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ABSTRACT 

The following dissertation looks at addressing environmental contaminants in the environment and 

the integration of an active learning style in an introductory chemistry course. It begins with 

addressing the concern for chlorinated propanes and ethane in the environment and the importance 

of looking into environmental remediation applications. This research looks at incorporating 

vitamin B12 as an environmentally friendly catalyst in the presence of zero valent iron for the 

reduction of chlorinated propanes and ethane. Chapter 2 presents the analytical methods and 

conditions in which samples were run. The results from these experiments are discussed in length 

in Chapter 3. Our results confirmed the hypothesis that vitamin B12 could act as an electron 

mediator to facilitate the reduction of the chlorinated propanes and ethane. Degradation was 

examined by observing the formation of byproduct peaks and the release of free chloride into 

solution. In Chapter 4, vitamin B12 is integrated into an already established industrial application 

technique, emulsified zero valent iron, and we observed the degradation of 1,2,3-trichloropropane 

with the formation of byproducts as the reaction progressed. In Chapter 5, this section of the 

dissertation focused on chemical education and observing an active learning technique in a 

fundamental chemistry course. The following study was designed to increase students’ positive 

attitude, engagement, and responsibility in a large enrollment chemistry course by utilizing a 

modified Gradual Release of Responsibility (GRR) model. GRR progressively transfers 

responsibility from the instructor to the student, allowing students to be more independent and 

helping them to address atypical problems. Students were assessed using iClickers to monitor their 

understanding and engagement, as well as surveys to determine their attitudes regarding this 

specific style of teaching. The results from this study demonstrated that implementing the GRR 
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teaching style had a positive effect on student academic performance and shows the importance of 

using an active teaching model in a large enrollment course. 
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CHAPTER 1: INTRODUCTION OF CHLORINATED 

VOLATILE ORGANIC COMPOUNDS 

Overview of chlorinated volatile organic compounds 

Chlorinated volatile organic compounds (Cl-VOCs) are a class of compounds that pose an 

environmental concern due to their ubiquitous infiltration and harmful effects. Cl-VOCs were 

heavily used until the mid-1980s as solvents in industrial applications such as dry cleaning, 

pharmaceutical synthesis, adhesive manufacture, metal component cleaning, and many others1-2. 

These compounds have been inadvertently released into the environment through spills, leaks, and 

improper disposal, or intentionally released3. Due to the release of these chemicals into the 

environment they have contaminated many environmental matrices, one particular point of 

accumulation being groundwater, and there is therefore a need for remediation of these persistent 

compounds. Chlorinated solvents have been detected at roughly 80% of US Superfund sites and 

at over 3,000 US Department of Defense sites4.   

Common physical properties of Cl-VOCs include higher densities than water, high 

volatility, and low water solubility. Due to these characteristics these compounds are able to 

migrate vertically beneath the water table and persist as dense non-aqueous phase liquids 

(DNAPLs). After penetrating the saturation zone, DNAPL pools form which can then act as long-

term sources of groundwater contamination. Figure 1 shows how these chemicals are then able to 

continuously contaminate aquifers5.  Remediation of Cl-VOCs, such as 1,2,3-trichloropropane 

(TCP), 1,2-dichloropropane (1,2-DCP), 1,3-dichloropropane (1,3-DCP), 1-chloropropane (1-CP), 

and 1,2-dichloroethane (1,2-DCA), is of great concern due to their toxicity and their environmental 

persistence.  
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Figure 1: Diagram of DNAPL and LNAPL (Reproduced from Heron Instruments)6 

Chlorinated propanes 

 Chlorinated propanes were heavily used as soil fumigants, cleaning/degreasing agents, and 

as precursors in synthesis. 1,2,3-TCP, 1,2-DCP, and 1,3-DCP all pose health risks to humans. Both 

1,2,3-TCP and 1,2-DCP are classified as potential human carcinogens. Contamination of 

environmental matrices with chlorinated propanes, such as 1,2,3-TCP, occurs at industrial and 

agricultural sites, which can contaminate groundwater.  
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Figure 2: Well sites contaminated with 1,2,3-TCP in California (Reproduced from California Water Boards)7 

Currently, 1,2-DCP is a contaminant of concern at over 100 Superfund sites with a 

maximum contaminant level (MCL) in drinking water of 0.52 parts per billion (ppb). Despite this 

low MCL, 1,2-DCP has been found at concentrations exceeding 24 parts per million (ppm) at well 

sites in Louisiana8. Despite the wide usage of 1,2,3-TCP and its likelihood of being a carcinogen, 

it currently has no defined MCL. 1,2,3-TCP has been detected in more than 300 drinking wells in 

California above 1,2,3-TCP’s notification level. Figure 2 shows the locations of these 

contaminated wells. Due to the adverse effects associated with these chlorinated propanes it is vital 

to find an environmentally friendly way to remediate them. 

 Chlorinated aliphatics, including chlorinated propanes, have been shown to be recalcitrant 

to a number of commonly employed remediation techniques, such as in the presence of ZVI9. In 

the case of chlorinated propanes studies have shown little to no degradation under reductive 
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conditions10-11. However, in anaerobic conditions, bacterial degradation has been seen for some 

chlorinated propanes12-14. With these compounds showing little degradation in environmental 

systems, it is important to investigate environmentally friendly methods of remediation.  

Chlorinated ethanes 

 Chlorinated ethanes have been used in a multitude of industries and are still being utilized 

today. They are often introduced into the environment as a result of industrial production, 

intentional release, leakages from storage tanks, and spills. The saturated molecule 1,2-DCA has 

been used as a metal degreaser, household cleaner, chemical intermediate, pesticide, and more. 

The production of 1,2-DCA is still necessary today to manufacture polyvinyl chloride (PVC) pipes, 

upholstery, and as a chemical solvent. The yearly global production of 1,2-DCA was over 15 

million tonnes in 2002, which is alarming due to it being a reasonably anticipated carcinogen that 

is known to affect the central nervous system, liver, and renal systems15-17.  Of the 1,585 National 

Priorities List (NPL) sites, 1,2-DCA has been detected at least 57018.  

 

Figure 3: Lewis structures of (a) 1,2,3-TCP, (b) 1,2-DCP, (c) 1,3-DCP, (d) 1-CP, and (e) 1,2-DCA 
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Current remediation techniques 

Due to the widespread contamination of Cl-VOCs there is an urgent need for remediation.  

A number of technologies have been employed which strive to contain and remediate these 

compounds, such as pump and treat, thermal treatment, and zero-valent iron (ZVI) technologies.  

 

Pump and treat 

 

Figure 4: Diagram of a pump and treat system (Reproduced from USEPA) 19 

 Due to the low solubility of 1,2,3-TCP (1,750 ppm), 1,2-DCP (2,800 ppm), 1,3-DCP (1,750 

ppm), and 1,2-DCA (8,600 ppm), these compounds are able to contaminate aquifers for extended 

periods of time20-23. The slow release of DNAPLs into aquifers makes these sources difficult and 

costly to treat. The pump and treat method for remediating groundwater contamination is a 

commonly employed treatment option for chlorinated solvents, chemical spills, and fuel oils. In 

this system, ground water is pumped to the surface where it is then treated. The above ground 

treatment system may consist of activated carbon, air stripping, and/or other chemical treatment 

options in order to remove contaminants from the water. However, this treatment can be costly 
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and time-consuming, and the nature and complexity of the contamination may require multiple 

treatment methods for the same groundwater. Pump and treat systems are primarily used to contain 

the spreading of contamination rather than to remediate. 

 

Thermal treatment 

 Thermal treatment has been extensively utilized for the remediation of non-aqueous phase 

liquids (NAPL). This technique applies heat to contaminant source zones, i.e. soil and in water, in 

order to increase the removal efficiency of volatile and semi-volatile compounds.  Steam enhanced 

extraction (SEE) is a thermal treatment technique that has been shown to be a robust and effective 

remediation technique. SEE pumps steam to the contaminant source zone and, once sufficiently 

heated, volatilization of the organic compounds is induced so those gas phase contaminants may  

then be removed by multiple extraction wells. This technique has been used to treat chlorinated 

solvents, fossil fuels, DNAPL, and more. However, this technique has a number of drawbacks to 

it, including increased cost due to high energy demand and post-treatment excavation of soil to 

ensure complete remediation of the contaminants.    

 

Zero-valent iron 

ZVI has been shown to be effective in the degradation of chlorinated aliphatics, 

dechlorination of dyes, reduction of metals and more. Iron has gained attention due to it being an 

abundant, low cost, non-toxic metal, as well as having a useful negative reduction potential (E0=-

0.44V). Due to these characteristics ZVI has been extensively used in a wide range of remediation 

technologies including both permeable reactive barriers (PRB) and emulsified zero valent iron 

(EZVI).  
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PRBs are an in situ-remediation technique that employ ZVI and other reactive materials to 

passively remediate contaminated plumes. A model PRB system is shown in Figure 5. These 

barriers are installed downfield of the source zone and allow polluted ground water to permeate 

through it, at the same time remediating the contaminants by reaction with the barrier material, the 

end result being decontaminated groundwater flow. However, a drawback to this remediation 

system is that it is a passive technique and is dependent on the ground water flow. This technique 

is time consuming to implement, slow to take effect, and requires long term monitoring of the site.  

 

Figure 5: Diagram of a PRB layout (Reproduced from the University of Newcastle Australia)24  

The above-mentioned remediation technologies have a number of drawbacks, such as 

prolonged treatment time, high cost of implementation, and limited remediation potential. The 

National Aeronautics and Space Administration (NASA) funded the development of EZVI in 

response to chlorinated organic contamination at its Cape Canaveral, Florida facility25. EZVI is a 

biodegradable surfactant-stabilized oil-water emulsion with a water-ZVI core. It has shown 

success in the remediation of trichloroethene (TCE) both in laboratory bench scale experiments 

and in field studies to treat source zone contamination26-28.  The lipophilic nature of DNAPLs 

encourages their diffusion across the emulsion droplet’s enclosing oil membrane into the water-
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ZVI core where dehalogenation occurs on the iron surface. In addition, the oil and surfactant 

promote anaerobic biodegradation of the chlorinated compounds by serving as long-term electron 

donors.  

However, degradation of chlorinated alkanes has been shown to be ineffective in the 

presence of ZVI. Due to the widespread usage of these compounds, there is a need to focus on 

remediation technology to address these chemicals.  

Vitamin B12 

Scientists have always been inspired by nature, such as in the case of understanding 

naturally occurring catalysts. For instance, in 1948 vitamin B12 (cobalamin, or simply B12) was 

discovered to be a crucial cofactor for a wide range of biological processes. Cobalamin is one of a 

few naturally occurring organometallic molecules and is a water-soluble vitamin. It is essential in 

the human body for metabolism and DNA synthesis, is a naturally occurring electron mediator, 

and plays a vital role in nervous system functions29. The structure of B12, as shown in Figure 6, 

contains a cobalt (Co) atom situated in the center of a corrin ring and is a non-toxic cobalt complex. 

Cobalamin is also known to catalyze enzymatic process including isomerization, methyl transfer, 

and dehalogenation30.  

 

Figure 6: Vitamin B12 (Reproduced from Yamada, K.)31 
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The catalytic nature of cobalamin has attracted numerous scientists to study the various 

organic reactions it catalyzes. Cobalamin derivatives are highly functionalized molecules and can 

exist in three different oxidation states: Co(III), Co(II), and Co(I). The axial coordination of the 

cobalt center determines the formal oxidation state of cobalt: if both axial positions are bound, this 

is Co(III), one axial ligand indicates Co(II) (in the case of cobalamin, this is referred to as reduced 

B12, or B12r), and Co(I) has no axial ligands bound32. The first reduced state, Co(II), is a radical 

and the further reduced state Co(I) is a super-nucleophile (also referred to as B12s). The mechanism 

of electron transport depends upon the number of axial ligands bounded to the cobalt center. In the 

Co(II) state, which has one axial ligand, only a single electron can be transferred. However, in the 

case of Co(I), which does not have any axial ligands, two electrons can be transferred due to it 

having two unpaired electrons. 

Cobalamin derivatives have been shown to be able to dehalogenate organic compounds in 

the presence of reducing agents such as titanium citrate. These strong reducing agents act as bulk 

electron donors to ensure the complete reduction of cobalamin to the super-reduced B12s state. 

Reduced forms of cobalamins have been shown to successfully reduce chlorinated compounds in 

the presence of these bulk electron donors33-35. However, these reducing agents are not feasible for 

use in environmental applications. 

 It is hypothesized that reduced forms of B12 will be able to act as an electron transport in 

order to facilitate the dechlorination of chlorinated alkanes in the presence of ZVI.  

Dissertation objectives for Cl-VOCS 

Chlorinated alkanes are recalcitrant compounds that have shown minimal degradation in 

the presence of ZVI. These molecules are contaminants of concern because of the extensive 

adverse effects associated with them. The following dissertation will explore the reductive 
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dechlorination of the chlorinated alkanes 1,2,3-TCP, 1,2-DCP, 1,3-DCP, 1-CP, and 1,2-DCA in 

neat samples in the presence of ZVI and B12. In addition, experiments will be performed on 1,2,3-

TCP in the presence of a modified EZVI formula containing B12. Based on results from previous 

studies, a suitable reaction mechanism will be proposed. 
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CHAPTER 2: MATERIALS AND METHODS FOR CL-VOCS 

 Standard solutions of 1,2,3-TCP, 1,2-DCP, 1,3-DCP, 1-CP, and 1,2-DCA were purchased 

from Sigma Aldrich; saturated solutions of each standard were prepared by adding each standard 

to ultra-purified deionized water until it no longer dissolved. Solutions were thoroughly mixed on 

a stir plate for 24 hours, then allowed to settle prior to each use. Microscale (µ) ZVI was provided 

by Provectus Environmental Products.  

 Emulsions were made with store bought vegetable oil, food grade surfactant (Span 85 or 

Lonzest® STO-20), µZVI, cyanocobalamin, and ultra-purified deionized water. Surfactant and 

cyanocobalamin were provided by Provectus Environmental Products. 

 

Experimental Procedures 

Neat samples 

Ultra-pure deionized water was deoxygenated by purging with argon for 30 minutes prior 

to spiking it with the chlorinated standard. The final concentration of the solution was calculated 

based on the solubility of the particular chlorinated compound in water at 25˚C. For the 

experiments containing B12, solutions were prepared with the appropriate concentration of B12 and 

were then deoxygenated. The neat experiments used 0.50  0.01g of µZVI and were weighed into 

20mL glass crimp top vials. Immediately before starting the experiments the iron was washed with 

10mL of 1% sulfuric acid solution for 5 minutes then rinsed 3 times with 10mL of ultra-pure 

deionized water. Vials were then filled to zero-head space with the stock solution and the vials 

were crimped with an aluminum ring over a butyl rubber septum. Samples were then placed on a 

Lab Companion Series K-57013 Reciprocating shaker table (50 rpm) until the desired time point, 

at which point they were removed from the shaker table and placed in a Crest bench top sonicator 
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for 10 minutes. After sonication, samples were removed from the vials via a Hamilton gas-tight 

syringe into a 40mL VOA vial with septum. The volume removed depended upon the dilution 

factor of the time point. The internal standard was chlorobenzene.  

Emulsions 

 Emulsions were prepared by using an Oster 6811 blender set to high on the shred setting. 

For EZVI, the components were combined in the following mass ratios: 39% vegetable oil, 1.5% 

surfactant, 10.0% µZVI, and 50.5% water. In addition, sulfuric acid was added to the water to a 

final concentration of 1% in order to clean the oxide layer from the ZVI. The iron and water were 

blended together for 2 minutes prior to the addition of oil and surfactant. The surfactant was mixed 

into the oil then slowly added to the water and iron. After this addition, everything was allowed to 

continue mixing for 3 minutes and was allowed to settle for an hour before using.  

B12 emulsions were prepared in a similar manner to EZVI, but with a final concentration 

of 0.5mM B12 was added to the water. Emulsion studies were prepared in the same fashion as neat 

experiments, substituting 0.50  0.01g of emulsion for µZVI.  

Analysis 

Analysis of samples was performed on a Teledyne Tekmar Atomx Purge and Trap feeding 

an Agilent 6850 gas chromatograph (GC) coupled to an Agilent 5975c mass spectrometer (MS) 

with an RTX-VMS column (30m, 0.25mm i.d, 1.40µm df). Ultrapure helium acted as the carrier 

gas and had a constant flow of 1.0 mL/min. The GC/MS had a split flow with a ratio of 20:1 with 

the injector temperature set to 140˚C and the ion source temperature at 230˚C. All samples were 

run on the following GCMS method except 1,2-DCP. The oven temperature was initially 32˚C and 

held for 8 minutes, then ramped to 60˚C at 5.00˚C/min, held at 60˚C for 5.00 minutes, then ramped 

to 180˚C at 15˚C/min and held at 180˚C for 1 minutes. The method for 1,2-DCP the oven 
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temperature was initially 35˚C then ramped to 60˚C at 5.00˚C/min, held at 60˚C for 5.00 minutes, 

then ramped to 180˚C at 15˚C/min and held at 180˚C for 3 minutes. The Purge and Trap parameters 

were as follows: transfer line temperature 140˚C, trap type: #10, purge ready temperature 40˚C, 

purge time 11 minutes with a flow of 40mL/min, dry purge 0.50 minutes with a flow of 40 mL/min, 

desorb preheat 245˚C, desorb time 1 minute at 250˚C, bake 2 minutes at 280˚C. Both instruments 

were equipped with auto-samplers.  

Samples were run on an Agilent 8453 UV-visible spectrophotometer and diluted by a factor 

of 10. 

In addition, a Thermo-Fischer Dionex ICS-1100 ion chromatography with suppressed 

conductivity detection was also used for the analysis of free chloride in solution. The method was 

a 30-minute isocratic method with a sodium carbonate (4.5mM) and bicarbonate (0.8mM) eluent 

with a flow of 1mL/min.  

Gaussian 09 software package was used to perform all DFT calculations in this research. 

The geometries and energies of each molecule were optimized and calculated with B3LYP 

functional and LANL2DZ basis set in order to achieve balanced accuracy and cost. In addition, 

PCM solvent model was also applied for all calculations. For Vitamin-B12, side chains in the 

structure were eliminated during calculation. 
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CHAPTER 3: KINETIC STUDIES ON THE 

DECHLORINATION OF CHLORINATED ALKANES  

1,2,3-TCP 

The recalcitrant nature of chlorinated propanes and ethanes is attributed to their chemical 

and physical properties. The oxidation state of each carbon atom contributes to whether a molecule 

will be susceptible to reduction or oxidation. Typically, the higher the oxidation number of the 

carbon atom, the more likely it is to undergo reduction, conversely, lower numbers favor oxidation. 

Chloropropanes and chloroethanes such as 1,2,3-TCP, 1,2-DCP, 1,3-DCP, 1-CP, and 1,2-DCA all 

have relatively low average oxidation states compared to chlorinated alkenes, which is why these 

compounds show little to no degradation under reductive conditions10-11. In addition, alkenes are 

inherently more reactive due to the presence of pi-bonds. 

Studies were conducted to determine whether or not the addition of B12 would facilitate the 

reductive dechlorination of chlorinated alkanes. In particular, 1,2,3-TCP, which is only produced 

by human activities, has been shown to be resistant to degradation due to its high chemical 

stability9, 36-39. Due to its wide spread contamination in the environment it has piqued the interest 

of scientists seeking potential remediation strategies. However, it has also been shown to not 

readily degrade in the presence of commonly employed remediation techniques, such as ZVI37, 40. 

Sarathy, et al. evaluated the reactivity of 1,2,3-TCP in the presence of zero valent zinc and 

observed rate constants significantly faster than in the presence of ZVI37.  While endeavoring to 

find an alternative method to remediate 1,2,3-TCP, experiments were conducted to determine the 

rate of dechlorination in the presence of µZVI with and without B12.  

 The results from these experiments supported the conclusion that, in the presence of just 

µZVI, no significant degradation was observed, and no by-products were formed throughout the 

1-week experiment. Figure 7 displays the GCMS spectrum of 1,2,3-TCP in the presence of just 
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µZVI. Any observable loss of 1,2,3-TCP concentration can be attributed to sorption onto the iron 

surface, which is displayed in Figure 8. 

 

Figure 7: GCMS spectrum of 1,2,3-TCP at 0hr (black) and 192 hours (blue) in the presence of µZVI 

 

 

Figure 8: Degradation of 1,2,3-TCP by µZVI (grey) 

 

However, in the presence of 1mM B12 in addition to µZVI, reduction of 1,2,3-TCP was 

observed within 24 hours and continued over the course of 192 hours. The loss of 1,2,3-TCP can 

be observed in Figure 9. Throughout the degradation, the formation of propene was observed, 
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which was verified by comparison with a propene standard; propene was the only observable by-

product.  

 

Figure 9: Degradation of 1,2,3-TCP by µZVI with B12 (polka dots) 

 

Propene formation can be observed in Figure 10, which of the initial concentrations of 

propene and 1,2,3-TCP to their concentration after 7 days of exposure to µZVI and B12.  

 

 

Figure 10: GCMS spectrum showing the formation of propene after 7 days 
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The reaction follows pseudo-first-order reaction kinetics with respect to 1,2,3-TCP 

concentration, with an observed rate constant of 0.0121 hr-1 and a half-life of 57 hours. The rate 

equation and half-life are described in Eq. 1 and 2, while Figure 11 displays the pseudo-first-order 

integrated rate plot. Reactions with zero valent metals (ZVM) and cobalamin with halogenated 

methanes and ethenes have been similarly reported to follow pseudo-first order reactions 35, 41.  

𝑅𝑎𝑡𝑒 = −
d[1,2,3−TCP]

𝑑𝑡
= 𝑘𝑜𝑏𝑠[1,2,3 − TCP]       (1) 

𝑡1
2

=
ln(2)

𝑘𝑜𝑏𝑠
            (2) 

 

 

Figure 11: Pseudo-first-order reaction kinetics for 1,2,3-TCP with 1mM B12 with µZVI 

In order to further verify the reduction of 1,2,3-TCP, samples were run on a Thermo-Fisher 

Dionex ICS-1100 ion chromatograph with suppressed conductivity detection to verify the increase 

of chloride in solution to support the degradation. The concentration of chloride in solution was 

monitored over time in the presence of µZVI and B12. In the presence of just µZVI there was a 
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negligible increase in chloride concentration, as shown in Figure 12, due to the release of chloride 

from the ZVI surface. Samples devoid of chlorinated compounds were analyzed over the course 

of 4 days to quantify this release.  

The results from this experiment agree with the literature in the fact that 1,2,3-TCP is 

recalcitrant and no degradation is observed in the presence of µZVI alone. However, when µZVI 

is employed in concert with B12, the concentration of chloride in solution increased significantly 

throughout the reaction. The formation of propene and increase of chloride in solution support the 

degradation of 1,2,3-TCP in the presence of µZVI and B12. A mole balance was calculated based 

on the release of chloride into solution and had a 72.7% ± 2% recovery of chloride. A number of 

side reactions can occur which can sequester chlorinated intermediates causing a decrease in 

chloride recovery. 
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Figure 12: Comparison of the increase in concentration of free chloride in solution between µZVI (grey) and µZVI with B12 

(polka dots) 

1,2-DCP 

1,2-DCP has also been shown to be unaffected by a number of remediation techniques.  A 

study performed by Huang, et al. followed the degradation of 59 VOCs with thermally activated 

persulfate, however, 16 of the targeted compounds, including 1,2-DCP and 1,3-DCP, showed little 

to no degradation in the presence of persulfate42. A study performed by Loffler, et al. saw complete 

reductive dechlorination of 1,2-DCP to propene in the presence of anaerobic bacteria.   

 Studies were set up to determine whether B12 could facilitate the reductive dechlorination 

of 1,2-DCP. As previously stated, 1,2-DCP has been shown to resist a number of remediation 

technologies. This was also observed when experiments were conducted in the presence of just 

µZVI and no significant degradation was observed over a 21-day period. The results of this 
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experiment can be observed in Figure 13, which shows the concentration of 1,2-DCP relatively 

unchanged. Figure 14 shows that over this period of time no by-products were formed.  

 

 

Figure 13:  Relative concentration of 1,2-DCP (grey) in the presence of µZVI over a 48-day period 

 

 

Figure 14: GCMS spectrum of 1,2-DCP at 48days in the presence of µZVI 
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However, with the addition of B12 to the system, degradation of 1,2-DCP was observed 

with the formation of propene as its only observed by-product. Figure 15 shows the disappearance 

of 1,2-DCP from the 0-hour time point to the formation of propene after 21-days of reaction. It is 

important to note that without the addition of B12 no degradation was observed, which indicates 

that B12 is facilitating the reduction, likely through the transfer of an electron. 

 

 

Figure 15 : GCMS spectrum showing the formation of propene after 48 days  

 

Experiments were set up to determine the effect of concentration on the degradation of 1,2-

DCP in the presence of 0.50g µZVI. The concentrations of B12 tested were: 0.0625mM, 0.125mM, 

and 1mM. Over a 21-day period 1,2-DCP disappeared as time progressed and the formation of 

propene was observed (Figure 15). At varying concentrations of B12 the rate constants varied 

slightly but the actual rate of the reaction remained constant making the reaction zero-order in 

respect to B12 (Figure 16), Which is expected with an increase in catalyst concentration. The 

reaction follows pseudo-first-order reaction kinetics with respect to 1,2- DCP concentration and 

the observed rate constants and half-lives are displayed in Table 1. The rate equation and half-life 

are described in Eq. 3-4 and Figure 17 displays the pseudo-first-order integrated rate plot. 

𝑅𝑎𝑡𝑒 = −
d[1,2−𝐷CP]

𝑑𝑡
= 𝑘𝑜𝑏𝑠[1,2 − DCP]        (3) 
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𝑡1
2

=
ln(2)

𝑘𝑜𝑏𝑠
            (4) 

 

 

Figure 16: Comparison of 1,2-DCP degradation of µZVI versus µZVI with varying concentrations of B12 [0.0625mM B12 

(diagonals), 0.125mM B12 (arrows), and 1mM B12 (boxes)] 

 

Figure 17: Reaction kinetics of 1,2-DCP with varying concentrations of B12 
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Table 1: Pseudo -first-order rate constants and half-lives with varying concentrations of B12 

Concentration (mM) Observed Rate Constant (day-1) Half-life (day) 

1 0.0594 11.67 

0.125 0.0482 14.38 

0.0625 0.0439 15.79 

 

Experiments were also conducted to test the effect of µZVI on the reaction in order to 

determine if increasing the amount of µZVI would increase the rate of reaction. The masses of 

µZVI that were used were 0.50  0.01g and 2.00  0.05g in the presence of 1mM of B12. At the 

higher concentration of iron the disappearance 1,2-DCP was increased in comparison to the 0.50g, 

which can be observed in Figure 18 but did not affect the rate making it zero-order in respect to 

iron. The reaction follows a pseudo first-order reaction kinetics in respect to 1,2-DCP and has an 

observed rate constant of 0.233 days-1 and an average half-life of 2.97 days. The rate equation and 

half-life are described in Eq. 3 and 4 and Figure 19 displays the pseudo first order integrated rate 

plot. However, the iron that was used for the reactions in this dissertation was kept at 0.50g of 

µZVI unless otherwise stated because the iron primarily served as a reducing agent for the B12 and 

it was above the stoichiometric ratio required to reduce B12.  
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Figure 18: Comparison of 0.50g µZVI (polka dots) versus 2.00g µZVI (dashes) on the disappearance of 1,2-DCP with 1mM B12 

 

Figure 19: Pseudo-first-order reaction for 1,2-DCP with 2.00g µZVI and 1mM B12 
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 To further support the degradation of 1,2-DCP, ion chromatography was performed to 

monitor the release of chloride into solution (Figure 20). As noted previously, small quantities of 

chloride present on the iron surface are released into solution over time. In the presence of B12 and 

µZVI the release of chloride increased as the reaction progressed. It is important to note that at the 

lowest concentration of B12 that was monitored (0.0625mM) the reaction still progressed. This is 

significant in regard to potential industrial scale applications because it reduces the overall cost of 

supplies, making it more feasible to utilize on site.  

 

Figure 20: Release of chloride into solution for 1,2-DCP in the presence of just µZVI (grey) and varying concentrations of B12 

[0.0625mM B12 (diagonals), 0.125mM B12 (arrows), and 1mM B12 (boxes)] 

1,3-DCP 

  Soil fumigants with active ingredients such as 1,3-dichloropropene often include 

contamination from 1,3-DCP, which is used as a feedstock for the chemical synthesis of other 

compounds. This dichloropropane is also potentially genotoxic in bacterial systems43-44. In 1998, 

1,3-DCP was placed on the Contaminant Candidate list and priority was given to conducting 
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further research on haloalkanes, including 1,3-DCP45. Studies have shown that 1,3-DCP exhibited 

kidney and liver toxicity to rats when administered orally46.  

In order to better understand the degradation of chlorinated alkanes, experiments were 

conducted to determine whether the addition of B12 would facilitate the reductive dechlorination 

of 1,3-DCP. Studies were conducted in the presence of µZVI to determine if iron has a great 

enough reduction potential to dechlorinate it. The results from the study showed that µZVI was 

unable to remediate 1,3-DCP over a 28-day period of time, which can be seen in Figure 21. In 

addition, no byproducts were formed, as can be seen in Figure 22. 

 

 

Figure 21: Relative concentration of 1,3-DCP in the presence of µZVI (silver) 
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Figure 22: GCMS spectrum of 1,3-DCP with µZVI over 28-days 

 

A further set of experiments were set up incorporating B12, and over a 28-day period of 

time a significant decrease in 1,3-DCP was observed. However, it is important to note that only 

one sample retained sufficient 1,3-DCP to be quantified after 28-days of reaction. Figure 23 shows 

the degradation of 1,3-DCP. As the reaction progresses 1,3-DCP concentration decreased over 

time with an increase in cyclopropane, which can be seen in Figure 24. 

 

Figure 23: Relative concentration of 1,3-DCP in the presence of µZVI and B12 (arrows) 
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Figure 24: GCMS spectrum of 1,3-DCP over 28-days in the presence of µZVI and B12 

The reaction follows pseudo-first-order reaction kinetics with respect to 1,3-DCP 

concentration, with an observed rate constant of 0.0812 hr-1 and an average half-life of 8.54 days. 

The rate equation and average half-life are described in Eq. 5 and 6, while Figure 25 displays the 

pseudo-first-order integrated rate plot.  

𝑅𝑎𝑡𝑒 = −
d[1,3−DCP]

𝑑𝑡
= 𝑘𝑜𝑏𝑠[1,3 − DCP]       (5) 

𝑡1
2

=
ln(2)

𝑘𝑜𝑏𝑠
            (6) 

 

Figure 25: Pseudo-first-order kinetics of 1,3-DCP 
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 Additional studies were conducted to monitor the release of free chloride in solution to 

further support the degradation of 1,3-DCP. In the case of just µZVI and 1,3-DCP there was not a 

significant increase of chloride in solution over time and this increase can be attributed to any 

chloride on the iron surface. However, in comparison to the µZVI with cobalamin there was an 

increase of chloride in solution over the 28-day experiment, which can be seen in Figure 26.  

 

Figure 26: Concentration of free chloride in solution for 1,3-DCP in the presence of µZVI (silver) and µZVI with 1mM B12 

(arrows) 

1-CP 

 In order to further understand the ability of µZVI and B12 to degrade chlorinated propanes, 

1-CP was monitored with this same system. The results from the study showed no significant 

degradation of 1-CP in the presence of µZVI alone and no significant increase in chloride in 

solution, as can be seen in Figure 27, Figure 28, and Figure 31. 
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Figure 27: GCMS spectrum of 1-CP with µZVI over 28-days 

 

Figure 28: Relative concentration of 1-CP in the presence of µZVI (tilde)  

 However, in the presence of µZVI and B12 slight degradation was observed over 32 days. 

Figure 29 shows the decrease in concentration of 1-CP over time while Figure 30 shows the 4-

week decrease in the 1-CP peak and small amounts of propane was observed as a byproduct. 

Figure 31 shows an increase of free chloride in solution over 32 days. 
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Figure 29: Relative concentration of 1-CP in the presence of µZVI and B12 (black) 

 

 

Figure 30: GCMS spectrum of 1-CP over 28 days in the presence of µZVI and B12 
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Figure 31: Concentration of free chloride in solution for 1-CP in the presence of µZVI (tilde) and µZVI with 1mM B12 (black) 

The reaction follows pseudo-first-order reaction kinetics with respect to 1-CP, with an 

observed rate constant of 0.0182 day-1 and an average half-life of 38.1 days. The rate equation and 

half-life are described in Eq. 7 and 8, while Figure 32 displays the pseudo-first-order integrated 

rate plot.  

𝑅𝑎𝑡𝑒 = −
d[1−CP]

𝑑𝑡
= 𝑘𝑜𝑏𝑠[1 − CP]         (7) 

𝑡1
2

=
ln(2)

𝑘𝑜𝑏𝑠
            (8) 
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Figure 32: Pseudo-first-order reaction with respect to 1-CP 

 

1,2-DCA 

 Another compound which has garnered increased attention over the years is 1,2-DCA, 

primarily due to its environmental impact. This species has been studied as a model compound to 

determine how chlorinated aliphatic compounds are degraded under different biological 

conditions15, 47-48. Over 17.5 million tonnes are produced annually by the United States, Western 

Europe, and Japan. This contaminant has been detected in a number of environmental matrices, 

such as rivers, above the observed background level of 0.5µg/L in non-industrialized areas15, 18, 49. 

The biodegradation of 1,2-DCA is known to occur in both aerobic and anaerobic conditions50-51.  

However, 1,2-DCA has been shown to be recalcitrant in the presence of ZVI or other bimetallic 

systems52. 

 Studies were conducted to determine if 1,2-DCA could be degraded in the presence of 

µZVI and B12. Experiments were also conducted to determine if µZVI alone could remediate 1,2-
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DCA. Over a 28-day period no significant degradation of 1,2-DCA was observed in the presence 

of just µZVI, as shown in Figure 33.  

 

Figure 33: Relative concentration of 1,2-DCA in the presence of µZVI (polka dots) 

 

Figure 34: GCMS spectrum of 1,2-DCA over 35-days in the presence of µZVI 

Due to 1,2-DCA’s persistence in the environment and recalcitrance to remediation, it is 

important to find an environmentally friendly remediation technique. It was hypothesized that 1,2-

DCA could be degraded in the presence of µZVI and cobalamin. Experiments were set up to 

determine if the reduced state of cobalamin could facilitate the degradation of 1,2-DCA. Over a 3-
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week period of time a significant decrease of 1,2-DCA was observed in the presence of µZVI and 

B12, which can be seen in Figure 35.  

 

Figure 35: Degradation of 1,2-DCA in the presence of µZVI and B12 (dashes) 

 

Figure 36: GCMS spectrum of 1,2-DCA over 35-days in the presence of µZVI and B12 

The reaction follows pseudo-first-order reaction kinetics with respect to 1,2-DCA, with an 

observed rate constant of 0.0847 day-1 and an average half-life of 8.2 days. The rate equation and 

half-life are described in Eq. 9 and 10, while Figure 37 displays the pseudo-first-order integrated 

rate plot.  

𝑅𝑎𝑡𝑒 = −
d[1,2−DCA]

𝑑𝑡
= 𝑘𝑜𝑏𝑠[1,2 − DCA]       (9) 
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𝑡1
2

=
ln(2)

𝑘𝑜𝑏𝑠
            (10) 

 

 

Figure 37: Pseudo-first-order reaction with respect to 1,2-DCA 

 

In addition, samples were analyzed by ion chromatography to determine the concentration 

of free chloride in solution throughout the progression of the reaction. Figure 38 shows the release 

of chloride into solution for 1,2-DCA in the presence of just µZVI as compared to the combination 

of B12 and µZVI. The following figure supports that, in the presence of cobalamin and µZVI, 

degradation of 1,2-DCA is observed. However, without the addition of cobalamin no significant 

degradation was observed, as supported by ion chromatography.   
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Figure 38: Release of chloride into solution for 1,2-DCA in the presence of just µZVI (polka dots) and 1mM B12 with µZVI 

(dashes) 
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CHAPTER 4: PROPOSED MECHANISM FOR THE 

DEGRADATION OF CHLORINATED ALKANES IN THE 

PRESENCE OF B12 AND µZVI 

  

Cobalamins have been shown to enhance the reductive dehalogenation of halogenated 

alkenes in the presence of strong reducing agents: e.g. titanium citrate or bimetallic systems35, 53-

55. Reduced cobalamin derivatives are known to act as strong nucleophiles, as is the case for the 

doubly-reduced B12s which is known to be a super-nucleophile. Reduced states of cobalamin are 

able to facilitate the transfer of electrons to halogenated compounds to promote dehalogenation56. 

B12r is known to act chemically as a free radical and can form stable alkylated intermediates55, 57-

58. In addition, cyanocobalamin (the predominant commercially available form of cobalamin) can 

also form aquacobalamin (B12a) by replacement of the cyano group with water29. In the following 

work iron was utilized as a reducing agent in order to reduce cobalamin to B12r in order to facilitate 

the reduction of 1,2,3-TCP, 1,2-DCP, 1,3-DCP, 1-CP, and 1,2-DCA. 

 Prior to the start of the initial dechlorination experiments, studies were conducted to 

determine whether µZVI would be able to reduce cobalamin from Co(III) to Co(II). Vials were set 

up to monitor the conversion of cobalamin to B12r over a 48hr time period. A review of the 

literature indicates Co(III) has several characteristic absorbance peaks at the following 

wavelengths: 361nm and 550nm, whereas Co(II) has characteristic absorbance peaks at 312 nm 

and 474nm35. Figure 39 shows the UV-vis spectrum of the reduction of cobalamin by µZVI over 

the course of the experiment. 
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Figure 39: Cobalamin reduction in the presence of µZVI 

The redox potentials of ZVI and B12 explain how this reduction proceeds to the Co(II) 

oxidation state without reaching the Co(I) state. Coupling the reduction of B12 to B12r with iron’s 

redox potential gives a calculated potential of +0.647 V. The reduction of B12 occurs in the 

presence of iron because the redox potential for this reaction is positive, making it a favorable 

spontaneous reaction. Redox potentials and half reactions are shown in Eq. 11-13. Redox 

potentials also explain why iron is not suitable to completely reduce B12 to B12s: the calculated 

potential for that reduction is -0.163 V, which indicates this is not a spontaneous reaction35, 59. 

 

Fe ⟷ Fe2+ + 2𝑒−   (E𝑜=0.447 V)       (11) 

Co(III)+e− ⟷ Co(II) (E𝑜=0.20 V)       (12) 

Co(II) + e− ⟷ Co(I)  (E𝑜= -0.61 V)       (13) 

  



 40 

 

It was hypothesized that the reduced form of cobalamin can facilitate the transfer of 

electrons to chlorinated alkanes in order to induce reductive dechlorination. The experiments that 

were performed demonstrated reduction of the chlorinated alkanes by a measurable decrease in the 

compound of interest concurrent with an increase in chloride concentration in solution. 

  

1,2,3-TCP 

 The proposed mechanism centers on a single electron transfer from the iron surface to 

cobalamin, reducing the cobalt center from Co(III) to Co(II) as shown in Figure 40. Once in the 

reduced state, cobalamin can then transfer an electron to 1,2,3-TCP. This transfer is accomplished 

by a net halogen exchange from 1,2,3-TCP to B12r, which may occur via a halogen-bridge 

transition state yielding an alkyl radical and chlorocobalamin57-58. It is also important to note that 

the Co(III) center of chlorocobalamin can be reduced to Co(II) by a single electron transfer from 

ZVI or have its chlorine displaced by water to form B12a
58, 60. This is an important step because it 

regenerates the catalytic B12 to the Co(II) oxidation state for further activity. The alkyl radical can 

then react either with another B12r to produce a very stable alkyl-cobalamin derivative, or it can 

accept an electron from ZVI to further be reduced to propene.  

 The rate-determining step is the formation of the alkyl radical, which can be terminal or 

secondary, however, the terminal radical is more stable with a greater negative Gibbs free energy 

of -25.87 kcal/mol. After this radical is formed the reaction proceeds through either pathway 1a or 

pathway 1b (Figure 40). If it proceeds via pathway 1a this intermediate is very stable and is 

unlikely to undergo further reduction to propene. However, by following pathway 1b the reaction 

produces allyl chloride via an electron transfer from ZVI, which can then receive another electron 

from a B12r molecule to produce a radical propene molecule. Radical propene can then follow 
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either pathway 2a or 2b. Pathway 2a shows how the propene radical can react with B12r to form 

another stable intermediate that is unlikely to be further reduced. Conversely, pathway 2b 

completes the reduction to propene via an electron transfer from ZVI.  

 

Figure 40: Proposed catalytic cycle for 1,2,3-TCP 
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 Samples were analyzed with a UV-Vis spectrophotometer throughout the reaction of 1,2,3-

TCP with ZVI and 1mM B12. As the reaction progressed, reduction of the peaks characteristic of 

B12 decreased (361 nm and 550 nm) and peaks that are unique to B12r (312 nm and 474 nm) and 

B12a (350 nm and 525 nm) increased (Figure 41)35, 61. This supports the proposed reaction by 

providing evidence of the formation of aquacobalamin, which can also be seen for the remaining 

chlorinated compounds (see supplemental support). 

 

Figure 41: UV-vis spectrum of 1,2,3-TCP over 144hrs 

1,2-DCP  

The catalytic cycle for 1,2-DCP is displayed in Figure 42. The reaction mechanism is 

initiated when cobalamin is reduced to B12r by a single electron transfer from ZVI. Once reduced, 

B12r acts as a nucleophile and attacks the partially positive carbon of 1,2-DCP and transfers a single 

electron, releasing chloride into solution. This reaction is favorable and has a Gibbs free energy of 
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-22.44 kcal/mol. The radical intermediate can either proceed through pathway 1 or pathway 2. 

Following pathway 1, a stable chloropropyl cobalamin intermediate is formed, which does not 

undergo further degradation55. Conversely, pathway 2 shows reduction to propene via an electron 

transfer from ZVI.  

 

Figure 42: Proposed catalytic cycle for 1,2-DCP 
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1,3-DCP 

 The proposed mechanism for 1,3-DCP follows a similar reaction mechanism to that of 1,2-

DCP as shown in Figure 43. The reaction is initiated by the reduction of cobalamin to B12r by a 

single electron transfer from ZVI. Once reduced, B12r can then act as a nucleophile and perform a 

single electron reduction of 1,3-DCP, forming a radical chloropropane compound. The formation 

of the radical chloropropane molecule can then follow either pathway 1 or pathway 2. Similar to 

before, if the reaction proceeds via pathway 1 then the reaction is halted because of the formation 

of a stable intermediate that cannot be further reduced. However, if the reaction follows pathway 

2a then it can undergo either reduction to cyclopropane by a single electron transfer from ZVI29, 

62.  Whereas if it follows pathway 2b it can be further reduced to propene, however, this is not 

nearly as favorable of a reaction in comparison to the formation of cyclopropane (∆G= 38.81 

kcal/mol). 

 

Figure 43: Proposed catalytic cycle of 1,3-DCP 
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1-CP 

 The monochlorinated congener, 1-CP, follows a similar reaction pathway to that described 

for the tri- and di- chlorinated propanes. The reaction is initiated by the reduction of cobalamin to 

B12r, which then transfers a single electron to 1-CP to form a propane radical, thus releasing 

chloride into solution. Mechanistic studies indicate the Gibbs free energy is -15.09 kcal/mol for 

the formation of the radical propane molecule, which supports the proposed catalytic cycle. The 

reaction may then follow either pathway 1, forming an alkyl cobalamin, or it could undergo further 

reduction to propane by following pathway 2, as displayed in Figure 44.  

 

Figure 44: Proposed catalytic cycle 1-CP 
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mechanism shown in Figure 45. The formation of the radical intermediate had a Gibbs free energy 

of -18.61 kcal/mol, demonstrating that this a favorable pathway.  No byproducts were observed in 

the actual experiment, but the measurable increase of chloride in solution and the disappearance 

of 1,2-DCA support this degradation.  

 

Figure 45: Proposed catalytic cycle for 1,2-DCA 
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CHAPTER 5: INCORPORATION OF COBALAMIN IN 

EMULSIFIED ZERO VALENT IRON 

  

 In 2003, a US EPA expert panel on DNAPL remediation estimated that there were between 

15,000 and 25,000 DNAPL sites in the United States63. Remediation of DNAPL-contaminated 

media has been shown to be challenging, and these contaminated materials can act as long-term 

sources of groundwater contamination. EZVI is a remediation technology that is capable of 

treating DNAPL source zones and has been used to effectively treat contaminated media and 

reduce the flux of chemicals from source zones25-26. Due to the lipophilic nature of these 

chlorinated solvents they are able to pass through the outer oil membrane of EZVI. Once in the 

interior of the micelle, degradation is initiated by the presence of ZVI particles (Figure 46).  The 

following studies examined the ability of EZVI and a modified EZVI formulation including B12 to 

degrade 1,2,3-TCP. 

 

Figure 46: EZVI droplet schematic (Reproduced from Quinn, et al.)25 
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Emulsion studies 

 These studies were carried out to determine the effectiveness of B12 in degrading 1,2,3-

TCP using a modified EZVI formula. The results from this study showed that, in the presence of 

EZVI without B12, no degradation byproducts were observed. However, a decrease in 1,2,3-TCP 

concentration was observed, which is most likely due to its lipophilic properties encouraging 

partitioning in the oil membrane of EZVI. Neat (emulsion-free) studies showed that ZVI was not 

sufficient alone to reduce 1,2,3-TCP. Figure 47 displays the GCMS spectrum from prior to EZVI 

introduction and after 24-days exposure. 

 

Figure 47: GCMS spectrum of 1,2,3-TCP in the presence of EZVI 

 In the EZVI-B12 formulation, 1,2,3-TCP was degraded successfully; byproducts were 

evident in the formation of propene and 1,3-DCP over 24 days as seen in Figure 48. The formation 

of propene suggests that a similar pathway was followed as described in the mechanistic study. In 

addition, the formation of 1,3-DCP suggests that the 1,3-dichloropropane accepted a proton from 

water.  
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Figure 48: GCMS spectrum of 1,2,3-TCP in the presence of EZVI-B12 
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CHAPTER 6: INTRODUCTION TO CHEMICAL 

EDUCATION 

 Introductory chemistry courses are prerequisites for chemistry, biology, and related fields 

are typically among the first college science courses incoming students encounter. General 

chemistry can heavily sway a student’s decision to pursue a major in science, technology, 

engineering, or mathematics (STEM), especially because these introductory courses are typically 

taken during the most influential period of college. Research indicates that a student’s first 2 years 

of college are critical for development and lay the foundation for the remainder of their studies 64. 

The typical American 4-year university loses 25% of new students before the start of their second 

year, with underrepresented minorities (URM) and low income students more frequently 

disengaging 65-66.  Women and URM students comprise roughly 70% of college students, which is 

a population that may have a significant contribution to STEM 67. In 2012, URMs earned 18.9% 

of bachelor’s degrees, 13.8% of master’s degrees, and 6.8% of doctoral degrees in science and 

engineering (S&E) 68. While there has been an increase of URMs obtaining baccalaureate and 

advanced degrees in S&E, there is still a need to increase URM in STEM fields.  

 The President’s Council of Advisors on Science and Technology (PCAST) predicted a 

deficit of 1 million students graduating with a STEM degree in the next decade, indicating that 

insufficient people are being educated to fill newly created roles in S&E and those vacated by the 

previous generation. In order to combat this shortfall, the United States needs to increase the 

number of STEM graduates by 34% annually, and a large emphasis is placed on retention of 

women and URM students in STEM 67. Focusing on these populations and providing opportunities 

for them can diversify and increase the number of STEM graduates. The PCAST report 

recommends incorporating evidence-based teaching practices to increase student retention in 

STEM.  Lecture-based courses, although one of the most widely used teaching platforms, have 
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been shown to be among the least effective methods for student comprehension and retention. 

Research shows that implementing teaching styles which focus on student engagement can reach 

a larger audience and make STEM classes feel more welcoming to students.  

 Active learning is a method of teaching that aims to engage students in the learning process 

by having students participate through activities and/or discussions, and is one of the 

recommendations from the PCAST report to increase student retention in STEM. A recent meta-

analysis of 225 studies that compared student performance under active learning versus traditional 

lecturing in undergraduate STEM courses showed a significant increase in student learning gains 

with courses that had active learning interventions. In addition, this study showed that students 

were 1.5 times more likely to fail in a traditionally taught class than students in courses that 

incorporated active learning 69.   

 Active learning has gained considerable attention in academic circles.  Academic 

institutions have begun implementing active learning in the form of immediate electronic student 

feedback (iClickers), discussions, cooperative learning, guided learning, flipped classrooms, and 

many more techniques 69-72. This differs significantly from the traditional lecturing style, which is 

a passive learning technique where students are not involved in the learning process. This style of 

teaching does not engage students in higher-order cognitive skills (HOCS) and is primarily a one-

way form of communication from lecturer to student. Engaging students in the learning process 

promotes HOCS and encourages problem solving, decision making, critical thinking, and 

willingness to ask questions 73.  

 The Gradual Release of Responsibility (GRR) is a combination of behaviorist and 

constructivist educational theories and is an active learning teaching model 74-78. In this model, 

students begin by learning as a result of observation, imitation and modeling. As the lecture 
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progresses through the framework, it starts to shift to a more constructivist theory where students 

learn from interacting socially and with their environment. This framework centers around 

instructional scaffolding paired with collaborative work amongst peers 79. Increasing student 

engagement and responsibility by utilizing a GRR model progressively transfers learning 

responsibility from instructor to student. This transfer of obligation allows students to make more 

independent choices and helps them approach atypical problems and situations in a way that 

conventional teaching approaches cannot. This method uses focused learning and instruction, then 

slowly shifting tasks and responsibilities to the students and allowing them to do guided 

collaborative work, then finally, independent tasks.  

 Focused instruction is a time that is used to clearly establish the goals and purpose of the 

lecture. During this time the objectives are clearly established at the beginning of the lecture and 

reiterated at the end. Throughout this time new information and concepts are introduced along with 

application examples and circumstances. Analogies can also be incorporated to make difficult 

concepts more relatable to students. When working through a problem it is important to thoroughly 

explain the thought process behind each step, and state common errors to avoid. This is done so 

students can easily transition to applying new concepts and to alert students to common mistakes. 

During this time, students are actively listening, writing notes, and asking for clarification.  

 Guided instruction is a method to guide students to become more complex thinkers through 

guided questions, prompts, and problems. This a constructivist approach to teaching because 

students begin constructing knowledge for themselves by interacting with the people around them 

and their environment. A major component is the construction of a learning framework while 

working within a student’s zone of proximal development, which is what a student can accomplish 

independently or with help from a more experienced  individual 75. By working within this zone, 
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the instructor is able to bridge the gap between what a student does and does not understand. In a 

large lecture hall this can be challenging because, instead of working with small groups as 

described by Fischer and Frey, knowledge is disseminated to the entire class 79. Guided instruction 

relies on responses from students to better gauge understating of a particular topic. Prompts are 

utilized to assist students in a less direct manner by reminding students about background 

knowledge, procedures, or to reflect on their answers. When prompts are not sufficient, verbal or 

visual cues are commonly used to be more specific, however, if students are still confused focused 

instruction can be revisited.  

 Another important component of this framework is collaborative learning, which is often 

neglected in large lecture halls. During collaborative learning exercises, students work towards a 

common goal and collaborate in small groups, which in a large enrollment course typically consists 

of the students located around them. During this time students work in collaborative groups to 

work towards a common goal such as in the case of questions, worksheets, or other assignments. 

This gives students an opportunity to use their critical thinking skills on the material in a peer-

oriented environment.  Peer-to-peer interactions have been shown to have a positive effect on 

student learning outcomes and have been implemented in a number of different teaching styles, 

such as: Peer-Led Team Learning (PLTL), Process Oriented Guided Inquiry Learning (POGIL), 

and Problem Based Learning (PBL) 80-84. The positive effects of cooperative learning on students’ 

attitudes and retention are integral to this teaching model.  

 Independent learning allows students to apply the knowledge that they have gained 

throughout their academic journey, and students are responsible for their own comprehension. As 

students progress through the GRR framework, metacognitive skills are developed, such as 
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planning how to solve a task, identifying what strategies to use, correcting any mistakes, and 

evaluating the work performed. 

 The motivation behind this research was to help students build a stronger foundation in 

chemistry by implementing a different teaching style for a large-enrollment chemistry course. 

These courses are typically taught as a traditional lecture style with very little to no student 

collaboration. The large number of students and time constraints are often not conducive for 

collaborative learning. However, studies show that dedicating as little as 10% of class time to 

active learning can have a significant positive effect on student outcomes 69. Research also supports 

the effectiveness of collaborative peer learning among students with different learning capabilities 

85-86. The goal of the following research was to improve students’ attitudes towards chemistry, 

increase understanding of chemistry concepts, monitor the success of minority groups, and observe 

how DFW (Ds, Fs, withdrawals) rates were affected compared to previously taught courses.  
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CHAPTER 7: UTILIZATION OF A MODIFIED GRADUAL 

RELEASE OF RESPONSIBILITY MODEL IN A LARGE 

ENROLLMENT CHEMISTRY COURSE 

Reproduced with permission from Nicole Lapeyrouse and Cherie Yestrebsky 

 

 

Course description 

 The following study took place at the University of Central Florida (UCF), a public 

institution. UCF is the largest university in Florida and one of the largest in the United States. As 

of the Fall Semester 2017, undergraduate student enrollment made up 86% of the student 

population, which was over 66,000 students. UCF is a diverse university with 49.2% of its 

population being White (non-Hispanic), 24.9% Hispanic/Latino, 11.1% Black, 6.2% Asian and 

Pacific Islander, 3.6% multi-racial, and 4.8% nonresident alien or not specified87.  

 Prior to taking chemistry at UCF, students are required to take a chemistry placement exam 

which assesses students’ readiness for general chemistry. The placement exam has been 

unmodified throughout the course of the data set, including previous semesters. These scores were 

not available to the researchers. Students scoring less than 76% requires two semesters of 

Chemistry Fundamentals 1, divided into 1A and 1B. As a result, due to the relatively short time 

span of the compared data set it can be assumed that student knowledge on entry to this course 

remained reasonably unchanged. These fundamental courses enroll approximately 300-450 

students per section; students on this track typically do not have a strong background in chemistry 

or strong problem-solving skills. In this course grades equivalent to D+, D, or D- are treated as an 

NC (no-credit) letter grade, which does not affect a student’s overall GPA.  

 This study focused on a Chemistry Fundamentals 1B course, which covers the following 

topics: quantum chemistry and atomic structures, periodic properties, chemical bonding, and ideal 
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gases. The GRR model was implanted for two semesters in Fall 2017 and Spring 2018. This course 

had a predominantly female average student population of 60.2% and a racially diverse student 

population as shown in Figure 1. The number of course sections offered differs depending on the 

semester, often one section of Chemistry Fundamentals 1B is taught in Fall while in Spring three 

sections are offered. Depending on the time slot classes can be 50 to 75 minutes long and are held 

Monday, Wednesday, Friday or Tuesday, Thursday. The results from this study were compared to 

Chemistry Fundamentals 1B courses that were taught with a traditional lecture platform at UCF. 

The following research received approval from UCF’s Institutional Review Board (IRB: #SBE-

17-13374) and student participation in the study was voluntary. Exams used during this study came 

from the same test banks as previously taught courses and were of comparable difficulty. 

Comparison of test difficulty can be found in the supplemental material. The grading rubric for 

this course is described in Table 2.  

 

Figure 49: Student demographic population in the course section employing the GRR teaching model. Gender: Female (grey) 

and Male (polka dots). Race: Asian (white), Black/African American (polka dots), Hispanic/Latino (grey), Multiracial 

(checkered), and White (lines) 
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Table 2: Grading rubric for course 

 Percent value Notes  

Exams 40% Lowest exam grade dropped 

ALEKS 20% Lowest score dropped 

iClickers 20% 3 Lowest iClicker scores dropped 

Final Exam 20%  

 

Purposes 

1. Help students build a stronger foundation in chemistry through guided instruction, collaboration, 

and independent work 

2. Evaluate how students respond to a modified teaching approach through surveys given at the 

beginning and end of the semester 

3. Observe how DFW rates and overall grades compare to previous semesters and how different 

student population groups are affected 

Methods 

Modifications to GRR teaching model 

 Undergraduate graduate teaching assistants (UTAs) underwent a week-long workshop 

prior to the start of the semester. This training focused on methods for guiding students’ responses 

and an over view of the teaching model. In addition, weekly meetings were held to review that 

week’s content and activities. A typical lecture had between 4-6 UTAs. The role of UTAs in the 

classroom was to help facilitate student understanding during group discussions and provided a 

means to help close the gap between instructor and students. 

 The course was structured as described by Fischer and Frey with modifications to better 

suit a large enrolment course. Such modifications included the use of UTAs because it was not 

feasible for the instructor to interact with all student groups. A major modification to this 
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framework was in guided instructions. Instead of small appointed groups based on student 

performance, groups were made by the students based on proximity. During this time overall class 

responses towards questions and prompts were used as a metric to gauge student understanding. 

Independent learning was assessed through iClickers and ALEKS, an online homework platform 

and adaptive learning tool that gives students real time feedback.  

 iClickers were used in both independent and collaborative settings in order to gauge 

students’ responses in real-time. If an iClicker question was originally meant to assess students in 

an independent manner and less than 70% of students selected the correct answer, then the students 

were allowed to work on the same question collaboratively.  

 Figure 50 outlines an example of how a 50-minute GRR course was typically structured. 

It is important to note that the majority of the lectures were organized in this format, however, if 

at any point students were not understanding concepts during guided instruction or collaborative 

learning, then focused instruction was revisited. In addition, some days were solely dedicated to 

collaboration and students would work on group assignments during that lecture time.   

 

 

Figure 50: Example of how a 50-minute GRR lecture was structured 

Focused 
Instruction

15 minutes

• Introduce 
objectives

• Lecture

Guided 
Instruction

10 minutes

• Walk through a 
complex 

problem as a 
class

Focused 
Instruction

10 minutes

• Lecture

Collaborative 
Learning

10 minutes

• Group activity

Independent 
Learning

5 minutes

• iClickers



 59 

 

Student response survey 

 A voluntary survey designed for this course was given anonymously online through the 

learning management platform and students did not receive any credit for completing the survey 

(UCF Webcourses, a Canvas portal). The survey was created specifically for this study to observe 

how students’ responses towards the GRR teaching model and collaboration changed over the 

course of the semester. The questions were coded with an inter-rater reliability score of 95% 

between two raters. Any discrepancies were reconciled for the final categorization. When 

administered to students the questions were not grouped by code. The results collected spanned 

two semesters and was taught by the same instructor, Fall 2017 and Spring 2018. Exactly half as 

many students responded to the end-of-semester survey as the start-of-semester survey, with 427 

total respondents across the end of the two semesters and 854 total respondents from the beginning. 

Since students’ responses were anonymous there was no way to discern students’ responses from 

the beginning to the end of the semester and were taken as an aggregate. The survey format used 

a 5-point Likert scale and gauged students’ overall response towards collaboration and key 

components of the GRR teaching model in terms of their agreement with qualitative statements 

describing this course in particular and GRR in general. These surveys were used to monitor 

student attitudes towards these categories over the semester. An average Likert score with a 3 or 

higher was considered a positive response towards that code.  

An example of a statement used to evaluate student response to collaboration was:  

 I feel that collaborating with my peers helps me more easily apply the material on my own 

An example of a statement used to evaluate student response to components of the GRR model 

was:  

 I feel that the guided instruction for practice problems helps me better grasp the material 
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Additional survey questions can be found in Table 3.  

Limitations to data set 

 Limitations to this study included a lack of individual numerical student scores of the 

unmodified sections, only final letter grades were available. As previously stated, individual 

placement exam scores were not available to the researcher. In addition, the overall structure of 

the GRR course in comparison to the Traditional course was largely unmodified with the main 

difference being instead of weekly quizzes, iclickers were used in its place. There was no instructor 

overlap between traditional and GRR taught courses. The instructor was kept constant for the two 

semesters taught as a GRR style. 

Results 

Student Response Results 

 The results from the survey are shown in Table 3 and Error! Reference source not found.. 

The results from this survey were taken as Likert averages and a score of 3 or larger was considered 

to be a positive effect. Where Figure 51 shows a bar graph of the Likert averages and this data 

shows an increase in respect towards collaboration and a slight decrease in respect to the GRR 

model. A one-tailed t-test was performed to determine the statistical difference between the Likert 

averages and there was a significant difference with 95% confidence interval for collaboration and 

no significant difference in respect to the GRR teaching model. The calculated t-values are 

displayed in Table 4. However, it is important to note that the Likert average was above a 3 both 

at the beginning and end of the semester, which shows students have a positive outlook on key 

components of this teaching model. The components of the GRR teaching model that were 

evaluated were: defined objectives, collaboration, and guided instruction. 
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Table 3: Survey statements with Likert means and standard deviations for the pre- and post- survey statements 

Pre-course survey statements 

GRR questions Mean SD 

I feel that going over the objectives in lecture creates a more cohesive learning experience 4.12 0.90 

Working out problems in lecture helps me better understand the material 4.60 1.58 

I am willing to participate in group assignments during lecture 3.18 0.54 

I would like to have undergraduate teaching assistants to help answer questions during in class problems 3.80 0.67 

I would be comfortable with approaching the undergraduate teaching assistants with questions  3.79 0.65 

I am comfortable with approaching my instructor with questions 4.00 0.80 

I feel that practicing problems improves my understanding of material 4.63 1.50 

I am comfortable with answering other students’ questions on the material 2.57 0.34 

I am open to new learning styles 4.13 0.89 

I am comfortable with approaching my classmates with questions 3.02 0.32 

I am able to learn in a large classroom lecture effectively 3.38 0.53 

Collaboration questions   

I am comfortable with approaching my classmates with questions 3.12 0.50 

I am willing to participate in group assignments during lecture 3.18 0.54 

I am comfortable with answering other students’ questions on the material 2.86 0.54 

I prefer working in small groups 3.03 0.36 

Post-course survey statements 

GRR questions Mean SD 

I would describe my overall attitude towards chemistry with this teaching style  3.60 0.59 

I feel that the way this course is structured has helped me better understand chemistry concepts  3.63 0.57 

I feel that going over the objectives in lecture created a more cohesive learning experience 3.92 1.15 

Working out problems as a class during lecture helped me better understand the material 4.30 1.10 

I have enjoyed participating in group assignments during lecture 3.15 0.37 

I feel that working with my peers during in class problems has helped me better understand the material 3.36 0.65 

I feel that having the undergraduate teaching assistants to help answer questions during in class problems 

was helpful 

3.53 0.80 

I feel that collaborating with my peers has helped me more easily apply the material on my own 3.38 0.67 

I enjoyed how engaged this course was 3.67 0.59 
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Figure 51: Comparison of pre- (grey) and post- (white) course survey results 
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I feel that the guided instruction portion of this course helped me tackle chemistry problems 3.71 0.62 

I feel that the style of teaching for this course has helped me better grasp chemistry concepts 3.72 0.89 

I am comfortable with approaching my classmates with questions 3.30 0.44 

Collaboration questions   

I am comfortable with approaching my classmates with questions 3.30 0.44 

I have enjoyed participating in group assignments during lecture 3.30 0.63 

I feel that working with my peers during in class problems has helped me better understand the material 3.27 0.41 

I feel that collaborating with my peers has helped me more easily apply the material on my own 3.66 1.02 
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Table 4: Statistical mean comparison of survey results where the highlighted and bolded value 

corresponds to a statistical difference higher then p=0.05. 

 

Overall student effect on academic success 

 In addition, overall grades were compared to six semesters of traditionally taught 

Chemistry Fundamentals 1B courses, which included courses from Summer 2016 to Spring 2018 

taught by multiple faculty members. The population of students from traditionally taught sections 

was 2,213 and the population in the GRR section was 901 students. The grade distributions of the 

traditional course (denoted in white) versus the GRR course (denoted in grey) are displayed in 

Figure 52. In comparison, the GRR model had a shift towards students obtaining higher grades 

and a decrease of DFWs. Figure 53 shows a divergent graph, which displays the percent difference 

of students’ grades in the GRR course as compared to traditional lectures. A 13.0% increase of 

students obtaining As and a 10.9% increase of students obtaining Bs was observed with a decrease 

of students obtaining Cs of 11.0%. Withdrawal rates decreased by 5%, D/NCs decreased by 7.1%, 

and Fs had a decrease of 1.6%.  

 

 

 Collaboration GRR 

T-value 2.89 0.65 

p-value 0.05 0.05 
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Figure 52: Gender grade distribution of Traditional (white) vs GRR (grey) taught course 

 

Figure 53: Divergent graph of Traditional vs GRR 
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Academic success on demographic population 

 A further objective of this study was to evaluate how different student in differing 

demographic groups performed throughout this course in comparison to a traditionally taught 

lecture. The demographic data being compared to the GRR model covers three sections of a 

traditional-style course, which was taught by different faculty members with a total population of 

1,339 students. A divergent graph showing the gender grade distribution difference between GRR 

and traditional lectures is shown in Figure 54. The female student population (polka dots) had an 

increase in As of 15.9% and 22% in Bs with a decrease in Cs of 3%. In addition, female students 

receiving D/NCs decreased by 8.3%, Fs by 5.1%, and withdrawals by 4.8%. In comparison to the 

male population (dashed diagonal lines) which had an increase in As of 14.2% and 10.2% in Bs 

with a decrease in Cs of 11.6%. Additionally, the number of males receiving D/NCs decreased by 

7.0%, Fs by 1.5%, and withdrawals by 2.2%. The results from the gender demographics showed a 

positive response by both genders to the GRR teaching model, as indicated by a shift to higher 

grades with respect to traditionally taught courses. In addition, a decrease was also observed in 

DFW rates amongst both populations.  

 Student grade distribution by race was also calculated to determine how different 

demographics responded to a modified teaching model. The percent increase/decrease for each 

demographic is displayed in Table 5. It was observed that all demographics had a positive increase 

with respect to students obtaining As and Bs. In the case of students obtaining Cs there was a 

decrease amongst all races except for a small increase of 2.0% for Black/African American 

students. There was a decrease amongst each demographic with regard to DFW rates. This is 

important to note because it shows under-represented minorities obtaining higher grades with a 

decrease in DFWs.  
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Figure 54: Gender grade distribution difference: Female (grey) and male (diagonals 

 

Table 5: Student demographic grade distribution differences between GRR and Traditional lecture 

style 

Demographic A (%) B (%) C (%) D/NC (%) F (%) 

Asian 12.0 4.5 -3.2 -10.1 -0.3 

Black/African American 0.9 16.8 2.0 -13.4 -5.0 

Hispanic/Latino 11.3 14.9 -13.5 -6.6 -4.3 

Multiracial 25.6 0.5 -6.7 -8.3 -9.3 

White 15.8 11.9 -12.0 -9.8 -4.1 
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Comparison of overall statistical means 

 A one tailed t-test analysis was performed to compare statistical means between overall 

grades between three sections of a Traditional lecture course and two semesters of a GRR taught 

course. Figure 55 indicates a statistical difference at 95% confidence interval for As, Bs, and 

D/NCs and it also displays at a 90% confidence interval a statistical difference for As, Bs, Cs, and 

D/NCs. Overall this shows that higher grades were statistically affected by the teaching model as 

well as Cs and D/NCs.  

 Further statistical comparisons between gender and student demographics were also 

performed using the same data set and is displayed in Table 6. There was a statistical increase in 

females obtaining As and Bs with a statistical decrease in the numbers of D/NCs observed. In 

regard to the male population the difference in As, Cs, D/NCs, and Ws were statistically different. 

Indicating that there was a significant increase in As and Bs with a decrease in D/NCs and Ws. 

This shows there was a slightly greater effect on male the population in comparison to females. 

 In regard to student demographic the largest statistical difference in grade distribution was 

observed for the Hispanic/Latino and White student populations with majority of grades having a 

statistical difference. These results indicate that the GRR teaching model did have an overall 

statistical effect on student academic performance. 
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Figure 55: T-test comparison of means for Traditional lecture to GRR teaching model. The red line indicates a confidence 

interval of 95% whereas the blue line is a confidence interval of 90%. 

 

Table 6: T-test comparison of means of Traditional lecture to GRR. Highlighted regions show a 

statistical difference with p=0.10 or higher. Bolded values correspond to a p≤0.10 or higher where 

bold and italicized correspond to having p≤0.05. 

 A B C D/NC F W 

Female 2.327 3.120 0.649 3.596 1.373 0.909 

Male 2.156 0.897 2.782 2.651 0.781 2.535 

Asian 1.290 0.102 0.840 5.367 0.507 0.293 

Black/African 

American 
0.199 0.806 0.337 1.324 0.507 1.719 

Hispanic/Latino 2.861 6.658 1.609 1.605 1.291 1.715 

Multiracial 8.050 0.968 0.000 0.731 0.600 1.074 

White 2.381 3.924 1.994 2.709 1.820 0.948 
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Comparison of statistical means of individual exam scores 

 Further statistical analysis was performed by comparing individual average exam scores 

from a Traditional lecture versus a GRR lecture. The scores used for this data set are from 

concurrent semesters, Spring 2018. The population from the traditional taught course was 435 

students and from the GRR course was 412 students. The exams were of comparable difficulty 

and can be found in the appendix.   

 A one tailed t-test was performed on the data set to determine if there was a statistical 

difference in student performance. Table 7 displays the average student scores per exam along 

with the calculate t-value. Three of the four exams were statistically different with a confidence 

interval of 95%. Exams one and four showed that students in the GRR course were performing 

statistically higher than the traditional lecture style. However, on exam two students in the 

traditionally taught course were performing statistically higher than the GRR model. Looking at 

overall exam averages, students in the GRR model performed statistically higher in comparison to 

the traditional lecture taught course.  

 

Table 7: Comparison of average exam scores of concurrent semesters with calculate t-values with 

the highlighted and bold values were larger than p≤0.05. 

Exams 1 2 3 4 
Exam 

Averages 

Traditional 62.83 73.92 67.66 70.36 68.63 

Std. dev. 20.31 19.62 21.29 22.06 21.22 

GRR 78.77 70.01 69.29 75.73 73.39 

Std. dev. 13.49 13.71 14.48 16.28 15.05 

t-value 13.367 3.352 1.297 4.008 8.060 
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iClicker responses 

 As previously mentioned, iClickers were used in both independent and collaborative 

settings in order to gauge students’ responses in real-time. An increase in correct student responses 

was observed after they were allowed to work collaboratively on the iClicker question. This further 

indicates that collaboration amongst peers has an impact on student performance when working 

through assignments.  An example of an iClicker question is displayed below along with the 

students’ responses in Figure 56. The correct answer is indicated in bold script. When students 

answered this iClicker question in an independent setting, only 25% answered the question 

correctly. However, after working in small groups, 63% of students obtained the correct result. In 

addition, after the iClicker polling system was closed, the question was explained by revisiting 

focused instruction both to ensure students understood the question and to address any 

misconceptions.  

Place the following in order of increasing dipole moment. 

 

 

 

 

A) II < III < I  D)I<II<III  

B) I < II = III  E) I < III < II  

C) II < I < III   
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Figure 56: iClicker grade comparison before (lines) and after (grey) collaboration; E is the correct response 
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APPENDIX A 

SUPPLEMENTAL MATERIAL 
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Chapter 3 

Table 8: Average concentration of free chloride in solution for DI water and DI water with iron 

after 4 days 

Sample Average free chloride (ppm) Std. Dev. 

DI water 0.091 0.007 

4-day iron 0.15 0.02 

 

 

Table 9: 1-month degradation [1,2,3-TCP] in the presence of 0.5g Fe 

Time point (hours) Average [1,2,3-TCP] ppm Normalized concentration Normalized std.dev. 

0 12.21 1.0000 0.0001 

24 13.02 1.07 0.01 

48 11.67 0.96 0.08 

72 11.48 0.94 0.03 

96 11.99 0.98 0.01 

120 11.54 0.95 0.01 

144 13.17 1.08 0.05 

168 12.40 1.02 0.05 

192 10.73 0.88 0.09 

 

 

 

Table 10: 1-month degradation [1,2,3-TCP] in the presence of 0.5g Fe and 1mM B12 

Time point (hours) Average [1,2,3-TCP] ppm Normalized concentration Normalized std.dev. 

0 12.27 1.00 0.02 
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24 10.82 0.88 0.02 

48 8.57 0.70 0.06 

72 6.13 0.50 0.01 

96 4.43 0.36 0.01 

120 3.15 0.3 0.1 

144 2.27 0.18 0.04 

168 1.92 0.16 0.02 

192 1.32 0.1 0.1 

 

 

Figure 57: Mole balance of 1,2,3-TCP based on release of free chloride into solution for 0.5g µZVI and 1mM B12 

 

Table 11: 1-month degradation [1,2-DCP] in the presence of 0.5g Fe 

Time point (days) Average [1,2-DCP] ppm Normalized concentration Normalized std.dev. 

0 9.55 1.00 0.01 



 75 

 

7 9.08 0.95 0.01 

14 8.27 0.87 0.07 

21 8.27 0.87 0.05 

 

 

Table 12: 1-month degradation [1,2-DCP] in the presence of 0.5g Fe and 0.0625mM B12 

Time point (days) Average [1,2-DCP] ppm Normalized concentration Normalized std.dev. 

0 9.67 1.00 0.04 

7 6.98 0.72 0.02 

14 5.23 0.54 0.02 

21 3.91 0.40 0.02 

 

 

Table 13: 1-month degradation [1,2-DCP] in the presence of 0.5g Fe and 0.125mM B12 

Time point (days) Average [1,2-DCP] ppm Normalized concentration Normalized std.dev. 

0 9.18 1.000 0.007 

7 7.12 0.77 0.01 

14 5.61 0.61 0.05 

21 3.25 0.35 0.03 

 

 

Table 14: 1-month degradation [1,2-DCP] in the presence of 0.5g Fe and 1mM B12 

Time point (days) Average [1,2-DCP] ppm Normalized concentration Normalized std.dev. 

0 9.48 1.00 0.04 

7 5.5 0.6 0.1 
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14 3.7 0.4 0.2 

21 1.7 0.2 0.1 

 

 

Table 15: 1-month degradation [1,2-DCP] in the presence of 2g Fe and 1mM B12 

Time point (days) Average [1,2-DCP] ppm Normalized concentration Normalized std.dev. 

0 11.25 1.00 0.06 

7 5.40 0.48 0.03 

14 0.90 0.08 0.04 

21 0.09 0.01 0.01 

 

 

Figure 58: Mole balance of 1,2-DCP based on release of free chloride into solution 
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Table 16: 1-month degradation [1,3-DCP] in the presence of 0.5g Fe 

Time point (days) Average [1,3-DCP] ppm Normalized concentration Normalized std.dev. 

0 34.64 1.00 0.03 

7 28.20 0.81 0.02 

14 29.36 0.85 0.02 

21 29.99 0.87 0.07 

28 30.00 0.87 0.02 

 

Table 17: 1-month degradation [1,3-DCP] in the presence of 0.5g Fe and 1mM B12 

Time point (days) Average [1,3-DCP] ppm Normalized concentration Normalized std.dev. 

0 24.79 1.00 0.02 

7 17.77 0.72 0.02 

14 13.41 0.54 0.09 

21 8.43 0.34 0.03 

28 2.10 0.08 0.06 
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Figure 59: Mole balance of 1,3-DCP based on release of free chloride into solution for 0.5g µZVI and 1mM B12 

 

Table 18: 1-month degradation [1-CP] in the presence of 0.5g Fe 

Time point (days) Average [1-CP] ppm Normalized concentration Normalized std.dev. 

0 26.49 1.00 0.06 

7 29.43 1.11 0.06 

14 25.18 0.95 0.06 

21 23.60 0.89 0.06 

28 25.06 0.95 0.05 

32 24.76 0.94 0.04 
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Table 19: 1-month degradation [1-CP] in the presence of 0.5g Fe and 1mM B12 

Time point (days) Average [1-CP] ppm Normalized concentration Normalized std.dev. 

0 20.89 1.00 0.08 

7 21.91 1.05 0.07 

14 16.13 0.77 0.05 

21 16.30 0.78 0.06 

28 12.79 0.61 0.04 

32 10.6 0.5 0.1 

 

 

Figure 60: Mole balance of 1-CP based on release of free chloride into solution for 0.5g µZVI and 1mM B12 
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Table 20: 1-month degradation [1,2-DCA] in the presence of 0.5g Fe 

Time point (days) Average [1,2-DCA] ppm Normalized concentration Normalized std.dev. 

0 13.66 1.00 0.03 

7 12.6 1.2 0.1 

14 12.32 1.13 0.02 

21 11.48 1.06 0.03 

28 12.2 1.1 0.1 

35 11.93 1.10 0.06 

 

 

Table 21: 1-month degradation [1,2-DCA] in the presence of 0.5g Fe and 1mM B12 

Time point (days) Average [1,2-DCA] ppm Normalized concentration Normalized std.dev. 

0 13.5186 1.0000 0.0001 

7 9.09 0.85 0.06 

14 4.73 0.44 0.05 

21 3.0 0.3 0.2 

28 1.225 0.114 0.005 

35 0.704 0.066 0.050 
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Figure 61: Mole balance of 1-CP based on release of free chloride into solution for 0.5g µZVI and 1mM B12 
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Chapter 4  

 

Figure 62: UV-vis spectrum of 1,2-DCP degradation over 21-days 

 

Figure 63: UV-vis spectrum of 1,3-DCP degradation over 28-days 

 



 83 

 

 

Figure 64: UV-vis spectrum of 1-CP degradation over 28-days 

 

Chapter 7 

Table 22 shows a comparison between the average exam difficulty between the GRR course and 

a Traditional taught course in Spring 2018. The GRR course model was compared to an established 

professor’s assessments. The average exam difficulty was rated on a scale of one to five. These 

ratings were provided by the publisher for each question.  

 

 

Table 22: Comparison of test difficulty between GRR vs. Traditional 

 GRR  Traditional 

EXAM Average Difficulty Number of Questions Average Difficulty Number of Questions 

1 1.92 25 1.90 20 

2 1.96 30 2.20 20 
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3 2.16 25 2.00 20 

4 2.16 25 2.70 20 

5 1.88 25 -- -- 

Average 2.02  2.25  
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APPENDIX B 

IRB APPROVAL LETTER 
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