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Abstract. A detailed model of the diffraction of plane and Gaussian
beams on plane uniform phase Bragg gratings based on Kogelnik’s
theory of coupled waves is presented. The model describes transmitting
gratings with arbitrary orientation in a plane-parallel plate taking into ac-
count spectral width and angular divergence of laser beams along with
material dispersion of a photosensitive medium. The model results are
compared with experimental data for high-efficiency Bragg gratings in a
photothermorefractive �PTR� glass. © 2006 Society of Photo-Optical Instrumenta-
tion Engineers. �DOI: 10.1117/1.2159470�
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1 Introduction

Over recent decades, numerous publications have appeared
on theoretical and experimental studying of volume Bragg
gratings �VBGs� recorded in various phase photosensitive
media and used in different configurations. A most widely
used basis for description of such gratings is the theory of
coupled waves1 developed by Kogelnik in 1969. Its results
were applied for further theoretical consideration2–5 and the
treatment of experimental results observed for VBGs
in photorefractive crystals,6–10 dichromated gelatin,11,12

photopolymers,13 and inorganic photosensitive glasses.14–16

There are several more approaches describing VBGs, e.g.,
rigorous coupled-wave analysis17 and the beam-
propagation method,18 which were compared with coupled-
wave theory in Refs. 19 and 20. However, Kogelnik’s
theory is still the most commonly used approach for the
volume grating modeling.

Today, VBGs are considered perfect spectral and/or an-
gular selectors with highly adjustable parameters. Angles of
incidence and diffraction, central wavelength, and spectral/
angular width can be properly chosen by varying the grat-
ing thickness, period of refractive index modulation, and
grating vector orientation. VBGs are used for spectral beam
combining of high-power laser beams with shifted
wavelengths,21–23 coupling elements in laser
resonators,24–27 beam deflectors, splitters, attenuators, etc.

One of the most promising materials for VBGs is a pho-
tothermorefractive �PTR� glass, which is a silicate glass
doped with silver, cerium, and fluorine.28 This glass was
successfully used for high-efficiency holographic elements
in high-power laser systems.16,29 Both transmitting and re-
flecting PTR VBGs were observed to exhibit diffraction
efficiency greater than 95% as well as perfect thermal, op-
tical, and mechanical stability in high-power beams. This is

why our modeling is illustrated for those variations of grat-
ing parameters that are typical for PTR VBGs: the refrac-
tive index is in the range of 1.5 at wavelengths ranging
from 0.4 to 2.7 �m, refractive index modulation is up to
1000 ppm �10−3�, and grating thickness is from 0.2 to
20 mm.

The goal of this work is to reduce Kogelnik’s theory to
practical formulas that enable practical modeling and de-
sign of diffractive optical elements based on VBGs. This
part of modeling considers diffraction of plane monochro-
matic, divergent, and polychromatic laser beams on uni-
form sinusoidal lossless transmitting volume gratings and
compares the model with experimental results in PTR
Bragg gratings. Further parts will describe modeling of re-
flecting volume gratings �holographic mirrors� as well as
the application of both transmitting and reflecting grating
for spectral beam combining for different types of lasers.

2 Basic Definitions of Beam Propagation
and Diffraction in Bragg Gratings

Let us consider a plate of a photosensitive material with a
volume phase grating. The surface of a plate that is crossed
by an incident beam is the front surface. Depending on
diffraction angle and orientation of a grating in the plate,
one can distinguish several types of Bragg gratings. A grat-
ing is called a transmitting Bragg grating if the diffracted
beam crosses the back surface; reflecting, if the diffracted
beam crosses the front surface; and prismatic, if the dif-
fracted beam crosses one of the side surfaces. Let us de-
scribe a plane transmitting Bragg grating recorded in the
volume of a photosensitive medium by sinusoidal modula-
tion of a refractive index and occupying the whole volume
of a plane-parallel plate, as shown in Fig. 1. This volume
grating could be entirely described by the following set of
parameters: an average refractive index of a medium nav at
free-space wavelength �0; an amplitude of refractive index0091-3286/2006/$22.00 © 2006 SPIE
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modulation �n; the period � or spatial frequency f = I /�;
the grating thickness t; and the inclination angle � between
the normal to the front surface N f and grating vector KG,
which is directed toward a medium perpendicular to the
planes of a constant refractive index and has a module
�KG � =2� f . The lateral size of the grating should not be a
parameter while the grating occupies the whole volume of
the plate.

Determination of angles in Bragg gratings is similar to
those in classical geometrical optics. Figure 1 shows an
incident beam Ii approaching front surface of the plate at
the angle �i, then is reflected from the front surface at the
angle �r and refracted into the medium at the angle �im. An
incident angle �i is the angle between the normal to the
front surface N f directed toward the incident beam propa-
gation and the wave vector of an incident beam Ki. It is
positive if Ki is in a counterclockwise direction from the
N f, and can vary from −� /2 to +� /2. A reflection angle �r
has the same module as �i but an opposite sign. An incident
angle in medium has the same sign as the incident angle in
air and its value is determined according to the Snell’s law
sin �i=nav sin �im.

The angle of grating inclination �or tilt, or slant�, �, is
the angle between the normal to the front surface N f for an
incident beam and the grating vector KG. It is positive in
the counterclockwise direction and can vary from −� /2 to
+� /2. For example, Fig. 1 shows the negative inclination
of a grating ��0. A transmitting grating with inclination of
�= ± � /2 is called a symmetric or normal grating.

To describe Bragg diffraction in all types of volume
gratings regardless of type and inclination, let us introduce

an incident Bragg angle in a medium �m
* . This angle is

determined as an angle between a grating vector KG and a
wave vector Kim of a refracted beam inside the medium,
and it can vary from −� to +�. One can distinguish the
following possible cases of Bragg diffraction depicted in
Fig. 2. The positive orders of Bragg diffraction are for in-
cident Bragg angle ranged from 0 to +�, i.e., the counter-
clockwise direction of an incident beam from the grating
vector. The negative orders of Bragg diffraction are for in-
cident Bragg angle ranging from 0 to −�, i.e., the clock-
wise direction of an incident beam from grating vector. The
forward orders of Bragg diffraction are for a module of an
incident Bragg angle less than � /2. The backward orders of
Bragg diffraction are for a module of an incident Bragg
angle more than � /2. Thus, depending on mutual orienta-
tion of grating and incident wave vectors, one can distin-
guish four Bragg orders, e.g., “plus forward” or “minus
backward” etc.

Several examples of transmitting Bragg gratings re-
corded with different angles of inclination in a plane-
parallel photosensitive plate are shown in Fig. 3. Figures
3�a� and 3�b� show positive inclination angles �	0. For a
positive inclination angle � close to +� /2 and positive
incident angle �i �Fig. 3�a��, an incident Bragg angle �m

* is
negative with module below � /2, and exit diffraction angle
�d is negative. This is a case of negative forward Bragg
diffraction. When an incident angle �i is changed to the
negative side �Fig. 3�b��, an incident Bragg angle �m

* is
negative with module exceeding � /2, and diffracted exit
angle �d is positive. Transmitting Bragg gratings with a
negative inclination ��0 are shown in Figs. 3�c� and 3�d�.
A positive incident angle �i corresponds to a positive inci-
dent Bragg angle �m

* with module exceeding � /2 and a
negative exit diffraction angle �d �Fig. 3�d��. This is a posi-
tive backward order of diffraction. A negative incident
angle �i corresponds to a positive incident Bragg angle �m

*

with module below � /2 and a positive exit diffraction
angle �d �Fig. 3�c��. This is a positive forward order of
diffraction. Note that excitation of Bragg diffraction of a
transmitting grating with inclinations not far from � /2 by
scanning the incident angle of the beam produces switching
between forward and backward orders, but not between
plus and minus orders. Switching between positive and

Fig. 1 Propagation of optical rays through a volume Bragg grating:
Nf and Nf,ex, normals to the front surface for incident �Ii� and re-
flected �Ir� beams; Nb, normal to the back surface for the transmitted
�It� and diffracted �Id� beams; Ki, Kim, and Kdm, wave vectors of
incident beam in air, and incident and diffracted beams in the me-
dium; KG grating vector; �, grating inclination; �i, �r, �im, �t, and �d,
angles of incidence, reflection, incidence in medium, transmission,
and diffraction; �m, Bragg angle; and �m

* , incident Bragg angle.

Fig. 2 Possible orders of Bragg diffraction inside medium: Ii and Id,
incident and diffracted beams; Ki, wave vector of incident beam; KG,
grating vector; �m, Bragg angle; �m

* , incident Bragg angle.
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negative Bragg orders in a transmitting grating can be ob-
served by changing of illumination from the front surface
to the back. For example, Fig. 1 shows a positive backward
order of Bragg diffraction for a grating with negative incli-
nation.

The traditionally used �beginning from its crystallogra-
phy applications� conventional Bragg angle in the media �m
has been determined as a positive angle not exceeding 90
deg between the plane of a constant refractive index and a
direction of the beam propagation. As one can see from
Figs. 1 and 2, the relationship between a Bragg angle and
an incident Bragg angle is sin �m= �cos �m

* �. Note that �m
does not describe the difference between forward and back-
ward orders of diffraction, which are important for practical
modeling of transmitting gratings.

3 Diffraction of Plane Monochromatic Waves
on a Transmitting Bragg Grating

For volume gratings, a wave vector of a diffracted beam is
Kdm=Kim+KG for backward orders and Kdm=Kim−KG for
forward orders. Therefore, contrary to the surface grating,
diffraction of a beam with a certain wavelength occurs for
only one certain angle, which depends on grating spatial
frequency according to Bragg’s condition:

�cos �m
* � =

�0f

2nav
. �1�

In accordance with Kogelnik’s theory,1 a solution of the
scalar wave equation for transmitting VBG gives the fol-
lowing formula for diffraction efficiency �DE�:


 =
sin2��2 + �2�1/2

1 + �2/�2 . �2�

Here phase incursion � is the parameter that determines the
maximum diffraction efficiency of VBG �grating strength�
when the Bragg condition is satisfied, while dephasing pa-
rameter � describes deviation from the Bragg condition by

detuning from either �m
* or �0. Phase incursion in Bragg

condition is written in Ref. 1 as

� =
�t�n

�0F�

, �3�

where parameter F� is an inclination factor:

F� = �− cos�� − �m
* �cos�� + �m

* ��1/2. �4�

For normal transmitting gratings with �= ± � /2, the ex-
pression for the inclination factor is simplified and becomes

F�/2 = sin �m
* = �1 − � �0f

2nav
�2	1/2

. �5�

The inclination factor describes an additional optical path
of incident and diffracted beams in a medium resulting
from deviation of propagation from the normal to the sur-
face. Note that this factor is a function of independent
Bragg grating parameters because �m

* must satisfy Bragg
condition, Eq. �1�.

According to Eq. �2�, the DE of a transmitting grating in
Bragg condition ��=0� is a periodic function of phase in-
cursion � and reaches 100% when

� = �/2 + j�, where j = 0,1,2, . . . . �6�

Substitution of this phase incursion in Eq. �3� at j=0 and
considering a Bragg angle value from Eq. �1� gives a mini-
mum thickness of grating t0, which provides a 100% DE
for a given refractive index modulation �n:

t0 =
�0F�

2�n
. �7�

The dependence of the minimum thickness t0 on resonant
wavelength �0 for normal grating is shown in Fig. 4. For
low spatial frequencies, when propagation of incident and
diffracted beams are not far from normal to the front sur-

Fig. 3 Possible orders of Bragg diffraction for transmitting gratings with different angles of inclination.
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face, the minimum thickness increases almost linearly with
increasing wavelength. This thickness ranges from 0.2 to
1.5 mm for wavelengths varied from 400 to 3000 nm.
However, increasing the spatial frequency of grating results
in increasing the optical path of incident and diffracted
beams in a plate and, therefore, leads to decreasing the
inclination factor and corresponding deviation from the lin-
ear dependence. For gratings with a high spatial frequency,
radiation with a wavelength exceeding some value cannot
be diffracted because the required incident angle in a me-
dium exceeds the angle of total internal reflection.

Dephasing parameter � takes into account small angular
deviations �m from an incident Bragg angle �m

* and/or
small deviations � from central wavelength �0:

� =
�ft

cos�� − �m
* � − �f�0/nav�cos �

��m sin �m
* −

f

2nav
�� .

�8�

For normal transmitting grating ��= � /2�, this expression
is simplified and can be written as

��/2 = − �ft��m −
f

2navF�/2
�� . �9�

Because both spectral and angular parts of such detuning
from the Bragg condition are equivalent to producing the
same value of dephasing parameter �, interrelation between
them could be obtained by equating the terms in parenthe-
ses in Eq. �9� and substituting the Bragg condition �Eq.
�1��:

�m

�
=

f

2navF�/2
. �10�

Equation �9� is a universal interrelation between spectral
and angular selectivity of a VBG that enables easy calcu-
lation of one of them from the given �or measured� other.

The angular selectivity of a VBG for a resonant wave-
length �0 could be determined by substituting Eqs. �3� and
�8� into Eq. �2� at �=0. The general formula for angular

selectivity is rather cumbersome, but a simplified formula
for normal transmitting grating shows all features of this
type of gratings:


��m� =
sin2
�t���n/�0F�/2�2 + �f�m�2�1/2�

1 + ��0fF�/2�m/�n�2 . �11�

The dependence of diffraction efficiency on detuning from
the Bragg angle is shown in Fig. 5�a�. Curve 1 corresponds
to 2-mm-thick VBG with a 1086-mm−1 spatial frequency
and a 250-ppm refractive index modulation, which provides
100% diffraction efficiency at 1085 nm. One can see a
well-known central maximum and a number of sidelobes
with gradually decreasing magnitude. Curve 2 shows a de-
crease of DE resulting from a decrease of refractive index
modulation down to 125 ppm at the same grating thickness
and spatial frequency; this decreases DE at the central
maximum down to 50%, but positions of minima and
maxima of the sidelobes practically are not changed. Curve
3 shows a decrease of DE resulting from a decrease of the
thickness down to 1 mm for the same �n=250 ppm; this
also provides DE of 50%, but it causes dramatic widening
of angular selectivity, when the first minimum moves to the
position of the second minimum for 2-mm-thick gratings.

Note that Eq. �2� requires the following criterion to
equalize the DE to zero:

��2 + �2�1/2 = j�, where j = 1,2, . . . ,n, . . . . �12�

Let us determine angular selectivity inside the VBG me-
dium at the HWFZ level, ��m

HWFZ, as the angle between the
central maximum and the first minimum on the DE curve.
For VBGs with 100% diffraction efficiency �= � /2. Com-
parison of Eqs. �9� at �=0 and �12� at j=1 gives the
following expression for the HWFZ angular selectivity:

��m
HWFZ =

�3

2ft0


0.87

ft0
. �13�

Note that the HWFZ angular selectivity ��m
HWFZ is slightly

lower than the widely used grating parameter of FWHM
angular selectivity, which for a 100% efficient grating
could be easily estimated as ��m

FWHM1/ ft0.
Figure 5�b� shows that the angular selectivity of a trans-

mitting VBG with parameters typical for PTR glass could
be varied from more than 100 mrad for thin low-frequency
gratings to less than 0.1 mrad for thick high-frequency
ones. Note that the value of refractive index modulation �n
providing 100% DE depends on spatial frequency of grat-
ing because different incident angles and should be opti-
mized in accordance with Eq. �7�. The angular selectivity of
grating in air, ��i

HWFZ, can be easily calculated from Eq.
�13� by the use of differential form of Snell’s law:

��i
HWFZ = ��m

HWFZ�4nav
2 − �0

2f2

4 − �0
2f2 �1/2

. �14�

The angular selectivity in air is wider than that in a me-
dium. Their ratio increases from the nav at low spatial fre-
quencies to about 2.4 at spatial frequency of 1600 mm−1

�see Fig. 6�.

Fig. 4 Dependence of minimum thickness of a Bragg grating that
produces 100% diffraction efficiency at different spatial frequencies
on resonant wavelength. Refractive index modulation is 1000 ppm.
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In the same manner as already described above for an-
gular selectivity, the ��HWFZ spectral selectivity is deter-
mined as a distance between the central maximum and the
first zero in spectral distribution of the DE, which could be
expressed by substitution of Eqs. �3� and �8� into Eq. �2� at

�m=0. In the case of a normal transmitting grating, this
expression is simplified by the use of Eq. �9�:


��� =

sin2� �t

F�/2
���n/�0�2 + � f2�/2nav�2�1/2�

1 + � f2�0�/2nav�n�2 . �15�

Spectral selectivity �Eq. �15�� has the same structure as
angular selectivity �Eq. �11�� because of their linear inter-
relationship �Eq. �10��. For the grating parameters depicted
in Fig. 5�a�, this ratio is � /��500 mm−1. In addition of
showing the angular selectivity of 2- and 1-mm-thick trans-
mitting VBGs, Fig. 5�a� shows spectral selectivity of the
same gratings, which is represented by the upper horizontal
axis of this figure. One can see that all features of spectral
selectivity are the same as those already discussed for an-
gular selectivity.

For normal transmitting gratings with 100% DE, ��HWFZ

could be derived by substitution of Eq. �13� into Eq. �10�:

��HWFZ =
�3navF�/2

f2t0
. �16�

Figure 5�c� shows dependence of spectral selectivity on
spatial frequency for different grating thicknesses. The
HWFZ spectral selectivity could be easy varied from values
below 0.1 to more than 100 nm by proper choice of grating
parameters.

There is an additional mismatching factor from the
Bragg condition for beams with different wavelengths due
to spectral dispersion of a refractive index in a photosensi-
tive medium. This means that two beams with the same
incident and output angles and different wavelengths have
different angles of refraction inside the medium, and this
leads to the difference in incident Bragg angles. Let us
write down the Bragg condition �Eq. �1��, where the refrac-
tive index is supposed to depend on wavelength, in a dif-
ferential form:

Fig. 5 Selectivity of transmitting Bragg gratings for �0=1085 nm,
nav=1.4867: �a� dependence of diffraction efficiency on deviation
from Bragg angle and wavelength with grating thickness in millime-
ters: 2.0 for curves 1 and 2 and 1.0 for curve 3; refractive index
modulation in parts per million: 250 for curves 1 and 3 and 125 for
curve 2; spatial frequency 1086 mm−1; �b� dependence of angular
selectivity �half width at first zero �HWFZ�� on spatial frequency for
optimal refractive index modulation with grating thickness in millime-
ters: curve 1, 0.5; curve 2, 2.0; curve 3, 5.0; and curve 4, 10; and �c�
dependence of spectral selectivity �HWFZ� on spatial frequency for
optimal refractive index modulation with grating thickness in millime-
ters: curve 1, 0.5; curve 2, 2.0; curve 3, 5.0; and curve 4,10.

Fig. 6 Ratio of angular selectivity �HWFZ� of normal transmitting
VBG in air to that inside a medium for �0=1085 nm and nav
=1.4867.
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d�m

d�
= � 1

�0
−

dnav/d�

nav
	cot �m

* . �17�

In this case, substitution of Eq. �1� into Eq. �17� gives a
relative shift of Bragg angle in the medium resulted from
material’s dispersion:

�m,� − �m

�m
=

�0

nav
dnav/d� . �18�

Estimation of this value for PTR glass, which is classified
as crown-type optical glass having dnav/d� ranged30 from
−10 to −100 ppm/nm in the spectral range from near IR to
near UV. Using dispersion curve for PTR glass presented in
Ref. 30, Eq. �18� gives relative impact of material disper-
sion on Bragg angle in the medium presented in Fig. 7. One
can see that amendment for the Bragg angle does not ex-
ceed a few of percent. This means that impact of the mate-
rial dispersion of a photosensitive medium should be care-
fully considered for beams with extremely low divergence.
For example, by taking into account the material dispersion
of PTR glass in the spectral region near 1 �m, the VBG
with an incident Bragg angle of 60 deg would be detuned
for 40 �rad by shifting of the beam wavelength for 10 nm.
This value corresponds to diffraction-limited angular diver-
gence of a beam with 30-mm-aperture and results in com-
pletely detuning of high-aperture beam from the Bragg con-
dition.

4 Diffraction of Gaussian Beams
on a Transmitting Bragg Grating

4.1 Divergent Monochromatic Beams

In this section we present the results of Bragg diffraction
modeling of a monochromatic beam that has a divergence
that could be approximated by a Gaussian function. If the
direction of the beam propagation matches the Bragg con-
dition, the normalized function of the beam intensity in the
angular space could be written as

G1��,b� = exp�− 2�� − �m

b
�2	 . �19�

For a diffraction-limited beam with diameter D at the level
of e−2 �half width at e−2 of the maximum �HWe−2M�� at
central wavelength �0, its divergence b could be deter-
mined as

b =
2�0

�D
. �20�

To determine the DE of a Bragg grating for such a diver-
gent beam, convolution in the angular space of the func-
tions given by Eqs. �15� and �19� should be applied:


��b� =
� 
���G1��,b� d�

� G1��,b� d�

. �21�

After substitution of the numerical value of a Gaussian-
function integral, Eq. �21� could be written as


��b� =� 2

�

1

b
� 
���G1��,b� d� . �22�

Figure 8�a� shows angular selectivity of the grating with
��m

HWFZ=0.4 mrad and 100% DE for a plane monochro-
matic wave at 1085 nm for four beams with different diver-
gences b. While the beam divergence is much less than the
grating angular selectivity �curve 1 corresponds to b
=0.04 mrad�, there is a negligible decrease of diffraction
efficiency compare to that for planar wave, and the curve
minima reach zero values as it appears for the planar wave
�see Fig. 5�a��. However, if the beam divergence becomes
comparable with the grating selectivity, dramatic decreas-
ing of maximal DE occurs �curves 2 to 4�. When diver-
gence and selectivity values are equal, b=��m

HWFZ, maxi-
mum DE is only about 60%. Also, sidelobes are flattened
while the divergence increases, local minima of angular
selectivity begins to differ from zero significantly, and at
b���m

HWFZ=0.4 mrad the selectivity curve has no local
minima at all.

Figure 8�b� shows the dependence of diffraction effi-
ciency on the beam divergence. Four gratings with thick-
nesses of 20 and 2.0 mm and a spatial frequency of
357 mm−1 as well as with thickness 2.0 and 0.2 mm and a
spatial frequency 1086 mm−1 have respective values of
HWFZ angular selectivity of 0.12, 1.2, 0.4, and 4 mrad in
accordance with Eq. �13�. It was found that diffraction of a
divergent beam causes a decrease of DE to 99% when the
beam divergence b becomes 8 times less than the grating
HWFZ angular selectivity ��m

HWFZ, i.e., losses are less than
1% when 8b���m

HWFZ. Further increases of the beam di-
vergence b �e.g., by decreasing of the beam diameter for
diffraction-limited beams� results in dramatic decreases of
the DE value. When the beam divergence is equal to the
grating angular selectivity ��m

HWFZ, DE decreases almost
twice �to 58%�.

Fig. 7 Effect of material dispersion on the Bragg angle inside a
grating medium. The angular dispersion factor is a partial derivative
of the Bragg angle over the wavelength resulting from material dis-
persion of refractive index normalized to absolute value of Bragg
angle. The refractive index and material dispersion are determined
conform to Ref. 30.
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4.2 Polychromatic Planar Waves
Let us consider the Bragg diffraction of polychromatic
beams with a Gaussian shape of the spectral distribution.
The modeling of such diffraction is performed similarly as
was done for divergent beams in Sec. 4.1:

G2��,w� = exp�− 2�� − �0

w
�2	 . �23�

The parameter w is the HWe−2M spectral width, and �0 is a
central wavelength of a beam. Diffraction efficiency of
transmitting VBG for such beams could be calculated from
convolution of the DE for a monochromatic wave deter-
mined by Eq. �14� with the Gaussian spectral distribution
described by Eq. �23�. This gives us the adjusted value of
diffraction efficiency 
��w�:


��w� =
� 
���G2��,w� d�

� G2��,w� d�

. �24�

Taking into account the numerical value of a Gaussian-
function integral, Eq. �24� could be rewritten similar to Eq.
�22�:


��w� =� 2

�

1

w
� 
���G2��,w� d� . �25�

Equation �25� enables us to calculate the DE of planar poly-
chromatic beams on transmitting VBG. These results are
very similar to results described in Sec. 4.1 for the diffrac-
tion of divergent beams, and therefore are depicted in the
same Fig. 8�a� in the same way as was done for Fig. 5�a�.
One can see that the beam spectral width is twice fewer
than the grating spectral selectivity �curve 2�, DE losses
about 15% in the main maximum and gains almost 6% in
each of the first minima. When the beam width is equal to
the grating selectivity or exceeds it �w���HWFZ�, sidelobes
disappear and DE becomes less than 60%.

Figure 8�c� shows the calculated dependence of DE on
beam spectral width w for four gratings with the parameters
described in Sec. 4.1. One can see that the grating DE is
only about 60% when the beam spectral width w is equal to
the grating selectivity ��HWFZ. The DE for narrow-spectral-
line beams is the same as for a monochromatic wave, and it
decreases to 99% when beam spectral width becomes ap-
proximately 8 times fewer than the grating HWFZ spectral
selectivity, i.e., when ��HWFZ=8w.

4.3 Divergent Polychromatic Beams: A General
Case

In the case where a real beam is both divergent and spec-
trally widened, the grating diffraction efficiency is a prod-
uct of 
��w� and 
��b� calculated in accordance with Eqs.
�22� and �25�:


�w,b� = 
��w�
��b� . �26�

Thus, both misaligning factors, such as beam divergence
and spectral bandwidth, affect the DE of transmitting

Fig. 8 Selectivity of transmitting VBG for divergent polychromatic
beams with central wavelength at 1085 nm: �a� dependence of DE
on detuning from Bragg condition, for a monochromatic wave, DE is
100%; incident beam divergence HWe−2M in milliradians: curve 1,
0.04; curve 2, 0.2; curve 3, 0.4; and curve 4, 0.8; grating angular
selectivity is 0.4 mrad; beam HWe−2M spectral width in nanometers:
curve 1, 0.1; curve 2, 0.5; curve 3, 1.0; and curve 4, 2.0; grating
spectral selectivity is 1.0 nm; �C� dependence of grating DE on the
beam divergence for angular selectivity �HWFZ� of grating in millira-
dians: curve 1, 0.12; curve 2, 0.4; curve 3, 1.2; and curve 4, 4.0;
shown by dotted arrows; and �c� dependence of grating DE on the
beam spectral width with spectral selectivity �HWFZ� of grating in
nanometers: curve 1, 0.1; curve 2, 1.0; and curve 3, 10; shown by
dotted arrows, where the dotted line corresponds to DE for a beam
with divergence or spectral width equal to the grating selectivity.
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VBGs. Substitution of Eqs. �22� and �25� into Eq. �26�
enables modeling real beams with countable spectral width
and angular divergence. For instance, if a beam has angular
divergence and spectral width equal to the angular diver-
gence and spectral selectivity of a grating with 100% DE
for plane monochromatic wave, its DE will be only about
35%.

5 Comparison of the Model and Experimental
Results

As noted, PTR-based VBGs typically exhibit refractive in-
dex modulation up to 1000 ppm, which is enough to secure
nearly 100% efficient gratings at thicknesses less than
1 mm at wavelengths from the visible to near-IR regions.
To prove the model experimentally, we recorded a fairly
typical 1.23-mm-thick transmitting VBG with a spatial fre-
quency of 425 mm−1 and a refractive index modulation of
420 ppm by exposure of PTR glass to radiation from a
He-Cd laser at 325 nm and subsequent thermal develop-
ment at 520°C for 2 h. A comparative test of this grating
by collimated He-Ne laser beams at 543 and 633 nm
proved that these parameters secured calculated 100% DE
for a planar monochromatic wave at 1085 nm. A 100-W cw
single-transverse-mode Yb-doped fiber laser �IPG Photon-
ics Corp., model YLR-100� with a central wavelength of
1085 nm was used for testing. This laser had the collimated
output radiation of a 5-mm-diam Gaussian beam. It was
found that this laser had a near-diffraction-limited diver-
gence of 0.23 mrad in the whole studied power region,
while the spectral width at the HWe−2M level increased
from 2.7 to 4.7 nm, when the output power rose from 15 to
100 W.

The dependence of the DE of a PTR Bragg grating on
the power of the laser at 1085 nm is shown in Fig. 9. One
can see decreases of efficiency while power increases. Be-
cause PTR Bragg gratings have no thermally induced ef-
fects at power density levels up to 100 kW/cm2 �see Refs.
16 and 31�, this effect was caused by changing the laser
beam parameters at different levels of emitting power.22

Based on the theoretical modeling results already de-
scribed, let us evaluate how spectral width and divergence
of the beam affect diffraction efficiency of this particular
grating. The theoretical DE of this grating is expected to be
equal to 100% for a planar monochromatic wave. The dif-
fraction of the laser beam with 0.23-mrad divergence on a
grating with an angular selectivity of 1.6 mrad �HWFZ�
results in a decrease of DE to 98.6% �curve 1�. For a planar
polychromatic wave with a spectral width that increases
linearly with increasing power, the calculated DE depen-
dence on power is shown as curve 2 in Fig. 9. Curve 3, as
a result of multiplication of curves 1 and 2, presents the
calculated DE for a polychromatic divergent beam that
should drop from 93.5 to 87% for beams with spectral
widths of 2.7 and 4.7 nm, respectively. The corresponding
experimental data are 93 and 87% �triangles in Fig. 9�.
Comparison of calculated data with experimental results
shows very good correspondence. Thus, the proposed
model is able to describe the diffraction of polychromatic
divergent beams on real PTR Bragg gratings. Another con-
sequence of this coincidence is that the experimental PTR
Bragg grating is very close to a sinusoidal uniform grating,
as it was supposed in the model.

Note that this modeling can be applied to other photo-
sensitive materials with high optical homogeneity that al-
low recording of sinusoidal refractive index modulation.

6 Conclusions
We presented the results of mathematical modeling based
on Kogelnik’s coupled wave theory for the diffraction of
beams with a wide range of spectral and angular parameters
on transmitting VBGs. This consideration is rather impor-
tant for most practical applications when the spectral width
and angular divergence of diffracted beams are far enough
from the monochromatic/planar-wave model. The proposed
model enables fast analytical calculation of angular and
spectral dependencies of DE for normal and slanted grat-
ings and could be used to design of devices based on a
transmitting Bragg grating as well as testing tools for Bragg
grating certification. The requirements for the parameters of
gratings and laser beams for lossless Bragg diffraction were
formulated. This theoretical model was compared with and
found to be very close to experimental data observed for
high-power Yb-fiber laser diffracting on a transmitting PTR
Bragg grating. This model can be applied for all other thick
Bragg gratings with sinusoidal refractive index modulation
recorded in different phase photosensitive materials.
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