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Improved aperture for modulation transfer
function measurement of detector arrays beyond
the Nyquist frequency

Alfred D. Ducharme
Sarah P. Temple
University of Central Florida
Department of Engineering Technology
4000 Central Florida Blvd.
Orlando, Florida 32816
E-mail: ducharme@mail.ucf.edu

Abstract. The design of an aperture for the generation of laser speckle
with a flat power spectrum covering a wide band of the measurement
spatial-frequency range is presented. This aperture allows for the mea-
surement of modulation transfer function �MTF� from zero to twice the
Nyquist frequency of a two-dimensional detector array. This design miti-
gates many of the measurement problems inherent in other aperture
designs. The MTF measurement of a CCD detector array is used to
demonstrate the measurement technique and illustrate the advantages
of the new aperture design. © 2008 Society of Photo-Optical Instrumentation
Engineers. �DOI: 10.1117/1.2976798�

Subject terms: modulation transfer functions; speckle; charge-coupled devices.
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1 Introduction

The modulation transfer function �MTF� is a single plot
that quantifies the ability of an imaging system to resolve
features in an object with a particular size. The spatial size
of these objects can also be expressed in terms of spatial
frequency by inverting the period of idealized periodic ob-
jects. The MTF plot is generated by measuring the attenu-
ation, called the modulation depth, at a series of specific
spatial frequencies. The number of data points on the MTF
curve is governed by the measurement technique used.

In today’s imaging systems, optical lenses and mirrors
produce an image on an electronic detector array. This re-
quires the extension of traditional MTF theory for optical
systems to modern electro-optical systems. The electro-
optical MTF includes the performance of the detector tech-
nology as well as the electronic processing and storage of
the imagery. Testing on complete systems incorporating an
optical imaging system and a detector array must employ
MTF measurements utilizing objects with known spatial-
frequency content. Techniques commonly used are bar and
sinusoidal targets �bar targets actually yield the contrast
transfer function �CTF�� as well as knife-edge tests. How-
ever, these tests require imaging optics to generate the im-
age of these targets on the detector array. There is often a
need to measure the MTF of the detector array alone with-
out the need for intervening optics. In these cases, the use
of laser speckle is applicable because the speckle is pro-
jected directly onto the array.1,2

The use of laser speckle as a test input has several ad-
vantages over other MTF measurement techniques. The
first is that even if a well-corrected imaging system is used
to project a target such as a knife-edge onto the array, the
optics are still part of the measurement. Any unwanted in-
formation introduced by the instrument must be extracted
from the final measurement. It is advisable to avoid these

types of postprocessing techniques, since they can decrease
the accuracy and repeatability of the measurement. The sec-
ond advantage is that laser-speckle testing measures the
entire array rather than a limited area, thereby more accu-
rately measuring the overall performance of the array. In
cases where on- and off-axis MTF measurement is desired,
regions of the test image can be used. Finally, a lesser-
known advantage of the laser-speckle technique is that it
includes the MTF due to the sampling of the image. When
discrete imaging sites are used to sample an image �i.e., the
pixels of the detector array�, an additional MTF is incorpo-
rated into the detector MTF, called the sampling MTF.3,4

When deterministic targets—those with periodic variation
of contrast—are used, they must be optimally aligned with
the rows and columns of the detector array, referred to as
phasing. The result of perfect alignment is that the effects
of sampling are negated and the sampling MTF is equal to
1 at all frequencies. This leads to a discrepancy between
laboratory measurements of MTF and the field performance
of the system.

The limiting MTF of an optical imaging system utilizing
a detector array is determined by the physical dimensions
of a single detector �footprint� and by the sampling interval
of the readout electronics. The footprint of a single detec-
tor, �x, yields an MTFfootprint equal to sinc�� �x� �i.e.,
sin�� �x� / �� �x�, where � is the spatial frequency in the x
dimension�. Similarly, the sampling interval, �s, has an as-
sociated MTFsampling equal to sinc�� �s�. The average lim-
iting MTF of the system is the product of these two MTFs.
For a detector array with contiguous detectors, such as a
CCD array, we have �x=�s, which yields an MTF equal to
sinc2�� �x�.4

The test procedure for deterministic targets, such as bar
targets, requires alignment of the target with the rows and
columns of the detector array. This has the effect of forcing
MTFsampling to be equal to 1 for all frequencies. When de-
terministic targets with high-contrast features, such as bar0091-3286/2008/$25.00 © 2008 SPIE
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targets, are used to test the MTF, the precise alignment
negates the effect of MTFsampling. Laser speckle is inher-
ently random, and when it is used to test the MTF, the
random placement of the individual speckles and the aver-
aging used in processing results in a MTF that includes the
sampling MTF. Therefore, laser-speckle MTF measure-
ments provide a more accurate prediction of the imaging
system performance in the field.1

To date, only a limited amount of work has been done
on the development of laser speckle MTF testing
methods.1,5–9 Earlier work employed a two-slit aperture to
produce narrowband laser speckle.1 The narrowband tech-
nique depended on a movable frequency component to test
the MTF at specific spatial frequencies. The feature move-
ment was controlled by the movement of the detector array
under test with respect to the two-slit aperture. The novelty
of this method was that it allowed the MTF to be measured
from zero to twice the Nyquist frequency of the array. Un-
fortunately, this technique suffered from two major draw-
backs. First, the detector array had to be moved to a new
location for each spatial frequency that needed to be mea-
sured. This required precision movement along an optical
stage, often motorized and computer-controlled. Second,
each measurement needed to be normalized against low-
frequency measurements. This normalization is difficult in
practice and yields low repeatability between measure-
ments. Other researchers have made attempts to mitigate
this problem, but ultimately the measurement complexity is
increased.6,9

In this paper, we present a radically new aperture design
for generation of wideband laser speckle. This new aperture
yields a flat power spectrum from near-zero spatial fre-
quency out to a cutoff frequency defined by a physical dis-
tance in the measurement setup. The aperture is used to
collect data at two distances determined by the detector
array being tested. The first distance spreads the flat input
power spectrum from zero to the Nyquist frequency of the
array. The data collected are processed to yield the continu-
ous MTF from zero to the Nyquist frequency. The second
distance is half the first and spreads the flat input spectrum
from zero to twice the Nyquist frequency of the array. A
simple division-and-unfolding operation with the first mea-
sured spectrum yields the MTF from the Nyquist frequency
to twice the Nyquist frequency of the array. The two MTF
measurements are then combined to yield a complete mea-
surement of the array from zero to twice the Nyquist fre-
quency. The improvement provided with this aperture is a
reduction in movement and more accurate normalization of
the data.

In Sec. 2 we present the theoretical development of the
new aperture design. In Sec. 3, we demonstrate the use of
this aperture using a commercially available charge-
coupled device �CCD� detector array. Finally, we summa-
rize the advantages of this new design.

2 Cross-Aperture Design
The use of laser speckle to measure the MTF of a detector
array is based on a well-demonstrated relationship between
the second-order statistic—the power spectral density
�PSD�—of the laser speckle spatial distribution and the
MTF of any imaging system. This relationship is expressed
as

PSDout��,�� = PSDin��,���MTF��,���2, �1�

where � and � are the spatial frequencies in the x and y
directions.10 Based on this relationship, the objective of a
laser speckle generator is to provide the measurement with
a PSDin that contains a useful distribution of features. As an
example of the term useful, a PSDin with a single triangular
feature would allow the measurement of the MTF at the
peak of the feature. The goal is to create a known PSDin so
that the MTF can be found through simple division as de-
scribed in Eq. �1�.

The laser speckle generator consists of a coherent light
source that is spatially randomized and then directed
through an aperture with a specific geometry. The physical
shape of the aperture governs the resulting PSD of the laser
speckle. Following Goodman, we observe that the PSD of
the laser speckle pattern consists of a �-function component
at zero frequency plus a component extended over a fre-
quency band and having the shape of the normalized auto-
correlation function of the intensity distribution existing at
the output of the aperture.11 Therefore, the PSD of the laser
speckle pattern can be predicted easily, using an autocorre-
lation algorithm in a computer. This approach was utilized
to evaluate the viability of many different aperture geom-
etries before arriving at the one proposed in this paper.

The primary disadvantages of previously researched ap-
erture designs are not evident when they are demonstrated
in a laboratory environment. When these designs are em-
ployed in industrial settings where the test is repeated on
many different arrays, several problems arise. One of the
most common designs, the two-slit aperture, has been dem-
onstrated to be highly effective, and several measurements
have been published. However, this aperture requires either
precision positioning or careful software processing. Both
are prone to processing errors, and repeatability is difficult
to achieve in an automated instrument. These errors are
produced by a combination of two problems.

The first problem is that the test frequency must either
be calculated from the distance between the aperture and
the detector array or from a software centroiding algorithm.
The distance is not always easily obtainable, as a result of
detector enclosures and array cover plates. The centroiding
algorithm works well at low frequencies when the outer
frequency component in the power spectrum is compact
and defined. At high frequencies the outer frequency com-
ponent spreads out and becomes less defined. The result is
increasing error with increasing frequency.

The second problem is in the normalization between
power specta. The two-slit aperture requires a unique data
image to be collected at each discrete measurement dis-
tance �corresponding to each spatial frequency measured�.
The final step in processing each image and subsequent
power spectrum is to normalize it to a relative power de-
termined from the low-frequency component. This normal-
ization process is dependable for high-spatial-frequency
measurement distances, but becomes less so as the mea-
surement frequency decreases. As the frequency decreases
the low-frequency component spans a smaller range of fre-
quencies and in effect compresses the features. The ampli-
tude of the low-frequency component is used as the basis of
the normalization. At low measurement frequencies the
zero-frequency �dc� bias in the data image blends with the
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low-frequency component, making it difficult to determine
the true amplitude for use in the normalization. The result
is an increasing error with decreasing frequency.

These two problems have the combined effect of gener-
ating errors over the entire frequency range with the small-
est error at midband frequencies. The distance measure-
ment problem produces errors at high frequency, and the
normalization problem produces errors at low frequency.
These errors can be reduced with careful manual data col-
lection. This can be achieved in a laboratory but is nearly
impossible to achieve in a highly automated measurement
instrument such as would be used in an industrial setting.

An improved aperture design would be one that reduces
software normalization uncertainties and precision motion.
The design we propose achieves these improvements by
generating a flat spectrum over a wide band of spatial fre-
quencies. The flat spectrum simplifies the determination of
the low-frequency normalization value so that it can be
automated easily. It also reduces the need to move the ap-
erture for the collection of image data, since a range of
measurements can be obtained at a single distance.

Our aperture design, shown in Fig. 1, is referred to as
the cross aperture. It consists of an equal pair of narrow
slits rotated by 45 degrees from the vertical axis with di-
mensions l1, l2, and L as shown.

The raw laser speckle pattern shown in Fig. 1�b� was
generated using a computer simulation of the laser speckle
optical phenomenon. The resulting two-dimensional power
spectrum of this laser speckle pattern is shown in Fig. 2�a�,

and the horizontal cross section through the middle of the
pattern is given in Fig. 2�b�. The PSD of the cross aperture
was determined through numerical calculation.

The spatial frequency of any particular feature in the
power spectrum scales as follows:

� =
x

�z
, �2�

where x is the corresponding aperture dimension, � is the
wavelength of the coherent light source, and z is the dis-
tance from the aperture to the observation plane. Using Eq.
�2� and the dimensions of the aperture, the cutoff frequency
of the wideband cross-aperture power spectrum is found to
be

�cutoff =
2l2

�z
. �3�

Observe that the power spectrum falls off parabolically
from the cutoff frequency to a value of zero. This is a result
of the square end shape of the slits.

The height of the wide-band portion of the power spec-
trum is equal to half the ratio of the slit width l1 to the slit
length L. The absolute height is inconsequential since the
power spectrum is normalized to the value measured at

� =
�2l1

�z
. �4�

This normalization is demonstrated in the next section.
This aperture can be used to measure the entire MTF of

a detector array from zero to twice the Nyquist frequency
of the array, using a difference-and-unfolding process. Be-
fore detailing this process it is imperative that the concept
of aliasing be understood.

The Nyquist frequency is half the sampling frequency of
a discrete signal-processing system. In an electro-optic im-
aging system, the Nyquist frequency is equal to 1 / �2 �x�,
where �x is the pixel width. In sampling theory optimal
performance is achieved when the signal bandwidth is just
lower than the Nyquist frequency. This is not the case in an
electro-optic imaging system. As a result, a sampling arti-
fact called aliasing is generated. Aliasing is the folding of
spatial content above the Nyquist frequency of the array
into lower spatial frequencies. For this reason the Nyquist
frequency is sometimes referred to as the “folding fre-
quency.” The only way that aliasing can be avoided is to
employ an antialiasing filter before the detector samples the
image. The objective of the laser-speckle MTF measure-
ment is to measure the complete performance of a bare
detector. Therefore, the aliasing effect must be considered
carefully.

To measure the complete MTF with the cross aperture,
the measurement process requires that two separate sets of
data be collected. The first set, called the Nyquist set, is
collected at a distance that spreads the flat input PSDin up
to a cutoff frequency equal to the Nyquist frequency. The
second set, called the twice-Nyquist set, is collected at a
distance that spreads the flat input PSDin beyond the Ny-
quist frequency to twice the Nyquist frequency. Higher ac-
curacy can be achieved from the measurement if a series of

Fig. 1 Cross-aperture design: �a� physical dimensions and �b� ex-
ample laser speckle pattern.

Fig. 2 Power spectral density of laser speckle generated using
cross aperture: �a� two-dimensional distribution and �b� cross sec-
tion through horizontal dimension.
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data images are collected at each of the two distances.
Each image in the Nyquist set is processed using a two-

dimensional Fourier transformation algorithm to yield the
PSDout for the laser speckle pattern. An estimate PSD1Ny,out
is generated by averaging the processed collection of power
spectra. The same processing is applied to the twice-
Nyquist set to yield PSD2Ny,out. The PSD processing algo-
rithm is described in Fig. 3.

At this point, the Nyquist set has produced PSD1Ny,out
from zero to the Nyquist frequency of the array, which is
the first half of the overal power spectrum, referred to as
PSD0-Ny. However, the result from the twice-Nyquist set,
PSD2Ny,out, contains the sum of the low- and high-
frequency spectra as a result of aliasing. The power spec-
trum PSD2Ny-Ny from Nyquist to twice-Nyquist is obtained
by subtraction,

PSD2Ny-Ny��� = PSD2Ny,out��� − PSD0-Ny��� , �5�

performed along a single dimension, �. Observe that the
subscript 2Ny-Ny indicates that the data are in reverse or-
der, from highest to lowest. The data need to be unfolded to
reverse this order to Ny-2Ny before they represent the sec-
ond half of the overall PSD.

The power spectrum PSD2Ny-Ny is unfolded using the
following expression:

PSDNy-2Ny��� = PSD2Ny-Ny�2�Ny − �� for � = �Ny to 2�Ny.

�6�

The final PSDout,final is the combination of PSD0-Ny and
PSDNy-2Ny:

PSDout,final��� = �PSD0-Ny��� , 0 � � � �Ny,

PSDNy-2Ny��� , �Ny � � � 2�Ny.
� �7�

Since PSDin is uniform over the measurement range, it can
be considered to be equal to 1. The MTF of the detector
array is then calculated using Eq. �1�.

3 Demonstration of Cross-Aperture MTF
Measurement

An MTF measurement of a commercially available CCD
detector array was completed to demonstrate the applicabil-
ity of the cross aperture. The experimental setup used to
collect the laser speckle data is here described, with an
explanation of the data processing.

The experimental setup used for our measurement is il-
lustrated in Fig. 4. A diode-pumped solid-state �DPSS� laser
operating at 532 nm was used as the coherent source. The
spatial filter expanded the beam incident on the diffuser-
and-aperture combination. The HiLAM diffuser is a micro-
lens high-efficiency diffuser and was previously demon-
strated to be an excellent randomizer for the generation of
laser speckle.11,12 The spacing between the HiLAM diffuser
and the cross aperture was 12 mm. The output of the cross
aperture is passed through a linear polarizer to limit the
output to a single laser speckle pattern. The distance z is
actually measured from the cross-aperture plane to the de-
tector plane. This distance is used to set the cutoff fre-
quency of the input PSD.

The dimensions of the cross aperture used for this ex-
periment were l1=500 �m, l2=3.54 mm, and L=5 mm.
These dimensions give a 1:20 ratio between the heights of
the low-frequency component and the wideband component
in the PSD as shown in Fig. 2�b�. The aperture was laser-
cut in 13-�m stainless steel and mounted in a
25-mm-diameter aperture holder ring.

The detector array utilized was an Imaging Source
DMK31BF03 monochrome CCD FireWire camera. The
1 /3-in. format array has a resolution of 1024 by 768 pixels
with square 4.65-�m pixels. The camera was controlled
and images were collected using the supplied IC Capture
software. Once the exposure and gain were adjusted to
yield an unsaturated histogram, their values were fixed. All
noise reduction and sharpness settings were disabled.

The Nyquist frequency for a CCD with contiguous pix-
els is equal to 1 / �2 �x�, where �x is the pixel width of

Fig. 3 PSD processing algorithm. MTF is for associated axis ex-
tracted from 2-D PSD.

Fig. 4 Experimental setup used to demonstrate the cross aperture.
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4.65 �m. Using this relationship, the Nyquist frequency for
the DMK31BF03 is 107.53 cycles /mm. The required dis-
tance z to set the cutoff frequency of the PSDin at this
Nyquist frequency is calculated by solving for z in Eq. �3�
and is equal to 123.6 mm. The required distance z to set the
cutoff frequency of PSDin at twice the Nyquist frequency is
equal to 61.8 mm.

A total of 100 images �N=100 in Fig. 3� were collected
at each of the two calculated distances, 123.6 and 61.8 mm.
A unique speckle pattern was generated for each image by
making small displacements or dithering the HiLAM dif-
fuser. This was done so that an averaging process could be
used to increase the accuracy of the final MTF. Without
averaging the MTF produced would be dominated by noise.
Since the images are composed of random features, the 2-D
PSD will also contain random features. As a result, in-
creased accuracy is obtained by averaging the 2-D PSDs to
form a better estimate of the PSD and consequently a more
accurate measurement of the MTF. Example speckle im-
ages at each distance are shown in Fig. 5.

The Nyquist cut-off data set was processed using a 2-D
Fourier transformation algorithm to yield an estimate of
PSDout. The measurement was then normalized to yield the
MTF of the DMK31BF03 camera from near-zero spatial
frequency to the Nyquist frequency. This result is shown in
Fig. 6.

Data from zero to approximately 10 cycles /mm have
been discarded, since they correspond to the low-frequency
triangular feature in the PSD as shown in Fig. 2. The data
were normalized to the value just after this triangular fea-
ture at a spatial frequency of �= ��2l1� / ��z�
=10.75 cycles /mm.

The introduction of spatial-frequency information above
the Nyquist frequency of the array causes a folding of the
power into lower spatial frequencies. Content at a spatial
frequency of �Nyquist+�i collected by the array will be real-
ized at a spatial frequency equal to �Nyquist−�i. The second
set of image data, collected at twice the Nyquist frequency,
will contain information from Nyquist to twice-Nyquist
added to the information from zero to Nyquist. In order to
separate the data, a division between the Nyquist MTF es-
timate and the twice-Nyquist one must be performed. In
addition, the result must have its order reversed before it is
plotted as the second half of the final MTF curve. This is
referred to as the unfolding operation.

The twice-Nyquist set of data was processed using the
same algorithm as the Nyquist set. The resulting data are
shown in Fig. 7 before division and unfolding. Once again,
data from approximately zero to 21 cycles /mm have been
discarded. The data were normalized to the value just after
the triangular feature at a spatial frequency of �
= ��2l1� / ��z�=21.5 cycles /mm. The measured MTF shown
in Fig. 7 shows that there is additional information con-
tained in the result. This causes the measured curve to have
values well above the theoretical curve shown. The mea-
sured MTF curves shown in Figs. 6 and 7 are then divided
and unfolded to yield the final MTF of the array, shown in
Fig. 8.

The discontinuity at the Nyquist frequency is a result of
the lack of data near there. It is possible to reduce this error

Fig. 5 Example raw speckle patterns for the �a� Nyquist set and �b�
twice-Nyquist set. Both are shown with five times zoom inset.

Fig. 6 Measured MTF of DBK31BF03 camera for Nyquist cutoff
image data.

Fig. 7 Measured MTF of DBK31BF03 camera for twice-Nyquist cut-
off image data, shown before division and unfolding operations.

Fig. 8 Final MTF measurement on DBK31BF03 camera over entire
response of camera for the horizontal dimension.
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with increased data collection and more precise distance
alignment of the array. The noise seen at high frequencies is
expected, since the measurement is nearing the noise floor
of the camera.

The MTF measurement shown in Fig. 8 includes 1024
data points, since the MTF along the horizontal axis of the
CCD is measured. The MTF along the vertical axis can also
be obtained using the same data collected and yields 768
data points. This additional measurement is shown in Fig.
9.

4 Summary
The cross-aperture design has been demonstrated as an im-
proved alternative to earlier designs such as the two-slit
aperture. This improved design generates a uniform fre-
quency distribution extended to a deterministic cutoff fre-
quency. The cutoff frequency is set by the distance from the
cross aperture to the observation plane. A collection of laser
speckle images is obtained at two distances to measure the
complete MTF of a detector array from zero to twice the
Nyquist frequency. The data-processing technique called
unfolding was demonstrated on a CCD array, and its results
compared with the theoretical MTF of an ideal CCD. The
close match between the measured and theoretical MTFs is
presented as proof that this technique is viable.
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Fig. 9 Final MTF measurement on DBK31BF03 camera over entire
response of camera for the vertical dimension.
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