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Abstract. A generalized nonparaxial theoretical framework based on
the scalar diffraction theory is developed to describe the propagation of
an optical field through a linear optical system with quasi-monochromatic
spatially incoherent illumination. Software implementation of this theoret-
ical framework on single and multiple processor platforms was devel-
oped and simulated results of the imaging process through optical
aberration-corrected optics are presented for both in-focus and out-of-
focus imaging, validating the first-order nonparaxial model. © 2004 Society
of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.1751401]
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1 Introduction

Many imaging scenarios from microscopy to space optics
can be well modeled with ray-tracing theory. Some excep-
tions to that rule include modeling propagation of optical
waves in nonlinear media or accounting for coherent or
partially coherent light propagation occurring in optical fi-
bers, media with microscopic refractive index variations,
and integrated optical components and systems, for ex-
ample. A good model to describe propagation of light in
such systems is the finite-element beam propagation
method.1 Another approach to modeling the propagation of
optical waves in an optical system, Gaussian beam decom-
position, is generally applicable in the case where the
slowly varying envelope approximation holds. Such an ap-
proach is often used to model laser beams or optical field
propagation through bulk optics.2 Finally, for linear shift-
invariant systems, imaging can be modeled using Fourier
transform methods, where the final image is obtained as a
convolution of the object with a transfer function.3

The application of the scalar diffraction theory to imag-
ing with quasi-monochromatic incoherent light fields pre-
sented in this paper was motivated by the domain of opti-
cally created special effects, specifically as it applies to
propagating an optical field through non-shift-invariant op-

tical phase plates strategically positioned within the optics
utilized to create the desired special effects. Furthermore,
the imaging system may have a large field of view~FOV!
as in live image capture.4,5 It is beyond the scope of this
paper to detail such an imaging system for special effects or
demonstrate the creation of special effects that also require
optimization of optical texture plates. We shall, however,
present a nonparaxial imaging approach that will be essen-
tial in future work related to modeling image formation
through such phase plates. The modeling approach will also
be broadly applicable to non-shift-invariant imaging sys-
tems, beyond that of creating special effects.

Note that a system may be non-shift-invariant and opti-
cal aberration free. Such a case may be encountered in the
creation of optical special effects, where the non-shift-
invariance is created by the texture plates and not the opti-
cal aberrations of the imaging optics. However, optical ab-
errations may contribute to non-shift-invariant optical
imaging if optical aberrations of the imaging optics are not
fully balanced across the entire FOV. For the live image
capture application, the imaging optics should be designed
to be distortion free and well corrected to the extent pos-
sible for optical aberrations, given that the optics may be
utilized with or without the phase plates. Also, if a phase
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plate is utilized, the imaging optics will be used slightly out
of focus, therefore the main challenge to this problem is not
to model imaging through an aberrated optics, but rather to
correctly model first-order wide-FOV imaging, in or out of
focus, and to have a modeling approach that in the future
will naturally enable insertion of an optical phase plate any-
where within the optics. If a non-shift-invariant texture
phase plate is located along the optical path, a non-shift-
invariant imaging model is required regardless of the fact
that the imaging optics may be diffraction limited.

The ray-tracing approach was first implemented in early
stages of our investigation, however, the application of this
approach was limited by the assumption of spatial incoher-
ence everywhere along the optical path and failed to pro-
vide a theoretical model describing the behavior of an op-
tical phase plate.5 Furthermore, because phase plates are
non-shift-invariant, the final image cannot be obtained as a
simple convolution. Thus, the use of Fourier-transform-
based algorithms is not applicable. Specifically, there is no
advantage to using Fresnel diffraction theory and the asso-
ciated approximations and simplifications that are conven-
tionally used to introduce Fourier transforms as part of the
imaging process.3 In practice, for very specific image for-
mation problems, it would be interesting to compare vari-
ous modeling approaches with their associated approxima-
tions. Moreover, because the structure of the texture plates
is rough, neither Gaussian beam decomposition algorithms,
nor stationary scattering techniques such as the Harvey-
Shack technique, are applicable.6 Thus, to model the imag-
ing process through a structure imposing such restrictions,
a different approach had to be investigated, and custom
software implementation had to be developed.

A key contribution of this paper is the presentation of a
generalized nonparaxial theoretical framework based on the
Rayleigh-Sommerfeld diffraction formulation enabling the
application of the scalar diffraction theory to imaging with
quasi-monochromatic incoherent illumination across large
FOVs. This generalized framework extends the paraxial-
imaging framework reviewed in Sec. 2 to the nonparaxial
case.

2 Review of the Theoretical Framework for
Quasi-Monochromatic Incoherent
Illumination

Scalar diffraction theory has been previously proposed to
model quasi-monochromatic incoherent imaging for de-
scribing light propagation through a linear optical system.3

Such modeling is based on the classical Rayleigh-

Sommerfeld diffraction integral. Let us consider a linear
optical system consisting of an object, an aberration-free
optics, and an imaging surface~e.g., a plane is a special
case!, as shown in Fig. 1. If we denote the local coordinate
systems in the object, the exit pupil, and the image as@j;h#,
@x;y#, and@u;v#, respectively, and the optical field in the
object plane by its complex amplitudeUo(j;h), then the
complex amplitude in the imaging planeUi(u;v) will be
expressed as

Ui~u,v !5E
2`

` E
2`

`

dj dhUo~j,h!h~u,v;j,h!, ~1!

where h(u,v;j,h) is the transfer function of the investi-
gated system for a point@u,v# given @j,h#.3 Furthermore,
to express the irradiance distribution in the image, we must
consider the statistical properties of the light. By assuming
ergodicity of the statistical imaging process and applying
Fubini’s theorem,7 the irradiance distribution in the image
can be further written as

^I i&~u,v !5E
2`

` E E E ^Uo~j,h!Uo* ~j8,h8!&

3h~u,v;j,h!h* ~u,v;j8,h8! dj dh dj8 dh8,

~2!

where the brackets in the left-hand-side term denote the
mean over time and the brackets on the right-hand side
denote ensemble average.8 Finally, assuming quasi-
monochronatic spatially incoherent illumination we obtain

^Uo~j,h!Uo* ~j8,h8!&5^uUo~j,h!u2&d~j2j8!d~h2h8!

[^I o~j,h!d~j2j8!d~h2h8!&, ~3!

and thus Eqs.~2! and ~3! yields

^I i~u,v !&5E
2`

` E ^I o~j,h!&uh~u,v;j,h!u2 dj dh. ~4!

Thus, Eq.~4! provides the relationship between the irradi-
ance distribution in the image and the irradiance distribu-
tion in the object illuminated with quasi-monochromatic
and spatially incoherent light under the assumption of er-
godicity of the imaging process. Equation~4! is similar to
Gaskill’s9 Eq. ~11.82!. It simply differs by taking into ac-

Fig. 1 Layout of an optical system consisting of an object illuminated with a spatially incoherent
quasi-monochromatic light field of complex amplitude Uo , an aberration-free optics, and an arbitrary
imaging plane.
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count the statistical properties of the light. Importantly, the
expression for the transfer function must be formally estab-
lished to apply this framework to different imaging con-
figurations~e.g., paraxial; nonparaxial aberration free; non-
paraxial combined with optical aberrations; any of these
with defocus given that defocus is best considered as a
first-order imaging property!.

3 Review of the Application of the Paraxial
Framework to Plane-to-Plane and Plane-
to-Curve Imaging Configurations

In the special case of a system consisting of free-space
propagation, followed by propagation through an
aberration-free optics of focal lengthf , and consequent
propagation through free space, the paraxial transfer func-
tion based on applying the Rayleigh-Sommerfeld formula
is given by

h~u,v;j,h!5E
2`

` E
2`

`

dx dyP~x,y!Fexp~ jkr 1!

j lr 1
cosu1G

3H expF2 j
k

2 f
~x21y2!G J

3Fexp~ jkr 2!

j lr 2
cosu2G , ~5!

wherek is the wave number,l is the central wavelength,
cosu1 and cosu2 are obliquity factors, andP(x,y) is a pu-
pil function equal to one inside the pupil and zero every-
where else. In Eq.~5!, r 1 and r 2 are defined as

r 15@~x2j!21~y2h!21z1
2#1/2,

r 25@~u2x!21~v2y!21z2
2#1/2. ~6!

The obliquity factors occur by considering the geometry
of parallel object-to-pupil and pupil-to-image plane-to-
plane imaging. Thus, one can infer that this expression
would hold some validity in the nonparaxial region once
the parabolic approximation to the optics transfer function
is replaced by the exact expression. We shall demonstrate
in Sec. 4 that such inference fails. Equation~5! is quite
similar to the framework presented in Sec. 10-6 in Gaskill,9

however, it has been made formally a function of four vari-
ables, thus allowing to model non-shift-invariant systems.

Furthermore, from the theory of first-order imaging
properties, it is known that even for perfectly stigmatic im-
aging ~i.e., aberration-free imaging!, the image is not dis-
tributed on a plane surface but rather on a curved surface,
called the Petzval surface, as shown in Fig. 2. Without loss
of generality in illustrating the Petzval surface, Fig. 2 de-
picts the case of an object at optical infinity.10,11 In this
case, the surface can be shown to describe a portion of a
sphere. If the object is located a finite distance from the
optics, the surface shape can be computed using first order
imaging equations.12,13Thus, a next step in the formal rep-
resentation of the basic framework set in Eq.~5! is to con-
sider a plane-to-Petzval-surface imaging process to fully
validate that sharp imaging occurs on the predicted curved
surface. If field curvature imposed by Petzval curvature is

severe, as occurrs if the optics is not specifically designed
with multiple elements to flatten the field and is imaging
large FOVs, the image formed on a plane will be extremely
blurred in intensity as one goes up in the FOV along a
plane. Also in a simulation with a limited dynamic range
~i.e., 0 to 255 gray levels! to represent intensity variations,
most of the image will appear to fall within the lowest
levels of the gray scale, thus making it difficult to assess the
validity of the imaging process, even simply according to
its first order imaging properties. We demonstrate such
limitations in Sec. 5. Imaging on a curved surface, as op-
posed to a plane, does not signify that we ignore the Petzval
curvature. To the opposite, it signifies that we take it into
account in the validation of first-order imaging properties.
Such a choice is a necessary step in the validation proce-
dure. Thus the expression forr 2 in Eq. ~6! was modified to

r 285@~u2x!21~v2y!21z28
2#1/2, ~7!

wherez28 is calculated from the Descartes first-order imag-
ing equation,12,13 given z1 separately for each set of points
@j;h# and @u;v#.

4 Generalized Nonparaxial Theoretical
Framework Based on the Scalar Diffraction
Theory

Paraxial imaging is generally rigorously defined for infi-
nitely small object sizes and small angles of incidence on
optical elements. Thus, any real imaging scenario, unless
on axis only, usually violates the paraxial approximation. In
imaging, one then often distinguishes between paraxial,
quasi-paraxial imaging@i.e., which applies for FOVs
,10 deg and an optics of anF-number (F#) of 10 or
more#, and nonparaxial~i.e., FOV.10 degrees or an optics
of F# less than 10!. Nonparaxial imaging comprises two
components in imaging: first-order properties, and higher
order imaging properties. First-order properties assume an
aberration-free optics and the ability to model in focus im-
aging on the Petzval surface, as well as imaging with de-
focus. Higher order properties include optical aberrations.
This paper focuses on the first-order nonparaxial imaging
properties for an aberration-free system.

A key to generalize the basic framework for nonparaxial
imaging was the realization that the phase transformation

Fig. 2 Illustration of stigmatic imaging on a curve surface for an
object located at optical infinity.
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performed by the optics, whether it is the parabolic ap-
proximation or the exact form, must be applied on a trans-
formation plane tilted with respect to the optical axis.
Equivalently, the transformation must be applied in such a
way that it remains normal to the chief ray for each point
@j;h# in the object, as illustrated in Fig. 3. The physical
meaning of the tilted summation plane can be best under-
stood by considering the special case of an extended object

at infinity. The wavefront reaching the optics from a point
in the FOV is tilted with respect to the optical axis and
perpendicular to the chief ray. The lens function is to trans-
form such plane wavefront into a spherical wavefront
whose center of curvature lies off-axis on the Petzval sur-
face. Such an imaging property can be accomplished by an
optics transformation function that is rotationally symmet-
ric, while not strictly speaking quadratic, with respect to the
chief ray. The concept of the tilted plane for summation
applies equally well for an object at finite distance from the
optics, given that the tilted summation plane is perpendicu-
lar to the chief ray in all cases and tangent to the incident
wavefront emanating from any object point in the FOV.
Therefore the expressions forr 1 and r 2 in Eq. ~6! were
modified to

r 185@~x82j!21~y82h!21z18
2#1/2,

r 285@~u2x8!21~v2y8!21z28
2#1/2, ~8!

where @x8,y8# are the coordinates in the tilted lens trans-
formation plane. Thus, the transfer function introduced in
Eq. ~2! can be reduced to

h~u,v;j,h!52E
2`

` E
2`

`

dx8 dy8P~x8,y8!

3
exp~ jkr 18!exp2 jk$~z181z28!2z18@12 ~x821y82!/z18

2#1/22z28@12 ~x821y82!/z28
2#1/2%exp~ jkr 28!

l2r 18r 28
, ~9!

whereP(x8,y8) is equal to 1 inside the projection of the
aperture on the tilted plane and equal to zero outside,z18
andz28 are related through the Descartes equation, and the
function describing the optics as a focusing element with
no aberrations is an exact expression, instead of the para-
bolic approximation. The lens term in Eq.~9! was derived
by considering the dephasing required to be introduced by a
converging lens to map a diverging spherical wavefront to a
converging spherical wavefront. With this mathematical
formulation, the obliquity factors are not necessary given
that the summation planes are always perpendicular to the
chief rays.

5 Results

To fully demonstrate the capability of the model described
by Eqs.~7! to ~9!, we must first choose reasonable values
for the parameters of the optical system not only within the
quasi-paraxial region, but preferably within the nonparaxial
region. Thus, the object was considered located at a dis-
tance of 2f away from anF/5 aberration-free optics of
20-mm focal length, enabling testing of both the paraxial
and the nonparaxial frameworks for various FOVs.

The mathematical framework was implemented using
conventional numerical quadrature techniques~e.g., see
Ref. 14!. Given the high number of computations involved,
the computation time for the simulation of one imaging

condition was over 3 weeks on a single-processor platform.
Thus, establishing an alternative computational approach
was necessary. The next-generation implementation was
developed on a Beowulf cluster utilizing 96 dual 1.3-Ghz
Athlon processor nodes.15 The computation to generate the
simulated images was easily spatially partitioned to handle
subsections of the object to be imaged. This distribution
resulted in implicit load balancing. The time complexity
and accuracy in terms of the size of the matrix elements, as
well as the scalability on a parallel platform will be dis-
cussed in a follow-up investigation, because it requires an
in-depth investigation of various parallel architectures in-
cluding 32-bit versus 64-bit processors, as well as assess-
ment of performance on symmetric multiprocessing~SMP!
and nonuniform memory access~NUMA !-based computing
platforms.16 With the Beowulf cluster implementation, the
computation time was reduced to minutes, which enabled
us to further investigate the modeling approach.

The generalized nonparaxial theoretical framework for
plane-to-curve imaging was compared to the paraxial or
more precisely the quasi-paraxial framework for plane-to-
curve imaging reviewed in Sec. 3, by using a 256-gray-
level bitmap object filling a 40-deg FOV. Equation~5!,
which defines the paraxial and quasi-paraxial framework, is
thought to be paraxial or quasi-paraxial because of the
parabolic approximation to the optics transformation func-

Fig. 3 Generalized nonparaxial imaging framework with the trans-
formation plane normal to the chief ray and tilted with respect to the
paraxial transformation plane.
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tion. However, the main reason for this equation to be lim-
ited to the quasi-paraxial region is the application of the
optics transformation function on a plane perpendicular to
the optical axis, as we show in the simulations. Equation
~9! addresses both limitations of Eq.~5! by using an exact
optics transformation function and applying it in a plane
perpendicular to the chief ray for each point in the FOV.

All results presented correspond to plane-to-curve imag-
ing, where the Petzval surface was computed for the geom-
etry provided, to ensure that a lack of a good image or even
an image across the full FOV is not a consequence of Petz-
val curvature. Under realistic imaging conditions with an
optimized optics, the Petzval curvature will be moderate,
and in the case of plane-to-plane imaging it will cause only
slight blur as the image extends further in the FOV. How-
ever, because we do not use a field flattener within the
optics or other ways~i.e., combination of positive and
negative separated optical elements! to reduce the Petzval
curvature, the Petzval surface curves severely in the case
we considered, and must be accounted for by imaging on
its curved surface. In the case where optimized optics with
their flattened Petzval curvature and associated optical ab-
errations is considered, the optics transformation can be
built accordingly. The optics transformation is always ap-
plied in the exit pupil to model the entire optics via one
phase transformation. Furthermore, under all imaging con-
ditions, the images of the face were presented upright for
easier comparison, accounting for the optics providing in-
verted images.

Results shown in Fig. 4~a! demonstrate that the paraxial
framework fails for large FOVs, as expected. Only a por-
tion of the face imaged within the quasi-paraxial region is
seen sharply. Past the quasi-paraxial region, the image dims
so quickly that when displayed on a 0- to 255-gray-level
scale, it is non-perceivable.

To further yield insight into the issue of dynamic range
~i.e., relative brightness for various points in the FOV!, an
object with a small square at the edge was selected as the

object to be imaged as shown in Fig. 5~a!. The result from
the paraxial framework is demonstrated in Fig. 5~b!, where
the white square appears as expected but somewhat dim-
mer. Also, the intensity within the square is nonuniform. In
this simple stimulus case, because there is no light intensity
anywhere else in the object and the nonuniformities within
the square are relatively small, no other part of the object
competes for the dynamic range, thus when the image out-
put is scaled from 0 to 255 gray levels, no matter how dim
in average the square at the edge is, it will be displayed at
gray levels close to 255.

If we now consider an object with two squares, one in
the center and one at the edge, as shown in Fig. 6~a!, results
from both the paraxial and the nonparaxial frameworks are
shown in Figs. 6~b! and 6~c!, respectively. Results indicate
that using the paraxial framework, the square at the edge
now disappears, indicating that it is a lot dimmer than the
one in the center. The non-paraxial framework yields imag-
ing of both squares with equal brightness on the curved
surface as one expects from an appropriate 1st-order non-
paraxial imaging framework.

Results shown in Fig. 4~b! demonstrate that the ex-
panded nonparaxial framework works for large FOVs. Fi-
nally, to verify the first-order defocusing imaging properties
with the nonparaxial framework, the imaging surface was
placed 3 mm out of focus toward the optics. Results pre-
sented in Fig. 4~c! demonstrate that the generalized non-
paraxial theoretical framework works for out-of-focus im-
aging as well.

Fig. 4 Results of imaging a 40-deg FOV object in a 2 f imaging
configuration for plane-to-curve imaging: (a) paraxial/quasi-paraxial
model given by Eq. (2), (b) nonparaxial model given by Eq. (5) for
in-focus imaging, (c) same as (b) but with 3-mm out-of-focus imag-
ing.

Fig. 5 Demonstration of the existence of low light levels at the edge
of the FOV in the case of the paraxial model and plane-to-curve
imaging: (a) object with one white square at the edge of the FOV
and (b) image.

Fig. 6 Demonstration of the existence of low light levels at the edge
of the FOV in the case of the paraxial model and for plane-to-curve
imaging: (a) object with one white square in the middle and one
white square at the edge, (b) image of (a) using the paraxial model,
the square at the edge is extremely dim with respect to that in the
center and thus cannot be seen within a limited 255-gray-levels dis-
play; and (c) image of (a) using the nonparaxial model. Such an
imaging scenario models accurately imaging with a 40-deg FOV.
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Finally, we intend for this paper to bring forth the fact
that within the paraxial framework, the parabolic approxi-
mation to the optics transformation function can be insig-
nificant compared to the fact that in that regime the optics
transformation is applied in a plane perpendicular to the
optical axis. Furthermore, if we are correct, the nonparaxial
framework would work equally well with or without the
parabolic approximation to the optics transformation for a
moderateF-number, as long as the summation occurs in a
plane perpendicular to the chief ray. Thus, we ran a simu-
lation with the nonparaxial equation under both cases of the
optics transformation. The results presented in Fig. 7 indi-
cate that the nonparaxial framework works equally well
with the parabolic approximation to the optics transforma-
tion function and with the exact expression, while results
presented in Figs. 4~a! and 4~b! indicated that even when
the exact expression of the optics transformation function
was used, imaging failed if the optics transformation was
not applied in a plane perpendicular to the chief ray.

6 Conclusions and Future Work

The principles of scalar diffraction theory were applied to
optical imaging of extended objects under quasi-
monochromatic incoherent illumination. The existing theo-
retical framework was generalized to nonparaxial in-focus
and out-of-focus imaging and results were obtained to
verify the generalized framework. In that framework, the
optical system was considered linear. In the generalized
nonparaxial framework, even the most complex linear sys-
tems without any assumptions for shift invariance, can be
modeled and analyzed. Finally, this work will be extended
in the near future to include higher order aberrations in the
optics transformation equation and special effects imaging
by including a propagation stage through optical phase
plates.
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