative one, i.e., this
shift does not change the slope. The random errors for these spectra are indicated by
the point-to-point variability in each spectrum.
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TABLE 3

SPECTRAL SLOPES FOR 28P AND OTHER COMET NUCLEI

Visible Spectral Slope S’
Normalized at 0.55 ym

NIR Spectral Slope S’
Normalized at 1.6 um

Comet (% per 1000 A) (% per 1000 A) T
28P/Newjmin L......cccoovvucunee 103 £3 and 133 £ 2 29 +04and 53 £ 0.3 2.166
19P/Borrelly....... (Not observed) 7.7 +0.8° 2.568
124P/Mrkos ............... (Not observed) 3+ 1.0° 2.752
162P/Siding Spring.... 92+ 1.0 3.6 +0.3¢ 2.792
C/2001 OG0 vvreereerrrerran 93 +2° 2.1 402" 0.599

? Ty is the Tisserand parameter with respect to Jupiter.
® Estimated from the plots in Soderblom et al. (2004).

Vol.

134

¢ From Licandro et al. (2003).
4 From Campins et al. (2006b).

¢ Calculated from the ¥ — R in Abell et al. (2005).

f Estimated from the plot in Abell et al. (2005).

previous publications we have also normalized our near-infrared
spectra at 1.6 pym, and in order to properly compare the slopes of
our near-infrared spectra of 28P with other objects, the discussion
below also uses a normalization to unity reflectance at 1.6 um.
Two of the near-infrared spectra in Figure 1, those obtained in
2001 and 2003, are identical within the uncertainties (because of
this similarity and the higher S/N, we use only the 2003 spectrum)
in comparison with the spectra of related objects and in modeling
(§ 3). The 2002 spectrum has a significantly steeper slope. Note
that the continuum slope of a spectrum can be parameterized us-
ing the normalized reflectivity gradient, which is usually denoted
with S’ (in %/1000 A), and defined as S" = dS/d//S" (e.g., Jewitt
2002). Here S is the reflectivity (object flux density divided by
the flux density of the Sun at the same wavelength) and S” is the
mean value of the reflectivity in the wavelength range over which
dS/d . is computed. The gradient S’ is used to express the percent-
age change in the strength of the continuum per 1000 A. The use
of §’ facilitates comparisons with the spectral slopes of other ob-
jects; however, one must keep in mind that S’ only conveys the av-
erage slope of a spectrum that is not necessarily a straight line. The
slopes of the spectra from 0.8 to 2.4 ;ym and normalized at 1.6 ym
are S'= 2.9 + 0.4 for 2001 and 2003, significantly flatter than
the S’ = 5.3 £ 0.3 found for the 2002 spectrum. This slope dif-
ference does not appear to be a systematic artifact. Although slight
differences in the slope (~2% across the entire 0.8—2.4 ;sm region,
which translates to an S’ uncertainty of approximately 0.13) can
be attributed to systematic effects resulting from the centering of
the object on the slit and the seeing conditions (e.g., Cushing et al.
2004), this would not account for the observed difference. We have
also considered and rejected other possible systematic sources for
the slope change, including slit alignment, differential extinction,
and contamination from a background source. The 2002 spectrum
of the comet was obtained at a high air mass (which was necessary
because of its southern declination) and the standards were ob-
served at lower air masses ( Tables 1 and 2); however, this is not
the source of the steeper spectral slope. The extinction coefficients
throughout this wavelength range (i.e., in the J, H, and K atmo-
spheric windows) are very low and nearly constant with wave-
length (a detailed discussion of the extinction coefficients is given
in Tokunaga et al. 2002). We estimate that the uncertainty in the
spectral slope due to the air-mass difference is less than 5%. In
fact, in our extensive observations with this instrument we have
never observed a correlation between spectral slope and air mass
among standard stars, even at large air masses. Our estimates of
the uncertainty in the value of S’ includes contributions from small
variations in the slopes of our standard stars. Recently, Bohlin

(2007) indicated that G stars with matching visible spectra may
have near-infrared spectra that differ by 5%. However, this un-
certainty is avoided in our case by having used the same standard
(SA 112-1333) for the 2002 and 2003 observations. In summary,
the difference in slope between the 2002 and 2003 spectra is at
least 4 times greater than all the uncertainties combined.

In Table 3 the value of ' is given for 28P and for the other
comet nuclei observed in the near-infrared. The values for 124P
and 162P are from Licandro et al. (2003) and Campins et al.
(2006b), respectively. For comets 19P/Borrelly and C/2001
0G108, S’ was estimated from plots in Soderblom et al. (2004)
and Abell et al. (2005) (OG108).

2.2. Visible Spectra

Our target was observed in the visible spectral range on two
separate nights using two different telescopes at “El Roque de los
Muchachos” Observatory on La Palma (Canary Islands, Spain). On
UT 2001 April 11.086 a spectrum was obtained with DOLORES,
a camera and spectrometer for the visible permanently mounted in
the Nasmyth focus of the TNG, using the LR-R grism and the 1.0”
wide slit. Three 1200 s exposure spectra were obtained with cov-
ering the 0.5-0.91 um region and shifting the object 5” in the slit
direction to better correct the fringing; the total exposure time was
3600 s. On 2003 UT November 15.151, we observed with the
4.2 m William Herschel telescope (WHT) using the red arm of
the ISIS spectrograph with a 3" wide slit, covering the 0.52—
0.95 um spectral range. Three spectra of 500 s exposure time each
were obtained, shifting the object 5” in the slit direction between
exposures to correct the fringing. The three spectra of our target
obtained on each date, at different positions of the slit, were com-
pared in order to discard any possible problems such as background
objects and finally averaged. As in the near-infrared observations,
the slit was oriented in the parallactic angle and the tracking was at
the object’s proper motion.

Spectral data reduction was done using standard IRAF package
procedures. Images were overscan and bias corrected, and flat-
field corrected using lamp flats. The two-dimensional spectra were
extracted, the sky background was subtracted, and the resulting
spectrum collapsed to one dimension. The wavelength calibra-
tion was done using the neon and argon lamps. The solar analog
stars HD 30246 and Landolt 98—978 were also observed to cor-
rect for telluric absorption and to obtain the reflectance spectra of
the comet, as it was done in the near-infrared. The reduction of
this spectrum was done as described in de Ledn et al. (2004). The
wavelength-calibrated visible spectra of the comet were divided
by the solar analogs and binned to a spectral resolution of 240, the
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FiG. 2.—Two visible reflectance spectra of comet 28P obtained in 2001 ( plus
signs) and 2003 (circles), plotted normalized to 1.0 at 0.55 pm. These spectra
were binned to a spectral resolution of 240. The random errors are indicated by
the point-to-point variability in each spectrum.

final result is shown in Figure 2. The random errors are indicated
by the point-to-point variability in the figure. At visible wave-
lengths it is customary to normalize spectra at 0.55 pm. The slopes
of our two visible spectra of comet 28P, normalized at 0.55 um,
are §” =10.3 £+ 3.0 for 2001 and S§” = 13.3 £+ 2.0 for 2003
( Table 3). The systematic uncertainties in the visible spectra (from
the centering of the object on the slit and the seeing conditions) are
such that the slope differences between our two visible spectra of
comet 28P are marginal. Our two values for the visible spectral
slope are essentially the same as those calculated from broadband
color ratios by Delahodde et al. (2001), S’ = 9.1 £+ 1.9, and by
Jewitt & Meech (1988), S’ = 13 =& 4. The overlap between 0.8
and 0.9 pm in our visible and near-infrared spectra could be used
to combine them; however, given that they were not obtained
simultaneously and the indications of variability at both wave-
lengths, we chose not to combine them. Simultaneous and/or rota-
tionally resolved spectra in future apparitions would allow a more
meaningful combination of visible and near-infrared spectra.

3. ANALYSIS AND RESULTS

There are no strong spectral features in the wavelength range
covered, and this absence of spectral structure is better defined at
visible wavelengths by the lower observational uncertainties. A
paucity of deep absorption features is common among low-albedo
asteroids and the few comet nuclei observed in this spectral region
(e.g., Abell et al. 2005; Campins et al. 2003, 2006a; Emery &
Brown 2003; Licandro et al. 2002, 2003; Fernandez et al. 2004;
Soderblom et al. 2004; Sunshine et al. 2006). However, as we
discuss in § 3.6, the overall shape of these spectra can yield use-
ful constraints on the surface composition. In addition, the spec-
tral variability deserves attention.

3.1. Spectral Shape and Variability

Visible.—In the 0.5—0.9 pm region the slope and shape of our
two spectra are within the range found for D-type asteroids (e.g.,
Jewitt 2002; see also § 3.4). The 0.5-0.9 um slopes are also in
the middle of the range of those observed in the visible for comet
nuclei (e.g., Campins & Fernandez 2000). Although the slope
and shape differences between our two visible spectra are mar-
ginal (Table 3 and Fig. 2), there are other indications of spectral
variability in the visible and in the near-infrared. Results sugges-
tive of a slope change in this spectral region comes from the V, R,
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and / colors published by Delahodde et al. (2001). They report
V' — R colors that range from 0.424 £ 0.070 to 0.574 + 0.043,
and R — [ colors from 0.400 + 0.05 to 0.624 + 0.07. These au-
thors note the discrepancies, but explicitly refrain from proposing
a physical explanation for the R — I color changes, instead they
attribute them to intrinsic problems with the / filter, such as back-
ground fringing. These apparent changes in ¥, R, and / colors may
very well be real and simply another manifestation of the spectral
variability in this comet.

Near-Infrared —The difference between the slope of the 2002
near-infrared spectrum and those of the 2001 and 2003 spectra is
clear (Table 3 and Fig. 1) and consistent with the hints of spectral
variability at shorter wavelengths discussed above. This vari-
ability could be produced in three ways, rotational or seasonal
(orbital aspect) variations of the surface, and a variable coma con-
tribution; we consider these individually. (1) Rotational variability:
there is spectral evidence for rotational heterogeneity on the sur-
face of asteroids (e.g., Gaffey 1997; Rivkin et al. 2002; Campins
et al. 2006a) and Centaurs (e.g., Kern et al. 2000; Licandro &
Pinilla-Alonso 2005; Merlin et al. 2005). A search for color
changes at visible wavelengths through half of 28P’s rotational
phase (Delahodde et al. 2001) did not show detectable variations;
however, as mentioned, these authors did report unexplained
V' — R and R — I color variations. (2) Orbital aspect change: if
the obliquity of the rotation axis is sufficiently large, an object
can show significantly different aspects to an observer at differ-
ent points in the orbit. Although the orientation of the rotation
axis (and hence the aspect angle) of 28P is not defined, this comet
could have presented different hemispheres to the observer the
times it was observed. (3) Activity: although this comet is almost
never active (§ 1) and there was no detectable activity at the time
of the observations, activity below the spatial resolution of the
images cannot be ruled out. The color of the dust coma in at least
one comet, 10P/Tempel 2, has exhibited visible colors less red
than the nucleus (e.g., A’Hearn et al. 1989; the term “red” is com-
monly used to refer to spectra with increasing reflectance as a
function of wavelength). However, the two least-red near-infrared
spectra (in 2001 and 2003) are essentially identical, which argues
against an undetected dust coma explaining identical spectra in
this very low activity comet on two separate dates and at large
heliocentric distances (5.7 and 3.0 AU). Interestingly, according
to Beech & Gauer (2000) the active comet with the highest like-
lihood of suffering impacts from meter-sized objects while in the
main asteroid belt region is comet 28P. Such impacts could be re-
sponsible for sporadic activity in this comet not driven by solar ra-
diation. However, the frequency of the spectral changes does not
favor the impact option for explaining or observed variability.
More specifically, according to Beech & Gauer (2000) the time
interval between possible impacts of comet 28P with meter-sized
objects is of order 103 yr, yet we have at least two spectral changes
(one in the visible and one in the infrared) over an 18 yr period.

3.2. Comparison with Other Comets

Of the comets in Table 3, visible spectra are available only for
28P and 162P. The two visible spectra of 28P and that of 162P
are well characterized by their values of S’. Hence, we chose not
to make a graphical comparison of these three visible spectra.
On the other hand, the near-infrared spectra show a greater di-
versity. Two of our near-infrared spectra of 28P (2002 and 2003)
are plotted in Figure 3, along with the near-infrared spectra
of comets 19P/Borrelly, 124P/Mrkos, 162P/Siding Spring, and
C/2001 OGjpg (LONEOS; Soderblom et al. 2004, Licandro et al.
2003, Campins et al. 2006b, and Abell et al. 2005, respectively).
Each of these comet spectra is featureless within the noise and
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Fig. 3.—Our 2002 ( filled triangles) and 2003 (circles) near-infrared spectra of
comet 28P, plotted with the spectra of comets 19P/ Borrelly (squares), 124P/Mrkos
(crosses), and LONEOS OG108 (open triangles) and 162P/Siding Spring (dia-
monds) (Soderblom et al. 2004; Licandro et al. 2003; Abell et al. 2005; Campins
etal. 2006b), all normalized to 1.0 at 1.60 m and then offset by factors of 1.0 for
comparison purposes. This shift does not change the slope. The spectrum of 124P
was binned to a lower spectral resolution for clarity. The point-to-point variations
in the spectra are indicative of the uncertainty. The spectral slopes for these ob-
jects are listed in Table 3.

they have near-infrared slopes (in percent per 1000 A, normalized
at1.60 ym) S’ = 7.7,3.0, 3.6, and 2.1, respectively (Table 3). The
spectrum of 19P/Borrelly is very red, among the reddest observed
in the solar system. We note that this spectrum was obtained by the
Deep Space One mission and its reduction and calibration pre-
sented unique challenges (Soderblom et al. 2004). The steep slope
S’ = 5.3 for the 2002 spectrum of 28P is second only to that of
19P and significantly redder than those of the other four comets.
Why are the near-infrared spectra of 28P and 19P significantly
redder than those of the other comets? Is this indicative of the orig-
inal composition or is it evolutionary? In an attempt to resolve
these questions we look at the chemical and dynamical proper-
ties of these comets. Two compositionally different groups among
comets have been identified by A’Hearn et al. (1995), based on the
observed ratios of the CN, C,, and C5 to OH production rates. De-
pletions in C, and C5 have been observed in some, but not all,
Jupiter-family comets. Is there a manifestation of these two chem-
ical groups in the near-infrared spectra of the comet nuclei ob-
served? The chemical classification is available for three of the
comets in Table 3. Comet 19P is classified as depleted in C, and
C3, while 28P has a “typical” composition (A’Hearn et al. 1995).
C/2001 OG108 showed a “typical” composition (D. Schleicher
2006, personal communication), as expected for Oort Cloud com-
ets (A’Hearn et al. 1995). Since the two reddest comets in this
sample belong to the two chemical groups, it appears that a steep
near-infrared spectrum is not associated with only one of these
chemical groups (however, we remind the reader that the calibra-
tion of the spectrum of 19P is probably more uncertain than that
of the other comets in Table 3). What about dynamical charac-
teristics? We note that all but one of the comets in Table 3 are
Jupiter-family comets, the exception being C/2001 OG108, which
is a Halley-type comet with likely origin in the Oort cloud. In this
very limited sample, three of the four Jupiter-family comets
have significantly redder S’ values in the near-infrared than the
one Halley-type comet, and the larger uncertainty puts the value of
S’ for 124P within that for C/2001 OG108. We found no correla-
tion between the Tisserand parameter 7j and S’ (Table 3). A cor-
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Fic. 4—The 2002 (triangles) and 2003 (circles) near-infrared reflectance spec-
tra of comet 28P are plotted with the average spectra of three representative P-type
asteroids (squares) and three representative D-type asteroids (asterisks) (see text for
references). The spectra were normalized to 1.0 at 1.60 4m and offset by factors of
1.0 for clarity; this shift does not change the slope.

relation between the visible S’ (normalized at 0.55um) and the
near-infrared S’ (normalized at 1.6 um) is apparent among the
three relevant objects in Table 3. We emphasize that all these
considerations about comets are very preliminary, since our
sample is so limited, and they must be revisited as new objects
are observed.

3.3. Comparison with Spectra of Asteroids

Low-albedo “primitive” asteroids in the outer main belt as well
as in the Trojan clouds also have red spectra with little or no struc-
ture. By primitive asteroids we mean C, P, and D types in the
Tholen classification scheme (Tholen & Barucci 1989); some of
these primitive asteroids may be related to comets. In Figure 4
we compare our near-infrared spectra of comet 28P with the av-
erage spectra of three representative main-belt P-type asteroids
(65 Cybele, 76 Freia, and 476 Hedwig) and three representa-
tive main-belt D-type asteroids (336 Lacadiera, 368 Haidea,
and 773 Irmintraud; Zellner et al. 1985; Bell et al. 1988). Al-
though the slopes of our two visible spectra of 28P are close to
the average of D-type asteroids (S’ = 9.1 + 1.1; Fitzsimmons
etal. 1994), in the 0.8-2.4 um region the 2002 spectrum of 28P
is significantly redder than the P and D types plotted, which
have S’ values of 1.9 and 2.4 + 0.2, respectively. Our other two
near-infrared spectra of comet 28P (2001 and 2003) are the same,
within the uncertainties, as those of the asteroids. The D-type as-
teroid 944 Hidalgo, which also shows spectral variability in the
near-infrared (Campins et al. 2006a), is in a cometary orbit, and
dynamically it is considered the most likely asteroid to be of com-
etary origin.

Recently, Morbidelli et al. (2005) provided dynamical argu-
ments indicating that Trojan asteroids may have formed in more
distant regions and were subsequently captured into co-orbital
motion with Jupiter. In addition, escaped Trojans are considered
one possible source of Jupiter-family comets (e.g., Marzari et al.
2002). Since it is well established that the visible spectra of Trojans
are similar to those of inactive comet nuclei (e.g., Jewitt 2002 and
references therein), we concentrate on comparisons of near-infra-
red spectra. We compared our near-infrared spectrum with those of
14 Trojan asteroids observed at similar wavelengths by Emery &
Brown (2003). We found reasonable matches to our 2003 spectrum
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comet 28P, plotted with the Trojan asteroid 624 Hektor (/ine) from Emery & Brown
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malization shift does not change the slope.

among several of the Trojans. The closest Trojan asteroid spectrum
to our 2002 spectrum is that of asteroid 624 Hektor (Fig. 5), which
is the reddest of the Trojan asteroids observed so far at these wave-
lengths (Emery & Brown 2003); note that the slopes and overall
spectral shapes of these two objects are very similar. Interestingly,
the V-band geometric albedos ( p,) for 624 Hektor, 3% £ 1%
(Cruikshank 1977), and for comet 28P, 2.5% =+ 0.8% (Campins
& Fernandez 2000), are essentially identical. The spectral and al-
bedo similarities may be indicative of analogous compositions
(§ 3.6). At the same time, the spectral diversity among Trojan
asteroids is also comparable with that seen among the few comet
nuclei observed so far in the near-infrared (Campins et al. 2006b).
In other words, among Trojan asteroids we find reasonable matches
to individual comet spectra, as well as to the spectral range ob-
served so far among comet nuclei. Such similarities are consis-
tent with analogous formation and evolutionary environments
for both populations, as proposed by Morbidelli et al. (2005).
One caveat to be considered is the size difference between the
Jupiter-family comets and the Trojan asteroids used in this com-
parison, i.e., those for which near-infrared spectra have been ob-
tained. The sample of Jupiter-family comets have radii of 10 km
or less, while this sample of Trojan asteroids have radii greater
than 100 km.

3.4. Comparison with Centaurs and Trans-Neptunian Objects

Comets are believed to be dynamically related to Centaurs and
TNOs, and near-infrared spectra of these objects are increas-
ingly available (see review by Barucci et al. 2004 and references
therein). Some of these objects have featureless spectra in the
near-infrared but others do not. The presence of strong absorption
bands and the range of observed spectral characteristics suggest
that many of the Centaurs and TNOs have surface compositions
different from those found among comet nuclei (e.g., Cruikshank
etal. 1998; Jewitt 2002; Licandro et al. 2001, 2002, 2006; Barucci
etal. 2004). Possible processes that would explain such compo-
sitional differences are discussed in the references cited above.
Among Centaurs and TNOs there is a broad range of visible col-
ors, broader than observed so far in comet nuclei (Jewitt 2002).
However, in the near-infrared our spectra of comets 28P are just
as red or redder than Centaur 5145 Pholus and as red or redder
than most TNOs. To illustrate this, we plot in Figures 6 and 7
our 2002 near-infrared spectrum of 28P with those of 5145 Pholus
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Fic. 6.—The 2002 (friangles) near-infrared spectrum of 28P, plotted with
Centaur 5145 Pholus (crosses; Cruikshank et al. 1998). The spectra are normal-
ized at 1.60 pm to 1.0.

(Cruikshank et al. 1998) and 50,000 Quaoar (Pinilla & Licandro
2004).

3.5. Comparison with Meteorite Spectra

Comparison of the visible and near-infrared spectra with me-
teoritic samples can help constrain the composition of comets.
As with comparisons between asteroids and meteorites, care must
be taken since terrestrial weathering can contaminate the mete-
oritic samples and space weathering can influence the spectra
of asteroids (e.g., Clark et al. 2002). Our approach is similar to
that used to compare the spectrum of comet 162P/Siding Spring
with meteorites (Campins et al. 2006b); however, in the case of
comet 28P we limit ourselves to fitting the 0.8—2.4 pm spectra.
We used the Relab database (Pieters & Hiroi 2004), which con-
tains 802 meteorite samples to search for appropriate fits to our
spectra. A first-order automatic search was performed by inter-
polating both the meteorite and the comet spectra to a common
wavelength sampling in the spectral range observed. The disper-
sion between the resampled comet and meteorite spectra were
then calculated for each spectrum in the database and sorted in
ascending order of dispersion. A visual inspection of the spectra
of the comet and meteorites according to the resulting list was
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Fig. 7.—The 2002 (triangles) near-infrared spectrum of 28P, plotted with the
TNO 50,000 Quaoar (crosses) (Pinilla & Licandro 2004). The spectra are nor-
malized at 1.60 ym to 1.0.
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Fic. 8.—The 2002 (triangles) and 2003 (circles) near-infrared reflectance
spectra of comet 28P normalized at 1.60 pm to 1.0 (2003) and to 2.0 (2002),
compared with that of a CI carbonaceous chondrite meteorite (Relab sample
MR-MJG-106). This is the same meteorite that gave the closest (although not very
good) fit to our visible and near-infrared spectrum of comet 162P (Campins et al.
2006b). The normalization shift does not change the slope.

then performed. The best fit to a primitive meteorite was ob-
tained with the Alais CI carbonaceous chondrite (Relab sample
MR-MJG-106), which is shown in Figure 8. As in the previous
comparison figures, we do not plot the 2001 spectrum of 28P
because it is essentially identical to the 2003 spectrum. The fit
is better for the 2003 spectrum but not ideal; in contrast with
the spectra of 28P, the meteorite reflectivity decreases beyond
2.2 pm. Although this partial fit to the 2003 spectrum is inter-
esting, the relatively low signal-to-noise ratio of the 28P spec-
tra prevent a more detailed interpretation of this similarity. We
note that this same meteorite also gave the closest fit to the 0.3—
2.4 um spectrum of comet 162P. However, the fit to comet 162P
was not very good, with the most significant shape discrepan-
cies in the ultraviolet, visible, and 1.9 ym regions (Campins et al.
2006b). As more comet and meteorite spectra become available
they will likely play an important role in the identification of com-
etary meteorites.

3.6. Models

Modeling of the surface spectra of atmosphereless solar system
objects to infer their composition can be a powerful analytical tool
and has been discussed in a number of publications (e.g., Hapke
1981; Shkuratov et al. 1999; Cruikshank et al. 1998; Emery &
Brown 2004; Clark et al. 2004). We used the scattering theory
described by Shkuratov et al. (1999) for areal mixtures. Our ap-
proach is very similar to that used for modeling Trojan asteroids
(Emery & Brown 2004) and Centaurs (e.g., Cruikshank et al.
1998; Poulet et al. 2002). The main constraints are the albedo
(p» = 2.5% = 0.8%; Campins & Fernandez 2000) and the over-
all shape of the spectrum. However, the relatively large observa-
tional uncertainties in our near-infrared spectra and the absence
of strong spectral features prevents the identification of specific
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minerals, and our resulting model compositions of comet 28P are
not unique. Furthermore, our modeling approach needs to be re-
fined. If taken literally, our models of comet 162P (Campins et al.
2006b) would suggest that the surface of that comet could be
mostly carbon, with olivine, pyroxene, and organic compounds
as probable components. This high carbon abundance is unlikely,
since carbon-rich meteorites (with albedos as low as those of
comet nuclei) have at most 3.2% by weight of carbon (Hutchison
2004, p. 29). The use in our models of carbons with albedos close
to those of comet nuclei required most of the modeled surface to
be carbon, and even with a very high carbon abundance (~85%)
we were unable to match the observed albedo of comet 28P. It is
also important to remember that carbon is not the only way to
make a surface dark; for example, various vaporization and sput-
tering mechanisms can cover silicates with submicroscopic iron
particles, making them darker. Therefore, more rigorous modeling
should include carbon species with lower albedo and other low-
albedo minerals. Given the current limitations of the models and
of the observations, we refrain from further interpretation of our
modeling results.

4. CONCLUSION

We found evidence for spectral variability in the nucleus of
comet 28P: our 2002 near-infrared spectrum has a significantly
steeper slope than those obtained in 2001 and 2003. Our obser-
vations provide additional evidence that bare comet nuclei have
spectra with muted or absent structure, low albedos, and near-
infrared spectra with red slopes. Three of the four properly ob-
served Jupiter-family comets have significantly redder spectral
slopes in the near-infrared than the one Halley-type comet in this
sample. So far, the nuclei of comets appear spectrally similar to
primitive asteroids, primarily D-type asteroids. The few comet
nuclei observed spectroscopically in the near-infrared exhibit con-
siderable diversity, similar to that found among near-infrared
spectra of Trojan asteroids by Emery & Brown (2003). We found
reasonably good matches among Trojan asteroids to the albedo
and spectral shape of comet 28P. Such similarities are consis-
tent with an analogous formation and evolutionary environment
for Trojan asteroids and Jupiter-family comets, as proposed by
Morbidelli et al. (2005). One CI meteorite showed a partial fit
to our 2003 near-infrared spectrum of comet 28P; however, no
close spectral matches to our target were found among chon-
dritic meteorites.
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