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Abstract. Background clutter characterization in infrared imagery has
become an actively researched field, and several clutter models have
been reported. These models attempt to evaluate the target detection
and recognition probabilities that are characteristic of a certain scene
when specific target and human visual perception features are known.
The prior knowledge assumed and required by these models is a severe
limitation. Furthermore, the attempt to model subjective and intricate
mechanisms such as human perception with general mathematical for-
mulas is controversial. In this paper, we introduce the idea of adaptive
models that are dynamically derived from a set of examples by a super-
vised learning mechanism based on genetic programming foundations.
A set of characteristic scene and target features with a demonstrated
influence on the human visual perception mechanism is first extracted
from the original images. Then, the correlations between these features
and detection performance results obtained by visual observer tests on
the same set of images are captured into models by a learning algorithm.
The effectiveness of the adaptive modeling principle is discussed in the
final part of the paper. © 2000 Society of Photo-Optical Instrumentation Engineers.
[S0091-3286(00)01109-0]

Subject terms: clutter modeling; genetic programming; infrared; target detection;
visual perception; data modeling.
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1 Introduction

A wide variety of models have been developed in the past
decades that were aimed at predicting the probability of
detecting or recognizing military targets in a given scene
characterized by clutter.1–9 Most of these models incorpo-
rated psychological and physiological findings about the
modus operandi6,7 and the acuity8,9 of the human visual
search mechanism. Although some of the classic models
have achieved large popularity, a series of recent publica-
tions argued about the necessity to modify or update them
in order to compensate for some observed limitations.10,11

In our opinion, the limitations of these models could be
partly due to the fact that they attempt to capture a diversity
of distinct factors using simple and general formulas. Even
modeling the visual acuity of a single observer is an intri-
cate task, since perceptive abilities of individuals are
strongly dependent on subtle and subjective factors.

It is also noteworthy that, as has been pointed out in the
literature,12 significant differences exist between an imager
functioning in the visible spectrum and one in the infrared.
Indeed, an imager in the visible domain relies on reflected
light and displays objects with minor internal intensity
variations. On the other hand, an imager functioning in the
infrared domain relies on irradiance information. Objects
such as running vehicles can have significant temperature
variations between their structural parts. These temperature
variations generate a highly multimodal intensity distribu-
tion across the object surface and make it sometimes very
difficult to detect the boundaries of an object in infrared

imagery. Some researchers12 summarize these issues by
saying that the primary visual information from a visible-
light imager concerns shape, whereas the infrared imagers
are more cue-based. Under these circumstances, the criteria
developed for predicting performance in the visible do-
main, such as Johnson’s criteria,13 may be inadequate for
infrared. Several authors have focused their efforts on per-
formance prediction specific to infrared imagery.14,15

Our conjecture is that a specific model, rather than a
general one, may be a solution to some of these limitations.
In other words, different models should be generated for
different situations, observers, types of imaging equipment,
etc. However, in this case, due to the specificity of the
model, most of the significant factors involved will be al-
most impossible to predict analytically. The alternative is to
let a heuristic technique learn from examples and generate
a model specific to the context under which the examples
were generated. This latter approach presents several ad-
vantages, given that an appropriate learning scheme is em-
ployed. Among these advantages, a very important one is
that the necessity of prior knowledge about targets and fac-
tors involved is much diminished. Furthermore, this
method should be able to generate performance models ap-
plicable to both human observers and seekers.

Evidently, the learning scheme outlined must be based
on a supervised learning architecture. In the training data
file, one must include an objective value that represents the
measured performance of the observer/seeker on a set of
images. In correspondence with the objective value will be
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a list of features considered influential for this performance,
such as target contrast and extent, or various clutter metrics
from the literature.3–5,14 In this context, the goal of the
modeling system will be to extract the correlations that ex-
ist between the observed performance and the features pre-
sented and capture them into an analytical model.

In order to accomplish the task defined above, the learn-
ing method must meet two criteria. First, the models must
be issued in a closed, analytical form, so that they can be
interpreted. This criterion disqualifies the neural networks,
which have been traditionally employed in predicting the
behavior of highly complex processes, as potential candi-
dates for the learning method. Secondly, the proposed
method must be able to automatically select the features
that are actually relevant from the provided set of features.

An adaptive modeling system that meets these require-
ments and is based on genetic programming foundations
has been developed and is introduced in the next sections.

2 Data Modeling by Genetic Programming

As the principal component of the adaptive modeling sys-
tem introduced above, we have formulated an approach
based on genetic programming16 ~GP!. GP has emerged in
recent years as a powerful tool in search, optimization, and
classification applications. Closely related to genetic algo-
rithms ~GAs!, GP is a paradigm based on principles advo-
cated by students of natural evolution. GP is concerned
with developing simple computerlike programs~or func-
tions!. These programs produce a transfer function that
models the underlying relations within a data set. The pro-
cesses that they model can be very complex, subtle, and
nonlinear.

In a standard GP, a population of candidate solutions,
initially generated at random, undergoes a simulated evolu-
tion process. With each generation, a new population is
calculated from the previous one by allowing good solu-
tions to replace bad ones and by generating new solutions
through operators that mimic natural mechanisms such as
reproduction and mutation. Consequently, good solutions
progressively spread within the population, while being
continually exploited to build possibly better solutions. The
measure of goodness for a solution is incorporated into a
numerical value called fitness that is assigned to every so-
lution. The solutions to a data modeling problem are repre-
sented by models expressed as computerlike programs.
These are internally coded as strings of numbers, each of
which represents an operator, a variable, or a constant.

The simulation of evolution is realized through genetic
operators. The most significant of these operators is called
crossover, and it simulates sexual reproduction. In cross-
over, two solutions from the current population~parents!
are selected with probabilities proportional to their fitness;
consequently, fitter solutions receive larger chances of be-
ing selected. Next, the two solutions selected in this manner
exchange pieces of information according to a simple
crossover scheme, just like two chromosomes that ex-
change genes. The result consists of two new solutions
~children! that incorporate building blocks of the old ones.
Crossover is successively applied to selected pairs until an
entire new generation is created. It has been demonstrated
that increasingly better solutions are obtained while the
evolution progresses, analogous to a population subjected

to natural evolution, where the stronger individuals are the
ones that pass their genes to the next generation. Eventu-
ally, the process is stopped after a predefined number of
generations or when a solution with the desired accuracy
has been obtained.

Another widely used genetic operator is mutation, which
simulates a natural genetic accident and replaces pieces of
solutions with randomly generated alternatives. Mutation
sometimes acts as a fine-tuning mechanism; other times,
mutation provides the necessary boost that helps the search
to escape from a local minimum.

The particularities of GP methods make them most suit-
able for data mining and modeling problems where one is
interested in discovering the relations hidden behind nu-
merical data. In data modeling, one seeks to develop ana-
lytical models that best fit a set of data. Consequently, the
fitness of a model can be any measure of the cumulated
error between the model predictions and the actual values
from the data set. The evolution process in this case can be
referred to astraining. The advantages of GP methods in
modeling are predicted on their ability to accommodate
highly nonlinear or subtle behaviors.

The physical mechanism of a GP method consists of a
few standard steps:

• Step 1:Map the solution space of the problem at hand
into a genetic space where each possible solution has a
correspondent in a string of numbers called an indi-
vidual, or entity. In our case, the solutions, or entities,
are simple functions that model a data set.

• Step 2:Define a population of entities and randomly
initialize it.

• Step 3:Evaluate the fitness of each individual in the
population. The fitness describes the goodness of the
solution coded into the individual. In our case, this
fitness is a measure of the correlation between the ac-
tual and the predicted values. The goal of the evolu-
tionary process is to maximize this correlation.

• Step 4:With probabilities proportional to their fitness,
pairs of entities are selected for recombination. An
operator called crossover that is the algorithmic
equivalent of sexual reproduction realizes the recom-
bination. Crossover produces children that compose
the entities of the next generation. By selecting par-
ents according to their fitness, it is assured that better
solutions propagate their characteristics into the next
generations.

• Step 5: Apply mutation and other operators. These
operators enhance the performance and robustness of
the process.

• Step 6:If the overall stopping conditions are not met,
repeat steps 3 to 6 for the next generation.

In this study, we have employed a highly configurable
data-modeling engine based on a hybrid algorithm that
combines the robustness of GP with the efficiency of linear
regression. The models generated by this engine are inter-
nally converted into closed-form, analytical expressions. A
comprehensive list of operators is available, including
arithmetic and trigonometric functions, min and max, and
if-then-else structures. A set of genetic operators such as
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crossover and mutation can be selectively applied to in-
structions or coefficients. Incremental learning can be ac-
commodated by means of model libraries that store models
previously developed. Evolving models can access these
libraries and call the stored models as compound operators.

3 Feature Selection

An important condition for the success of the model gen-
eration process is the quality of the selected features. For
our problem, these features must be clearly relevant for the
detection process in a wide variety of case conditions. Es-
sentially, they have to capture factors with demonstrated
effect on human vision, such as contrast between a target
and its local background, internal target structure, area and
shape of the target, spectral composition, number and den-
sity of confusing forms within the scene, etc. A long series
of clutter metrics have been reported in the past two
decades,3–5,14 and some of these features can be readily
employed by the modeling system proposed in this paper.
The long list of clutter metrics that can be found in the
literature demonstrates the difficulty of finding ideal quan-
titative measures for clutter and target detection perfor-
mance.

It is our conjecture that another category of features may
be obtained through image transforms that exploit and
therefore can quantify descriptive elements such as rough-
ness, self-similarity, repetitiveness, or correlation between
neighboring pixels. For example, the Gabor transform
achieved a large popularity after several studies showed
evidence about the relation between its localization mecha-
nism and the mammalian early vision system.17,18 Several
candidate transforms for feature generation are currently
under investigation. Among these, the wavelet and Gabor
transforms,19 the Markov random-field models,20 the gray-
level cooccurrence matrices,5 and the fractal processes21

have produced promising preliminary results.
Two categories of features can be identified: global,

which are calculated over an entire scene and produce a
single number for that scene, and local, which are calcu-
lated at the target level and describe the degree to which a
specific target can be discriminated against its local back-
ground. For a specific scene, the two categories of features
will carry different weights, depending on the range of the
targets in that scene. Small targets, for example, will not
affect the global features to an observable extent, due to
their limited influence on the statistics at the scene level. In
our study, we have implemented features from both catego-
ries.

3.1 Global Features

The list of global features implemented in our adaptive
clutter modeling system is presented below.

The average target area~ATA ! is the average of the
areas of the targets encountered in the respective scene,
expressed in pixels squared.

TheRMS clutter3 ~RMS!, due to Schmieder and Weath-
ersby, is a classical clutter evaluation metric. The image is
first partitioned intoN adjacent windows whose areas are
roughly twice as large as those of the expected targets, and
then the individual intensity variancess i are computed for
each window:

RMS5S 1

N (
i

s i
2D 1/2

. ~1!

The clutter invariant14 ~INV ! measures the relative dif-
ference between the standard deviations of the entire
scene and the RMS clutter. It has been claimed that this
normalized difference is entirely due to intrinsic structure
in the image and is background-specific:

INV5
s2RMS

s
. ~2!

Theprobability of edge4 ~POE! is the standard deviation
of the probabilities of edge POEi calculated overN adjacent
partition windows:

POE5S 1

N
POEi

2D 1/2

. ~3!

POEi is the probability of a pixel being an edge pixel. The
image is first edge-enhanced and thresholded to produce a
binary edge map. The recommended edge detector for this
operation is the DOOG18 filter ~difference of offset Gauss-
ians!.

The Kolmogorov-Smirnov test~KST! measures the dif-
ference between the actual edge pixel distribution on a
scene and a uniform distribution. It has been argued that a
uniform distribution of the edge pixels corresponds to the
largest amount of clutter in the scene. First, an edge map of
the image is generated and partitioned into adjacent win-
dows of dimensionsM3M . For each window, theL-level
intensity histogram$Ni% i 50

L21 is generated first, and then an
empirical cumulative distribution function~CDF! SN( i ) is
calculated according to

SN~ i !5
( j 50

i Nj

M2
. ~4!

The value of the KST feature is given by the sum of the
absolute differences between the samples of the CDF and a
ramp, which is the CDF of a uniform distribution:

KST5
1

L (
i 50

L21 USN~ i !2
i

LU. ~5!

The global target prominence metrics are global, yet
target-dependent, metrics that measure the degree to which
a generic target can be discriminated from local back-
ground within a given scene. Different prominence mea-
sures can be used; in this implementation, we have selected
the contrast- and the edge-content-based measures. The al-
gorithms for calculating the global target prominence fea-
tures are discussed next.

The global target prominence in contrast~GTC! uses a
double-window filter to transform the image and is calcu-
lated with respect to a certain target present in the scene.
For that target, a target region and a background region are
created; the target region is the minimum-sized rectangle
that encompasses the target, whereas the background region
is concentric with the target region and has an area twice as
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large and the same aspect ratio as the latter. A so-called
realization value is calculated next by subtracting the aver-
age intensity of the background region from that of the
target region and dividing the result by the standard devia-
tion of the background. Then, a transformed image is ob-
tained as follows: for each pixel in the image, two concen-
tric windows equal in size to the target region and the
background region, respectively, are constructed. The dif-
ference in average intensity between the target window and
the background window is calculated and divided by the
standard deviation of the background window. On the nor-
malized histogram of the transformed image, the realization
value is marked. Finally, the GTC is defined as the area
under the histogram of the transformed image for values
less than the realization value. The GTC can be referred to
as a target-dependent signal-to-noise ratio. The difference
between the target mean and background mean is a mea-
sure of the target signal. On the other hand, the standard
deviation of the background can be considered a measure
of the noise around the target.

The global target prominence in edge content~GTE! is
similar in principle to the GTC and attempts to evaluate the
target prominence based on its edge content. First, a
Sobel22 edge map of the image is derived and transformed
by a smoothing operator. The dimensions of the Sobel ker-
nel are equal to those of the target region. A realization
value is calculated for the position where the window co-
incides with the actual target. The area under the histogram
for values less than the realization value gives the GTE.
This metric quantifies the relative edge information con-
tained in the target region as compared to that of the entire
image.

3.2 Local Features

The local features employed during this study are calcu-
lated over the two target-related regions defined in the pre-
vious section, namely, the target region and the background
region.

The target area ~ARE!, aspect area~ASR!, variance
~VAR!, and entropy ~ENT! are self-explanatory and de-
scribe the general appearance of the target in terms of size,
shape, and internal structure. The remaining features are
presented in Eqs.~6!–~9! and are called thetarget-
background contrast~TBC!, target interference ratio
~TIR!, target-background interference ratio~TBI!, andnew
target-background interference~TIN!.23 These features de-
scribe the target in relation to its local background and take
into account their relative differences in average intensity.
It is worth emphasizing that, since the targets are reduced
to rectangular regions, errors may occur in estimating the
local features due to bleeding between target and back-
ground characteristics. The mathematical expressions for
the features discussed above are

TBC5umT2mBu, ~6!

TIR5
mT2mB

sB

, ~7!

TBI5
mT2mB

~sBsT!1/2
, ~8!

TIN5
mT2mB

sB1sT

, ~9!

where mT,B are the average intensities of the target and
background regions, respectively, andsT,B are the standard
deviations of these regions.

3.3 System Architecture

The dynamic modeling system has the architecture shown
in Fig. 1 in two typical instances, namely, training and
testing. In training, it was assumed that ground-truth data
that describe the target positions and dimensions are avail-
able. In testing, a supplementary module called the confus-
ing form ~CF! detector has been included to identify poten-
tial targets in the scene. Its primary goal is not target
detection; instead, it is supposed to detect all the objects in
the scene that may be considered targets by a human ob-
server. A variety of algorithms and procedures can be em-
ployed in the CF module, such as the hit-and-miss
transform19,24 or similar morphological operators, blob de-
tectors, methods based on edge detection and contour ag-
gregation, or combinations of these.

Essentially, two processes are concurrently conducted in
the training stage. The first process is an observer perfor-
mance test in which a population of subjects is asked to
detect the targets in a set of infrared scenes. Based on this
test, each image~in the global modeling approach! or target
~in the local modeling approach! receives a difficulty mea-
sure. A meaningful difficulty measure can be the detection
probability for each target, as measured by the test~in glo-
bal modeling, the difficulty measure for a scene will be the
average of the individual target measures!. In parallel, a
feature extraction process examines the imagery and calcu-
lates the set of features that are believed to influence the
performance of the subjects. In our experiments, we have
used the features discussed above. The outcomes of the
observer performance tests constitute the objective data
used in training the genetic engine, while the features are
treated as explanatory variables or model parameters. The

Fig. 1 Block diagram of the clutter modeling system.

Voicu et al.: Clutter modeling in infrared images . . .

2362 Optical Engineering, Vol. 39 No. 9, September 2000
Downloaded From: https://www.spiedigitallibrary.org/journals/Optical-Engineering on 10 Sep 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



goal of the system is to detect the relations between these
features and the observer performance measures.

These relations are then captured in analytical models
used in the testing stage. The same feature extractor is ap-
plied to the testing images. The positions and dimensions of
the potential targets will be indicated by the CF detector if
ground-truth data are not available. The models generated
in the training stage will use the newly derived features to
produce predictions of detection performance and, equiva-
lently, assess the amount of clutter in the testing images.

4 Observer Test

In order to collect objective data for the training set em-
ployed in the necessary modeling experiments, we orga-
nized an observer test with 33 students enrolled in two
perception-related classes offered by the Psychology De-
partment of the Rollins College, Winter Park, Florida.
These students had not had military training and were not
familiar with infrared imagery, and therefore additional em-
phasis had to be put on the training aspect of the test. The
average duration of the test was about 15 min with a maxi-
mum stare time of 15 s per image. The information col-
lected during the test included the locations of shots, the
times between shots, the amount of time spent for each
image, and subject-related information such as age, gender,
training, and experience. An observer test administrator as-
sistant called VASE~Visual Acuity Sensor Evaluator! and
developed by Frontier Technology was employed during
the Rollins test. This software package incorporates all the
necessary tools to design and conduct perception tests and
to manage and interpret their results.

4.1 Imagery

Sixty-five 2563254 images from the RSTA September 94
database were employed in the Rollins test. Fifteen of these
images were included in the training set, and the remaining
fifty were used for testing. These images represent infrared
scenes in a rocky/mountain landscape and contain between
one and seven targets per image and various amounts of
clutter consisting of rocks and occasional bushes and trees.
The clutter ranges from mild to severe. A total of 132 tar-
gets of five different types could be found in the 50 testing
images. These types are HMMWV, M60, M35, M543A2,
and M113A2. The ground-truth data available for this im-
agery offer extensive information about the targets~loca-
tions, ranges, types, and percentages of occlusion!, as well
as sensor specifications, weather conditions, etc.

Figure 2 shows a few of the training images, selected to
span a variety of case conditions, target positions, sizes,
and relative contrast levels.

4.2 Subject-Related Statistics

After discarding the results of one of the subjects who av-
eraged about 22 shots per image and evidently did not com-
ply with the instructions, the Rollins test produced the
subject-based statistics illustrated in Figs. 3~a! to 3~d!. Fig-
ure 3~a! shows the distribution of the number of shots per
subject. The average number of shots per subject is 126,
which means approximately 2.5 shots per image. The dis-
tribution of the percentage of targets detected per subject is
represented in Fig. 3~b!. The maximum of this distribution
can be observed around the 56% mark, slightly below the
average performance of 60% attained by our subjects. The
distribution of the probability of detection, i.e., the percent-

Fig. 2 Examples of IR scenes and targets from the RSTA September 94 data selected for training.
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age of shots that were on target, is depicted in Fig. 3~c!.
Finally, the last plot, depicted in Fig. 3~d!, illustrates the
distribution of the false-detection probability per subject,
defined as the ratio between the number of his false alarms
and the total number of shots.

The performance of our subjects is considered satisfac-
tory, given that they had no experience and training with
infrared images. Although one may argue that this defi-
ciency will affect the objectives of the test, we believe that
the consistency in education, background, and age that
characterized the subject population is a strong compensat-
ing factor. The models based on these results will predict
how a 19-year-old~instead of a trained analyst! can detect
targets in cluttered IR images.

4.3 Target-Related Statistics

Figure 4 illustrates the target-related distribution of the
probability of being hit and provides a visual assessment of
target detection difficulty in the imagery employed in the
Rollins test. It is noteworthy that, while a single target was
discovered by all of the participants in the test, there were
six targets@shown in Figs. 5~a! to 5~f!# that were not de-
tected at all.

One may speculate at length about the characteristics of
the targets illustrated in Fig. 5 that made them virtually
invisible to all of our subjects. In Fig. 5~a! the target is
small and has very low contrast. Low contrast may also be
the reason for missing the targets shown in~b! and ~f!. In

Fig. 3 Summary of the subject-related statistics: (a) distribution of shots (clicks), (b) distribution of the
percentage of hit targets, (c) distribution of the probability of correct detection, and (d) distribution of
the false-detection probability.

Fig. 4 The distribution of the probability of being detected, calcu-
lated over the entire set of 132 targets present in the testing images.
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many cases@~b!, ~c!, ~d!, ~e!#, the targets that caused prob-
lems are situated close to the image borders, and it is well
known that the best detection performance is attained on
targets situated close to the center of the scene. The target
in ~c! has good contrast and size but is located in a very
cluttered region of the image.

For comparison, we present in Fig. 6 a series of targets
that looked very conspicuous to our subjects. Besides the
target shown in Fig. 6~a! and recognized by 100% of the
participants, Figs. 6~b! to 6~f! depict additional targets that
were hit by a large majority of subjects, between 94%
~missed by two subjects! and 97%~missed by a single sub-
ject!.

It is somewhat surprising that even small targets, like the
one at the center of image~e!, can be easily detectable if
they present good contrast and a fairly regular shape. The
other targets from Fig. 6 are relatively large, have good
contrast, show conspicuous internal structure, and, with two
exceptions in~b! and ~d!, are unique within their scenes.

4.4 Clutter-Related Statistics

A few clutter objects consistently selected as targets during
the Rollins test are illustrated in Fig. 7. While most of the
confusions are justified by the shapes and sizes of the ob-
jects, some can be explained by our subjects’ lack of expe-
rience and ability to interpret visual cues such as range@in
~b! and~c!#. The clutter object displayed in~f! represents a
tree that is unlikely to be confused with a target by a trained
observer.

It is interesting to note, on the other hand, that the im-
ages shown in~d! and ~e! represent the same scene at dif-

ferent moments in time, although the two images have dif-
ferent contrast and brightness properties and distinct
spectral characteristics. The clutter object marked in these
images received a significant number of shots in both
scenes, which indicates that its selection by the subjects is
not accidental.

5 Experimental Results

The results collected during the Rollins test were employed
to generate local and global clutter models. The global
models incorporate global features, and their goal is to pre-
dict the overall difficulty of scenes with respect to target
detection. On the other hand, the local clutter models are
based on local features and produce the probability that a
specific object in a scene will be classified as a target by a
human observer.

In the local models, the average probability of detection
for each target was used as a performance measure. In the
global models, an overall measure for the entire scene was
generated by averaging out the individual detection prob-
abilities of the targets from that scene. For computation
purposes, all the features have been normalized to their
maximum observed values. Although our modeling tool
does not require this normalization, we have observed that
the evolution process runs faster and produces more accu-
rate models when all of the features range between 0 and 1.
This also helps avoid computational artifacts such as, for
example, the overflow that happens when an exponential
operator is applied to a large number. An alternative and
safer normalization process can be performed by dividing
the feature instances by their absolute maxima, if these are

Fig. 5 Difficult detection cases. The six targets above (marked by arrows) did not receive any shots
during the Rollins test.

Voicu et al.: Clutter modeling in infrared images . . .

2365Optical Engineering, Vol. 39 No. 9, September 2000
Downloaded From: https://www.spiedigitallibrary.org/journals/Optical-Engineering on 10 Sep 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Fig. 6 Simple detection cases. The targets illustrated above were detected by (a) 100%, (b) 97%, (c)
97%, (d) 97%, (e) 94%, and (f) 94% of the subjects.

Fig. 7 Clutter objects with a large contribution to the false-alarm statistics. The encircled clutter ob-
jects were selected by (a) 72%, (b) 50%, (c) 47%, (d) 56%, (e) 100%, and (f) 37.5% of the subjects.
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available. The possibility of having to predict instances that
exceed the maxima observed in training is thereby avoided.

Several experiments have been conducted under distinct
genetic settings. The maximum allowed number of terms in
the models has also been verified. For every model, three
performance criteria well known in the statistics commu-
nity have been recorded, namely,x2 ~the sum of residuals
squared!, R2 ~the coefficient of determination!, and Radj

2

~the adjusted coefficient of determination!. Since it penal-
izes models with a large number of terms, the last criterion
is preferred by some researchers and has been selected as
the fitness value in our experiments.

5.1 Global Clutter Models

A series of global models was generated under the specifi-
cations described above. The models presented in this sec-

Table 1 Performance criteria for the global clutter models.

Model
Number of

terms x2 R2 Radj
2

Linear regression 7 0.69274 0.67059 0.61435

G0 10 0.48557 0.76910 0.71583

G1 10 0.48607 0.76887 0.71553

G2 20 0.37310 0.82259 0.70635

G3 18 0.31470 0.85035 0.75231

G4 20 0.30667 0.85417 0.75863

G5 24 0.24032 0.88572 0.78059

G6 28 0.21723 0.89669 0.76390

Fig. 8 Validation plots for seven of the models generated for global
clutter. For comparison, the linear regression model is also included.

Fig. 9 General influence of global features on the detection perfor-
mance.
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tion are labeledGi , i 50, . . . ,6, andtheir performance cri-
teria are illustrated in Table 1. For comparison, the
performance of the linear regression model derived from
the global data is also included. The plots in Fig. 8 show
the correlation between the model predictions and the ac-
tual values. Ideally, the points in these plots should be col-
linear along the liney5x, which is also represented.

The generated models can now be used to investigate the
relation between the background clutter and each of the
features considered during this experiment. Seven global
features have been employed in our study, and a graphical
representation of the dependence between the outputs of
our models and these variables is not feasible. A simple
possibility is to draw projections of the seven-variable
function on each of the feature planes. This can be accom-
plished by setting six of these features to predefined values
and varying the remaining one within a feasible interval. As
predefined values, we have chosen~although the appropri-
ateness of this choice is arguable! the average feature val-
ues over the entire set of samples.

Figure 9 presents these projections for modelG6 , which
is our best performer in terms ofx2. The seven features
have shown consistent behaviors in other models as well,
although these behaviors did not always follow the ones
dictated by our intuition. The target area~ATA ! displays a
significant maximum, which suggests that there may exist
an optimal size for the targets in order to be detected. The
performance slowly decreases above this threshold. This
behavior is possibly caused by a number of fairly large
targets that were missed, some of which are shown in Figs.
5~b!, 5~c!, and 5~e!. The dependence on the contrast promi-
nence~GTC! is increasing, as expected. On the other hand,
model G6 does not depend on the target prominence in

edge content~GTP!. The RMS clutter~RMS! shows a
prominent maximum in midrange. Intuitively, this is con-
sistent with our expectations. Indeed, it is reasonable to
assume that in order to detect the targets, one needs a fair
amount of intensity variation in the scene. For scenes that
are very uniform or exhibit a lot of intensity variation, the
detection task is likely to be a difficult one. It is important
to note that the RMS has been found to be a very stable and
robust clutter metric throughout this experiment. The pro-
file of the clutter invariant metric~INV ! is complementary
to that of the RMS clutter, as anticipated by Eq.~2!. Also
consistent with our expectations is the monotonically de-
creasing behavior of the probability of edge~POE!. Finally,
the Kolmogorov-Smirnov test~KST! behaved in disagree-
ment with our theoretical predictions, which affirm that the
probability of detection should increase with this metric.
These inconsistencies may result in part from the data in-

Table 2 Expressions for the selected global clutter models.

Model Expression

Linear
regression

9.7639910.285727 ATA11.07117 GTC10.223051 GTP
26.47041 INV21.7147 KST20.679379 POE27.73056 RMS

G1 237.6271178.2385 GTC223.971 GTC210.73807 INV2

10.15297 (ATA1INV)28.68121 INV KST25.3 (GTC2POE)
26.83856 GTC POE28.93719 GTC RMS216.1695 log GTC

G3 35.4946eINV225.8371eKST222.7465eRMS182.7759(ATA2GTC)

1133.5AGTC150.0688 GTC2
27.5094 GTC

KST
219.1543 ATA KST

2
2.27767 KST

INV
114.3713 KST3273.6726(INV2POE)1

1.95375 KST
POE

2
0.01305 POE

ATA
110.0294 INV POE27.94026 POE2269.965(ATA1POE)

1
9.05898 RMS

GTC
1

1.92621 RMS
INV

10.28166 RMS3116.6671 log RMS

G5 2.0272AATA10.59598 ATA2139.7252eINV14.30419ePOE

1
49.0303

GTC
1160.632AGTC22.71025 ATA GTC274.1211(ATA1GTC)

2140.405 INV2184.2337 INV32388.665AKST223.4616 ATA KST

2
44.3663 KST

GTC
162.3976 KST3196.1657(ATA1KST)2

0.71396
POE

1
5.93756 KST

POE
1126.17APOE2

0.015 POE
GTP

273.9839(KST1POE)

1167.351ARMS190.9979 KST RMS2327.94 RMS21176.056 RMS3

Table 3 Performance criteria for the local clutter models.

Model
Number of

terms x2 R2 Radj
2

Linear regression 8 7.36779 0.39437 0.35498

L0 9 5.14557 0.57704 0.54952

L1 10 4.76134 0.60862 0.57975

L2 20 3.78980 0.68847 0.635628

L3 19 3.75963 0.69090 0.64173

L4 28 3.13270 0.72765 0.65695

L5 30 3.70570 0.72294 0.64417

L6 39 3.05191 0.74913 0.64663
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sufficiency in the test. In addition, there is undoubtedly a
great deal of cross-correlation between our features, and
accordingly it is conceivable that some of the combinations
of features used in drawing the projections are not physi-
cally possible.

For illustrative purposes, the expressions of a subset of
the global clutter models generated throughout this study
are presented in Table 2.

5.2 Local Clutter Models

In the local clutter modeling experiment we have followed
the same guidelines as in global modeling. This subsection

presents seven selected models built during this experiment
and labeledLi , i 50, . . . ,6. Thesame model performance
criteria as in the global modeling case have been monitored
~Table 3!. Figure 10 contains the correlation plots~pre-
dicted versus actual! for a selection of local clutter models,
and Fig. 11 shows the individual influence of the features
on the output of modelL4 .

As a general conclusion, the robustness of the local
models seems to be affected by the approximation of the
targets with rectangular boxes. The target area~ARE! ex-
hibited similar behavior to that in global modeling, with a
maximum in midrange. The aspect ratio~ASR! has a bimo-
dal profile, and we suspect that its relevance for target de-
tection is minor. Besides, for small targets the aspect ratio
is quite an unstable feature. The target variance~VAR!
metric shows a prominent maximum about the 0.6 mark,

Fig. 10 Validation plots for seven of the models generated for local
clutter. For comparison, the linear regression model is also included.

Fig. 11 General influence of local features on the detection perfor-
mance.
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similar to the profile of the variance-based feature used in
global modeling, namely, the RMS clutter. This suggests,
once again, that a human needs a moderate degree of varia-
tion, inside and outside the target, in order to perform a
target detection task in infrared images. The target-
background contrast~TBC! did not behave as expected and
shows a minimum in midrange. The positive influences of
the target interference ratio~TIR! and the new target-
background interference ratio~TIN! on the detection pro-
cess are in agreement with our predictions based on Eqs.
~7! and ~9!. Indeed, the greater the difference between the
average intensities of the target and background regions,
respectively, the better the chances for the target to be de-
tected. This argument fails, though, in the case of the
target-background interference~TBI!, whose behavior is
considered an inconsistency. Finally, the entropy of the tar-
get ~ENT! shows a mild negative contribution to the detec-
tion process. Alternative local features must be investigated
and validated against testing data.

The expressions for three models selected from the set
discussed in this section are given in Table 4.

6 Conclusions and Future Research

This study describes a new approach to clutter modeling,
referred to as dynamic modeling assisted by genetic pro-
gramming. The purpose of this study was to open a new
direction of research in this area rather than solve the clut-
ter quantification problem. We believe that dynamic mod-
eling can become a powerful instrument in various domains
that require the systematic analysis of large amounts of
data.

The models generated throughout this study have illus-
trative value. Due to data insufficiency, we could not vali-

date them on testing data. Furthermore, the overall signifi-
cance of the Rollins test is questionable, due to the small
number of participants and images employed, and the inap-
propriate background and training of these participants.
Nonetheless, it has been shown that data modeling based on
genetic programming achieves better prediction accuracy
than regression modeling. Besides generating clutter mod-
els, this approach can also be used to identify the features
that have the greatest effect on detection performance. It is
noteworthy that similar features behave consistently with
one another in both global and local modeling. A very good
example is the similarity between the RMS clutter~global!
and the target variance~local!. An additional advantage of
the dynamic modeling is that it can essentially predict both
human observer and seeker performance.

Further research is necessary in infrared clutter model-
ing in order to determine alternative features that are in
closer relation with the detection performance indicators,
capture unexplored aspects of targets that are inherently
used by humans to discriminate them from the background,
and take advantage of contextual cues.

An important aspect of data modeling is the statistical
significance of the models generated. Our experience has
shown that a conflict arises at some point in time between
the accuracy and the prediction capabilities of our models.
In theory, a model generated by genetic programming can
achieve infinite accuracy if a proper coding method has
been chosen and a long enough evolution time has been
allowed. However, this is oftentimes accomplished at the
expense of the generalization and prediction properties of
the resulting model. Consequently, one must not aim at
obtaining extremely high accuracy, but rather at obtaining
meaningful models. A robust method to estimate the statis-

Table 4 Expressions for the selected local clutter models.

Model Expression

Linear
regression

0.3049110.146614 ARE20.0335958 ASR20.0516514 ENT
20.543521 TBC22.73696 TBI12.40095 TIN11.55645 TIR10.17753 VAR

L0 20.10102 ENT11.34486ATBC2
0.20812 TBI

TIR

1
0.31917 TIR

TBI
21.47918(TBC1TIR)20.33075(TBI1TIR)

11.2755(TIN1TIR)10.9821 VAR21.12454 VAR3

L1 24.49967 ARE31
1.76127

ASR
13.67527 ASR315.82934eARE26.68816eASR

20.30404eENT14.98517eTBC21.16551(ARE1ENT)25.53485 TBC2

24.7782(ARE1TBC)11.23373(ENT1TBC)1
0.0005 ENT

TIN

11.0382 TIN2
0.02294 TBC

TIR
2

0.1874 TBI
TIR

11.50349 ARE TIR

20.84614 ASR VAR21.90775 VAR212.5069(ASR1VAR)16.72968 log ASR

L4 26.2469320.74531ARE21.13651 ARE31
0.2825
ASR

1
0.53831 ARE

ASR
13.6108 ASR21.92572 ASR220.25391eENT17.85078eTIN

24.29496eVAR10.17687 ARE ENT10.28074ATBC14.28414 TBC2

1
0.00102 ASR

TBI
2

0.2513 TBC
TBI

12.19599 TBC TBI22.51213(TBC1TBI)

29.50362 TBC TIN25.61252 TIN210.45453 TIN320.01244(2ENT1TIN)

20.15024(TBC1TIN)21.62557 ARE TIR14.5423AVAR

11.92152 ARE VAR11.46482 TIR VAR14.95654 VAR221.16427 VAR3
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tical relevance and the prediction capabilities of these mod-
els as early as in the training stage is yet to be established.
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