
University of Central Florida University of Central Florida 

STARS STARS 

Faculty Bibliography 2000s Faculty Bibliography 

1-1-2005 

Polarization-independent liquid crystal phase modulator using a Polarization-independent liquid crystal phase modulator using a 

thin polymer-separated double-layered structure thin polymer-separated double-layered structure 

Yi-Hsin Lin 
University of Central Florida 

Hongwen Ren 
University of Central Florida 

Yung-Hsun Wu 
University of Central Florida 

Yue Zhao 
University of Central Florida 

Jiyu Fang 
University of Central Florida 

See next page for additional authors 

Find similar works at: https://stars.library.ucf.edu/facultybib2000 

University of Central Florida Libraries http://library.ucf.edu 

This Article is brought to you for free and open access by the Faculty Bibliography at STARS. It has been accepted for 

inclusion in Faculty Bibliography 2000s by an authorized administrator of STARS. For more information, please 

contact STARS@ucf.edu. 

Recommended Citation Recommended Citation 
Lin, Yi-Hsin; Ren, Hongwen; Wu, Yung-Hsun; Zhao, Yue; Fang, Jiyu; Ge, Zhibing; and Wu, Shin-Tson, 
"Polarization-independent liquid crystal phase modulator using a thin polymer-separated double-layered 
structure" (2005). Faculty Bibliography 2000s. 5413. 
https://stars.library.ucf.edu/facultybib2000/5413 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Central Florida (UCF): STARS (Showcase of Text, Archives, Research & Scholarship)

https://core.ac.uk/display/236315917?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/facultybib2000
https://stars.library.ucf.edu/facultybib
https://stars.library.ucf.edu/facultybib2000
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/facultybib2000/5413?utm_source=stars.library.ucf.edu%2Ffacultybib2000%2F5413&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


Authors Authors 
Yi-Hsin Lin, Hongwen Ren, Yung-Hsun Wu, Yue Zhao, Jiyu Fang, Zhibing Ge, and Shin-Tson Wu 

This article is available at STARS: https://stars.library.ucf.edu/facultybib2000/5413 

https://stars.library.ucf.edu/facultybib2000/5413


 

Polarization-independent liquid crystal phase 
modulator using a thin polymer-separated 

double-layered structure 
Yi-Hsin Lin,1 Hongwen Ren,1 Yung-Hsun Wu,1 Yue Zhao,2 Jiyu Fang,2  

Zhibing Ge,1 and Shin-Tson Wu1 

1College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816 
2Advanced Materials Processing and Analysis Center and Department of Mechanical, Materials and 
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Abstract: A polarization-independent phase-only liquid crystal (LC) phase 
modulator using a double-layered structure is demonstrated. Two orthogonal 
LC layers are separated by two ultra-thin anisotropic polymer films. The 
anisotropic polymeric films not only separate the LC layers but also provide 
good molecular alignment. As a result, a polarization-independent phase 
modulator with 2π phase shift is achieved at 9Vrms and 8.1π at 40Vrms using a 
12-μm-thick E7 LC layers. This operating voltage is ~10X lower than that 
using a conventional 0.3-mm-thick glass separator.  

©2005 Optical Society of America 

OCIS codes: (230.3720) Liquid-crystal devices; (160.5470) Polymers 
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1. Introduction 

Phase-only modulation [1] plays an important role in adaptive optics, optical cross-connect 
switching, laser beam steering, and low-cost electro-optic sensor. Several interesting 
applications using phase modulators have been identified, e.g., tunable-focus lens [2], grating 
and prism [3], and spatial light modulators [4]. Liquid crystal (LC)-based phase modulators 
offer several advantages: low cost, light weight, low power consumption and no mechanical 
moving part. Several LC-based phase modulators have been developed, e.g., homogeneous 
LC [5], polymer network liquid crystal (PNLC) [6], and sheared polymer network liquid 
crystal (SPNLC) [7, 8]. The homogenous cell is attractive for its large phase shift and low 
operation voltage. However, it is polarization dependent and the response time is relatively 
slow. A PNLC cell significantly reduces the response time but its operating voltage is quite 
high. To obtain 2π phase change in a transmissive PNLC cell, the required voltage is ~90Vrms 
for a 12 μm E44 cell, which corresponds to ~7 V/μm. To achieve more phase change by 
increasing cell gap would result in a substantial light scattering and higher voltage. The 
sheared PNLC cell does not require alignment layers but it needs a shearing force to stress the 
LC directors and to suppress light scattering. SPNLC also exhibits a fast response but its 
operating voltage is also high. A common drawback of these three approaches is that they are 
polarization sensitive. For laser applications, the incident light polarization may not be always 
parallel to the LC directors to ensure phase-only modulation. Thus, it is highly desirable to 
develop polarization-independent phase modulators. 

Several approaches for obtaining polarization-independent LC phase modulation have 
been discovered, e.g., the 90o twisted nematic cell operated at a voltage ~3X higher than the 
threshold voltage [9, 10], nanoscale polymer-dispersed liquid crystal (nano-PDLC) [11], 
voltage-biased PDLC [12], and voltage-biased polymer-stabilized cholesteric texture (PSCT) 
[13]. A common problem of these approaches is that their phase change is relatively small and 
the operating voltage quite high. Thus, more polarization-independent light modulation 
mechanisms need to be developed.  

In this paper, we demonstrate a polarization-independent LC phase modulator using a 
double-layered structure with two ultra-thin anisotropic polymer films as cell separators. The 
double-layered structure has been proposed for guest-host liquid crystal displays (LCDs) more 
than two decades ago [14-18]. The conventional approach uses a thin glass (~0.3 mm) or 
Mylar film (~0.1 mm) to separate the two orthogonal LC layers. In the former case, an 
indium-tin-oxide (ITO) glass substrate is used as a middle substrate. To overcome the electric 
field shielding effect, both sides of the ITO layers should be pixilated and connected (e.g., via 
feed-through holes), and then overcoated with a thin polyimide layer which is rubbed in the 
orthogonal directions to match the LC alignment. This approach is difficult for high resolution 
devices because of the complicated pixel structures and extra alignment between the passive 
ITO pixels in the middle substrate and active elements. To reduce the parallax incurred by the 
middle glass substrate and to enable high resolution, a thin Mylar film can be considered. 
However, the Mylar film cannot align the LC molecules [18] because the baking temperature 
of polyimide is higher than the glass transition temperature of the Mylar film. The anisotropic 
polymer films we developed in this paper are thin and they possess alignment capability. As a 
result, excellent LC alignment, large phase shift, and low operating voltage are achieved. 
Using two 12-μm orthogonal E7 LC layers, we obtain 2π phase shift (λ=633 nm) at merely 9 
Vrms and 8.1π phase shift at 40 Vrms.  This is by far the polarization-independent LC phase 

#8855 - $15.00 USD Received 20 September 2005; revised 12 October 2005; accepted 13 October 2005

(C) 2005 OSA 31 October 2005 / Vol. 13,  No. 22 / OPTICS EXPRESS  8747



 

modulator ever demonstrated exhibiting the largest phase change at the lowest operating 
voltage.  

2. Structure and mechanism 

Figure 1 shows the schematic design of our polarization-independent phase modulator. The 
cell consists of two glass substrates which are overcoated with thin (~80 nm), mechanically 
buffed polyimide layers, two anisotropic polymer films, and two LC layers. The top and 
bottom LC directors are oriented orthogonal to each other. The anisotropic polymer films 
were peeled off from a UV-induced phase separation of a LC/polymer cell. Such a polymer 
film is an optically uniaxial film. It has excellent alignment capability [19]. To achieve 
orthogonal homogeneous LC layers, the principal axes of these two anisotropic polymer films 
were also arranged to be orthogonal to each other.  
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. The structure of a polarization-independent phase modulator. 
 

The polarization-independent mechanism of the double-layered LC device can be proven 
as follows. Let us assume the electric field of the normal incident light can be expressed as: 

yAxAE yxi ˆˆ ⋅+⋅= ,     (1) 

where xA  and yA  are two complex numbers, and x̂ and ŷ  are unit vectors along the x and y 

axes, as depicted in Fig. 1. When the light traverses through the LC cell (with V=0), the total 

accumulated phases of the x and y components are 
dnni oee ⋅+⋅⋅ )(κ

 and 
dnni oee ⋅+⋅⋅ )(κ

, 
respectively, where the placement of the indices has been ordered to reflect the sequence of 
materials traversed from top to bottom,κ is the wave vector in the vacuum, d is the cell gap of 

each layer, and en and on are the extraordinary and ordinary refractive indices of the LC. The 

output electric field of the light becomes: 
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With an applied voltage, the total accumulated phases of the x and y components become 
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, respectively, where ),( ψθeffn  is the effective refractive 

index of the LC, and θ  and ψ  respectively represent the tilt angle and the twist angle of the 
LC directors.  

Therefore, the electric field of the outgoing light becomes: 
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From Eq. (2) and Eq. (3), the polarization of the output beam remains the same at a given 
applied voltage. Therefore, our LC device is polarization-independent in all different voltage 
states. The phase change increases with increasing voltage. 

3. Sample fabrication 

To fabricate the anisotropic film, we mixed a Merck E7 nematic LC mixture, photo-initiator 
IRG184, and an LC monomer RM-257 (4-(3-Acryloyloxypropyloxy)-benzoic acid 2-methyl-
1,4-phenylene ester) at 19:1:80 wt % ratios. The LC/monomer mixture was injected into a 
homogeneous cell with 23 μm cell gap which was controlled by the Mylar stripes and then the 
cell was exposed to a UV light with intensity I = 10 mW/cm2 for ~30 min at 90 °C. After UV 
exposure, the two substrates of the homogeneous cell were peeled off and a solidified 
anisotropic film with 23 μm thickness was obtained. The anisotropic polymer film is fully 
transparent. We prepared two polymer films with the same thickness (D=23 μm) and stacked 
them together in orthogonal directions, as Fig. 1 depicts. The LC mixture employed is also E7. 
The LC was filled to the empty cell by the one-drop-fill method. The cell gap of each LC 
layer was controlled by a Mylar film to be d~12 μm. The total dimension of our cell is around 
25 mm by 25 mm.  

4. Experiment and results 

Figure 2 shows the surface morphologies of an anisotropic polymer film taken from an atomic 
force microscope (AFM) (Dimension 3100, Digital Instruments). Silicon nitride cantilever 
with a normal spring constant of 30 N/m and an apical radius of 20 nm was used. The AFM 
measurements were performed in tapping mode at a scan rate of 1 Hz in air under ambient 
conditions. In Fig. 2, the polymer film appears to consist of elongated polymer grains. The 
elongated polymer grains are oriented at the same direction (marked with an arrow), giving an 
anisotropic polymer surface. The root-mean-square (RMS) roughness of the surface can be 
defined as RMS average of height deviations taken from the mean data plane. Then, the RMS 
roughness of the surface of the anisotropic polymer film is 1.01 nm. The LC molecules were 
found to be aligned along the elongate direction of the polymer grains in order to minimize 
free energy. During fabrication process, when we peel off the polymer film from the ITO 
glass substrates the LC molecules near the surface stay on the glass substrates which leave the 
anisotropic polymer film with valleys and polymer network structures. The size and the 
structure of the polymer grains depend on the fabrication conditions.  
 
 
 
 
 
 
 
 
 
 
 
 
   

 
Fig. 2. AFM images of the anisotropic polymer film surface. LC directors are aligned along the 
arrow. The color bars indicate the height. 

 
To characterize the phase shift of the double-layered LC cell, we used Mach-Zehnder 

interferometer as depicted in Fig. 3. An unpolarized He-Ne laser (λ=633 nm) was used as a 
light source. The laser beam was split equally into two arms by a beam splitter. We placed the 
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LC cell in one arm. The cell was driven by a square-wave voltage at frequency f=1 kHz. The 
interference pattern was recorded by a digital video camera (SONY, DCR-HC40). The whole 
system was built on a floating optical table to avoid any environment-induced fluctuation.  

 
 

 
 
 
 
 
 
 
 
 

 
 

Fig. 3. Mach-Zehnder interferometer for measuring the phase shift. M: dielectric mirror, and BS: 
beam splitter. 

 
Figure 4(a) is a recorded movie showing the voltage-dependent interference fringes of the 

double-layered LC cell. The phase shift at V=0 was used as reference. Figure 4(b) plots the 
interference fringes at three specific voltages: V= 0, 7, and 9 Vrms. The phase shift is around 
1.06 π between 0 and 7 Vrms and around 2 π between 0 and 9 Vrms. 
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Fig. 4. (a) Interference patterns at various voltages (703 KB) and (b) intensity profiles at 0 
(blue), 7 (green) and 9 Vrms (red). The two orthogonal LC cells are 12-μm E7 layers. λ=633 nm 
from an unpolarized He-Ne laser.  

 
Figure 5 plots the measured voltage-dependent phase shift at λ=633 nm of the double-

layered E7 LC cell (filled circles). The threshold voltage is ~5 Vrms. For reference, the 
threshold voltage of the single E7 cell without any middle substrate is ~0.95 Vrms. The 
increased threshold voltage is due to the dielectric shielding effect of the middle polymeric 
layers. In the interferometer, the measured phase shift is referenced to that at V=0. The total 
phase shift reaches ~8.1π at V=40 Vrms. This total phase shift remains the same no matter we 
placed a polarizer in front of the LC device or rotated the polarizer.  

We also performed numerical analysis for the double-layered structure using a 0.3-mm-
thick glass separator. Both sides of the glass separator are assumed to be coated with thin 
polyimide layers and rubbed in orthogonal directions to match with the top and bottom 
substrates. The simulation results (open circles) are included in Fig. 5 for comparison. The 
same LC material (E7) and same cell gaps are assumed. The calculated threshold voltage is as 
high as ~24 Vrms because of the electric field shielding effect from the relatively thick glass 
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separator. To obtain 8π phase shift, the required voltage is ~600 Vrms. Our thin polymeric 
separators reduce the required operating voltage by nearly 15X.  
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Fig. 5.Voltage-dependent phase shift of the polarization-independent LC phase modulator at 
λ=633 nm. Filled circles represent the measured data using our anisotropic polymeric films 
while open circles are the simulated results of the double-layered structure using a 0.3-mm-
thick glass separator.  
 

5. Discussion 

Theoretically, the phase difference between two arms of the Mach-Zehnder interferometer is: 

δψπθψθκφ +⋅−++⋅= dnnV effeff )2)
2

,(),(()( ,  (4) 

where λπκ /2= , λ is the laser wavelength, d is the cell gap, and δ  is the phase difference 
contributed by the two anisotropic polymer films, glass substrates, and optical path difference 
in the air. At V=0, the phase difference between the two arms is  

δκφ +⋅−+⋅= dnn oe )2()0( ,    (5) 

At a very high voltage, all the LC directors are reoriented along the electric field direction 
except the boundary layers. Under such a circumstance, the effective refractive index becomes 

oeffeff nnn =+= )
2

,(),( ψπθψθ ,    (6) 

And the phase difference between two interferometer arms is as follows: 

δκφ +⋅−⋅=>> dnV o )22()0(     (7) 

Therefore, the total phase shift is reduced to the well-known expression: 

)()/2()0()0( oe nndV −⋅⋅=>>−=Δ λπφφφ ,  (8) 

The birefringence of E7 is 21.0≈−=Δ oe nnn at λ=633 nm. The calculated total phase 

shift is ~8π, which is rather close to our measured value (8.1π) at V=40 Vrms.  
The obtainable phase shift of our double-layered structure is much larger and the 

operating voltage is much lower than those of nano-PDLC, PDLC, and PSCT [11-13]. To 
further lower the operating voltage of our double-layered structure, we can reduce the 
thickness of the anisotropic polymer films, but the tradeoff is that a thinner polymer film may 
degrade the uniformity of the cell.  

The response time of our double-layered LC cell was measured to be ~300 ms at T~23 oC. 
The slow response time originates from the thick LC layers (d~12 μm) and high viscosity of 
the E7 LC employed. To reduce response time, a high Δn and low viscosity LC could be used 
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[20]. A high Δn LC enables a thinner cell gap to be used which is helpful for reducing 
response time. 

The thickness of polymer film is 23 μm which is larger than that of the LC layer (12 μm). 
The flexibility and hardness can be controlled by the fabrication process, such as UV curing 
condition and LC concentration. Although the anisotropic films are thin, their deformation 
during operation should not be a problem because the films are sandwiched by two glass 
substrates. Therefore, the mechanical stability of the system is not a concern.  

6. Conclusion 

In conclusion, we have demonstrated a polarization-independent LC phase modulator using a 
double-layered structure. The LC directors are orthogonal to each other. Two anisotropic 
polymer films are used as the cell separators and alignment layers. The total phase shift is 
~2π at V=9 Vrms and ~8.1π at V=40 Vrms at λ=633 nm. Using a thinner cell gap would 
simultaneously reduce the response time and operating voltage. The key technical challenge is 
to control the cell gap and uniformity of each LC layer, especially for a large aperture phase 
modulator. The uniformity of polymer film is relatively easy to obtain and the cell gap can be 
controlled by using post spacers. Finally, this approach opens a new door for achieving 
polarization-independent phase modulation.  
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