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EXCESS RADIATION FROM THE LARGE PLANETS

Richard L. Liboff
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Received 2005 July 28; accepted 2007 July 15

ABSTRACT

An alternative model is proposed for the excess radiation emitted by the larger planets, each with a liquid metallic
hydrogen annular domain about a central core of ice and rocks. This model is based on the mutual attraction between
elements of an aggregate of charged bosons in a charge-neutralizing background, in equilibrium at very high pressure,
and the property that spin-1 deuterons are bosons. Assuming valid parameters for Jupiter, it is derived that the deu-
teron density in Saturn is approximately equal to that in Jupiter and that particles emitted in reactions in the liquid
metal domain are thermalized in the liquid hydrogen domain, resulting in infrared radiation, in accord with observed
values. With corroborating properties of Neptune, it is proposed that this planet likewise contains a spherical shell of
liquid metallic hydrogen outside and close to its rocky core. Whereas data are insufficient to support degenerate fu-
sion, the known magnetic moment of Neptune is found to be consistent with positive charge components rotating in
the frame of the liquid metallic hydrogen fluid with current density�8:4 ; 10�6 A m�2. It is proposed that the related
coupling between current and magnetic field is supported by a dynamo effect. A brief description is included describ-
ing the influence of convective storms in the large planets.

Key words: magnetic fields — planets and satellites: general — radiation mechanisms: general

1. INTRODUCTION

In this work an alternative model is proposed for the anom-
alous radiation property of larger planets Jupiter and Saturn of
emitting more radiant energy than they receive from the Sun.
This model derives from the liquid metallic hydrogen compo-
nent of these planets. As first proposed by Salpeter & Stevenson
(1977a), an aggregate of hydrogen molecules will break up into
an electrically conductive mixture of protons and electrons at a
pressure greater than 3 ; 106 atm, values typical of the central
domains of these large planets. Models that have been proposed
in the past to explain this excess radiative emission are as fol-
lows: accretion of matter during planet formation (de Pater &
Lissauer 2001), release of gravitational energy due to planet con-
traction and /or helium sedimentation (Salpeter & Stevenson
1977b; Guillot 1999), decay of radioactive isotopes in the core
(Hubbard 1989), and deuteron burning (Coraddu et al. 2002).
Due to related properties of Neptune, which in like manner
emits infrared radiation in excess of that received by the Sun,
and the fact that the thermal evolution model for generated in-
ternal heat fails for Neptune (de Pater & Lissauer 2001), it is
proposed that this planet likewise includes a spherical shell of
liquid metallic hydrogen outside and close to its rocky core.
An estimate of the dipole magnetic moment of Neptune stem-
ming from this proposed liquid metallic core corroborates this
hypothesis.

It is generally stated that the excess radiation emitted by these
planets does not have its origin in nuclear processes. Thus, for
example, for Jupiter it is argued that the planet does not have suf-
ficient mass to support gravitationally induced fusion (Baugher
1990). The fusion process in the present model does not derive
from gravitational attraction and related high-energy collisions.
It is based on the property that in a frame rotating with the planet,
the liquid metallic hydrogen state is in a thermodynamic equi-
librium phase at a given pressure and temperature, and that in
this condition charged bosons exist in a charge-neutralizing back-
ground. (The radiative emission of these planets is an infini-
tesimally small perturbation to the respective equilibrium state.)

Consequently, components of these bosons attract one another.
That is, the radial distribution function for the charged bosons
does not vanish at zero displacement (Leung et al. 1976; Foldy
1961; Feenberg 1969; Girardeau 1962; Liboff 1979). We recall
that deuterons, with spin 1, are bosons. A closely allied property
is that an equilibrium aggregate of noninteracting bosons will ex-
hibit a statistical attractive potential (Huang 1987). In another re-
lated study it was shown that in the ground state of a collection of
interacting deuterons in a steady magnetic field, spins are polar-
ized in the direction of the field (Liboff 1994). In the present
work it is argued that fusion of deuterons takes place in the stable
liquid phase of metallic deuterium of these planets that is esti-
mated to exist in the thermodynamic region, P � 106 bars, T �
104 K. A list of temperature increments between the expected
planetary temperature from solar incidence and that measured is
presented, for which Jupiter has the largest incremental value
and Uranus has the smallest value.

In a related work by Ouyed et al. (1998), excess heat in the
Jovian planetswas calculated due to high-energy deuteronCoulomb
interactions with deuterons, tritons, and helium-3 nuclei. A work
more closely alliedwith that of the present study is that of Kitamura
(2000). In this study nuclear reactions were examined in the high-
density limit, rs ¼ (me2ae / f

2)¼ (me2/ f2)(3/4�ne)
1=3T1,where

ae � (3/4�ne)1
=3 is the Wigner-Seitz radius and ne is the electron

density (‘‘pycnonuclear’’ reactions). (We recall that rs represents
the ratio of ae to the Bohr radius, a0 ¼ f/me2, where m is the
electronmass.) It was found that nuclear reaction rates are propor-
tional to � ¼ exp(�C��1=6

m ), where C is a constant and �m is the
mass density. Calculations were derived from Monte Carlo data
on screened potentials. Whereas the present work likewise ad-
dresses the domain rsT1, as noted, it is based on the property
that an equilibrium medium of charged bosons in a neutralizing
background and very high pressure includes a radial distribution
function that is finite at the origin (no displacement between deu-
terons). The process is not related to standard fusion derived from
high-energy collisions. Furthermore, no previous formulation has
employed the Bose property of deuterons in studies of the excess
radiation emitted by the Jovian planets.
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2. ANALYSIS

Let � represent the ratio of emitted radiant energy flux Ie to in-
cident radiant energy flux Io of a planet, so that

� ¼ Ie=Io: ð1Þ

For Jupiter the temperature in the liquid metallic hydrogen shell
is T ’ 19;000�C, and

�J ’ 1:67 ð2Þ

with radiation emitted (at a wavelength in the range 10Y100 �m)
in the infrared spectrum. The pressure near the center of the planet
is P ’ 3:6 ; 107 atm. In absolute magnitude Jupiter radiates at

WJ ¼ 4 ; 1017 W: ð3aÞ

In Saturn this value is

WS ¼ 2 ; 1017 W ð3bÞ

(Morrison & Owen 1987).
The temperature in the liquid metallic domain in Saturn is

T ’ 15;000�C. The pressure in this region is P ’ 5:0 ; 107 atm,
and

�S ’ 3: ð4Þ

The ice-rock core density is �S ’ 19 g cm�3 (Baugher 1990).
The proton number density in Jupiter is (Coraddu et al. 2002)

nJ( p) ¼ 2:4 ; 1024 cm�3: ð5aÞ

This value is based on the core mass density, �J ¼ 5 g cm�3, and
kBT ¼ 2 eV(1 eV ¼ 11;605 K ¼ 1:602 ; 10�19 J ).Thedeuteron-
to-proton number-density ratio in the interior of this planet is

nJ(d ) ’ 3 ; 10�5nJ( p): ð5bÞ

It has been noted that observational determination of deuteron
densities in these planets has not been established (Guillot 1999).
In the present study, cited values for this parameter for Jupiter
(Coraddu et al. 2002) are assumed to be appropriate. Theoretical
estimates on the d /p ratio in these planets (Mahaffy et al. 1998)
indicate a slightly greater value in Saturn than in Jupiter. In the
present work, we use Jupiter data to obtain a value of nS( p) for
Saturn, which is found to be approximately equal to that of nJ( p).

The total gravitational and centrifugal force on a deuteron in
the metallic phase of hydrogen is given by

Fd ¼ Md

�
�GMJ

r 2
þ !2r

�
¼ rMd

�
�G

4�

3

� �
�J þ !2

�
; ð5cÞ

where Md and MJ are the deuteron and Jupiter masses, respec-
tively,G is the gravitational force constant, �J is the mass density
of Jupiter, and ! is the angular frequency of the planet. In the
preceding relations the gravitational force far exceeds the cen-
trifugal force, which may, in turn, be omitted. A parallel equation
applies for the proton component of the fluid. If the proton mass
ism, thenMd ’ 2m, and wemay conclude that the ‘‘fall’’ toward
the central domain of the planet is greater for deuterons than for
protons. We note that this simple example neglects other electric
and fluid forces. However, as a first approximation, onemay con-
clude that the force (eq. [5c]) contributes to a separation of the

deuteron and proton components of the fluid. As noted, in a
frame rotating with the planet, this fluid component is taken to be
in a thermodynamic equilibrium state. In this configuration the
stated separation is maintained with no distortion due to diffusion.
The fusion reaction in the present model derives from the fact

that fermion protons in the fluid repel one another, whereas Bose
deuterons at the given thermodynamic conditions attract one
another.

2.1. Fusion Parameters

The relevant fusion reactions in this formulation are

d þ d ! He3(0:82)þ n(2:84); ð6aÞ

d þ d ! t(1:01)þ p(3:02): ð6bÞ

Subsidiary reactions are

5 �barns; pþ t ! He3 þ � þ 5:5 MeV; ð6cÞ

7 �barns; � þ � þ 19:8 MeV; ð6dÞ

where �, d, n, and t represent alpha, deuteron, neutron, and triton
particles, respectively, and in equations (6a) and (6b) the paren-
thetical numbers represent decay-product energies in MeV. The
primary (d; d ) reactions occur at cross section � ’ 0:6 barn, where
1 barn = 10�24 cm2. The subsidiary reactions (eqs. [6c] and [6d])
occur at microbarn levels and may be neglected in the formu-
lation. The triton decay product in equation (6b) has a half-life of
12.26 yr and decays as follows:

t ! � þ He3; ð6eÞ

in which the beta particle is emitted with an energy of 18 keV.
The mean radii of displacement (in AU; 1 AU ¼ 1:496 ;

108 km) from the Sun for these two planets are

RJ ’ 5:2; RS ’ 9:54: ð7Þ

The mean radiation flux emitted by the Sun is

Io ¼ 6:44 ; 107 W m�2: ð8Þ

The radiant fluxes falling on these planets are, respectively,

IJ ¼ Io
r�

RJ

� �2

; IS ¼ Io
r�

RS

� �2

; ð9aÞ

where

r� ’ 6:96 ; 105 km ¼ 4:65 ; 10�3 AU ð9bÞ

is the radius of the Sun. The equatorial radius of Jupiter is

RJ ’ 71;400 km ¼ 7:14 ; 107 m: ð10aÞ

The radial increment of the liquidmetal annular domain in Jupiter
is (Baugher 1990; Friedlander 1985; Morrison & Owen 1987)

R
( p)
J ’ 45;600 km ¼ 4:56 ; 107 m ð10bÞ

outside of a core of rock and ice with radius

R
(c)
J ’ 13;400 km ¼ 1:34 ; 107 m: ð10cÞ
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The radius to the outer limit of the liquid metal section is

R
( pþc)
J ¼ 5:90 ; 107 m: ð10dÞ

The parallel relations for Saturn are

RS ’ 60;000 km ¼ 6:00 ; 107 m: ð11aÞ

The ice-rock core of Saturn is of radius

R
(c)
S ’ 16;000 km ¼ 1:60 ; 107 m; ð11bÞ

whereas the annular liquid metal domain has the incremental
radius

R
( p)
S ’ 14;000 km ¼ 1:40 ; 107 m: ð11cÞ

The radius to the outer limit of the liquid metal section is

R
( pþc)
S ¼ 3:0 ; 107 m: ð11dÞ

Respective volumes of liquid metal domains in these planets are

V
( p)
J ¼ 4

3
� R

( pþc)
J

� �3
� R

(c)
J

� �3� �
� 4

3
� �JR

( pþc)
J

� �3
; ð12aÞ

V
( p)
S ¼ 4

3
�

�
R
( pþc)
S

� �3
� R

(c)
S

� �3�
� 4

3
� �SR

( pþc)
S

� �3
; ð12bÞ

where

R
( pþc)
J ¼ R

( p)
J þ R

(c)
J ¼ 5:9 ; 107 m: ð12cÞ

The presence of protons in the liquid metal domain reduces
the effective d-d fusion volume. With equation (5b) we note that
nJ(d ) ’ 10�5nJ( p). The d-d interaction is further moderated by
shielding (Liboff 1958). These effects are incorporated in the
�-factor in equations (12a) and (12b), and we write � ’ 10�8.
Due to the statistical attraction of deuterons in the present con-
figuration, the cross section of the d-d interaction is moderated.
For energies (P1 keV), charged particle cross sections vanish. This
property is incorporated in the Wigner exponential factor (Blatt
&Weisskopf 1952) that vanishes in the limit. In the present con-
figuration, due to statistical attraction of deuterons, we take the
d-d cross section to be given by the square of the cross-sectional
area of the nucleus. Accordingly, we take the nuclear diameter to
be 2:3 ; 10�13 cm�1, which gives the d-d cross section, � �
5:3 ; 10�32 m�2. The primary d-d interaction in relation (6) has
the yield f � 6 MeV.

An estimate of the net radiation emitted per second from Jupiter
is given by

WJ ’ �f vV ( p)
J n2

J (d ) W; ð13aÞ

where v is the deuteron speed, given by (Coraddu et al. 2002)

v ¼
ffiffiffiffiffiffi
2E

M

r
’ 1:38 ; 104 m s�1 ð13bÞ

and E is the deuteron energy. We obtain

WJ ’ 3:12 ; 1014 W; ð13cÞ

in partial agreement with measured values.

3. QUANTUM DOMAIN AND RADIAL
DISTRIBUTION FUNCTION

We consider an aggregate of N charged bosons confined to the
volume V with mean number density n in a neutralizing back-
ground. The radial distribution function g (r) is related to the pair
probability function p2(1; 2) as (Goodstein 1975)

p2(1; 2) ¼ n2g (r); ð14aÞ

where r is the corresponding scalar displacement between the
two particles. The pair probability function has the normalization

V

Z
p2(1; 2) dr ¼ N (N � 1): ð14bÞ

The criterion to determine whether the medium, at the temper-
ature T, is in the quantum domain is given by comparing the ther-
mal de Broglie wavelength, kd , to the mean interparticle spacing,
rd ¼ n�1=3

J (d ), where

kd ¼
h

(2�mkBT )1=2
: ð14cÞ

Namely, if

kd k rd; ð14dÞ

quantum mechanics is relevant. With equation (14b) we obtain
rd ’ 2:4 ; 10�7 cm. At kBT ’ 2 eV, we find for the related deu-
teron medium kd ¼ 0:81 ; 10�7 cm. It follows that the liquid
metallic components of these planets are in the quantum domain.

The Hamiltonian of our system, in second quantization, is
given by

H kN ; SN
� 	

¼
X
k

tka
y
kak þ

1

2V

X
k 0 0

X0

k 0

X
k

gka
y
k 0 0�k

a
y
k 0þk

ak 0 0ak 0

� �
�d

2 f

� �2X
i 6¼j

Si = Sj; ð15aÞ

where

tk ¼ f2k 2=2M ; gk ¼ 4�2=k 2; ð15bÞ

a
y
k and ak are creation and annihilation operators, respectively,

for particles of momentum fk that satisfy standard boson com-
mutation relations,M is the boson mass, �d ’ 10�23 ergs G, and
the constant � has dimensions G2 cm3 and in part reflects the short
range of the spin-spin interaction. The prime on the second sum
in the middle term of equation (15a) indicates that the term with
k ¼ 0 is omitted, which accounts for the neutralizing background
charge. In the present study effects of spin are neglected.

We wish to obtain an expression for the relative number of par-
ticles in the ground state of the system. To these ends we recall
the Bogoliubov transformation (Bogoliubov 1947) that is based
on the following assumptions: (1) Eliminate terms in the second
set of sums in equation (15a) that contain fewer than two creation
or annihilation operators for particles of momentum zero. (2) Re-
place a

y
0 and a0 in the remaining terms by the c numberN1=2

0 , where
N0 31 is the mean occupation number of the ground state. Note
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that this latter Bogoliubov criterion implies that total number of
particles is not conserved. In general, one may write

N ¼ N0 þ hN̄0i; ð16aÞ

where hN̄0i is the expectation of the number of bosons in
states other than the ground state. With these assumptions, the
Hamiltonian (eq. [15a]) reduces to

H(kN ) ¼
X0

k

�
(tk þ n0gk)a

y
kak þ

1

2
n0gk aka�k þ a

y
ka

y
�k

� ��
;

ð16bÞ

where

n0 ¼ N0=V : ð16cÞ

The Hamiltonian (eq. [16b]) is diagonalized by the canonical
transformation

ak ¼ Skþbk � Sk�b
y
�k; ð16dÞ

where

S 2
k(�) ¼ tkn0gk � 	k=2	k ; ð17aÞ

	 2k ¼ f
2!2

p þ f
2k 2=2M

� 	2
; ð17bÞ

!2
p � 4�n0e

2=M : ð17cÞ

The parameter !p is the boson plasma frequency. The Hamiltonian
(eq. [16b]) is then given by the diagonal form

H ¼ U0 þ
X0

k

	kb
y
kbk; ð18aÞ

U0 �
X0

k

S 2
k ; ð18bÞ

where Sk is written for Sk�. In the limit that N / � ! 1, the
sum (eq. [18b]) becomes

U0 ¼
�

2�2

Z 1

0

S 2
k dk: ð18cÞ

The ratio of bosons not in the ground state to those in the ground
state of the system is given by

N � N0

N0

¼ 1

2�2n0

Z 1

0

S 2
k dk: ð19aÞ

We introduce the new variable of integration,


 ¼ ab

4�n0

� �1=4
k; ð19bÞ

where

ab ¼
f2

Me2
¼ a0

m

M
Ta0; ð19cÞ

in which a0 ¼ 0:5292 8 is the hydrogen Bohr radius and ab �
1:44 ; 10�12 cm is the effective deuteron Bohr radius. The ground

state of a deuteron is composed of S andD states, with respective
probability densities of 0.96 and 0.04, so that a deuteron is highly
spherical. However, the D state causes a slight extension of the
nuclear wave function, and we take the effective value of ab �
10�11 cm. The neutralizing background introduces a shielding
which further defines the core of the deuteron. In the standard
model of the ground state of the deuteron (Burcham 1963) the
predominant component of the wave function lies outside the
core and decays exponentially. With these properties we write
ab � 1:44 ; 10�10 cm.
The ratio (eq. [19a]) may be written

�

4
� N � N0

N0

¼ Qrs; ð19dÞ

where the parameter� is familiar to this area of study (de Pater &
Lissauer 2001; Leung et al. 1976; Morrison & Cruikshank 1981),

rs ¼
3

4�

� �1=3
1

abn
1=3
0

; ð19eÞ

and the integral Q has the value (de Pater & Lissauer 2001)

Q ¼ 1

3�4

� �1=4Z 
 4 þ 2


 4 þ 4ð Þ1=2
� 
 2

" #
d
 ¼ 0:2114: ð19f Þ

It is noted that for Coulomb systems such as in the present case
(de Pater & Lissauer 2001; Leung et al. 1976),

� ¼ 4Qrs ¼ 1� g(0); ð20Þ

where g (r) is the radial distribution function (Liboff 2003) for
the interboson displacement, r. It follows that for sufficiently
smallQrs, there is wave-function overlap at the origin resulting
in fusion from either of the two reactions (eqs. [6a] and [6b]).
Thus, our criterion for fusion in the present configuration is that
�T1, or, equivalently, that

abn
1=3
0 30:2624: ð21aÞ

With equation (19b) and the stated assumptions, we write ab ¼
1:43 ; 10�10 cm so that criterion (21a) becomes

n0 � N0=N 33:5 ; 1030 cm3; ð21bÞ

which is noted to likewise satisfy the Bogoliubov criterion n0 31.
With equation (5b), nJ ’ 7:2 ; 1019 cm�3, so that � � nJ /n0 ’
10�11. The radial distribution is a statistical entity. Namely, we
recall that the factor g(r) dr/V represents the probability of find-
ing a pair of deuterons with one particle at the origin and the
other at rþ dr in the volume element dr. The accessible volume
is V. We surmise that a fraction � of deuterons in Jupiter will fuse
by this mechanism.

4. DEUTERON DENSITY IN SATURN

With the result (eq. [21b]) at hand, we turn to Saturn. It is noted
that WJ / V

( p)
J n2

J (d ), with the remaining parameters assumed
constant. The result is

WS ’ WJ

V
( p)
S n2

S (d )

V
( p)
J n2

J (d )
: ð22aÞ
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Here we assume that the d /p ratios in Jupiter and Saturn are ap-
proximately equal. With the cited value (Morrison &Owen 1987),
WS ¼ 2 ; 1017 W, there followsWS /WJ ’ 1/2, and we find

n2
S (d ) ’

WS

WJ

V
( p)
J

V
( p)
S

n2
J (d ) ’

1

2

�
5:9

3

�3
n2
J (d ) ’ 3:8n2

J (d );

ð22bÞ

which gives the first estimate,

nS(d ) ’ 2nJ(d ): ð22cÞ

4.1. Centrifugal and Density Effects

Relation (22c) may be further modified due to centrifugal and
density effects. The equatorial period of rotation of Saturn is
�S ’ 10h14m, and in Jupiter it is �J ’ 9h50m (Baugher 1990;
Friedlander 1985). The tangential speed of the boundary of the
corresponding metallic domain is

vS ¼ R
( pþc)
S

�S
’ 2�30;000 km

3:68 ; 104 s
¼ 4:91 km s�1: ð23aÞ

The corresponding value in Jupiter is

vJ ¼
R
( pþc)
J

�J
’ 2�59;000 km

3:54 ; 104 s
¼ 10:47 km s�1: ð23bÞ

It follows that the centrifugal separation force in Saturn is less
than that in Jupiter. With the preceding, this effect on the deu-
teron density in Saturn is to reduce it by the factor

v2S
v2J

R
( p)
J

R
( p)
S

’ 0:927: ð23cÞ

The effects of metallic core densities may be further included by
noting that the densities of these planets are due largely to the
core masses. In Jupiter the mean density is �J ’ 1:3 g cm�3, and
in Saturn it is �S ’ 0:7 g cm�3. It follows that the relative deuteron
density in Saturn is further modified by the factor �S /�J ’ 0:54.
Combining these two effects gives

nS ’ 0:927 ; 0:54 ; 2nJ ’ 1:00nJ; ð23dÞ

so that the deuteron density in Saturn is approximately equal to
that in Jupiter.

4.2. Temperature Increments

The excess infrared radiation emitted by these planets is in-
ferred by the increment betweenmeasured temperature Tmeas and
expected temperature Texp, derived from solar incidence. We set

Tmeas ¼ Texp þ�T : ð24aÞ

For Jupiter, one obtains (Baugher 1990)

T (J)
meas ¼ �149

�
C; T (J)

exp ¼ �165
�
C; �T (J) ¼ 16

�
C: ð24bÞ

For Saturn,

T (S)
meas ¼ �179

�
C; T (S)

exp ¼ �190
�
C; �T (S) ¼ 11

�
C: ð24cÞ

For Neptune,

T (N )
meas ¼ �218

�
C; T (N )

exp ¼ �227
�
C; �T (N) ¼ 9

�
C: ð24dÞ

In each case Tmeas is higher (i.e., less negative) than Texp, indicat-
ing an internal energy source in the corresponding planet.

5. NEPTUNE AND URANUS

Neptune, like Jupiter and Saturn, radiates energy in excess of
that received by the Sun, with relatively smaller radiative output,

WN ¼ 3 ; 1013 W; ð25aÞ

�Nk2

(Moore 2000). These four planets (including Uranus) are the
most massive in the solar system. (In Earth masses, MJ ¼ 318,
MS ¼ 95:1, MN ¼ 17:2, and MU ¼ 14:5.) We wish to ascertain
whether Neptune contains a liquid hydrogen internal compo-
nent. Regarding Uranus, for which�T (U ) ’ 0:1�C (de Pater &
Lissauer 2001), it is noted that any internal energy source of this
planet must be exceedingly small, outside the limits of Voyager
instrumentation. That is, �UP1:06 with 94% error (Baugher
1990; Moore 2000).

The equatorial radius of Neptune is

RN ’ 24;800 km: ð25bÞ

A plausible model of the structure of this planet (Friedlander
1985) includes a central core composed of rock and metal of
radius

R
(c)
N ’ 8000 km ð25cÞ

with an exterior domain composed of methane, ammonia, and
ice beneath a proposed shell of liquid molecular hydrogen. Mod-
eling the planet after Jupiter gives the incremental radius of the
proposed liquid component as

R
( p)
N ’ 2:72 ; 104 km: ð25dÞ

The average density of the planet is 1.67 g cm�3. The pres-
sure at the central core is P ’ 2:2 ; 107 atm at a temperature of
7000

�
C, and the equatorial period of rotation is’0.75Y1.0 Earth

days. It follows that this planet satisfies the criteria for deuteron
fusion, save for the existence of a liquid metal hydrogen compo-
nent. Suppose that this component exists.We estimate the related
magnetic field of Neptune and compare it to the measured val-
ues. For a bounded collection of N identical particles, each with
an angular momentum component Li and a charge-to-mass ratio
q/M , the magnetic moment is given by (Jackson 1999)

M ¼ q

2M

XN
i¼1

Li ¼
q

2M
L: ð26aÞ

We recall that the angular momentum of a system with a moment
of inertia I and rotating with mean angular frequency ! is given
by L ’ I!: For a spherical system of radius R, I ¼ (2/5)R2. We
compare the measured and estimated ratios of the magnetic
moments of Neptune to Jupiter. In terms of Earth’s magnetic
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moment (Baugher 1990), MN ’ 2ME and MJ ’ 3000ME,
so that the measured ratio is

MN=MJ ’ 6:7 ; 10�4: ð26bÞ

A rough estimate of this ratio is given by the following. First, we
note the rotational periods of the two planets, again in terms of
Earth’s period:

TJ � 0:42TE; !J ’
2�

0:42
; ð26cÞ

TN � 0:8TE; !N ’ 2�

0:8
: ð26dÞ

With equations (19a)Y(19f ) we note thatM / L / I! / !R2.
Thus, we write

MN

MJ

/ R
( p)
N

R
( p)
J

 !2
0:42

0:8
� (0:35 ; 10�3)20:53k 1:11 ; 10�6:

ð26eÞ

The latter inequality stems from the fact that this estimate as-
sumes a uniform distribution of charge from the origin to R

( p)
N ,

whereas, as noted, the charge is concentrated in the spherical an-
nular domain of the planet. When compared with equation (26b)
this rough estimate indicates that the implied magnitude of the
magnetic field is within the domain of measured values, thereby
corroborating the notion of a liquid metallic hydrogen compo-
nent of Neptune.

In support of the model that attributes excess radiation to re-
sidual heat in planets, a computer model employing the Monte
Carlo method for the interior of Neptune (as well as Uranus) was
made (Marley et al. 1995). This study is based on a randomly
chosen interior constrained by the observed mass, rotation rate,
and gravitationalmoments of the planet. The study leads to a com-
position gradient of the outer third of the planet and a pressure-
density relation for the central domain consistent with either ice or
a mixture of materials with a similar equation of state. It is an
alternative model to the present work.

5.1. Infrared Conversion

Protons and neutrons emitted in the primary scheme equa-
tions (6a) and (6b) in the respective liquid metal regions of
Saturn and Jupiter enter the liquidmolecular hydrogen domains in
which they undergo (n; p), ( p; p), and (t; p) interactions. At given
energies, E � 3 MeV, the (n; p) cross section is � � 5 barns
(McLane et al. 1988), whereas the Coulomb cross section for the
remaining two interactions remains finite because of shielding. It
follows that the mean free path, l, of the product particles is l �

1/�npT�RL
J;S, where�RL

J;S are incremental radii of the liquid
hydrogen domains of the respective planets so that protons and
neutrons experience a number of collisions in these respective
domains.With conservation of energy, this thermalization of par-
ticles in the liquid hydrogen domain of the respective planets
gives rise to infrared radiation in close agreement with measured
values. With the existence of the extended current carrying do-
main, one may relate the corresponding magnetic field to a dy-
namo effect. Furthermore, the relatively large inclination of the
magnetic field with the rotation axis of the planet is consistent
with dynamo currents that lie closer to the planet’s surface than
to its core (Moore 2000). This property is consistent with the
current-loop property of the present work.
Convective storms on the surfaces of giant planets are well es-

tablished. The question of the relation of such storms to the in-
terior structures of these planets has been examined recently (Hueso
et al. 2002; Zang & Shubert 1966). In the present work it is noted
that whereas the respective energy sources of such storms may
stem from the planet’s interior, it is assumed that such coupling
has little effect on the spatial orientation of the proposed D and
H shells of the planets. Recall that the present model includes
reasonably well-defined interior shells.

6. CONCLUSIONS

An alternative model was described for the excess radiation
emitted by the larger planets, each with a liquid metallic hydro-
gen annular domain about a central ice-rock core.
The present model is based on the attraction between charged

bosons that occurs in a charge-neutralizing background at very
high pressures. Assuming valid parameters for Jupiter, it is de-
rived that the deuteron density in Saturn is approximately twice
that in Jupiter and that particles emitted in reactions in the liquid
metal domain are thermalized in the liquid hydrogen domain, re-
sulting in infrared radiation in accord with observed values. The
knownmagnetic moment of Neptune was found to be consistent
with positive charge components rotating in a frame of the liquid
metallic hydrogen fluid with current density�8:4 ; 10�6 Am�2.
It was proposed further that the related coupling between current
and magnetic field is supported by a dynamo effect. A brief de-
scription was included describing the influence on proposed mech-
anisms and convective storms in the large planets.
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Chung Hoon Lee for assisting me in the preparation of this man-
uscript. I am equally indebted to Saul Teukolsky, IraWasserman,
and Edwin Salpeter for alerting me to very pertinent references
for this work and to ErickWeinberg, Vaclav Kostroun, Veit Elser,
and Bingham Cady for calling my attention to additional con-
cepts in this work.

REFERENCES

Baugher, J. F. 1990, The Space-Age Solar System (New York: Wiley)
Blatt, J. M., & Weisskopf, V. R. 1952, Theoretical Nuclear Physics (New York:
Wiley)

Bogoliubov, N. N. 1947, J. Nucl. Phys., 11, 13
Burcham, W. E. 1963, Nuclear Physics (New York: McGraw-Hill)
Coraddu, M., Lissia, M., Messorani, G., & Quarati, P. 2002, Physica A, 305, 282
de Pater, I., & Lissauer, J. J. 2001, Planetary Sciences (New York: Cambridge
Univ. Press)

Feenberg, E. 1969, Theory of Quantum Fluids (New York: Academic Press)
Foldy, L. L. 1961, Phys. Rev., 124, 649
Friedlander, M. W. 1985, Astronomy (Englewood Cliffs: Prentice Hall)
Girardeau, M. 1962, Phys. Rev., 127, 1809
Goodstein, D. 1975, States of Matter (New York: Dover)
Guillot, T. 1999, Planet. Space Sci., 47, 1183

Huang, K. 1987, Statistical Mechanics (2nd ed.; New York: Wiley)
Hubbard, W. B. 1989, in Origin and Evolution of Planetary and Satellite At-
mospheres, ed. S. K. Atreya, J. B. Pollack, & M. S. Matthews (Tucson: Univ.
Arizona Press), 539

Hueso, R., Sánchez-Lavega, A., & Guillot, T. 2002, J. Geophys. Res., 107,
E10, 5

Jackson, J. D. 1999, Classical Electrodynamics (New York: Wiley)
Kitamura, H. 2000, ApJ, 539, 888
Leung, W. B., March, N. H., & Motz, H. 1976, Phys. Lett. A, 56, 425
Liboff, R. L. 1958, Phys. Fluids, 12, 303
———. 1979, Phys. Rev. Lett. A, 74, 323
———. 1994, Phys. Rev. B, 12, 303
———. 2003, Kinetic Theory: Classical, Quantum and Relativistic Descriptions
(New York: Springer)

LIBOFF2184 Vol. 134



Mahaffy, P. R., Donahue, T. M., Atreya, S. K., Owen, T. C., & Niemann, H. B.
1998, Space Sci. Rev., 84, 251

Marley, M. S., Gomez, P., & Podolak, M. 1995, J. Geophys. Res., 100, 23349
McLane, V., Dunford, C. L., & Rose, P. F. 1988, Neutron Cross Sections (New
York: Academic Press)

Moore, P. 2000, The Data Book of Astronomy (Philadelphia: IOP)
Morrison, D., & Cruikshank, D. P. 1981, in The New Solar System, ed. J. K.
Beaty et al. (New York: Cambridge Univ. Press), 167

Morrison, D., & Owen, T. 1987, The Planetary System (San Francisco: Addison
Wesley)

Ouyed, R., Fundamenski, W. R., Cripps, G. R., & Sutherland, P. G. 1998, ApJ,
501, 367

Salpeter, E., & Stevenson, D. 1977a, ApJS, 35, 221
———. 1977b, ApJS, 35, 239
Zang, K., & Shubert, G. 1966, Science, 946, 273

EXCESS RADIATION FROM THE LARGE PLANETS 2185No. 6, 2007


	Excess radiation from the large planets
	Recommended Citation

	tmp.1568146621.pdf.ShF7Z

