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Abstract. This paper presents a fast K-dimensional tree-
based search method to speed up the encoding process for
vector quantization. The method is especially designed for
very large codebooks and is based on a local search rather
than on a global search including the whole feature space.
The relations between the proposed method and several ex-
isting fast algorithms are discussed. Simulation results dem-
onstrate that with little preprocessing and memory cost, the
encoding time of the new algorithm has been reduced sig-
nificantly while encoding quality remains the same with re-
spect to other existing fast algorithms. © 2004 Society of Photo-
Optical Instrumentation Engineers. [DOI: 10.1117/1.1683885]

Subject terms: fast vector quantization; large codebooks; still image
compression.
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1 Introduction

Nearest neighbor search is based on finding the closest
point to a reference point amongM such points in the
K-dimensional (K-d) space. Reducing the complexity of
nearest neighbor search is of considerable interest in vector
quantization~VQ! encoding.

To overcome this problem, several fast quantization al-
gorithms have been developed. We can classify previous
work into two groups.

The first group seeks a suboptimal solution in the sense
of a mean squared error. The second group addresses an
exact solution of the nearest neighbor encoding problem
with less computation than that of exhaustive search. In this
context,K-d trees have been widely used for fast search. In
Ref. 1 the emphasis lies on the optimal design of theK-d
tree for efficient nearest neighbor search in multidimen-
sional space under a bucket-Voronoi intersection search
framework. The main disadvantage of this method is a rela-
tively low vector dimension. The fast encoding method
proposed in Ref. 2 exploits the topological structure of the
codebook but is designed for relatively small codebooks.

In this paper, a new fast method is presented which sig-
nificantly reduces the computations without large memory
cost and is applicable for large codebooks and vector di-
mensions.

2 Description of the Encoding Method

Our proposed method is based on the idea to build clusters
containing a certain number of reference vectors. Thus,
only a certain number of clusters have to be searched and
the closest reference vector will be found within these clus-
ters. This reduces the number of necessary floating point
operations significantly.

The clustering works as follows: first one empty cluster
is generated, which contains the whole input space (Rn). A
vector x belongs to a clusteri, if for each dimensionk, k
51,̄ ,n the following relation holds mink

i ,xk,maxk
i . The

mins and maxs denote the lower and upper bounds of the
clusteri in each dimension. Now the reference vectors are
put one after another in the appropriate cluster~at the very
beginning in the empty initial cluster!.

Once the number of the vectors in one cluster exceeds
an application-based threshold value, this cluster is split
into two child clusters. The range of the two child clusters
in the input space is determined as follows: the dimension
of the largest deviation of the reference vectors within the
parent cluster is determined. Letdmax be the dimension of
the largest deviation, then the ranges of the two child clus-
ters for this specific dimension are for the left cluster
(mindmax

,middmax
) and for the right cluster

(middmax
,maxdmax

), while the ranges for the other dimen-
sions remain unchanged and are the same for both the left
and right cluster. The mins and the maxs are the parent’s
bounds; middmax

is the average of the two closest values of
the reference vectors in this dimension. Each time a cluster
is split into two child clusters, the parent cluster becomes a
node in the tree, and the child-clusters are new leaves of the
tree. This means the generated tree will be binary with the
leaves containing all reference vectors. The nodes can be
used to look up a certain cluster. Every nonterminal node is
associated with a region and a partitioning hyperplane of
the form x: xdmax

5h, which needs storage of two scalar

quantities (dmax,h) at each node, and also the pointers to
the child-clusters themselves. The quantitydmax is the co-
ordinate axis orthogonal to the hyperplane and corresponds
to the dimension of the largest deviation of the reference
vectors within the parent cluster, whileh is the location of
the plane on this axis. The location is given by the average
of the two closest values of the reference vectors in this
dimension. Thus, a better discriminatory power can be
achieved in a denser data distribution.

This process is repeated until all reference vectors of the
codebook have been processed and put into the appropriate
cluster.

Once all vectors are distributed to the clusters, the clos-
est reference vector to a given input vector can be found
without searching the whole table, but just a couple of clus-
ters have to be searched. First the cluster where the input
vector belongs is looked up. This takes only a few com-
pares, because the clusters can be ordered in a tree-
structure, which is generated while the clusters are built.
Now the Euclidean distance to all reference vectors in the
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found cluster is calculated and the closest codeword is
found.

The complexity of the tree-structured vector quantiza-
tion ~TQ!-lookup algorithm can be determined as follows:
the number of compares which are necessary for finding the
right cluster depends on the level of the tree. If the refer-
ence vectors are uniformly distributed within the codebook,
the tree is balanced, and the number of compares is given
by the following equation~provided that each leaf of the
tree contains the same number of reference vectors!:
Ncompares5 log2 Ntotal/Ncluster, in which Ncomparesis the num-
ber of compares,Ntotal is the total number of reference vec-
tors, andNcluster the average number of elements in each
cluster. The number of elements per cluster varies from one
to the maximum number of vectors which are allowed per
cluster. Results for the average number of elements per
cluster are given in Section 3. After the right cluster is
determined, this cluster has to be searched to find the near-
est reference vector within this cluster. The number of dis-
tance calculations isNcluster. If the search is stopped at this
point, quite good results can be achieved with a minimum
of computations~see Table 1!. The TQ algorithm which is
executed just until this point will be called Fast TQ, the full
TQ will be called Accurate TQ. If the search is continued to
find the best approximation, the number of computations
mainly depends on the distribution of the reference vectors
within the codebook and on the dimension of the reference
vectors. TQ will be compared to two other algorithms: ex-
haustive search and the quantization algorithm proposed in
Ref. 2 ~in the following referred to as Li and Salari algo-
rithm!. The exhaustive search does not need to store any
further information, so there is no memory overhead. The
Li and Salari algorithm works by calculating the distances
from the reference vectors to some fixed vectors, and stor-
ing these distances associated with the reference vectors.
The number of fixed vectors proposed in Ref. 2 is three,
and this is the number of fixed vectors we used in our
simulations.

3 Simulation Results

Computer simulations using six mammographic images
from the Mammographic Image Analysis Society~MIAS!
database were performed to evaluate the proposed method
in comparison with some other fast algorithms. We use
three codebook sizes ofN5256, N51024, andN565536
codewords each. The codebooks were generated by a neural
network algorithm based on the ‘‘neural-gas’’ network. The
performance of the ‘‘neural-gas’’ network is better than the
usually employed Lloyd algorithm. The vector codebook
was trained by using five 102431024 mammograms using
the ‘‘neural-gas’’ network. The images are monochrome
with 256 graylevels. The vector dimensionn is 434516.
After the codebook converged, the quantization was per-
formed using images, which were not included in the train-
ing set. In our simulations the maximum number of vectors
per cluster was set to 7 resp. 19, the average number of
vectors per cluster was 5 resp. 14.

The simulation results are summarized in Table 1. The
interpretation of the results yields that the Fast TQ is very
fast even if used with large codebooks. If used with smaller
maps, it is still faster than the Li and Salari quantizer. The
memory usage depends on the number of reference vectors

per cluster; for 256 vectors it is 1228.8 bytes, which is still
less than the memory usage of the Li and Salari algorithm
~6144 bytes!. The Accurate TQ is fast for large codebooks
and uses the same amount of memory as the Fast TQ. The
resulting quantized image has the same peak signal to noise
ratio of 21.24 dB as that for exhausting search, but the
process of quantizing is much faster. For small codebooks
~256 vectors! the Li and Salari algorithm performs better.
The values stated in Table 1 are normalized to the number
of vectors that were quantized, i.e., a value of 1024 in the
column 1 means that in average 1024 additions were
needed to quantize one vector.

4 Conclusion

A new fast vector lookup technique for large codebooks has
been presented in this letter. It has several advantages. The
main advantage of the TQ algorithm is that a region in the
codebook, which is close to the best matching reference
vector, can be found with just a couple of comparisons. If
applied to large codebooks, it is the fastest algorithm so far
known. Noa priori knowledge is necessary, and it can be
applied for high vector dimensions. It is flexible, i.e., it is
applicable to every codebook without modifications. The
memory usage is small, so that it can be used even in
memory restricted environments. An important application
area of the proposed method is telemedicine and it is ex-
pected to support the very high archiving and transmission
requirements of digital medical images, as required for ex-
ample in teleradiology.

References
1. V. Ramasubramanian and K. Paliwal, ‘‘Fastk-dimensional tree algo-

rithms for nearest neighbor search with application to vector quanti-
zation encoding,’’ IEEE Trans. Signal Process.40~12!, 518–531
~1992!.

2. W. Li and E. Salari, ‘‘A fast vector quantization encoding method for
image compression,’’IEEE Trans. Circuits Syst. Video Technol.5~2!,
119–123~1995!.

Table 1 Comparison of computation performance for Fast TQ, Ac-
curate TQ, Li and Salari algorithm, and exhaustive search. The
overall performance is determined by multiplications, additions,
comparisons (MACs) and is needed for the sorting of the code-
vector distances from the hyperplanes for different codebook sizes.
(Codebook is tested with an image outside the training set.)

Size Algorithm * 6 Compares

Fast TQ (7) 21.24 42.48 5.32

256 Acc. TQ (7) 54.88 108.72 133.96

Acc. TQ (19) 91.87 182.73 100.66

Li and Salari 34.96 65.96 101.08

Exh. search 1024 2048 256

Fast TQ (7) 21.33 42.67 5.33

1024 Acc. TQ (7) 176.03 351.05 390.84

Acc. TQ (19) 279.65 558.3 304.55

Li and Salari 667.62 1331.24 1704.11

Exh. search 4096 8192 1024

Fast TQ (7) 19.64 39.28 4.92

65536 Acc. TQ (7) 267.92 534.8 598.76

Acc. TQ (19) 287.32 573.64 433.92

Li and Salari 4995.72 9987.4 26542.52

Exh. search 262144 524288 65536
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