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Simple physics of quadratic spatial solitons
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Abstract: Spatial solitons in quadratically nonlinear media result from the
interplay of parametric gain, diffraction and cascading phase shift. Their
main features are well understood in mathematical terms, and several
experiments have been successfully carried out which demonstrate their
observability and most important properties. Here we provide an intuitive
interpretation of some of the underlying physics, outlining the processes that
govern their excitation, propagation and interaction forces.
2002 Optical Society of America
OCIS codes: (190.5940 ) Self-action effects; (190.4410) Nonlinear optics, parametric
processes; (190.4180) Multiphoton processes
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Solitons exhibit universal properties that do not depend on the underlying physical
mechanisms responsible for their existence. This has been amply demonstrated for spatial
solitons observed to occur in Kerr, saturating Kerr, liquid crystalline, photorefractive and
quadratically nonlinear media.[1-4] Of these, there are simple intuitive approaches to
understanding the physical mechanisms leading to spatial solitons, their properties and their
interactions in Kerr and saturating Kerr media, in liquid crystals and in photorefractive
crystals.[5-6] A beam of light is known to diffract when propagating without any constraints
on its transverse dimensions. It diffracts in one dimension if confined in the other transverse
coordinate by a planar waveguide, or in two dimensions when no guidance is provided. It does
not diffract when a bi-dimensional guiding geometry counteracts its spreading, as it is the case
in optical fibers or channel waveguides. Diffraction can also be arrested by a nonlinear
interaction with the material in which the beam propagates, for example, when an intensity-
dependent response operates as a focusing mechanism. A nonlinear medium able to counteract
diffraction in one dimension is said to support 1D bright spatial solitons, i. e., stable nonlinear
eigen-modes of the system. 1D spatial solitons exist in planar waveguides, and are known to be
stable in self-focusing materials. Similarly, when diffraction is balanced in both transverse
dimensions, the resulting beams are referred to as 2D bright spatial solitons. In both cases,
these eigen-solutions have a spatial beam profile that is invariant upon propagation. 2D spatial
solitons, however, are known to be unstable in ideal Kerr media, i. e. those described by an
intensity-dependent linear increase in refractive index: n=n0+n2I, with n2 a constant and I the
local intensity.[6] Conversely, they tend to be stable and robust in media such as
photorefractives, liquid crystals and χ(2)-active media. All of the afore-mentioned media exhibit
a saturable nonlinear response, i. e. the variation in optical path-length upon propagation
depends in a sub-linear way on the field intensity at each point in the transverse beam profile.
[7] Although the change in path-length can be associated to a change in refractive index in
most nonlinear media, such as Kerr, saturating Kerr, liquid crystals or photorefractives, it is
linked to a nonlinear phase-shift in χ(2)-active media for multi-frequency solitons: there is no
change in the refractive index for the quadratic solitons, because they consist of multiple
frequency waves coupled together by the second-order nonlinearity χ(2). Because of this
complexity, they are invariably discussed in terms of the detailed numerical solutions to the
pertinent nonlinear wave equations and not in terms of the underlying physics.[8-12]
Fortunately, it is possible to explain in a simple way how self-focusing processes occur during
parametric interactions. In fact, one can obtain a great deal of insight and construct quite
simple pictures for some of the properties of these quadratic solitons and their interaction
“forces” without relying on the detailed solutions. It is our goal in this Article to show this.
However, it is important to note at the outset that there are properties such as stability, soliton
fusion etc. which cannot be handled in a simple way and require detailed mathematical
attention.

Let us consider the classical second harmonic generation (SHG) process in which only the
fundamental wave is injected into the medium. The simplest case occurs for a 1D, Type I
interaction between a single fundamental field (of envelope aFF) and a single harmonic field
(of envelope aSH). Diffraction can occur in only one dimension (y), i. e. in the plane (y, z) of a
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slab waveguide, and the nonlinear wave evolution along z is described by the well-known
equations for SHG:

[ ] kzi
FFSHFFFFFFFF eyayakya

y
ya

z
ik ∆Γ=

∂
∂−

∂
∂

)()(2)()(2 *
2

2

(1)

[ ] kzi
FFSHSHSHSH eyakya

y
ya

z
ik ∆−Γ=

∂
∂−

∂
∂

)(2)()(2 2
2

2

(2)

with ( ) 2/1
0

33)2( 2
−

=Γ εχω cneffFF the nonlinear coupling strength and )2(
effχ the “effective”

nonlinearity (accounting for a specific crystal orientation, set of field polarizations and overlap
integral). Here ∆k = 2k(ω) – k(2ω) = 2kFF – kSH is the wavevector mismatch, and near the
phase-matching condition n = nFF ~ nSH. The other symbols have their usual definitions. When
only the fundamental (FF) is input, in the plane-wave case (the second harmonic (SH) wave
initially grows π/2 out of phase with the fundamental. This relative phase changes with
propagation distance when ∆k ≠ 0 because, in the general case of a wavevector (and phase-
velocity) mismatch, vω≠v2ω. Up-(FF→SH) and down-(SH→FF) conversion occur successively
due to this velocity mismatch and the FF develops a nonlinear phase-shift through “cascading”,
as pictured in Figure 1. When kSH≠2kFF, the up-converted phase-fronts acquire a time lag/gap
with respect to the un-converted FF and, once down-conversion takes place and the energy
flows back into the FF, this results in a nonlinear phase-shift in the FF, with size and sign
depending on intensity and mismatch, for a given nonlinearity. [13] In fact, energy flows
continuously into and out of the fundamental and this process leads to a continuous
accumulation of the nonlinear phase shift. Furthermore, as will be discussed later, this
exchange also occurs in the steady state (soliton case) and leads to beam narrowing.

Up-Conversion
ω + ω = 2ω

Down Conversion
2ω - ω = ω

∆∆∆∆ k = 2k(ωωωω) - k(2ωωωω) ≠≠≠≠ 0 Fundamental Input (ω)

χχχχ (2)(-2ω; ω, ω)

χχχχ (2)(-ω; 2ω, -ω)

vω

v2ω

Fig. 1 Intuitive sketch on the origin of the “cascading” phase shift in Type I SHG with plane waves.

The situation becomes somewhat more complex when dealing with beams of finite widths
in the diffraction coordinate. In fact, each beam tends to diffract in y but, simultaneously, up-
and down-conversions give rise to a phase-front distortion via cascading. At the peak of the
fundamental envelope the nonlinear phase shift is the largest, and it decreases to zero in the
wings. This phase distortion leads to either self-focusing or self-defocusing of the FF beam.
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SH(c)

z/Ld 20
40
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Fig. 2 Simulated evolution of the transverse intensity of (a) a linearly diffracting 1D beam and (b) a
quadratic spatial soliton excited by a gaussian FF beam. (c) The FF phase-front evolution for the latter
case. Propagation distances are in units of the diffraction length LD, whereas the transverse coordinate is in
units of the input waist w0. Here ∆k.LD=2.

The formation of a stable spatial soliton can now be understood in terms of a focusing-like
phase-front curvature due to cascading: such curvature can counteract diffraction in the
transverse plane.[14-15] This is shown in Figure 2 above. Notice that, although a cascading
phase shift can only originate in the presence of a phase mismatch between plane waves, this is
not true when dealing with finite beams, due to their spatial distribution of wavevectors.

There is another approach to understanding this self-focusing process. Parametric gain
refers to the process by which one of the beams, fundamental or harmonic, gains energy from
the other via the nonlinear polarization on the right hand side of the coupled mode equations
(1)-(2). For finite, bell-shaped beams, parametric gain takes place preferentially where the
envelopes entering into the field product have the maximum amplitude, i. e. at the peaks. This
tends to regenerate photons on axis, thereby counteracting the tendency to spreading.
Consistently with the notion that SHG gives rise to a narrower beam at twice the pump
frequency, we can simply describe the generation of a quadratic spatial soliton excited by an

FF beam (of peak intensity I) as in Figure 3. The input FF (
22 / owye−∝ ), undergoing SHG,

forms a narrower SH beam (
22 /2 owye−∝ ). The two waves interact parametrically where both

intensities are higher, in such a way that the down-converted photons at FF (
22 /3 owye−∝ ) occur

preferentially on axis leading also to compress the otherwise diffracting FF beam. When the

diffraction (LD=π 2
ow n/λ) and parametric-gain (γ) distances (Lpg= Iγ/1 ) are comparable to

each other, i. e., when this narrowing mechanism is balanced by linear diffraction, a solution
with an invariant transverse profile can propagate. The latter is a bright spatial soliton and, by
its own nature, contains both frequency components. For this very reason, quadratic solitons
are also referred to as simultons.[16] It is important to recognize that, for a simulton to exist,
both waves must be present and dynamically interact in the presence of parametric gain and
diffraction. This imposes specific constraints on their transverse profiles in amplitude and
phase, as apparent from the simulton profile in the simplest case of a medium without walk-
off.[10-12]
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I < IThreshold

I > IThreshold FF + SH

FF >> SH

FFI << IThreshold

I < IThreshold

I > IThreshold FF + SH

FF >> SH

FFI << IThreshold

Fig. 3 Beam narrowing through SHG. The input is an FF beam. From top to bottom: Linear
diffraction at low powers, weak SHG below threshold for soliton generation, and spatial soliton
formation.

One can also utilize some of the universal properties of solitons, in conjunction with the
well-known coupled mode equations described above, to argue some of the properties of the
quadratic soliton fields, without actually solving for them. For non-diffracting [∂2a(y)/∂y2 = 0)
and stationary (∂|a(y)|/∂z = 0) solutions, |aFF(y)| and |aSH(y)| must be independent of z. This
implies that the field profiles in the plane (y, z) must be constant. More information can be
gained by examining the structure of the coupled mode equations, in the phase-matched case.
After propagation for a short distance ∆z, the evolution of the fields is given by

zyaiyazyayaiya FFSHFFSHFF ∆Γ−=∆∆Γ−=∆ )()()()()( 2* (3)

Because the envelopes are independent of z, both ∆aFF and ∆aSH must correspond to a
pure phase rotation of the fields, i. e. they must be orthogonal to aFF and aSH, respectively.
Given the “i” pre-factor in the equations (3), the two fields must therefore be parallel to each
other. Furthermore, since they must remain parallel to one another in the soliton, they must
also rotate together. As indicated in Figure 4, this is in contrast to the standard phase-matched
SHG case, for which the fields are orthogonal to one another. Note that this is a nonlinear
phase rotation since it is proportional to the product of two fields, and occurs for all solitons by
virtue of their nonlinear propagation. Now, equations (1) and (2) apparently predict the amount
of rotation to be different for different transverse positions, i. e. a function of y. However, it is

Eωωωω
E2ωωωω

Eωωωω
E2ωωωω

Fig. 4 (205 + 205KB) Animations showing the phase rotation of FF and SH field vectors in
standard SHG (left) and quadratic soliton propagation (right).
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again a well-known property of solitons that any changes occur uniformly across the envelope,
including phase. Thus the soliton experiences an “averaged” nonlinear phase rotation.
Furthermore, the higher the intensity of the soliton, the faster the nonlinear rotation.

Having deduced the conditions for the solutions being stationary, it is also clear what
occurs in the case of wavevector mismatch, i. e. when ∆k ≠ 0. The field vectors a still must
remain parallel and rotate together. Thus there is an additional nonlinear contribution to the
nonlinear phase rotation for the field which lags in phase due to ∆k ≠ 0, so that the envelopes
remain in phase.

When an FF beam alone is injected into a crystal (i. e., SHG), a soliton is not created right
at the input. Instead, the fundamental and the harmonic generated by it evolve towards the
exact simulton by generating the appropriate field components in both amplitude and phase.
During this excitation process some energy is radiated before complete trapping takes place.
This can be quite efficient provided that the final simulton is not too far away in parameter
space, i. e., if the input beam is close enough to the FF component of the resulting spatial
soliton. An example of such evolution is shown in Fig. 2 for a Gaussian FF input.

Similar arguments can be applied in a straightforward manner to describe the excitation of
a quadratic spatial soliton when injecting an SH input beam. In this case, down-conversion
takes place first, generating the FF components needed to support the stable propagation of the
simulton.[17] Noise photons or a small seed at FF can initiate the interaction process (from
eqn. (2)) via parametric instability or gain (down-conversion), respectively.

Although this simple approach has predicted a self-focusing mechanism, it cannot
guarantee that the balance between diffraction and self-focusing leads to a stable soliton. For
that, more sophisticated analyses are necessary.[18] It is possible, however, to argue that there
is a feedback mechanism that should stabilize a mutually self-trapped structure. For example,
an increase in the fundamental amplitude due to some perturbation will increase the nonlinear
phase rotation for the harmonic, causing the fields to dephase and hence exchange energy.
Energy will flow into the harmonic. However, this will in turn increase the down conversion
process, returning energy back to the fundamental. This process will tend to stabilize the
relative field amplitudes, hence avoiding catastrophic self-focusing.

Finally, some of the simple concepts outlined above, in conjunction with equations (1) and
(2), can be used to describe the effective forces between quadratic spatial solitons. To this
extent, two simultons are assumed whose fields overlap in space while propagating in
essentially the same direction. In the first approximation, this allows the role of relative
transverse velocities and additional terms deriving from tilt-induced wavevector-mismatch to
be neglected. Identifying by aFF and aSH the field amplitudes in one of the solitons, and by bFF

and bSH those in the other one, the nonlinear polarization terms driving the FF will take the
form:

PFF = εoχ(2) (aSHaFF* + bSHbFF* + aSHbFF* + bSHaFF*) (4)

whereas the corresponding terms generating the SH will be:

PSH = εoχ(2) (aFFaFF + bFFbFF + 2aFFbFF) (5)

Clearly, the terms containing the cross-products of a and b are responsible for the soliton-
soliton interaction. In Figure 5 below the contributions of each term across the soliton
transverse field distributions are identified.
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[aFF, aSH]

[bFF, bSH]

∝ aSH (bFF)*∝ bSH (aFF)*

∝ bSH (bFF)*

∝ aFF bFF

∝ aSH (aFF)* ∝ (aFF)2

∝ (bFF)2

[aFF, aSH]

[bFF, bSH]

[aFF, aSH]

[bFF, bSH]

∝ aSH (bFF)*∝ bSH (aFF)*

∝ bSH (bFF)*

∝ aFF bFF∝ aFF bFF

∝ aSH (aFF)* ∝ (aFF)2

∝ (bFF)2

Fig. 5 Soliton collisions: schematic illustration of the interaction terms (in green) due to
overlapping envelopes at FF and SH for solitons “a” and “b”.

Since coherent fields are involved, it is now convenient to analyze the various cases of
soliton-soliton interactions for different relative phases between them. In so doing, we will
explicitly write the pertinent coupling terms describing the interaction. These terms will add to
the usual ones which couple the individual soliton fields together on the RHS of eqn. (1-2) for
both [aFF, aSH] and [bFF, bSH], i. e.,
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For in-phase simultons, i. e., ∠aFF = ∠bFF (= ∠aSH = ∠bSH):

δ(aFF) = aSHbFF* + bSHaFF* + bSHbFF* (10)

δ(bFF) = aSHbFF* + bSHaFF* + aSHaFF* (11)

δ(aSH) = bFF
2 +2 aFF bFF (12)

δ(bSH) = aFF
2 +2 aFF bFF (13)

Since all the amplitudes are in phase, the cross terms corresponding to the fields’ overlap
provide constructive contributions to the parametric process. As discussed previously, this
will increase the nonlinear phase rotation, corresponding to progressively increasing energy
for each soliton. Moreover, the “self-terms” (bSHbFF*, aSHaFF*, aFF

2, bFF
2) due to the adjacent
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soliton tend to shift the effective center-of-mass towards the axis (z). This provides an
attractive force which improves the overlap between the soliton fields, favoring the
convergence of the two simultons. It is indeed well known that in-phase quadratic solitons can
either fuse upon collision or “pass through” each other, depending on the details (transverse
velocity) of the initial trajectories.[19-21]

It is worthwhile to stress that, due to the eigen-nature of each simulton, when considering
the actual spatial overlap of the pertinent field distributions with the nonlinear perturbing
polarization (4) at FF or (5) at SH, respectively, the weights of the individual quadratic terms
in (10) thru (13) are comparable, i. e., for simultons of similar power and size (| f |X indicates
the peak amplitude):

∫
y

dy |(aFF*/|aFF|X) aSHbFF*|≈ ∫
y

dy |(aFF*/|aFF|X) bSHaFF*|≈ ∫
y

dy |(bFF*/|bFF|X) aSHbFF*|≈ ∫
y

dy |(bFF*/|bFF|X) bSHaFF*|

∫
y

dy |(aSH*/|aSH|X) aFFbFF|≈ ∫
y

dy |(aSH*/|aSH|X) bFF
2|≈ ∫

y

dy | (bSH*/|bSH|X) aFFbFF|≈ ∫
y

dy |(bSH*/|bSH|X) aFF
2|

as summarized in Figure 6 below.

∝(aFF *) bSH aFF *

∝(bSH *) aFF bFF

∝(aFF *) aSH bFF *∝(aFF *) bSH bFF *

∝(bFF *) bSH aFF *

∝(bFF *) aSH bFF *

∝(bFF *) aSH aFF *

∝(aSH *) aFF bFF

∝(aSH *) bFF
2∝(bSH *) aFF

2

∝(aFF *) bSH aFF *

∝(bSH *) aFF bFF

∝(aFF *) aSH bFF *∝(aFF *) bSH bFF *

∝(bFF *) bSH aFF *

∝(bFF *) aSH bFF *

∝(bFF *) aSH aFF *

∝(aSH *) aFF bFF

∝(aSH *) bFF
2∝(bSH *) aFF

2

∝(aFF *) bSH aFF *

∝(bSH *) aFF bFF

∝(aFF *) aSH bFF *∝(aFF *) bSH bFF *
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∝(aSH *) aFF bFF

∝(aSH *) bFF
2∝(bSH *) aFF

2

Fig. 6 Soliton collisions: as in Figure 5, but taking into account the spatial overlap with the eigen-distributions.

For out-of-phase simultons, i. e., ∠aFF = ∠bFF − π (= ∠aSH = ∠bSH − π ) and :

δ(aFF) = - aSH |bFF*| - |bSH| aFF* + |bSH||bFF*| (14)

δ(bFF) =-|aSH| bFF* - bSH |aFF*| + |aSH||aFF*| (15)

δ(aSH) = bFF
2 - 2 aFF |bFF| (16)

δ(bSH) = aFF
2 - 2 |aFF| bFF (17)

All of the cross terms subtract from the individual solitons’ driving terms, reducing the
nonlinear phase rotation and the effective energy of each soliton, despite the additional self-
terms from the neighboring simulton. Therefore, the overlap effectively leads to repulsive
forces pushing the solitons apart and minimizing their mutual energy.

For in-quadrature simultons, i. e., ∠aFF = ∠bFF − π/2 (= ∠aSH = ∠bSH − π/2):

δ(aFF) = - i aSH|bFF*| + i |bSH| aFF* + |bSH||bFF*| (18)

δ(bFF) = - i |aSH|bFF* + i bSH |aFF*| + |aSH||aFF*| (19)

δ(aSH) = - |bFF|2 + 2i aFF |bFF| (20)

δ(bSH) = - |aFF|2 - 2i |aFF| bFF (21)

From (20) in (8) it is apparent that the cross-term increases aSH, whereas (21) in (9) shows
a reduction in bSH, despite the rotation slow-down due to the self-terms from the neighboring
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soliton. Thus aSH grows while bSH decreases or, equivalently, the [aFF, aSH] simulton takes
energy from the i[bFF, bSH] soliton, undergoing amplification through the interaction.

Similarly, when the solitons are 3π/2 out-of-phase, it is straightforward to show that the
-i[bFF, bSH] simulton will be amplified at the expense of [aFF, aSH].

All of these results are in agreement with more sophisticated treatments and experiments.
BPM propagation graphs for the various cases are shown in Fig. 7.
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Fig. 7 BPM propagation (z versus y) 3D-graphs for the various cases of interactions mentioned
above. Resulting FF intensity for equi-power Gaussian beams launched parallel to z. Units are
real (distances and intensity) but should be viewed as arbitrary.

It is important to note that this approach cannot predict the outcome of a collision, just
the effective forces that are operative. Effective-particle approaches provide physical-
mechanical pictures of collisions, albeit with some additional mathematics, and can actually
predict their outcome.[21-23]

In summary, although quadratic spatial solitons do not conform to the usual concepts
associated with other spatial solitons that rely on refractive index changes, it is nevertheless
feasible to understand some of their properties and interactions in terms of insightful
concepts. In particular, after outlining the role of a cascading phase shift and parametric gain,
we have revisited quadratic soliton-soliton interactions with the aid of simple coupled
equations and spatial overlap considerations, providing an intuitive basis to the understanding
of the effective forces between quadratic solitons.
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