Two Ramsey-related Problems

Jingmei Zhang
University of Central Florida

Find similar works at: https://stars.library.ucf.edu/etd
University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact STARS@ucf.edu.

STARS Citation

Zhang, Jingmei, "Two Ramsey-related Problems" (2019). Electronic Theses and Dissertations, 2004-2019. 6597.
https://stars.library.ucf.edu/etd/6597

TWO RAMSEY-RELATED PROBLEMS

by

JINGMEI ZHANG

MS University of Central Florida, 2016
MS Anhui University, 2011
BS Anhui University, 2008

A dissertation submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in the Department of Mathematics in the College of Sciences
at the University of Central Florida Orlando, Florida
(c) 2019 Jingmei Zhang

Abstract

Extremal combinatorics is one of the central branches of discrete mathematics and has experienced an impressive growth during the last few decades. It deals with the problem of determining or estimating the maximum or minimum possible size of a combinatorial structure which satisfies certain requirements. In this dissertation, we focus on studying the minimum number of edges of certain co-critical graphs. Given an integer $r \geq 1$ and graphs G, H_{1}, \ldots, H_{r}, we write $G \rightarrow\left(H_{1}, \ldots, H_{r}\right)$ if every r-coloring of the edges of G contains a monochromatic copy of H_{i} in color i for some $i \in\{1, \ldots, r\}$. A non-complete graph G is $\left(H_{1}, \ldots, H_{r}\right)$-co-critical if $G \nrightarrow\left(H_{1}, \ldots, H_{r}\right)$, but $G+u v \rightarrow\left(H_{1}, \ldots, H_{r}\right)$ for every pair of non-adjacent vertices u, v in G. Motivated in part by Hanson and Toft's conjecture from 1987, we study the minimum number of edges over all $\left(K_{t}, \mathcal{T}_{k}\right)$-co-critical graphs on n vertices, where \mathcal{T}_{k} denotes the family of all trees on k vertices. We apply graph bootstrap percolation on a not necessarily K_{t}-saturated graph to prove that for all $t \geq 4$ and $k \geq \max \{6, t\}$, there exists a constant $c(t, k)$ such that, for all $n \geq(t-1)(k-1)+1$, if G is a $\left(K_{t}, \mathcal{T}_{k}\right)$-co-critical graph on n vertices, then $e(G) \geq\left(\frac{4 t-9}{2}+\frac{1}{2}\left\lceil\frac{k}{2}\right\rceil\right) n-c(t, k)$. We then show that this is asymptotically best possible for all sufficiently large n when $t \in\{4,5\}$ and $k \geq 6$. The method we developed may shed some light on solving Hanson and Toft's conjecture, which is wide open.

We also study Ramsey numbers of even cycles and paths under Gallai colorings, where a Gallai coloring is a coloring of the edges of a complete graph without rainbow triangles, and a Gallai k-coloring is a Gallai coloring that uses at most k colors. Given an integer $k \geq 1$ and graphs H_{1}, \ldots, H_{k}, the Gallai-Ramsey number $G R\left(H_{1}, \ldots, H_{k}\right)$ is the least integer n such that every Gallai k-coloring of the complete graph K_{n} contains a monochromatic copy of H_{i} in color i for some $i \in\{1, \ldots, k\}$. We completely determine the exact values of $G R\left(H_{1}, \ldots, H_{k}\right)$ for all $k \geq 2$ when each H_{i} is a path or an even cycle on at most 13 vertices.

ACKNOWLEDGMENTS

First, I would particularly like to express my sincere gratitude to my advisor, Professor $\mathrm{Zi}-\mathrm{Xia}$ Song, for the guidance, advice, and encouragement she has given me during my entire time as a student at University of Central Florida.

Besides my advisor, I would like to thank the rest of my dissertation committee members, Professors Yue Zhao, Heath Martin, and Damla Turgut, for their service on my dissertation committee.

I also want to thank my friends Christian, Fangfang, Chathurani, Nathaniel, Van, Wei and many more who have made my stay at UCF wonderful.

Last but not the least, I would like to thank my husband, my parents, my parents-in-law and my sister. Without their constant encouragement and support, I would not have a chance to pursue my PhD in mathematics.

TABLE OF CONTENTS

LIST OF FIGURES vii
CHAPTER 1: INTRODUCTION 1
1.1 Basic Definitions 1
1.2 Pigeonhole Principle 5
1.3 Ramsey Numbers of Graphs 5
1.4 Co-critical Graphs 9
1.5 Saturated Graphs 17
1.6 Gallai-Ramsey Numbers of Graphs 20
CHAPTER 2: ON THE SIZE OF $\left(K_{t}, \mathcal{T}_{k}\right)$-CO-CRITICAL GRAPHS 27
2.1 Structural Properties of $\left(K_{t}, \mathcal{T}_{k}\right)$-co-critical Graphs 27
2.2 Proof of Theorem 1.4.8 41
2.3 Proof of Theorem 1.4.9 45
2.4 Proof of Theorem 1.4.10 48
CHAPTER 3: GALLAI-RAMSEY NUMBERS OF EVEN CYCLES AND PATHS 53
3.1 Proofs of Proposition 1.6.13 and Proposition 1.6.15 53
3.2 Proof of Theorem 1.6.16 55
3.3 Proof of Theorem 1.6.17 64
CHAPTER 4: FUTURE WORK 86
4.1 More Open Problems on Co-critical Graphs 86
4.2 Rainbow Saturation Numbers of Graphs 87
4.3 Antimagic Labeling of Graphs 88
LIST OF REFERENCES 90

LIST OF FIGURES

Figure 1.1: A graph on $V=\{1, \ldots, 7\}$ with edge set $E=\{12,15,25,34,57\} \ldots 1$

Figure 1.2: A graph G and its complement \bar{G}. 2

Figure 1.3: A graph G with subgraphs G^{\prime} and $G^{\prime \prime}: G^{\prime}$ is an induced subgraph, but $G^{\prime \prime}$ is not 2

Figure 1.4: The path P_{5}, the cycle C_{5}, the complete graph K_{5}, and the star $K_{1,5} \ldots \ldots$

Figure 1.8: Two $\left(K_{3}, \mathcal{T}_{4}\right)$-co-critical graphs with a unique critical-coloring 14

Figure 1.9: A $\left(K_{3}, \mathcal{T}_{k}\right)$-co-critical graph with a unique critical-coloring 14
Figure 1.10:The graph J . 19

Figure 2.1: A $\left(K_{4}, \mathcal{T}_{k}\right)$-co-critical graph for all $k \geq 4 \ldots 48$

Figure 2.2: A $\left(K_{5}, \mathcal{T}_{k}\right)$-co-critical graph for all $k \geq 4 \ldots 49$

Figure 3.1: A lower bound construction for $G R\left(G_{i_{1}}, G_{i_{2}}, \ldots, G_{i_{k}}\right) \ldots \ldots$

Figure 3.2: Two cases of R^{1} when $i_{b}=4$ and $n=5 \ldots \ldots 72$

CHAPTER 1: INTRODUCTION

Extremal combinatorics is one of the central branches of discrete mathematics and has experienced an impressive growth during the last few decades. It deals with the problem of determining or estimating the maximum or minimum possible size of a combinatorial structure which satisfies certain requirements. In this dissertation, we focus on studying two Ramsey-related problems.

1.1 Basic Definitions

Following the conventions set out in [81], a graph G is a triple consisting of a vertex set $V(G)$, an edge set $E(G)$, and a relation that associates with each edge two vertices (not necessarily distinct) called it endvertices or ends, written as $G=(V(G), E(G))$ or $G=(V, E)$. See Figure 1.1 for an example of graph. The order of a graph G, written $|G|$, is the number of vertices in G. The size of a graph G, written $e(G)$, is the number of edges in G. Graphs are finite, infinite, countable and so on according to their order. A loop is an edge whose ends are both the same vertex. Multiple edges are distinct edges which share the same two ends. A graph is simple if it contains no loops or multiple edges. All graphs considered in this dissertation are finite and simple. We use the convention " $A:=$ " to mean that A is defined to be the right-hand side of the relation.

Figure 1.1: A graph on $V=\{1, \ldots, 7\}$ with edge set $E=\{12,15,25,34,57\}$

Let $G=(V, E)$. If an edge $e \in E$ has ends $x, y \in V$, we usually write $e=x y$ and say that x
and y are incident with e in G, and that x and y are adjacent or neighbors in G. If two vertices are not adjacent to each other in G, then we say that they are non-adjacent. The set of neighbours of a vertex v in G is denoted by $N_{G}(v)$, or briefly by $N(v)$. The degree $d_{G}(v)=d(v)$ of a vertex v is equal to the number of neighbours of v. The number $\delta(G):=\min \{d(v): v \in V\}$ is the minimum degree of G, the number $\Delta(G):=\max \{d(v): v \in V\}$ is its maximum degree. The complement \bar{G} of G is the graph with vertex set V and edge set $\{u v: u, v \in V$ and $u v \notin E\}$. See Figure 1.2 for an example of this definition. Given disjoint sets $A, B \subseteq V$, we say that A is complete to B if for every $a \in A$ and every $b \in B, a b \in E$, and A is anti-complete to B if for every $a \in A$ and every $b \in B, a b \notin E$.

Figure 1.2: A graph G and its complement \bar{G}

Figure 1.3: A graph G with subgraphs G^{\prime} and $G^{\prime \prime}: G^{\prime}$ is an induced subgraph, but $G^{\prime \prime}$ is not

Let $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be two graphs. Following the conventions of [25], if $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$, then G^{\prime} is a subgraph of G, written as $G^{\prime} \subseteq G$. Less formally, we say that G contains G^{\prime}. If $G^{\prime} \subseteq G$ and $G^{\prime} \neq G$, then G^{\prime} is a proper subgraph of G. If $G^{\prime} \subseteq G$ and G^{\prime} contains all the edges $x y \in E$ with $x, y \in V^{\prime}$, then G^{\prime} is an induced subgraph of G; we say that V^{\prime} induces G^{\prime} in G, and write $G^{\prime}=G\left[V^{\prime}\right]$. See Figure 1.3 for examples of these definitions. If $U \subseteq V$ is any set of
vertices, $G[U]$ is the subgraph of G obtained from G by deleting all vertices in $V \backslash U$. If W is any subset of V, we write $G \backslash W$ for $G[V \backslash W]$. In other words, $G \backslash W$ is obtained from G by deleting all the vertices in W and their incident edges. If $W=\{v\}$ is a singleton, we write $G \backslash v$ rather than $G \backslash\{v\}$. For a subset F of E, we write $G \backslash F=(V, E \backslash F)$ and $G+F=(V, E \cup F)$; as above, $G \backslash\{e\}$ and $G+\{e\}$ are abbreviated to $G \backslash e$ and $G+e$.

Let G and H be two vertex disjoint graphs. The join $G+H$ is the graph having vertex set $V(G) \cup$ $V(H)$ and edge set $E(G) \cup E(H) \cup\{x y: x \in V(G), y \in V(H)\}$. The union $G \cup H$ is the graph having vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$. Given two isomorphic graphs G and H, we may (with a slight but common abuse of notation) write $G=H$. For an integer $t \geq 1$ and a graph H, we define $t H$ to be the union of t disjoint copies of H.

A clique in a graph is a set of pairwise adjacent vertices. An independent set in a graph is a set of pairwise nonadjacent vertices. The greatest integer r such that $K_{r} \subseteq G$ is the clique number $\omega(G)$ of G, and the greatest integer r such that $K_{r} \subseteq \bar{G}$ is the independence number $\alpha(G)$ of G. For any graph $G, \alpha(G)=\omega(\bar{G})$ and $\omega(G)=\alpha(\bar{G})$.

Let us now describe some frequently used graphs. If all the vertices of G are pairwise adjacent, then G is complete. A complete graph on n vertices is a K_{n}; a K_{3} is called a triangle. A path P is an alternating sequence of all distinct vertices and edges, $v_{1}, e_{1}, v_{2}, \ldots, v_{k-1}, e_{k-1}, v_{k}$, which begins and ends with vertices. We often refer to a path by the natural sequence of its vertices, writing, say $P:=v_{1} v_{2} \ldots v_{k}$. The graph $C:=P+v_{1} v_{k}$ is called a cycle. As with paths, we often denote a cycle by its (cyclic) sequence of vertices; the above cycle C might be written as $v_{1} \ldots v_{k-1} v_{1}$. A graph G is called connected if it is non-empty and there exists a path between any two of its vertices in G. A connected graph with no cycles is called a tree. A vertex of degree 1 in a tree is call a leaf of the tree. A tree on $k+1$ vertices with k leaves is defined as a star, and is denoted by $K_{1, k}$ or S_{k}. We use P_{n}, C_{n} and T_{n} to denote the path, cycle and tree on n vertices,
respectively. A graph G is k-partite if $V(G)$ is the union of k independent sets called partite sets of G. We say G is bipartite when $k=2$. If the k independent sets of a k-partite graph G are complete to each other, then G is called a complete k-partite graph. Note that $P_{n}, C_{2 n}$ and T_{n} are bipartite graphs, and $K_{1, k}$ is a complete bipartite graph. Examples of some of these graphs are depicted in Figure 1.4.

Figure 1.4: The path P_{5}, the cycle C_{5}, the complete graph K_{5}, and the star $K_{1,5}$

For any positive integer k, we write $[k]$ for the set $\{1,2, \ldots, k\}$. A k-coloring of a graph $G=$ (V, E) is a map $c: V \rightarrow[k]$. If $c(v) \neq c(w)$ whenever v and w are adjacent, then c is said to be a proper coloring. The chromatic number of a graph G, written $\chi(G)$, is the minimum number of colors needed in a proper coloring of G. A k-edge-coloring of a graph $G=(V, E)$ or a k-coloring of edge set E of G is a map $\sigma: E \rightarrow[k]$. Similarly, if $\sigma(e) \neq \sigma(f)$ for any adjacent edges e and f, then σ is said to be a proper edge coloring. A subset of vertices assigned to the same color under c is called a color class of c, and similarly a subset of edges assigned to the same color under σ is called a color class of σ. Every color class of a proper coloring or a proper edge coloring forms an independent set. Note that a proper k-coloring is nothing but a vertex partition into k independent sets, and a proper k-edge-coloring is an edge partition into k independent sets. Let $H \subseteq G$ and σ be a k-edge-coloring of G. We say that G contains a monochromatic copy of H if all the edges of H have the same color under σ.

1.2 Pigeonhole Principle

In this section, we list an important, but elementary, combinatorial principle that can be used to solve a variety of interesting problems, often with surprising conclusions. This principle is commonly called the pigeonhole principle, the Dirichlet drawer principle, and the shoeboxprinciple. The first formalization of the idea is believed to have been made by Peter Gustav Lejeune Dirichlet in 1834 under the name Schubfachprinzip (German). Formulated as a principle about pigeonholes, it says roughly that if a lot of pigeons fly into not too many pigeonholes, then at least one pigeonhole will be occupied by more than one pigeons.

Theorem 1.2.1 (Pigeonhole principle (Simple form), Herstein [58]) If $n+1$ (or more) objects are distributed into n boxes, then at least one box contains two or more of the objects.

Theorem 1.2.2 (Pigeonhole principle (Strong form), Brualdi [11]) Let q_{1}, \ldots, q_{n} be positive integers. If $q_{1}+q_{2}+\cdots+q_{n}-n+1$ (or more) objects are distributed into n boxes, then either the first box contains at least q_{1} objects, or the second box contains at least q_{2} objects, ..., or the nth box contains at least q_{n} objects.

The simple form of the pigeonhole principle can be obtained from the strong form by taking $q_{1}=$ $\cdots=q_{n}=2$. Then $q_{1}+q_{2}+\cdots+q_{n}-n+1=n+1$.

1.3 Ramsey Numbers of Graphs

Given an integer $k \geq 1$ and graphs G, H_{1}, \ldots, H_{k}, we write $G \rightarrow\left(H_{1}, \ldots, H_{k}\right)$ if every k coloring of $E(G)$ contains a monochromatic copy of H_{i} in color i for some $i \in[k]$. If G has no monochromatic copy of H_{i} in color i for any $i \in[k]$ under some k-coloring σ of $E(G)$, then we write $G \nrightarrow\left(H_{1}, \ldots, H_{k}\right)$, and say that σ is a critical k-coloring of G with respect to H_{1}, \ldots, H_{k};
when $k=2$, we simply say critical-coloring. The classical Ramsey number $R\left(H_{1}, \ldots, H_{k}\right)$ is the minimum positive integer n such that $K_{n} \rightarrow\left(H_{1}, \ldots, H_{k}\right)$. If $H=H_{1}=\cdots=H_{k}$, we simply write $R_{k}(H)$ to denote the k-color Ramsey number of H.

Figure 1.5: $K_{5} \nrightarrow\left(K_{3}, K_{3}\right)$

From Figure 1.5, we see that $K_{5} \nrightarrow\left(K_{3}, K_{3}\right)$. Note that the \{red, blue\}-coloring of K_{5} depicted in Figure 1.5 is the unique critical-coloring of K_{5}, so $R_{2}\left(K_{3}\right) \geq 6$. Actually $R_{2}\left(K_{3}\right)=6$ and is not difficult to prove. The task of proving $R_{2}\left(K_{3}\right) \leq 6$ was the second problem in Part I of the William Lowell Putnam Mathematical Competition held in March 1953 [13].

Ramsey theory stems from a deceptively simple problem, i.e., a problem that is very easy to state and that seems easy to solve, but turns out to be very difficult. In its general form, the problem is to determine the smallest integer $r=R\left(K_{m}, K_{n}\right)$, such that at any party of r people, we can find m mutual acquaintances (each one knows all $m-1$ others) or n mutual strangers (each one does not know any of the $n-1$ others). For small values of m and n the problem is easy. It is trivial that $R\left(K_{1}, K_{n}\right)=R\left(K_{m}, K_{1}\right)=1$, and almost trivial that $R\left(K_{2}, K_{n}\right)=n$ and $R\left(K_{m}, K_{2}\right)=m$. The field is named for Frank P. Ramsey who proved its first result [72] in 1929. This paper [72] was published in 1930. Since then, the field has exploded.

Theorem 1.3.1 (Ramsey [72]) For all $k \geq 1$ and any given graphs H_{1}, \ldots, H_{k}, there exists a $n \in \mathbb{N}$ such that $K_{n} \rightarrow\left(H_{1}, \ldots, H_{k}\right)$.

Ramsey theory is a profound and important generalization of the Pigeonhole Principle. It studies
conditions when a combinatorial object contains necessarily some smaller given objects. The role of Ramsey numbers is to quantify some of the general existential theorems in Ramsey Theory. The core idea of Ramsey theory is that complete disorder is impossible. Determining $R_{k}\left(K_{t}\right)$, or even $R_{2}\left(K_{t}\right)$, is one of the main open problems in Ramsey theory. However, computing Ramsey numbers is notoriously difficult.

Paul Erdős had a tremendous impact on the area of Ramsey theory. His contribution started with determining the Ramsey number $R\left(K_{m}, K_{n}\right)$. Ramsey [72] provided an upper bound of $R_{2}\left(K_{t}\right)$ which is $R_{2}\left(K_{t}\right) \leq 2^{2 t-3}$. In 1947, Erdős [30] proved a lower bound of $R_{2}\left(K_{t}\right)$ which is $R_{2}\left(K_{t}\right)>2^{t / 2}$. The interesting feature of Erdős's proof is that he never presented a specific coloring. He simply proved that choosing a coloring at random almost always works. This was one of the first occurence of the probabilistic method in combinatorics. While there have been several improvements on these bounds (see for example [20] and [78]), the constant factors in the above exponents remain the same.

For 2-color Ramsey numbers of complete graphs, Greenwood and Gleason [49] established the initial values $R\left(K_{3}, K_{4}\right)=9, R\left(K_{3}, K_{5}\right)=14$ and $R_{2}\left(K_{4}\right)=18$ in 1955. Kéry [61] obtained $R\left(K_{3}, K_{6}\right)=18$ in 1964, and Graver and Yackel [48] proved that $R\left(K_{3}, K_{7}\right)=23$ in 1968. The determination of other classical Ramsey numbers required the use of computers. Grinstead and Roberts [48] found that $R\left(K_{3}, K_{9}\right)=36$ in 1982; Mckay and Zhang [68] computed $R\left(K_{3}, K_{8}\right)=28$ in 1992; Mckay and Radziszowski [67] determined $R\left(K_{4}, K_{5}\right)=25$ in 1995. Perhaps surprisingly, even the exact value of $R_{2}\left(K_{5}\right)$ remains unknown. The best known lower bound of $R_{2}\left(K_{5}\right)$ was provided by Exoo [34] in 1989, shown to be 43 . More recently, Angeltveit and McKay [3] proved that $R_{2}\left(K_{5}\right) \leq 48$. For multiple colors, the only known nontrivial classical Ramsey number of complete graphs is $R_{3}\left(K_{3}\right)$, which is 17 , as shown by Greenwood and Gleason [49]. 2-color Ramsey numbers of certain graphs are completely determined. We list some of the results below which will be used in this dissertation.

Theorem 1.3.2 (Chartrand, Schuster [16]) $R_{2}\left(C_{4}\right)=6$ and $R_{2}\left(C_{6}\right)=8$.

Theorem 1.3.3 (Faudree, Schelp [38]; Rosta [74] independtly)
$R\left(C_{m}, C_{n}\right)= \begin{cases}2 n-1 & \text { for } 3 \leq m \leq n, m \text { odd, }(m, n) \neq(3,3), \\ n-1+m / 2 & \text { for } 4 \leq m \leq n, m \text { and } n \text { even, }(m, n) \neq(4,4), \\ \max \{n-1+m / 2,2 m-1\} & \text { for } 4 \leq m<n, m \text { even and } n \text { odd } .\end{cases}$

Theorem 1.3.4 (Faudree, Lawrence, Parsons, Schelp [37])
$R\left(C_{m}, P_{n}\right)= \begin{cases}2 n-1 & \text { for } 3 \leq m \leq n, \text { m odd }, \\ n-1+m / 2 & \text { for } 4 \leq m \leq n, m \text { even }, \\ \max \{m-1+\lfloor n / 2\rfloor, 2 n-1\} & \text { for } 2 \leq n \leq m, m \text { odd }, \\ m-1+\lfloor n / 2\rfloor & \text { for } 2 \leq n \leq m, m \text { even } .\end{cases}$

Theorem 1.3.5 (Gerencsér, Gyárfás [46]) For all integers n, m satisfying $n \geq m \geq 2$, $R\left(P_{m}, P_{n}\right)=n+\lfloor m / 2\rfloor-1$.

Theorem 1.3.6 (Chvátal [19]) For all integers $n, m \geq 2, R\left(K_{m}, T_{n}\right)=(m-1)(n-1)+1$.

Determining the Ramsey number $R_{k}\left(C_{n}\right)$ is one of the earliest and well-known problems. For 3-color Ramsey numbers of even cycles, a lower bound $R_{3}\left(C_{2 n}\right) \geq 4 n$ for all $n \geq 2$ follows from a construction by Dzido, Nowik and Szuca [28]. In 2005, Dzido [27] posed the Triple Even Cycle Conjecture in his Ph.D. thesis.

Conjecture 1.3.7 (Triple Even Cycle, Dzido [27]) $R_{3}\left(C_{2 n}\right)=4 n$ for all integers $n \geq 3$.

Benevides and Skokan [5] proved Conjecture 1.3.7 is true for sufficiently large n. For small value
of n, only $R_{3}\left(C_{4}\right), R_{3}\left(C_{6}\right)$ and $R_{3}\left(C_{8}\right)$ are known. For 3-color Ramsey numbers of odd cycles, we begin with the well know conjecture by Bondy and Erdős [7].

Conjecture 1.3.8 (Bondy, Erdős [7]) $R_{k}\left(C_{2 n+1}\right)=n \cdot 2^{k}+1$ for all $n \geq 2$ and $k \geq 3$.

When $k=3$, Conjecture 1.3 .8 is also known as Triple Odd Cycle Conjecture. Łuczak [66] employed the regularity method to prove that $R_{3}\left(C_{2 n+1}\right)=8 n+o(n)$, as $n \rightarrow \infty$, and so the Triple Odd Cycle Conjecture holds asymptotically. Jenssen and Skokan [59] proved the Conjecture 1.3.8 holds for all fixed k and all n sufficiently large by using Łuczak's regularity method. However, Day and Johnson [24] recently proved Theorem 1.3 .9 below which implies that Conjecture 1.3.8 is false when n is small with respect to k. For small value of n, only $R_{3}\left(C_{3}\right), R_{3}\left(C_{5}\right)$ and $R_{3}\left(C_{7}\right)$ have been determined.

Theorem 1.3.9 (Day, Johnson [24]) For all integers n there exists a constant $\epsilon=\epsilon(n)>0$ such that, for all k sufficiently large, $R_{k}\left(C_{2 n+1}\right)>2 n \cdot(2+\epsilon)^{k-1}$.

For more detailed information on Ramsey numbers, and open problems on this topic, the readers are referred to the dynamic survey of Radziszowski [71]. For more information on Ramsey-related topics can be found in a very recent informative survey due to Conlon, Fox and Sudakov [21].

1.4 Co-critical Graphs

Given an integer $k \geq 1$ and graphs H_{1}, \ldots, H_{k}, a non-complete graph G is $\left(H_{1}, \ldots, H_{k}\right)$ -co-critical if $G \nrightarrow\left(H_{1}, \ldots, H_{k}\right)$, but $G+e \rightarrow\left(H_{1}, \ldots, H_{k}\right)$ for every e in \bar{G}. This is a generalization to graphs whose edges are k-colored and saturated with respect to monochromatic subgraphs. Following Galluccio, Siminovits and Simonyi [45], the complete graphs in the definition of $\left(H_{1}, \ldots, H_{k}\right)$-co-critical graphs are excluded, else every complete graph on fewer than
$R\left(H_{1}, \ldots, H_{k}\right)$ vertices is $\left(H_{1}, \ldots, H_{k}\right)$-co-critical. It is worth noting that every $\left(H_{1}, \ldots, H_{k}\right)$-cocritical graph has at least $R\left(H_{1}, \ldots, H_{k}\right)$ many vertices.

For example, K_{6}^{-}is $\left(K_{3}, K_{3}\right)$-co-critical, where K_{6}^{-}denotes the graph obtained from K_{6} by deleting exactly one edge. The $\{$ red, blue $\}$-coloring of K_{6}^{-}depicted in Figure 1.6 below is a critical-coloring of K_{6}^{-}with respect to K_{3}, K_{3}, so $K_{6}^{-} \nrightarrow\left(K_{3}, K_{3}\right)$. However, we get a K_{6} by adding the missing edge of K_{6}^{-}and $K_{6} \rightarrow\left(K_{3}, K_{3}\right)$.

Figure 1.6: $K_{6}^{-} \nrightarrow\left(K_{3}, K_{3}\right)$

The notion of co-critical graphs was initiated by Nešetřil [70] in 1986 when he asked the following question regarding (K_{3}, K_{3})-co-critical graphs:
"Are there an infinite number of minimal co-critical graphs, i.e., co-critical graphs which lose this property when any vertex is deleted? Is K_{6}^{-}the only one? "

Galluccio, Siminovits and Simonyi [45] answered this question in the positive by constructing infinite many minimal $\left(K_{3}, K_{3}\right)$-co-critical graphs without containing K_{5} as a subgraph and extended the notation $\left(K_{3}, K_{3}\right)$-co-critical to $\left(H_{1}, \ldots, H_{k}\right)$-co-critical. They [45] also mentioned that it's easy to construct $\left(K_{3}, K_{3}\right)$-co-critical graphs with a linear number of edges, so one should ask for constructing "almost regular" co-critical graphs with low maximum degree. In [45], they proved the existence of $\left(K_{3}, K_{3}\right)$-co-critical graphs with maximal degree $O\left(n^{3 / 4} \log n\right)$ by using a random graph construction. Szabó [79] then constructed infinite many $\left(K_{3}, K_{3}\right)$-co-critical graphs
with maximal degree $O\left(n^{3 / 4}\right)$. It remains unknown whether there are infinitely many strongly minimal co-critical graphs, where an $\left(H_{1}, \ldots, H_{k}\right)$-co-critical graph is strongly minimal co-critical if it contains no proper subgraph which is also $\left(H_{1}, \ldots, H_{k}\right)$-co-critical. This is one of the most intriguing open problems proposed by Galluccio, Siminovits and Simonyi in [45]. One interesting observation made in [45] is that if G is $\left(H_{1}, \ldots, H_{k}\right)$-co-critical, then $\chi(G) \geq R\left(H_{1}, \ldots, H_{k}\right)$. They also made some observations on the minimum degree of (K_{3}, K_{3})-co-critical graphs and maximum number of possible edges of $\left(H_{1}, \ldots, H_{k}\right)$-co-critical graphs.

Hanson and Toft [56] in 1987 also studied the minimum and maximum number of edges over all $\left(H_{1}, \ldots, H_{k}\right)$-co-critical graphs on n vertices when H_{1}, \ldots, H_{k} are complete graphs, under the name of strongly $\left(\left|H_{1}\right|, \ldots,\left|H_{k}\right|\right)$-saturated graphs. Recently, this topic has been studied under the name of $\mathcal{R}_{\min }\left(H_{1}, \ldots, H_{k}\right)$-saturated graphs [17, 39, 73]. A graph G is $\left(H_{1}, \ldots, H_{k}\right)$-Ramseyminimal if $G \rightarrow\left(H_{1}, \ldots, H_{k}\right)$, but for any proper subgraph G^{\prime} of $G, G^{\prime} \nrightarrow\left(H_{1}, \ldots, H_{k}\right)$. We define $\mathcal{R}_{\text {min }}\left(H_{1}, \ldots, H_{k}\right)$ to be the family of all $\left(H_{1}, \ldots, H_{k}\right)$-Ramsey-minimal graphs. A graph G is $\mathcal{R}_{\min }\left(H_{1}, \ldots, H_{k}\right)$-saturated if no element of $\mathcal{R}_{\text {min }}\left(H_{1}, \ldots, H_{k}\right)$ is a subgraph of G, but for any edge e in \bar{G}, some element of $\mathcal{R}_{\text {min }}\left(H_{1}, \ldots, H_{k}\right)$ is a subgraph of $G+e$. It can be easily checked that a non-complete graph is $\left(H_{1}, \ldots, H_{k}\right)$-co-critical if and only if it is $\mathcal{R}_{\min }\left(H_{1}, \ldots, H_{k}\right)$-saturated. From now on, we shall use the notion of $\left(H_{1}, \ldots, H_{k}\right)$-co-critical other than $\mathcal{R}_{\min }\left(H_{1}, \ldots, H_{k}\right)$ saturated, as the former is much simpler and straightforward.

Let $r:=R\left(K_{t_{1}}, \ldots, K_{t_{k}}\right)$ be the classical Ramsey number for $K_{t_{1}}, \ldots, K_{t_{k}}$. Hanson and Toft [56] proved that every $\left(K_{t_{1}}, \ldots, K_{t_{k}}\right)$-co-critical on n vertices has at most $e\left(T_{r-1, n}\right)$ edges and this bound is best possible, where $T_{r-1, n}$ denotes the complete $(r-1)$-partite graphs on $n \geq r-1$ vertices whose partition sets differ in size by at most one. We will often refer to this graph as the Turán graph [80]. Note that $T_{r-1, n}$ contains no K_{r}.

In the same paper [56], Hanson and Toft also observed that for all $n \geq r$, the graph $H:=K_{r-2}+$
\bar{K}_{n-r+2} is $\left(K_{t_{1}}, \ldots, K_{t_{k}}\right)$-co-critical. To obtain a critical k-coloring of H, fix a critical k-coloring σ of the edges of complete graph K_{r-1}, then duplicate any vertex of the complete graph K_{r-1} with $n-r+1$ times together with the edge colors (see Figure 1.7). One can see that H has no monochromatic copy of $K_{k_{i}}$ in color i for any $i \in[t]$ under the edge coloring depicted in Figure 1.7. Note that for any edge e in $\bar{H}, H+e$ contains a monochromatic copy of K_{r}. By the definition of $R\left(K_{t_{1}}, \ldots, K_{t_{k}}\right), H+e \rightarrow\left(K_{t_{1}}, \ldots, K_{t_{k}}\right)$. They further made the following conjecture that no $\left(K_{t_{1}}, \ldots, K_{t_{k}}\right)$-co-critical graph on n vertices can have fewer than $e\left(K_{r-2}+\bar{K}_{n-r+2}\right)$ edges.

Figure 1.7: $K_{r-2}+\bar{K}_{n-r+2} \nrightarrow\left(K_{t_{1}}, \ldots, K_{t_{k}}\right)$

Conjecture 1.4.1 (Hanson, Toft [56]) Let G be a $\left(K_{t_{1}}, \ldots, K_{t_{k}}\right)$-co-critical graph on n vertices and $r=R\left(K_{t_{1}}, \ldots, K_{t_{k}}\right)$. Then

$$
e(G) \geq(r-2)(n-r+2)+\binom{r-2}{2}
$$

This bound is best possible for every n.

Conjecture 1.4.1 remains wide open, except that the first nontrivial case, $\left(K_{3}, K_{3}\right)$-co-critical graphs, has been settled in [17] for $n \geq 56$.

Theorem 1.4.2 (Chen, Ferrara, Gould, Magnant, Schmitt [17]) If G is a (K_{3}, K_{3})-co-critical graph on $n \geq 56$ vertices, then $e(G) \geq 4 n-10$. This bound is sharp for every $n \geq 56$.

Chen et al. also considered the minimum number of edges over all $\left(K_{3}, P_{3}\right)$-co-critical graphs on n vertices in [17]. Later, Ferrara, Kim and Yeager [39] determined the minimum number of edges over all ($m_{1} K_{2}, \ldots, m_{t} K_{2}$)-co-critical graphs on n vertices.

Theorem 1.4.3 (Chen, Ferrara, Gould, Magnant, Schmitt [17]) If G is a $\left(K_{3}, P_{3}\right)$-co-critical graph on $n \geq 11$ vertices, then $e(G) \geq\left\lfloor\frac{5 n}{2}\right\rfloor-5$. This bound is sharp for every $n \geq 11$.

Theorem 1.4.4 (Ferrara, Kim, Yeager [39]) For integers $m_{1}, \ldots, m_{t} \geq 1$ and $n>3\left(m_{1}+\cdots+\right.$ $\left.m_{t}-t\right)$, if G is a $\left(m_{1} K_{2}, \ldots, m_{t} K_{2}\right)$-co-critical graph on n vertices, then $e(G) \geq 3\left(m_{1}+\cdots+\right.$ $\left.m_{t}-t\right)$. This bound is sharp for every $n>3\left(m_{1}+\cdots+m_{t}-t\right)$.

Motivated by Conjecture 1.4.1, we study the following problem. Let \mathcal{T}_{k} denote the family of all trees on k vertices. For all $t, k \geq 3$, we write $G \rightarrow\left(K_{t}, \mathcal{T}_{k}\right)$ if for every 2-coloring τ : $E(G) \rightarrow\{$ red, blue $\}, G$ has either a red K_{t} or a blue tree $T_{k} \in \mathcal{T}_{k}$. A non-complete graph G is $\left(K_{t}, \mathcal{T}_{k}\right)$-co-critical if $G \nrightarrow\left(K_{t}, \mathcal{T}_{k}\right)$, but $G+e \rightarrow\left(K_{t}, \mathcal{T}_{k}\right)$ for all e in \bar{G}. By a classic result of Chvátal [19], $R\left(K_{t}, \mathcal{T}_{k}\right)=(t-1)(k-1)+1$. Hence, every $\left(K_{t}, \mathcal{T}_{k}\right)$-co-critical graph has at least $R\left(K_{t}, \mathcal{T}_{k}\right)=(t-1)(k-1)+1$ many vertices. Following the observation made in both [45] and [56], every $\left(K_{t}, \mathcal{T}_{k}\right)$-co-critical graph on n vertices has at most $e\left(T_{R\left(K_{t}, \mathcal{T}_{k}\right)-1, n}\right)$ edges. Recently, Rolek and Song [73] studied the minimum number of edges over all $\left(K_{3}, \mathcal{T}_{k}\right)$-co-critical graphs on n vertices for all $k \geq 4$.

Theorem 1.4.5 (Rolek, Song [73]) Let $n, k \in \mathbb{N}$.
(i) Every $\left(K_{3}, \mathcal{T}_{4}\right)$-co-critical graph on $n \geq 18$ vertices has at least $\lfloor 5 n / 2\rfloor$ edges. This bound is sharp for every $n \geq 18$ (see Figure 1.8).
(ii) For all $k \geq 5$, if G is $\left(K_{3}, \mathcal{T}_{k}\right)$-co-critical on $n \geq 2 k+(\lceil k / 2\rceil+1)\lceil k / 2\rceil-2$ vertices, then $e(G) \geq\left(\frac{3}{2}+\frac{1}{2}\left\lceil\frac{k}{2}\right\rceil\right) n-c(k)$, where $c(k)=\left(\frac{1}{2}\left\lceil\frac{k}{2}\right\rceil+\frac{3}{2}\right) k-2$. This bound is asymptotically best possible (see Figure 1.9).

Figure 1.8: Two $\left(K_{3}, \mathcal{T}_{4}\right)$-co-critical graphs with a unique critical-coloring

Figure 1.9: $\mathrm{A}\left(K_{3}, \mathcal{T}_{k}\right)$-co-critical graph with a unique critical-coloring

Davenport and Song [22] considered the number of edges of ($K_{3}, K_{1, k}$)-co-critical graphs on n vertices for all $k \geq 3$.

Theorem 1.4.6 (Davenport, Song [22]) Let $n, k \in \mathbb{N}$.
(i) Every $\left(K_{3}, K_{1,3}\right)$-co-critical graph on $n \geq 13$ vertices has at least $3 n-4$ edges. This bound is sharp for every $n \geq 13$.
(ii) For all $k \geq 4$, there exists a constant $c(k)$, if G is a $\left(K_{3}, K_{1, k}\right)$-co-critical graph on $n \geq 4 k+2$ vertices, then $e(G) \geq\left(\frac{3}{2}+\frac{k}{2}\right) n-c(k)$. This bound is asymptotically best possible.

We continue to study the size of $\left(K_{t}, \mathcal{T}_{k}\right)$-co-critical graphs for all $t \geq 4$ and $k \geq 3$. We first establish a number of important properties of such graphs in the hope that the method we develop here may shed some light on attacking Conjecture 1.4.1. The proof of Theorem 1.4.7 is given in Section 2.1.

Theorem 1.4.7 For all $t, k \in \mathbb{N}$ with $t \geq 3$ and $k \geq 3$, let G be a $\left(K_{t}, \mathcal{T}_{k}\right)$-co-critical graph on n vertices. Among all critical-colorings of G, let $\tau: E(G) \rightarrow\{$ red, blue $\}$ be a critical-coloring of G with $\left|E_{r}\right|$ maximum. Let D_{1}, \ldots, D_{p} be all components of G_{b}. Let $H:=G \backslash\left(\bigcup_{i \in[p]} E\left(G\left[V\left(D_{i}\right)\right]\right)\right)$. Then the following hold.
(a) $\Delta\left(G_{r}\right) \leq n-2$ and $\delta\left(G_{r}\right) \geq 2(t-2)$.
(b) For all $i, j \in[p]$ with $i \neq j$, if there exist $u \in V\left(D_{i}\right)$ and $v \in V\left(D_{j}\right)$ such that $u v \notin E(H)$, then $H\left[N_{H}(u) \cap N_{H}(v)\right]$ contains a K_{t-2} subgraph.
(c) For every $u v \in E(H)$, if v is contained in all K_{t-2} subgraphs of $H\left[N_{H}(u)\right]$ and $\{v\}=V\left(D_{j}\right)$ for some $j \in[p]$, then $\left|D_{i}\right|=k-1$ for all D_{i} with $u \notin D_{i}$ and $D_{i} \backslash N_{H}(u) \neq \emptyset$, where $i \in[p]$.
(d) If $\delta(H) \leq 2 t-5$ and $k \geq t$, then for any vertex $u \in V(H)$ with $d_{H}(u)=\delta(H)$, no edge of $H\left[N_{H}(u)\right]$ is contained in all K_{t-2} subgraphs of $H\left[N_{H}(u)\right]$.
(e) $k \geq 2 t-1-\delta(H)$. Moreover, $\delta(H) \geq t-1$, with equality when $t=4$.
(f) If $k \geq t \geq 5$, then $\delta(H) \geq t+\min \{3, t-4\}$ or there exists an edge $u v \in E(H)$ such that $d_{H}(u)=\delta(H)$ and v is complete to $N_{H}(u) \backslash v$ in H.
(g) $\sum_{i=1}^{p} e\left(G\left[V\left(D_{i}\right)\right]\right)>\left(\frac{1}{2}\left\lceil\frac{k}{2}\right\rceil-\frac{1}{2}\right)(n-(t-1)(\lceil k / 2\rceil-1))$.
(h) H is connected.
(i) For every $q \in \mathbb{N}$ with $q \geq t-1$, there exists a constant $c(q, k)$ such that, if $\delta(H) \geq q$, then $e(H) \geq q n-c(q, k)$.

Theorem 1.4.7(i) above is crucial in the proof of Theorem 1.4.8 and Theorem 1.4.9. Following Day [23], we apply the q-neighbour bootstrap percolation on a not necessarily K_{t}-saturated graph, to prove Theorem 1.4.7(i), but with more involved rules. Proof of Theorem 1.4.8 is given in Section 2.2 and proof of Theorem 1.4.9 is given in Section 2.3.

Theorem 1.4.8 Let $t, k \in \mathbb{N}$ with $t \geq 4$ and $k \geq \max \{6, t\}$. There exists a constant $\ell(t, k)$ such that, for all $n \in \mathbb{N}$ with $n \geq(t-1)(k-1)+1$, if G is a $\left(K_{t}, \mathcal{T}_{k}\right)$-co-critical graph on n vertices, then

$$
e(G) \geq\left(\frac{4 t-9}{2}+\frac{1}{2}\left\lceil\frac{k}{2}\right\rceil\right) n-\ell(t, k) .
$$

When t is small, the linear bound given in Theorem 1.4.8 actually holds for more values of k. This is proved in Theorem 1.4.9 below.

Theorem 1.4.9 Let $t, k \in \mathbb{N}$ with $t \in\{4,5,6,7\}$ and $k \geq \max \{3,4 t-14\}$. There exists a constant $c(t, k)$ such that, for all $n \in \mathbb{N}$ with $n \geq(t-1)(k-1)+1$, if G is a $\left(K_{t}, \mathcal{T}_{k}\right)$-co-critical graph on n vertices, then

$$
e(G) \geq\left(\frac{4 t-9}{2}+\frac{1}{2}\left\lceil\frac{k}{2}\right\rceil\right) n-c(t, k)
$$

We then prove in Section 2.4 that the linear bound given in Theorem 1.4.9 is asymptotically best possible when $t \in\{4,5\}$ and $k \geq 3 t-9$.

Theorem 1.4.10 For each $t \in\{4,5\}$, all $k \geq 3$ and $n \geq(2 t-3)(k-1)+\lceil k / 2\rceil\lceil k / 2\rceil-1$, there exists a $\left(K_{t}, \mathcal{T}_{k}\right)$-co-critical graph G on n vertices such that

$$
e(G) \leq\left(\frac{4 t-9}{2}+\frac{1}{2}\left\lceil\frac{k}{2}\right\rceil\right) n+C(t, k)
$$

where $C(t, k)=\frac{1}{2}\left(t^{2}+t-5\right) k^{2}-\left(2 t^{2}+2 t-11\right) k-\frac{(t-2)(t-19)}{2}-\frac{1}{2}\left\lceil\frac{k}{2}\right\rceil\left((2 t-3)(k-1)-\left\lceil\frac{k}{2}\right\rceil\right)$.

With the support of Theorem 1.4.5 and Theorem 1.4.10, we believe that the linear bound given in Theorem 1.4 .8 is asymptotically best possible for all $t \geq 4$ and $k \geq 3$.

1.5 Saturated Graphs

Given a family of graphs \mathcal{F}, a graph is \mathcal{F}-free if it does not contain any graph $F \subseteq \mathcal{F}$ as a subgraph. We simply say a graph is F-free when $F=\mathcal{F}$. A graph G is \mathcal{F}-saturated if G contains no member of \mathcal{F} as a subgraph but for every edge $e \in E(\bar{G})$, there exists $F \in \mathcal{F}$ such that $G+e$ contains F as a subgraph. The saturation number of \mathcal{F}, written $\operatorname{sat}(n, \mathcal{F})$, is the minimum number of edges over all \mathcal{F}-saturated graphs with n vertices. When $\mathcal{F}=F$, we simply use F-saturated and $\operatorname{sat}(n, F)$, respectively. Note that the maximum number of edges over all \mathcal{F}-saturated graphs on n vertices, denoted by $e x(n, \mathcal{F})$, has been investigated extensively.

In 1964, Erdős, Hajnal and Moon [32] initiated the study of saturation number of K_{p}. Since then, saturation numbers have received considerable attention.

Theorem 1.5.1 (Erdős, Hajnal, Moon [32]) If $2 \leq p \leq n$, then sat $\left(n, K_{p}\right)=(p-2)(n-p+$ $2)+\binom{p-2}{2}=\binom{n}{2}-\binom{n-p+2}{2}$ and $K_{p-2}+\bar{K}_{n-p+2}$ is the only K_{p}-saturated graph with n vertices and $\operatorname{sat}\left(n, K_{p}\right)$ edges.

In 1986, Kászonyi and Tuza [60] found the best known general upper bound for $\operatorname{sat}(n, \mathcal{F})$ by showing that there exists a constant $c=c(F)$ such that $\operatorname{sat}(n, \mathcal{F})<c n$. This means, in most cases, the order of magnitude of $\operatorname{sat}(n, \mathcal{F})$ is n, while the order of magnitude of $\operatorname{ex}(n, \mathcal{F})$ is n^{2}. In the same paper [60], they also pointed out that, among graphs on p vertices, $\operatorname{sat}(n, F)$ is maximal if $F=K_{p}$, despite the fact that $\operatorname{sat}(n, \mathcal{F})$ does not satisfy some simple monotonic properties. For every p, the extremal example for Theorem 1.5.1 contains a vertex of degree $n-1$ (such a vertex is called a conical vertex). Hajnal [54] asked the following question and proved Theorem 1.5.2.
"Let $2 \leq k \leq n$ be integers. What is the minimal number of edges of the K_{p}-saturated graph on n vertices which do not contain conical vertices? "

Theorem 1.5.2 (Hajnal [54]) Let $t, n \in \mathbb{N}$. Let G be a K_{p}-saturated graph on n vertices. Then either $\Delta(G)=n-1$ or $\delta(G) \geq 2(p-2)$.

Some results of the above question for the case $p=3$ can be found in [33] and [43]. The case $p \geq 4$ was considered by Alon, Erdős, Holzman, and Krivelevichin [1].

Theorem 1.5.3 (Alon, Erdốs, Holzman, Krivelevich [1]) Let G be a K_{4}-saturated graph on n vertices.
(i) If $\Delta(G)=n-2$, then $e(G) \geq 4 n-13$ for $n \geq 7$.
(ii) If $\Delta(G)=n-3$, then $e(G) \geq 4 n-14$ for $n \geq 7$.

A similar problem was considered by Duffus and Hanson [26]. They asked that what is the minimum number of edges in a K_{p}-saturated graph on n vertices with minimum degree δ. They proved the following result.

Theorem 1.5.4 (Duffus, Hanson [26]) Let G be a K_{3}-saturated graph on n vertices.
(i) If $\delta(G)=2$, then $e(G) \geq 2 n-5$ for $n \geq 5$.
(ii) If $\delta(G)=3$, then $e(G) \geq 3 n-15$ for $n \geq 10$. This bound is best possible, and if $e(G)=$ $3 n-15$, then G has a subgraph isomorphic to the Petersen graph.

Rolek and Song [73] proved a stronger version of Theorem 1.5.4 by providing a structural characterizing of K_{3}-saturated graph with minimum degree at most 2 .

Theorem 1.5.5 (Rolek, Song [73]) Let G be a K_{3}-saturated graph with n vertices and $\delta(G)=\delta$.
(i) If $\delta=1$, then $G=K_{1, n-1}$.
(ii) If $\delta=2$, then $G=J$, where the graph J is depicted in Figure 1.10. Moreover, $J=K_{2, n-2}$ when $B=C=\emptyset$.
(iii) If $\delta \geq 3$, then $2 e(G) \geq \max \left\{(\delta+1) n-\delta^{2}-1,(\delta+2) n-\delta(\delta+t)-2\right\}$, where $t:=\min \{d(v): v$ is adjacent to a vertex of degree δ in $G\}$.

Figure 1.10: The graph J

Alon, Erdős, Holzman, and Krivelevich [1] showed that any K_{4}-saturated graph on $n \geq 11$ vertices with minimum degree 4 has at least $4 n-19$ edges. This has recently been generalized by Bosse, Song, and Zhang [10].

Theorem 1.5.6 (Bosse, Song, Zhang [10]) Let G be a K_{p}-saturated graph on $n \geq p \geq 3$ vertices.
(i) If $\delta(G)=p-2$, then $G=K_{p-2}+\bar{K}_{n-p+2}$, and $e(G)=(p-2) n-\binom{p-1}{2}$.
(ii) If $\delta(G)=p-1$, then $G=K_{p-3}+J_{n-p+3}$, where J_{n-p+3} is isomorphic to J which is depicted in Figure 1.10. Therefore, $e(G) \geq(p-1) n-\binom{p}{2}-2$, with equality only when $\min \{|B|,|C|\}=1$.
(iii) If $\delta(G)=p$ and $n \geq p+7$, then $e(G) \geq p n-\binom{p+1}{2}-9$. The lower bound is sharp for all p.

Theorem 1.5.7 below is a result of Day [23] on K_{t}-saturated graphs with prescribed minimum degree and it confirms a conjecture of Bollobás [6] when $t=3$. It is worth noting that Day applied the r-neighbour bootstrap percolation on a K_{t}-saturated graph to prove Theorem 1.5.7, where graph bootstrap percolation was introduced in [15].

Theorem 1.5.7 (Day [23]) Let $q \in \mathbb{N}$. There exists a constant $c=c(q)$ such that, for all $3 \leq t \in \mathbb{N}$ and all $n \in \mathbb{N}$, if G is a K_{t}-saturated graph on n vertices with $\delta(G) \geq q$, then $e(G) \geq q n-c$.

For more detailed information on the intensive studies on saturated graphs, the readers are referred to the dynamic survey of J. R. Faudree, R. J. Faudree and Schmitt [35].

1.6 Gallai-Ramsey Numbers of Graphs

A Gallai coloring is an edge-coloring of a complete graph without rainbow triangles (that is, a triangle with all its edges colored differently). Gallai colorings naturally arise in several areas including: information theory [63]; the study of partially ordered sets, as in Gallai's original paper [44] (his result was restated in [53] in the terminology of graphs); and the study of perfect graphs [14]. There are now a variety of papers which consider Ramsey-type problems in Gallai colorings (see, e.g., $[18,41,51,52,55,12,8,9]$). These works mainly focus on finding various monochromatic subgraphs in such colorings. More information on this topic can be found in [40, 42].

A Gallai k-coloring is a Gallai coloring that uses at most k colors. Given an integer $k \geq 1$ and graphs H_{1}, \ldots, H_{k}, the Gallai-Ramsey number $G R\left(H_{1}, \ldots, H_{k}\right)$ is the least integer n such that every Gallai k-coloring of K_{n} contains a monochromatic copy of H_{i} in color i for some $i \in[k]$.

When $H=H_{1}=\cdots=H_{k}$, we simply write $G R_{k}(H)$. Clearly, $G R_{k}(H) \leq R_{k}(H)$ for all $k \geq 1$ and $G R\left(H_{1}, H_{2}\right)=R\left(H_{1}, H_{2}\right)$. In 2010, Gyárfás, Sárközy, Sebő and Selkow [52] proved the general behavior of $G R_{k}(H)$.

Theorem 1.6.1 (Gyárfás, Sárközy, Sebő, Selkow [52]) Let H be a fixed graph with no isolated vertices and let $k \geq 1$ be an integer. Then $G R_{k}(H)$ is exponential in k if H is not bipartite, linear in k if H is bipartite but not a star, and constant (does not depend on k) when H is a star.

The lower bound for the case when H is not bipartite comes from the following inductive construction. Certainly there exists a small graph in one color containing no H. Suppose there exists G_{k} using k colors which contains no monochromatic copy of H. Then let G_{k+1} be two copies of G_{k} with all possible edges in between using the new color. The graph G_{k+1} also contains no monochromatic copy of H. For the lower bound when H is bipartite, the construction involves adding vertices to the graph with all edges in a single color. It turns out that for some graphs H (e.g., when $H=C_{3}$), $G R_{k}(H)$ behaves nicely, while the order of magnitude of $R_{k}(H)$ seems hopelessly difficult to determine. It is worth noting that finding exact values of $G R_{k}(H)$ is far from trivial, even when $|H|$ is small. Gallai [44] showed an important structural result on Gallai colorings of complete graphs.

Theorem 1.6.2 (Gallai [44]) For any Gallai coloring c of a complete graph G with $|G| \geq 2, V(G)$ can be partitioned into nonempty sets V_{1}, \ldots, V_{p} with $p>1$ so that at most two colors are used on the edges in $E(G) \backslash\left(E\left(G\left[V_{1}\right]\right) \cup \cdots \cup E\left(G\left[V_{p}\right]\right)\right)$ and only one color is used on the edges between any fixed pair $\left(V_{i}, V_{j}\right)$ under c.

The partition given in Theorem 1.6.2 is a Gallai partition of the complete graph G under c. Given a Gallai partition V_{1}, \ldots, V_{p} of the complete graph G under c, let $v_{i} \in V_{i}$ for all $i \in[p]$ and let $\mathcal{R}:=G\left[\left\{v_{1}, \ldots, v_{p}\right\}\right]$. Then \mathcal{R} is the reduced graph of G corresponding to the given Gallai
partition under c. Clearly, \mathcal{R} is isomorphic to K_{p}. By Theorem 1.6.2, all the edges in \mathcal{R} are colored by at most two colors under c. One can see that any monochromatic copy of H in \mathcal{R} under c will result in a monochromatic copy of H in G under c. It is not surprising that Gallai-Ramsey numbers $G R_{k}(H)$ are closely related to the classical Ramsey numbers $R_{2}(H)$. Recently, Fox, Grinshpun and Pach [40] posed the following conjecture on $G R_{k}(H)$ when H is a complete graph.

Conjecture 1.6.3 (Fox, Grinshpun, Pach [40]) For all $t \geq 3$ and $k \geq 1$,

$$
G R_{k}\left(K_{t}\right)= \begin{cases}\left(R_{2}\left(K_{t}\right)-1\right)^{k / 2}+1 & \text { if } k \text { is even } \\ (t-1)\left(R_{2}\left(K_{t}\right)-1\right)^{(k-1) / 2}+1 & \text { if } k \text { is odd }\end{cases}
$$

Recall that if $n<R_{k}\left(K_{3}\right)$, then there is a k-coloring c of the edges of K_{n} such that edges of every triangle in K_{n} are colored by at least two colors under c. A question of T. A. Brown (see [18]) asked:
"What is the largest number $f(k)$ of vertices of a complete graph can have such that it is possible to k-color its edges so that edges of every triangle are colored by exactly two colors?"

Chung and Graham [18] answered this question in 1983.

Theorem 1.6.4 (Chung, Graham [18]) For all $k \geq 1$,

$$
f(k)= \begin{cases}5^{k / 2} & \text { if } k \text { is even } \\ 2 \cdot 5^{(k-1) / 2} & \text { if } k \text { is odd }\end{cases}
$$

Clearly, $G R_{k}\left(K_{3}\right)=f(k)+1$. By Theorem 1.6.4, Conjecture 1.6.3 holds for $t=3$. The proof of

Theorem 1.6.4 does not rely on Theorem 1.6.2. A simpler proof of this case using Theorem 1.6.2 can be found in [52]. The next open case, when $t=4$, was recently settled in [65]. The case $t=5$ was announced by Magnant and Schiermeyer in [69], and they observed that if $R_{2}\left(K_{5}\right)=43$, then Conjecture 1.6.3 fails for K_{5}.

Theorem 1.6.5 (Liu, Magnant, Saito, Schiermeyer, Shi [65]) For all $k \geq 1$,

$$
G R_{k}\left(K_{4}\right)= \begin{cases}17^{k / 2}+1 & \text { if } k \text { is even } \\ 17^{(k-1) / 2}(t-1)+1 & \text { if } k \text { is odd }\end{cases}
$$

Motivated by Conjecture 1.6.3, Gallai-Ramsey numbers of cycles and paths have also been studied, as well as general upper bounds for $G R_{k}\left(P_{n}\right)$ and $G R_{k}\left(C_{n}\right)$ that were first studied in $[36,41]$ and later improved in [55]. Gregory [50] proved in his thesis that $G R_{k}\left(C_{8}\right)=3 k+5$, but the proof was incomplete. We list some known results below.

Theorem 1.6.6 (Faudree, Gould, Jacobson, Magnant [36]) For all $k \geq 1$,

$$
G R_{k}\left(C_{4}\right)=k+4 \text { and } G R_{k}\left(P_{n}\right)=\left\lfloor\frac{n-2}{2}\right\rfloor k+\left\lceil\frac{n}{2}\right\rceil+1 \text { for } n \in\{3,4,5,6\} .
$$

Theorem 1.6.7 (Fujita, Magnant [41]) For all $k \geq 1$,

$$
G R_{k}\left(C_{5}\right)=2^{k+1}+1 \text { and } G R_{k}\left(C_{6}\right)=2 k+4
$$

Theorem 1.6.8 (Hall, Magnant, Ozeki, Tsugaki [55]) For all $n \geq 3$ and $k \geq 1$,

$$
G R_{k}\left(C_{2 n}\right) \leq(n-1) k+3 n \text { and } G R_{k}\left(P_{n}\right) \leq\left\lfloor\frac{n-2}{2}\right\rfloor k+3\left\lfloor\frac{n}{2}\right\rfloor .
$$

Theorem 1.6.9 (Bruce, Song [12]) For all $k \geq 1, G R_{k}\left(C_{7}\right)=3 \cdot 2^{k}+1$.

Theorem 1.6.10 (Bosse, Song [8]) For all $k \geq 1$,

$$
G R_{k}\left(C_{9}\right)=4 \cdot 2^{k}+1 \text { and } G R_{k}\left(C_{11}\right)=5 \cdot 2^{k}+1
$$

Theorem 1.6.11 (Bosse, Song, Zhang [9]) For all $k \geq 1$,

$$
G R_{k}\left(C_{13}\right)=6 \cdot 2^{k}+1 \text { and } G R_{k}\left(C_{15}\right)=7 \cdot 2^{k}+1
$$

Very recently, F. Zhang, Song and Chen [83] completely determined the Gallai-Ramsey numbers of all cycles.

Theorem 1.6.12 (F. Zhang, Song, Chen [83]) For $n \geq 2$ and all $k \geq 1$,

$$
G R_{k}\left(C_{2 n+1}\right)=n \cdot 2^{k}+1 \text { and } G R_{k}\left(C_{2 n}\right)=(n-1) k+n+1
$$

We study the Gallai-Ramsey numbers of even cycles and paths. For all $n \geq 3$ and $k \geq 2$, let $G_{n-1} \in\left\{C_{2 n}, P_{2 n+1}\right\}, G_{i}:=P_{2 i+3}$ for all $i \in\{0,1, \ldots, n-2\}$, and $i_{j} \in\{0,1, \ldots, n-1\}$ for all $j \in[k]$. We want to determine the exact values of $G R\left(G_{i_{1}}, G_{i_{2}}, \ldots, G_{i_{k}}\right)$. By reordering colors if necessary, we assume that $i_{1} \geq i_{2} \geq \cdots \geq i_{k}$. The construction for establishing a lower bound for $G R\left(G_{i_{1}}, G_{i_{2}}, \ldots, G_{i_{k}}\right)$ for all $n \geq 3$ and $k \geq 2$ is similar to the construction given by Erdős, Faudree, Rousseau and Schelp in 1976 (see Section 2 in [31]) for classical Ramsey numbers of even cycles and paths. We recall their construction in the proof of Proposition 1.6.13 which is given in Section 3.1.

Proposition 1.6.13 For all $n \geq 3$ and $k \geq 2$,

$$
G R\left(G_{i_{1}}, G_{i_{2}}, \ldots, G_{i_{k}}\right) \geq\left|G_{i_{1}}\right|+\sum_{j=2}^{k} i_{j}
$$

where $n-1 \geq i_{1} \geq \cdots \geq i_{k} \geq 0$.

Song [76] recently conjectured that the lower bound established in Proposition 1.6.13 is also the desired upper bound for $G R\left(G_{i_{1}}, G_{i_{2}}, \ldots, G_{i_{k}}\right)$ for all $n \geq 3$ and $k \geq 1$. We state it below.

Conjecture 1.6.14 (Song [76]) For all $n \geq 3$ and $k \geq 2$,

$$
G R\left(G_{i_{1}}, G_{i_{2}}, \ldots, G_{i_{k}}\right)=\left|G_{i_{1}}\right|+\sum_{j=2}^{k} i_{j}
$$

where $n-1 \geq i_{1} \geq \cdots \geq i_{k} \geq 0$.

Clearly, $G R_{k}\left(C_{2 n}\right) \geq G R_{k}\left(P_{2 n}\right)$ and $G R_{k}\left(C_{2 n}\right) \geq G R_{k}\left(M_{n}\right)$, where M_{n} denotes a set of n edges such that no two edges share the same vertex. It is worth noting that by letting $i_{1}=\cdots=$ $i_{k}=n-1$ and $G_{i_{1}}=C_{2 n}$, the construction given in the proof of Proposition 1.6.13 yields that $(n-1) k+n+1 \leq G R_{k}\left(P_{2 n}\right)$ and $(n-1) k+n+1 \leq G R_{k}\left(M_{n}\right)$ for all $n \geq 3$ and $k \geq 1$. The truth of Conjecture 1.6.14 implies that $G R_{k}\left(C_{2 n}\right)=G R_{k}\left(P_{2 n}\right)=G R_{k}\left(M_{n}\right)=(n-1) k+n+1$ for all $n \geq 3$ and $k \geq 1$ and $G R_{k}\left(P_{2 n+1}\right)=(n-1) k+n+2$ for all $n \geq 1$ and $k \geq 1$. As observed in [55], to completely solve Conjecture 1.6 .14 , one only needs to consider the case $G_{n-1}=C_{2 n}$. We prove this in Proposition 1.6.15. The proof of Proposition 1.6.15 is similar to the proof of Theorem 7 given in [55]. We include a proof in Section 3.1 for completeness.

Proposition 1.6.15 For all $n \geq 3$ and $k \geq 2$, if Conjecture 1.6.14 holds for $G_{n-1}=C_{2 n}$, then it also holds for $G_{n-1}=P_{2 n+1}$.

We prove the Conjecture 1.6.14 is true for $n \in\{3,4\}$ and all $k \geq 2$ in Section 3.2 and is true for $n \in\{5,6\}$ and all $k \geq 2$ in Section 3.3.

Theorem 1.6.16 For $n \in\{3,4\}$ and all $k \geq 2$, let $G_{i}=P_{2 i+3}$ for all $i \in\{0,1, \ldots, n-2\}$,
$G_{n-1}=C_{2 n}$, and $i_{j} \in\{0,1, \ldots, n-1\}$ for all $j \in[k]$ with $i_{1} \geq i_{2} \geq \cdots \geq i_{k}$. Then

$$
G R\left(G_{i_{1}}, G_{i_{2}}, \ldots, G_{i_{k}}\right)=\left|G_{i_{1}}\right|+\sum_{j=2}^{k} i_{j} .
$$

Theorem 1.6.17 For $n \in\{5,6\}$ and all $k \geq 2$, let $G_{i}=P_{2 i+3}$ for all $i \in\{0,1, \ldots, n-2\}$, $G_{n-1}=C_{2 n}$, and $i_{j} \in\{0,1, \ldots, n-1\}$ for all $j \in[k]$ with $i_{1} \geq \cdots \geq i_{k}$. Then

$$
G R\left(G_{i_{1}}, \ldots, G_{i_{k}}\right)=\left|G_{i_{1}}\right|+\sum_{j=2}^{k} i_{j} .
$$

Theorem 1.6.16 and Theorem 1.6.17 strengthen the results listed in Theorem 1.6.6 and Theorem 1.6.7. Our proof relies only on Theorem 1.6.2 and Ramsey numbers $R\left(H_{1}, H_{2}\right)$, where $H_{1}, H_{2} \in\left\{C_{12}, C_{10}, C_{8}, C_{6}, P_{11}, P_{9}, P_{7}, P_{5}, P_{3}\right\}$. Theorem 1.6.16 and Theorem 1.6.17, together with Proposition 1.6.15, implies that $G R_{k}\left(C_{2 n}\right)=G R_{k}\left(P_{2 n}\right)=G R_{k}\left(M_{n}\right)=(n-1) k+n+1$ for $n \in\{3,4,5,6\}$ and all $k \geq 1$, and $G R_{k}\left(P_{2 n+1}\right)=(n-1) k+n+2$ for $n \in[6]$ and all $k \geq 1$. Hence, Theorem 1.6.16 yields a new and simpler proof of the known results on Gallai-Ramsey numbers of C_{8}, C_{6} and P_{n} with $n \leq 7$. As mentioned earlier, the proof of $G R_{k}\left(C_{8}\right)=3 k+5$ given in [50] was incomplete. In our completely new strategy, we developed an extremely useful recoloring method (in the proof of Claim 6 which we believe will assist in solving other cases. Note that the method we developed here for even cycles and paths is very different from the method for odd cycles developed in $[12,8,9]$.

CHAPTER 2: ON THE SIZE OF $\left(K_{t}, \mathcal{T}_{k}\right)$-CO-CRITICAL GRAPHS

2.1 Structural Properties of $\left(K_{t}, \mathcal{T}_{k}\right)$-co-critical Graphs

In this section, we establish a number of important properties of $\left(K_{t}, \mathcal{T}_{k}\right)$-co-critical graphs in the hope that the method we develop here may shed some light on attacking Conjecture 1.4.1.

We need to introduce more notation. For a graph G, let $\tau: E(G) \rightarrow$ \{red, blue \} be a 2-edgecoloring of G and let E_{r} and E_{b} be the color classes of the coloring τ. We use G_{r} and G_{b} to denote the spanning subgraphs of G with edge sets E_{r} and E_{b}, respectively. We define τ to be a critical-coloring of G if G has neither a red K_{t} nor a blue $T_{k} \in \mathcal{T}_{k}$, that is, if G_{r} is K_{t}-free and G_{b} is \mathcal{T}_{k}-free. For every $v \in V(G)$, we use $d_{r}(v)$ and $N_{r}(v)$ to denote the degree and neighborhood of v in G_{r}, respectively. Similarly, we define $d_{b}(v)$ and $N_{b}(v)$ to be the degree and neighborhood of v in G_{b}, respectively. One can see that if G is $\left(K_{t}, \mathcal{T}_{k}\right)$-co-critical, then G admits at least one critical-coloring but $G+e$ admits no critical-coloring for every edge e in \bar{G}.

We first prove a lemma which will be used in the proofs of Theorem 1.4.7, Theorem 1.4.8, Theorem 1.4.9 and Theorem 1.4.10.

Lemma 2.1.1 For all $t, k \in \mathbb{N}$ with $t \geq 3$ and $k \geq 3$, let G be a $\left(K_{t}, \mathcal{T}_{k}\right)$-co-critical graph on n vertices. Let $\tau: E(G) \rightarrow\{$ red, blue $\}$ be a critical-coloring of G. Then the following hold.
(a) For every component D of $G_{b},|D| \leq k-1$ and $G[V(D)]=K_{|D|}$.
(b) If D_{1}, \ldots, D_{q} are the components of G_{b} with $\left|D_{i}\right|<k / 2$ for all $i \in[q]$, then $V\left(D_{1}\right), \ldots$, $V\left(D_{q}\right)$ are complete to each other in G_{r}, and so $q \leq t-1$.

Proof. To prove (a), let D be a component of G_{b}. Since G_{b} is \mathcal{T}_{k}-free, we see that $|D| \leq k-1$.

Suppose next that $G[V(D)] \neq K_{|D|}$. Let $u, v \in V(D)$ be such that $u v \notin E(G)$. We obtain a critical-coloring of $G+u v$ from τ by coloring the edge $u v$ blue, a contradiction.

To prove (b), let D_{1}, \cdots, D_{q} be the components of G_{b} with $\left|D_{i}\right|<k / 2$ for all $i \in[q]$. Since G is $\left(K_{t}, \mathcal{T}_{k}\right)$-co-critical, we see that $G+e$ admits no critical-coloring for every edge e in \bar{G}. Let $i, j \in[q]$ with $i \neq j$. We next show that $V\left(D_{i}\right)$ is complete to $V\left(D_{j}\right)$ in G_{r}. Suppose that there exist vertices $u \in V\left(D_{i}\right)$ and $v \in V\left(D_{j}\right)$ such that $u v \notin E_{r}$. Then $u v \notin E(G)$ and so we obtain a critical-coloring of $G+u v$ from τ by coloring the edge $u v$ blue, a contradiction. Thus $V\left(D_{i}\right)$ is complete to $V\left(D_{j}\right)$ in G_{r} for all $i, j \in[q]$ with $i \neq j$. Since τ is a critical-coloring, it follows that G_{r} is K_{t}-free and so $q \leq t-1$.

We are now ready to prove Theorem 1.4.7.

Proof. Let $G, \tau, D_{1}, \ldots, D_{p}$ and H be given as in the statement. Then $n \geq(t-1)(k-1)+1$. By Lemma 2.1.1(a), $\left|D_{i}\right| \leq k-1$ for all $i \in[p]$. Hence, G_{b} has at least t components because $\left|G_{b}\right|=n \geq(t-1)(k-1)+1$. We first prove Theorem 1.4.7(a). By the choice of τ, G_{r} is K_{t}-free but $G_{r}+e$ contains a copy of K_{t} for every $e \in E\left(\overline{G_{r}}\right)$. Hence G_{r} is K_{t}-saturated. Suppose there exists a vertex $x \in V(G)$ such that $d_{r}(x)=n-1$. Note that $G_{r} \backslash x$ is K_{t-1}-free because G_{r} is K_{t}-free. Since $G \neq K_{n}$, there must exist $u, w \in N_{r}(x)$ such that $u w \notin E(G)$. By Lemma 2.1.1(a), u, w belong to different components of G_{b}. But then we obtain a critical-coloring of $G+u w$ from τ by first coloring the edge $u w$ red, and then recoloring $x u$ blue and all edges incident with u in G_{b} red, a contradiction. This proves that $\Delta\left(G_{r}\right) \leq n-2$. Since G_{r} is K_{t}-saturated, by Theorem 1.5.2, $\delta\left(G_{r}\right) \geq 2(t-2)$.

To prove Theorem 1.4.7(b), let $u \in V\left(D_{i}\right)$ and $v \in V\left(D_{j}\right)$ be such that $u v \notin E(H)$, where $i \neq j$. Suppose $H\left[N_{H}(u) \cap N_{H}(v)\right]$ is K_{t-2}-free. Since $\left|D_{\ell}\right| \leq k-1$ for all $\ell \in[p]$, we obtain a criticalcoloring of $G+u v$ from τ by first coloring the edge $u v$ red, and then recoloring all red edges in
$G\left[V\left(D_{\ell}\right)\right]$ blue for all $\ell \in[p]$, a contradiction. Therefore, $H\left[N_{H}(u) \cap N_{H}(v)\right]$ contains a K_{t-2} subgraph. This proves Theorem 1.4.7(b).

To prove Theorem 1.4.7(c), let $u v \in E(H)$ be such that v is contained in all K_{t-2} subgraphs of $H\left[N_{H}(u)\right]$ and $\{v\}=V\left(D_{j}\right)$ for some $j \in[p]$. We may assume that $u \in V\left(D_{p}\right)$ and $\{v\}=$ $V\left(D_{p-1}\right)$. Note that $H\left[N_{H}(u)\right] \backslash v$ is K_{t-2}-free. Suppose there exists an $\ell \in[p-2]$ such that $D_{\ell} \backslash N_{H}(u) \neq \emptyset$ but $\left|D_{\ell}\right| \leq k-2$. Let $w \in V\left(D_{\ell}\right) \backslash N_{H}(u)$. Then $w v \in E_{r}$, else we obtain a critical-coloring of $G+w v$ from τ by coloring the edge $w v$ blue. Since $H\left[N_{H}(u)\right] \backslash v$ is $K_{t-2^{-}}$ free, we then obtain a critical-coloring of $G+u w$ from τ by coloring the edge $u w$ red, and then recoloring $w v$ blue and all red edges incident with u in $G\left[V\left(D_{p}\right)\right]$ blue, a contradiction. This proves Theorem 1.4.7(c).

To prove Theorem 1.4.7(d,e), let $u \in V(H)$ with $d_{H}(u)=\delta(H)$. We may assume that $u \in V\left(D_{p}\right)$. By Theorem 1.4.7(b), $d_{H}(u) \geq t-2$. Let $N_{H}(u):=\left\{u_{1}, \ldots, u_{\delta(H)}\right\}$. By Theorem 1.4.7(b) applied to u and any vertex in $V(H) \backslash\left(V\left(D_{p}\right) \cup N_{H}(u)\right)$, we see that $H\left[N_{H}(u)\right]$ must have a K_{t-2} subgraph. We may assume that $H\left[\left\{u_{1}, \ldots, u_{t-2}\right\}\right]=K_{t-2}$. Then we may further assume that $u_{i} \in V\left(D_{p-i}\right)$ for all $i \in[t-2]$. Let $v \in V(H) \backslash\left(V\left(D_{p}\right) \cup N_{H}(u)\right)$.

To proceed to prove Theorem 1.4.7(d), assume $d_{H}(u) \leq 2 t-5$ and $k \geq t$. Suppose $H\left[N_{H}(u)\right]$ has an edge, say $u_{1} u_{2}$, that is contained in all K_{t-2} subgraphs of $H\left[N_{H}(u)\right]$. Then both $H\left[N_{H}(u)\right] \backslash u_{1}$ and $H\left[N_{H}(u)\right] \backslash u_{2}$ are K_{t-2}-free. By Theorem 1.4.7(b) applied to u and any vertex in $V(H) \backslash\left(V\left(D_{p}\right) \cup N_{H}(u)\right), V(H) \backslash\left(V\left(D_{p}\right) \cup N_{H}(u)\right)$ must be complete to $\left\{u_{1}, u_{2}\right\}$ in H. Then $V\left(D_{p-1}\right) \cup V\left(D_{p-2}\right) \subseteq N_{H}(u) \backslash\left\{u_{3}, \ldots, u_{t-2}\right\}$. Thus $\left|V\left(D_{p-1}\right) \cup V\left(D_{p-2}\right)\right|=\delta(H)-(t-4) \leq$ $t-1 \leq k-1$, because $\delta(H) \leq 2 t-5$ and $t \leq k$. Then we obtain a critical-coloring of $G+u v$ from τ by first coloring the edge $u v$ red, and then recoloring $u_{1} u_{2}$ blue and all red edges incident with u in $G\left[V\left(D_{p}\right)\right]$ blue, a contradiction. This proves Theorem 1.4.7(d).

To proceed to prove Theorem 1.4.7(e), note that $\left|N_{r}(u) \cap V\left(D_{p}\right)\right|=\left|N_{r}(u)\right|-d_{H}(u)$. By Theorem 1.4.7(a), $\left|N_{r}(u)\right| \geq 2 t-4$. Since D_{p} is a component of G_{b}, we see that $N_{b}(u) \cap V\left(D_{p}\right) \neq$ \emptyset. It follows that $\left|V\left(D_{p}\right)\right|=|\{u\}|+\left|N_{b}(u) \cap V\left(D_{p}\right)\right|+\left|N_{r}(u) \cap V\left(D_{p}\right)\right| \geq 1+1+(2 t-4)-d_{H}(u)=$ $2 t-2-d_{H}(u)$. By Lemma 2.1.1(a), $2 t-2-d_{H}(u) \leq\left|V\left(D_{p}\right)\right| \leq k-1$, which yields $k \geq 2 t-1-d_{H}(u)$. Suppose next that $\delta(H)=t-2<2 t-5$. Then $k \geq t+1$. But then $H\left[\left\{u_{1}, \ldots, u_{t-2}\right\}\right]$ is the only K_{t-2} subgraph of $H\left[N_{H}(u)\right]$, contrary to Theorem 1.4.7(d). Thus $\delta(H) \geq t-1$. Finally, suppose that $t \geq 5$ but $\delta(H)=t-1$. Since G_{r} is K_{t}-free, we see that $G_{r}\left[\left\{u, u_{1}, \ldots, u_{t-1}\right\}\right] \neq K_{t}$. We may assume that $u_{t-1} u_{t-2} \notin E\left(G_{r}\right)$. By Theorem 1.4.7(b) applied to u and any vertex in $V(H) \backslash\left(V\left(D_{p}\right) \cup N_{H}(u)\right), V(H) \backslash\left(V\left(D_{p}\right) \cup N_{H}(u)\right)$ must be complete to $\left\{u_{1}, \ldots, u_{t-3}\right\}$ in H. This implies that $V\left(D_{p-1}\right) \cup V\left(D_{p-2}\right) \subseteq\left\{u_{1}, u_{2}, u_{t-1}\right\}$. Then we obtain a critical-coloring of $G+u v$ from τ by first coloring the edge $u v$ red, and then recoloring $u_{1} u_{2}$ blue and all red edges incident with u in $G\left[V\left(D_{p}\right)\right]$ blue, a contradiction. This proves that $\delta(H) \geq t$ if $t \geq 5$. This proves Theorem 1.4.7(e).

To proceed to prove Theorem 1.4.7(f), let $k \geq t \geq 5$. By Theorem 1.4.7(e), $\delta(H) \geq t-1$. Suppose $\delta(H) \leq t+\min \{2, t-5\} \leq 2 t-5$ and for every $u \in V(H)$ with $d_{H}(u)=\delta(H)$, no vertex $v \in N_{H}(u)$ is complete to $N_{H}(u) \backslash v$ in H. Then for any $x \in A:=\left\{u_{1}, \ldots, u_{t-2}\right\}$, $x y \notin E(H)$ for some $y \in B:=\left\{u_{t-1}, \ldots, u_{\delta(H)}\right\}$. By Theorem 1.4.7(d), $H\left[N_{H}(u)\right]$ must contain at least three different K_{t-2} subgraphs. Then $|B| \geq 2$ and so $\delta(H) \geq t$. Let $K \neq H[A]$ be another K_{t-2} subgraph of $H\left[N_{H}(u)\right]$ and let $b:=|V(K) \cap B|$. Then $1 \leq b \leq|B|-1$. Note that $2 \leq|B|=\delta(H)-|A| \leq 4$ because $t \leq \delta(H) \leq t+\min \{2, t-5\}$. We may assume that $K=H\left[\left\{u_{1}, \ldots, u_{t-2-b}, u_{t-1}, \ldots, u_{t-2+b}\right\}\right]$. Since H is K_{t}-free and no vertex $v \in N_{H}(u)$ is complete to $N_{H}(u) \backslash v$ in H, we see that
(*) every vertex in $\left\{u_{t-1}, \ldots, u_{t-2+b}\right\}$ has a non-neighbor in $\left\{u_{t-1-b}, \ldots, u_{t-2}\right\}$ in H; and every vertex in $\left\{u_{1}, \ldots, u_{t-2-b}\right\}$ has a non-neighbor in $B \backslash\left\{u_{t-1}, \ldots, u_{t-2+b}\right\}$ in H.

Let $K^{\prime} \neq H[A], K$ be another K_{t-2} subgraph of $H\left[N_{H}(u)\right]$. We next claim that $|B|=4$. Suppose $|B| \leq 3$. Then $b \leq 2$ and $\delta(H) \leq t+1$. Suppose $b=2$. Then $K=H\left[\left\{u_{1}, \ldots, u_{t-4}, u_{t-1}, u_{t}\right\}\right]$, $B=\left\{u_{t-1}, u_{t}, u_{t+1}\right\}$ and $t \geq 6$. Moreover, u_{t+1} is anti-complete to $\left\{u_{1}, \ldots, u_{t-4}\right\}$ in H. By (*), we may assume that $u_{t-3} u_{t-1}, u_{t-2} u_{t} \notin E(H)$. But then every K_{t-2} subgraph of $H\left[N_{H}(u)\right]$ contains the edge $u_{1} u_{2}$, contrary to Theorem 1.4.7(d). This proves that $b=1$. Then $K=H\left[\left\{u_{1}, \ldots, u_{t-3}, u_{t-1}\right\}\right]$. By the arbitrary choice of $K,\left|V\left(K^{\prime}\right) \cap B\right|=1$, and so $u_{t-1} \notin V\left(K^{\prime}\right)$. We may assume that $u_{1}, \ldots, u_{t-4}, u_{t} \in V\left(K^{\prime}\right)$. Then every vertex in $\left\{u_{1}, \ldots, u_{t-4}\right\}$ has a non-neighbor in $B \backslash\left\{u_{t-1}, u_{t}\right\}$. Thus $B=\left\{u_{t-1}, u_{t}, u_{t+1}\right\}$ and $t \geq 6$. But then u_{t+1} is anti-complete to $\left\{u_{1}, \ldots, u_{t-4}\right\}$ in H, and thus $H[A], K, K^{\prime}$ are the only K_{t-2} subgraphs of $H\left[N_{H}(u)\right]$, each containing the edge $u_{1} u_{2}$, contrary to Theorem 1.4.7(d). This proves that $|B|=4$, as claimed. Then $B=\left\{u_{t-1}, u_{t}, u_{t+1}, u_{t+2}\right\}, t \geq 7$ and $\delta(H)=t+2$. If $b=3$, then $K=H\left[\left\{u_{1}, \ldots, u_{t-5}, u_{t-1}, u_{t}, u_{t+1}\right\}\right]$. Moreover, u_{t+2} is anti-complete to $\left\{u_{1}, \ldots, u_{t-5}\right\}$ in H. Since H is K_{t}-free, no two vertices in $\left\{u_{t-1}, u_{t}, u_{t+1}\right\}$ have two common neighbors in $\left\{u_{t-4}, u_{t-3}, u_{t-2}\right\}$ in H. By (*), we may then assume that $u_{t-4} u_{t-1}, u_{t-3} u_{t}, u_{t-2} u_{t+1} \notin E(H)$. But then every K_{t-2} subgraph of $H\left[N_{H}(u)\right]$ contains the edge $u_{1} u_{2}$, contrary to Theorem 1.4.7(d). This proves that $b \leq 2$. Suppose next that $b=2$. Then $K=H\left[\left\{u_{1}, \ldots, u_{t-4}, u_{t-1}, u_{t}\right\}\right]$. By (*), we may assume that $u_{t-3} u_{t-1}, u_{t-2} u_{t} \notin E(H)$. By the arbitrary choice of $K,\left|V\left(K^{\prime}\right) \cap B\right| \leq 2$, and so $\left\{u_{t-1}, u_{t}\right\} \nsubseteq V\left(K^{\prime}\right)$. By $(*), N_{H}\left(u_{t+1}\right) \cap N_{H}\left(u_{t+2}\right) \cap A \subseteq\left\{u_{t-3}, u_{t-2}\right\}$. We may assume that $\left|\left\{u_{1}, \ldots, u_{t-4}\right\} \backslash N_{H}\left(u_{t+1}\right)\right| \geq\lceil(t-4) / 2\rceil$. Then $\left|N_{H}\left(u_{t+1}\right) \cap A\right| \leq\lfloor(t-4) / 2\rfloor+2<t-3$, $\left|N_{H}\left(u_{t+1}\right) \cap N_{H}\left(u_{j}\right) \cap A\right| \leq\lfloor(t-4) / 2\rfloor+1<t-4$ for $j \in\{t-1, t\}$. Thus $u_{t+1} \notin$ $V\left(K^{\prime}\right)$. Then $u_{t+2} \in V\left(K^{\prime}\right)$, else every K_{t-2} subgraph of $H\left[N_{H}(u)\right]$ contains $\left\{u_{1}, \ldots, u_{t-4}\right\}$, contrary to Theorem 1.4.7(d). We may assume that $u_{1}, \ldots, u_{t-5}, u_{t+2} \in V\left(K^{\prime}\right)$. Then either $u_{t+2} u_{t-1} \notin E(H)$ or $u_{t+2} u_{t} \notin E(H)$, else $K^{\prime \prime}=H\left[\left\{u_{1}, \ldots, u_{t-5}, u_{t-1}, u_{t}, u_{t+2}\right\}\right]$ is a K_{t-2} subgraph of $H\left[N_{H}(u)\right]$ with $\left|V\left(K^{\prime \prime}\right) \cap B\right|=3$. But then every K_{t-2} subgraph of $H\left[N_{H}(u)\right]$ contains the edge $u_{1} u_{2}$ because $t-5 \geq 2$, contrary to Theorem 1.4.7(d). This proves that $b=1$. Then $K=H\left[\left\{u_{1}, \ldots, u_{t-3}, u_{t-1}\right\}\right]$. By the arbitrary choice of $K,\left|V\left(K^{\prime}\right) \cap B\right|=1$
and $V\left(K^{\prime}\right) \cap B \neq V(K) \cap B$. We may assume that $u_{1}, \ldots, u_{t-4}, u_{t} \in V\left(K^{\prime}\right)$. Then $u_{1} u_{2}$ is contained in all of $H[A], K, K^{\prime}$. By Theorem 1.4.7(d), there must exist a fourth K_{t-2} subgraph of $H\left[N_{H}(u)\right]$, say $K^{\prime \prime}$. Similarly, $\left|V\left(K^{\prime \prime}\right) \cap B\right|=1$ by the arbitrary choice of K. We may assume that $u_{1}, \ldots, u_{t-5}, u_{t+1} \in V\left(K^{\prime \prime}\right)$. But then u_{t+2} is anti-complete to $\left\{u_{1}, \ldots, u_{t-5}\right\}$ in H, and thus $H[A], K, K^{\prime}, K^{\prime \prime}$ are the only K_{t-2} subgraphs of $H\left[N_{H}(u)\right]$, each containing the edge $u_{1} u_{2}$, contrary to Theorem 1.4.7(d). This proves Theorem 1.4.7(f).

We next prove Theorem 1.4.7(g). By Lemma 2.1.1(a,b), $\left|D_{i}\right| \leq k-1, G\left[V\left(D_{i}\right)\right]=K_{\left|D_{i}\right|}$ for all $i \in[p]$, and at most $t-1$ of the D_{i} 's have less than $k / 2$ vertices. Let r be the remainder of $n-(t-1)(\lceil k / 2\rceil-1)$ when divided by $\lceil k / 2\rceil$, and let $s \geq 0$ be an integer such that

$$
n-(t-1)(\lceil k / 2\rceil-1)=s\lceil k / 2\rceil+r(\lceil k / 2\rceil+1)
$$

It is straightforward to see that $\sum_{i=1}^{p} e\left(G\left[V\left(D_{i}\right)\right]\right)$ is minimized when: $t-1$ of the components, say D_{1}, \ldots, D_{t-1} are such that $\left|D_{1}\right|, \ldots,\left|D_{t-1}\right|<k / 2$; r of the components, say D_{t}, \cdots, D_{r+t-1} are such that $\left|D_{t}\right|=\cdots=\left|D_{r+t-1}\right|=\lceil k / 2\rceil+1$; and s of the components, say $D_{r+t}, \cdots, D_{r+s+t-1}$ are such that $\left|D_{r+t}\right|=\cdots=\left|D_{r+s+t-1}\right|=\lceil k / 2\rceil$. Using the facts that $s\lceil k / 2\rceil+r(\lceil k / 2\rceil+1)=$ $n-(t-1)(\lceil k / 2\rceil-1)$ and $r \leq\lceil k / 2\rceil-1$, it follows that

$$
\begin{aligned}
\sum_{i=1}^{p} e\left(G\left[V\left(D_{i}\right)\right]\right) & >s\binom{\lceil k / 2\rceil}{ 2}+r\binom{\lceil k / 2\rceil+1}{2} \\
& =\frac{s}{2}\left\lceil\frac{k}{2}\right\rceil\left(\left\lceil\frac{k}{2}\right\rceil-1\right)+\frac{r}{2}\left\lceil\frac{k}{2}\right\rceil\left(\left\lceil\frac{k}{2}\right\rceil+1\right) \\
& =\left(\frac{1}{2}\left\lceil\frac{k}{2}\right\rceil-\frac{1}{2}\right)\left(s\left\lceil\frac{k}{2}\right\rceil+r\left(\left\lceil\frac{k}{2}\right\rceil+1\right)\right)+\frac{r}{2}\left(\left\lceil\frac{k}{2}\right\rceil+1\right) \\
& \geq\left(\frac{1}{2}\left\lceil\frac{k}{2}\right\rceil-\frac{1}{2}\right)(n-(t-1)(\lceil k / 2\rceil-1)) .
\end{aligned}
$$

This proves Theorem 1.4.7(g).

To prove Theorem 1.4.7(h), suppose that H is disconnected. Let $x, y \in V(H)$ be such that x and y are in different components of H. By Theorem 1.4.7(b), $\{x, y\} \subseteq D_{i}$ for some $i \in[p]$, and there must exist a vertex $w \in D_{j}$ such that $x w \notin E(H)$ and $y w \in E(H)$, where $j \in[p]$ with $j \neq i$. By Theorem 1.4.7(b), x and w have at least $t-2$ common neighbors in H. But then x and y must be in the same component of H, a contradiction. This proves Theorem 1.4.7(h).

It remains to prove Theorem 1.4.7(i). By Theorem 1.4.7(h), H is connected. Let $q \in \mathbb{N}$ with $q \geq t-1$. Assume $\delta(H) \geq q$. Following Day [23], we next apply the q-neighbour bootstrap percolation on H. Note that H is not necessarily K_{t}-saturated. Given a set $S \subseteq V(H)$ and any vertex $v \in V(H)$, let $N_{S}(v):=N_{H}(v) \cap S$ and $d_{S}(v):=\left|N_{S}(v)\right|$. Let $R \subseteq V(H)$ be any nonempty set. Let $R^{0}:=R$ and for $i \geq 1$, let

$$
R^{i}:=R^{i-1} \cup\left\{v \in V(H): d_{R^{i-1}}(v) \geq q\right\}
$$

Let $\bar{R}:=\bigcup_{i \geq 0} R^{i}$, the closure of R under the q-neighbor bootstrap percolation on H. Then

$$
e(H[\bar{R}]) \geq q(|\bar{R}|-|R|),
$$

because every vertex in $R^{i} \backslash R^{i-1}$ is adjacent to at least q vertices in R^{i-1}. Let $Y(R):=V(H) \backslash \bar{R}$. Finally, for any $v \in V(H)$, let

$$
\omega_{R}(v):=d_{\bar{R}}(v)+d_{Y(R)}(v) / 2 .
$$

We call $\omega_{R}(v)$ the weight of v (with respect to R). Then

$$
e_{H}(\bar{R}, Y(R))+e(H[Y(R)])=\sum_{v \in Y(R)} \omega_{R}(v) .
$$

Within $Y(R)$, we define $B(R)$ to be the set $\left\{v \in Y(R): \omega_{R}(v)<q\right\}$, which we call the set of bad vertices. We next show that there exists a constant $c_{1}(q, k)$ and a nonempty set $R \subseteq V(H)$ with $|R| \leq c_{1}(q, k)$ such that $B(R)=\emptyset$.

Assume $B(R) \neq \emptyset$ for our initial R. Our goal is to move a small number of vertices into R so that the remaining vertices in $B(R)$ have strictly larger weight. To achieve this, let

$$
\mathcal{U}_{R}:=\left\{U \subseteq R: U=N_{R}(v) \text { for some } v \in B(R)\right\}
$$

Note that for every vertex $v \in B(R), d_{R}(v) \leq q-1$. Thus

$$
\left|\mathcal{U}_{R}\right| \leq 1+|R|+\binom{|R|}{2}+\cdots+\binom{|R|}{q-1} .
$$

Let $\mathcal{U}_{R}:=\left\{U_{1}, U_{2}, \ldots, U_{\left|\mathcal{U}_{R}\right|}\right\}$ and let $u_{i} \in B(R)$ with $N_{R}\left(u_{i}\right)=U_{i}$ for all $i \in\left\{1,2, \ldots,\left|\mathcal{U}_{R}\right|\right\}$. Then $d_{\bar{R}}\left(u_{i}\right)<q$, and so $d_{Y(R)}\left(u_{i}\right) \geq 1$ because $d_{H}\left(u_{i}\right) \geq q$. Let $x_{i} \in Y(R)$ such that $u_{i} x_{i} \in E(H)$ for all $i \in\left\{1, \ldots,\left|\mathcal{U}_{R}\right|\right\}$, and let $X(R):=\left\{x_{1}, x_{2}, \ldots, x_{\left|\mathcal{u}_{R}\right|}\right\}$. By the choice of \mathcal{U}_{R} and $u_{1}, u_{2}, \ldots, u_{\left|\mathcal{u}_{R}\right|}$, for every vertex $v \in B(R)$, we see that $N_{R}(v)=N_{R}\left(u_{i}\right)$ for some $i \in\left\{1,2, \ldots,\left|\mathcal{U}_{R}\right|\right\}$. Finally, let
$S(R):=\left\{v \in B(R): N_{R}(v)=N_{R}\left(u_{i}\right)\right.$ and $\left\{v, x_{i}\right\} \subseteq D_{j}$ for some $i \in\left\{1, \ldots,\left|\mathcal{U}_{R}\right|\right\}$ and $\left.j \in[p]\right\}$.

We next show that Algorithm 1 below yields a nonempty set $R \subseteq V(H)$ with $B(R)=\emptyset$.

```
Algorithm 1: Building a nonempty set \(R \subseteq V(H)\) with \(B(R)=\emptyset\)
Result: A nonempty set \(R \subseteq V(H)\) with \(B(R)=\emptyset\)
Set \(R\) to be a set containing an arbitrary vertex in \(H\);
while \(B(R) \neq \emptyset\) do
    Set \(R\) to be \(R \cup X(R) \cup S(R) \cup \bigcup_{j=1}^{\left|\mathcal{U}_{R}\right|} N_{\bar{R}}\left(x_{j}\right)\);
end
```

Data: $H:=G \backslash\left(\bigcup_{i \in[p]} E\left(G\left[V\left(D_{i}\right)\right]\right)\right)$ is a spanning subgraph of G_{r} with $\delta(H) \geq q$

Let R_{i} be the set R obtained in the i-th iteration of Line 2 when running Algorithm 1. Then
for all $i \geq 1, R_{i-1} \subseteq R_{i}, \bar{R}_{i-1} \subseteq \bar{R}_{i}, Y\left(R_{i}\right) \subseteq Y\left(R_{i-1}\right)$ and $B\left(R_{i}\right) \subseteq B\left(R_{i-1}\right)$. To see why $\omega_{R_{i}}(v)>\omega_{R_{i-1}}(v)$ for all $v \in B\left(R_{i}\right)$, we next introduce a control function on $V(H)$, because dealing with $\omega_{R}(v)$ directly is difficult. Let $\phi_{R}(v):=\sum_{x \in N_{H}(v)} f_{R}(x)$ for all $v \in V(H)$, where for all $x \in V(H)$,

$$
f_{R}(x)= \begin{cases}1, & \text { if } x \in R \\ 1 / 2, & \text { if } x \in \bar{R} \backslash R \\ d_{R}(x) /(2 q), & \text { if } x \in Y(R)\end{cases}
$$

It is worth noting that $\phi_{R}(v) \leq \omega_{R}(v)$ for every vertex $v \in V(H)$, because $d_{Y(R)}(x) \geq 1$ and $d_{R}(x) \leq q-1$ for all $x \in Y(R)$. Similarly, for all $i \geq 1, f_{R_{i-1}}(x) \leq f_{R_{i}}(x)$ for every $x \in V(H)$, because $Y\left(R_{i}\right) \subseteq Y\left(R_{i-1}\right)$. We next claim that
$(*)$ for all $i \geq 1$ and every $v \in B\left(R_{i}\right), \phi_{R_{i}}(v) \geq \phi_{R_{i-1}}(v)+1 /(2 q)$.

Proof. Let $i \geq 1$ and $v \in B\left(R_{i}\right)$. Then $v \in B\left(R_{i-1}\right)$, since $B\left(R_{i}\right) \subseteq B\left(R_{i-1}\right)$. Let $\mathcal{U}_{R_{i-1}}$, $\left\{u_{1}, \ldots, u_{\left|u_{R_{i-1}}\right|}\right\} \subseteq B\left(R_{i-1}\right)$, and $\left\{x_{1}, \ldots, x_{\left|u_{R_{i-1} \mid}\right|}\right\} \subseteq Y\left(R_{i-1}\right)$ be defined accordingly for R_{i-1}. Then $N_{R_{i-1}}(v)=N_{R_{i-1}}\left(u_{j}\right)$ for some $j \in\left\{1,2, \ldots,\left|\mathcal{U}_{R_{i-1}}\right|\right\}$. To prove $\phi_{R_{i}}(v) \geq$ $\phi_{R_{i-1}}(v)+1 /(2 q)$, it suffices to show that $f_{R_{i}}(x) \geq f_{R_{i-1}}(x)+1 /(2 q)$ for some $x \in N_{H}(v)$. Since $\left\{x_{1}, \ldots, x_{\left|u_{R_{i-1}}\right|}\right\} \subseteq Y\left(R_{i-1}\right) \cap R_{i}$, we see that $f_{R_{i-1}}(x)=d_{R_{i-1}}(x) /(2 q) \leq(q-1) /(2 q)=$ $1 / 2-1 /(2 q)$, and $f_{R_{i}}(x)=1>f_{R_{i-1}}(x)+1 /(2 q)$ for all $x \in\left\{x_{1}, \ldots, x_{\mid u_{R_{i-1}}}\right\}$. We may assume that $v x_{j} \notin E(H)$ for all $j \in\left\{1, \ldots,\left|\mathcal{U}_{R_{i-1}}\right|\right\}$, otherwise we are done. Since $v \in B\left(R_{i}\right)$, by the choice of x_{j} and $S\left(R_{i-1}\right)$, we see that $\left\{v, x_{j}\right\} \nsubseteq V\left(D_{\ell}\right)$ for all $\ell \in[p]$. By Theorem 1.4.7(b) applied to v and $x_{j}, H\left[N_{H}(v) \cap N_{H}\left(x_{j}\right)\right]$ has a K_{t-2} subgraph. Let W be the vertex set of such a K_{t-2} subgraph. It follows that $W \nsubseteq R_{i-1}$, else $G_{r}\left[W \cup\left\{u_{j}, x_{j}\right\}\right]=K_{t}$, since $N_{R_{i-1}}(v)=N_{R_{i-1}}\left(u_{j}\right)$ and $u_{j} x_{j} \in E(H)$. Let $x \in W \backslash R_{i-1}$.

If $x \in \bar{R}_{i-1} \backslash R_{i-1}$, then $f_{R_{i-1}}(x)=1 / 2$ and $f_{R_{i}}(x)=1$, and so $f_{R_{i}}(x) \geq f_{R_{i-1}}(x)+1 /(2 q)$, as desired. If $x \in Y\left(R_{i-1}\right)$, then either $x \in \bar{R}_{i}$ or $x \in Y\left(R_{i}\right)$. In both cases, we have $f_{R_{i-1}}(x)=$ $d_{R_{i-1}}(x) /(2 q) \leq 1 / 2-1 /(2 q)$. If $x \in \bar{R}_{i}$, then $f_{R_{i}}(x) \geq 1 / 2$ and so $f_{R_{i}}(x) \geq f_{R_{i-1}}(x)+1 /(2 q)$. Finally, if $x \in Y\left(R_{i}\right)$, then $d_{R_{i}}(x) \geq d_{R_{i-1}}(x)+1$ because $x_{j} \in R_{i} \backslash R_{i-1}$ and $R_{i-1} \subseteq R_{i}$. Hence, $f_{R_{i}}(x)=d_{R_{i}}(x) /(2 q) \geq\left(d_{R_{i-1}}(x)+1\right) /(2 q)=f_{R_{i-1}}(x)+1 /(2 q)$.

In all cases, we have shown that there exists some vertex $x \in N_{H}(v)$ such that $f_{R_{i}}(x) \geq f_{R_{i-1}}(x)+$ $1 /(2 q)$. Hence, $\phi_{R_{i}}(v) \geq \phi_{R_{i-1}}(v)+1 /(2 q)$ for all $i \geq 1$ and $v \in B\left(R_{i}\right)$.

By ($*$), Algorithm 1 stops after $m \leq 2 q^{2}$ iterations of Line 2. Hence $R_{m} \subseteq V(H)$ with $R_{m} \neq \emptyset$ but $B\left(R_{m}\right)=\emptyset$. For all $i \geq 0$,

$$
\begin{aligned}
\left|R_{i+1}\right| & =\left|R_{i}\right|+\left|X\left(R_{i}\right)\right|+\left|S\left(R_{i}\right)\right|+\left|\bigcup_{j=1}^{\left|\mathcal{U}_{R_{i}}\right|} N_{\bar{R}_{i}}\left(x_{j}\right)\right| \\
& \leq\left|R_{i}\right|+\left|\mathcal{U}_{R_{i}}\right|+(k-2)\left|\mathcal{U}_{R_{i}}\right|+(q-1)\left|\mathcal{U}_{R_{i}}\right| \\
& =\left|R_{i}\right|+(k+q-2)\left|\mathcal{U}_{R_{i}}\right| \\
& \leq\left|R_{i}\right|+(k+q-2)\left(1+\left|R_{i}\right|+\binom{\left|R_{i}\right|}{2}+\cdots+\binom{\left|R_{i}\right|}{q-1}\right)
\end{aligned}
$$

which only depends on q and k. It follows that by Algorithm 1, there exists a constant $c_{1}(q, k)$ and a non-empty set $R \subseteq V(H)$ with $|R| \leq c_{1}(q, k)$ such that $B(R)=\emptyset$. Then $\omega_{R}(v) \geq q$ for all $v \in Y(R)$ and so

$$
e_{H}(\bar{R}, Y(R))+e(H[Y(R)])=\sum_{v \in Y(R)} \omega_{R}(v) \geq q|Y(R)|
$$

Therefore,

$$
\begin{aligned}
e(H) & =e(H[\bar{R}])+e_{H}(\bar{R}, Y(R))+e(H[Y(R)]) \\
& \geq q(|\bar{R}|-|R|)+q|Y(R)|
\end{aligned}
$$

$$
\begin{aligned}
& \geq q\left(|\bar{R}|-c_{1}(q, k)\right)+q|Y(R)| \\
& =q\left(n-c_{1}(q, k)\right) \\
& =q n-c(q, k)
\end{aligned}
$$

where $c(q, k)=q c_{1}(q, k)$. This proves Theorem 1.4.7(i).

This completes the proof of Theorem 1.4.7.

We end this section with a useful corollary which will be applied in the proof of Theorem 1.4.9.

Corollary 2.1.2 Let $t, k, G, \tau, D_{1}, \ldots, D_{p}, H$ be given as in the statement of Theorem 1.4.7.
(a) There exists a constant $c_{1}(t, k)$ such that if $\delta(H) \geq 2 t-4$, then

$$
e(G) \geq\left(\frac{4 t-9}{2}+\frac{1}{2}\left\lceil\frac{k}{2}\right\rceil\right) n-c_{1}(t, k) .
$$

(b) For every $t \geq 5, k \geq 4 t-14$ and $n \geq(t-1)(k-1)+1$, there exists a constant $c_{2}(t, k)$ such that, if there exists an edge $u v \in E(H)$ with $d_{H}(u)=\delta(H)$ such that v is contained in all K_{t-2} subgraphs of $H\left[N_{H}(u)\right]$ and $\{v\}=V\left(D_{j}\right)$ for some $j \in[p]$, then

$$
e(G) \geq\left(\frac{4 t-9}{2}+\frac{1}{2}\left\lceil\frac{k}{2}\right\rceil\right) n-c_{2}(t, k) .
$$

(c) There exists a constant $c_{3}(t, k)$ such that if $t \geq 6$ and $k \geq 4 t-14$ and $n \geq(t-1)(k-1)+1$, then

$$
e(G) \geq\left(\frac{2 t+\min \{5,3(t-5)\}}{2}+\frac{1}{2}\left\lceil\frac{k}{2}\right\rceil\right) n-c_{3}(t, k)
$$

Proof. To prove Corollary 2.1.2(a), assume $\delta(H) \geq 2 t-4$. By Theorem 1.4.7(i) applied to H and
$q=2 t-4$, there exists a constant $c(2 t-4, k)$ such that $e(H) \geq(2 t-4) n-c(2 t-4, k)$. This, together with Theorem 1.4.7(g), yields that

$$
\begin{aligned}
e(G) & =e(H)+\sum_{i=1}^{p} e\left(G\left[V\left(D_{i}\right)\right]\right) \\
& \geq(2 t-4) n-c(2 t-4, k)+\left(\frac{1}{2}\left\lceil\frac{k}{2}\right\rceil-\frac{1}{2}\right)(n-(t-1)(\lceil k / 2\rceil-1)) \\
& =\left(\frac{4 t-9}{2}+\frac{1}{2}\left\lceil\frac{k}{2}\right\rceil\right) n-c(2 t-4, k)-\frac{1}{2}(t-1)(\lceil k / 2\rceil-1)^{2} \\
& =\left(\frac{4 t-9}{2}+\frac{1}{2}\left\lceil\frac{k}{2}\right\rceil\right) n-c_{1}(t, k),
\end{aligned}
$$

as desired, where $c_{1}(t, k)=c(2 t-4, k)+\frac{1}{2}(t-1)(\lceil k / 2\rceil-1)^{2}$. This proves Corollary 2.1.2(a).

We next prove Corollary 2.1.2(b). Assume $t \geq 5, k \geq 4 t-14$ and $n \geq(t-1)(k-1)+1$. Let $u v \in E(H)$ with $d_{H}(u)=\delta(H)$ such that $N_{H}(u) \backslash v$ is K_{t-2}-free and $\{v\}=V\left(D_{j}\right)$ for some $j \in[p]$. We may assume that $u \in V\left(D_{p}\right)$ and $\{v\}=V\left(D_{p-1}\right)$. By Corollary 2.1.2(a), we may assume that $d_{H}(u) \leq 2 t-5$. Since $t \geq 5$, by Theorem 1.4.7(e), $\delta(H) \geq t$. By Theorem 1.4.7(i) applied to H and $q=t$, there exists a constant $c(t, k)$ such that $e(H) \geq t n-c(t, k)$. Since $n \geq(t-1)(k-1)+1$ and $\left|V\left(D_{i}\right)\right| \leq k-1$ for all $i \in[p]$ with $i \neq p-1$, we see that $p \geq t$. If $p=t$, then $n=(t-1)(k-1)+1$ and $\left|V\left(D_{i}\right)\right|=k-1$ for $i \in[p]$ with $i \neq p-1$. In this case,

$$
\begin{aligned}
e(G) & =e(H)+\sum_{i=1}^{p} e\left(G\left[V\left(D_{i}\right)\right]\right) \\
& \geq(t n-c(t, k))+(p-1)(k-1)(k-2) / 2 \\
& =(t n-c(t, k))+(n-1)(k-2) / 2 \\
& =(t-1+k / 2) n-c(t, k)-(k-2) / 2 \\
& \geq\left(\frac{4 t-9}{2}+\frac{1}{2}\left\lceil\frac{k}{2}\right\rceil\right) n-\ell_{1}(t, k)
\end{aligned}
$$

for all $k \geq 4 t-14$, as desired, where $\ell_{1}(t, k)=c(t, k)+(k-2) / 2$.

Next assume $p \geq t+1$. Since $k \geq 2(2 t-7)$, by Lemma 2.1.1(b), there are at most $t-1$ many D_{i} 's satisfying $u \notin V\left(D_{i}\right)$ and $D_{i} \backslash N_{H}(u)=\emptyset$. We may assume that for all $i \in[p-t], D_{1}, \ldots, D_{p-t}$ are such that $u \notin V\left(D_{i}\right)$ and $D_{i} \backslash N_{H}(u) \neq \emptyset$. By Theorem 1.4.7(c), $\left|D_{i}\right|=k-1$ for all $i \in[p-t]$. Thus

$$
\sum_{i=1}^{p} e\left(G\left[V\left(D_{i}\right)\right]\right) \geq(p-t)(k-1)(k-2) / 2
$$

Note that $n \leq(p-1)(k-1)+1$ because $\{v\}=V\left(D_{p-1}\right)$ and $\left|D_{i}\right| \leq k-1$ for all $i \in[p]$ with $i \neq p-1$. Therefore,

$$
\begin{aligned}
e(G) & =e(H)+\sum_{i=1}^{p} e\left(G\left[V\left(D_{i}\right)\right]\right) \\
& \geq(t n-c(t, k))+(p-t)(k-1)(k-2) / 2 \\
& \geq(t n-c(t, k))+\frac{1}{2}\left(\frac{n-1}{k-1}-t+1\right)(k-1)(k-2) \\
& =(t-1+k / 2) n-c(t, k)-(k-2)(t k-t-k+2) / 2 \\
& \geq\left(\frac{4 t-9}{2}+\frac{1}{2}\left\lceil\frac{k}{2}\right\rceil\right) n-c(t, k)-\left[(t-1) k^{2}-(3 t-4) k+2 t-4\right] / 2 \\
& =\left(\frac{4 t-9}{2}+\frac{1}{2}\left\lceil\frac{k}{2}\right\rceil\right) n-\ell_{2}(t, k)
\end{aligned}
$$

for all $k \geq 4 t-14$, as desired, where $\ell_{2}(t, k)=c(t, k)+\left[(t-1) k^{2}-(3 t-4) k+2 t-4\right] / 2$. Let $c_{2}(t, k):=\max \left\{\ell_{1}(t, k), \ell_{2}(t, k)\right\}$. This proves Corollary 2.1.2(b).

Finally, we prove Corollary 2.1.2(c). Assume $t \geq 6, k \geq 4 t-14$ and $n \geq(t-1)(k-1)+1$. Then by Theorem 1.4.7(f), $\delta(H) \geq t+\min \{3, t-4\}$ or there exists an edge $u v \in E(H)$ such that $d_{H}(u)=$ $\delta(H)$ and v is complete to $N_{H}(u) \backslash v$ in H. Assume first that there exists an edge $u v \in E(H)$ such that $d_{H}(u)=\delta(H)$ and v is complete to $N_{H}(u) \backslash v$ in H. Then v is contained in all K_{t-2} subgraphs of $H\left[N_{H}(u)\right]$, because H is K_{t}-free. We may assume that $u \in V\left(D_{p}\right)$. By Theorem 1.4.7(b)
applied to u and any vertex in $V(H) \backslash\left(V\left(D_{p}\right) \cup N_{H}(u)\right), V(H) \backslash\left(V\left(D_{p}\right) \cup N_{H}(u)\right)$ must be complete to v in H. Thus $\{v\}=V\left(D_{\ell}\right)$ for some $\ell \in[p-1]$. By Corollary 2.1.2(b), there exists a constant $c_{2}(t, k)$ such that

$$
\begin{aligned}
e(G) & \geq\left(\frac{4 t-9}{2}+\frac{1}{2}\left\lceil\frac{k}{2}\right\rceil\right) n-c_{2}(t, k) \\
& \geq\left(\frac{2 t+\min \{5,3(t-5)\}}{2}+\frac{1}{2}\left\lceil\frac{k}{2}\right\rceil\right) n-c_{2}(t, k),
\end{aligned}
$$

for all $t \geq 6$, as desired.

Assume next that $\delta(H) \geq t+\min \{3, t-4\}$. By Theorem 1.4.7(i) applied to H and $q=t+$ $\min \{3, t-4\}$, there exists a constant $c(q, k)$ such that $e(H) \geq(t+\min \{3, t-4\}) n-c(q, k)$. By Theorem 1.4.7(g), we have

$$
\begin{aligned}
e(G) & =e(H)+\sum_{i=1}^{p} e\left(G\left[V\left(D_{i}\right)\right]\right) \\
& \geq \begin{cases}8 n-c(q, k)+\left(\frac{1}{2}\left\lceil\frac{k}{2}\right\rceil-\frac{1}{2}\right)(n-(t-1)(\lceil k / 2\rceil-1)) & \text { if } t=6 \\
(t+3) n-c(q, k)+\left(\frac{1}{2}\left\lceil\frac{k}{2}\right\rceil-\frac{1}{2}\right)(n-(t-1)(\lceil k / 2\rceil-1)) & \text { if } t \geq 7\end{cases} \\
& = \begin{cases}\left(\frac{15}{2}+\frac{1}{2}\left\lceil\frac{k}{2}\right\rceil\right) n-c(q, k)-\frac{1}{2}(t-1)(\lceil k / 2\rceil-1)^{2} & \text { if } t=6 \\
\left(\frac{2 t+5}{2}+\frac{1}{2}\left\lceil\frac{k}{2}\right\rceil\right) n-c(q, k)-\frac{1}{2}(t-1)(\lceil k / 2\rceil-1)^{2} & \text { if } t \geq 7\end{cases}
\end{aligned}
$$

This proves Corollary 2.1.2(c) and thus completes the proof of Corollary 2.1.2.

2.2 Proof of Theorem 1.4.8

We begin this section with a useful lemma, which may be of independent interest. It is worth noting that Lemma 2.2.2 is stronger than Theorem 2.2.1 when $\alpha(G)>|G| / 2$. We include a proof here for completeness and the proof of Lemma 2.2.2 is due to Hehui Wu , which is completely different from the one of Hajnal [54].

Theorem 2.2.1 (Hajnal [54]) Let G be a graph and let \mathcal{F} be the family of all maximum stable sets of G. Then

$$
\left|\bigcap_{S \in \mathcal{F}} S\right|+\left|\bigcup_{S \in \mathcal{F}} S\right| \geq 2 \alpha(G)
$$

Lemma 2.2.2 Let G be a graph with $\alpha(G)>|G| / 2$ and let \mathcal{F} be the family of all maximum stable sets of G. Then

$$
\left|\bigcap_{S \in \mathcal{F}} S\right| \geq \delta(G)+2 \alpha(G)-|G| \geq \delta(G)+1
$$

Moreover, if $\bigcap_{S \in \mathcal{F}} S=\{u\}$, then $\alpha(G)=(|G|+1) / 2$ and u is an isolated vertex in G.

Proof. Let $X \in \mathcal{F}$ and $Y:=V(G) \backslash X$. Then $|X|=\alpha(G)>|G| / 2$, and so $|X|>|Y|$. Let $H:=G[X, Y]$ be the bipartite subgraph of G with $V(H)=X \cup Y$ and $E(H)=\{x y \in E(G):$ $x \in X, y \in Y\}$. Let T be a maximum stable set of H and let $X_{1}:=X \backslash T, Y_{1}:=Y \cap T$ and $Y_{2}:=Y \backslash T$. Then $\left|Y_{1}\right|+\left|X \backslash X_{1}\right|=|T| \geq|X|=\left|X_{1}\right|+\left|X \backslash X_{1}\right|>|Y|=\left|Y_{1}\right|+\left|Y_{2}\right|$, which implies that $\left|X_{1}\right| \leq\left|Y_{1}\right|$ and $\left|X \backslash X_{1}\right|>\left|Y_{2}\right|$. We next show that $H^{\prime}:=G\left[X \backslash X_{1}, Y_{2}\right]$ contains a matching that saturates Y_{2}. For any $S \subseteq Y_{2}$, we have $\left|N_{H^{\prime}}(S)\right| \geq|S|$, else $T^{\prime}:=\left(T \backslash N_{H^{\prime}}(S)\right) \cup S$ is a stable set of H with $\left|T^{\prime}\right|>|T|$, a contradiction. By Hall's Theorem, there exists a matching, say M, of H^{\prime} that saturates Y_{2}. Let $X_{2}:=V(M) \cap X$ and $X_{3}:=X \backslash\left(X_{1} \cup X_{2}\right)$. Then

$$
\left|X_{3}\right|=|X|-\left|X_{1}\right|-\left|X_{2}\right| \geq|X|-|Y|=2 \alpha(G)-|G|>0
$$

because $\left|X_{1}\right| \leq\left|Y_{1}\right|,\left|X_{2}\right|=\left|Y_{2}\right|$ and $\alpha(G)>|G| / 2$. Note that $X_{1} \cup Y_{1}$ is anti-complete to $X \backslash X_{1}$ in H. By the choice of $T, \alpha\left(H\left[X_{1} \cup Y_{1}\right]\right) \leq\left|X_{1}\right|$. Moreover, $\alpha\left(H\left[X_{2} \cup Y_{2}\right]\right) \leq\left|X_{2}\right|$ because M is a perfect matching of $G\left[X_{2}, Y_{2}\right]$. Then for any $S \in \mathcal{F},\left|S \cap\left(X_{1} \cup Y_{1}\right)\right| \leq\left|X_{1}\right|$ and $\left|S \cap\left(X_{2} \cup Y_{2}\right)\right| \leq\left|X_{2}\right|$. Therefore, $\left|X_{3}\right| \geq\left|S \cap X_{3}\right|=|S|-\left|S \cap\left(X_{1} \cup Y_{1}\right)\right|-\left|S \cap\left(X_{2} \cup Y_{2}\right)\right| \geq$ $|X|-\left|X_{1}\right|-\left|X_{2}\right|=\left|X_{3}\right|$. It follows that $\left|S \cap X_{3}\right|=\left|X_{3}\right|$. Then $X_{3} \subseteq S$. Hence, $X_{3} \subseteq \bigcap_{S \in \mathcal{F}} S$ by the arbitrary choice of S.

Next, suppose there exists a vertex $u \in X_{3}$ with $d_{G}(u)=d>0$. Let $N_{G}(u):=\left\{v_{1}, \ldots, v_{d}\right\}$. Then $\left\{v_{1}, \ldots, v_{d}\right\} \subseteq Y_{2}$. Let $u_{1}, \ldots, u_{d} \in X_{2}$ be such that $u_{i} v_{i} \in E(M)$ for all $i \in[d]$. For each $i \in[d]$, let $M^{i}:=\left(M \backslash u_{i} v_{i}\right) \cup\left\{u v_{i}\right\}, X_{2}^{i}:=V\left(M^{i}\right) \cap X$ and $X_{3}^{i}:=X \backslash\left(X_{1} \cup X_{2}^{i}\right)$. Then $u_{i} \in X_{3}^{i}$ and M^{i} is a perfect matching of $G\left[X_{2}^{i}, Y_{2}\right]$. By the arbitrary choice of $M, u_{i} \in \bigcap_{S \in \mathcal{F}} S$. Therefore, $\left|\bigcap_{S \in \mathcal{F}} S\right| \geq\left|\left\{u_{1}, \ldots, u_{d}\right\} \cup X_{3}\right| \geq d+(2 \alpha(G)-|G|) \geq \delta(G)+2 \alpha(G)-|G| \geq \delta(G)+1$, as desired.

Finally, if $\bigcap_{S \in \mathcal{F}} S=\{u\}$, then $1=\left|\bigcap_{S \in \mathcal{F}} S\right| \geq d+2 \alpha(G)-|G|$. It follows that $d=0$ and $\alpha(G)=(|G|+1) / 2$, because $2 \alpha(G)-|G|>0$. This completes the proof of Lemma 2.2.2.

We are now ready to prove Theorem 1.4.8.

Proof of Theorem 1.4.8: Let G be a $\left(K_{t}, \mathcal{T}_{k}\right)$-co-critical graph on n vertices, where $t \geq 4$ and $k \geq \max \{6, t\}$. Then $n \geq(t-1)(k-1)+1$ and G admits a critical-coloring. Among all criticalcolorings of G, let $\tau: E(G) \rightarrow\{$ red, blue $\}$ be a critical-coloring of G with $\left|E_{r}\right|$ maximum. By the choice of τ, G_{r} is K_{t}-saturated and G_{b} is \mathcal{T}_{k}-free. By Theorem 1.4.7(a), $\delta\left(G_{r}\right) \geq 2 t-4$. Let D_{1}, \cdots, D_{p} be all components of G_{b}. By Lemma 2.1.1(a), $\left|D_{i}\right| \leq k-1$ for all $i \in[p]$. Then $(t-1)(k-1)+1 \leq n \leq p(k-1)$. This implies that $p \geq t$. Let $H:=G \backslash\left(\bigcup_{i \in[p]} E\left(G\left[V\left(D_{i}\right)\right]\right)\right)$.

Then H is a spanning subgraph of G_{r}. Clearly, H is K_{t}-free.

Assume first that $\delta(H) \geq 2 t-4$. By Theorem 1.4.7(i) applied to H and $q=2 t-4$, there exists a constant $c(2 t-4, k)$ such that $e(H) \geq(2 t-4) n-c(2 t-4, k)$. This, together with Theorem 1.4.7(g), yields that

$$
\begin{aligned}
e(G) & =e(H)+\sum_{i=1}^{p} e\left(G\left[V\left(D_{i}\right)\right]\right) \\
& \geq(2 t-4) n-c(2 t-4, k)+\left(\frac{1}{2}\left\lceil\frac{k}{2}\right\rceil-\frac{1}{2}\right)(n-(t-1)(\lceil k / 2\rceil-1)) \\
& =\left(\frac{4 t-9}{2}+\frac{1}{2}\left\lceil\frac{k}{2}\right\rceil\right) n-c(2 t-4, k)-\frac{1}{2}(t-1)(\lceil k / 2\rceil-1)^{2} \\
& =\left(\frac{4 t-9}{2}+\frac{1}{2}\left\lceil\frac{k}{2}\right\rceil\right) n-c_{1}(t, k),
\end{aligned}
$$

as desired, where $c_{1}(t, k)=c(2 t-4, k)+\frac{1}{2}(t-1)(\lceil k / 2\rceil-1)^{2}$.

Assume next that $\delta(H) \leq 2 t-5$. Note that $k \geq \max \{6, t\} \geq t$ for all $t \geq 4$. Let $u \in V(H)$ with $d_{H}(u)=\delta(H)$. We may assume that $u \in V\left(D_{p}\right)$. Let $N_{H}(u)=\left\{u_{1}, \ldots, u_{\delta(H)}\right\}$. By Theorem 1.4.7(b) applied to u and any vertex in $V(H) \backslash\left(V\left(D_{p}\right) \cup N_{H}(u)\right)$, we see that $H\left[N_{H}(u)\right]$ must have a K_{t-2} subgraph. We may assume that $H\left[\left\{u_{1}, \ldots, u_{t-2}\right\}\right]=K_{t-2}$. Then we may further assume that $u_{i} \in V\left(D_{p-i}\right)$ for all $i \in[t-2]$. Note that $H\left[N_{H}(u)\right]$ is K_{t-1}-free and $\omega\left(H\left[N_{H}(u)\right]\right)=$ $t-2>\left|N_{H}(u)\right| / 2$. Let \mathcal{F} be the family of all K_{t-2} subgraphs of $H\left[N_{H}(u)\right]$. By Theorem 1.4.7(d), $\left|\bigcap_{A \in \mathcal{F}} A\right| \leq 1$. By Lemma 2.2.2 applied to the complement of $H\left[N_{H}(u)\right]$, we have $\left|\bigcap_{A \in \mathcal{F}} A\right|=1$. We may assume that $\bigcap_{A \in \mathcal{F}} A=\left\{u_{1}\right\}$. By Lemma 2.2.2 again, $\left|N_{H}(u)\right|=2 t-5, u_{1}$ is complete to $N_{H}(u) \backslash u_{1}$ in H and u_{1} is contained in all K_{t-2} subgraphs of $H\left[N_{H}(u)\right]$. Then $H\left[N_{H}(u)\right] \backslash u_{1}$ is K_{t-2}-free. By Theorem 1.4.7(b) applied to u and any vertex in $V(H) \backslash\left(V\left(D_{p}\right) \cup N_{H}(u)\right)$, $V(H) \backslash\left(V\left(D_{p}\right) \cup N_{H}(u)\right)$ must be complete to u_{1} in H. Thus $\left\{u_{1}\right\}=V\left(D_{p-1}\right)$. By Theorem 1.4.7(i) applied to H and $q=2 t-5$, there exists a constant $c(2 t-5, k)$ such that $e(H) \geq$
$(2 t-5) n-c(2 t-5, k)$. Since $n \geq(t-1)(k-1)+1$ and $\left|V\left(D_{i}\right)\right| \leq k-1$ for all $i \in[p]$ with $i \neq p-1$, we see that $p \geq t$. If $p=t$, then $n=(t-1)(k-1)+1$ and $\left|V\left(D_{i}\right)\right|=k-1$ for $i \in[p]$ with $i \neq p-1$. In this case,

$$
\begin{aligned}
e(G) & =e(H)+\sum_{i=1}^{p} e\left(G\left[V\left(D_{i}\right)\right]\right) \\
& \geq((2 t-5) n-c(2 t-5, k))+(p-1)(k-1)(k-2) / 2 \\
& =((2 t-5) n-c(2 t-5, k))+(n-1)(k-2) / 2 \\
& =(2 t-6+k / 2) n-c(2 t-5, k)-(k-2) / 2 \\
& \geq\left(\frac{4 t-9}{2}+\frac{1}{2}\left\lceil\frac{k}{2}\right\rceil\right) n-c_{2}(t, k)
\end{aligned}
$$

for all $k \geq 6$, as desired, where $c_{2}(t, k)=c(2 t-5, k)+(k-2) / 2$.

Next assume $p \geq t+1$. Since $k \geq t,\left|N_{H}(u)\right| \leq 2 t-5$, and G_{r} is K_{t}-free, by Lemma 2.1.1(b), there are at most $t-1$ many D_{i} 's satisfying $u \notin V\left(D_{i}\right)$ and $D_{i} \backslash N_{H}(u)=\emptyset$. We may assume that for all $i \in[p-t], D_{1}, \ldots, D_{p-t}$ are such that $u \notin V\left(D_{i}\right)$ and $D_{i} \backslash N_{H}(u) \neq \emptyset$. By Theorem 1.4.7(c), $\left|D_{i}\right|=k-1$ for all $i \in[p-t]$. Thus

$$
\sum_{i=1}^{p} e\left(G\left[V\left(D_{i}\right)\right]\right) \geq(p-t)(k-1)(k-2) / 2
$$

Note that $n \leq(p-1)(k-1)+1$ because $\left\{u_{1}\right\}=V\left(D_{p-1}\right)$ and $\left|D_{i}\right| \leq k-1$ for all $i \in[p]$ with $i \neq p-1$. Therefore,

$$
\begin{aligned}
e(G) & =e(H)+\sum_{i=1}^{p} e\left(G\left[V\left(D_{i}\right)\right]\right) \\
& \geq((2 t-5) n-c(2 t-5, k))+(p-t)(k-1)(k-2) / 2 \\
& \geq((2 t-5) n-c(2 t-5, k))+\frac{1}{2}\left(\frac{n-1}{k-1}-t+1\right)(k-1)(k-2)
\end{aligned}
$$

$$
\begin{aligned}
& =(2 t-6+k / 2) n-c(2 t-5, k)-(k-2)(t k-t-k+2) / 2 \\
& \geq\left(\frac{4 t-9}{2}+\frac{1}{2}\left\lceil\frac{k}{2}\right\rceil\right) n-c(2 t-5, k)-\left[(t-1) k^{2}-(3 t-4) k+2 t-4\right] / 2 \\
& =\left(\frac{4 t-9}{2}+\frac{1}{2}\left\lceil\frac{k}{2}\right\rceil\right) n-c_{3}(t, k)
\end{aligned}
$$

for all $k \geq 6$, as desired, where $c_{3}(t, k)=c(2 t-5, k)+\left[(t-1) k^{2}-(3 t-4) k+2 t-4\right] / 2$.

Let $\ell(t, k):=\max \left\{c_{1}(t, k), c_{2}(t, k), c_{3}(t, k)\right\}$. This completes the proof of Theorem 1.4.8.

2.3 Proof of Theorem 1.4.9

Let G be a $\left(K_{t}, \mathcal{T}_{k}\right)$-co-critical graph on $n \geq(t-1)(k-1)+1$ vertices, where $t \in\{4,5,6,7\}$ and $k \geq \max \{3,4 t-14\}$. Then G admits a critical-coloring. Among all critical-colorings of G, let $\tau: E(G) \rightarrow$ \{red, blue $\}$ be a critical-coloring of G with $\left|E_{r}\right|$ maximum. By the choice of τ, G_{r} is K_{t}-saturated and G_{b} is \mathcal{T}_{k}-free. By Theorem 1.4.7(a), $\delta\left(G_{r}\right) \geq 2 t-4$. Let D_{1}, \cdots, D_{p} be all components of G_{b}. By Lemma 2.1.1(a), $\left|D_{i}\right| \leq k-1$ for all $i \in[p]$. Then $(t-1)(k-1)+1 \leq$ $n \leq p(k-1)$. This implies that $p \geq t$. Let $H:=G \backslash\left(\bigcup_{i \in[p]} E\left(G\left[V\left(D_{i}\right)\right]\right)\right)$. Then H is a spanning subgraph of G_{r}. Since $k \geq \max \{3,4 t-14\}$, by Corollary 2.1.2(c), we may assume that $t \in\{4,5\}$. By Corollary 2.1.2(a), we may further assume that $\delta(H) \leq 2 t-5$. Then by Theorem 1.4.7(e), $k \geq 4$. Thus $k \geq t$. By Theorem 1.4.7(e, f), $\delta(H)=2 t-5$ because $t \in\{4,5\}$ and $\delta(H) \leq 2 t-5$.

Let $u \in V(H)$ with $d_{H}(u)=\delta(H)$. We may assume that $u \in V\left(D_{p}\right)$. Let $N_{H}(u)=$ $\left\{u_{1}, \ldots, u_{2 t-5}\right\}$. By Theorem 1.4.7(b) applied to u and any vertex in $V(H) \backslash\left(V\left(D_{p}\right) \cup N_{H}(u)\right)$, we see that $H\left[N_{H}(u)\right]$ must have a K_{t-2} subgraph. We may assume that $H\left[\left\{u_{1}, \ldots, u_{t-2}\right\}\right]=K_{t-2}$. Then we may further assume that $u_{i} \in V\left(D_{p-i}\right)$ for all $i \in[t-2]$. Since $\delta(H)=2 t-5$ and $k \geq t$, by Theorem 1.4.7(d), no edge of $H\left[N_{H}(u)\right]$ is contained in all K_{t-2} subgraphs of
$H\left[N_{H}(u)\right]$. Therefore, $H\left[N_{H}(u)\right]$ contains two different copies of K_{t-2} subgraphs other than $H\left[\left\{u_{1}, \ldots, u_{t-2}\right\}\right]$. Since H is K_{t}-free, $H\left[N_{H}(u)\right]$ has no K_{t-1} subgraph. It follows that there exists a vertex, say $u_{2} \in\left\{u_{1}, \ldots, u_{t-2}\right\}$, such that u_{2} is complete to $N_{H}(u) \backslash u_{2}$ in H. Then u_{2} is contained in all K_{t-2} subgraphs of $H\left[N_{H}(u)\right]$ and so $H\left[N_{H}(u)\right] \backslash u_{2}$ is K_{t-2}-free. By Theorem 1.4.7(b) applied to u and any vertex in $V(H) \backslash\left(V\left(D_{p}\right) \cup N_{H}(u)\right), V(H) \backslash\left(V\left(D_{p}\right) \cup\right.$ $\left.N_{H}(u)\right)$ must be complete to u_{2} in H. Thus $\left\{u_{2}\right\}=V\left(D_{p-2}\right)$. Then $p \geq t+1$ because $n \geq(t-1)(k-1)+2$ and $\left|V\left(D_{i}\right)\right| \leq k-1$ for all $i \in[p]$ with $i \neq p-2$.

Assume first that $t=5$ and $k \geq 6=4 t-14$. By Corollary 2.1.2(b), we obtain the desired lower bound for $e(G)$. We next consider the case $t=4$ and $k \geq 4$. In this case, $H\left[\left\{u_{1}, u_{2}, u_{3}\right\}\right]=P_{3}$ with $\left\{u_{2}\right\}=V\left(D_{p-2}\right)$ and $u_{1} u_{3} \notin E(H)$. We next show that $u_{3} \notin V\left(D_{p-1}\right)$. Suppose $u_{3} \in$ $V\left(D_{p-1}\right)$. Then $\left\{u_{1}, u_{3}\right\}=V\left(D_{p-1}\right)$ because $\left|N_{H}(u) \cap N_{H}(w)\right| \geq 2$ for any $w \in V(H) \backslash\left(V\left(D_{p}\right) \cup\right.$ $\left.\left\{u_{1}, u_{2}, u_{3}\right\}\right)$. Then $u_{1} u_{3} \in E_{b}$ and we obtain a critical-coloring of $G+u v$ from τ by first coloring the edge $u v$ red, and then recoloring $u_{1} u_{2}, u_{2} u_{3}$ blue and all red edges incident with u in $G\left[V\left(D_{p}\right)\right]$ blue, a contradiction. This proves that $u_{3} \notin V\left(D_{p-1}\right)$. We may assume that $u_{3} \in V\left(D_{p-3}\right)$. For each $\ell \in\{1,3\}$, by Theorem 1.4.7(b) applied to u and any vertex in $V\left(D_{p-(4-\ell)}\right) \backslash u_{4-\ell}, u_{\ell}$ must be complete to $V\left(D_{p-(4-\ell)}\right) \backslash u_{4-\ell}$ in H. Note that $p \geq t+1=5$. For all $i \in[p-4]$, let

$$
\begin{aligned}
& V_{i}^{1}:=\left\{w \in V\left(D_{i}\right) \mid N_{H}(w) \cap N_{H}(u)=\left\{u_{1}, u_{2}\right\}\right\}, \\
& V_{i}^{2}:=\left\{w \in V\left(D_{i}\right) \mid N_{H}(w) \cap N_{H}(u)=\left\{u_{1}, u_{2}, u_{3}\right\}\right\}, \\
& V_{i}^{3}
\end{aligned}=\left\{w \in V\left(D_{i}\right) \mid N_{H}(w) \cap N_{H}(u)=\left\{u_{2}, u_{3}\right\}\right\} ., ~ l
$$

Let $A:=\bigcup_{i \in[p-4]} V_{i}^{1} \cup V_{i}^{2}$ and $B:=\bigcup_{i \in[p-4]} V_{i}^{3} \cup V_{i}^{2}$. Since G_{r} is K_{4}-free, we see that neither $G[A]$ nor $G[B]$ has red edges. This implies that for all $i \in[p-4]$, both $V_{i}^{1} \cup V_{i}^{2}$ and $V_{i}^{3} \cup V_{i}^{2}$ are blue cliques in D_{i}. We claim that
(\dagger) for all $i \in[p-4]$, if $V_{i}^{1} \neq \emptyset$ and $V_{i}^{3} \neq \emptyset$, then $V_{i}^{2} \neq \emptyset$.

Proof. Suppose there exists an $i \in[p-4]$, say $i=1$, such that $V_{1}^{1} \neq \emptyset$ and $V_{1}^{3} \neq \emptyset$ but $V_{1}^{2}=\emptyset$. Then $V_{1}^{1} \cup V_{1}^{3}=V\left(D_{1}\right)$. Let $x \in V_{1}^{1}$ and $y \in V_{1}^{3}$. Since V_{1}^{1} is anti-complete to $\left(A \cup\left\{u_{3}\right\}\right) \backslash V_{1}^{1}$ in G_{r}, and V_{1}^{3} is anti-complete to $\left(B \cup\left\{u_{1}\right\}\right) \backslash V_{1}^{3}$ in G_{r}, we see that $N_{H}(x) \cap N_{H}(y) \subseteq\left\{u_{2}\right\} \cup$ $\left(V\left(D_{p}\right) \backslash u\right)$. But then we obtain a critical-coloring of $G+u x$ from τ by first coloring the edge $u x$ red, and then recoloring $u_{2} x$ blue, and all red edges in $G\left[V\left(D_{p}\right)\right]$ blue, and all blue edges between V_{1}^{1} and V_{1}^{3} red, a contradiction.

Let $i \in[p-4]$. By Theorem 1.4.7(c) applied to the edge $u u_{2},\left|V\left(D_{i}\right)\right|=k-1$. Since $V_{i}^{1} \cup V_{i}^{2}$ and $V_{i}^{3} \cup V_{i}^{2}$ are blue cliques in D_{i}, by $(\dagger), e\left(G_{b}\left[V\left(D_{i}\right)\right]\right)$ is minimized when $\left|V_{i}^{2}\right|=1,\left|\left|V_{i}^{1}\right|-\left|V_{i}^{3}\right|\right| \leq 1$. Note that $n \leq(p-1)(k-1)+1$ because $\left\{u_{2}\right\}=V\left(D_{p-2}\right)$ and $\left|D_{i}\right| \leq k-1$ for all $i \neq p-2$. It follows that

$$
\begin{aligned}
\left|E_{b}\right| & >\sum_{i=1}^{p-4} e\left(G_{b}\left[V\left(D_{i}\right)\right]\right) \\
& \left.=\sum_{i=1}^{p-4}\left[e\left(G_{b}\left[V_{i}^{1}\right]\right)+e\left(G_{b}\left[V_{i}^{3}\right]\right)+e_{G_{b}}\left(V_{i}^{2}, V_{i}^{1} \cup V_{i}^{3}\right]\right)\right] \\
& \left.\geq\left\{\frac{1}{2}\left\lceil\frac{k-2}{2}\right\rceil\left(\left\lceil\frac{k-2}{2}\right\rceil-1\right)+\frac{1}{2}\left\lfloor\frac{k-2}{2}\right\rfloor\left(\left\lvert\, \frac{k-2}{2}\right.\right\rfloor-1\right)+k-2\right\}(p-4) \\
& \geq\left\{\frac{1}{2}\left\lceil\frac{k-2}{2}\right\rceil^{2}+\frac{1}{2}\left\lfloor\frac{k-2}{2}\right\rfloor^{2}+\frac{k-2}{2}\right\}\left(\frac{n-1}{k-1}-3\right) \\
& \geq\left(\frac{1}{2}\left\lceil\frac{k}{2}\right\rceil-\frac{1}{2}\right) n-\left(3 k^{2}-5 k+2\right) / 4 .
\end{aligned}
$$

Note that G_{r} is K_{4}-saturated and $\delta\left(G_{r}\right) \geq 4$. By Theorem 1.5.7, there exists a constant c such that $\left|E_{r}\right| \geq 4 n-c$. Therefore,

$$
e(G)=\left|E_{r}\right|+\left|E_{b}\right| \geq\left(\frac{7}{2}+\frac{1}{2}\left\lceil\frac{k}{2}\right\rceil\right) n-\left(3 k^{2}-5 k+2\right) / 4-c, \text { as desired. }
$$

This completes the proof of Theorem 1.4.9.

2.4 Proof of Theorem 1.4.10

Let $t \in\{4,5\}, k \geq 3$ and $n \geq(2 t-3)(k-1)+\lceil k / 2\rceil\lceil k / 2\rceil-1$. We will construct a $\left(K_{t}, \mathcal{T}_{k}\right)-$ co-critical graph on n vertices which yields the desired upper bound in Theorem 1.4.10.

Let r, s be the remainder and quotient of $n-(2 t-3)(k-1)$ when divided by $\lceil k / 2\rceil$, and let $A:=K_{k-1}$. For each $i \in[t-2]$, let $B_{i}:=K_{k-2}$ and $C_{i}:=K_{k-2}$. Let H_{1} be obtained from disjoint copies of $A, B_{1}, \ldots, B_{t-2}, C_{1}, \ldots, C_{t-2}$ by joining every vertex in B_{i} to all vertices in $A \cup C_{i} \cup B_{j}$ for each $i \in[t-2]$ and all $j \in[t-2]$ with $j \neq i$. Let $H_{2}:=(s-r) K_{\lceil k / 2\rceil} \cup r K_{\lceil k / 2\rceil+1}$ when $k \geq 4$, and $H_{2}:=s K_{2} \cup r K_{1}$ when $k=3$. Finally, let G be the graph obtained from $H:=H_{1} \cup H_{2}$ by adding $2 t-4$ new vertices $x_{1}, \ldots, x_{t-2}, y_{1}, \ldots, y_{t-2}$, and then, for each $i \in[t-2]$, joining: x_{i} to every vertex in $V(H)$ and all x_{j}; and y_{i} to every vertex in $V(H) \backslash V(A)$ and all x_{j}, where $j \in[t-2]$ with $j \neq i$. The construction of G when $t=4$ and $k \geq 4$ is depicted in Figure 2.1, and the construction of G when $t=5$ and $k \geq 4$ is depicted in Figure 2.2.

Figure 2.1: $\mathrm{A}\left(K_{4}, \mathcal{T}_{k}\right)$-co-critical graph for all $k \geq 4$

Figure 2.2: $\mathrm{A}\left(K_{5}, \mathcal{T}_{k}\right)$-co-critical graph for all $k \geq 4$

Let $\sigma: E(G) \rightarrow\{$ red, blue $\}$ be defined as follows: all edges in $A, B_{1}, \ldots, B_{t-2}, C_{1}, \ldots, C_{t-2}$ and H_{2} are colored blue; for every $i \in[t-2]$, all edges between x_{i} and B_{i} are colored blue and all edges between y_{i} and C_{i} are colored blue; the remaining edges of G are all colored red. Note that the $\{$ red, blue $\}$-coloring of G depicted in Figure 2.1 (resp. Figure 2.2) is σ when $t=4$ (resp. $t=5$) and $k \geq 4$. Clearly, σ is a critical-coloring of G. We next show that σ is the unique critical-coloring of G up to symmetry.

Let $X:=\left\{x_{1}, \ldots, x_{t-2}\right\}$ and $Y:=\left\{y_{1}, \ldots, y_{t-2}\right\}$. Let $\tau: E(G) \rightarrow\{$ red, blue $\}$ be an arbitrary critical-coloring of G. It suffices to show that $\tau=\sigma$ upon to symmetry. Let G_{r}^{τ} and G_{b}^{τ} be G_{r} and G_{b} under the coloring τ, respectively. Note that $G\left[V(A) \cup V\left(B_{1}\right) \cup \cdots \cup V\left(B_{t-2}\right) \cup X\right]=$ $K_{(t-1)(k-1)}$. By Lemma 2.1.1(a) and the fact that G_{r}^{τ} is K_{t}-free, $G_{b}^{\tau}\left[V(A) \cup V\left(B_{1}\right) \cup \cdots \cup V\left(B_{t-2}\right) \cup\right.$ $X]$ has exactly $t-1$ components, say D_{1}, \ldots, D_{t-1}, such that $V\left(D_{i}\right)$ is complete to $V\left(D_{j}\right)$ in G_{r}^{τ} for all $i, j \in[t-1]$ with $i \neq j$. Then each D_{i} is isomorphic to K_{k-1} in G_{b}^{τ} for all $i \in[t-1]$. Since every vertex in $V(A) \cup V\left(B_{1}\right) \cup \cdots \cup V\left(B_{t-2}\right) \cup X$ belongs to a blue K_{k-1} in G_{b}^{τ}, it follows
that: for each $i \in[t-2], y_{i}$ is complete to $V\left(B_{1}\right) \cup \cdots \cup V\left(B_{t-2}\right) \cup\left(X \backslash x_{i}\right)$ in G_{r}^{τ}; and $V\left(C_{i}\right)$ is complete to $V\left(B_{i}\right) \cup X$ in G_{r}^{τ}. We next prove three claims.

Claim 1. $A=D_{i}$ for some $i \in[t-1]$.

Proof. Suppose $A \neq D_{i}$ for all $i \in[t-1]$. Then for each $i \in[t-1],\left(V\left(B_{1}\right) \cup \cdots \cup V\left(B_{t-2}\right)\right) \cap$ $V\left(D_{i}\right) \neq \emptyset$. Let $d_{i} \in\left(V\left(B_{1}\right) \cup \cdots \cup V\left(B_{t-2}\right)\right) \cap V\left(D_{i}\right)$ for all $i \in[t-1]$. Then d_{1}, \ldots, d_{t-1} are pairwise distinct, and $G_{r}^{\tau}\left[\left\{d_{1}, \ldots, d_{t-1}\right\}\right]=K_{t-1}$. But then $G_{r}^{\tau}\left[\left\{d_{1}, \ldots, d_{t-1}, y_{1}\right\}\right]=K_{t}$, because y_{1} is complete to $V\left(B_{1}\right) \cup \cdots \cup V\left(B_{t-2}\right)$ in G_{r}^{τ}, a contradiction. This proves that $A=D_{i}$ for some $i \in[t-1]$.

By Claim 1, we may assume that $A=D_{t-1}$. Then $V(A)$ is complete to $V\left(B_{1}\right) \cup \cdots \cup V\left(B_{t-2}\right) \cup X$ in G_{r}^{τ}. For each $i \in[t-2]$, since G_{b}^{τ} is \mathcal{T}_{k}-free, there must exist a vertex $c_{i} \in V\left(C_{i}\right)$ such that c_{i} is adjacent to at most one vertex of Y in G_{b}^{τ}. Then c_{i} is adjacent to at least $t-3$ vertices of Y in G_{r}^{τ}. We next show that

Claim 2. For each $i \in[t-2],\left|X \cap V\left(D_{i}\right)\right|=1$.

Proof. Suppose $\left|X \cap V\left(D_{i}\right)\right| \neq 1$ for some $i \in[t-2]$. Since $|X|=t-2$, we may assume that $\left|X \cap V\left(D_{1}\right)\right| \geq 2$ and $X \cap V\left(D_{t-2}\right)=\emptyset$. We may further assume that $x_{1}, x_{2} \in V\left(D_{1}\right)$. Then $x_{1} x_{2} \in E_{b}$. Since $X \cap V\left(D_{t-2}\right)=\emptyset$ and for all $i \in[t-2],\left|V\left(B_{i}\right)\right|=k-2<k-1=\left|V\left(D_{t-2}\right)\right|$, we may assume that $V\left(B_{i}\right) \cap V\left(D_{t-2}\right) \neq \emptyset$ for $i \in[2]$. Let $b_{1} \in V\left(B_{1}\right) \cap V\left(D_{t-2}\right)$. We may assume that $c_{1} y_{i} \in E_{r}$ for some $i \in[2]$, because c_{1} is adjacent to at least $t-3$ vertices of Y in G_{r}^{τ}. If $t=4$, then $G_{r}^{\tau}\left[\left\{b_{1}, c_{1}, y_{i}, x_{3-i}\right\}\right]=K_{4}$, a contradiction. Thus $t=5$. We claim that $V\left(B_{1}\right) \cap V\left(D_{2}\right)=\emptyset$ and $V\left(B_{2}\right) \cap V\left(D_{2}\right)=\emptyset$. Suppose, say $V\left(B_{1}\right) \cap V\left(D_{2}\right) \neq \emptyset$. Let $b_{2} \in V\left(B_{1}\right) \cap V\left(D_{2}\right)$. Then $G_{r}^{\tau}\left[\left\{b_{1}, b_{2}, c_{1}, y_{i}, x_{3-i}\right\}\right]=K_{5}$, a contradiction. Thus $V\left(B_{1}\right) \cap V\left(D_{2}\right)=\emptyset$ and $V\left(B_{2}\right) \cap V\left(D_{2}\right)=\emptyset$. Then $V\left(D_{2}\right)=V\left(B_{3}\right) \cup\left\{x_{3}\right\}$. But then $G_{r}^{\tau}\left[\left\{b_{1}, c_{1}, y_{i}, x_{3-i}, x_{3}\right\}\right]=K_{5}$, a contradiction.

Claim 3. For each $i \in[t-2], V\left(B_{i}\right) \subseteq V\left(D_{j}\right)$ for some $j \in[t-2]$.

Proof. Suppose there exists an $i \in[t-2]$ such that $V\left(B_{i}\right) \nsubseteq V\left(D_{j}\right)$ for every $j \in[t-2]$. We may assume $i=1$. Since $V\left(B_{1}\right) \subseteq V\left(D_{1}\right) \cup \cdots \cup V\left(D_{t-2}\right)$, we see that $k-2=\left|B_{1}\right| \geq 2$. Thus $k \geq 4$. We claim that $V\left(B_{1}\right) \cap V\left(D_{j}\right)=\emptyset$ for some $j \in[t-2]$. Suppose $V\left(B_{1}\right) \cap V\left(D_{j}\right) \neq \emptyset$ for all $j \in[t-2]$. Let $d_{j} \in V\left(B_{1}\right) \cap V\left(D_{j}\right)$ for all $j \in[t-2]$. But then $G_{r}^{\tau}\left[\left\{d_{1}, \ldots, d_{t-2}, c_{1}, y_{\ell}\right\}\right]=K_{t}$, where $c_{1} y_{\ell} \in E_{r}$ for some $\ell \in[t-2]$, a contradiction. Thus $V\left(B_{1}\right) \cap V\left(D_{j}\right)=\emptyset$ for some $j \in[t-2]$, as claimed. We may assume that $V\left(B_{1}\right) \cap V\left(D_{t-2}\right)=\emptyset$. Since $V\left(B_{1}\right) \nsubseteq V\left(D_{j}\right)$ for every $j \in[t-2]$, it follows that $t=5, V\left(B_{1}\right) \subseteq V\left(D_{1}\right) \cup V\left(D_{2}\right)$, and $V\left(B_{1}\right) \cap V\left(D_{1}\right) \neq \emptyset$ and $V\left(B_{1}\right) \cap V\left(D_{2}\right) \neq \emptyset$. Let $d_{1} \in V\left(B_{1}\right) \cap V\left(D_{1}\right)$ and $d_{2} \in V\left(B_{1}\right) \cap V\left(D_{2}\right)$. By Claim 2, let $x_{i} \in X \cap V\left(D_{3}\right)$. Then $G_{r}^{\tau}\left[\left\{d_{1}, d_{2}, x_{i}, c_{1}, y_{j}\right\}\right]=K_{5}$, where $c_{1} y_{j} \in E_{r}$ for some $j \in[3]$ with $j \neq i$, a contradiction.

By Claim 2 and Claim 3, $V\left(B_{i}\right) \cup V\left(B_{j}\right) \nsubseteq D_{\ell}$ for any $i \neq j \in[t-2]$ and all $\ell \in[t-2]$. By symmetry, we may assume that $V\left(B_{i}\right) \subseteq V\left(D_{i}\right)$ for all $i \in[t-2]$. Then $V\left(B_{i}\right) \cup\left\{x_{j}\right\}=V\left(D_{i}\right)$ for some $j \in[t-2]$ since $\left|V\left(D_{i}\right)\right|=\left|V\left(B_{i}\right)\right|+1$ and $V\left(B_{1}\right) \cup \cdots \cup V\left(B_{t-2}\right) \cup X=V\left(D_{1}\right) \cup$ $\cdots \cup V\left(D_{t-2}\right)$. By symmetry, we may assume that $V\left(B_{i}\right) \cup\left\{x_{i}\right\}=V\left(D_{i}\right)$ for all $i \in[t-2]$. It follows that for all $i, j \in[t-2]$ with $i \neq j, B_{i}$ is complete to B_{j} in G_{r}^{τ}, x_{i} is complete to $X \backslash x_{i}$ and B_{j} in G_{r}^{τ}, y_{i} is complete to C_{i} in G_{b}^{τ}, y_{i} is complete to $C_{j} \cup\left(X \backslash x_{i}\right)$ in G_{r}^{τ}, x_{i} is complete to B_{i} in $G_{b}^{\tau},\left\{x_{i}, y_{i}\right\}$ is complete to H_{2} in G_{r}^{τ}, all edges in $A, B_{1}, \ldots, B_{t-2}, C_{1}, \ldots, C_{t-2}$ and H_{2} are colored blue under τ. This proves that $\tau=\sigma$ and thus σ is the unique critical-coloring of G upon to symmetry. It can be easily checked that adding any edge $e \in E(\bar{G})$ to G creates a red K_{t} if e is colored red, and a blue T_{k} if e is colored blue. Hence, G is $\left(K_{t}, \mathcal{T}_{k}\right)$-co-critical.

Note that $e_{G}(X \cup Y, V(G) \backslash(X \cup Y))=(t-2)(n-(2 t-4))+(t-2)(n-(2 t-4+k-1))=$ $(t-2)(2 n-4 t-k+9) ; e(G[X \cup Y])=\binom{t-2}{2}+(t-2)(t-3) ; e_{G}\left(V\left(B_{1}\right) \cup \cdots \cup V\left(B_{t-2}\right), V\left(C_{1}\right) \cup\right.$
$\left.\cdots \cup V\left(C_{t-2}\right)\right)=(t-2)(k-2)^{2} ; e\left(G\left[V\left(C_{1}\right) \cup \cdots \cup V\left(C_{t-2}\right)\right]\right)=(t-2)\binom{k-2}{2} ; e(G[V(A) \cup$ $\left.\left.V\left(B_{1}\right) \cup \cdots \cup V\left(B_{t-2}\right)\right]\right)=\binom{(t-2)(k-2)+k-1}{2}$. Using the facts that $s\lceil k / 2\rceil+r=n-(2 t-3)(k-1)$ and $r \leq\lceil k / 2\rceil-1$, we see that

$$
\begin{aligned}
e(G)= & (t-2)(2 n-4 t-k+9)+\binom{t-2}{2}+(t-2)(t-3)+(t-2)(k-2)^{2} \\
& +(t-2)\binom{k-2}{2}+\binom{(t-2)(k-2)+k-1}{2}+(s-r)\binom{k / 2\rceil}{ 2}+r\binom{\lceil k / 2\rceil+1}{2} \\
= & (2 t-4) n-(t-2) k-\frac{1}{2}(t-2)(5 t-9) \\
& +(k-2)((t-2)(k-2)+(t-2)(k-3) / 2+(t-1)(t k-k-2 t+3) / 2) \\
& +\frac{s-r}{2}\left\lceil\frac{k}{2}\right\rceil\left(\left\lceil\frac{k}{2}\right\rceil-1\right)+\frac{r}{2}\left\lceil\frac{k}{2}\right\rceil\left(\left\lceil\frac{k}{2}\right\rceil+1\right) \\
= & (2 t-4) n-(t-2) k-\frac{1}{2}(t-2)(5 t-9)+\frac{1}{2}(k-2)\left(\left(t^{2}+t-5\right) k-2 t^{2}-2 t+11\right) \\
& +\frac{1}{2}\left(\left\lceil\frac{k}{2}\right\rceil-1\right)\left(s\left\lceil\frac{k}{2}\right\rceil+r\right)+\frac{r}{2}\left(\left\lceil\frac{k}{2}\right\rceil+1\right) \\
\leq & (2 t-4) n+\frac{1}{2}\left(\left(t^{2}+t-5\right) k^{2}-\left(4 t^{2}+6 t-25\right) k-t^{2}+23 t-40\right) \\
& +\frac{1}{2}\left(\left\lceil\frac{k}{2}\right\rceil-1\right)(n-(2 t-3)(k-1))+\frac{1}{2}\left(\left\lceil\frac{k}{2}\right\rceil-1\right)\left(\left\lceil\frac{k}{2}\right\rceil+1\right) \\
= & \left(\frac{4 t-9}{2}+\frac{1}{2}\left\lceil\frac{k}{2}\right\rceil\right) n+\frac{1}{2}\left(t^{2}+t-5\right) k^{2}-\left(2 t^{2}+2 t-11\right) k \\
& -\frac{(t-2)(t-19)}{2}-\frac{1}{2}\left\lceil\frac{k}{2}\right\rceil\left((2 t-3)(k-1)-\left\lceil\frac{k}{2}\right\rceil\right) \\
= & \left(\frac{4 t-9}{2}+\frac{1}{2}\left\lceil\frac{k}{2}\right\rceil\right) n+C(t, k),
\end{aligned}
$$

where $C(t, k)=\frac{1}{2}\left(t^{2}+t-5\right) k^{2}-\left(2 t^{2}+2 t-11\right) k-\frac{(t-2)(t-19)}{2}-\frac{1}{2}\left\lceil\frac{k}{2}\right\rceil\left((2 t-3)(k-1)-\left\lceil\frac{k}{2}\right\rceil\right)$.
This completes the proof of Theorem 1.4.10.

CHAPTER 3: GALLAI-RAMSEY NUMBERS OF EVEN CYCLES AND PATHS

3.1 Proofs of Proposition 1.6.13 and Proposition 1.6.15

For all $n \geq 3$ and $k \geq 1$, let $G_{n-1} \in\left\{C_{2 n}, P_{2 n+1}\right\}, G_{i}:=P_{2 i+3}$ for all $i \in\{0,1, \ldots, n-2\}$, and $i_{j} \in\{0,1, \ldots, n-1\}$ for all $j \in[k]$. We want to determine the exact values of $G R\left(G_{i_{1}}, G_{i_{2}}, \ldots, G_{i_{k}}\right)$. By reordering colors if necessary, we assume that $i_{1} \geq i_{2} \geq \cdots \geq i_{k}$. Let $n^{*}:=n$ when $G_{i_{1}} \neq P_{2 n+1}$ and $n^{*}:=n+1$ when $G_{i_{1}}=P_{2 n+1}$. The construction for establishing a lower bound for $G R\left(G_{i_{1}}, G_{i_{2}}, \ldots, G_{i_{k}}\right)$ for all $n \geq 3$ and $k \geq 1$ is similar to the construction given by Erdős, Faudree, Rousseau and Schelp in 1976 (see Section 2 in [31]) for classical Ramsey numbers of even cycles and paths. We recall their construction in the proof of Proposition 1.6.13 below (see Figure 3.1).

Figure 3.1: A lower bound construction for $G R\left(G_{i_{1}}, G_{i_{2}}, \ldots, G_{i_{k}}\right)$

Proof of Proposition 1.6.13: By Theorems 1.3.3, 1.3.4 and 1.3.5, the statement is true when $k=2$. So we may assume that $k \geq 3$. To show that $G R\left(G_{i_{1}}, \ldots, G_{i_{k}}\right) \geq\left|G_{i_{1}}\right|+\sum_{j=2}^{k} i_{j}$, we recall the construction given in [31]. Let G be a complete graph on $\left(\left|G_{i_{1}}\right|-1\right)+\sum_{j=2}^{k} i_{j}$ vertices. Let
V_{1}, \ldots, V_{k} be a partition of $V(G)$ such that $\left|V_{1}\right|=\left|G_{i_{1}}\right|-1$ and $\left|V_{j}\right|=i_{j}$ for all $j \in\{2,3, \ldots, k\}$. Let c be a k-edge-coloring of G by first coloring all the edges of $G\left[V_{j}\right]$ by color j for all $j \in[k]$, and then coloring all the edges between V_{j+1} and $\bigcup_{\ell=1}^{j} V_{\ell}$ by color $j+1$ for all $j \in[k-1]$. Then G contains neither a rainbow triangle nor a monochromatic copy of $G_{i_{j}}$ in color j for all $j \in[k]$ under c. Hence, $G R\left(G_{i_{1}}, \ldots, G_{i_{k}}\right) \geq|G|+1=\left|G_{i_{1}}\right|+\sum_{j=2}^{k} i_{j}$, as desired.

Proof of Proposition 1.6.15: By the assumed truth of Conjecture 1.6 .14 for $G_{n-1}=C_{2 n}$, we may assume that $G_{i_{1}}=P_{2 n+1}$. Then $i_{1}=n-1$. We may further assume that $n-1=i_{1}=\cdots=i_{t}>$ $i_{t+1} \geq \cdots \geq i_{k}$, where $t \in[k]$. By Proposition 1.6.13, $G R\left(G_{i_{1}}, \ldots, G_{i_{k}}\right) \geq(2 n+1)+\sum_{j=2}^{k} i_{j}=$ $2+n+t(n-1)+\sum_{j=t+1}^{k} i_{j}$. We next show that $G R\left(G_{i_{1}}, \ldots, G_{i_{k}}\right) \leq 2+n+t(n-1)+\sum_{j=t+1}^{k} i_{j}$.

Let G be a complete graph on $2+n+t(n-1)+\sum_{j=t+1}^{k} i_{j}$ vertices and let $c: E(G) \rightarrow[k]$ be any Gallai coloring of G. Suppose G does not contain a monochromatic copy of $G_{i_{j}}$ in color j for all $j \in[k]$. By the assumed truth of Conjecture 1.6 .14 for $G_{n-1}=C_{2 n}$, $G R\left(C_{2 n}, \ldots, C_{2 n}, G_{i_{t+1}}, \ldots, G_{i_{k}}\right)=2 n+(t-1)(n-1)+\sum_{j=t+1}^{k} i_{j}=1+n+t(n-1)+\sum_{j=t+1}^{k} i_{j}$. Thus G must contain a monochromatic copy of $H:=C_{2 n}$ in some color $\ell \in[t]$ under c. We may assume that $\ell=1$. Then for every vertex $u \in V(G) \backslash V(H)$, all the edges between u and $V(H)$ must be colored by exactly one color j for some $j \in\{2, \ldots, k\}$, because G contains neither a rainbow triangle nor a monochromatic copy of $P_{2 n+1}$ in color 1 under c. Thus, $V(G) \backslash V(H)$ can be partitioned into $V_{2}, V_{3}, \ldots, V_{k}$ such that all the edges between V_{j} and $V(H)$ are colored by color j for all $j \in\{2, \ldots, k\}$. It follows that for all $j \in\{2, \ldots, k\},\left|V_{j}\right| \leq i_{j}$, because G does not contain a monochromatic copy of $G_{i_{j}}$ in color j. But then $|G|=|H|+\sum_{j=2}^{k}\left|V_{j}\right| \leq 2 n+\sum_{j=2}^{k} i_{j}=$ $1+n+t(n-1)+\sum_{j=t+1}^{k} i_{j}$, contrary to $|G|=2+n+t(n-1)+\sum_{j=t+1}^{k} i_{j}$.

3.2 Proof of Theorem 1.6.16

In this section, we prove Theorem 1.6.16 which shows that Conjecture 1.6.14 is true for $n \in\{3,4\}$ and all $k \geq 2$.

Proof. Let $n \in\{3,4\}$ and $k \geq 2$. By Proposition 1.6.13, it suffices to show that $G R\left(G_{i_{1}}, \ldots, G_{i_{k}}\right) \leq\left|G_{i_{1}}\right|+\sum_{j=2}^{k} i_{j}$.

By Theorem 1.3.3, Theorem 1.3.4 and Theorem 1.3.5, $G R\left(G_{i_{1}}, G_{i_{2}}\right)=R\left(G_{i_{1}}, G_{i_{2}}\right)=\left|G_{i_{1}}\right|+i_{2}$. We may assume that $k \geq 3$. Let $N:=\left|G_{i_{1}}\right|+\sum_{j=2}^{k} i_{j}$. Since $G R_{k}\left(P_{3}\right)=3$, we may assume that $i_{1} \geq 1$ and so $N \geq 2 i_{1}+3 \geq 5$. Let G be a complete graph on N vertices and let $c: E(G) \rightarrow[k]$ be any Gallai coloring of G such that all the edges of G are colored by at least three colors under c. We next show that G contains a monochromatic copy of $G_{i_{j}}$ in color j for some $j \in[k]$. Suppose G contains no monochromatic copy of $G_{i_{j}}$ in color j for any $j \in[k]$ under c. Such a Gallai k coloring c is called a bad coloring. Among all complete graphs on N vertices with a bad coloring, we choose G with N minimum.

Consider a Gallai partition of G with parts A_{1}, \ldots, A_{p}, where $p \geq 2$. We may assume that $\left|A_{1}\right| \geq$ $\cdots \geq\left|A_{p}\right| \geq 1$. Let \mathcal{R} be the reduced graph of G with vertices a_{1}, \ldots, a_{p}, where $a_{i} \in A_{i}$ for all $i \in[p]$. By Theorem 1.6.2, we may assume that every edge of \mathcal{R} is colored either red or blue. Since all the edges of G are colored by at least three colors under c, we see that $\mathcal{R} \neq G$ and so $\left|A_{1}\right| \geq 2$. By abusing the notation, we use i_{b} to denote i_{j} when the color j is blue. Similarly, we use i_{r} (resp. i_{g}) to denote i_{j} when the color j is red (resp. green). Let

$$
\begin{aligned}
& A_{r}:=\left\{a_{j} \in\left\{a_{2}, \ldots, a_{p}\right\} \mid a_{j} a_{1} \text { is colored red in } \mathcal{R}\right\} \text { and } \\
& A_{b}:=\left\{a_{i} \in\left\{a_{2}, \ldots, a_{p}\right\} \mid a_{i} a_{1} \text { is colored blue in } \mathcal{R}\right\} .
\end{aligned}
$$

Let $R:=\bigcup_{a_{j} \in A_{r}} A_{j}$ and $B:=\bigcup_{a_{i} \in A_{b}} A_{i}$. Then $\left|A_{1}\right|+|R|+|B|=|G|=N$ and $\max \{|B|,|R|\} \neq$ 0 because $p \geq 2$. Thus G contains a blue P_{3} between B and A_{1} or a red P_{3} between R and A_{1}, and so $\max \left\{i_{b}, i_{r}\right\} \geq 1$. We next prove several claims.

Claim 1. Let $r \in[k]$ and let s_{1}, \ldots, s_{r} be nonnegative integers with $s_{1}+\cdots+s_{r} \geq 1$. If $i_{j_{1}} \geq s_{1}, \ldots, i_{j_{r}} \geq s_{r}$ for colors $j_{1}, j_{2}, \ldots, j_{r} \in[k]$, then for any $S \subseteq V(G)$ with $|S| \geq N-\left(s_{1}+\right.$ $\left.\cdots+s_{r}\right), G[S]$ must contain a monochromatic copy of $G_{i_{j_{q}}^{*}}$ in color j_{q} for some $j_{q} \in\left\{j_{1}, \ldots, j_{r}\right\}$, where $i_{j_{q}}^{*}=i_{j_{q}}-s_{q}$.

Proof. Let $i_{j_{1}}^{*}:=i_{j_{1}}-s_{1}, \ldots, i_{j_{r}}^{*}:=i_{j_{r}}-s_{r}$, and $i_{j}^{*}:=i_{j}$ for all $j \in[k] \backslash\left\{j_{1}, \ldots, j_{r}\right\}$. Let $i_{\ell}^{*}:=\max \left\{i_{j}^{*}: j \in[k]\right\}$. Then $i_{\ell}^{*} \leq i_{1}$. Let $N^{*}:=\left|G_{i_{\ell}^{*}}\right|+\left[\left(\sum_{j=1}^{k} i_{j}^{*}\right)-i_{\ell}^{*}\right]$. Then $N^{*} \geq 3$ and $N^{*} \leq N-\left(s_{1}+\cdots+s_{r}\right)<N$ because $s_{1}+\cdots+s_{r} \geq 1$. Since $|S| \geq N-\left(s_{1}+\cdots+s_{r}\right) \geq N^{*}$ and $G[S]$ does not have a monochromatic copy of $G_{i_{j}}$ in color j for all $j \in[k] \backslash\left\{j_{1}, \ldots, j_{r}\right\}$ under c, by minimality of $N, G[S]$ must contain a monochromatic copy of $G_{i_{j_{q}}^{*}}$ in color j_{q} for some $j_{q} \in\left\{j_{1}, \ldots, j_{r}\right\}$.

Claim 2. $\left|A_{1}\right| \leq n-1$ and so G does not contain a monochromatic copy of a graph on $\left|A_{1}\right|+1 \leq n$ vertices in any color $m \in[k]$ that is neither red nor blue.

Proof. Suppose $\left|A_{1}\right| \geq n$. We first claim that $i_{b} \geq|B|$ and $i_{r} \geq|R|$. Suppose $i_{b} \leq|B|-1$ or $i_{r} \leq|R|-1$. Then we obtain a blue $G_{i_{b}}$ using the edges between B and A_{1} or a red $G_{i_{r}}$ using the edges between R and A_{1}, a contradiction. Thus $i_{b} \geq|B|$ and $i_{r} \geq|R|$, as claimed. Let $i_{b}^{*}:=i_{b}-|B|$ and $i_{r}^{*}:=i_{r}-|R|$. Since $\left|A_{1}\right|=N-|B|-|R|$, by Claim 1 applied to $i_{b} \geq|B|$, $i_{r} \geq|R|$ and $A_{1}, G\left[A_{1}\right]$ must have a blue $G_{i_{b}^{*}}$ or a red $G_{i_{r}^{*}}$, say the latter. Then $i_{r}>i_{r}^{*}$. Thus
$|R|>0$ and $G_{i_{r}^{*}}$ is a red path on $2 i_{r}^{*}+3$ vertices. Note that

$$
\begin{aligned}
\left|A_{1}\right| & =\left|G_{i_{1}}\right|+\sum_{j=2}^{k} i_{j}-|B|-|R| \\
& \geq \begin{cases}\left|G_{i_{r}}\right|+i_{b}-|B|-|R| & \text { if } i_{r} \geq i_{b} \\
\left|G_{i_{b}}\right|+i_{r}-|B|-|R| & \text { if } i_{r}<i_{b},\end{cases} \\
& \geq \begin{cases}\left|G_{i_{r}}\right|+i_{b}^{*}-|R| & \text { if } i_{r} \geq i_{b} \\
2 i_{b}+2+i_{r}-|B|-|R| \geq i_{b}^{*}+\left(2 i_{r}+3\right)-|R| & \text { if } i_{r}<i_{b},\end{cases} \\
& \geq \mid G_{i_{r}|-|R| .}
\end{aligned}
$$

Then

$$
\begin{aligned}
\left|A_{1}\right|-\left|G_{i_{r}^{*}}\right| & \geq\left|G_{i_{r}}\right|-\left|G_{i_{r}^{*}}\right|-|R| \\
& = \begin{cases}\left(3+2 i_{r}\right)-\left(3+2 i_{r}^{*}\right)-|R|=|R| & \text { if } i_{r} \leq n-2 \\
\left(2+2 i_{r}\right)-\left(3+2 i_{r}^{*}\right)-|R|=|R|-1 & \text { if } i_{r}=n-1\end{cases}
\end{aligned}
$$

But then $G\left[A_{1} \cup R\right]$ contains a red $G_{i_{r}}$ using the edges of the $G_{i_{r}^{*}}$ and the edges between $A_{1} \backslash V\left(G_{i_{r}^{*}}\right)$ and R, a contradiction. This proves that $\left|A_{1}\right| \leq n-1$. Next, let $m \in[k]$ be any color that is neither red nor blue. Suppose G contains a monochromatic copy of a graph, say J, on $\left|A_{1}\right|+1$ vertices in color m. Then $V(J) \subseteq A_{\ell}$ for some $\ell \in[p]$. But then $\left|A_{\ell}\right| \geq\left|A_{1}\right|+1$, contrary to $\left|A_{1}\right| \geq\left|A_{\ell}\right|$.

For two disjoint sets $U, W \subseteq V(G)$, we say U is blue-complete (resp. red-complete) to W if all the edges between U and W are colored blue (resp. red) under c. For convenience, we say u is blue-complete (resp. red-complete) to W when $U=\{u\}$.

Claim 3. $\min \{|B|,|R|\} \geq 1, p \geq 3$ and B is neither red- nor blue-complete to R under c.

Proof. Suppose $B=\emptyset$ or $R=\emptyset$. By symmetry, we may assume that $R=\emptyset$. Then $B \neq \emptyset$ and so $i_{b} \geq 1$. By Claim 2, $\left|A_{1}\right| \leq n-1 \leq 3$ because $n \in\{3,4\}$. Then $\left|A_{1}\right| \leq i_{b}+2$. If $i_{b} \leq\left|A_{1}\right|-1$, then $i_{b} \leq n-2$ by Claim 2. Thus $G_{i_{b}}$ is a blue path on $2 i_{b}+3$ and so

$$
|B|=N-\left|A_{1}\right| \geq\left|G_{i_{b}}\right|-\left|A_{1}\right|= \begin{cases}i_{b}+1 & \text { if }\left|A_{1}\right|=i_{b}+2 \\ i_{b}+2 & \text { if }\left|A_{1}\right|=i_{b}+1\end{cases}
$$

But then we obtain a blue $G_{i_{b}}$ using the edges between B and A_{1}. Thus $i_{b} \geq\left|A_{1}\right|$. Let $i_{b}^{*}:=$ $i_{b}-\left|A_{1}\right|$. By Claim 1 applied to $i_{b} \geq\left|A_{1}\right|$ and $B, G[B]$ must have a blue $G_{i_{b}^{*}}$. Since
$|B|-\left|G_{i_{b}^{*}}\right| \geq\left|G_{i_{b}}\right|-\left|G_{i_{b}^{*}}\right|-\left|A_{1}\right|= \begin{cases}\left(3+2 i_{b}\right)-\left(3+2 i_{b}^{*}\right)-\left|A_{1}\right|=\left|A_{1}\right| \quad & \text { if } i_{b} \leq n-2 \\ \left(2+2 i_{b}\right)-\left(3+2 i_{b}^{*}\right)-\left|A_{1}\right|=\left|A_{1}\right|-1 & \text { if } i_{b}=n-1,\end{cases}$
we see that G contains a blue $G_{i_{b}}$ using the edges of the $G_{i_{b}^{*}}$ and the edges between $B \backslash V\left(G_{i_{b}^{*}}\right)$ and A_{1}, a contradiction. Hence $R \neq \emptyset$ and so $p \geq 3$ for any Gallai partition of G. It follows that B is neither red- nor blue-complete to R, otherwise $\left\{B, R \cup A_{1}\right\}$ or $\left\{B \cup A_{1}, R\right\}$ yields a Gallai partition of G with only two parts.

Claim 4. Let $m \in[k]$ be a color that is neither red nor blue. Then $i_{m} \leq 1$. In particular, if $i_{m}=1$, then $n=4$ and G contains a monochromatic copy of P_{3} in color m under c.

Proof. By Claim 2, G contains no monochromatic copy of P_{n} in color m under c. Suppose $i_{m} \geq 1$. Let $i_{m}^{*}:=i_{m}-1$. By Claim 1 applied to $i_{m} \geq 1$ and $V(G), G$ must have a monochromatic copy of $G_{i_{m}^{*}}$ in color m under c. Since $n \in\{3,4\}$ and G contains no monochromatic copy of P_{n} in color m, we see that $n=4$ and $i_{m}^{*}=0$. Thus $i_{m}=1$ and G contains a monochromatic copy of P_{3} in color m under c.

By Claim 3, $B \neq \emptyset$ and $R \neq \emptyset$. Since $\left|A_{1}\right| \geq 2$, we see that G has a blue P_{3} using edges between B and A_{1}, and a red P_{3} using edges between R and A_{1}. Thus $i_{b} \geq 1$ and $i_{r} \geq 1$. Then $\left|G_{i_{1}}\right| \geq 5$ and so $N=\left|G_{i_{1}}\right|+\sum_{j=2}^{k} i_{j} \geq 6$. By Claim 2, $\left|A_{1}\right| \leq n-1$. If $|B|=|R|=1$, then $N=\left|A_{1}\right|+|B|+|R| \leq n+1 \leq 5$, a contradiction. Thus $|B| \geq 2$ or $|R| \geq 2$. Since B is neither red- nor blue-complete to R, we see that G contains either a blue P_{5} or a red P_{5}. Thus $i_{1} \geq \max \left\{i_{b}, i_{r}\right\} \geq 2 \geq n-2$ because $n \in\{3,4\}$. By Claim 4, we may assume that $\left\{i_{b}, i_{r}\right\}=\left\{i_{1}, i_{2}\right\}$. Then

$$
\left|G_{i_{1}}\right|= \begin{cases}2 i_{1}+2=1+n+i_{1} & \text { if } i_{1}=n-1 \\ 2 i_{1}+3=1+n+i_{1} & \text { if } i_{1}=n-2\end{cases}
$$

Therefore $N=\left|G_{i_{1}}\right|+\sum_{j=2}^{k} i_{j}=1+n+\sum_{j=1}^{k} i_{j} \geq 1+n+i_{b}+i_{r}$.

Claim 5. $|B| \leq n-1$ or $|R| \leq n-1$.

Proof. Suppose $|B| \geq n$ and $|R| \geq n$. Let $H=(B, R)$ be the complete bipartite graph obtained from $G[B \cup R]$ by deleting all the edges with both ends in B or both ends in R. Then H has no blue $P_{2 n-3}$ with both ends in B, else, we obtain a blue $C_{2 n}$ because $\left|A_{1}\right| \geq 2$. Similarly, H has no red $P_{2 n-3}$ with both ends in R. For every vertex $v \in B \cup R$, let $d_{b}(v):=\mid\{u: u v$ is colored blue in $H\} \mid$ and $d_{r}(v):=\mid\{u: u v$ is colored red in $H\} \mid$. Let $x_{1}, \ldots, x_{n} \in B, y_{1}, \ldots, y_{n} \in R$ and $a_{1}, a_{1}^{*} \in A_{1}$ be all distinct. We next claim that $d_{r}(v) \leq n-2$ for all $v \in B$. Suppose, say, $d_{r}\left(x_{1}\right) \geq n-1$. Then $n=4$ because H has no red $P_{2 n-3}$ with both ends in R. We may assume that x_{1} is red-complete to $\left\{y_{1}, y_{2}, y_{3}\right\}$. Since H has no red P_{5} with both ends in R, we see that for all $i \in\{2,3,4\}$ and every $W \subseteq\left\{y_{1}, y_{2}, y_{3}\right\}$ with $|W|=2$, no x_{i} is red-complete to W. We may further assume that $x_{2} y_{1}, x_{2} y_{2}, x_{3} y_{1}$ are colored blue. Then $x_{4} y_{2}$ must be colored red, else, H has a blue P_{5} with vertices $x_{3}, y_{1}, x_{2}, y_{2}, x_{4}$ in order. Thus $x_{4} y_{1}, x_{4} y_{3}$ are colored blue. But then H has a blue P_{5} with
vertices $x_{2}, y_{2}, x_{3}, y_{1}, x_{4}$ in order (when $x_{3} y_{2}$ is colored blue) or vertices $x_{2}, y_{1}, x_{3}, y_{3}, x_{4}$ in order (when $x_{3} y_{3}$ is colored blue), a contradiction. Thus $d_{r}(v) \leq n-2$ for all $v \in B$. Similarly, $d_{b}(u) \leq$ $n-2$ for all $u \in R$. Then $|B||R|=|E(H)|=\sum_{v \in B} d_{r}(v)+\sum_{u \in R} d_{b}(u) \leq(n-2)|B|+(n-2)|R|$. Using inequality of arithmetic and geometric means, we obtain that $n=4,|B|=|R|=4$ and $d_{r}(v)=d_{b}(v)=2$ for each $v \in B \cup R$. Thus the set of all the blue edges in H induces a 2-regular spanning subgraph of H. Since H has no blue C_{8}, we see that H must contain two vertex-disjoint copies of blue C_{4}. We may assume that y_{1} is blue-complete to $\left\{x_{1}, x_{2}\right\}$ and y_{2} is blue-complete to $\left\{x_{3}, x_{4}\right\}$. But then G contains a blue C_{8} with vertices $a_{1}, x_{1}, y_{1}, x_{2}, a_{1}^{*}, x_{3}, y_{2}, x_{4}$ in order, a contradiction.

Claim 6. $\left|A_{1}\right|=3$ and $n=4$.

Proof. By Claim 2, $\left|A_{1}\right| \leq n-1 \leq 3$ because $n \in\{3,4\}$. Note that $\left|A_{1}\right|=3$ only when $n=4$. Suppose $\left|A_{1}\right|=2$. By Claim 2, G has no monochromatic copy of P_{3} in color j for any $j \in\{3, \ldots, k\}$ under c. By Claim $4, i_{3}=\cdots=i_{k}=0$ and so $N=1+n+\sum_{j=1}^{k} i_{j}=1+n+i_{b}+i_{r}$. We may assume that A_{1}, \ldots, A_{t} are all the parts of order two in the Gallai partition A_{1}, \ldots, A_{p} of G, where $t \in[p]$. Let $A_{i}:=\left\{a_{i}, b_{i}\right\}$ for all $i \in[t]$. By reordering if necessary, each of A_{1}, \ldots, A_{t} can be chosen as the largest part in the Gallai partition A_{1}, \ldots, A_{p} of G. For all $i \in[t]$, let

$$
\begin{aligned}
A_{b}^{i} & :=\left\{a_{j} \in V(\mathcal{R}) \mid a_{j} a_{i} \text { is colored blue in } \mathcal{R}\right\} \text { and } \\
A_{r}^{i} & :=\left\{a_{j} \in V(\mathcal{R}) \mid a_{j} a_{i} \text { is colored red in } \mathcal{R}\right\} .
\end{aligned}
$$

Let $B^{i}:=\bigcup_{a_{j} \in A_{b}^{i}} A_{j}$ and $R^{i}:=\bigcup_{a_{j} \in A_{r}^{i}} A_{j}$. Then $\left|B^{i}\right|+\left|R^{i}\right|=N-\left|A_{1}\right|=n+i_{b}+i_{r}-1 \geq n+2$, because $\max \left\{i_{b}, i_{r}\right\} \geq 2$ and $\min \left\{i_{b}, i_{r}\right\} \geq 1$. Since each of $A_{1}, \ldots, A_{t} \dagger$ can be chosen as the largest part in the Gallai partition A_{1}, \ldots, A_{p} of G, \dagger by Claim 5, either $\left|B^{i}\right| \leq n-1$ or $\left|R^{i}\right| \leq n-1$ for all $i \in[t]$. We claim that $\left|B^{i}\right| \neq\left|R^{i}\right|$ for all $i \in[t]$. Suppose $\left|B^{i}\right|=\left|R^{i}\right|$ for some $i \in[t]$. By Claim 5, $n+2 \leq\left|B^{i}\right|+\left|R^{i}\right| \leq 2(n-1) \leq 6$. It follows that $\left|B^{i}\right|=\left|R^{i}\right|=3$ and $n=4$. Thus G
has a blue P_{5} between B^{i} and A_{i} and a red P_{5} between R^{i} and A_{i}. It follows that $\min \left\{i_{b}, i_{r}\right\} \geq 2$. But then $\left|B^{i}\right|+\left|R^{i}\right|=n+i_{b}+i_{r}-1 \geq 7$, a contradiction. This proves that $\left|B^{i}\right| \neq\left|R^{i}\right|$ for all $i \in[t]$. Let

$$
E_{B}:=\left\{a_{i} b_{i} \mid i \in[t] \text { and }\left|R^{i}\right|<\left|B^{i}\right|\right\} \text { and } E_{R}:=\left\{a_{i} b_{i} \mid i \in[t] \text { and }\left|R^{i}\right|>\left|B^{i}\right|\right\} .
$$

We next apply the recoloring method. Let c^{*} be an edge-coloring of G obtained from c by recoloring all the edges in E_{B} blue and all the edges in E_{R} red. Then every edge of G is colored either red or blue under c^{*}. Since $|G|=1+n+i_{b}+i_{r} \geq R\left(G_{i_{b}}, G_{i_{r}}\right)$ by Theorem 1.3.3, Theorem 1.3.4 and Theorem 1.3.5, we see that G must contain a blue $G_{i_{b}}$ or a red $G_{i_{r}}$ under c^{*}. By symmetry, we may assume that G has a blue $H:=G_{i_{b}}$ under c^{*}. Then H contains no edges of E_{R} but must contain at least one edge of E_{B}, else, we obtain a blue $G_{i_{b}}$ in G under c. We choose H so that $\left|E(H) \cap E_{B}\right|$ is minimal. We may further assume that $a_{1} b_{1} \in E(H)$. By the choice of $c^{*},\left|R^{1}\right| \leq n-1$ and $\left|R^{1}\right|<\left|B^{1}\right|$. Then $\left|B^{1}\right| \geq 2$ and so G has a blue P_{5} under c because B^{1} is not red-complete to R^{1}. Thus $i_{b} \geq 2$. Let $W:=V(G) \backslash V(H)$.

We next claim that $i_{b}=n-1$. Suppose $2 \leq i_{b} \leq n-2$. Then $n=4, i_{b}=2, H=P_{7}$ and $|G|=1+n+i_{b}+i_{r}=7+i_{r}$. Thus $|W|=i_{r}$. Let x_{1}, \ldots, x_{7} be the vertices of H in order. By symmetry, we may assume that $x_{\ell} x_{\ell+1}=a_{1} b_{1}$ for some $\ell \in[3]$. Then $W \cup\left\{x_{7}\right\}$ must be red-complete to $\left\{a_{1}, b_{1}\right\}$ under c, else, say a vertex $u \in W \cup\left\{x_{7}\right\}$, is blue-complete to $\left\{a_{1}, b_{1}\right\}$ under c, then we obtain a blue $H^{\prime}:=P_{7}$ under c^{*} with vertices $x_{1}, \ldots, x_{\ell}, u, x_{\ell+1}, \ldots, x_{6}$ in order such that $\left|E\left(H^{\prime}\right) \cap E_{B}\right|<\left|E(H) \cap E_{B}\right|$, contrary to the choice of H. Thus $W \cup\left\{x_{7}\right\} \subseteq R^{1}$ and so $\left|R^{1}\right| \geq\left|W \cup\left\{x_{7}\right\}\right|=i_{r}+1 \geq 2$. Note that G contains a red P_{5} under c because $\left|R^{1}\right| \geq 2$ and R^{1} is not blue-complete to B^{1}. Thus $i_{r} \geq 2$. Then $3 \leq i_{r}+1 \leq\left|R^{1}\right| \leq 3$, which implies that $i_{r}=2$ and $R^{1}=W \cup\left\{x_{7}\right\}$. Thus $\left\{a_{1}, b_{1}\right\}$ is blue-complete to $V(H) \backslash\left\{x_{\ell}, x_{\ell+1}, x_{7}\right\}$. But then we obtain a blue $H^{\prime}:=P_{7}$ under c^{*} with vertices $x_{1}, \ldots, x_{\ell}, x_{\ell+2}, x_{\ell+1}, x_{\ell+3}, \ldots, x_{7}$ in order such
that $\left|E\left(H^{\prime}\right) \cap E_{B}\right|<\left|E(H) \cap E_{B}\right|$, a contradiction. This proves that $i_{b}=n-1$.

Since $i_{b}=n-1$, we see that $H=C_{2 n}$. Then $|G|=1+n+i_{b}+i_{r}=2 n+i_{r}$ and so $|W|=i_{r}$. Let $a_{1}, x_{1}, \ldots, x_{2 n-2}, b_{1}$ be the vertices of H in order and let $W=V(G) \backslash V(H):=\left\{w_{1}, \ldots, w_{i_{r}}\right\}$. Then $x_{1} b_{1}$ and $a_{1} x_{2 n-2}$ are colored blue under c because $\left\{a_{1}, b_{1}\right\}=A_{1}$. Suppose $\left\{x_{j}, x_{j+1}\right\}$ is blue-complete to $\left\{a_{1}, b_{1}\right\}$ under c for some $j \in[2 n-3]$. Then G has a blue $H^{\prime}:=C_{2 n}$ under c^{*} with vertices $a_{1}, x_{1}, \ldots, x_{j}, b_{1}, x_{2 n-2}, \ldots, x_{j+1}$ in order such that $\left|E\left(H^{\prime}\right) \cap E_{B}\right|<\mid E(H) \cap$ $E_{B} \mid$, contrary to the choice of H. Thus, for all $j \in[2 n-3],\left\{x_{j}, x_{j+1}\right\}$ is not blue-complete to $\left\{a_{1}, b_{1}\right\}$. Since $\left\{x_{1}, x_{2 n-2}\right\}$ is blue-complete to $\left\{a_{1}, b_{1}\right\}$ under c, we see that $x_{2}, x_{2 n-3} \in R^{1}$ and then $\left|R^{1} \cap\left\{x_{2}, \ldots, x_{2 n-3}\right\}\right|=\left|R^{1}\right|=n-1$. Thus $R^{1}=\left\{x_{2}, x_{3}\right\}$ when $n=3$. By symmetry, we may assume that $R^{1}=\left\{x_{2}, x_{3}, x_{5}\right\}$ when $n=4$. Then $W \subseteq B^{1}$. Thus R^{1} is red-complete to $\left\{a_{1}, b_{1}\right\}$ and W is blue-complete to $\left\{a_{1}, b_{1}\right\}$ under c. It follows that for any $w_{j} \in W$ and $x_{m} \in R^{1},\left\{x_{m}, w_{j}\right\} \neq A_{i}$ for all $i \in[t]$. Then x_{2} must be red-complete to W under c, else, say $x_{2} w_{1}$ is colored blue under c, then we obtain a blue $H^{\prime}:=C_{2 n}$ under c^{*} with vertices $a_{1}, x_{1}, x_{2}, w_{1}, b_{1}, x_{4}($ when $n=3)$ and vertices $a_{1}, x_{1}, x_{2}, w_{1}, b_{1}, x_{4}, x_{5}, x_{6}($ when $n=4)$ in order such that $\left|E\left(H^{\prime}\right) \cap E_{B}\right|<\left|E(H) \cap E_{B}\right|$, a contradiction. Similarly, x_{3} is red-complete to W under c, else, say $x_{3} w_{1}$ is colored blue under c, then we obtain a blue $H^{\prime}:=C_{2 n}$ under c^{*} with vertices $b_{1}, x_{4}, x_{3}, w_{1}, a_{1}, x_{1}$ (when $n=3$) and vertices $b_{1}, x_{6}, x_{5}, x_{4}, x_{3}, w_{1}, a_{1}, x_{1}$ (when $n=4)$ in order such that $\left|E\left(H^{\prime}\right) \cap E_{B}\right|<\left|E(H) \cap E_{B}\right|$, a contradiction. Thus $\left\{x_{2}, x_{3}\right\}$ is redcomplete to W under c. Then for any $w_{j} \in W,\left\{x_{1}, w_{j}\right\} \neq A_{i}$ for all $i \in[t]$ since $x_{2} x_{1}$ is colored blue and x_{2} is red-complete to W under c. If $x_{1} w_{j}$ is colored blue under c for some $w_{j} \in W$, then we obtain a blue $H^{\prime}:=C_{2 n}$ under c^{*} with vertices $a_{1}, w_{j}, x_{1}, \ldots, x_{2 n-2}$ in order such that $\left|E\left(H^{\prime}\right) \cap E_{B}\right|<\left|E(H) \cap E_{B}\right|$, a contradiction. Thus $\left\{x_{1}, x_{2}, x_{3}\right\}$ is red-complete to W under c. Then $|W|=i_{r} \geq 2$ because G contains a red P_{5} under c with vertices $x_{1}, w_{1}, x_{2}, a_{1}, x_{3}$ in order. But then we obtain a red $C_{2 n}$ under c with vertices $a_{1}, x_{2}, w_{1}, x_{1}, w_{2}, x_{3}$ in order (when $n=3$) and $a_{1}, x_{2}, w_{1}, x_{1}, w_{2}, x_{3}, b_{1}, x_{5}$ in order (when $n=4$), a contradiction.

By Claim 6, $\left|A_{1}\right|=3$ and $n=4$. Then $|B \cup R|=N-\left|A_{1}\right| \geq 2+i_{b}+i_{r} \geq 5$ because $\max \left\{i_{b}, i_{r}\right\} \geq 2$ and $\min \left\{i_{b}, i_{r}\right\} \geq 1$. By symmetry, we may assume that $|B| \geq|R|$. Then $|B| \geq 3$ and so G has a blue P_{7} because $\left|A_{1}\right|=3$ and B is not red-complete to R. Thus $i_{b}=3$. By Claim 5, $|R| \leq 3$. Then $i_{r} \geq|R|$, else, we obtain a red $G_{i_{r}}$ because $\left|A_{1}\right|=3$ and R is not bluecomplete to B. Then $|B| \geq 2+i_{b}+i_{r}-|R| \geq 5$. Thus $G[B \cup R]$ has no blue P_{3} with both ends in B, else, we obtain a blue C_{8} because $\left|A_{1}\right|=3$ and $|B| \geq 5$. Let $i_{b}^{*}:=0$ and $i_{r}^{*}:=i_{r}-|R| \leq 2$. By Claim 1 applied to $i_{b}=\left|A_{1}\right|, i_{r} \geq|R|$ and $B, G[B]$ must contain a red $P_{2 i_{r}^{*}+3}$ with vertices, say $x_{1}, \ldots, x_{2 i_{r}^{*}+3}$, in order. Let $R:=\left\{y_{1}, \ldots, y_{|R|}\right\}$. Then no $y_{j} \in R$ is blue-complete to any $W \subseteq B$ with $|W|=2$, in particular, when $W=\left\{x_{1}, x_{2 i_{r}^{*}+3}\right\}$, because $G[B \cup R]$ has no blue P_{3} with both ends in B. We may assume that $x_{1} y_{1}$ is colored red. Note that $G\left[R \cup A_{1}\right]$ has a red $P_{2|R|}$ with y_{1} as an end. Then $G\left[\left\{x_{1}, \ldots, x_{2 i_{r}^{*}+3}\right\} \cup R \cup A_{1}\right]$ has a red $P_{2 i_{r}+3}$. It follows that $i_{r}=3$. Let $a_{1}^{*} \in A_{1} \backslash\left\{a_{1}\right\}$.

Suppose first that $x_{2 i_{r}^{*}+3}$ is blue-complete to $R=\left\{y_{1}, \ldots, y_{|R|}\right\}$. Since $G[B \cup R]$ has no blue P_{3} with both ends in B, we see that $\left\{x_{2 i_{r}^{*}+3}\right\}=A_{\ell}$ for some $\ell \in[p], B \backslash\left\{x_{2 i_{r}^{*}+3}\right\}$ is red-complete to $\left\{y_{1}, \ldots, y_{|R|}\right\}$, and $x_{2 i_{r}^{*}+3}$ is adjacent to at most one vertex, say $w \in$ B, such that $w x_{2 i_{r}^{*}+3}$ is colored blue. Thus $x_{2 i_{r}^{*}+3}$ is red-complete to $B \backslash\left\{w, x_{2 i_{r}^{*}+3}\right\}$. Let $w^{*} \in B \backslash\left\{x_{1}, x_{2}, x_{3}, w\right\}$. Since $B \backslash\left\{x_{2 i_{r}^{*}+3}\right\}$ is red-complete to $\left\{y_{1}, \ldots, y_{|R|}\right\}$, we see that $\left\{x_{1}, \ldots, x_{2 i_{r}^{*}+2}\right\}$ is red-complete to $\left\{y_{1}, \ldots, y_{|R|}\right\}$. If $w \notin\left\{x_{2}, \ldots, x_{2 i_{r}^{*}+1}\right\}$, then we obtain a red C_{8} with vertices $y_{1}, x_{1}, x_{2}, x_{7}, x_{3}, \ldots, x_{6}$ (when $i_{r}^{*}=2$), vertices $a_{1}, y_{1}, x_{1}, x_{2}, x_{5}, x_{3}, x_{4}, y_{2}$ (when $i_{r}^{*}=1$), and vertices $a_{1}, y_{1}, x_{2}, x_{3}, w^{*}, y_{2}, a_{1}^{*}, y_{3}\left(\right.$ when $\left.i_{r}^{*}=0\right)$ in order, a contradiction. Thus $w \in\left\{x_{2}, \ldots, x_{2 i_{r}^{*}+1}\right\}$. Then $i_{r}^{*} \geq 1$ and $x_{1} x_{2 i_{r}^{*+1}}$ is colored red. But then we obtain a red C_{8} with vertices $y_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{1}$ (when $i_{r}^{*}=2$) and vertices $a_{1}, y_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{1}, y_{2}$ (when $i_{r}^{*}=1$) in order, a contradiction. This proves that $x_{2 i_{r}^{*}+3}$ is not blue-complete to R. Then $|R| \geq 2$, else, $|R|=1, i_{r}^{*}=2$ and $x_{7} y_{1}$ is colored red, which yields a red C_{8} with vertices $y_{1}, x_{1}, \ldots, x_{7}$ in order, a contradiction. Thus $i_{r}^{*} \leq 1$. Next, suppose $x_{2 i_{r}^{*}+3}$ is not blue-complete to $\left\{y_{2}, \ldots, y_{|R|}\right\}$,
say $x_{2 i_{r}^{*}+3} y_{2}$ is colored red. By assumption, $x_{1} y_{1}$ is red. We then obtain a red C_{8} with vertices $a_{1}, y_{1}, x_{1}, \ldots, x_{5}, y_{2}\left(\right.$ when $\left.i_{r}^{*}=1\right)$ and vertices $a_{1}, y_{1}, x_{1}, x_{2}, x_{3}, y_{2}, a_{1}^{*}, y_{3}\left(\right.$ when $\left.i_{r}^{*}=0\right)$ in order, a contradiction. Thus $x_{2 i_{r}^{*}+3}$ is blue-complete to $\left\{y_{2}, \ldots, y_{|R|}\right\}$ and so $x_{2 i_{r}^{*}+3} y_{1}$ is colored red. By symmetry of x_{1} and $x_{2 i_{r}^{*}+3}, x_{1}$ must be blue-complete to $\left\{y_{2}, \ldots, y_{|R|}\right\}$. But then $G[B \cup R]$ has a blue P_{3} with vertices $x_{1}, y_{2}, x_{2 i_{r}^{*}+3}$ in order, a contradiction.

This completes the proof of Theorem 1.6.16.

3.3 Proof of Theorem 1.6.17

In this section, we continue to establish more evidence for Conjecture 1.6.14. We prove Theorem 1.6.17 which shows that Conjecture 1.6.14 holds for $n \in\{5,6\}$ and all $k \geq 2$.

Proof. Let $n \in\{5,6\}$ and $k \geq 2$. By Proposition 1.6.13, it suffices to show that it suffices to show that $G R\left(G_{i_{1}}, \ldots, G_{i_{k}}\right) \leq\left|G_{i_{1}}\right|+\sum_{j=2}^{k} i_{j}$.

By Theorem 1.6.16 and Proposition 1.6.15, we may assume that $i_{1}=n-1$. Then $\left|G_{i_{1}}\right|+\sum_{j=2}^{k} i_{j}=$ $n+1+\sum_{j=1}^{k} i_{j}$. By Theorem 1.3.3 and Theorem 1.3.4, $G R\left(G_{i_{1}}, G_{i_{2}}\right)=R\left(G_{i_{1}}, G_{i_{2}}\right)=1+n+$ $i_{1}+i_{2}$. We may assume that $k \geq 3$. Let $N:=\left|G_{i_{1}}\right|+\sum_{j=2}^{k} i_{j}$. Then $N \geq 2 n$. Let G be a complete graph on N vertices and let $c: E(G) \rightarrow[k]$ be any Gallai coloring of G such that all the edges of G are colored by at least three colors under c. We next show that G contains a monochromatic copy of $G_{i_{j}}$ in color j for some $j \in[k]$. Suppose G contains no monochromatic copy of $G_{i_{j}}$ in color j for any $j \in[k]$ under c. Such a Gallai k-coloring c is called a critical-coloring. Among all complete graphs on N vertices with a critical-coloring, we choose G with N minimum.

Consider a Gallai-partition of G with parts A_{1}, \ldots, A_{p}, where $p \geq 2$. We may assume that $\left|A_{1}\right| \geq$
$\cdots \geq\left|A_{p}\right| \geq 1$. Let \mathcal{R} be the reduced graph of G with vertices a_{1}, \ldots, a_{p}, where $a_{i} \in A_{i}$ for all $i \in[p]$. By Theorem 1.6.2, we may assume that the edges of \mathcal{R} are colored either red or blue. Since all the edges of G are colored by at least three colors under c, we see that $\mathcal{R} \neq G$ and so $\left|A_{1}\right| \geq 2$. By abusing the notation, we use i_{b} to denote i_{j} when the color j is blue. Similarly, we use i_{r} (resp. i_{g}) to denote i_{j} when the color j is red (resp. green). Let

$$
\begin{aligned}
& A_{b}:=\left\{a_{i} \in\left\{a_{2}, \ldots, a_{p}\right\} \mid a_{i} a_{1} \text { is colored blue in } \mathcal{R}\right\} \text { and } \\
& A_{r}:=\left\{a_{j} \in\left\{a_{2}, \ldots, a_{p}\right\} \mid a_{j} a_{1} \text { is colored red in } \mathcal{R}\right\} .
\end{aligned}
$$

Then $\left|A_{b}\right|+\left|A_{r}\right|=p-1$. Let $B:=\bigcup_{a_{i} \in A_{b}} A_{i}$ and $R:=\bigcup_{a_{j} \in A_{r}} A_{j}$. Then $\max \{|B|,|R|\} \neq 0$ because $p \geq 2$. Thus G contains a blue P_{3} between B and A_{1} or a red P_{3} between R and A_{1}, and so $\max \left\{i_{b}, i_{r}\right\} \geq 1$. We next prove several claims.

Claim 7. Let $r \in[k]$ and let s_{1}, \ldots, s_{r} be nonnegative integers with $s_{1}+\cdots+s_{r} \geq 1$. If $i_{j_{1}} \geq$ $s_{1}, \ldots, i_{j_{r}} \geq s_{r}$ for colors $j_{1}, \ldots, j_{r} \in[k]$, then for any $S \subseteq V(G)$ with $|S| \geq|G|-\left(s_{1}+\cdots+s_{r}\right)$, $G[S]$ must contain a monochromatic copy of $G_{i_{j_{q}}}$ in color j_{q} for some $j_{q} \in\left\{j_{1}, \ldots, j_{r}\right\}$, where $i_{j_{q}}^{*}=i_{j_{q}}-s_{q}$.

Proof. Let $i_{j_{1}}^{*}:=i_{j_{1}}-s_{1}, \ldots, i_{j_{r}}^{*}:=i_{j_{r}}-s_{r}$, and $i_{j}^{*}:=i_{j}$ for all $j \in[k] \backslash\left\{j_{1}, \ldots, j_{r}\right\}$. Let $i_{\ell}^{*}:=\max \left\{i_{j}^{*}: j \in[k]\right\}$. Then $i_{\ell}^{*} \leq i_{1}$. Let $N^{*}:=\left|G_{i_{\ell}^{*}}\right|+\left[\left(\sum_{j=1}^{k} i_{j}^{*}\right)-i_{\ell}^{*}\right]$. Then $N^{*} \geq 3$ and $N^{*} \leq N-\left(s_{1}+\cdots+s_{r}\right)<N$ because $s_{1}+\cdots+s_{r} \geq 1$. Since $|S| \geq N-\left(s_{1}+\cdots+s_{r}\right) \geq N^{*}$ and $G[S]$ does not have a monochromatic copy of $G_{i_{j}}$ in color j for all $j \in[k] \backslash\left\{j_{1}, \ldots, j_{r}\right\}$ under c, by minimality of $N, G[S]$ must contain a monochromatic copy of $G_{i_{j_{q}}^{*}}$ in color j_{q} for some $j_{q} \in\left\{j_{1}, \ldots, j_{r}\right\}$.

Claim 8. $\left|A_{1}\right| \leq n-1$ and so G does not contain a monochromatic copy of a graph on $\left|A_{1}\right|+1 \leq n$ vertices in color m, where $m \in[k]$ is a color that is neither red nor blue.

Proof. Suppose $\left|A_{1}\right| \geq n$. We first claim that $i_{b} \geq|B|$ and $i_{r} \geq|R|$. Suppose $i_{b} \leq|B|-1$ or $i_{r} \leq|R|-1$. Then we obtain a blue $G_{i_{b}}$ using the edges between B and A_{1} or a red $G_{i_{r}}$ using the edges between R and A_{1}, a contradiction. Thus $i_{b} \geq|B|$ and $i_{r} \geq|R|$, as claimed. Let $i_{b}^{*}:=i_{b}-|B|$ and $i_{r}^{*}:=i_{r}-|R|$. Since $\left|A_{1}\right|=N-|B|-|R|$, by Claim 7 applied to $i_{b} \geq|B|$, $i_{r} \geq|R|$ and $A_{1}, G\left[A_{1}\right]$ must have a blue $G_{i_{b}^{*}}$ or a red $G_{i_{r}^{*}}$, say the latter. Then $i_{r}>i_{r}^{*}$. Thus $|R|>0$ and $G_{i_{r}^{*}}$ is a red path on $2 i_{r}^{*}+3$ vertices. Note that

$$
\begin{aligned}
\left|A_{1}\right| & =\left|G_{i_{1}}\right|+\sum_{j=2}^{k} i_{j}-|B|-|R| \\
& \geq \begin{cases}\left|G_{i_{r}}\right|+i_{b}-|B|-|R| & \text { if } i_{r} \geq i_{b} \\
\left|G_{i_{b}}\right|+i_{r}-|B|-|R| & \text { if } i_{r}<i_{b},\end{cases} \\
& \geq \begin{cases}\left|G_{i_{r}}\right|+i_{b}^{*}-|R| & \text { if } i_{r} \geq i_{b} \\
2 i_{b}+2+i_{r}-|B|-|R| \geq i_{b}^{*}+\left(2 i_{r}+3\right)-|R| & \text { if } i_{r}<i_{b},\end{cases} \\
& \geq \mid G_{i_{r}|-|R| .}
\end{aligned}
$$

Then

$$
\begin{aligned}
\left|A_{1}\right|-\left|G_{i_{r}^{*}}\right| & \geq\left|G_{i_{r}}\right|-\left|G_{i_{r}^{*}}\right|-|R| \\
& = \begin{cases}\left(3+2 i_{r}\right)-\left(3+2 i_{r}^{*}\right)-|R|=|R| & \text { if } i_{r} \leq n-2 \\
\left(2+2 i_{r}\right)-\left(3+2 i_{r}^{*}\right)-|R|=|R|-1 & \text { if } i_{r}=n-1 .\end{cases}
\end{aligned}
$$

But then $G\left[A_{1} \cup R\right]$ contains a red $G_{i_{r}}$ using the edges of the $G_{i_{r}^{*}}$ and the edges between $A_{1} \backslash V\left(G_{i_{r}^{*}}\right)$ and R, a contradiction. This proves that $\left|A_{1}\right| \leq n-1$. Next, let $m \in[k]$ be any color that is neither red nor blue. Suppose G contains a monochromatic copy of a graph, say J, on $\left|A_{1}\right|+1$ vertices in color m. Then $V(J) \subseteq A_{\ell}$ for some $\ell \in[p]$. But then $\left|A_{\ell}\right| \geq\left|A_{1}\right|+1$, contrary to $\left|A_{1}\right| \geq\left|A_{\ell}\right|$.

For two disjoint sets $U, W \subseteq V(G)$, we say U is blue-complete (resp. red-complete) to W if all the edges between U and W are colored blue (resp. red) under c. For convenience, we say u is blue-complete (resp. red-complete) to W when $U=\{u\}$.

Claim 9. $\min \{|B|,|R|\} \geq 1, p \geq 3$, and B is neither red- nor blue-complete to R under c.

Proof. Suppose $B=\emptyset$ or $R=\emptyset$. By symmetry, we may assume that $R=\emptyset$. Then $B \neq \emptyset$ and so $i_{b} \geq 1$. By Claim 8, $\left|A_{1}\right| \leq n-1$. Thus $|B|=|G|-\left|A_{1}\right|=N-\left|A_{1}\right| \geq n+1+i_{b}-\left|A_{1}\right| \geq i_{b}+2$. If $i_{b} \leq\left|A_{1}\right|-1$, then $i_{b} \leq n-2$ by Claim 8 . But then we obtain a blue $G_{i_{b}}$ using the edges between B and A_{1}. Thus $i_{b} \geq\left|A_{1}\right|$. Let $i_{b}^{*}=i_{b}-\left|A_{1}\right|$. By Claim 7 applied to $i_{b} \geq\left|A_{1}\right|$ and B, $G[B]$ must have a blue $G_{i_{b}^{*}}$. Since
$|B|-\left|G_{i_{b}^{*}}\right| \geq\left|G_{i_{b}}\right|-\left|G_{i_{b}^{*}}\right|-\left|A_{1}\right|= \begin{cases}\left(3+2 i_{b}\right)-\left(3+2 i_{b}^{*}\right)-\left|A_{1}\right|=\left|A_{1}\right| & \text { if } i_{b} \leq n-2 \\ \left(2+2 i_{b}\right)-\left(3+2 i_{b}^{*}\right)-\left|A_{1}\right|=\left|A_{1}\right|-1 & \text { if } i_{b}=n-1,\end{cases}$
we see that G contains a blue $G_{i_{b}}$ using the edges of the $G_{i_{b}^{*}}$ and the edges between $B \backslash V\left(G_{i_{b}^{*}}\right)$ and A_{1}, a contradiction. Hence $R \neq \emptyset$ and so $p \geq 3$ for any Gallai-partition of G. It follows that B is neither red- nor blue-complete to R, otherwise $\left\{B \cup A_{1}, R\right\}$ or $\left\{B, R \cup A_{1}\right\}$ yields a Gallai-partition of G with only two parts.

Claim 10. Let $m \in[k]$ be the color that is neither red nor blue. Then $i_{m} \leq n-4$. In particular, if $i_{m} \geq 1$, then G contains a monochromatic copy of $P_{2 i_{m}+1}$ in color m under c.

Proof. By Claim 8, $\left|A_{1}\right| \leq n-1$ and G contains no monochromatic copy of $P_{\left|A_{1}\right|+1}$ in color m under c. Suppose $i_{m} \geq 1$. Let $i_{m}^{*}:=i_{m}-1$. By Claim 7 applied to $i_{m} \geq 1$ and $V(G), G$ must have a monochromatic copy of $G_{i_{m}^{*}}$ in color m under c. Since $n \in\{5,6\},\left|A_{1}\right| \leq n-1$ and G
contains no monochromatic copy of $P_{\left|A_{1}\right|+1}$ in color m, we see that $i_{m}^{*} \leq n-5$. Thus $i_{m} \leq n-4$ and G contains a monochromatic copy of $P_{2 i_{m}+1}$ in color m under c if $i_{m} \geq 1$.

By Claim 9, $B \neq \emptyset$ and $R \neq \emptyset$. Since $\left|A_{1}\right| \geq 2$, we see that G has a blue P_{3} using edges between B and A_{1}, and a red P_{3} using edges between R and A_{1}. Thus $i_{b} \geq 1$ and $i_{r} \geq 1$. By Claim 10, $\max \left\{i_{b}, i_{r}\right\}=i_{1}=n-1$. Then $N=1+n+\sum_{i=1}^{k} i_{j} \geq 1+n+i_{b}+i_{r} \geq 2 n+1$. For the remainder of the proof of Theorem 1.6.17, we choose $p \geq 3$ to be as large as possible.

Claim 11. If $\left|A_{1}\right| \geq n-3$, then $|B| \leq n-1$ or $|R| \leq n-1$.

Proof. Suppose $\left|A_{1}\right| \geq n-3$ but $|B| \geq n$ and $|R| \geq n$. By symmetry, we may assume that $|B| \geq|R| \geq n$. Let $B:=\left\{x_{1}, x_{2}, \ldots, x_{|B|}\right\}$ and $R:=\left\{y_{1}, y_{2}, \ldots, y_{|R|}\right\}$. Let $H:=(B, R)$ be the complete bipartite graph obtained from $G[B \cup R]$ by deleting all the edges with both ends in B or in R. Then H has no blue P_{7} with both ends in B and no red P_{7} with both ends in R, else we obtain a blue $C_{2 n}$ or a red $C_{2 n}$ because $\left|A_{1}\right| \geq n-3$. We next show that H has no red $K_{3,3}$.

Suppose H has a red $K_{3,3}$. We may assume that $H\left[\left\{x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}\right\}\right]$ is a red $K_{3,3}$ under c. Since H has no red P_{7} with both ends in $R,\left\{y_{4}, \ldots, y_{|R|}\right\}$ must be blue-complete to $\left\{x_{1}, x_{2}, x_{3}\right\}$. Thus $H\left[\left\{x_{1}, x_{2}, x_{3}, y_{4}, y_{5}\right\}\right]$ has a blue P_{5} with both ends in $\left\{x_{1}, x_{2}, x_{3}\right\}$ and $H\left[\left\{x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}\right\}\right]$ has a red P_{5} with both ends in $\left\{y_{1}, y_{2}, y_{3}\right\}$. If $\left|A_{1}\right| \geq n-2$ or $\min \left\{i_{b}, i_{r}\right\} \leq n-2$, then we obtain a blue $G_{i_{b}}$ or a red $G_{i_{r}}$, a contradiction. It follows that $\left|A_{1}\right|=n-3$ and $i_{b}=i_{r}=n-1$. Thus $|B \cup R| \geq 1+n+i_{b}+i_{r}-\left|A_{1}\right|=2 n+2$. If $|R| \geq 6$, then $\left\{y_{4}, y_{5}, y_{6}\right\}$ must be red-complete to $\left\{x_{4}, x_{5}, x_{6}\right\}$, else H has a blue P_{7} with both ends in B. But then we obtain a red $C_{2 n}$ in G. Thus $|R|=5, n=5$, and so $|B| \geq 7$. Let $a_{1}, a_{1}^{*} \in A_{1}$. For each $j \in\{4,5,6,7\}$ and every $W \subseteq\left\{x_{1}, x_{2}, x_{3}\right\}$ with $|W|=2$, no x_{j} is redcomplete to W under c, else, say, x_{4} is red-complete to $\left\{x_{1}, x_{2}\right\}$, then we obtain a red C_{10} with
vertices $a_{1}, y_{1}, x_{1}, x_{4}, x_{2}, y_{2}, x_{3}, y_{3}, a_{1}^{*}, y_{4}$ in order, a contradiction. We may assume that $x_{4} x_{1}, x_{5} x_{2}$ are colored blue. But then we obtain a blue C_{10} with vertices $a_{1}, x_{4}, x_{1}, y_{4}, x_{3}, y_{5}, x_{2}, x_{5}, a_{1}^{*}, x_{6}$ in order, a contradiction. This proves that H has no red $K_{3,3}$.

Let $X:=\left\{x_{1}, x_{2}, \ldots, x_{5}\right\}$ and $Y:=\left\{y_{1}, y_{2}, \ldots, y_{5}\right\}$. Let H_{b} and H_{r} be the spanning subgraphs of $H[X \cup Y]$ induced by all the blue edges and red edges of $H[X \cup Y]$ under c, respectively. By the Pigeonhole Principle, there exist at least three vertices, say x_{1}, x_{2}, x_{3}, in X such that either $d_{H_{b}}\left(x_{i}\right) \geq 3$ for all $i \in[3]$ or $d_{H_{r}}\left(x_{i}\right) \geq 3$ for all $i \in[3]$. Suppose $d_{H_{r}}\left(x_{i}\right) \geq 3$ for all $i \in$ [3]. We may assume that x_{1} is red-complete to $\left\{y_{1}, y_{2}, y_{3}\right\}$. Since $|Y|=5$ and H has no red P_{7} with both ends in R, we see that $N_{H_{r}}\left(x_{1}\right)=N_{H_{r}}\left(x_{2}\right)=N_{H_{r}}\left(x_{3}\right)=\left\{y_{1}, y_{2}, y_{3}\right\}$. But then $H\left[\left\{x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}\right\}\right]$ is a red $K_{3,3}$, contrary to H has no red $K_{3,3}$. Thus $d_{H_{b}}\left(x_{i}\right) \geq 3$ for all $i \in[3]$. Since $|Y|=5$, we see that any two of x_{1}, x_{2}, x_{3} have a common neighbor in H_{b}. Furthermore, two of x_{1}, x_{2}, x_{3}, say x_{1}, x_{2}, have at least two common neighbors in H_{b}. It can be easily checked that H has a blue P_{5} with ends in $\left\{x_{1}, x_{2}, x_{3}\right\}$, and there exist three vertices, say y_{1}, y_{2}, y_{3}, in Y such that $y_{i} x_{i}$ is blue for all $i \in[3]$ and $\left\{x_{4}, \ldots, x_{|B|}\right\}$ is red-complete to $\left\{y_{1}, y_{2}, y_{3}\right\}$. Then H has a blue P_{5} with both ends in $\left\{x_{1}, x_{2}, x_{3}\right\}$ and a red P_{5} with both ends in $\left\{y_{1}, y_{2}, y_{3}\right\}$. If $\left|A_{1}\right| \geq n-2$ or $\min \left\{i_{b}, i_{r}\right\} \leq n-2$, then we obtain a blue $G_{i_{b}}$ or a red $G_{i_{r}}$, a contradiction. It follows that $\left|A_{1}\right|=n-3$ and $i_{b}=i_{r}=n-1$. Thus $|B \cup R| \geq 1+n+i_{b}+i_{r}-\left|A_{1}\right|=2 n+2$. Then $|B| \geq n+1$ and so $H\left[\left\{x_{4}, x_{5}, x_{6}, y_{1}, y_{2}, y_{3}\right\}\right]$ is a red $K_{3,3}$, contrary to the fact that H has no red $K_{3,3}$.

Claim 12. $\left|A_{1}\right| \geq 3$.

Proof. Suppose $\left|A_{1}\right|=2$. Then G has no monochromatic copy of P_{3} in color j for any $j \in$ $\{3, \ldots, k\}$ under c. By Claim 10, $i_{3}=\cdots=i_{k}=0$. We may assume that $\left|A_{1}\right|=\cdots=\left|A_{t}\right|=2$ and $\left|A_{t+1}\right|=\cdots=\left|A_{p}\right|=1$ for some integer t satisfying $p \geq t \geq 1$. Let $A_{i}=\left\{a_{i}, b_{i}\right\}$ for
all $i \in[t]$. By reordering if necessary, each of A_{1}, \ldots, A_{t} can be chosen as the largest part in the Gallai-partition $A_{1}, A_{2}, \ldots, A_{p}$ of G. For all $i \in[t]$, let

$$
\begin{aligned}
A_{b}^{i} & :=\left\{a_{j} \in V(\mathcal{R}) \mid a_{j} a_{i} \text { is colored blue in } \mathcal{R}\right\} \text { and } \\
A_{r}^{i} & :=\left\{a_{j} \in V(\mathcal{R}) \mid a_{j} a_{i} \text { is colored red in } \mathcal{R}\right\} .
\end{aligned}
$$

Let $B^{i}:=\bigcup_{a_{j} \in A_{b}^{i}} A_{j}$ and $R^{i}:=\bigcup_{a_{j} \in A_{r}^{i}} A_{j}$. Then $\left|B^{i}\right|+\left|R^{i}\right|=1+n+i_{b}+i_{r}=2 n-2+\min \left\{i_{b}, i_{r}\right\}$. Let

$$
\begin{aligned}
& E_{B}:=\left\{a_{i} b_{i} \mid i \in[t] \text { and }\left|R^{i}\right|<\left|B^{i}\right|\right\}, \\
& E_{R}:=\left\{a_{i} b_{i} \mid i \in[t] \text { and }\left|B^{i}\right|<\left|R^{i}\right|\right\}, \\
& E_{Q}:=\left\{a_{i} b_{i} \mid i \in[t] \text { and }\left|B^{i}\right|=\left|R^{i}\right|\right\} .
\end{aligned}
$$

Let c^{*} be obtained from c by recoloring all the edges in E_{B} blue, all the edges in E_{R} red and all the edges in E_{Q} either red or blue. Then all the edges of G are colored red or blue under c^{*}. Since $|G|=n+1+i_{b}+i_{r}=R\left(G_{i_{b}}, G_{i_{r}}\right)$ by Theorem 1.3.3 and Theorem 1.3.4, we see that G must contain a blue $G_{i_{b}}$ or a red $G_{i_{r}}$ under c^{*}. By symmetry, we may assume that G has a blue $H:=G_{i_{b}}$. Then H contains no edges of E_{R} but must contain at least one edge of $E_{B} \cup E_{Q}$, else we obtain a blue $G_{i_{b}}$ in G under c. We choose H so that $\left|E(H) \cap\left(E_{B} \cup E_{Q}\right)\right|$ is minimal. We may further assume that $a_{1} b_{1} \in E(H)$. Since $\left|B^{1}\right|+\left|R^{1}\right|=2 n-2+\min \left\{i_{b}, i_{r}\right\}$, by the choice of c^{*}, $\left|B^{1}\right| \geq n-1 \geq 4$ and $\left|R^{1}\right| \leq n-1+\left\lfloor\frac{\min \left\{i_{b}, i_{r}\right\}}{2}\right\rfloor \leq 7$. So $i_{b} \geq 2$. By Claim 11, $\left|R^{1}\right| \leq 4$ when $n=5$. Let $W:=V(G) \backslash V(H)$.

We next claim that $i_{b}=n-1$. Suppose $i_{b} \leq n-2$. Then $H=P_{2 i_{b}+3}, i_{r}=n-1,|G|=2 n+i_{b}$ and $|W|=2 n-3-i_{b} \geq n-1$. Let $x_{1}, x_{2}, \ldots, x_{2 i_{b}+3}$ be the vertices of H in order. We may assume that $x_{\ell} x_{\ell+1}=a_{1} b_{1}$ for some $\ell \in\left[2 i_{b}+2\right]$. If a vertex $w \in W$ is blue-complete to $\left\{a_{1}, b_{1}\right\}$, then we obtain a blue $H^{\prime}:=G_{i_{b}}$ under c^{*} with vertices $x_{1}, \ldots, x_{\ell}, w, x_{\ell+1}, \ldots, x_{2 i_{b}+2}$ in order (when
$\ell \neq 2 i_{b}+2$) or $x_{1}, x_{2}, \ldots, x_{2 i_{b}+2}, w$ in order $\left(\right.$ when $\left.\ell=2 i_{b}+2\right)$ such that $\left|E\left(H^{\prime}\right) \cap\left(E_{B} \cup E_{Q}\right)\right|<$ $\left|E(H) \cap\left(E_{B} \cup E_{Q}\right)\right|$, contrary to the choice of H. Thus no vertex in W is blue-complete to $\left\{a_{1}, b_{1}\right\}$ under c and so W must be red-complete to $\left\{a_{1}, b_{1}\right\}$ under c. This proves that $W \subseteq R^{1}$. We next claim that $\ell=1$ or $\ell=2 i_{b}+2$. Suppose $\ell \in\left\{2, \ldots, 2 i_{b}+1\right\}$. Then $\left\{x_{1}, x_{2 i_{b}+3}\right\}$ must be redcomplete to $\left\{a_{1}, b_{1}\right\}$, else, we obtain a blue $H^{\prime}:=G_{i_{b}}$ with vertices $x_{\ell}, \ldots, x_{1}, x_{\ell+1}, \ldots, x_{2 i_{b}+3}$ or $x_{1}, \ldots, x_{\ell}, x_{2 i_{b}+3}, x_{\ell+1}, \ldots, x_{2 i_{b}+2}$ in order under c^{*} such that $\left|E\left(H^{\prime}\right) \cap\left(E_{B} \cup E_{Q}\right)\right|<\mid E(H) \cap$ $\left(E_{B} \cup E_{Q}\right) \mid$. Thus $\left\{x_{1}, x_{2 i_{b}+3}\right\} \subseteq R^{1}$ and so $W \cup\left\{x_{1}, x_{2 i_{b}+3}\right\}$ is red-complete to $\left\{a_{1}, b_{1}\right\}$. If $n=5$, then $4 \geq\left|R^{1}\right| \geq\left|W \cup\left\{x_{1}, x_{2 i_{b}+3}\right\}\right| \geq 6$, a contradiction. Thus $n=6$ and $7 \geq\left|R^{1}\right| \geq$ $\left|W \cup\left\{x_{1}, x_{2 i_{b}+3}\right\}\right| \geq 7$. It follows that $R^{1} \cap V(H)=\left\{x_{1}, x_{2 i_{b}+3}\right\}$ and thus either $\left\{x_{\ell-2}, x_{\ell-1}\right\}$ or $\left\{x_{\ell+2}, x_{\ell+3}\right\}$ is blue-complete to $\left\{a_{1}, b_{1}\right\}$. In either case, we obtain a blue $H^{\prime}:=G_{i_{b}}$ under c^{*} such that $\left|E\left(H^{\prime}\right) \cap\left(E_{B} \cup E_{Q}\right)\right|<\left|E(H) \cap\left(E_{B} \cup E_{Q}\right)\right|$, a contradiction. This proves that $\ell=1$ or $\ell=2 i_{b}+2$. By symmetry, we may assume that $\ell=1$. Then $x_{1} x_{3}$ is colored blue under c because $A_{1}=\left\{a_{1}, b_{1}\right\}$. Similarly, for all $j \in\left\{3, \ldots, 2 i_{b}+2\right\},\left\{x_{j}, x_{j+1}\right\}$ is not blue-complete to $\left\{a_{1}, b_{1}\right\}$, else we obtain a blue $H^{\prime}:=G_{i_{b}}$ with vertices $x_{1}, x_{j}, \ldots, x_{2}, x_{j+1}, \ldots, x_{2 i_{b}+3}$ in order under c^{*} such that $\left|E\left(H^{\prime}\right) \cap\left(E_{B} \cup E_{Q}\right)\right|<\left|E(H) \cap\left(E_{B} \cup E_{Q}\right)\right|$. It follows that $x_{4} \in R^{1}$ and so $\left|R^{1} \cap\left\{x_{4}, \ldots, x_{2 i_{b}+3}\right\}\right| \geq i_{b}$. Then $\left|R^{1}\right| \geq|W|+\left|R^{1} \cap\left\{x_{4}, \ldots, x_{2 i_{b}+3}\right\}\right| \geq 2 n-3$, so $4 \geq\left|R^{1}\right| \geq 7$ (when $n=5$) or $7 \geq\left|R^{1}\right| \geq 9$ (when $n=6$), a contradiction. This proves that $i_{b}=n-1$.

Since $i_{b}=n-1$, we see that $H=C_{2 n}$. Then $|G|=2 n+i_{r}$ and so $|W|=i_{r}$. Let $a_{1}, x_{1}, \ldots, x_{2 n-2}, b_{1}$ be the vertices of H in order and let $W:=\left\{w_{1}, \ldots, w_{i_{r}}\right\}$. Then $x_{1} b_{1}$ and $a_{1} x_{2 n-2}$ are colored blue under c because $A_{1}=\left\{a_{1}, b_{1}\right\}$. Suppose $\left\{x_{j}, x_{j+1}\right\}$ is blue-complete to $\left\{a_{1}, b_{1}\right\}$ for some $j \in[2 n-3]$. We then obtain a blue $H^{\prime}:=C_{2 n}$ with vertices $a_{1}, x_{1}, \ldots, x_{j}, b_{1}$, $x_{2 n-2}, \ldots, x_{j+1}$ in order under c^{*} such that $\left|E\left(H^{\prime}\right) \cap\left(E_{B} \cup E_{Q}\right)\right|<\left|E(H) \cap\left(E_{B} \cup E_{Q}\right)\right|$, contrary to the choice of H. Thus, for all $j \in[2 n-3],\left\{x_{j}, x_{j+1}\right\}$ is not blue-complete to $\left\{a_{1}, b_{1}\right\}$. Since $\left\{x_{1}, x_{2 n-2}\right\}$ is blue-complete to $\left\{a_{1}, b_{1}\right\}$ under c, we see that $x_{2}, x_{2 n-3} \in R^{1}$, and so $4 \geq\left|R^{1} \cap V(H)\right| \geq 4$ (when $n=5$) and $5+\left\lfloor\frac{i_{r}}{2}\right\rfloor \geq\left|R^{1} \cap V(H)\right| \geq 5$ (when $n=6$). Thus, when
$n=5$, we have $R^{1}=\left\{x_{2}, x_{4}, x_{5}, x_{7}\right\}$ or $R^{1}=\left\{x_{2}, x_{4}, x_{6}, x_{7}\right\}$, as depicted in Figure 3.2(a) and Figure 3.2(b); when $n=6$, we have $R^{1} \cap V(H)=\left\{x_{2}, x_{9}\right\} \cup\left\{x_{j}: j \in J\right\}$, where $J \in\{\{4,6,8\}$, $\{4,6,7\},\{3,4,6,7\},\{3,5,6,7\},\{4,5,6,7\},\{4,6,7,8\},\{3,5,7,8\},\{3,5,6,8\},\{3,4,5,6,7\}$, $\{3,4,5,6,8\},\{3,4,5,7,8\}\}$.

(a)

(b)

Figure 3.2: Two cases of R^{1} when $i_{b}=4$ and $n=5$

Since $\left|R^{1}\right| \geq n-1$ and R^{1} is red-complete to $\left\{a_{1}, b_{1}\right\}$ under c, we see that $i_{r} \geq 2$. Let $W^{\prime}:=$ $W \backslash R^{1} \subset B^{1}$. It follows that $\left|W^{\prime}\right|=i_{r}-\left|R^{1} \backslash V(H)\right| \geq\left\lceil\frac{i_{r}}{2}\right\rceil \geq 1$. We may assume $W^{\prime}=$ $\left\{w_{1}, \ldots, w_{\left|W^{\prime}\right|}\right\}$. We claim that $E(H) \cap\left(E_{B} \cup E_{Q}\right)=\left\{a_{1} b_{1}\right\}$. Suppose, say $a_{2} b_{2} \in E(H) \cap\left(E_{B} \cup\right.$ $\left.E_{Q}\right)$. Since $\left\{x_{1}, x_{2}\right\} \neq A_{i}$ and $\left\{x_{2 n-3}, x_{2 n-2}\right\} \neq A_{i}$ for all $i \in[t]$, we may assume that $a_{2}=x_{j}$ and $b_{2}=x_{j+1}$ for some $j \in\{2, \ldots, 2 n-4\}$. Then $x_{j-1} x_{j+1}$ and $x_{j} x_{j+2}$ are colored blue under c. But then we obtain a blue $H^{\prime}:=C_{2 n}$ under c^{*} with vertices $a_{1}, x_{1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{2 n-2}, b_{1}, w_{1}$ in order such that $\left|E\left(H^{\prime}\right) \cap\left(E_{B} \cup E_{Q}\right)\right|<\left|E(H) \cap\left(E_{B} \cup E_{Q}\right)\right|$, contrary to the choice of H. Thus $E(H) \cap\left(E_{B} \cup E_{Q}\right)=\left\{a_{1} b_{1}\right\}$, as claimed.
(*) Let $w \in W^{\prime}$. For $j \in\{1,2 n-2\}$, if $\left\{x_{j}, w\right\} \neq A_{i}$ for all $i \in[t]$, then $x_{j} w$ is colored red. For $j \in\{2, \ldots, 2 n-3\}$, if $\left\{x_{j}, w\right\} \neq A_{i}$ for all $i \in[t]$ and x_{j-2} or $x_{j+2} \in B^{1}$, then $x_{j} w$ is colored red.

Proof. Suppose there are some $j \in[2 n-2]$ such that $\left\{x_{j}, w\right\} \neq A_{i}$ for all $i \in[t]$, and x_{j-2} or
$x_{j+2} \in B^{1}$ if $j \in\{2, \ldots, 2 n-3\}$, but $x_{j} w$ is colored blue. Then we obtain a blue $C_{2 n}$ under c with vertices $a_{1}, w, x_{1}, \ldots, x_{2 n-2}($ when $j=1)$ or $a_{1}, x_{1}, \ldots, x_{2 n-2}, w($ when $j=2 n-2$) in order if $j \in\{1,2 n-2\}$, and with vertices $b_{1}, x_{2 n-2}, x_{2 n-3}, \cdots, x_{j+2}, a_{1}, w, x_{j}, \cdots, x_{1}$ in order (when $x_{j+2} \in B^{1}$) or $a_{1}, x_{1}, \cdots, x_{j-2}, b_{1}, w, x_{j}, \cdots, x_{2 n-2}$ in order (when $x_{j-2} \in B^{1}$) if $j \in$ $\{2, \ldots, 2 n-3\}$, a contradiction.
(**) For $j \in[2 n-4], x_{j} x_{j+2}$ is colored red if $\left\{x_{j}, x_{j+2}\right\} \neq A_{i}$ for all $i \in[t]$.

Proof. Suppose $x_{j} x_{j+2}$ is colored blue for some $j \in[2 n-4]$. Then we obtain a blue $C_{2 n}$ with vertices $a_{1}, x_{1}, \ldots, x_{j}, x_{j+2}, \ldots, x_{2 n-2}, b_{1}, w$ in order, a contradiction, where $w \in W^{\prime}$.

First if $n=5$, then $W^{\prime}=W$. Let $(\alpha, \beta) \in\{(5,7),(7,6)\}$. Suppose $R^{1}=\left\{x_{2}, x_{4}, x_{\alpha}, x_{\beta}\right\}$. Since $\left\{x_{\alpha-1}, w_{j}\right\} \neq A_{i}$ and $\left\{x_{\alpha}, w_{j}\right\} \neq A_{i}$ for all $w_{j} \in W$ and $i \in[t], x_{\alpha+1}, x_{\alpha-2} \in B^{1}$, by $(*),\left\{x_{\alpha-1}, x_{\alpha}\right\}$ must be red-complete to W under c. Then for any $w_{j} \in W,\left\{x_{\alpha-2}, w_{j}\right\} \neq$ A_{i} and $\left\{x_{\alpha+1}, w_{j}\right\} \neq A_{i}$ for all $i \in[t]$ since $x_{\alpha-1} x_{\alpha-2}$ and $x_{\alpha} x_{\alpha+1}$ are colored blue under c. Thus $\left\{x_{\alpha-2}, x_{\alpha+1}\right\}$ is red-complete to W by $(*)$. So $\left\{x_{\alpha-2}, x_{\alpha-1}, x_{\alpha}, x_{\alpha+1}\right\}$ is redcomplete to W under c. But then we obtain a red P_{9} under c (when $i_{r} \leq 3$) with vertices $x_{2}, a_{1}, x_{\alpha-1}, b_{1}, x_{\alpha}, w_{1}, x_{\alpha-2}, w_{2}, x_{\alpha+1}$ in order or a red C_{10} under c (when $i_{r}=4$) with vertices $a_{1}, x_{2}, b_{1}, x_{\alpha-1}, w_{1}, x_{\alpha-2}, w_{2}, x_{\alpha+1}, w_{3}, x_{\alpha}$ in order, a contradiction. This proves that $n=6$. By $(*)$, we may assume x_{1} is red-complete to $W^{\prime} \backslash w_{1}$ and x_{10} is red-complete to $W^{\prime} \backslash w_{\left|W^{\prime}\right|}$ because $\left|A_{1}\right|=2$.

Case 1. $\left|R^{1} \cap V(H)\right|=5$. Let $(\alpha, \beta) \in\{(9,8),(7,9)\}$. Suppose $R^{1}=\left\{x_{2}, x_{4}, x_{6}, x_{\alpha}, x_{\beta}\right\}$. Since $\left\{x_{\alpha-1}, w_{j}\right\} \neq A_{i}$ and $\left\{x_{\alpha}, w_{j}\right\} \neq A_{i}$ for all $w_{j} \in W^{\prime}$ and $i \in[t], x_{\alpha+1}, x_{\alpha-2} \in B^{1}$, $\left\{x_{\alpha-1}, x_{\alpha}\right\}$ must be red-complete to W^{\prime} under c by $(*)$. Then for any $w_{j} \in W^{\prime},\left\{x_{\alpha-2}, w_{j}\right\} \neq A_{i}$ and $\left\{x_{\alpha+1}, w_{j}\right\} \neq A_{i}$ for all $i \in[t]$ since $x_{\alpha-1} x_{\alpha-2}$ and $x_{\alpha} x_{\alpha+1}$ are colored blue under c. Thus
$\left\{x_{\alpha-2}, x_{\alpha+1}\right\}$ is red-complete to W^{\prime} by $(*)$. So $\left\{x_{\alpha-2}, x_{\alpha-1}, x_{\alpha}, x_{\alpha+1}\right\}$ is red-complete to W^{\prime} under c. We see that G has a red P_{7} with vertices $x_{\alpha-1}, w_{1}, x_{\alpha}, a_{1}, x_{2}, b_{1}, x_{4}$ in order, and so $i_{r} \geq 3$ and $\left|W^{\prime}\right| \geq 2$. Moreover, $x_{\alpha-1} x_{\alpha+1}$ and $x_{\alpha-2} x_{\alpha}$ are colored red by $(* *)$. Then G has a red P_{11} with vertices $x_{1}, w_{2}, x_{\alpha-1}, x_{\alpha+1}, w_{1}, x_{\alpha-2}, x_{\alpha}, a_{1}, x_{2}, b_{1}, x_{4}$ in order under c. Thus $i_{r}=5$ and so $\left|W^{\prime}\right| \geq 3$. Since $\left|A_{1}\right|=2$ and $x_{\alpha-6} \in B^{1}$, by $(*)$, we may assume $x_{\alpha-4}$ is red-complete to $W^{\prime} \backslash w_{2}$. But then we obtain a red C_{12} with vertices $a_{1}, x_{\alpha}, x_{\alpha-2}, w_{1}, x_{\alpha-4}, w_{3}, x_{1}, w_{2}, x_{\alpha+1}, x_{\alpha-1}, b_{1}, x_{2}$ in order under c, a contradiction.

Case 2. $\left|R^{1} \cap V(H)\right|=6$, then $i_{r} \geq 3$ and $\left|W^{\prime}\right| \geq 3$. Let $(\alpha, \beta, \gamma) \in$ $\{(5,2,4),(4,7,5)\}$. Suppose $R^{1} \cap V(H)=\left\{x_{2}, x_{3}, x_{\alpha}, x_{6}, x_{7}, x_{9}\right\}$. Since $\left\{x_{\beta}, w_{j}\right\} \neq A_{i}$, $\left\{x_{3}, w_{j}\right\} \neq A_{i}$ and $\left\{x_{6}, w_{j}\right\} \neq A_{i}$ for all $w_{j} \in W^{\prime}$ and $i \in[t]$, by $(*),\left\{x_{\beta}, x_{3}, x_{6}\right\}$ must be red-complete to W^{\prime} under c. By $(* *), x_{\gamma}$ is red-complete to $\left\{x_{\gamma-2}, x_{\gamma+2}\right\}$. But then we obtain a red C_{12} under c with vertices $a_{1}, x_{2}, x_{4}, x_{6}, w_{1}, x_{10}, w_{2}, x_{1}, w_{3}, x_{3}, b_{1}, x_{5}$ (when $\alpha=5$) or $a_{1}, x_{3}, x_{5}, x_{7}, w_{1}, x_{10}, w_{2}, x_{1}, w_{3}, x_{6}, b_{1}, x_{4}$ (when $\alpha=4$) in order, a contradiction. Let $(\alpha, \beta, \gamma, \delta) \in\{(3,8,5,6),(3,5,7,8),(4,6,8,2)\}$. Suppose $R^{1} \cap V(H)=$ $V(H) \backslash\left\{a_{1}, b_{1}, x_{1}, x_{10}, x_{\alpha}, x_{\beta}\right\}$. Since $\left\{x_{\gamma}, w\right\} \neq A_{i}$ and $\left\{x_{\delta}, w\right\} \neq A_{i}$ for all $w \in W^{\prime}$ and $i \in[t],\left\{x_{\gamma}, x_{\delta}\right\}$ must be red-complete to W^{\prime} under c by $(*)$. Moreover, $x_{\gamma} x_{\gamma-2}$ and $x_{\delta} x_{\delta+2}$ are colored red by $(* *)$. Since $\left|A_{1}\right|=2$, there exists at least one of $x_{1}, x_{10}, x_{\alpha}, x_{\beta}$ is red-complete to $\left\{w_{1}, w_{2}, w_{3}\right\}$ by $(*)$. So we may assume x_{α} is red-complete to $W^{\prime} \backslash w_{2}$ and x_{β} is red-complete to $\left\{w_{1}, w_{2}, w_{3}\right\}$. But then we obtain a red C_{12} with vertices $a_{1}, x_{\gamma}, x_{\gamma-2}, w_{1}, x_{10}, w_{2}, x_{1}, w_{3}, x_{\delta+2}, x_{\delta}, b_{1}, x_{7}$ in order if $(\alpha, \beta, \gamma, \delta) \in\{(3,8,5,6),(4,6,8,2)\}$ and $a_{1}, x_{7}, x_{5}, w_{1}, x_{3}, w_{3}, x_{1}, w_{2}, x_{10}, x_{8}, b_{1}, x_{6}$ in order if $(\alpha, \beta, \gamma, \delta)=(3,5,7,8)$, a contradiction. Finally if $R^{1} \cap V(H)=\left\{x_{2}, x_{3}, x_{5}, x_{6}, x_{8}, x_{9}\right\}$. By $(*), R^{1} \cap V(H)$ is red-complete to W^{\prime}. Then G has a red P_{11} with vertices $x_{2}, a_{1}, x_{3}, b_{1}, x_{5}, w_{1}, x_{6}, w_{2}, x_{8}, w_{3}, x_{9}$ in order. Thus $i_{r}=5$ and so $\left|W^{\prime}\right| \geq 4$. But then we obtain a red C_{12} with vertices $a_{1}, x_{2}, w_{1}, x_{3}, w_{2}, x_{5}, w_{3}, x_{6}, w_{4}, x_{8}, b_{1}, x_{9}$ in order, a contradiction.

Case 3. $\left|R^{1} \cap V(H)\right|=7$, then $i_{r} \geq 4$ and $\left|W^{\prime}\right|=|W|=i_{r}$. Let $(\alpha, \beta) \in\{(6,5),(7,4)\}$. Suppose $R^{1} \cap V(H)=\left\{x_{2}, x_{3}, x_{4}, x_{5}, x_{\alpha}, x_{8}, x_{9}\right\}$. Since $\left\{x_{3}, w_{j}\right\} \neq A_{i},\left\{x_{\beta}, w_{j}\right\} \neq A_{i}$ and $\left\{x_{8}, w_{j}\right\} \neq$ A_{i} for all $i \in[t]$ and any $w_{j} \in W^{\prime},\left\{x_{3}, x_{\beta}, x_{8}\right\}$ must be red-complete to W^{\prime} under c by (*). But then we obtain a red C_{12} with vertices $a_{1}, x_{3}, w_{1}, x_{10}, w_{2}, x_{1}, w_{3}, x_{\beta}, w_{4}, x_{8}, b_{1}, x_{2}$ in order, a contradiction. Finally if $R^{1} \cap V(H)=\left\{x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{9}\right\}$. Since $\left\{x_{3}, w_{j}\right\} \neq A_{i}$ and $\left\{x_{6}, w_{j}\right\} \neq A_{i}$ for all $i \in[t]$ and any $w_{j} \in W^{\prime},\left\{x_{3}, x_{6}\right\}$ must be red-complete to W^{\prime} under c by $(*)$. We may assume x_{8} is red-complete to $W^{\prime} \backslash w_{2}$ by $(*)$. But then we obtain a red C_{12} with vertices $a_{1}, x_{3}, w_{1}, x_{10}, w_{2}, x_{1}, w_{3}, x_{8}, w_{4}, x_{6}, b_{1}, x_{2}$ in order, a contradiction. This proves that $\left|A_{1}\right| \geq 3$.

Claim 13. For any A_{i} with $3 \leq\left|A_{i}\right| \leq 4, G\left[A_{i}\right]$ has a monochromatic copy of P_{3} in some color $m \in[k]$ other than red and blue.

Proof. Suppose there exists a part A_{i} with $3 \leq\left|A_{i}\right| \leq 4$ but $G\left[A_{i}\right]$ has no monochromatic copy of P_{3} in any color $m \in[k]$ other than red and blue. We may assume $i=1$. Since $G R_{k}\left(P_{3}\right)=3$, we see that $G\left[A_{1}\right]$ must contain a red or blue P_{3}, say blue. We may assume a_{i}, b_{i}, c_{i} are the vertices of the blue P_{3} in order. Then $\left|A_{1}\right|=4$, else $\left\{b_{1}\right\},\left\{a_{1}, c_{1}\right\}, A_{2}, \ldots, A_{p}$ is a Gallai partition of G with $p+1$ parts. Let $z_{1} \in A_{1} \backslash\left\{a_{1}, b_{1}, c_{1},\right\}$. Then z_{1} is not blue-complete to $\left\{a_{1}, c_{1}\right\}$, else $\left\{a_{1}, c_{1}\right\},\left\{b_{1}, z_{1}\right\}, A_{2}, \ldots, A_{p}$ is a Gallai partition of G with $p+1$ parts. Moreover, $b_{1} z_{1}$ is not colored blue, else $\left\{b_{1}\right\},\left\{a_{1}, c_{1}, z_{1}\right\}, A_{2}, \ldots, A_{p}$ is a Gallai partition of G with $p+1$ parts. If $b_{1} z_{1}$ is colored red, then $a_{1} z_{1}$ and $c_{1} z_{1}$ are colored either red or blue because G has no rainbow triangle. Similarly, z_{1} is not red-complete to $\left\{a_{1}, c_{1}\right\}$, else $\left\{z_{1}\right\},\left\{a_{1}, b_{1}, c_{1}\right\}, A_{2}, \ldots, A_{p}$ is a Gallai partition of G with $p+1$ parts. Thus, by symmetry, we may assume $a_{1} z_{1}$ is colored blue and $c_{1} z_{1}$ is colored red, and so $a_{1} c_{1}$ is colored blue or red because G has no rainbow triangle. But then $\left\{a_{1}\right\},\left\{b_{1}\right\},\left\{c_{1}\right\},\left\{z_{1}\right\}, A_{2}, \ldots, A_{p}$ is a Gallai partition of G with $p+3$ parts, a contradiction. Thus $b_{1} z_{1}$ is colored neither red nor blue. But then $a_{1} z_{1}$ and $c_{1} z_{1}$ must be colored blue because $G\left[A_{1}\right]$
has neither rainbow triangle nor monochromatic P_{3} in any color $m \in[k]$ other than red and blue, a contradiction.

For the remainder of the proof of Theorem 1.6.17, we assume that $|B| \geq|R|$. By Claim 11, $|R| \leq n-1$. Let $\left\{a_{i}, b_{i}, c_{i}\right\} \subseteq A_{i}$ if $\left|A_{i}\right| \geq 3$ for any $i \in[p]$. Let $B:=\left\{x_{1}, \ldots, x_{|B|}\right\}$ and $R:=\left\{y_{1}, \ldots, y_{|R|}\right\}$. We next show that

Claim 14. $i_{r} \geq|R|$.

Proof. Suppose $i_{r} \leq|R|-1 \leq n-2$. Then $i_{b}=n-1, i_{r} \geq 3,\left|A_{1}\right| \leq 4$, else we obtain a red $G_{i_{r}}$ because R is not blue-complete to B and $\left|A_{1}\right| \geq 3$. Moreover, there exist two edges, say $x_{1} y_{1}, x_{2} y_{2}$, that are colored red, else we obtain a blue $C_{2 n}$. Then $G\left[A_{1} \cup R \cup\left\{x_{1}, x_{2}\right\}\right]$ has a red P_{9}, it follows that $n=6, i_{r}=4$ and $|R|=5$. By Claim $13, G\left[A_{1}\right]$ has a monochromatic, say green, copy of P_{3}. By Claim 10, $i_{g}=1$. Then $\left|A_{1} \cup B\right|=|G|-|R| \geq 7+i_{b}+i_{r}+i_{g}-|R|=12$, and so $G[B]$ has no blue $G_{i_{b}-\left|A_{1}\right|}$, else we obtain a blue C_{12}. Let $i_{b}^{*}:=i_{b}-\left|A_{1}\right| \leq 2, i_{r}^{*}:=i_{r}-|R|+2=1$, $i_{j}^{*}:=i_{j} \leq 2$ for all color $j \in[k]$ other than red and blue. Let $i_{\ell}^{*}:=\max \left\{i_{j}^{*}: j \in[k]\right\}$ and let $N^{*}:=\left|G_{i_{\ell}^{*}}\right|+\left[\left(\sum_{j=1}^{k} i_{j}^{*}\right)-i_{\ell}^{*}\right]$. Observe that $|B| \geq N^{*}$. By minimality of $N, G[B]$ has a red P_{5} with vertices, say x_{1}, \ldots, x_{5}, in order. Because there is a red P_{7} with both ends in R by using edges between A_{1} and R, we see that R is blue-complete to $\left\{x_{1}, x_{2}, x_{4}, x_{5}\right\}$, else $G\left[A_{1} \cup R \cup\left\{x_{1}, \ldots, x_{5}\right\}\right]$ has a red P_{11}. But then we obtain a blue C_{12} with vertices $a_{1}, x_{1}, y_{1}, x_{2}, y_{2}, x_{4}, y_{3}, x_{5}, b_{1}, x_{3}, c_{1}, x_{6}$ in order, a contradiction.

Claim 15. $i_{b}>\left|A_{1}\right|$ and so $\left|A_{1}\right| \leq n-2$.

Proof. Suppose $i_{b} \leq\left|A_{1}\right|$. If $i_{b} \leq\left|A_{1}\right|-1$, then $i_{b} \leq n-2$ by Claim 2 and so $i_{r}=n-1$. Thus $|B| \geq 2+i_{b}$ because $|B|+|R|=|G|-\left|A_{1}\right| \geq n+1+i_{b}+\left(i_{r}-\left|A_{1}\right|\right) \geq 3+2 i_{b}$. But then G has a
blue $G_{i_{b}}$ using edges between A_{1} and B, a contradiction. Thus $i_{b}=\left|A_{1}\right|$. By Claim 11 and Claim 14, $|R| \leq n-1$ and $i_{r} \geq|R|$. Observe that $|B| \geq 1+n+i_{r}-|R| \geq 1+n$. Then $G[B \cup R]$ has no blue P_{3} with both ends in B, else we obtain a blue $G_{i_{b}}$ in G. Let $i_{b}^{*}:=i_{b}-\left|A_{1}\right|=0, i_{r}^{*}:=i_{r}-|R|$, and $i_{j}^{*}:=i_{j} \leq n-4$ for all color $j \in[k]$ other than blue and red. Let $i_{\ell}^{*}:=\max \left\{i_{j}^{*}: j \in[k]\right\}$ and $N^{*}:=\left|G_{i_{\ell}^{*}}\right|+\left[\left(\sum_{j=1}^{k} i_{j}^{*}\right)-i_{\ell}^{*}\right]$. Then $3<N^{*}<N$. Suppose first that $|R| \geq 2$. Since B is not red-complete to R, we may assume that $y_{1} x$ is colored blue for some $x \in B$. Note that $i_{r}^{*} \leq n-3$ and $|B \backslash x|=N-\left|A_{1}\right|-|R|-1 \geq N^{*}$. By minimality of $N, G[B \backslash x]$ must have a red $P_{2 i_{r}^{*}+3}$ with vertices, say x_{1}, \ldots, x_{q}, in order, where $q=2 i_{r}^{*}+3$. Since $G[B \cup R]$ contains no blue P_{3} with both ends in B and $x y_{1}$ is colored blue, we see that y_{1} must be red-complete to $B \backslash x$ and y_{2} is not blue-complete to $\left\{x_{1}, x_{q}\right\}$. We may assume that $x_{q} y_{2}$ is colored red in G. Then $n=6$, $i_{r}=|R|=5$ and $i_{b}=\left|A_{1}\right|=3$, else we obtain a red $G_{i_{r}}$ using vertices in $V\left(P_{2 i_{r}^{*}+3}\right) \cup R \cup A_{1}$. Let $x^{\prime} \in B \backslash\left\{x, x_{1}, x_{2}, x_{3}\right\}$. Then $\left\{x, x^{\prime}\right\} \nsubseteq A_{i}$ and $\left\{x, x_{1}\right\} \nsubseteq A_{i}$ for all $i \in[p]$ because $y x$ is colored blue and $y x^{\prime}, y x_{1}$ are colored red, and so $x x^{\prime}$ and $x x_{1}$ are colored red, else $G\left[A_{1} \cup B \cup\left\{y_{1}\right\}\right]$ has a blue P_{9}. But then we obtain a red C_{12} with vertices $a_{1}, y_{1}, x^{\prime}, x, x_{1}, x_{2}, x_{3}, y_{2}, b_{1}, y_{3}, c_{1}, y_{4}$ in order, a contradiction. Thus $|R|=1$. By Claim 7 applied to $i_{b}=\left|A_{1}\right|, i_{r} \geq|R|$ and $B, G[B]$ must have a red $P_{2 i_{r}+1}$ with vertices, say $x_{1}, x_{2}, \ldots, x_{2 i_{r}+1}$, in order. Since $G[B \cup R]$ contains no blue P_{3} with both ends in B, we may assume that $y_{1} x_{1}$ is colored red under c. Then $i_{r}=n-1$, else we obtain a red $G_{i_{r}}$, a contradiction. Moreover, $y_{1} x_{2 n-1}$ must be colored blue, else G has a red $C_{2 n}$ with vertices $y_{1}, x_{1}, \ldots, x_{2 n-1}$ in order. Thus y_{1} is red-complete to $\left\{x_{1}, \ldots, x_{2 n-2}\right\}$, and so $\left\{x_{j}, x_{2 n-1}\right\} \nsubseteq A_{i}$ for all $i \in[p]$ and $j \in[2 n-2]$. So $x_{2 n-1} x_{i}$ must be colored red for some $i \in[2 n-3]$ because $G[B]$ has no blue P_{3}. But then we obtain a red $C_{2 n}$ with vertices $y_{1}, x_{1}, \ldots, x_{i}, x_{2 n-1}, x_{2 n-2}, \ldots, x_{i+1}$ in order, a contradiction. This proves that $i_{b}>\left|A_{1}\right|$, and so $\left|A_{1}\right| \leq n-2$.

By Claim 12 and Claim 15, $3 \leq\left|A_{1}\right| \leq n-2$. Then by Claim 13, $G\left[A_{1}\right]$ has a monochromatic, say green, copy of P_{3}. By Claim 10, $i_{g}=1$.

Claim 16. If $\left|A_{1}\right|=3$, then $\left|A_{2}\right|=3,\left|A_{3}\right| \leq 2$, and $i_{j}=0$ for all color $j \in[k] \backslash[3]$.

Proof. Assume $\left|A_{1}\right|=3$. To prove $\left|A_{2}\right|=3$, we show that $G[B \cup R]$ has a green P_{3}. Suppose $G[B \cup R]$ has no green P_{3}. By Claim 15, $i_{b} \geq\left|A_{1}\right|+1=4$. Let $i_{g}^{*}:=0$ and $i_{j}^{*}:=i_{j}$ for all $j \in[k]$ other than green. Let $i_{\ell}^{*}:=\max \left\{i_{j}^{*}: j \in[k]\right\}$ and $N^{*}:=\left|G_{i_{\ell}^{*}}\right|+\left[\left(\sum_{j=1}^{k} i_{j}^{*}\right)-i_{\ell}^{*}\right]$. Then $N^{*}=N-1$ and $\left|G \backslash a_{1}\right|=N-1=N^{*}$. But then $G \backslash a_{1}$ has no monochromatic copy of $G_{i_{j}^{*}}$ in color j for all $j \in[k]$, contrary to the minimality of N. Thus $G[B \cup R]$ has a green P_{3} and so $\left|A_{2}\right|=3$.

Suppose $\left|A_{3}\right|=3$. For all $i \in[3]$, let

$$
\begin{aligned}
A_{b}^{i} & :=\left\{a_{j} \in V(\mathcal{R}) \mid a_{j} a_{i} \text { is colored blue in } \mathcal{R}\right\} \text { and } \\
A_{r}^{i} & :=\left\{a_{j} \in V(\mathcal{R}) \mid a_{j} a_{i} \text { is colored red in } \mathcal{R}\right\} .
\end{aligned}
$$

Let $B^{i}:=\bigcup_{a_{j} \in A_{b}^{i}} A_{j}$ and $R^{i}:=\bigcup_{a_{j} \in A_{r}^{i}} A_{j}$. Since each of A_{1}, A_{2}, A_{3} can be chosen as the largest part in the Gallai-partition $A_{1}, A_{2}, \ldots, A_{p}$ of G, by Claim 11, either $\left|B^{i}\right| \leq 5$ or $\left|R^{i}\right| \leq 5$ for all $i \in[3]$. Without loss of generality, we may assume that A_{2} is blue-complete to $A_{1} \cup A_{3}$. Let $X:=V(G) \backslash\left(A_{1} \cup A_{2} \cup A_{3}\right)=\left\{v_{1}, \ldots, v_{|X|}\right\}$. Then $|X| \geq 1+n+i_{b}+i_{r}+i_{g}-9=$ $2 n-8+\min \left\{i_{b}, i_{r}\right\}$. Suppose $\left|X \cap B^{1}\right| \geq 2$. We may assume $v_{1}, v_{2} \in X \cap B^{1}$. Then G has a blue C_{10} with vertices $a_{1}, v_{1}, b_{1}, v_{2}, c_{1}, a_{2}, a_{3}, b_{2}, b_{3}, c_{2}$ in order and a blue P_{11} with vertices $a_{1}, v_{1}, b_{1}, v_{2}, c_{1}, a_{2}, a_{3}, b_{2}, b_{3}, c_{2}, c_{3}$ in order, and so $n=6$ and $i_{b}=5$. Moreover, $X \backslash\left\{v_{1}, v_{2}\right\} \subseteq R^{3}$, else, say v_{3} is blue-complete to A_{3}, then we obtain a blue C_{12} under c with vertices $a_{1}, v_{1}, b_{1}, v_{2}, c_{1}, a_{2}, a_{3}, v_{3}, b_{3}, b_{2}, c_{3}, c_{2}$ in order. Thus $\left|R^{3}\right| \geq\left|X \backslash\left\{v_{1}, v_{2}\right\}\right| \geq 2+i_{r}$, and so $i_{r} \geq 3$, else G has a red $G_{i_{r}}$ using the edges between A_{3} and R^{3}. Then there exist at least two vertices in $X \backslash\left\{v_{1}, v_{2}\right\}$, say v_{3}, v_{4}, such that $\left\{v_{3}, v_{4}\right\}$ is blue-complete to A_{1}, else $G\left[A_{1} \cup A_{3} \cup\left(X \backslash\left\{v_{1}, v_{2}\right\}\right)\right]$ contains a red $G_{i_{r}}$. Thus $\left|B^{1}\right| \geq\left|A_{2} \cup\left\{v_{1}, \ldots, v_{4}\right\}\right|=7$ and so $\left|R^{1}\right| \leq 5$. Moreover, $\left\{v_{1}, v_{2}\right\} \subset R^{3}$, else, say v_{1} is blue-complete to A_{3}, we then obtain a
blue C_{12} under c with vertices $a_{1}, v_{3}, b_{1}, v_{4}, c_{1}, a_{2}, a_{3}, v_{1}, b_{3}, b_{2}, c_{3}, c_{2}$ in order. Then $X \subseteq R^{3}$ and $\left|R^{3}\right| \geq|X| \geq 4+i_{r} \geq 7$, and so $\left|B^{3}\right| \leq 5$ and A_{1} is red-complete to A_{3}. Furthermore, $G\left[B^{1} \backslash A_{2}\right]$ has no blue P_{3}, else, say v_{1}, v_{2}, v_{3} is such a blue P_{3} in order, we obtain a blue C_{12} with vertices $a_{1}, v_{1}, v_{2}, v_{3}, b_{1}, v_{4}, c_{1}, a_{2}, a_{3}, b_{2}, b_{3}, c_{2}$ in order. Therefore for any $U \subseteq B^{1} \backslash A_{2}$ with $|U| \geq 4, G[U]$ contains a red P_{3} because $\left|A_{1}\right|=3$ and $G R_{k}\left(P_{3}\right)=3$. Since $\left|R^{1}\right| \leq 5$ and $A_{3} \subseteq R^{1}$, we may assume $v_{1}, \ldots, v_{|X|-2} \in B^{1} \backslash A_{2}$. Then $G\left[\left\{v_{1}, \ldots, v_{4}\right\}\right]$ must contain a red P_{3} with vertices, say v_{1}, v_{2}, v_{3}, in order. We claim that $X \subset B^{1}$. Suppose $v_{|X|} \in R^{1}$. Then $v_{|X|}$ is red-complete to A_{1} and so G has a red P_{11} with vertices $c_{1}, v_{|X|}, a_{1}, a_{3}, b_{1}, b_{3}, v_{1}, v_{2}, v_{3}, c_{3}, v_{4}$ in order, it follows that $i_{r}=5$. Thus $|X| \geq 9$, and $G\left[\left\{v_{4}, \ldots, v_{7}\right\}\right]$ has a red P_{3} with vertices, say v_{4}, v_{5}, v_{6}, in order. But then we obtain a red C_{12} with vertices $a_{1}, v_{|X|}, b_{1}, a_{3}, v_{1}, v_{2}, v_{3}, b_{3}, v_{4}, v_{5}, v_{6}, c_{3}$ in order, a contradiction. Thus $X \subset B^{1}$ as claimed. Since $|X| \geq 7, G\left[\left\{v_{4}, \ldots, v_{7}\right\}\right]$ contains a red P_{3} with vertices, say v_{4}, v_{5}, v_{6}, in order. Then G has a red P_{11} with vertices $a_{1}, a_{3}, b_{1}, b_{3}, v_{1}, v_{2}, v_{3}, c_{3}, v_{4}, v_{5}, v_{6}$ in order, and so $i_{r}=5,|X| \geq 9$. Suppose $G\left[\left\{v_{4}, \ldots, v_{9}\right\}\right]$ has no red P_{5}. Then $G\left[\left\{v_{4}, \ldots, v_{9}\right\}\right]$ has at most one part with order three, say A_{4}, and we may assume $G\left[A_{4}\right]$ has a monochromatic P_{3} in some color m other than red and blue if $\left|A_{4}\right|=3$ by Claim 13. Let $i_{r}^{*}:=1, i_{m}^{*}:=1, i_{j}^{*}:=0$ for all color $j \in[k] \backslash\{m\}$ other than red. Let $N^{*}:=\left|G_{i_{r}^{*}}\right|+\left[\left(\sum_{j=1}^{k} i_{j}^{*}\right)-i_{r}^{*}\right]=6<N$. Then $G\left[\left\{v_{4}, \ldots, v_{9}\right\}\right]$ has no monochromatic copy of $G_{i_{j}^{*}}$ in any color $j \in[k]$, which contradicts to the minimality of N. Thus $G\left[\left\{v_{4}, \ldots, v_{9}\right\}\right]$ has a red P_{5} with vertices, say v_{4}, \ldots, v_{8}, in order. But then we obtain a red C_{12} with vertices $a_{3}, v_{1}, v_{2}, v_{3}, b_{3}, v_{4}, \ldots, v_{8}, c_{3}, v_{9}$ in order, a contradiction. Therefore, $\left|X \cap B^{1}\right| \leq 1$. By symmetry, $\left|X \cap B^{3}\right| \leq 1$. Let $w \in X \cap B^{1}$ and $w^{\prime} \in X \cap B^{3}$. Then $A_{1} \cup A_{3}$ is red-complete to $X \backslash\left\{w, w^{\prime}\right\}$. It follows that $n=5$ and $\left|X \cap B^{1}\right|=\left|X \cap B^{3}\right|=1$, else $G\left[A_{1} \cup A_{3} \cup\left(X \backslash\left\{w, w^{\prime}\right\}\right)\right]$ has a red $G_{i_{r}}$ because $|X| \geq 2 n-8+\min \left\{i_{b}, i_{r}\right\}$ and $i_{b} \geq 4$, a contradiction. But then we obtain a blue C_{10} with vertices $a_{2}, a_{1}, w, b_{1}, b_{2}, a_{3}, w^{\prime}, b_{3}, c_{2}, c_{3}$ in order, a contradiction. This proves that $\left|A_{3}\right| \leq 2$, and then both $G\left[A_{1}\right]$ and $G\left[A_{2}\right]$ have a green P_{3}, so $i_{j}=0$ for all color $j \in[k]$ other than red, blue and green by Claim 10.

Claim 17. If $i_{b}=\left|A_{1}\right|+1$, then $|R| \leq 2$.

Proof. Suppose $i_{b}=\left|A_{1}\right|+1$ but $|R| \geq 3$. By Claim 14, $i_{r} \geq|R|$, it follows that $|B| \geq$ $1+n+i_{b}+i_{r}+i_{g}-\left|A_{1}\right|-|R| \geq 3+n$. Thus $G[B \cup R]$ has no blue P_{5} with both ends in B, else we obtain a blue $G_{i_{b}}$. Let $i_{b}^{*}:=i_{b}-\left|A_{1}\right|=1, i_{r}^{*}:=i_{r}-|R|+1$ (when $n=5$) or $i_{r}^{*}:=\max \left\{i_{r}-|R|+1,2\right\}$ (when $n=6$), $i_{j}^{*}:=i_{j}$ for all $j \in[k]$ other than red and blue. Let $i_{\ell}^{*}:=\max \left\{i_{j}^{*}: j \in[k]\right\}$ and $N^{*}:=\left|G_{i_{\ell}^{*}}\right|+\left[\left(\sum_{j=1}^{k} i_{j}^{*}\right)-i_{\ell}^{*}\right]$. Then $3<N<N^{*}$. Observe that $|B| \geq N^{*}$. By minimality of $N, G[B]$ has a red $G_{i_{r}^{*}}$ with vertices, say x_{1}, \ldots, x_{q}, in order, where $q=2 i_{r}^{*}+3$. If R is blue-complete to $\left\{x_{1}, x_{q}\right\}$, then R is red-complete to $B \backslash\left\{x_{1}, x_{q}\right\}$ because $G[B \cup R]$ has no blue P_{5} with both ends in B. But then $G\left[A_{1} \cup R \cup\left\{x_{2}, \ldots, x_{q-1}\right\}\right]$ has a red $G_{i_{r}}$, a contradiction. Thus R is not blue-complete to $\left\{x_{1}, x_{q}\right\}$, and so we may assume $y_{1} x_{1}$ is colored red. Then $i_{r}=n-1$ and $R \backslash\left\{y_{1}\right\}$ is blue-complete to $\left\{x_{q-2}, x_{q}\right\}$, else $G\left[A_{1} \cup R \cup\left\{x_{1}, \ldots, x_{q}\right\}\right]$ has a red $G_{i_{r}}$. So $R \backslash\left\{y_{1}\right\}$ is red-complete to $B \backslash\left\{x_{q-2}, x_{q}\right\}$ because $G[B \cup R]$ has no blue P_{5} with both ends in B. But then $G\left[A_{1} \cup R \cup\left\{x_{2}, \ldots, x_{q-1}\right\}\right]$ has a red $G_{i_{r}}$, a contradiction.

Claim 18. $i_{b}=n-1$.

Proof. Suppose $i_{b} \leq n-2$. Then $i_{r}=5$. By Claim 12 and Claim 15, $\left|A_{1}\right| \geq 3$ and $i_{b}>\left|A_{1}\right|$, it follows that $n=6, i_{b}=4$ and $\left|A_{1}\right|=3$. By Claim 16, $\left|A_{2}\right|=3,\left|A_{3}\right| \leq 2, i_{j}=0$ for all color $j \in[k] \backslash[3]$. By Claim 17, $|R| \leq 2$ and so $A_{2} \subset B$. It follows that $|B|=7+i_{b}+i_{r}+i_{g}-\left|A_{1} \cup R\right|=$ $14-|R| \geq 12$. Then $G[B \cup R]$ has no blue P_{5} with both ends in B, else G has a blue P_{11} because $\left|A_{1}\right|=3$. Thus there exists a set W such that $(B \cup R) \backslash\left(A_{2} \cup W\right)$ is red-complete to A_{2}, where $W \subset(B \cup R) \backslash A_{2}$ with $|W| \leq 1$. Let $i_{b}^{*}:=i_{b}-\left|A_{1}\right|=1, i_{r}^{*}:=2, i_{j}^{*}:=0$ for all $j \in[k]$ other than red and blue, and $N^{*}:=\left|G_{i_{r}^{*}}\right|+\left[\left(\sum_{j=1}^{k} i_{j}^{*}\right)-i_{r}^{*}\right]=8$. Then $N^{*}<N$. Observe that $\left|B \backslash\left(A_{2} \cup W\right)\right|=11-|R|-|W| \geq N^{*}$. By minimality of $N, G\left[B \backslash\left(A_{2} \cup W\right)\right]$ must contain a red $G_{i_{r}^{*}}=P_{7}$. But then $G[(B \cup R) \backslash W]$ has a red C_{12}, a contradiction. Thus $i_{b}=n-1$.

Claim 19. $\left|A_{1}\right|=n-2$.

Proof. By Claim 15, $\left|A_{1}\right| \leq n-2$. Suppose $\left|A_{1}\right| \leq n-3$. By Claim 12, $n=6$ and $\left|A_{1}\right|=3$. By Claim 18, $i_{b}=5$. By Claim 16, $\left|A_{2}\right|=3,\left|A_{3}\right| \leq 2$ and $i_{j}=0$ for all color $j \in[k] \backslash[3]$. By Claim $14, i_{r} \geq|R|$. Then $|B|=7+i_{b}+i_{r}+i_{g}-\left|A_{1}\right|-|R| \geq 10$, and so $G[B \cup R]$ has neither blue P_{7} nor blue $P_{5} \cup P_{3}$ with all ends in B else we obtain a blue C_{12}.

Suppose $|R| \leq 2$. Then $A_{2} \subset B$ and there exists a set $W \subset(B \cup R) \backslash A_{2}$ with $|W| \leq 3$ such that W is blue-complete to A_{2} and $(B \cup R) \backslash\left(A_{2} \cup W\right)$ is red-complete to A_{2}. Since $\left|B \backslash\left(A_{2} \cup W\right)\right| \geq 4$, we see that there is a red P_{7} using edges between A_{2} and $B \backslash\left(A_{2} \cup W\right)$, so $i_{r} \geq 3$ and $i_{r}-|R| \geq 1$. Let $i_{b}^{*}:=2$ (when $|B \cap W| \leq 1$) or $i_{b}^{*}:=0$ (when $|B \cap W| \geq 2$), $i_{r}^{*}:=\min \left\{i_{r}-|R|-1,2\right\}$, $i_{j}^{*}:=0$ for all color $j \in[k]$ other than red and blue. Let $i_{\ell}^{*}:=\max \left\{i_{j}^{*}: j \in[k]\right\}$ and $N^{*}:=\left|G_{i_{e}^{*}}\right|+$ $\left[\left(\sum_{j=1}^{k} i_{j}^{*}\right)-i_{\ell}^{*}\right]=3+\max \left\{i_{b}^{*}, i_{r}^{*}\right\}+i_{b}^{*}+i_{r}^{*}$. Observe that $\left|B \backslash\left(A_{2} \cup W\right)\right|=7+i_{r}-|R \cup W| \geq N^{*}$. By minimality of $N, G\left[B \backslash\left(A_{2} \cup W\right)\right]$ has a red $G_{i_{r}^{*}}$ because $G[B]$ has neither blue P_{7} nor blue $P_{5} \cup P_{3}$ and $\left|A_{3}\right| \leq 2$. But then $G[(B \cup R) \backslash W]$ has a red $G_{i_{r}}$ because $|(B \cup R) \backslash W| \geq 7+i_{r} \geq\left|G_{i_{r}}\right|$ and A_{2} is red-complete to $(B \cup R) \backslash\left(A_{2} \cup W\right)$, a contradiction. Therefore, $3 \leq|R| \leq 5$ and so $i_{r} \geq 3$.

We claim that $i_{r}=5$. Suppose $3 \leq i_{r} \leq 4$. Let $i_{b}^{*}:=2, i_{r}^{*}:=2, i_{j}^{*}:=i_{j}$ for all color $j \in[k]$ other than red and blue, and $N^{*}:=\left|G_{i_{r}^{*}}\right|+\left[\left(\sum_{j=1}^{k} i_{j}^{*}\right)-i_{r}^{*}\right]=10$. Observe that $|B| \geq 10=N^{*}$. Since $G[B]$ has no blue P_{7}, by minimality of $N, G[B]$ has a red P_{7} with vertices, say x_{1}, \ldots, x_{7}, in order. Then R is blue-complete to $\left\{x_{1}, \ldots, x_{7}\right\} \backslash x_{4}$, else $G\left[A_{1} \cup R \cup\left\{x_{1}, \ldots, x_{7}\right\}\right]$ has a red $G_{i_{r}}$. But then $G[B \cup R]$ has a blue P_{7} with vertices $x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}, x_{5}$ in order, a contradiction. Thus $i_{r}=5$ and so $|G|=18,|B|=15-|R|$.

If $|R|=3$. First suppose $A_{2} \subseteq R$. Since R is not red-complete to B, we may assume that A_{2} is blue-complete to x_{1}. Let $i_{b}^{*}:=2, i_{r}^{*}:=3, i_{j}^{*}:=0$ for all color $j \in[k]$ other than red and blue,
and $N^{*}:=\left|G_{i_{r}^{*}}\right|+\left[\left(\sum_{j=1}^{k} i_{j}^{*}\right)-i_{r}^{*}\right]=11$. Observe that $\left|B \backslash x_{1}\right|=11=N^{*}$. By minimality of $N, G\left[B \backslash x_{1}\right]$ has a red P_{9} with vertices, say x_{2}, \ldots, x_{10}, in order. We claim that A_{2} is bluecomplete to $\left\{x_{2}, x_{10}\right\}$, else, say x_{2} is red-complete to A_{2}. Then A_{2} is blue-complete to $\left\{x_{8}, x_{10}\right\}$, else $G\left[A_{1} \cup A_{2} \cup\left\{x_{2}, \ldots, x_{10}\right\}\right]$ has a red C_{12}. Thus A_{2} is red-complete to $B \backslash\left\{x_{1}, x_{8}, x_{10}\right\}$ because $G[B \cup R]$ has no blue P_{7} with both ends in B. But then we obtain a red C_{12} with vertices $a_{1}, a_{2}, x_{3}, \ldots, x_{9}, b_{2}, b_{1}, c_{2}$ in order, a contradiction. Thus, A_{2} is blue-complete to $\left\{x_{1}, x_{2}, x_{10}\right\}$, and so A_{2} is red-complete to $B \backslash\left\{x_{1}, x_{2}, x_{10}\right\}$ because $G[B \cup R]$ has no blue P_{7} with both ends in B. But then we obtain a red C_{12} with vertices $a_{1}, a_{2}, x_{3}, \ldots, x_{9}, b_{2}, b_{1}, c_{2}$ in order, a contradiction. This proves that $A_{2} \subset B$. Then there exists a set $W \subset(B \cup R) \backslash A_{2}$ with $|W \cap B| \leq 3$ such that W is blue-complete to A_{2} and $(B \cup R) \backslash\left(A_{2} \cup W\right)$ is red-complete to A_{2}. Then $|W| \leq 3$ and $|W \cap B| \leq 3$ or $|W|=4$ and $|W \cap B|=1$ because $G[B \cup R]$ has no blue P_{7} with both ends in B. Let

$$
\begin{aligned}
& i_{b}^{*}:=2-|W|, i_{r}^{*}:=2 \text { when }|W| \in\{0,1\}, \\
& i_{b}^{*}:=0, i_{r}^{*}:=2 \text { when }|W| \geq 2 \text { and }|W \cap B| \leq 2, \\
& i_{b}^{*}:=0, i_{r}^{*}:=1 \text { when }|W|=|W \cap B|=3
\end{aligned}
$$

$i_{j}^{*}:=0$ for all color $j \in[k]$ other than red and blue, and $N^{*}:=\left|G_{i_{r}^{*}}\right|+\left[\left(\sum_{j=1}^{k} i_{j}^{*}\right)-i_{r}^{*}\right]=3+2 i_{r}^{*}+i_{b}^{*}$. Observe that $\left|B \backslash\left(A_{2} \cup W\right)\right| \geq N^{*}$. By minimality of $N, G\left[B \backslash\left(A_{2} \cup W\right)\right]$ has a red $G_{i_{r}^{*}}$ because $G[B \cup R]$ has neither blue P_{7} nor blue $P_{5} \cup P_{3}$ with all ends in B and $\left|A_{3}\right| \leq 2$. If $|W| \leq 3$ and $|W \cap B| \leq 2$, then $G[(B \cup R) \backslash W]$ has a red C_{12} because $|(B \cup R) \backslash W| \geq 12$ and A_{2} is red-complete to $(B \cup R) \backslash\left(A_{2} \cup W\right)$. Thus $|W|=|W \cap B|=3$ or $|W|=4$ and $|W \cap B|=1$. For the former case, $G\left[B \backslash\left(A_{2} \cup W\right)\right]$ has a red P_{5} with vertices, say x_{1}, \ldots, x_{5}, in order. Let $W:=$ $\left\{w_{1}, w_{2}, w_{3}\right\} \subset B$. Then A_{2} is blue-complete to W and red-complete to $\left\{x_{1}, \ldots, x_{5}\right\}$, and so W is red-complete to $\left\{x_{1}, \ldots, x_{5}\right\}$ because $G[B]$ has no blue P_{7}. But then we obtain a red C_{12} with vertices $a_{2}, x_{1}, w_{1}, x_{2}, w_{2}, x_{3}, w_{3}, x_{4}, b_{2}, x_{5}, c_{2}, x_{6}$ in order, where $x_{6} \in B \backslash\left(A_{2} \cup W \cup\left\{x_{1}, \ldots, x_{5}\right\}\right)$,
a contradiction. For the latter case, $G\left[B \backslash\left(A_{2} \cup W\right)\right]$ has a red P_{7} with vertices, say x_{1}, \ldots, x_{7}, in order. Let $W \cap B:=\{w\}$. Then w is red-complete to $\left\{x_{1}, \ldots, x_{7}\right\}$ because $G[B]$ has no blue P_{7}. But then we obtain a red C_{12} with vertices $a_{2}, x_{1}, w, x_{2}, \ldots, x_{6}, b_{2}, x_{7}, c_{2}, x_{8}$ in order, where $x_{8} \in B \backslash\left(A_{2} \cup W \cup\left\{x_{1}, \ldots, x_{7}\right\}\right)$, a contradiction. This proves that $|R| \in\{4,5\}$. First we claim that $G[E(B, R)]$ has no blue P_{5} with both ends in B. Suppose there is a blue $H:=P_{5}$ with vertices, say $x_{1}, y_{1}, x_{2}, y_{2}, x_{3}$, in order. Then $G[(B \cup R) \backslash V(H)]$ has no blue P_{3} with both ends in B. Let $i_{b}^{*}:=0, i_{r}^{*}:=i_{r}-|R|+1, i_{j}^{*}:=i_{j}$ for all color $j \in[k]$ other than red and blue. Let $i_{\ell}^{*}:=\max \left\{i_{j}^{*}: j \in[k]\right\}$ and $N^{*}:=\left|G_{i_{\ell}^{*}}\right|+\left[\left(\sum_{j=1}^{k} i_{j}^{*}\right)-i_{\ell}^{*}\right]=6+2\left(i_{r}-|R|\right)$. Observe that $\left|B \backslash\left\{x_{1}, x_{2}, x_{3}\right\}\right|=7+i_{r}-|R| \geq N^{*}$ since $|R| \in\{4,5\}$. By minimality of N, $G\left[B \backslash\left\{x_{1}, x_{2}, x_{3}\right\}\right]$ has a red $G_{i_{r}^{*}}$ with vertices, say x_{4}, \ldots, x_{q}, in order, where $q=2 i_{r}^{*}+6$. Then y_{3} is not blue-complete to $\left\{x_{4}, x_{q}\right\}$ because $G[(B \cup R) \backslash V(H)]$ has no blue P_{3} with both ends in B. We may assume $x_{4} y_{3}$ is colored red. Then $R \backslash\left\{y_{1}, y_{2}, y_{3}\right\}$ is blue-complete to x_{8}, else we obtain a red C_{12} with vertices $a_{1}, y_{3}, x_{4}, \ldots, x_{8}, y_{4}, b_{1}, y_{1}, c_{1}, y_{2}$ in order, a contradiction. Since $G[(B \cup R) \backslash V(H)]$ has no blue P_{3} with both ends in B, we see that $R \backslash\left\{y_{1}, y_{2}, y_{3}\right\}$ is red-complete to $\left\{x_{4}, \ldots, x_{q}\right\} \backslash\left\{x_{8}\right\}$. But then we obtain a red C_{12} with vertices $a_{1}, y_{3}, x_{4}, \ldots, x_{10}, y_{4}, b_{1}, y_{1}$ (when $|R|=4$), or $a_{1}, y_{3}, x_{4}, x_{5}, x_{6}, y_{4}, x_{7}, y_{5}, b_{1}, y_{1}, c_{1}, y_{2}($ when $|R|=5)$ in order, a contradiction. Thus, $G[E(B, R)]$ has no blue P_{5} with both ends in B. Let $i_{b}^{*}:=2, i_{r}^{*}:=2, i_{j}^{*}:=i_{j}$ for all color $j \in[k]$ other than red and blue, and $N^{*}:=\left|G_{i_{r}^{*}}\right|+\left[\left(\sum_{j=1}^{k} i_{j}^{*}\right)-i_{r}^{*}\right]=10$. Observe that $|B| \geq 10=N^{*}$. By minimality of $N, G[B]$ has a red P_{7} with vertices, say x_{1}, \ldots, x_{7}, in order. We claim that x_{1} is blue-complete to R. Suppose $x_{1} y_{1}$ is colored red. Then $R \backslash y_{1}$ is blue-complete to $\left\{x_{5}, x_{7}\right\}$, else $G\left[A_{1} \cup R \cup\left\{x_{1}, \ldots, x_{7}\right\}\right]$ has a red C_{12}. Thus $R \backslash y_{1}$ is red-complete to $B \backslash\left\{x_{5}, x_{7}\right\}$ because $G[E(B, R)]$ has no blue P_{5} with both ends in B. But then we obtain a red C_{12} with vertices $a_{1}, y_{2}, x_{2}, \ldots, x_{6}, y_{3}, b_{1}, y_{4}, c_{1}, y_{1}$ in order, a contradiction. Therefore, x_{1} is blue-complete to R. By symmetry, x_{7} is blue-complete to R. Then R is red-complete to $B \backslash\left\{x_{1}, x_{7}\right\}$ because $G[E(B, R)]$ has no blue P_{5} with both ends in B. But then we obtain a red C_{12} with vertices $a_{1}, y_{2}, x_{2}, \ldots, x_{6}, y_{3}, b_{1}, y_{4}, c_{1}, y_{1}$ in order, a contradiction. This proves that $\left|A_{1}\right|=n-2$.

By Claim 18, Claim 19 and Claim 14, $i_{b}=n-1,\left|A_{1}\right|=n-2, i_{r} \geq|R|$. By Claim 17, $|R| \leq 2$. Then $|B| \geq 3+n+i_{r}-|R| \geq 3+n$, and so $G[B \cup R]$ has no blue P_{5} with both ends in B.

Claim 20. $i_{r}=n-1$.

Proof. Suppose $i_{r} \leq n-2$. By Claim 9, B is not blue-complete to R. Let $x \in B$ and $y \in R$ such that $x y$ is colored red. Let $i_{b}^{*}:=i_{b}-\left|A_{1}\right|=1$ and $i_{r}^{*}:=i_{r}-|R| \leq n-3, i_{j}^{*}:=$ $i_{j} \leq n-4$ for all color $j \in[k]$ other than red and blue. Let $i_{\ell}^{*}:=\max \left\{i_{j}^{*}: j \in[k]\right\}$ and $N^{*}:=\left|G_{i_{\ell}^{*}}\right|+\left[\left(\sum_{j=1}^{k} i_{j}^{*}\right)-i_{\ell}^{*}\right]$. Then $3<N^{*}<N$ and $|B \backslash x|=N-\left|A_{1}\right|-|R|-1 \geq N^{*}$. By minimality of $N, G[B \backslash x]$ must have a red $P_{2 i_{r}^{*}+3}$ with vertices, say $x_{1}, x_{2}, \ldots, x_{2 i_{r}^{*+3}}$, in order. Then $\left\{x_{1}, x_{2 i_{r}^{*}+3}\right\}$ must be blue-complete to $\{x, y\}$ and $x x_{2}$ must be colored blue under c, else we obtain a red $P_{2 i_{r}+3}$ using vertices in $V\left(P_{2 i_{r}^{*}+3}\right) \cup\{x, y\}$ or in $V\left(P_{2 i_{r}^{*}+3} \backslash x_{1}\right) \cup\{x, y\} \cup A_{1}$. But then $G[B \cup R]$ has a blue P_{5} with vertices $x_{2}, x, x_{1}, y, x_{2 i_{r}^{*}+3}$ in order, a contradiction.

Let $A_{1}:=\left\{a_{1}, b_{1}, c_{1}\right\}$ (when $n=5$) or $A_{1}:=\left\{a_{1}, b_{1}, c_{1}, z_{1}\right\}$ (when $n=6$). By Claim 13, $G\left[A_{1}\right]$ has a monochromatic, say green, copy of P_{3}. By Claim $10, i_{g}=1$. We next show that $\left|A_{2}\right| \geq 3$. Suppose $\left|A_{2}\right| \leq 2$. Then by Claim 16, $\left|A_{1}\right|=4$ and so $n=6$. Let $i_{b}^{*}:=i_{b}-\left|A_{1}\right|$, $i_{r}^{*}:=i_{r}-|R|+1, i_{g}^{*}:=i_{g}-1=0$ and $i_{j}^{*}:=i_{j}$ for all $j \in[k]$ other than red, blue and green. Let $i_{\ell}^{*}:=\max \left\{i_{j}^{*}: j \in[k]\right\}$ and $N^{*}:=\left|G_{i_{\ell}^{*}}\right|+\left[\left(\sum_{j=1}^{k} i_{j}^{*}\right)-i_{\ell}^{*}\right]$. Then $3<N^{*}<N$ and $|B|=|G|-\left|A_{1}\right|-|R|=N^{*}$. By minimality of $N, G[B]$ must contain a red $G_{i_{r}^{*}}$. It follows that $|R|=2$ and $G_{i_{r}^{*}}=P_{11}$. Let $x_{1}, x_{2}, \ldots, x_{11}$ be the vertices of the red P_{11} in order. If R is blue-complete to $\left\{x_{1}, x_{11}\right\}$, then R is red-complete to $B \backslash\left\{x_{1}, x_{11}\right\}$ because $G[B \cup R]$ has no blue P_{5} with both ends in B. But then G has a red C_{12} with vertices $a_{1}, y_{1}, x_{2}, \ldots, x_{10}, y_{2}$ in order, a contradiction. Thus, R is not blue-complete to $\left\{x_{1}, x_{11}\right\}$ and we may assume $x_{1} y_{1}$ is colored red. Then $x_{11} y_{1}$ and $x_{9} y_{2}$ are colored blue, else $G\left[\left\{x_{1}, \ldots, x_{11}\right\} \cup R \cup A_{1}\right]$ has a red C_{12}. If $x_{11} y_{2}$ is colored red, then $x_{1} y_{2}$ and $x_{3} y_{1}$ are colored blue by the same reasoning. But then we obtain
a blue C_{12} with vertices $a_{1}, x_{1}, y_{2}, x_{9}, b_{1}, x_{3}, y_{1}, x_{11}, c_{1}, x_{2}, z_{1}, x_{4}$ in order, a contradiction. Thus $x_{11} y_{2}$ is colored blue. Then y_{1} is red-complete to $B \backslash\left\{x_{9}, x_{11}\right\}$, else, say $y_{1} w$ is colored blue with $w \in B \backslash\left\{x_{9}, x_{11}\right\}$, then $G[B \cup R]$ has a blue P_{5} with vertices $w, y_{1}, x_{11}, y_{2}, x_{9}$ in order. It follows that $\left\{x_{11}, w\right\} \nsubseteq A_{j}$ for all $j \in[q]$, where $w \in B \backslash\left\{x_{9}, x_{11}\right\}$. Moreover, $x_{2} y_{2}$ is colored blue, else G has a red C_{12} with vertices $a_{1}, y_{2}, x_{2}, \ldots, x_{10}, y_{1}$ in order, a contradiction. Thus, $G\left[B \backslash\left\{x_{2}, x_{9}\right\}\right]$ has no blue P_{3}, else $G\left[A_{1} \cup B \cup\left\{y_{2}\right\}\right]$ has a blue C_{12}. Therefore, $x_{i} x_{11}$ is colored red for some $i \in\{3, \ldots, 7\}$. But then we obtain a red C_{12} with vertices $y_{1}, x_{1}, \ldots, x_{i}, x_{11}, x_{10}, \ldots, x_{i+1}$ in order, a contradiction. Thus $3 \leq\left|A_{2}\right| \leq n-2$ and $A_{2} \subset B$ because $|R| \leq 2$.

Since $G[B \cup R]$ has no blue P_{5} with both ends in B, there exists at most one vertex, say $w \in B \cup R$, such that $(B \cup R) \backslash\left(A_{2} \cup\{w\}\right)$ is red-complete to A_{2}. Suppose $3 \leq\left|A_{3}\right| \leq n-2$. Then $n=6$ by Claim 16, $A_{3} \subseteq B$ and A_{3} must be red-complete to A_{2}. Since $G[B \cup R]$ has no blue P_{5} with both ends in B, there exists at most one vertex, say $w^{\prime} \in B \cup R$, such that $(B \cup R) \backslash\left(A_{3} \cup\left\{w^{\prime}\right\}\right)$ is red-complete to A_{3}. But then $G\left[(B \cup R) \backslash\left\{w, w^{\prime}\right\}\right]$ has a red C_{12}, a contradiction. Thus $\left|A_{3}\right| \leq 2$ and so $G\left[B \backslash A_{2}\right]$ has no monochromatic copy of P_{3} in color j for all $j \in[k]$ other than red and blue. Let $i_{b}^{*}:=1, i_{r}^{*}:=n-1-\left|A_{2}\right|$, and $i_{j}^{*}:=0$ for all colors $j \in[k]$ other than red and blue. Let $N^{*}:=\left|G_{i_{r}^{*}}\right|+\left[\left(\sum_{j=1}^{k} i_{j}^{*}\right)-i_{r}^{*}\right]=2 i_{r}^{*}+3+i_{b}^{*}=2 n+2-2\left|A_{2}\right|$. Then $3<N^{*}<N$ and $\left|B \backslash\left(A_{2} \cup\{w\}\right)\right| \geq 2 n+1-|R|-\left|A_{2}\right| \geq N^{*}$. By minimality of $N, G\left[B \backslash\left(A_{2} \cup\{w\}\right)\right]$ has a red $G_{i_{r}^{*}}$. But then $G[(B \cup R) \backslash\{w\}]$ has a red $C_{2 n}$, a contradiction.

This completes the proof of Theorem 1.6.17.

CHAPTER 4: FUTURE WORK

In this chapter, we discuss possible extensions of our work in this dissertation, as well as other topics of interest.

4.1 More Open Problems on Co-critical Graphs

As we see that Conjecture 1.4.1 remains wide open, except that the first nontrivial case, so we are also interesting in the next open case $\left(K_{3}, K_{4}\right)$-co-critical. By considering the construction of K_{4}-saturated graphs and making use of the result of Theorem 1.5.7, hopefully we can obtain an asymptotic edge bound for $\left(K_{3}, K_{4}\right)$-co-critical graphs.

Galluccio, Siminovits and Simonyi proposed several interesting open problems in [45] which are listed below. G_{n} below denotes a graph on n vertices.

1. Are there infinitely many strongly minimal co-critical graphs?
2. Can one get a construction of a $\left(K_{3}, K_{3}\right)$-co-critical graph G_{n} without K_{4} ?
3. Is it true that for every $\left(K_{3}, K_{3}\right)$-co-critical graph G_{n} adding any new edge we get a K_{5} ? Or at least a K_{4} ?
4. Assume that a $\left(K_{3}, K_{3}\right)$-co-critical graph G_{n} contains a K_{5}. Does this imply that G_{n} contains also a K_{6}^{-}?
5. Is it always true that duplicating a vertex of a co-critical graph we get a co-critical graph?
4.2 Rainbow Saturation Numbers of Graphs

We are also interested in saturation numbers of edge-colored graphs that are as far being monochromatic as possible. This problem was proposed by Barrus, Ferrara, Vandenbussche, and Wenger in [4]. Given a graph F, an edge coloring of F is called rainbow if every edge of F is colored differently. Note that it is not necessary to specify the set of colors that may be used in a rainbow-colored copy of F. Given a graph G and a t-edge-coloring τ of G, where $t \geq e(F)$. We say (G, τ) is rainbow (F, t)-saturated if G contains no rainbow copy of F under τ, but for any edge $e \in E(\bar{G})$ and any color $i \in[t]$, the addition of e to G in color i creates a rainbow copy of $F . \tau$ is called an F-threshold coloring if (G, τ) is rainbow (F, t)-saturated. The t-rainbow saturation number of F, denoted by $r s a t_{t}(n, F)$, is the minimum number of edges in a rainbow (F, t)-saturated graph with n vertices. Barrus et al., in [4], proved the following results.

Theorem 4.2.1 (Barrus, Ferrara, Vandenbussche, Wenger [4]) For every integer $k \geq 3$ and $t \geq\binom{ k}{2}$, for all sufficiently large n, there exist two positive constants c_{1}, c_{2} such that $c_{1} \frac{n \log n}{\log \log n} \leq$ $\operatorname{rsat}_{t}\left(n, K_{k}\right) \leq c_{2} n \log n$.

Theorem 4.2.2 (Barrus, Ferrara, Vandenbussche, Wenger [4])
(i) If $t \geq k \geq 2$ and $n \geq(k+1)(k-1) / t$, then $\operatorname{rsat}_{t}\left(n, K_{1, k}\right)=\Theta\left(n^{2}\right)$.
(ii) For all $k \geq 4, \operatorname{rsat}_{t}\left(n, P_{k}\right) \geq n-1$.
(iii) For $t \geq 8, \operatorname{rsat}_{t}\left(n, P_{4}\right)=n-1$.
(iv) If T is a tree with at least four vertices that is not a star, then

$$
\operatorname{rsat}_{t}(n, T) \leq\left\lceil\frac{n}{k-1}\right\rceil\binom{ k-1}{2}
$$

In the same paper, Barrus et al. conjectured that $\operatorname{rsat}_{t}\left(n, K_{k}\right)=\Theta(n \log n)$. This conjecture was verified by Girão et al. in [47] and Korándi in [62] independently. Recently, Shi et al. [75] improved the upper bound of $\operatorname{rsat}_{t}\left(n, P_{k}\right)$ to $\left\lceil\frac{n}{k}\right\rceil\binom{ k-2}{2}+4$ for $k \geq 5$ and $t \geq 2 k-5$. Motivated by these results, we are interested in the bound of $\operatorname{rsat}_{t}\left(n, \mathcal{T}_{k}\right)$, where \mathcal{T}_{k} is the family of all trees on k vertices.

4.3 Antimagic Labeling of Graphs

Given a graph G with m edges. An antimagic labeling of a graph G is a bijection from $E(G)$ to $\{1,2, \ldots, m\}$ such that for any distinct vertices u and v, the sum of labels on edges incident to u differs from that for edges incident to v. A graph G is antimagic if it has an antimagic labeling. Hartsfield and Ringel [57] introduced antigamic labelings in 1990 and made the following conjecture.

Conjecture 4.3.1 (Hartsfield, Ringel [57]) Every connected graph, but K_{2}, is antimagic.

The most significant progress on this problem is a result of Alon, Kaplan, Lev, Roditty, and Yuster [2] stated below.

Theorem 4.3.2 (Alon, Kaplan, Lev, Roditty, Yuster [2]) There exists an absolute constant C such that every graph on n vertices with minimum degree at least $C \log n$ is antimagic.

Theorem 4.3.3 (Alon, Kaplan, Lev, Roditty, Yuster [2]) If G has $n \geq 4$ vertices and $\Delta(G) \geq$ $n-2$, then G is antimagic.

Eccles [29] recently improved Theorem 4.3.2 by showing that there exists an absolute constant c_{0} such that if G is a graph with average degree at least c_{0}, and G contains no isolated edge and at
most one isolated vertex, then G is antimagic. In 2012, Yilma [82] proved the following result which improved Theorem 4.3.3.

Theorem 4.3.4 (Yilma [82]) If G is connected, has $n \geq 9$ vertices, and $\Delta(G) \geq n-3$, then G is antimagic.

Theorem 4.3.5 (Yilma [82]) If G is a graph on n vertices, $\Delta(G)=d(x)=n-k$, where $k \leq n / 3$, and there exists $y \in V(G)$ such that $N(x) \cup N(y)=V(G)$, then G is antimagic.

As noted in [2], it is still an open problem to decide whether connected graphs with $\Delta(G) \geq n-k$ and $n>n_{0}(k)$ are antimagic, for any fixed $k \geq 4$. We are interested in showing Conjecture 4.3.1 is true for every graph G with $\Delta(G)=n-4$ and improving Theorem 4.3.5.

LIST OF REFERENCES

[1] N. Alon, P. Erdős, R. Holzman, M. Krivelevich, On k-saturated graphs with restrictions on the degrees, J. Graph Theory 23 (1996) 1-20.
[2] N. Alon, G. Kaplan, A. Lev, Y. Roditty, R. Yuster, Dense graphs are antimagic, J. Graph Theory 47 (2004) 297-309.
[3] V. Angeltveit, B. D. McKay, $R(5,5) \leq 48$, J. Graph Theory 89 (2018) 5-13.
[4] M. D. Barrus, M. Ferrara, J. Vandenbussche, P. S. Wenger, Colored saturation parameters for rainbow subgraphs, J. Graph Theory 86 (4) (2017) 375-386.
[5] F. S. Benevides, J. Skokan, The 3-colored Ramsey number of even cycles, J. Combin. Theory Ser. B 99 (2009) 690-708.
[6] B. Bollobás, On generalized graphs, Acta Math. Acad. Sci. Hungar. 16 (1965) 447-452.
[7] J. A. Bondy, P. Erdős, Ramsey numbers for cycles in graphs, J. Combin. Theory Ser. B 14 (1973) 46-54.
[8] C. Bosse, Z-X. Song, Multicolor Gallai-Ramsey numbers of C_{9} and C_{11}. arXiv:1802.06503.
[9] C. Bosse, Z-X. Song, J. Zhang, Improved upper bounds for Gallai-Ramsey numbers of odd cycles. arXiv:1808.09963.
[10] C. Bosse, Z-X. Song, J. Zhang, On the size of $\left(K_{3}, K_{4}\right)$-co-critical graphs, in preparation.
[11] R. A. Brualdi, Introductory Combinatorics (5th ed.), Prentice Hall (Pearson), (2010) P74.
[12] D. Bruce, Z-X. Song, Gallai-Ramsey numbers of C_{7} with multiple colors, Discrete Math. 342 (2019) 1191-1194.
[13] L. E. Bush, The William Lowell Putnam Mathematical Competition (question \#2 in Part I asks for the proof of $R(3,3) \leq 6$), Amer. Math. Monthly 60 (1953) 539-542.
[14] K. Cameron, J. Edmonds, L. Lovász, A note on perfect graphs, Period. Math. Hungar. 17 (1986) 173-175.
[15] J. Chalupa, P. L. Leath, G. R. Reich, Bootstrap percolation on a bethe latice, J. Physics C. 12 (1979) L31-L37.
[16] G. Chartrand, S. Schuster, On the existence of specified cycles in complementary graphs, Bull. Amer. Math. Soc. 77 (1971) 995-998.
[17] G. Chen, M. Ferrara, R. J. Gould, C. Magnant, J. Schmitt, Saturation numbers for families of Ramsey-minimal graphs, J. Comb. 2 (2011) 435-455.
[18] F. R. K. Chung, R. L. Graham, Edge-colored complete graphs with precisely colored subgraphs, Combinatorica 3 (1983) 315-324.
[19] V. Chvátal, Tree-complete graph Ramsey numbers, J. Graph Theory 1 (1977) 93.
[20] D. Conlon, A new upper bound for diagonal Ramsey numbers, Ann. of Math. 170 (2009) 941-960.
[21] D. Conlon, J. Fox, B. Sudakov, Recent developments in graph Ramsey theory, Surveys in Combinatorics 424 (2015) 49-118.
[22] H. Davenport, Z-X. Song, On the size of $\left(K_{3}, K_{1, k}\right)$-co-critical graphs, in preparation.
[23] A. N. Day, Saturated graphs of prescribed minimum degree, Combin. Probab. Comput. 26 (2017) 201-207.
[24] A. N. Day, J. R. Johnson, Multicolour Ramsey numbers of odd cycles, J. Combin. Theory Ser. B 124 (2017) 56-63.
[25] R. Diestel, Graph Theory (5th ed.), Graduate Texts in Mathematics, vol. 173, Springer Berlin Heidelberg, (2016).
[26] D. A. Duffus, D. Hanson, Minimal k-saturated and color critical graphs of prescribed minimum degree, J. Graph Theory 10 (1986) 55-67.
[27] T. Dzido, Ramsey numbers for various graph classes (in Polish), Ph.D. thesis, University of Gdańsk, Poland, (November 2005).
[28] T. Dzido, A. Nowik, P. Szuca, New lower bound for multicolor Ramsey numbers for even cycles, Electron. J. Combin. 12 (2005) \# N13.
[29] T. Eccles, Graphs of large linear size are antimagic, J. Graph Theory 81 (2016) 236-261.
[30] P. Erdős, Some remarks on the theory of graphs, Bull. Amer. Math. Soc. (N.S.) 53 (1947) 292-294.
[31] P. Erdős, R. J. Faudree, C. C. Rousseau, R. H. Schelp, Generalized Ramsey theory for multiple colors, J. Combin. Theory Ser. B 20 (1976) 250-264.
[32] P. Erdős, A. Hajnal, J. W. Moon, A problem in graph theory, Amer. Math. Monthly. 71 (1964) 1107-1110.
[33] P. Erdős, R. Holzman, On maximal triangle-free graphs, J. Graph Theory 18 (1994) 585-594.
[34] G. Exoo, A lower bound for $R(5,5)$, J. Graph Theory 13 (1989) 97-98.
[35] J. R. Faudree, R. J. Faudree, J. R. Schmitt, A survey of minimum saturated graphs and hypergraphs, Electron. J. Combin. 18 (2011) DS19.
[36] R. J. Faudree, R. J. Gould, M. S. Jacobson, C. Magnant, Ramsey numbers in rainbow triangle free colorings, Australas. J. Combin. 46 (2010) 269-284.
[37] R. J. Faudree, S. L. Lawrence, T. D. Parsons, R. H. Schelp, Path-cycle Ramsey numbers, Discrete Math. 10 (1974) 269-277.
[38] R. J. Faudree, R. H. Schelp, All Ramsey numbers for cycles in graphs, Discrete Math. 8 (1974) 313-329.
[39] M. Ferrara, J. Kim, E. Yeager, Ramsey-minimal saturation numbers for matchings, Discrete Math. 322 (2014) 26-30.
[40] J. Fox, A. Grinshpun, J. Pach, The Erdös-Hajnal conjecture for rainbow triangles, J. Combin. Theory Ser. B 111 (2015) 75-125.
[41] S. Fujita, C. Magnant, Gallai-Ramsey numbers for cycles, Discrete Math. 311 (2011) 12471254.
[42] S. Fujita, C. Magnant, K. Ozeki, Rainbow generalizations of Ramsey theory: a survey, Graphs Combin. 26 (2010) 1-30.
[43] Z. Füredi, Á. Seress, Maximal triangle-free graphs with restrictions on the degrees, J. Graph Theory 18 (1994) 11-24.
[44] T. Gallai, Transitiv orientierbare graphen, Acta Math. Acad. Sci. Hung. 18 (1967) 25-66.
[45] A. Galluccio, M. Simonovits, G. Simonyi, On the structure of co-critical graphs, Graph theory, combinatorics, and algorithms, Vol. 1,2 (Kalamazoo, MI, 1992), 1053-1071, WileyIntersci. Publ., Wiley, New York, 1995.
[46] L. Gerencsér, A. Gyárfás, On Ramsey-type problems, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 10 (1967) 167-170.
[47] A. Girão, D. Lewis, K. Popielarz, Rainbow saturation of graphs. arXiv:1710.08025.
[48] J. E. Graver, J. Yackel, Some graph theoretic results associated with Ramsey's theorem, J. Combin. Theory 4 (1968) 125-175.
[49] R. E. Greenwood, A. M. Gleason, Combinatorial relations and chromatic graphs, Canad. J. Math. 7 (1955) 1-7.
[50] J. Gregory, Gallai-Ramsey number of an 8-Cycle, Electronic Theses \& Dissertations, Digital Commons@Georgia Southern (2016).
[51] A. Gyárfás, G. N. Sárközy, Gallai colorings of non-complete graphs, Discrete Math. 310 (2010) 977-980.
[52] A. Gyárfás, G. N. Sárközy, A. Sebő, S. Selkow, Ramsey-type results for Gallai colorings, J. Graph Theory 64 (2010) 233-243.
[53] A. Gyárfás, G. Simonyi, Edge colorings of complete graphs without tricolored triangles, J. Graph Theory 46 (2004) 211-216.
[54] A. Hajnal, A theorem on k-saturated graphs, Canad. J. Math. 17 (1965) 720-724.
[55] M. Hall, C. Magnant, K. Ozeki, M. Tsugaki, Improved upper bounds for Gallai-Ramsey numbers of paths and cycles, J. Graph Theory 75 (2014) 59-74.
[56] D. Hanson, B. Toft, Edge-colored saturated graphs, J. Graph Theory 11 (1987) 191-196.
[57] N. Hartsfield, G. Ringel, Pearls in Graph Theory, Academic Press, Boston, (1990) 108-109 (revised version, 1994).
[58] I. N. Herstein, Topics in Algebra, Waltham: Blaisdell Publishing Company, (1964).
[59] M. Jenssen, J. Skokan, Exact Ramsey numbers of odd cycles via nonlinear optimisation. arXiv:1608.05705.
[60] L. Kászonyi, Z. Tuza, Saturated graphs with minimal number of edges, J. Graph Theory 10 (1986) 203-210.
[61] G. Kéry, On a theorem of Ramsey (in Hungarian), Matematikai Lapok 15 (1964) 204-224.
[62] D. Korándi, Rainbow saturation and graph capacities, Siam J. Discrete Math. 32 (2018) 1261-1264.
[63] J. Körner, G. Simonyi, Graph pairs and their entropies: modularity problems, Combinatorica 20 (2000) 227-240.
[64] H. Lei, Y. Shi, Z-X. Song, J. Zhang, Gallai-Ramsey numbers of C_{10} and C_{12}. arXiv:1808. 10282.
[65] H. Liu, C. Magnant, A. Saito, I. Schiermeyer, Y. Shi, Gallai-Ramsey number for K_{4}.
[66] T. Łuczak, $R\left(C_{n}, C_{n}, C_{n}\right) \leq(4+o(1)) n$, J. Combin. Theory Ser. B 75 (1999) 174-187.
[67] B. D. McKay, S. P. Radziszowski, $R(4,5)=25$, J. Graph Theory 19 (1995) 309-322.
[68] B. D. McKay, K. M. Zhang, The value of the Ramsey number $R(3,8)$, J. Graph Theory 16 (1992) 99-105.
[69] C. Magnant, I. Schiermeyer, Gallai-Ramsey number for K_{5}. arXiv:1901.03622.
[70] J. Nešetřil, Problem, in Irregularities of Partitions, (eds G. Halász and V. T. Sós), Springer Verlag, Series Algorithms and Combinatorics, vol 8, (1989) P164. (Proc. Coll. held at Fertőd, Hungary 1986).
[71] S. P. Radziszowski, Small Ramsey numbers, Electron. J. Combin. (2017) DS1.15.
[72] F. P. Ramsey, On a problem offormal logic, Proceedings of the London Mathematical Society 30 (1930) 264-286.
[73] M. Rolek, Z-X. Song, Saturation numbers for Ramsey-minimal graphs, Discrete Math. 341 (2018) 3310-3320.
[74] V. Rosta, On a Ramsey type problem of J. A. Bondy and P. Erdös, I \& II, J. Combin. Theory Ser. B 15 (1973) 94-120.
[75] Y. Shi, Z. Taoqiu, A note on rainbow saturation number of paths. arXiv:1902.05222.
[76] Z-X. Song, J. Zhang, A conjecture on Gallai-Ramsey numbers of even cycles and paths. arXiv:1803.07963.
[77] Z-X. Song, J. Zhang, On the size of $\left(K_{t}, \mathcal{T}_{k}\right)$-co-critical graphs. arXiv:1904.07825.
[78] J. Spencer, Ramsey's theorem-a new lower bound, J. Combin. Theory Ser. A 18 (1975) 108115.
[79] T. Szabó, On nearly regular co-critical graphs, Discrete Math. 160 (1996) 279-281.
[80] P. Turán, On an extremal problem in graph theory, Matematikai és Fizikai Lapok (in Hungarian), 48 (1941) 436-452.
[81] D. B. West, Introduction to Graph Theory (2nd ed.), Prentice Hall, (September 2000).
[82] Z. B. Yilma, Antimagic properties of graphs with large maximum degree, J. Graph Theory 72 (2012) 367-373.
[83] F. Zhang, Z-X. Song, Y. Chen, Multicolor Ramsey numbers of cycles in Gallai colorings. arXiv:1906.05263.

