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ABSTRACT 

 Sunflowers are considered to be a part of a group of plants known as hyperaccumulators 

that share the ability to accumulate high amounts of heavy metals in the above ground organs, far 

in excess of the levels found in other species, often without suffering any phytotoxic effects. 

Quantifying the effects of zinc accumulation through the lens of the elemental defense 

hypothesis is essential for uncovering if there is a means to increase herbivore resistance in 

agricultural settings without the use of external interventions such as pesticides. A greenhouse 

study was conducted on four widely grown commercial cultivars of sunflower. Each cultivar was 

grown under multiple soil Zn concentrations ranging from 0 to 200 mg/kg of soil. Growth rate 

measurements were taken at evenly spaced intervals until maturity. Samples of leaves were taken 

from plants and tested for Zn concentration. A qualitative study using Vanessa cardui was 

conducted to observe the effects of zinc in the diet of caterpillars. Significant variation in the 

level of zinc accumulated in the leaves was observed as well as variation in overall biomass per 

treatment level. V. cardui experienced high rates of mortality at high zinc concentrations 

suggesting that further study may lead to significant evidence that Zinc accumulation is a form of 

herbivore resistance.   
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INTRODUCTION 

There are three hallmarks that distinguish hyperaccumulators: an increased rate of heavy 

metal uptake, a faster root-to-shoot translocation, and an improved ability to sequester heavy 

metals in leaves (Rascio et al., 2011). The strict definition of this trait is currently under debate 

as the lines between what can be classified as hyperaccumulators are blurry due to the fact that 

this trait is not limited to any specific taxonomic group but is found throughout the land plant 

phylogeny with wide variation in metal accumulation observed. One hypothesis for the repeated 

evolution of this trait is the elemental defense hypothesis. 

Mechanisms 

Heavy metals place oxidative stress on plant organs by increasing the output of reactive 

oxidative species (ROS), particularly in regard to chloroplast membranes by interacting with 

electron transport activities (Rascio et al., 2011). This oxidative stress leads to many modes of 

damage from ion leakage to DNA cleavage (Rascio et al., 2011). This creates a need for coping 

strategies in order to prevent damage and even death when exposed to large amounts of heavy 

metals from the environment. 

When comparing hyperaccumulating to non-hyperaccumulating species, some of the key 

steps in hyperaccumulation rely on variation of expression in regulatory genes, particularly in 

genes that encode transmembrane transporter proteins (Rascio et al., 2011). Some plants employ 

an ‘excluder’ strategy where they hinder heavy metals from entering through the roots and 

prevent the metals from translocating to the leaves (Rascio et al., 2011). Alternatively, 

hyperaccumulators have an increased root to shoot translocation of heavy metals, as well as a 

greater ability to detoxify and sequester heavy metals once they have reached the leaves. This 
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improved root to shoot translocation is currently being suggested as a driving force for 

hyperaccumulation in the leaves by creating a deficiency in the roots, creating a gradient of 

heavy metals from the roots to the leaves (Rascio et al., 2011). 

Once in the aerial organs, detoxification and sequestration must occur to avoid toxicity 

and damage. This is done away from regions in plant cells which perform vital functions like 

photosynthesis. Detoxification occurs mainly through the heavy metals interacting with small 

ligands, molecules attached to a metal atom, allowing them to become entrapped in vacuoles, 

cell walls, and other inactive compartments. In these compartments, heavy metals will be 

exposed to chelators which will bind to and prevent metals from floating around in a free ion 

form, reducing potential damage (Rascio et al., 2011). 

 Despite the possibility for phytotoxicity, many metals play a crucial role in normal 

metabolic functions of plants. For example, manganese (Mn) facilitates the oxygen evolution of 

photosystem II, as well as a series of other enzymatic activities (Page and Feller, 2015). 

Similarly, zinc (Zn) is essential for multiple enzymes such as metalloproteinase, carbonic 

anhydrase, and Cu-Zn superoxide dismutase (Page and Feller, 2015). 

 The typical journey of a heavy metal, when present within tolerable levels, begins in the 

roots. In many cases, heavy metals go through a process of insolubilization which can be caused 

by a number of reasons such as forming complexes with organic acids, phytochelatin or 

nicotianamine which prevent the heavy metals from being released into the xylem (Page 

and Feller, 2015). Once released, the heavy metals begin their trip upwards through the xylem 

where they are distributed to the aerial organs. Redistribution around the plant can occur through 

the help of the phloem (Page and Feller, 2015). While some heavy metals, such as Mn, have a 

hard time moving through the phloem, other heavy metals are shuttled to where they are needed 
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most, such as from a senescing leaf to growing vegetative parts or maturing fruits, which are 

called “sinks” (Page and Feller, 2015). 

Classification of Hyperaccumulation Traits 

 One of the issues involving the definition of hyperaccumulation as a trait is whether we 

should view it from an evolutionary and physiological standpoint or from an ecological 

perspective. Often, the classification of hyperaccumulation as a trait is only looked upon in 

organisms that present higher than average levels of metal concentrations in naturally occurring 

environments rather than a controlled environment such as a greenhouse. It is argued by Goolsby 

and Mason (2015) that hyperaccumulation should be defined as a physiological trait and should 

be considered a separate and distinct trait from that of tolerance. This is backed by the reasoning 

that hyperaccumulation is an intrinsic and continuous ability of the plant. This is based on the 

presence of appropriate ions pumps, transporters, and other physiological mechanisms, which is 

separate from that of tolerance as shown by work in Arabidopsis which shows that uptake and 

tolerance have a separate genetic basis (Goolsby and Mason, 2015;Hanikenne et al., 2008). In 

contrast, Van der et al. frame their classification from an ecological standpoint basing their 

assertion on the idea that hyperaccumulation has evolved in response to selection from 

metalliferous soil and that metal accumulation and tolerance should be considered aspects of a 

single trait (Van der Ent et al., 2015). For the purposes of this thesis, hyperaccumulation is 

defined as the ability of a plant to accumulate high levels of heavy metals in above ground aerial 

organs.  

Zinc 

 Zinc (Zn) has an atomic mass of 65.38 g/mol and is a group 12 (IIB) transition metal. 

While toxic in large doses, zinc is an essential micronutrient to plants and animals. Plant 
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requirements for Zn vary considerably across species and cultivars. Rather than a source of 

toxicity, Zn deficiencies are a common observation amongst plants, as much of the Zn in soils 

exists in bio-unavailable forms. Zinc becomes chelated, and potentially bio-unavailable, when 

interacting with organic molecules or minerals with a high surface area such as clay. This renders 

the Zn molecule unable to move through the soil and unable to be leached by plant roots under 

most conditions (Schulte, 2004). 

With the addition of fertilizers, zinc sulfate (ZnSO4) is the most common form of zinc 

found in agricultural soils due to its relatively high solubility (Schulte, 2004). Common soil Zn 

concentrations range from 20-70 ppm for common field crops (Schulte, 2004). When zinc is 

present in excess levels usually above 100 ppm (Schulte, 2004), plants may present symptoms of 

toxicity. These symptoms include: general chlorosis of the younger leaves, smaller overall leaf 

biomass, and in severe cases entire leaf death (Reichman, 2002). 

Nutritional content of food crops is an important aspect of food production and breeding 

practices. Biofortification is an idea where either conventional breeding practices or genetic 

engineering can be used to increase the nutrient content of the plant. Biofortification could 

potentially be an approach to overcome nutrient deficiencies for humans or other animals (Page 

and Feller, 2015;Boyd, 2013). Regarding defense, evidence suggests that some herbivores prefer 

to eat leaves of Thlaspi caerulescens with a lower concentration of Zn as opposed to treatments 

with higher Zn concentrations (Pollard and Baker, 1997). This suggests a possible link between 

Zn concentrations and herbivory resistance.  

Helianthus 

Sunflowers are the fourth most important oilseed crop globally by value and acreage 

(Dowell et al., 2019). They are used mainly to produce sunflower oil and sunflower seeds. 
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Sunflowers have demonstrated hyperaccumulation ability amongst various metals (Cutright, 

2010), with potential for increased herbivore resistance under the elemental defense hypothesis. 

The two main seed types used in this experiment are high oleic seed and confection seed. In 

general, high oleic seeds are used to produce sunflower oil while confection seeds are used for 

producing sunflower seeds for both human and animal use.  

Elemental Defense Hypothesis 

The elemental defense hypothesis states that plants can sequester high concentrations of 

heavy metals as a defense mechanism to protect against pathogens and herbivores (Poschenrieder 

et al., 2006). This hypothesis was originally suggested as plants grown in soil amended with 

nickel were found to have higher survival rates (Martens and Boyd, 1994). Recently, there have 

been many studies looking at the effects of various heavy metals such as Zn, Cd, Mn, Pb, Ni, and 

others in regard to potential trade-off effects associated with accumulation. A proposed trade-off 

posits that when defense is conveyed by metals, organic defenses can be decreased reducing 

energy expenditure of the plant (Boyd and Martens, 1998). 

If defense can be conferred through the accumulation of zinc in sunflowers then this 

provides a potentially new target for study of disease and herbivore resistance. This context 

poses an interesting question: Can we breed crop sunflower to resist antagonistic effects, such as 

herbivores or pathogens, without the use external measures, such as pesticides? While the 

possibility is an appealing concept, there are many aspects to consider when looking at the plant 

as a whole. There is a possibility of toxicity when dealing with high levels of metal 

accumulation, which depending on the severity, may counteract all of the fitness and agricultural 

yield benefits conferred from that resistance. This toxicity may occur in the form of reduced 

growth rate or biomass, chlorosis of leaves, and even death of the plant (Reichman, 2002). These 
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effects need to be measured to identify possible disadvantages in an agricultural setting. If so, 

then this method should not be used in favor of a method that provides the greatest cost to benefit 

ratio for use in agriculture.  

Questions 

The information provided by the elemental defense hypothesis suggests that there may be 

a correlation between increased heavy metal levels in plant tissue and herbivore resistance. This 

study tests several aspects of the elemental defense hypothesis by addressing the following 

questions:  

(1) Is zinc hyperaccumulation observed in cultivated sunflower? 

(2) How is plant growth (a proxy for fitness and yield) altered by variation in soil zinc 

concentration and plant zinc uptake? 

(3) What is the effect of plant zinc uptake on a model herbivore? 
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MATERIALS AND METHODS 

Greenhouse 

For this project four commercial hybrid cultivars were used. The four different cultivar 

types used were two high oleic seed varieties, N4HM354 and Hornet, and two confection seed 

varieties, Jaguar DMR and LD5009. The seeds were procured from Nuseed (Breckenridge, MN). 

Replicates of these cultivars were dispersed across three benches in an environmentally 

controlled greenhouse at the University of Central Florida. There were five treatment levels 

measured in mg of zinc to kg of soil. The treatment levels were: 0 mg/kg, 50 mg/kg, 100 mg/kg, 

150 mg/kg and 200 mg/kg. The heavy metal concentrations selected straddle the known limit of 

phytotoxicity in several crop variants of Helianthus, where the effects of toxicity may or may not 

present themselves. Each cultivar was replicated six times per treatment level. The greenhouse 

was divided into an X and Y coordinate system where each pot was assigned to a position 

through a random number generator. Each pot was designated a unique coordinate position that 

served as a unique identifier ( Figure 1).  

The soil that was used was a 70% sand to 30% potting soil mixture in Azalea pots that 

were 20 cm in diameter at the top and 14 cm deep. The average of the amount of the soil mixture 

used in the pots was 2.83 kg. The Zn treatment came in a powdered form of zinc sulfate 

heptahydrate (ZnSO4ᐧ7H2O). This treatment was applied topically to the soil using a liquid 

solution before the seeds were planted by mixing the ZnSO4ᐧ7H2O with water and pouring the 

corresponding amounts over the top of the soil. The treatment was left to sit for 48 hours.  

After this time, two seeds were planted in pairs in each pot. Once the majority of the 

seeds began to germinate, there were a few pots that did not germinate on their own. The pots 

that did not germinate at this time did not have a correlation to any particular treatment nor 
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cultivar. Seeds for these pots were germinated by hand in the laboratory. Seed coats were 

removed and each seed was placed in a petri with a small amount of water and set under a 

growth light until each seed began to germinate. Each seed was then transplanted back to their 

corresponding pots.  

Weekly measurements were taken every week starting the week after the first seed 

germinated. A measurement of the chlorophyll content was taken by using a chlorophyll meter 

(CHL STD, atLEAF). Three measurements were taken on the leaf, one at the tip, one in the 

middle and one at the base near the petiole. Height was recorded every week, measured from the 

soil level to the highest point on the stem during vegetative growth and to the point where the 

stem meets the head during reproductive growth.  

Once flowered, the plants were harvested on the next date of regular measurement. First, 

a pair of the uppermost fully developed leaves were harvested where they were used for the 

analysis of zinc concentration. Each plant was then harvested by parts. Stems, heads, and leaves 

were placed into separate bags for drying. The dry mass of the separated parts was weighed, and 

the missing mass of the uppermost leaf pair was accounted for. Internal zinc concentrations for 

the separated plant parts were analyzed in by Louisiana State University via Inductively-Coupled 

Plasma Mass Spectroscopy. In order for the leaves to have been analyzed using this method they 

must have weighed at least 0.5 grams. Due to these physical limitations in the analysis 

procedure, only fifty leaves were therefore analyzed for zinc content, and only fifty plants are 

represented in the data. 

Vanessa cardui 

The analysis of the effect of zinc on the growth and development of caterpillars was done 

using Vanessa cardui in an incubator that was set on a twelve-hour diurnal cycle at 30°C with a 
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humidity around thirty five percent. The caterpillar eggs were supplied by Carolina Biological 

Supply (Burlington, NC). Caterpillar diet consisted of a handmade mixture of: 180g of water, 

4.76g of agar, 61.5g of Painted Lady Diet (Product# F9698B, Frontier Agricultural Sciences, Inc; 

Newark, DE), 2g of liquid potassium hydroxide, 97mL of 25% acetic acid and the calculated 

amount of zinc sulfate heptahydrate.  

 First the 4.67g of agar was added to the 180g of water in a beaker and set on a hot plate 

with a stir bar until boiling. Once boiling, this mixture was poured into a blender along with the 

61.5g of the food. This mixture was blended for twenty seconds. Then the 97mL of 25% acetic 

acid was poured into the blender and blended for twenty seconds. Then the 2g of potassium 

hydroxide was added and blended again for twenty seconds. Finally, the zinc was added and 

blended for the last time for twenty seconds. This mixture was poured into ten 1 oz. cups filling 

each cup a fourth of the way up. This procedure was repeated for each level of zinc. 

 Two trials were run. Eggs were placed in individual cups that had the previously placed 

layer of food at the bottom then was covered with a small piece of a tissue followed by a lid that 

had small holes around the top. In the first trail, three eggs were placed in each cup and all were 

allowed to grow to maturity. In the second trial, three eggs were placed in each cup but only one 

caterpillar was allowed to survive in each cup. Periodic checks for mortality were taken at 

various intervals until all were deceased. Caterpillars that formed a chrysalis were moved into a 

net to allow for further development. 

Data Analysis 

 Zinc concentration in the leaves was analyzed using an analysis of variance (ANOVA) 

test as well as Tukey post-hoc test. Leaf zinc concentration by cultivar was analyzed by a 

repeated measures ANOVA. Total biomass and biomass fractions were analyzed using a two-
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way ANOVA in conjunction with Tukey post-hoc test. Total biomass by cultivar was analyzed 

by a two-way ANOVA. Chlorophyll content and growth rate was analyzed using a repeated 

measures ANOVA. All analyses were performed in JMP Pro version 12 (SAS Institute; Cary, 

NC) 
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RESULTS 
Zinc Uptake  

 Across all treatments and cultivars, zinc levels in the leaves ranged from 36 ppm to 699 

ppm. The levels of zinc in the soil had a significant effect (P<0.0009) on the amount of zinc that 

was present in the leaves upon analysis. There was a trend of increasing levels of zinc in the 

leaves with increasing levels of zinc in the soil (Figure 2). To investigate further, the effects of 

leaf zinc uptake was separated by cultivar (Figure 3). A two-way ANOVA was run and showed 

that the different cultivars took up different leaf zinc levels as soil concentration changed as 

shown by a significant interaction term between cultivar and level with a p value of 0.0065. A 

repeated measures ANOVA was also run and showed a significant effect of level on all the 

cultivars (Figure 3). 

Total Biomass 

 Visually, there was a trend of decreasing overall mean biomass across the cultivars as the 

soil Zn concentration levels increased (Figure 4). There was a range from less than 1g to 

upwards of 45g in overall biomass. From the plants in which total biomass was calculated, there 

was a significant effect of soil Zn level on total biomass (two-way ANOVA, p<0.0001).When 

separated by cultivar, however, this simple visual tend of decreasing biomass with increasing soil 

zinc is no longer present in three out of the four cultivars and there is a significant interaction 

between cultivar and soil zinc level with a p value of 0.0376 using a two-way ANOVA (Figure 

5). Therefore, cultivars behaved differently with respect to the response of their biomass to soil 

Zn level. With respect to the allocation of biomass among shoot parts, the data suggests that 

there was a significant effect of soil Zn level on the fraction of total plant biomass allocated to 

the leaves (two-way ANOVA, p = 0.0046). Therefore, the level of zinc in the soil had a 
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significant effect on relative investment in leaves. There was no significant effect of soil Zn level 

on the mass fractions of the stems or heads. 

Height over Time 

 Visually, the data showed a trend of increasing height over time (Figure 6). A repeated 

measures ANOVA was conducted using a mixed model framework, and it was determined that 

there was an interaction between week and soil Zn level for height over time that was significant 

within each cultivar (Hornet: p<0.0001, Jaguar DMR: p< 0.0012, LD5009: p<0.0001, 

N4HM354: p<0.0004). Therefore, height over time within each cultivar varied with zinc levels in 

the soil. 

Chlorophyll Content 

 Figure 7 shows the chlorophyll content over time separated by cultivar. A repeated 

measures ANOVA was conducted using a mixed model framework, and shows a significant 

effect of level on chlorophyll content in all cultivars except Jaguar DMR (Hornet: p<0.0039, 

Jaguar DMR: p< 0.0648, LD5009: p<0.0001, N4HM354: p<0.0003). Week had a significant 

effect on all cultivars except Hornet (Hornet: p<0.1048, Jaguar DMR: p< 0.0001, LD5009: 

p<0.0043, N4HM354: p<0.0002). 

Caterpillar Survival 

 From a qualitative perspective, the increased levels of zinc in the diet of V. cardui lead to 

high rates of mortality in all levels above 100 ppm (Table 1). Reduction in size as well as pupa 

deformation was common in these levels. In the first trial, all pupa formed in and above the 100 

ppm level displayed a deformation where the head failed to detach during formation and thus 

remained on the chrysalis. In the second trial, this deformation was sporadic amongst levels but 



13 

 

common in the levels above 100ppm. In the second trial, the pupa that were formed in the higher 

levels failed to eclose and displayed deformation and discoloration such as the head remaining 

attached as well as turning black before caving in on itself resulting in mortality before eclosing.   
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DISCUSSION 

 The first experimental question asked whether zinc hyperaccumulation is observed in 

cultivated sunflower. With the significant effect of soil zinc concentration on the level of zinc 

found in the leaves it can be concluded that zinc uptake and accumulation occurred. With respect 

to current scientific literature opinions, hyperaccumulation is considered to have been reached at 

either the level of 1000 ppm or 10,000 ppm. The levels reached in this study fall below this limit 

and by these standards the observed phenomenon cannot be considered hyperaccumulation. 

However, as hyperaccumulation can also be considered a continuous trait (Goolsby and Mason, 

2015), how can such a limit to the definition of hyperaccumulation exist? Through this 

contradiction of classifications, it can be concluded that the plants accumulated zinc at 

significant levels in a dose-dependent manner but whether the observed phenomenon is 

considered hyperaccumulation cannot be concluded. 

 In determining if hyperaccumulation of zinc may be a possible mode of disease or 

herbivore resistance it is vital to observe effects of toxicity presented during the developmental 

process. The second experimental question asked how plant growth (proxy for fitness) may be 

altered by variation in soil zinc concentration and plant zinc uptake. Unlike the first, the direct 

answer to this question is simple. The soil zinc concentration level had a significant negative 

effect on both the total biomass of the plant and growth rate over time. However, when looking 

at this data as a proxy for fitness, the answer becomes unclear. A plant may exhibit many signs 

when faced with toxicity. The data itself does not present any definitive evidence that toxic 

levels were reached. The decreased biomass and growth rate show a negative relationship with 

increasing zinc uptake, but this does not necessarily directly indicate that a toxic level was 

reached. Similarly, the results from the chlorophyll content does not indicate direct toxicity. 

There was slight variation in chlorophyll content as soil concentration level increased but due to 
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the interaction terms and the visual graph, the variation cannot be correlated directly with the 

changing soil level. Instead, these negative relationships may have been due to physiological 

tradeoffs in the plant such as changing nutrient allocation patterns based on the increased 

presence of zinc. There is much that is not understood when looking at the physiological effects 

of hyperaccumulation. Thus, a definitive answer as to whether toxicity occurred and to what 

degree based off the data alone, cannot be concluded. In opposition to this statement, based off 

visual observations that occurred during the developmental process of the sunflowers, there is 

evidence of toxicity. Chlorosis of the leaves and mortality in the higher levels was observed and 

suggests that some degree of toxicity was experienced (Reichman, 2002). The effects of the 

chlorosis were not picked up by the chlorophyll data because the chlorophyll measurements were 

taken on the upper most fully expanded leaf pair which were usually the healthiest while the 

leaves with chlorosis tended to be much lower on the plant. As a limitation to the design of this 

study, mortality rates and visual toxicity cues were not collected nor analyzed leaving a large 

component to the determining of toxicity out of the equation. It is crucial to include these 

measurements in future studies in order to better document toxicity.  

 As for the last experimental question that was asked, what does the data suggest about the 

effect of plant zinc on a model herbivore? Zinc had a devastating effect on the overall 

developmental process of V. cardui which caused high rates of mortality and common 

deformations in all levels above 100 ppm.  Compared with the level of zinc accumulated in the 

leaves, 100ppm was accumulated in all plants in the soil zinc level 50 mg/kg and above. The 

plants in the 50 and 100 mg/kg soil zinc levels did not show a significant reduction in biomass 

indicating that the elemental defense hypothesis could be possible with little to no toxicity in this 

range. As stated previously, there are many other forms of toxicity that may have been present 
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that was not observed in these levels. The other forms of toxicity need to be studied more in-

depth in these levels in order to conclusively state whether this is the range for herbivore 

resistance with little to no trade-offs. 

This study used a compound of zinc dosed directly into the diet. Even though this is not 

directly answering the question at hand, using a compound of zinc in a formulated diet mixture 

that is designed specifically for V. cardui may actually provide more insight into the direct 

effects of zinc as opposed to using leaves that have accumulated zinc. This is because when 

using a formulated diet, zinc is the only factor that changes between samples. When working 

with an organism such as a plant, there are an incredible amount of biological and biochemical 

processes that make controlling for only one compound extremely difficult, if not impossible. 

Leaves may vary in the nutrients available, secondary metabolites present, or in the form that 

zinc has been converted into while being processed up through the roots and into the aerial 

organs.   

 This study touches on many key points but there are a few that need to be investigated 

further. While using a compound of zinc in a formulated diet may allow greater control of 

variables, using a leaf that has accumulated zinc needs to be the next step in determining if 

accumulation of zinc can provide herbivore or disease resistance. Using leaf tissue will shed light 

on potential effects compounded with the uptake of zinc, such as changes in secondary 

metabolite production, nutrient content, or general appeal to the caterpillars.  Furthermore, 

expanding the range of observational parameters when looking at toxicity will give a better idea 

of if there are any tradeoffs that occur with the accumulation of zinc.   
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CONCLUSION 

 Based on the results of this study, can we can breed a type of crop sunflower that has an 

ability to resist antagonistic effects such as herbivores or pathogens without the use external 

measures such as pesticides? The data presented in this study suggests that within the range of 50 

to 100 mg/kg of soil zinc level concentration there is the opportunity for herbivore resistance 

against V. cardui, but further investigation is needed and points us in the direction of focusing on 

the tradeoffs between toxicity and resistance. The possibility of using the mechanisms presented 

by the elemental defense hypothesis needs to be backed up by looking at these tradeoffs at any 

particular level of accumulation. If toxicity is occurring in the levels in which zinc accumulation 

is conferring herbivore or disease resistance, then the elemental defense hypothesis does not hold 

true in these plants meaning that this mode is no longer a viable option for herbivore or disease 

resistance in cultivated crop sunflowers. There is a way to combat this loss of fitness, however - 

zinc tolerance could be bred into zinc-sensitive sunflowers to allow zinc accumulation to confer 

pest resistance. However, if no toxicity tradeoffs are present in the levels in which resistance is 

conferred, or these tradeoffs can be overcome, then elemental defense may in fact be a possible 

mechanism for pest resistance. 
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APPENDIX 

Figure 1 

A layout graph of the three greenhouse benches. Each box represents an individual plant and 

contains its unique identifier which was assigned by its coordinate position in the form of a letter 

followed by a number. The cultivar type, zinc soil level, and replicate number sit below the 

identifier in the form of [abbreviated cultivar name] [zinc soil level]-[replicate number]. The 

colors correspond to the zinc soil level: red = 200 mg/kg, orange = 150 mg/kg, light blue = 100 

mg/kg, green = 50 mg/kg, tan = 0 mg/kg (control). 
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Figure 2 

Variation observed in leaf zinc concentration across the five soil zinc treatments. An ANOVA 

table shown below shows the significant p-value for soil zinc concentration level (mg/kg) on leaf 

zinc (ppm). A Tukey range test was preformed showing which levels are different from one 

another and is shown in the connecting letters report below. 
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Figure 3 

Variation observed in leaf zinc concentration across the five soil zinc treatments separated by 

cultivar. A two-way ANOVA was performed where a significant p-value of 0.0065 was observed 

as an interaction term meaning that the cultivars take up different leaf zinc levels. Therefore, a 

repeated measures ANOVA was performed and the fixed effect of level is shown below and is grouped 

by cultivar type. 

 
Hornet     Jaguar 

   

     
LD5009     N4HM354 
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Figure 4 

Variation observed in the mean total biomass of all cultivars across the five soil zinc treatment levels. 

An ANOVA table shown below shows the significant p-value for soil zinc concentration level 

(mg/kg) on mean total biomass (g). A Tukey post-hoc test was preformed showing which levels 

are different from one another and is shown in the connecting letters report below. 
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Figure 5 

Variation observed in the total biomass separated by cultivar across the five soil zinc treatment levels. 

A two-way ANOVA was run and the results are shown in the Effects Test box below that shows 

the significant p-value for soil zinc concentration level (mg/kg) on total biomass (g) as well as 

the interaction term. A Tukey post-hoc test was preformed showing which levels are different 

from one another and is shown in the connecting letters report below. 
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Figure 6 

Variation observed in the growth rate across time grouped by cultivar using a smoothed curve 

line graph. Each individual line on the graph represents a different soil zinc concentration level 

indicated by a specific color. A repeated measures ANOVA was performed and the fixed effects 

of level and week are shown below and are grouped by cultivar type. 

 

     Hornet            Jaguar DMR 

 
 

     LD50009                     N4HM354 
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Figure 7 

Variation observed in the chlorophyll content across time grouped by cultivar using a smoothed 

curve line graph. Each individual line on the graph represents a different soil zinc concentration 

level indicated by a specific color. A repeated measures ANOVA was performed and the fixed 

effects of level and week are shown below and are grouped by cultivar type. 

 
Hornet           Jaguar DMR 

 
LD5009           N4HM354 
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Table 1 

Mortalities observed during the development of Vanessa cardui across both trials. Mortalities 

were counted in the larva and pupa stage. The fourth column shows how many eclosed into 

adulthood. Total population size indicates how many individuals were hatched. 

 

Trial 1 

Level (ppm) Died in Larva Died in Pupa Eclosed Total Population Size 

0 2 4 38 44 

100 5 0 10 15 

250 18 0 0 18 

500 19 0 0 19 

1000 21 0 0 21 

1500 17 0 0 17 

2000 19 0 0 19 

 

Trial 2 

Level (ppm) Died in Larva Died in Pupa Eclosed Total Population Size 

0 1 3 36 40 

100 0 5 5 10 

250 3 5 2 10 

500 10 0 0 10 

1000 10 0 0 10 

1500 8 2 0 10 

2000 8 2 0 10 
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