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Tolerance analysis method for Shack-Hartmann 
sensors using a variable phase surface 

Costin Curatu, George Curatu, Jannick Rolland 
College of Optics and Photonics: CREOL and FPCE, University of Central Florida, Orlando 32816 

ccuratu@creol.ucf.edu 

Even after good calibration, the measurement accuracy of a Shack-
Hartmann sensor can be affected by the fabrication and alignment tolerances 
of the wavefront sensing optical system. The shifts of the Shack-Hartmann 
spots caused by misalignments correspond to ray intercept errors on the 
detector that typically have to be converted into a meaningful input 
wavefront measurement error. This conversion cannot be directly obtained 
from a conventional tolerance analysis using optical design software, 
because of the intrinsic wavefront sampling by the lenslet array. The 
tolerancing method proposed in this paper solves the problem of converting 
conventional merit function degradation into input wavefront measurement 
error without employing a separate wavefront reconstruction algorithm. 
Using the proposed method, this investigation shows the effect of 
fabrication and misalignment errors on the accuracy of a calibrated Shack-
Hartmann sensor, as a function of input wavefront vergence. 

© 2006 Optical Society of America 

OCIS codes: (080.2740), Geometrical optics, optical design; (120.3620), Lens design; 
(220.4830), Optical systems design; (220.4840), Optical testing. 
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1. Introduction 

Optical systems using sampling devices, such as Hartmann and Shack-Hartmann sensors have 
been widely used in wavefront measurement for various applications – astronomy, optical 
element testing, ophthalmology, etc. [1-3]. The central element of such sensors is a sampling 
device or sub-aperture array that breaks up the input wavefront into individual ray bundles 
that are subsequently recorded onto a detector. The positions of the ray bundles on the 
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detector, commonly known as Shack-Hartmann spots, are analyzed to determine their 
departures from a preset mapping obtained during calibration using a well-known reference 
wavefront, typically a plane wavefront. These departures represent local gradients of the input 
wavefront slope. A reconstruction algorithm is employed in order to determine the input 
wavefront under test [4]. The accurate mapping of the Shack-Hartmann spots is critical to the 
successful estimation of the absolute wavefront or to the operation of a closed-loop correction 
system. Errors in the position of the Shack-Hartmann spots are directly related to the absolute 
wavefront measurement error. 

The sampling device in a Shack-Hartmann sensor is a lenslet array placed at the entrance 
pupil of the system or in a plane conjugate to the optics under test. In the case of optical 
element testing, an image of the tested optics pupil is projected onto the lenslet array. This 
assures that individual lenslets accurately map onto the optics pupil plane and that the 
wavefront at the lenslet array is identical to that at the optic. Supporting sub-systems, such as 
beam reducers or expanders and relay systems, often complete a Shack-Hartmann wavefront 
sensor. Depending on the application, beam reduction or expansion optics can be used in front 
of the lenslet array. Beam reduction is necessary, for example, for short dynamic range 
wavefront slopes when high accuracy is required. In this case the beam reduction yields 
higher slopes arriving at the lenslet array increasing thus the sensitivity of the sensor. The 
beam reduction specifically magnifies the angular spread of the beam thus increasing the 
magnitude of the gradients, or tilts, of the ray bundles from micro-radians to milli-radians for 
typical testing configurations [5]. Measurements of such large angles are less prone to errors 
from mechanical and thermal instabilities in the sensor apparatus, therefore measurements 
become more accurate. On the other hand, for severely aberrated input wavefronts, the beam 
size can be expanded so that the localized slopes of the wavefront become more moderate. 
Following the lenslet array, relay systems of various magnifications are often used to transfer 
the optical output of the lenslet array onto fixed size detectors. The schematic in Fig. 1 shows 
a Shack-Hartmann system containing an expanding afocal system that increases the dynamic 
range of the sensor, a lenslet array and a demagnifying relay system. 
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Fig. 1. Conceptual layout of a Shack-Hartmann sensor with an afocal expansion lens 
and demagnification relay optics 

 
In this paper we first explain the need for tolerancing of such a wavefront sensor system. 

We then present the nominal design of a model Shack-Hartmann system. We introduce the 
proposed tolerance analysis method, and we apply it to the model system. We then quantify 
the wavefront measurement error caused by different misalignment tolerance levels for a 
given input wavefront vergence range. This research expands on an earlier investigation 
presented at the International Symposium on Optical System Design (2005), where we 
showed the possibility of using a phase surface to translate output ray error into input 
wavefront error for systems containing wavefront sampling devices [6]. New material in this 
paper includes taking into account the calibration of such systems and quantifying the 
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measurement accuracy degradation showing that in spite of calibration, measurements of 
wavefronts at the extreme of the dynamic range of the sensor are still susceptible to error. The 
key contribution of this paper is providing an efficient method of estimating the effect of 
fabrication and assembly tolerances on the measurement accuracy when designing a Shack-
Hartmann sensor system. 

2. Need for tolerancing 

Misalignments of the lenslet array and adjacent optical sub-systems of a Shack-Hartmann 
sensor can result in errors in the position of the spots in the image plane, which are directly 
related to the absolute wavefront measurement error. If the spot departures from the reference 
grid are caused by anything other than the wavefront departure from the reference wavefront 
used for calibration, wavefront reconstruction error will occur. Through calibration, the 
promise is that all system departures from the nominal design caused by fabrication and 
alignment are accounted for. The assumption is that the departures of the spots for a test 
wavefront with respect to the calibration reference merely represent the test wavefront 
departure from the reference wavefront. This is true for applications where the range of 
measured wavefront aberrations is relatively small. This work reveals that for large range of 
measurements, calibration only reduces measurement errors as opposed to eliminating them 
fully.  This problem is correlated to the fact that typically the calibration is performed using 
only one input wave, usually a plane wavefront, or a known wavefront in the center of the 
dynamic range of the sensor. Input wavefronts at the extremes of the dynamic range could still 
be erroneously mapped because of misalignments. Thus, calibration will quasi eliminate the 
measurement error for the reference (central) input wavefront, but will only decrease, not 
eliminate the error for measurements of other wavefronts in the dynamic range on the sensor.  

The importance of alignment errors in Shack-Hartmann sensors was first revealed by 
Pfund et al [7]. In their work the authors investigated how various misalignments of the 
lenslet array with respect to the CCD can be compensated by recalibrating with different 
reference wavefronts. Analytical forms of the effect of misalignments of the Shack-Hartmann 
sensor were studied, but complete reconstructed polynomials of the measurement error could 
not be obtained because of the non-integrability of rotation misalignments. In their work, the 
authors did not consider additional optical sub-systems besides the lenslet array and the CCD 
detector. For systems containing additional complex relay lenses, it may be cumbersome for 
the lens design engineer to express the impact of all misalignments analytically. Knowing the 
system and the measurement error that can be tolerated, the effect of fabrication and assembly 
error on the measurement accuracy of the system can be quickly estimated through a tolerance 
analysis. A one-step tolerance analysis that will directly provide the wavefront measurement 
error is not supported however by current optical design software tools because of the intrinsic 
discrete nature of the sampling system [8,9]. In an optical design software, a traditional 
tolerance analysis will provide the ray departure error with respect to the ray ideal location on 
the detector, due to misalignments. But since the wavefront under test is broken up by the 
lenslet array during the sequential ray tracing, the software tool would need a wavefront 
reconstruction algorithm in order to translate the ray error into input wavefront error. A 
widely employed procedure is to translate spot departures caused by misalignments into slope 
errors and then convert the slope errors into wavefront measurement error using a 
reconstruction algorithm available with Shack-Hartmann analysis software. We propose a 
step-by-step tolerance analysis technique that enables the optical design engineer to translate 
ray error due to fabrication and assembly tolerances into RMS input wavefront measurement 
error, and to estimate measurement error for the entire dynamic range of the sensor, without 
the use of separate reconstruction algorithms. 

3. Nominal design 

To illustrate our method, we have chosen a Shack-Hartmann sensor system comprised of three 
optical sub-systems: an afocal expansion system relaying the input wavefront from the 
entrance pupil of the system to the lenslet array - the pupil magnification of 3.2:1 reduces the 

#9748 - $15.00 USD Received 28 November 2005; revised 22 December 2005; accepted 22 December 2005

(C) 2006 OSA 9 January 2006 / Vol. 14,  No. 1 / OPTICS EXPRESS  140



local angular slopes of the wavefront, thus increasing the dynamic range of the system; A 
lenslet array with a contiguous square aperture pattern of 0.6 mm pitch and a focal length of 
37 mm; And a demagnification relay system that images the spot pattern from the focal plane 
of the lenslet array to a detector plane that is 3.2 times smaller than the intermediary image at 
the focal plane of the array. The conceptual layout (not to scale) is shown in Fig. 1. 

Both the afocal relay and the demagnification relay systems use the same combination of 
lens groups, for simplicity. This explains the demagnification factor being the reciprocal of 
the pupil magnification factor. Both the relays and the lenslet array are well corrected, 
diffraction limited systems. The design layout is shown in Fig. 2 and the design specifications 
are shown in Table 1. 
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Fig. 2. Nominal design layout 

Table 1. Nominal design specifications 

Entrance Pupil (ENP) 7 mm 
Pupil Magnification 
(from ENP to lenslet array) 

3.2:1 

Stop Aperture (at lenslet array) 22.2 mm 
Relay Systems Demagnification 1:3.2 
Wavelength 550 nm 
Total Track (from ENP to CCD) 1.6 m 
Wavefront Vergence Range -2 to +2 m-1 (diopters) 

 

4. Tolerance analysis 

The tolerancing technique we propose consists of a Monte Carlo tolerance analysis based on a 
specific merit function, followed by a re-optimization of the 90% cut-off system containing a 
variable “dummy” phase surface at the entrance pupil of the system. We present the tolerance 
analysis technique as five distinct steps. In presenting our method, we use a sub-set of the 
available Shack-Hartmann spots and sub-set of the available Zernike coefficients. We also use 
a limited number of Monte Carlo runs (100) in order to expedite simulation time. Moreover, 
we select only two specific wavefronts (experiencing positive and negative defocus 
respectively) for analysis.  These parameters are not inbuilt for this procedure. The values 
used were chosen only to illustrate the concept behind the method and the self-imposed 
concessions do not affect the generality of our method. The parameters can and should be 
varied depending on the system, application, fabrication limitations, and the designer’s 
objective. 
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Step 1: Range of measurement 

The dynamic range of wavefront measurement for the sensor depends on the application and it 
is usually provided in the design specifications. In our example the vergence range of the 
input wavefront was set to [-2; +2] m-1. In this range we chose three representative wavefronts 
for which the analysis would be preformed: 

- Right extreme wavefront (denoted by WFR) is a converging spherical wavefront 
focusing at 500mm to the right of the entrance pupil. 

- Mid-Range wavefront (denoted by WF0) is a plane wavefront 

- Left extreme wavefront (denoted by WFL) is a diverging spherical wavefront with its 
center of curvature at 500 mm to the left of the entrance pupil 

Step 2: Reference coordinates computation 

The CCD plane coordinates of real rays passing through the center of 17 (out of 1075) 
selected effective lenslet sub-apertures for the three above-mentioned input wavefronts were 
recorded as given by the ray-tracing software. For each of the 17 sub-apertures we obtained 

three sets of coordinates: 00 , yx  - the position of the spot created by the central wavefront, 

LL yx ,  - the position of the spot created by the extreme left wavefront, and RR yx ,  - the 
position of the spot created by the extreme right wavefront. They represent the ideal Shack-

Hartmann spot locations in the absence of any misalignments. Also, LΔ
�

 and RΔ
�

 , the 
vectors between the spot positions corresponding to the central reference wavefront and the 
two extreme wavefronts, shown graphically in Fig. 3, were computed and stored. 

),(),(

),(),(
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00

yxyx

yxyx
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−=Δ

−=Δ
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�

     (1) 

 

 
Fig. 3. Coordinates of one S-H spot, for WF0, WFR and WFL - nominal design 

 
Such vectors were used to compute the reference coordinates for the tolerance and 

optimization merit functions in the following steps. We selected only 17 representative sub-
apertures in order to expedite the simulation runtime. The ray spots corresponding to the 
selected sub-apertures are shown in Fig. 4. 

#9748 - $15.00 USD Received 28 November 2005; revised 22 December 2005; accepted 22 December 2005

(C) 2006 OSA 9 January 2006 / Vol. 14,  No. 1 / OPTICS EXPRESS  142



 
 

Fig. 4. Shack-Hartmann spot diagram with selected reference ray-intercepts on the CCD plane 

Step 3: Monte Carlo tolerance analysis 

Using the central wavefront input WF0 (plane wave) and its corresponding reference spot 
coordinates, a sensitivity tolerance analysis was performed prior to the Monte Carlo runs in 
order to identify the worst offenders of the system. In our case the worst offenders were the 
assembly errors (air thicknesses, decenters, and tilts of the lens groups). Therefore, we chose 
to ignore lens fabrication tolerances and focus only on assembly errors for the rest of the 
procedure. Among the group of worst offenders, the lens group tilt had considerably more 
impact on performance than the others. In order to better visualize the impact of the tilt 
misalignments we performed five analyses for five different tilt tolerance values, while 
maintaining the other tolerance values constant. Tolerance values used are shown in Table 2. 

Table 2. Tolerance values used in the analysis 

Tolerance Value 
Lens group position (on z-axis) ± 0.1 mm 
Lens group decenter ± 0.01 mm 
Lens group tilt ± 0.25º   (loose tolerance) 

± 0.2º     (moderate-loose tolerance) 
± 0.1º     (moderate tolerance) 
± 0.05º   (moderate-tight tolerance) 
± 0.025º (tight tolerance) 

 

We used the CCD image plane defocus, decenter, and tilt as compensators. A 100-run Monte 
Carlo tolerance analysis was performed using WF0 as input and the square root of the sum of 
the squared departures from the reference spot coordinates computed in step 2 as the merit 
function criterion. All individual Monte Carlo trials were saved during the run. 

The result of the Monte Carlo run was a set of 100 randomly misaligned systems that had 
different levels of merit function degradation. To estimate the wavefront measurement error 
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we could expect from a manufacturable system we needed to select an emblematic Monte 
Carlo trial out of the 100 set. We selected the Monte Carlo trial system with a merit function 
value corresponding to 90% cut-off boundary, as provided by the tolerance analysis statistic, 
where that percentage means 90% of real-life assembled systems would have a better or equal 
merit function value as the selected trial system. In a more cautious approach one could 
choose the worst case (100%) trial. However, we felt that the 90% figure is a reasonable 
choice for a manufacturable system. 

Step 4: Taking calibration into account 

A real-life system would be calibrated before use in order to reset the mapping of the Shack-
Hartmann spots with the very purpose of reducing assembly errors and misalignments. To 
account for calibration of the selected trial system, we needed to determine new reference spot 
coordinates on the detector for all three input wavefronts WF0, WFR, and WFL. We thus 
passed the central wavefront WF0 through the trial system and obtained the new calibrated 

coordinates, 00 , CC yx . Using the vector values computed in step 2, we compute a new set of 

reference coordinates for WFR and WFL that take into account calibration, as shown in Fig. 5. 
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Fig. 5. Calculating spot reference coordinates for WFR and WFL – taking into account 
calibration 

 
We were now ready to perform the final step of the procedure, in which we would 

determine the measurement error we could expect from our system at the extremes of the 
dynamic range. 

Step 5: Optimization using variable “dummy” phase surface 

If we take the extreme input wavefronts under test WFR and WFL and pass them through the 

90% cut-off trial system, we observe that the actual spot coordinates, TLTL yx ,  and TRTR yx , , 
obtained with this misaligned system are different than the expected coordinates computed in 

the previous step CLCL yx ,  and CRCR yx , , respectively. This discrepancy, illustrated in Fig. 

6, is caused by the misalignments present in this system and it is certain to cause measurement 
error.  
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Fig. 6. Discrepancy between calculated reference spot coordinates and actual spot coordinates 
for WFR and WFL 

In order to express this spot departure into input wavefront measurement error we introduced 
a variable “dummy” Zernike phase surface (denoted ΔWF) at the entrance pupil of the system, 
and we performed an optimization trying to minimize the spot departures from their ideal 
position. This idea was inspired from previous work in which a variable Zernike surface was 
used during lens optimization to model the behavior of a spatial light modulator [10]. In the 
present case the variable Zernike coefficients of the phase surface would attempt to nullify the 
discrepancy between actual spot and ideal spot position, during optimization. The merit 
function applied during optimization can be expressed with Equation 3. 

    
0),(),(

0),(),(

→−
→−

CRCRTRTR

CLCLTLTL

yxyx

yxyx
     (3) 

 
The misaligned system containing the Zernike phase surface is conceptually illustrated in 

Fig. 7. Using cylindrical coordinates, the wavefront in the entrance pupil of the system can be 
expressed in terms of Zernike polynomials. 

    ( ) ( )∑ ⋅= θρθρ ,, m
n

m
n zcW      (4) 

 

where m
nc  is the normalized Zernike coefficient of order n and harmonic m and m

nz  are the 

respective Zernike terms containing the normalizing factor. 
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Fig. 7. Misaligned system with variable Zernike surface ready for optimization 
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We set the first 15 normalized Zernike coefficients as variables and we optimized the 90% 
system with respect to the merit function from Eq. (3), using WFR and WFL as inputs, 
respectively. The “optimized” Zernike coefficients of the ΔWF surface represent the departure 
from the ideal input wavefronts needed to compensate for the assembly errors. Thus, ΔWF 
represents the wavefront measurement error of the system when measuring those particular 
wavefronts at the extremes of the dynamic range. The RMS wavefront error is given by 
Equation 5. 

    ( )2

∑= m
ncErrorWFRMS      (5) 

 
The same analysis can be performed against any particular input wavefront, provided that we 
build a reference mapping and a respective merit function for that wavefront. 

5. Results 

Analysis results can be expressed in a multitude of formats. Impact of individual assembly 
errors as well as system measurement error dependence on tolerance strictness can be plotted 
for the entire dynamic range of the system. We show the RMS wavefront measurement error 
in the [-2 to +2] m-1 range for five different tilt tolerance values in Fig. 8. The RMS wavefront 
measurement error is zero for the central wavefront used for calibration WF0 but it increases 
to 2 waves, depending on the tolerance values used, for the extremes of the dynamic range 
WFL and WFR. 
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Fig. 8. Measurement error as a function of the sensor dynamic range 

 
It is to be noted that the two wavefronts used for analysis in this paper are experiencing 

only positive and negative defocus. For wavefronts experiencing more complex aberrations 
the measurement error results may differ. As a future task, it would be interesting to 
investigate the effect of misalignments on wavefronts experiencing other particular optical 
aberrations, or a combination of them. 

6. Conclusions 

We presented a step-by-step tolerance analysis for a Shack-Hartmann wavefront sensor 
containing three optical sub-systems. We employed a traditional Monte Carlo tolerance 
analysis on the nominal system followed by an optimization using a “dummy” variable 
Zernike surface at the entrance pupil of the system. Thus, we were able to convert the sampled 
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wavefront ray-intercept merit function degradation into input wavefront measurement error. 
We also demonstrated that even though a calibration was performed using a central reference 
wavefront, alignment errors still caused measurement error for wavefronts at the extremes of 
the dynamic range of the sensor. The example presented was used only to illustrate the 
underlying concept. This tolerance technique can be used for other systems containing 
sampling devices, where traditional tolerancing provides limited insight into input 
measurement error caused by fabrication and assembly faults. Finally, although presented as a 
step-by-step procedure, the method can be easily converted into a scripted macro. 
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