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ABSTRACT

The main focus of the dissertation is estimation and clustering in statistical ill-posed linear

inverse problems. The dissertation deals with a problem of simultaneously estimating a

collection of solutions of ill-posed linear inverse problems from their noisy images under an

operator that does not have a bounded inverse, when the solutions are related in a certain

way. The dissertation defense consists of three parts. In the first part, the collection consists

of measurements of temporal functions at various spatial locations. In particular, we study

the problem of estimating a three-dimensional function based on observations of its noisy

Laplace convolution. In the second part, we recover classes of similar curves when the class

memberships are unknown. Problems of this kind appear in many areas of application where

clustering is carried out at the pre-processing step and then the inverse problem is solved for

each of the cluster averages separately. As a result, the errors of the procedures are usually

examined for the estimation step only. In both parts, we construct the estimators, study their

minimax optimality and evaluate their performance via a limited simulation study. In the

third part, we propose a new computational platform to better understand the patterns of

R-fMRI by taking into account the challenge of inevitable signal fluctuations and interpret

the success of dynamic functional connectivity approaches. Towards this, we revisit an

auto-regressive and vector auto-regressive signal modeling approach for estimating temporal

changes of the signal in brain regions. We then generate inverse covariance matrices from

the generated windows and use a non-parametric statistical approach to select significant

features. Finally, we use Lasso to perform classification of the data. The effectiveness of the

proposed method is evidenced in the classification of R-fMRI scans.
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CHAPTER 1: INTRODUCTION

In many statistical inverse problems, one is often interested in recovering a set of solutions

of general ill-posed linear inverse problems Afm = qm, m = 1, · · · ,M , where A is a bounded

linear operator that does not have a bounded inverse and the right-hand sides qm are mea-

sured with error. In particular, we assume that some of the curves fm and hence, qm are very

similar to each other, so that they can be averaged and recovered together. This similarity

can be of various kinds. One of the possibilities is that the functions fm are spatially related.

In this case, m is a vector index, e.g., m = (m1,m2,m3) if we have a collection of time

dependent functions at various spatial locations, or m = (m1,m2) if we consider points in

some region on the plane.

Another possibility is that some of the curves fm and hence, qm are very similar to each

other, so that they can be averaged and recovered together. As a result, one supposedly

obtains estimators of fj with smaller errors. The grouping is usually unknown (as well as

the number of groups) and is carried out at a pre-processing step by applying one of the

standard clustering techniques with the number of clusters determined by trial and error.

Subsequently, the curves in the same cluster are averaged and the errors of those aggregated

curves are used as true errors in the analysis.

Problems of this kind appear in many areas of application such as astronomy (blurred im-

ages), econometrics (instrumental variables), medical imaging (tomography, dynamic con-

trast enhanced Computerized Tomography and Magnetic Resonance Imaging), finance (model

calibration of volatility) and many others where similar curves are measured and can be re-

covered together.

Our study is motivated by the analysis of Dynamic Contrast Enhanced (DCE) imaging data.
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Figure 1.1: DCE imaging experiment and contrast agent circulation. Figure shows a sub-
tree of the vascular system going from the artery which receives oxygenated blood (red arrow)
to the vein which returns the de-oxygenated blood (blue arrow) after exchanges within the
tissue. After passing through the heart, the bolus of the contrast agent, injected into a vein,
is distributed, throughout the body along the arterial network to the tissue and later back to
the venous system. In the imaging cross-section, the contrast agent induces enhancements
first in the artery, providing the AIF, and later in the tissue of interest providing observations
y(ti), i = 1, ..., n. Enhancements are measured in the voxels of the imaging cross-section

DCE imaging provides a non-invasive measure of tumor angiogenesis and has great potential

for cancer detection and characterization, as well as for monitoring. The common feature of

DCE imaging techniques is that each of them uses the rapid injection of a single dose of a

bolus of a contrast agent and monitors its progression in the vascular network by sequential

imaging at times ti, i = 1, · · · , n. This is accomplished by measuring the pixels’ grey levels

that are proportional to the concentration of the contrast agent in the corresponding voxels.

At each time instant ti, one obtains an image of an artery as well as a collection Y (ti,x)

of grey levels for each voxel x. The images of the artery allow to estimate the so called

Arterial Input Function, AIF(ti), that is proportional to the total amount of the contrast

2



agent entering the tissue area. Comte et al. (2017) described the DCE imaging experiment

in great detail and showed that the cumulative distribution function F (z,x) of the sojourn

times for the particles of the contrast agent entering a tissue voxel x satisfies the following

equation

Y (t,x) =

∫ t−δ

0

g(t− z) β(x)(1− F (z,x))dz + εξ(t,x). (1.1)

Here the errors ξ(t,x) are independent for different t and x = (x1, x2), g(t) = AIF(t), a

positive coefficient β(x) is related to a fraction of the contrast agent entering the voxel x and δ

is the time delay that can be easily estimated from data. The function of interest is f(z,x) =

β(x)(1−F (z,x)) where the distribution function F (z,x) characterizes the properties of the

tissue voxel x and can be used as the foundation for medical conclusions. Since the Arterial

Input Function can be estimated by denoising and averaging the observations over all voxels

of the aorta, its estimators incur much lower errors than those of the left hand side of

equation (1.1). For this reason, in our theoretical investigations, we shall treat function g in

(1.1) as known. If one is interested in taking the uncertainty about g into account, this can

be accomplished using methodology of Vareschi (2015).

Since for each spatial location x, the curves Y (t,x) in (1.1) are very noisy and, in addition,

one can combine all tissues in varios spatial locations into three groups: healthy, cancerous

and pre-cancerous. For this reason, Lieury et al. (2012) clustered all measured spatial curves

into those three groups, averaged the curves in each group, so that Comte et al. (2017) studies

recovery of those averaged curves. Clustering has been done at the pre-processing step and

the clustering error is not accounted for in the subsequent error evaluation.

One of the goals of the present paper is to combine the curves that correspond to the neigh-

boring spatial locations or to similar type of tissues in order to improve the accuracy of the

reconstructed curves while explicitly accounting for the errors that can occur in this process.

3



In particular, in the first part of the paper we consider functional deconvolution approach

where all curves are combined using combination of wavelet and denoising techniques. In the

second part of the paper, we consider a more general problem where, for every x, the curves

f(z,x) can be equal to one of the unknown curves hk, k = 1, · · · ,M , but the correspondence

is unknown.

In addition, we are studying Functional Brain Connectivity through Auto-Regressive (AR)

Models. Functional magnetic resonance imaging (fMRI) and difusion tensor imaging (DTI)

are most commonly used imaging modalities to explore functional and structural connectivity

patterns of brain regions. The fMRI infers brain activity by indirectly measuring changes

in blood flow using magnetic resonance imaging (MRI) and the sub-modality, resting-state

fMRI (rs-fMRI) is a powerful method for evaluating regional interactions that occur when a

subject is not at rest (i.e., performing an explicit task).

One major challenge in resting-state fMRI(rs-fMRI) is the definition of resting-state itself

because it may differ substantially across different subjects, and even for the same subjects,

who may never truly be in “resting-state” during scanning. This is mostly due to self-

generating thoughts, causing inevitable fluctuations in fMRI signals. Dynamic functional

connectivity (dFC) identifies the functional interplay between regions of the brain and the

changes that occur over a short time. The most widely used approach to identifying dFC

is the sliding window approach where correlations between windowed time-courses of brain

regions are estimated.

In this study, our goal is to identify the change points in the signals of rs-fMRI by learning

the signal model and use this knowledge to better represent the inter-region interactions.

Towards this, we use univariate and multivariate stochastic process models, Auto-Regression

(AR) and Vector AR (VAR) respectively, to identify the signal change points. We propose to

4



use this new model to learn discriminating features/connections in the functional connectivity

networks generated using the partial correlations i.e. inverse covariance matrices, using

statistical methods and thereby classify functional brain networks into distinct classes.

We propose a new computational platform to better understand the patterns of R-fMRI by

taking into account the challenge of inevitable signal fluctuations and interpret the success

of dynamic functional connectivity approaches. We revisit an auto-regressive and vector

auto-regressive signal modeling approach for estimating temporal changes of the signal in

brain regions.

We generate inverse covariance matrices from the generated windows and use statistical

approachs (Wilcoxon Rank Sum test,T-test and F-test) to select significant features. Finally,

we use Lasso to perform classification of the data. The effectiveness of the proposed method

is evidenced in the classification of R-fMRI scans of abnormal and normal control subjects.

Patterns of FC networks pertaining to these two groups are more difficult to separate because

the patterns of variations are expected to be due to neurocognitive differences, not from

diseases.

Proposed framework with AR/VAR signal modeling and statistical feature selection tested

along two real data sets and demonstrated the performance. We used Kennedy Krieger

Institute (KKI) Autism and control data and Chess Masters and Novice data (CM&N)

in order to demonstrate our methodology. In both data sets classification achieved higher

accuracy with precision matrix comparing to correlation matrix. KKI data gives higher

accuracy with the F-test feature selection while CM&N gives higher accuracy with Wilcoxon

Rank Sum feature selection approach.
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1.1 Dissertation Organization

Chapter 3 presents the functional Laplace deconvolution studied in [7]. In particular, after

introducing some notations in Section 3.1, we present formulation of the problem and

estimation methodology in Section 3.2 and 3.3, respectively. We derive the minimax lower

bounds and the upper for the risk in Sections 3.4 and 3.5, respectively. In Section 3.6

, we study the finite sample properties of the proposed estimation procedure via a limited

simulation study. Section 3.7 provides application of the procedure to the DCE-CT data

described above. Proofs for Section 3 can be found in Appendix A.

Chapter 4 is devoted to the issue of clustering in statistical ill-posed linear inverse problems

investigated in [58]. Section 4.1 describe the Notation. Section 4.2 introduces problem

and its formulation and the assumptions we used in the estimation procedure . Section 4.3

addresses estimation procedure. Section 4.4 is devoted to evaluation of the error of the

estimator. In particular, it provides an oracle inequality for the risk and study the minimax

lower and the upper bounds for the risk under specific assumptions on the class of underlying

functions. We compare the accuracy of estimation with and without clustering, theoretically

in Section 4.4.4 and via a limited simulation study in Section 4.5 . Proofs can be found in

Appendix B.

Chapter 5 presents the study Functional Brain Connectivity through Auto-Regressive (AR)

and Vector Auto-Regressive (VAR) models. In Section 5.1 we review the fMRI imaging

technique, imaging modalities and the background of Dynamic functional connectivity anal-

ysis. Section 5.2 describe Dynamic functional connectivity and present the Auto-Regressive

(AR) and Vector Auto-Regressive (VAR) applicability. Section 5.3 presents the methodology

used in the analysis and we explained the Auto-Regressive (AR) and Vector Auto-Regressive

(VAR) models. In Section 5.4 explain Dynamic Functional Connectivity with AR/VAR and

6



discuss the Graphical Lasso. Finally we discuss the results and finding in section 5.5. In here

first we introduce the data, then we discuss the Static Functional Connectivity based Clas-

sification and its attainment along the real data. At last we introduce Dynamic functional

connectivity based classification and discuss its performance with the real data.
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CHAPTER 2: LITERATURE REVIEW

2.1 Functional Laplace Deconvolution

The study is motivated by the DCE imaging problem (1.1). Due to the high level of noise in

the left hand side of (1.1), a voxel-per-voxel recovery of individual curves is highly inaccurate.

For this reason, the common approach is to cluster the curves for each voxel and then to

average the curves in the clusters (see, e.g., Rozenholc and Reiß (2012)). As the result,

one does not recover individual curves but only their cluster averages. In addition, since

it is impossible to assess the clustering errors, the estimators may be unreliable even when

estimation errors are small. On the other hand, the functional approaches, in particular,

the wavelet-based techniques, allow to denoise a multivariate function of interest while still

preserving its significant features.

Our objective is to solve the functional Laplace deconvolution problem (3.1) directly. In

the case of the Fourier deconvolution problem, Benhaddou et al. (2013) demonstrated that

the functional deconvolution solution usually has a much better precision compared to a

combination of solutions of separate convolution equations. Below we adopt some of the

ideas of Benhaddou et al. (2013) and apply them to the solution of the functional Laplace

convolution equation.

Specifically, we assume that the unknown function belongs to an anisotropic Laguerre-

Sobolev space and recover it using a combination of wavelet and Laguerre functions ex-

pansion. Similar to Comte et al. (2017), we expand the kernel g over the Laguerre basis

and f(t,x), q(t,x) and Y (t,x) over the Laguerre-wavelet basis and carry out denoising by

thresholding the coefficients of the expansions, which naturally leads to truncation of the
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infinite system of equations that results from the process.

2.2 Clustering in statistical ill-posed linear inverse problems

We consider solution of a set of general ill-posed linear inverse problems Afm = qm, m =

1, · · · ,M , where A is a bounded linear operator that does not have a bounded inverse and

the right-hand sides qm are measured with error. In particular, we assume that some of the

curves fm and hence, qm are very similar to each other, so that they can be averaged and

recovered together. As a result, one supposedly obtains estimators of fj with smaller errors.

The grouping is usually unknown (as well as the number of groups) and is carried out at a

pre-processing step by applying one of the standard clustering techniques with the number

of clusters determined by trial and error. Subsequently, the curves in the same cluster are

averaged and the errors of those aggregated curves are used as true errors in the analysis.

Problems of this kind appear in many areas of application such as astronomy (blurred im-

ages), econometrics (instrumental variables), medical imaging (tomography, dynamic con-

trast enhanced Computerized Tomography and Magnetic Resonance Imaging), finance (model

calibration of volatility) and many others where similar curves are measured and can be re-

covered together. Indeed, clustering has been applied to solution of ill-posed inverse problems

for decades in pattern recognition [9], astronomy [62], astrophysics [32], pattern-based time

series segmentation [26], medical imaging [21], elastography for computation of the unknown

stiffness distribution [5] and for detecting early warning signs on stock market bubbles [44],

to name a few. While in some of other settings the main objective is finding group assign-

ments, we are considering only applications where clustering is used merely as a denoising

technique. In those applications, routinely, clustering is carried out at the pre-processing

step and then the inverse problems are solved for each of the cluster averages separately. As

9



a result, the errors of the procedures are usually examined for the estimation step only. The

objective of this paper is to examine, both theoretically and via simulations, the effect of

clustering on the accuracy of the solutions of general ill-posed linear inverse problems.

There exists immense literature on the statistical inverse problems (see, e.g., [2], [10], [20],

[28], [52] and monographs [4], [31] and references therein, to name a few). While authors

investigated the problem under some special noise scenarios (see, e.g., [70], [42], [51] among

others), to the best of our knowledge, the question about the effects of clustering in the

statistical inverse problems has never been investigated. Recently, as a part of a more

general theory, the effect of clustering on the precision of recovery in multiple regression

problems has been studed in [41]. Klopp et al. [41] concluded that, even under uncertainty,

clustering improves the estimation accuracy.

2.3 Learning Functional Brain Connectivity through Auto-Regressive (AR) Models

A causal system is the system which depends on only the past and present values since it

cannot see the future. There are several millions of neurons in the brain and these can be

thought of as helping to learn patterns. The rs-fMRI signals of brain scans can also be viewed

as causal signals. Similarly, in task-based fMRI scanning, the neurons learn the task being

performed. There is no information about the future response, it is determined only by the

past signal information. Depending upon the task being performed, different regions of the

brain are activated and the response is now dependent upon the past stimulus and present

with no information about the future stimulus. So, each region’s response is dependent upon

the past and could be influenced by the past responses of other regions of the brain. This

relationship between two regions was first modeled by the Structural Equation Modeling

(SEM) [48] and it was later modeled by the Granger Causality [34],[69]. Different tissues
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may cause different delays in the haemodynamic response to activity. This can cause an

error in correctly capturing the influence of one region on another as seen through Granger

Causality.

In the resting-state, the activations are assumed to be more stable since there is no external

stimulus applied. However, there still exist delays in response as well as some uncharacteristic

stronger activations which may or may not have been influenced by other regions. These

uncharacteristic activations could be due to the fact that the brain is almost never truly

at rest (dreams, etc) and also to the signal noise. In the preprocessing stage of rs-fMRI

analysis, a signal filtering is performed to select responses in a particular frequency range.

This step can help to eliminate some of the noise but not all of it. Recently, Khazaee et. al

[40] used multivariate Granger Causality to model the overall signal and compute a directed

graph to discriminate between Alzheimers and healthy patients. However, the change points

were not modeled here.

2.3.1 Functional Connectivity (FC)

Pearson’s correlation is the commonly used metric to generate FC matrices from the rs-

fMRI signals [35]. More recently, inverse covariance based FC approaches have been shown

to be more accurate in classifying signals [50]. In most works, identification of these change

points in the signal to determine the window-size has proven challenging with most methods

preferring to use a trial and error approach to identifying window size that gives the best

modeling performance [45], [72]. Within a window, all time points are given equal weight

thereby boosting outlier contribution/effect. To counter this, [3] proposed using tapered

windows to discount boundary observations. [22] proposed a regression approach to identify

change-points in the signal by iteratively partitioning the signal till no improvement in their
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criterion was found. This approach generates different width partitions which can prove

challenging when used in the more modern deep-learning approaches. The game of chess

requires complex problem solving skills [6] and this cognitive expertise can be studied. [30]

hypothesized functional connectivity differences in the intrinsic brain connectivity between

chess masters and novice players. Network-based statistics were used to identify differences

in the medial temporal lobe and several temporal and parietal areas from the connectivity

matrices generated using Pearson’s correlation.
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CHAPTER 3: FUNCTIONAL LAPLACE DECONVOLUTION

3.1 Notation

In this section, we are going to use the following notations. Given a matrix A, let AT

be the transpose of A, ‖A‖F =
√

Tr(ATA) and ‖A‖ = λmax(ATA) be, respectively, the

Frobenius and the spectral norm of a matrix A, where λmax(U) is the largest, in absolute

value, eigenvalue of U. We denote by [A]m the upper left m×m sub-matrix of A. Given a

vector u ∈ Rk, we denote by ‖u‖ its Euclidean norm and, for p ≤ k, the p × 1 vector with

the first p coordinates of u, by [u]p. For any function t ∈ L2(R+), we denote by ‖t‖2 its

L2 norm on R+. For vectors, whenever it is necessary, we use the superscripts to indicate

dimensions of the vectors and subscripts to denote their components. Also, a∨b = max(a, b)

and a ∧ b = min(a, b).

3.2 Formulation of the problem

In this section, we consider the problem of estimating a three-dimensional function f based

on observations from its noisy Laplace convolution.

Y (t,x) = q(t,x) + εξ(t,x) with q(t,x) =

∫ t

0

g(t− z)f(z,x)dz. (3.1)

where x = (x1, x2), (t, x1, x2) ∈ U = [0,∞) × [0, 1] × [0, 1] and ξ(z, x1, x2) is the three-

dimensional Gaussian white noise such that

Cov {ξ(z1, x11, x12), ξ(z2, x21, x22)} = I(z1 = z2) I(x11 = x21) I(x12 = x22).
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Formula (3.1) represents a noisy version of a functional Laplace convolution equation. Indeed,

if x is fixed, then (3.1) reduces to a noisy version of the Laplace convolution equation

Y (t) = q(t) + εξ(t) with q(t) =

∫ t

0

g(t− z)f(z)dz, (3.2)

Observe that when g is known, equation (1.1) reduces to the form (3.1) that we study in the

present paper. If one is interested in taking the uncertainty about g into account, this can

be accomplished using methodology of Vareschi (2015).

We consider the functional version (3.1) of the Laplace convolution equation (3.2). The

study is motivated by the DCE imaging problem (1.1). Due to the high level of noise in the

left hand side of (1.1), a voxel-per-voxel recovery of individual curves is highly inaccurate.

For this reason, the common approach is to cluster the curves for each voxel and then to

average the curves in the clusters (see, e.g., Rozenholc and Reiß (2012)). As the result,

one does not recover individual curves but only their cluster averages. In addition, since

it is impossible to assess the clustering errors, the estimators may be unreliable even when

estimation errors are small. On the other hand, the functional approaches, in particular,

the wavelet-based techniques, allow to denoise a multivariate function of interest while still

preserving its significant features.

The objective is to solve the functional Laplace deconvolution problem (3.1) directly. In

the case of the Fourier deconvolution problem, Benhaddou et al. (2013) demonstrated that

the functional deconvolution solution usually has a much better precision compared to a

combination of solutions of separate convolution equations. Below we adopt some of the

ideas of Benhaddou et al. (2013) and apply them to the solution of the functional Laplace

convolution equation.
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Specifically, we assume that the unknown function belongs to an anisotropic Laguerre-

Sobolev space and recover it using a combination of wavelet and Laguerre functions ex-

pansion. Similar to Comte et al. (2017), we expand the kernel g over the Laguerre basis

and f(t,x), q(t,x) and Y (t,x) over the Laguerre-wavelet basis and carry out denoising by

thresholding the coefficients of the expansions, which naturally leads to truncation of the

infinite system of equations that results from the process. We derive the minimax lower

bounds for the L2-risk in the model (3.1) and demonstrate that the wavelet-Laguerre es-

timator is adaptive and asymptotically near-optimal within a logarithmic factor in a wide

range of Laguerre-Sobolev balls. We carry out a limited simulation study and then finally

apply our technique to recovering of f(z,x) in equation (1.1) on the bases of DCE-CT data.

Although, for simplicity, we only consider the white noise model for the functional Laplace

convolution equation (3.1), the theoretical results can be easily extended to its sample ver-

sion by following Comte et al. (2017). We carry out a limited simulations study and show

that the estimator performs well in a finite sample setting. Finally, we use the technique

for the solution of the Laplace deconvolution problem on the basis of DCE Computerized

Tomography data.

3.3 Estimation Algorithm

Consider a finitely supported periodized r0-regular wavelet basis (e.g., Daubechies) ψj,k(x)

on [0, 1]. Form a product wavelet basis Ψω(x) = ψj1,k1(x1)ψj2,k2(x2) on [0, 1] × [0, 1] where

ω ∈ Ω with

Ω =
{
ω = (j1, k1; j2, k2) : j1, j2 = 0, · · · ,∞; k1 = 0, · · · , 2j1−1, k2 = 0, · · · , 2j2−1

}
. (3.3)
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Denote functional wavelet coefficients of f(t,x), q(t,x), Y (t,x) and ξ(t,x) by, respectively,

fω(t), qω(t), Yω(t) and ξω(t). Then, for any t ∈ [0,∞), equation (4.1) yields

Yω(t) = qω(t) + εξω(t) with qω(t) =

∫ t

0

g(t− s)fω(s)ds (3.4)

and function f(t,x) can be written as

f(t,x) =
∑
ω∈Ω

fω(s)Ψω(x), x = (x1, x2). (3.5)

Now, consider the orthonormal basis that consists of a system of Laguerre functions

ϕl(t) = e−t/2Ll(t), l = 0, 1, 2, . . . , (3.6)

where Ll(t) are Laguerre polynomials (see, e.g., Gradshtein and Ryzhik (1980), Section 8.97)

Ll(t) =
l∑

j=0

(−1)j
(
l

j

)
tj

j!
, t ≥ 0.

It is known that functions ϕl(·), l = 0, 1, 2, . . ., form an orthonormal basis of the L2(0,∞)

space and, therefore, functions fω(·), g(·), qω(·) and Yω(·) can be expanded over this

basis with coefficients θl;ω, gl, ql;ω and Yl;ω, l = 1, . . . ,∞, respectively. By plugging these

expansions into formula (3.4), we obtain the following equation

∞∑
l=0

ql;ω ϕl(t) =
∞∑
l=0

∞∑
k=0

θl;ω gk

∫ t

0

ϕk(t− s)ϕl(s)ds. (3.7)

Following Comte et al. (2017), for each ω ∈ Ω, we represent coefficients of interest θl;ω,

l = 0, 1, . . . , as a solution of an infinite triangular system of linear equations. Indeed, it is
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easy to check that (see, e.g., 7.411.4 in Gradshtein and Ryzhik (1980))

∫ t

0

φk(x)φj(t− x)dx = e−t/2
∫ t

0

Lk(x)Lj(t− x)dx = φk+j(t)− φk+j+1(t).

Hence, equation (3.7) can be re-written as

∞∑
k=0

qk;ω ϕk(t) =
∞∑
k=0

[
θk;ω g0 +

k−1∑
l=0

(gk−l − gk−l−1) θl;ω

]
ϕk(t).

Equating coefficients for each basis function, we obtain an infinite triangular system of linear

equations. In order to use this system for estimating f , we choose a fairly large M and define

the following approximations of f and q based on the first M Laguerre functions

fM(t,x) =
∑
ω∈Ω

M−1∑
l=0

θl;ωϕl(t)Ψω(x), qM(t,x) =
∑
ω∈Ω

M−1∑
l=0

ql;ωϕl(t)Ψω(x). (3.8)

Let θ(M)
ω , g(M) and q

(M)
ω be M -dimensional vectors with elements fl;ω, gl and ql;ω, l =

0, 1, . . . ,M − 1, respectively. Then, for any M and any ω ∈ Ω, one has q
(M)
ω = G(M)θ(M)

ω

where G(M) is the lower triangular Toeplitz matrix with elements G
(M)
i,j , 0 ≤ i, j ≤M − 1

G
(M)
i,j =


g0, if i = j,

(gi−j − gi−j−1), if j < i,

0, if j > i.

(3.9)

In order to recover f in (4.1), we estimate coefficients ql;ω in (3.8) by

q̂l;ω =

∫ ∞
0

Yω(t)ϕl(t) dt, l = 0, 2, . . . , (3.10)
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and obtain an estimator θ̂
(M)
ω of vector θ

(M)
ω of the form

θ̂
(M)
ω = (G(M))−1q̂

(M)
ω . (3.11)

Denote by Ω(J1, J2) a truncation of a set Ω in (3.3):

Ω(J1, J2) =
{
ω = (j1, k1; j2, k2) : 0 ≤ ji ≤ Ji − 1, ki = 0, · · · , 2ji−1; i = 1, 2

}
. (3.12)

If we recovered f from all its coefficients θ̂
(M)
ω with ω ∈ Ω(J1, J2), the estimator would have a

very high variance. For this reason, we need to remove the coefficients that are not essential

for representation of f . This is accomplished by constructing a hard thresholding estimator

for the function f(t,x)

f̂(t,x) =
M−1∑
l=0

∑
ω∈Ω(J1,J2)

θ̂l;ω I
(
|θ̂l;ω| > λl,ε

)
ϕl(t) Ψω(x) (3.13)

where the values of J1, J2, M and λl,ε will be defined later.

3.4 Minimax lower bounds for the risk.

In order to determine the values of parameters J1, J2, M and λl,ε, and to gauge the precision

of the estimator f̂ , we need to introduce some assumptions on the function g. Let r ≥ 1 be

such that

djg(t)

dtj

∣∣∣∣
t=0

=

 0, if j = 0, ..., r − 2,

Br 6= 0, if j = r − 1,
(3.1)

with the obvious modification g(0) = B1 6= 0 for r = 1. We assume that function g(x) and

its Laplace transform G(s) =
∫∞

0
e−sxg(x)dx satisfy the following conditions:
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Assumption A1. g ∈ L1[0,∞) is r times differentiable with g(r) ∈ L1[0,∞).

Assumption A2. Laplace transform G(s) of g has no zeros with nonnegative real parts

except for zeros of the form s =∞+ ib.

Assumptions 1 and 2 are difficult to check since their verification relies on the exact knowledge

of g and the value of r. Therefore, in the present paper, we do not use the value of r in

our estimation algorithm and aim at construction of an adaptive estimator that delivers

the best convergence rates possible for the true unknown value of r without its knowledge.

Hence, we need to derive what is the smallest error that any estimator of f can attain under

Assumptions A1 and A2.

For this purpose, we consider the generalized three-dimensional Laguerre-Sobolev ball of

radius A, characterized by its wavelet-Laguerre coefficients θl;ω = θl;j1,j2,k1,k2 as follows:

Bs1,s2,s3γ,β (A) =

f :
∞∑
l=0

∞∑
j1=0

∞∑
j2=0

22js1+2j′s2(l ∨ 1)2s3 exp
(
2γ lβ

) 2j1−1∑
k1=0

2j2−1∑
k2=0

θ2
l;ω ≤ A2

 , (3.2)

where we assume that β = 0 if γ = 0 and β > 0 if γ > 0. In order to construct minimax

lower bounds, we define the maximum L2-risk over the set V of an estimator f̃ as

Rε(f̃ , V ) = sup
f∈V

E‖f̃ − f‖2. (3.3)
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Denote

∆(s1, s2, s3, γ, β, A) =



A2 [A−2ε2]
2s1

2s1+1 , if s1 ≤ min(s2, s3/(2r)), γ = β = 0

A2 [A−2ε2]
2s2

2s2+1 , if s2 ≤ min(s1, s3/(2r)), γ = β = 0

A2 [A−2ε2]
2s3

2s3+2r , if s3 ≤ min(2rs1, 2rs2), γ = β = 0

A2 [A−2ε2]
2s1

2s1+1 , if s1 ≤ s2, γ > 0, β > 0

A2 [A−2ε2]
2s2

2s2+1 , if s2 ≤ s1, γ > 0, β > 0

(3.4)

The following theorem gives the minimax lower bounds for the L2-risk of any estimator f̃ of

f .

Theorem 1 Let min{s1, s2} ≥ 1/2 and s3 ≥ 1/2 if γ = β = 0. Then, if ε, is small enough,

under Assumptions A1 and A2, for some absolute constant C > 0 independent of ε, one has

inf
f̃

Rε(f̃ , Bs1,s2,s3γ,β (A)) ≥ C ∆(s1, s2, s3, γ, β, A) (3.5)

3.5 Upper bounds for the risk.

In order to derive an upper bound for Rε(f̂ , Bs1,s2,s3γ,β (A)), we need some auxiliary statements.

Consider G(m), the lower triangular Toeplitz matrix defined by formula (3.9) with M = m.

The following results follows directly from Comte et al. (2017) and Vareschi (2015).

Lemma 1 (Lemma 4, Comte et al. (2017), Lemma 5.4, Vareschi (2015)). Let

conditions A1 and A2 hold. Denote the elements of the last row of matrix (G(m))−1 by

υj, j = 1, · · · ,m. Then, there exist absolute positive constants CG1, CG2, Cυ1 and Cυ2
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independent of m such that

CG1m
2r ≤ ‖(G(m))−1‖2 ≤ ‖(G(m))−1‖2

F ≤ CG2m
2r, (3.1)

Cυ1m
2r−1 ≤

m∑
j=1

υ2
j ≤ Cυ2m

2r−1. (3.2)

Using Lemma 1, one can obtain the following upper bounds for the errors of estimators θ̂l;ω:

Lemma 2 Let θ̂l;ω be the l − th element of the vector θ̂
(M)
ω defined in (3.11). Then, under

the Assumptions A1 and A2, one has

Var
[
θ̂l;ω

]
≤ Cυ2 ε

2 l2r−1 (3.3)

E
[
θ̂l;ω − θl;ω

]4

≤ 3C2
υ2 ε

4 l4r−2 (3.4)

Pr
(
|θ̂l;ω − θl;ω| > ε

√
2ν log(ε−1) l−1 ‖(G(l))−1‖

)
≤ ετ (3.5)

provided ν ≥ τCυ2/CG1 where CG1 and Cυ2 are defined in (3.1) and (3.2), respectively.

Following Lemma 2 we choose J1, J2, M and λl,ε such that

2J1 = 2J2 = A2ε−2, M = max
{
m ≥ 1 : ‖(G(m))−1‖ ≤ ε−2

}
, (3.6)

and thresholds λl,ε of the forms

λl,ε = 2ε
√

2 ν log(ε−1) l−1 ‖(G(l))−1‖, (3.7)
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where the value of ν is large enough, so that it satisfies the inequality

ν ≥ 12Cυ2/CG1, (3.8)

and Cυ2 and CG1 and Cυ2 are defined in (3.1) and (3.2), respectively. Then, the following

statement holds.

Theorem 2 Let min{s1, s2} ≥ 1/2 and s3 ≥ 1/2 if γ = β = 0. Let f̂(t,x) be the wavelet-

Laguerre estimator defined in (3.13), with J1, J2 and M given by (3.6). Let A > 0, and

let condition (3.2) hold. If ν in (3.7) satisfies inequality (3.8), then, under Assumptions A1

and A2, if ε, is small enough, for some absolute constant C > 0 independent of ε, one has

Rf̂ , ε(B
s1,s2,s3
γ,β (A)) ≤ C ∆(s1, s2, s3, γ, β, A) [log(1/ε)]d (3.9)

where ∆ = ∆(s1, s2, s3, γ, β, A) is defined in (3.4) and

d =



2s1/(2s1 + 1) + I(s1 = s2) + I(s3 = 2rs1), if s1 ≤ min(s2,
s3
2r

), γ = β = 0

2s2/(2s2 + 1) + I(s1 = s2) + I(s3 = 2rs2), if s2 ≤ min(s1,
s3
2r

), γ = β = 0

2s3/(2s3 + 2r) + I(s3 = 2rs1) + I(s3 = 2rs2), if s3 ≤ min(2rs1, 2rs2), γ = β = 0

2s1/(2s1 + 1) + I(s1 = s2), if s1 ≤ s2, γ > 0, β > 0

2s2/(2s2 + 1) + I(s1 = s2), if s2 ≤ s1, γ > 0, β > 0

3.6 Simulation Studies

In order to study finite sample properties of the proposed estimation procedure, we carried

out a limited simulation study. For each test function f(t,x) and a kernel g(t), we obtained

exact values of q(t,x) in the equation (4.1) by integration. We considered n equally spaced
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points tk = Tk/n, k = 1, · · · , n, on the time interval [0;T ]. We created a uniform grid

{x1,i, x2,j} on [0, 1] × [0, 1] with i = 1, · · · , n1 and j = 1, · · · , n2, and obtained the three-

dimensional array of values q(x1,i, x2,j, tk). Finally, we obtained a sample Yi,j,k of the left-

hand side of the equation (4.1) by adding independent Gaussian N(0, σ2) noise to each value

q(x1,i, x2,j, tk), i = 1, · · · , n1, j = 1, · · · , n2, k = 1, · · · , n.

Next, we constructed a system of M Laguerre functions of the form (3.6). We obtained an

estimator f̂ of the form (3.13) with the thresholds λl,ε̂, l = 0, · · · ,M−1, given by (3.7) where,

by Abramovich et al. (2013), ε̂ = T σ̂/
√
n and σ̂ is estimated by the standard deviations of

the wavelet coefficients at the highest resolution level.

In our simulations, we used n1 = n2 = n = 32, M = 8 and T = 5. We chose g(x) =

exp(−x/2) and carried out simulations with the following test functions

f1(t,x) = t e−t(x1 − 0.5)2) (x2 − 0.5)2,

f2(t,x) = e−t/2 cos(2πx1x2), (3.1)

f3(t,x) = t e−t(x1 − 0.5)2) (x2 − 0.5)2 + e−t/2 cos(2πx1x2),

f4(t,x) = e−t/2 cos(2πx1x2) + (x1 − 0.5)2 (x2 − 0.5)2.

We also considered three noise scenarios: SNR = 3 (high noise level), SNR = 5 (medium

noise level) and SNR = 7 (low noise level). In order for the values of the errors of our

estimators to be independent of the norms of the test functions, we evaluated the average

relative error as the average L2-norm of the difference between f and its estimator divided

by the norm of f :

∆(f̂) = ‖f̂ − f‖/‖f‖.

Table 3.1 reports the mean values of those errors over 100 simulation runs (with the standard
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error of the means presented in parentheses) for the four test functions and the three noise

levels.

3.7 Real Data Example

As an application of the proposed technique we studied the recovery of the unknown function

f(t,x) = β(1 − F (t,x)) in the equation (1.1) on the basis of the DCE-CT (Computerized

Tomography) images of a participant of the REMISCAN cohort study [56] who underwent

anti-angiogenic treatment for renal cancer. The data consist of the arterial images and images

of the area of interest (AOI) at 37 time points over approximately 4.6 minute interval. The

first 15 time points (approximately the first 30 seconds) correspond to the time period before

the contrast agent reached the aorta and the AOI (so δ = 0 in equation (1.1)). We used

those data points for the evaluation of the base intensity. Since the images of the aorta are

extremely noisy, we evaluated the average values of the grey level intensity at each time point

and then used Laguerre functions smoothing in order to obtain the values of the Arterial

Input Function AIF(t). The images of AOI contain 49 × 38 pixels. Since our technique is

based on periodic wavelets and hence application of the method to a non-periodic function

is likely to produce Gibbs effects, we cut the images to the size of 32 × 32 pixels. In order

to achieve periodicity, we obtained symmetric versions of the the images (reflecting the

images over the two sides) and applied our methodology to the resulting spatially periodic

functions. Consequently, the estimator obtained by the technique is spatially symmetric, so

we record only the original part as the estimator f̂ . Figure 3.1 shows the averages of the

aorta intensities at each time point and its de-noised version that was used as AIF(t). Figure

3.2 presents the values of f̂ at 34 seconds (corresponds to the first time point), 95 seconds

(the 12-th time point) and 275 seconds (the last time point).

24



Table 3.1: The average values of the relative errors ∆(f̂) (with the standard errors of the
means in parentheses) evaluated over 100 simulation runs. The test functions are defined in
formula (3.1).

Function SNR=3 SNR=5 SNR=7

f1(t,x) 0.1107 (0.0110) 0.0694 (0.0066) 0.0511 (0.0049)
f2(t,x) 0.1224 (0.0100) 0.0761 (0.0071) 0.0567 (0.0051)
f3(t,x) 0.1107 (0.0112) 0.0680 (0.0068) 0.0511 (0.0048)
f4(t,x) 0.1080 (0.0117) 0.0690 (0.0058) 0.0519 (0.0046)
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Figure 3.1: Left: the averages of the aorta intensities (blue) and the estimated Arterial Input
Function AIF(t) (red). Right: two curves for distinct spatial locations.
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Figure 3.2: The values of f̂ at 34 seconds (corresponds to the first time point), 95 seconds
(the 12th time point) and 275 seconds (the last time point).
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CHAPTER 4: CLUSTERING IN STATISTICAL ILL-POSED

LINEAR INVERSE PROBLEMS

4.1 Notations

We denote [m] = {1, · · · ,m}. We denote vectors and matrices by bold letters. For any

vector a, we denote its l2- norm by ‖a‖ and the l0 norm, the number of non zero elements

by ‖a‖0 . For any matrix A, we denote its Frobenius norm by ‖A‖F and the operator

norm by ‖A‖op and the span of the column space of matrix A by Span(A). We denote the

Hamming distance between matrices A1 and A2, the number of nonzero elemnts in A1−A2,

by ‖A1−A2‖H . We denote the k×k identity matrix by Ik and drop subscript k when there

is no uncertainty about the dimension. We denote the inner product and the corresponding

norm in a Hilbert space H by 〈·, ·〉H and ‖ · ‖H, respectively, and drop subscript H whenever

there is no ambiguity. For any set S, we denote cardinality of S by |S|. We denote the set

of all clustering matrices for grouping M objects into K classes by M(M,K). We denote

anbn if there exist c <∞ independent of n such that an ≤ cbn and anbn if there exist c > 0

independent of n such that an ≥ cbn. Also, an � bn if simultaneously anbn and anbn. Finally,

we use C for a generic absolute constant independent of n, M and K, which can take different

values in different places.

4.2 Formulation of the problem and assumptions

In this section, we consider solution of a set of general ill-posed linear inverse problems

Afm = qm, m = 1, · · · ,M , where A is a bounded linear operator that does not have a

bounded inverse and the right-hand sides qm are measured with error. In particular, we
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assume that some of the curves fm and hence, qm are very similar to each other, so that they

can be averaged and recovered together. As a result, one supposedly obtains estimators of fj

with smaller errors. The grouping is usually unknown (as well as the number of groups) and

is carried out at a pre-processing step by applying one of the standard clustering techniques

with the number of clusters determined by trial and error. Subsequently, the curves in the

same cluster are averaged and the errors of those aggregated curves are used as true errors

in the analysis.

In particular, we consider the following problem. Let A : H1 → H2 be a known linear opera-

tor where H1 and H2 are Hilbert spaces with inner products 〈·, ·〉H1 and 〈·, ·〉H2 , respectively.

The objective is to recover functions fm ∈ H1 from

Xm(x) = qm(x) + σn−1/2 εm(x), qm = Afm, m = 1, · · · ,M, (4.1)

where εm(x) are the independent white noise processes and the goal is to recover the vector

function f = (f1, · · · , fM). Assume that observations are taken as functionals of Xm: for

any ψ ∈ H2

〈Xm, ψ〉 = 〈Afm, ψ〉+ σn−1/2 ξm(ψ), (4.2)

where ξm(ψ) are Gaussian random variables with zero means such that

E[ξm(ψ1), ξl(ψ2)] =

 〈ψ1, ψ2〉H2 , m = l

0, m 6= l
(4.3)

In formula (4.2), σ can be viewed as noise level and n as the number of observations.

In what follows we assume that, although M is large, there are only K types of functions

fm(t). In particular, there exists a collection of functions h1(t), ..., hK(t) such that fm(t) =
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hk(t) for any m and some k = z(m). In other words, one can define a clustering function

z = z(m), m = 1, . . . ,M , with values in {1, . . . , K} such that fm = hz(m). We denote

the clustering matrix corresponding to the clustering function z(m) by Z. Note that Z ∈

{0, 1}M×K and Zm,k = 1 if and only if z(m) = k. Hence,

ZTZ = D2 = diag(N1, · · · , NK), (4.4)

where Nk is the number of functions in cluster k, k = 1, · · · , K.

If we knew the function z(m), we could improve precision of estimating fm by averaging the

signals within clusters,thus, reducing the noise levels, and construct the estimators ĥk of the

common cluster means, subsequently setting f̂m = ĥz(m). In reality, however, neither the

true clustering matrix Z∗, nor the true number of classes K∗ are unavailable, so they also

need to be estimated.

Note that our objective is accurate estimation of functions fm, m = 1, · · · ,M , rather than

recovery of the clustering matrix Z. Moreover, although a true clustering matrix Z∗ always

exists (if all functions fm are different, one can choose K∗ = M and Z∗ = IM), we are

not interested in finding Z∗: we would rather incur a small bias resulting from replacement

of fm by hk ≈ fm than obtain estimators with high variances that are common in inverse

problems where each function fm is estimated separately. On the other hand, while using the

clustering procedure, we gather one more type of errors that are due to erroneously pooling

together estimators of functions fm that belong to different classes, i.e., the errors due to

mistakes in clustering.

One of the advantages of our estimation procedure is that we do not assume that the number

of clusters is known in advance. Instead, we elicit the unknown number of clusters, the
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clustering matrix and the estimators of the unknown functions as a solution of a penalized

optimization problem. We conclude that clustering does not have an adverse effect on the

estimation precision as long as class sizes and the number of observations are large enough.

However, significant improvement in accuracy occurs only if the problem is not severely

ill-posed.

In order to simplify the problem (4.1), we assume that it allows reduction to the so-called

sequence model. In particular, following Donoho (1995), we assume that there exists an

orthonormal basis φj, j = 1, 2, · · · , ofH1 and nearly orthogonal sets of functions ψj, ηj ∈ H2,

j = 1, 2, · · · , such that for some constants νj, one has

Aφj = ν−1
j ηj, A∗ψj = ν−1

j φj; (4.5)

〈ηj1 ,ψj2〉H2 = δj1,j2 ; (4.6)

‖
∑
j

ajψj‖2 �
∑
j

a2
j , ‖

∑
j

ajηj‖2 �
∑
j

a2
j . (4.7)

where A∗ : H2 → H1 is the linear operator conjugate to A. Donoho (1995) showed that

conditions (4.5)–(4.7) hold for a variety of linear operators such as convolution, numerical

differentiation, Radon transform, {φj} is a wavelet basis. Obviously, assumptions (4.5)–(4.7)

hold when {φj} is the eigenbasis of the operator A.

Expand functions fm ∈ H1 over the basis φj, j = 1, · · · , n, and denote the matrix of

coefficients by G, so that, by assumption (4.5), for j = 1, · · · , n, m = 1, · · · ,M , one has

Gj,m = 〈fm, φj〉 = νj〈fm, A∗ψj〉 = νj 〈Afm, ψj〉 = νj Qj,m. (4.8)

Consider matrix of observations Y and matrix of errors E with components Yj,m = 〈Xm, ψj〉

and Ej,m = ξm(ψ). Let G∗ and Q∗ be the true matrices of coefficients. Then, it follows from
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(4.1), (4.2) and (4.8) that Y obeys the sequence model Y = Q∗ + σn−1/2E = Υ−1G∗ +

σn−1/2E, so that

ΥY = G∗ +
σ√
n

ΥE, Υ = diag(ν1, · · · , νn). (4.9)

Here, by (4.3), E(Ej,m) = 0. While Ej,m are independent for different values of m, i.e.,

E(Ej1,m1Ej2,m2) = 0 whenever m1 6= m2, they are not necessarily independent when j1 6= j2.

In particular, denote by Σ the matrix with elements Σi,j = 〈ψi, ψj〉 and observe that

E[(EET )] = M Σ, E(ETE) = n IM ,

so that matrix E has the matrix-variate normal distribution E ∼ N(0,Σ ⊗ IM). Consider

matrix S ∈ Rn×n such that Σ = SST , so that Σ−1 = S−TS−1 and S−1ΣS−T = In. Hence, it

follows from (4.7) that for some absolute constant Cψ, one has

‖Σ‖op = ‖S‖2
op ≤ C2

ψ. (4.10)

Then, by definition of the matrix-variate normal distribution and Theorem 2.3.1 of Gupta

and Nagar (2000), we derive that

ε = vec(E) ∼ N(0,Σ⊗ IM) (4.11)

Recall that functions fm belong to K different groups, so that fm = hk with k = z(m)

where z = z(m) is a clustering function. Denote the matrix of coefficients of functions

hk in the basis φj by Θ, so that Θj,k = 〈hk, φj〉, j = 1, · · · , n, k = 1, · · · , K. Hence, if

z : {1, . . . ,M} → {1, . . . , K} is the clustering function and Z ∈ {0, 1}M×K is a clustering

matrix, then Gi,j = Θz(i),j for i = 1, . . . ,M , and j = 1, . . . , n, Θ = GZD−2 and G can be

recovered as GZ,K = ΘZT .
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Observe that, since for the ill-posed inverse problems, the values of νj are growing with j,

due to equation (4.9), the coefficients Gi,j = Θz(i),j are harder and harder to recover as j is

growing. In order to obtain a reasonable solution of the problem (4.9) one needs to ensure

that functions hk, k = 1, · · · , K, allow a sparse representations in the basis φj. In particular,

we assume that hk belong to a Sobolev ball hk ∈ S(r,A), k = 1, . . . , K, where

S(r,A) =

{
h =

∑
j

θjφj :
∞∑
j=0

|θj|2(j + 1)2r ≤ A2, r > 1/2

}
. (4.12)

The latter implies that

∞∑
j=0

|Θjk|2(j + 1)2r ≤ A2, r > 1/2. (4.13)

4.3 Estimation

Condition (4.13) means that, coefficients Θjk decrease rapidly as j increases and hence, for

large n, one does not need to keep all n coefficients for an accurate estimation of functions

fm (and hk); on the contrary, this will yield an estimator with a huge variance. For this

reason, for every function hk we can choose a set Jk ⊆ {1, . . . , n} and set Θjk = 0 if j 6∈ Jk.

Note that since conditions (4.13) apply to all k = 1, · · · , K simultaneously, we can choose

Jk = J for every k. Then, one has Gj,m = 0 if j ∈ J c where the set J c is complementary to

J . In order to express the latter in a matrix form, we introduce matrix

WJ = diag(w1, ...,wn) with wj = I(j ∈ J), (4.14)
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and observe that condition (In −WJ)G = 0 ensures that Gj,m = 0, j ∈ J c. Consider

projection matrices

ΠZ,K = ZD−2ZT , Π⊥Z,K = IM −ΠZ,K ,

the projection matrix on the column space of matrix Z and the projection matrix on the

orthogonal subspace, respectively. Here, we use index K to indicate that not only the

clustering matrix Z but also the number of clusters K is unknown. In order to reduce the

variances of the estimators of functions fm, m = 1, · · · ,M , we approximate the matrix of

coefficients G∗ by WJGΠZ,K .

Consider an integer K ∈ [M ] and a set M(M,K) of clustering matrices that cluster M

nodes into K groups. Then, the objective is to find matrices G and Z ∈M(M,K), a set J

and an integer K such that

‖G−ΥYΠZ,K‖2
F + ‖ΥYΠ⊥Z,K‖2

F =⇒ min subject to (In −WJ)G = 0, (4.15)

Since ‖ΥYΠZ,K‖2
F + ‖ΥYΠ⊥Z,K‖2

F = ‖ΥY‖2
F is independent of G and Z, the problem can

be re-written as

‖G‖2
F − 2Tr(YTΥGΠZ,K) =⇒ min subject to (In −WJ)G = 0. (4.16)

Note though that optimization problem (4.16) has a trivial solution: K = M , J = [n] and

Z = IM . In order to avoid this, we put a penalty on the value of K and the set J .
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Then Z,G, J and K can be found a solution of the following optimization problem:

(Ẑ, Ĝ, Ĵ , K̂) ∈ argmin
Z,G,J,K

{
‖G‖2

F − 2Tr(YTΥGΠZ,K) + Pen(J,K)
}

(4.17)

subject to Z ∈M(M,K), (In −WJ)G = 0, J ⊆ [n], K ∈ [M ]

Note that if Ẑ, Ĵ and K̂ were known, then it follows from (4.15) that Ĝ would be given by

Ĝ = WĴΥYΠẐ,K̂ (4.18)

and problem (5.8) can be presented as

(Ẑ, Ĵ , K̂) ∈ argmin
Z∈M(M,K)

J,K

{
‖(I−WJ)ΥYΠZ,K‖2

F + ‖ΥYΠ⊥Z,K‖2
F + Pen(J,K)

}
(4.19)

We choose Pen(J,K) so that it is of the order of the error of estimating G. In particular,

we set

Pen(J,K) =
2C2

ψσ
2

n

[
26K

∑
j∈J

ν2
j + 39(max

j∈J
ν2
j )

{
M lnK + |J | ln

(
ne

|J |

)
+ ln(Mnτ+1)

}]
(4.20)

where Cψ is defined in (4.10). Penalty (4.20) consists of the four terms. The first term,

26K
∑

j∈J ν
2
j represents the error of estimating |J | coefficients for each of the distinct func-

tions hk, k = 1, . . . , K. The second and the third terms account for the difficulty of clustering

M functions into K classes and choosing a set J ⊂ {1, . . . , n}. The last term is of the smaller

asymptotic order and offsets the error of the choice of K. Observe that since the data is

weighted by the diagonal matrix Υ in (4.9), the last three terms are weighted by maxj∈J ν
2
j .

In practice, we shall solve optimization problem (4.19) separately for each K ∈ [M ] and then
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choose the value of K that delivers the smallest value in (4.19). We estimate the matrix of

coefficients G by Ĝ defined in (4.18). After coefficients Ĝ are obtained, we estimate fm,

m = 1, . . . ,M , by

f̂m =
L̂∑
j=1

Ĝj,mφj, m = 1, · · · ,M. (4.21)

4.4 Estimation error

4.4.1 The oracle inequality

The average error of estimating fm by f̂m, m = 1, . . . ,M, is the given by

R(f , f̂) = M−1

M∑
m=1

‖f̂m − fm‖2. (4.1)

where f and f̂ are column vector with functional components fm and f̂m, m = 1, . . . ,M,

respectively.

It is easy to see that the main portion of the error is due to M−1‖Ĝ−G∗‖2
F . The following

statement places an upper bound on ‖Ĝ−G∗‖2
F .

Theorem 3 Let (Ẑ, Ĝ, Ĵ , K̂) be a solution of optimization problem (5.8) with the penalty

Pen(J,K) given by expression (4.20). Then, there exists a set Ω = Ω(τ) with P(Ω) ≥ 1−2n−τ

such that for every ω ∈ Ω one has

‖Ĝ−G∗‖2
F ≤ min

Z,J,K

{
3 ‖WJG∗ΠZ,K −G∗‖2

F + 4Pen(J,K)
}

(4.2)

Theorem 3 provides an oracle inequality for ‖Ĝ−G∗‖2
F . The first term in expression (4.2)
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is the bias term that quantifies the error of approximation of matrix G∗ when its columns

are averaged over K clusters using matrix Z and one keeps only terms with j ∈ J in the

approximations of each of the K cluster means. This term is decreasing when K and |J |

are increasing. The second term, Pen(J,K), is the variance term that represents the error

of estimation for the particular choices of Z, J and K. This term grows when K and |J | are

increasing. The error is provided by the best possible bias-variance balance in (4.2).

Note that since the right hand side in (4.2) is minimized over Z andK, if some of the functions

hk, k = 1 · · · , K, are similar but not exactly identical to each other, it may be advantageous

to place those functions in the same cluster, hence, reducing the variance component of the

error. Our methodology will automatically take advantage of this opportunity. Theorem

3 however does not provide an explicit expression for the error in the case of a specific

collection of functions hk, k = 1, · · · , K∗ and a clustering matrix Z∗ ∈ M(M,K∗). This

study is carried out in the next section.

4.4.2 The upper bounds for the risk

In order to study particular scenarios, in what follows, we shall consider the following con-

dition on νj:

ℵ1j
γ exp

(
αjβ
)
≤ |νj| ≤ ℵ2j

γ exp
(
αjβ
)

(4.3)

for some absolute positive constants ℵ1, ℵ2 and nonnegative γ, α and β where β = 0 and

γ > 0 whenever α = 0. The problem (4.1) is known to be moderately ill-posed if α = 0 and

severely ill-posed if α > 0. Assume that hk ∈ S(r,A), k = 1, . . . , K∗, where S(r,A) is defined

in (4.12). Denote by h the functional column vector with components hk, k = 1, . . . , K∗.

Consider the maximum risk of our estimator f̂ over all hk ∈ S(r,A), k = 1, . . . , K∗, and all
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clustering matrices Z ∈M(M,K∗)

R(f̂ ,S(r,A),M,K∗) = max
f ,Z

R(f , f̂) subject to (4.4)

f = Zh, hk ∈ S(r,A), k = 1, . . . , K∗, Z ∈M(M,K∗),

where S(r,A) is defined in (4.12) and M(M,K∗) is the set of all clustering matrices that

place M objects into K∗ classes. In what follows, we assume that M grows as some power

of n, so that

lnn � lnM � ln(Mn). (4.5)

Then, application of the oracle inequality (4.2) with |J | = L and K = K∗ provides the

following upper bounds for the error.

Theorem 4 Let assumption (4.5) hold and νj, j = 1, · · · , n, satisfy condition (4.3) with

r > 1/2. Let (Ẑ, Ĝ, L̂, K̂) be a solution of optimization problem (5.8) with the penalty given

by expression (4.20). Then, with probability at least 1−2n−τ , one has R(f̂ ,S(r,A),M,K∗) ≤

CR(M,K∗, n) where the constant C depends on α, β, γ, r, τ and A only and

R(M,K∗, n) = max

{(
σ2 lnK∗

n

) 2r
2r+2γ

,

(
σ2 (K∗ + lnn)

M n

) 2r
2r+2γ+1

}
, (4.6)

if α = β = 0, and

R(M,K∗, n) = max

{[
ln

(
n

σ2 lnK∗

)]− 2r
β

,

[
ln

(
Mn

σ2K∗

)]− 2r
β

}
, (4.7)

if α > 0, β > 0.
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4.4.3 The minimax lower bounds for the risk

In order to show that the estimator developed in this paper is asymptotically near-optimal,

below we derive minimax lower bounds for the risk over all hk ∈ S(r,A), k = 1, . . . , K∗, and

all clustering matrices Z ∈M(M,K∗). For this purpose, we define the minimax risk as

Rmin(S(r,A),M,K∗) = min
f̃
R(f̃ ,S(r,A),M,K∗) (4.8)

where f̃ is any estimator of f on the basis of matrix of observations Y.

Theorem 5 Let νj, j = 1, · · · , n satisfy condition (4.3) and r > 1/2. Then, with probability

at least 0.1, one has Rmin(S(r,A),M,K∗) ≥ CRmin(M,K∗, n) where the constant C depends

on α, β, γ, r and A only and

Rmin(M,K∗, n) = max

{(
σ2 lnK∗

n

) 2r
2r+2γ

,

(
σ2K∗
M n

) 2r
2r+2γ+1

}
, (4.9)

if α = β = 0, and

Rmin(M,K∗, n) = max

{[
ln

(
n

σ2 lnK∗

)]− 2r
β

,

[
ln

(
Mn

σ2K∗

)]− 2r
β

}
, (4.10)

if α > 0, β > 0.

Observe that expressions (4.7) and (4.10) for the upper and the lower bounds of the risk

are identical, so our estimators are asymptotically optimal in the case of α > 0, β > 0. If

α = β = 0, the first terms in the expressions (4.6) and (4.9) are the same while the second

terms differ by a factor ρ(n,K∗) = (1 + (lnn)/K∗)
2r

2r+2γ+1 . Therefore, the estimators are

asymptotically optimal unless the second term in (4.6) dominates the first term. In the
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latter case, the estimator is asymptotically near-optimal within the factor ρ(n,K∗).

4.4.4 The advantage of clustering

Theorems 4 and 5 allow to answer the question whether clustering in linear ill-posed inverse

problems is advantageous or not. Indeed, solving problem (4.1) for each m = 1, · · · ,M

separately is equivalent to choosing K = M = 1 in the penalty. In this case, one obtains the

following corollary.

Corollary 1 If each of the inverse problems is solved separately, where the penalty is of the

form (4.20) with K = M = 1 and J = {1, · · · , L}, then, with probability at least 1 − 2n−τ ,

the average estimation error R̃(n) defined in (4.1) is bounded by

R̃(n) �


[
σ2 lnn
n

] 2r
2γ+2r+1

, if α = β = 0,[
ln
(
n
σ2

)]− 2r
β , if α > 0, β > 0.

(4.11)

If assumption (4.5) hold, then for n→∞, M →∞, one has

R̃(n)

R(M,K∗, n)
�


M

2r
2γ+2r+1 , if α = β = 0, K∗ = 1[

min

{
M lnn
K∗

(
n (lnn)2r+2γ

σ2 (lnK∗)2r+2γ+1

) 1
2r+2γ

,M

}] 2r
2r+2γ+1

if α = β = 0, K∗ ≥ 2

1 if α > 0, β > 0.

Therefore, clustering is asymptotically advantageous if α = β = 0 and

n→∞, M →∞, n (lnn)2r+2γ

σ2 (lnK∗)2r+2γ+1
→∞.
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4.5 Simulations

In order to study finite sample properties of the proposed estimation procedure, we carried

out limited simulation study. For this purpose, we used K = 4 and considered two sets of

test functions: smooth functions

f1(x) = sin(4πx), f2(x) = cos(4πx), f3(x) = (x− 0.5)2 , f4(x) = (x− 0.5)4 (4.1)

and non-smooth ones,

f1(x) = fB(x), f2(x) = fW (x), f3(x) = fP (x), f4(x) = |x− 0.5| (4.2)

where fB(x), fW (x) and fP (x) are the blip, wave and parabolas introduced by Donoho and

Johnstone [29]. The functions are sampled at n equispaced points j/n, j = 1, · · · , n, on the

interval [0, 1]. While functions in (4.1) are simpler and easier to recover, functions in (4.2)

are more difficult to estimate.

We studied a periodic convolution equation q = Af = f ∗ g with a kernel g that transforms

into a product in Fourier domain

q̃j = g̃j f̃j, νj = 1/g̃j, j = 1, · · · , n, (4.3)

where, for any function ψ we denote its j-th Fourier coefficient by ψ̃j. The periodic Fourier

basis φj serves as the eigenbasis for this operator and, hence, conditions (4.5)–(4.7) hold

with νj given above.
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We carried out simulations with the periodized versions of the following two kernels

g1(x) = exp(−λ|x|), g2(x) = exp(−λx2/2) (4.4)

where g1(x) corresponds to the case of α = β = 0, γ = 2 while g2(x) corresponds to α ∝ 1/λ,

β = 2 in (4.3). Hence, the problem is moderately ill-posed with g1 and severely ill-posed

with g2. In addition, recovery of the solution becomes easier as λ grows.

For each of the test functions fk, k = 1, · · · , K, we evaluated (Af)k and subsequently scaled

them to have equal norms, hence, adjusting fk(x) accordingly. Furthermore, we generated a

clustering function z : M → K that places M objects into K classes, M/K into each class

at random. We obtained the true matrices F,Q ∈ Rn×M with the sampled versions of the

vector functions fz(m) and (Af)z(m), m = 1, · · · ,M , respectively. Finally, we generated data

X by adding independent Gaussian noise with the standard deviation σ to every element in

Q. We found σ by fixing the Signal-to-Noise Ratio (SNR) and choosing σ = std(F)/SNR,

where std(F) is the standard deviation of the matrix F reshaped as a vector. In what follows,

we considered several noise scenarios: SNR = 3, SNR = 5 and SNR = 7 for g1 and SNR =

10, SNR = 15, SNR = 20 for g2.

Since, even for a fixed K, finding Ẑ that produces a global minimum in (4.19) requires
(
M
K

)
operations, we derived the estimated cluster assignment ẑ : M → K, using the Kmeans

procedure and subsequently averaged observation vectors in each class, thus obtaining K

estimated cluster averages ŷk, k = 1, · · · , K. In our simulations, we used the Daubechies

8 wavelet basis as φj, j = 1, · · · , n. In order to obtain ψj in (4.5), we generated wavelet

functions φj using MakeWavelet command in WaveLab850 package for Matlab and recovered

ψj using the second equation in (4.5). We further obtained the estimated wavelet coefficients

as a scalar product of ψj and ŷk, j = 1, · · · , n, k = 1, · · · , K, and applied hard thresholding
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to obtain the set J . Finally, we used the inverse wavelet transform to recover the estimators

f̂k of fk, k = 1, · · · , K. The equispaced versions of those estimators appear as the estimator

F̂ of the matrix F with columns f̂ẑ(m) representing functions fk.

In order to assess the benefits of the clustering, we also obtained estimators without clustering

by using the same procedure with the only difference that K = M and ẑ is the identity

transformation. We measured the accuracy of the estimators by their relative Frobenius

error

∆(F̂) = ‖F̂− F‖F/‖F‖F . (4.5)

Although we carried out simulations with a more diverse sets of parameters, here we report

the results for n = 256, M = 60 and K = 4. Tables below report the mean values of ∆(F̂)

with and without clustering over 100 simulation runs (with the standard error of the means

presented in parentheses) for the test functions in (4.1) or (4.2), one of the kernels in (4.4)

and various values of λ. In particular, Tables 1 and 2 report results for the set of smooth

functions (4.1) with g1(x) in (4.4) for Table 1 and g2(x) in (4.4) for Table 2. Tables 3 and 4

report results for the set of non-smooth functions (4.2) with g1(x) in (4.4) for Table 3 and

g2(x) in (4.4) for Table 4.
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Table 4.1: Estimation errors ∆(F̂) with and without clustering averaged over 100 simulation
runs for the set of smooth functions (4.1) with g1(x) in (4.4). The standard deviations of
the means are in parentheses.

λ = 7
With Clustering Misclassification Error Without Clustering

SNR = 3 0.0348 (0.0198) 0.0608 (0.1271) 0.1338 (0.0092)
SNR = 5 0.0218 (0.0105) 0.0185 (0.0739) 0.0845 (0.0055)
SNR = 7 0.0171 (0.0065) 0.0061 (0.0433) 0.0541 (0.0043)

λ = 5
SNR = 3 0.0602 (0.0144) 0.0584 (0.1262) 0.2688 (0.0118)
SNR = 5 0.0397 (0.0103) 0.0711 (0.1321) 0.1637 (0.0069)
SNR = 7 0.0283 (0.0068) 0.0231 (0.0791) 0.1148 (0.0050)

λ = 3
SNR = 3 0.0991 (0.0105) 0.1576 (0.1616) 0.4529 (0.0090)
SNR = 5 0.0600 (0.0061) 0.1249 (0.1649) 0.2736 (0.0053)
SNR = 7 0.0435 (0.043) 0.1025 (0.1548) 0.1949 (0.0038)

Table 4.2: Estimation errors ∆(F̂) with and without clustering averaged over 100 simulation
runs for the set of smooth functions (4.1) with g2(x) in (4.4). The standard deviations of
the means are in parentheses.

λ = 20
With Clustering Clustering Error Without Clustering

SNR = 5 0.0095 (0.0021) 0.1223 (0.1649) 0.0348 (0.0021)
SNR = 7 0.0077 (0.0016) 0.0951 (0.1542) 0.0251 (0.0015)
SNR = 10 0.0065 (0.0011) 0.0480 (0.1156) 0.0180 (0.0011)

λ = 15
SNR = 5 0.0142 (0.0016) 0.2423 (0.0959) 0.0245 (0.0015)
SNR = 7 0.0138 (0.0011) 0.2115 (0.1402) 0.0199 (0.0011)
SNR = 10 0.0137 (0.0008) 0.1718 (0.1595) 0.0169 (0.0008)

λ = 10
SNR = 5 0.6651 (0.0647) 0.2911 (0.0951) 0.6420 (0.0068)
SNR = 7 0.6504 (0.0498) 0.2761 (0.0805) 0.6393(0.0049)
SNR = 10 0.6474 (0.0432) 0.2803 (0.0799) 0.6379 (0.0034)
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Table 4.3: Estimation errors ∆(F̂) with and without clustering averaged over 100 simulation
runs for the set of non-smooth functions (4.2) with g1(x) in (4.4). The standard deviations
of the means are in parentheses.

λ = 7
With Clustering Clustering Error Without Clustering

SNR = 3 0.1474 (0.0070) 0.0000 (0.0000) 0.3782 (0.0047)
SNR = 5 0.1027 (0.0057) 0.0000 (0.0000) 0.2577 (0.0061)
SNR = 7 0.0864 (0.0044) 0.0000 (0.0000) 0.1897 (0.0028)

λ = 5
SNR = 3 0.1425 (0.0099) 0.0000 (0.0000) 0.4342 (0.0077)
SNR = 5 0.1079 (0.0054) 0.0000 (0.0000) 0.2866 (0.0066)
SNR = 7 0.0974 (0.0037) 0.0000 (0.0000) 0.2163 (0.0035)

λ = 3
SNR = 3 0.1925 (0.0107) 0.0000 (0.0000) 0.5350 (0.0085)
SNR = 5 0.1686 (0.0066) 0.0000 (0.0000) 0.3539 (0.0063)
SNR = 7 0.1615 (0.0049) 0.0000 (0.0000) 0.2732 (0.0048)

Table 4.4: Estimation errors ∆(F̂) with and without clustering averaged over 100 simulation
runs for the set of non-smooth functions (4.2) with g2(x) in (4.4). The standard deviations
of the means are in parentheses.

λ = 20
With Clustering Clustering Error Without Clustering

SNR = 5 0.44704 (0.00013) 0.0000 (0.0000) 0.44830 (0.00022)
SNR = 7 0.44701 (0.00009) 0.0000 (0.0000) 0.44765 (0.00013)
SNR = 10 0.44699 (0.00006) 0.0000 (0.0000) 0.44731 (0.00008)

λ = 15
SNR = 5 0.45737 (0.05698) 0.02825 (0.09080) 0.44783 (0.00008)
SNR = 7 0.45402 (0.04677) 0.00950 (0.05476) 0.44760 (0.00004)
SNR = 10 0.44736 (0.00002) 0.00000 (0.00000) 0.44747 (0.00003)

λ = 10
SNR = 5 0.77061 (0.07038) 0.16063 (0.15586) 0.73034 (0.00541)
SNR = 7 0.75037 (0.05603) 0.11800 (0.15347) 0.72752 (0.00386)
SNR = 10 0.73849 (0.04433) 0.08925(0.15463) 0.72593 (0.00270)
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Figure 4.1: True functions (red) and their estimators with clustering (blue) and without
clustering (black) for smooth function in (4.1) and kernel g1 in (4.4) with λ = 3 and SNR=3.
Top row: f1 (left), f2 (right). Bottom row: f3 (left), f4 (right).
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Figure 4.2: True functions (red) and their estimators with clustering (blue) and without
clustering (black) for non smooth function in (4.2) and kernel g1 in (4.4) with λ = 3 and
SNR=3. Top row: f1 (left), f2 (right). Bottom row: f3 (left), f4 (right).
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CHAPTER 5: LEARNING FUNCTIONAL BRAIN

CONNECTIVITY THROUGH AUTO-REGRESSIVE (AR)

MODELS

5.1 Introduction

In human connectome projects brain network analysis is an exciting field. The anaysis iden-

tifies anatomically and functionally distinct brain areas in health and diseases. Functional

magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) are most commonly

used imaging modalities to explore functional and structural connectivity patterns of brain

regions. Diffusion imaging helps to identify structural connections of brain regions, fMRI

comprises functional interactions of brain regions, at macroscopic scales.

The fMRI infers brain activity by indirectly measuring changes in blood flow using magnetic

resonance imaging (MRI) and the sub-modality, resting-state fMRI (rs-fMRI) is a powerful

method for evaluating regional interactions that occur when a subject is not at rest (i.e.,

performing an explicit task). In various studies that resting-state patterns of correlated brain

activity are consistent across individuals, and predictive of disease states when abnormal [49].

Although rs-fMRI is a dynamic imaging modality that measures the neural activities over a

period of time, the commonly used methods for analysis of rs-fMRI signals is based on the

analysis of entire time series [68]. However, this approach overlooks inter-region interactions

and ignores subtle patterns, which may be important for identifying functionally distinct

networks.
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5.2 Dynamic functional connectivity (dFC)

Dynamic functional connectivity identifies the functional interplay between regions of the

brain and the changes that occur over a short time. The most widely used approach to

identifying dFC is the sliding window approach where correlations between windowed time-

courses of brain regions are estimated [60]. However, identification of these change points in

the signal to determine the window-size has proven challenging with most methods preferring

to use a trial and error approach to identify window size that gives the best modeling

performance [72].

In this work, we aim to identify change-points in the signal and generate windows of equal

width using AR & VAR. We further propose a statistical feature selection approach to per-

form classification on the challenging cognitive expertise data using the previously identified

optimal window lengths and stride.

In this study, our goal is to identify the change points in the signals of rs-fMRI by learn-

ing the signal model and use this knowledge to better represent the inter-region interactions.

Towards this, we use univariate and multivariate stochastic process models, Auto-Regression

(AR) and Vector AR (VAR) respectively, to identify the signal change points. We propose

to use this new model to then learn discriminating features/connections in the functional

connectivity networks generated using the partial correlations i.e. inverse covariance ma-

trices, using statistical methods and thereby classify functional brain networks into distinct

classes.
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5.3 Methods

5.3.1 Notation

In this section, we are going to use the following notations. We denote vectors and matrices

by bold letters. For any matrix A, we denote its Frobenius norm with ‖A‖F and AT by the

transpose of A. We denote the entries of the matrix by θji where index j indicates the row

and index i indicates the column. In the set up of a vector the ith entry is denoted as yit.

5.3.2 Auto-Regression (AR)( by collaborator Harish RaviPrakash)

AR models use a weighted sum of the signal’s past values to predict the signal’s future value

under the causal assumption while modeling the residual error as Gaussian. The number of

past values that are used to predict the future value of the signal is termed as the order of

the AR. We propose to use the causality of the fMRI signal and model the problem as an

AR problem. Wang et. al [71] proposed the fitting of autoregressive time series with the

LASSO [63] procedure for a fixed order AR. Consider the time series data X1, X2, . . . , Xn

and the auto-regressive process of order k, AR(k), that models this data can be represented

as

Xt = A1Xt−1 + A2Xt−2 + . . .+ AkXt−k + ξt+1 for t = k + 1, . . . , n− 1 (5.1)

where Ai are the regression coefficients and ξt+1 is the residual error in the prediction. This

can be modeled as a Lasso regression problem as

min
A

1

2
‖Y −XA‖22 + λ‖A‖1 (5.2)
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where Y = (Xk+1,Xk+2, . . . ,Xn)T, and λ is the regularization term.

For a given rs-fMRI time series signal, we set up the problem with t = k + 1 in (5.1).

Therefore, the labels, Y, can be represented as (Xk+1, Xk+2, . . . Xn)T i.e. starting from a

point where it has a whole order of observations before it. A simple sliding window approach

is proposed wherein at each step, the ‘k’ length block of the signal is taken as the input

and the (k + 1)th instance as the output. A stride of ‘s’ is used to move the window across

untill the output is the last/final observation of the signal. The input blocks are stacked

vertically and similarly to the output values so as to have the data in the form of (5.2) the

total number of blocks can be calculated as T−k
s

+ 1.

Since the AR is performed for fixed values of the order ‘k’, different sizes of the window

length can be used to test the performance of the learned model. At each prediction step,

the errors (ξt+1, . . . , ξt+s) are computed from (5.1). If there are P different window sizes

tested, the error

Ξ =


ξ1

1 ξ2
1 . . .

...
. . .

ξ1
s ξPs


The mean percentage error metric is used to compute a more intuitive error term. The error

ξij, where i is the window length and j is the stride, can be computed as

ξij =
100

n

n∑
t=1

ξit+j
xt+j

(5.3)

(5.2) and (5.3) are repeated for all the different signals (from the different brain regions)

and we have ki and si for each region i. (5.3) is modified to find the average error across all
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regions as

ξij =
100

n ∗M

M∑
i=1

n∑
t=1

ξit+j
xit+j

(5.4)

where M is the number of brain regions. To identify the optimal ‘k’ and ‘s’, a satisfiability

criterion is developed. Θ, a binary matrix indicates the satisfiability of the performance of

the learned model.

Θ =


θ1

1 θ2
1 . . .

...
. . .

θ1
s θPs


To determine satisfiability, the following constraint is used.

θij =


1, if ξij ≤ τ, τ = 10

0, otherwise

(5.5)

The τ in (5.5) is to decide when the learned model is significantly similar to the labels.

5.3.3 Vector Auto-Regression (VAR)

VAR models generalize the univariate AR models by allowing more than one evolving vari-

able. It identifies the linear relationship between multiple time-series and each variable is a

linear function of past lag of itself and past lag of other variables.

Consider time series generated from M variables (brain regions ) and the process of order k

structured as

yt = A1yt−1 + A2yt−2 + . . .+ Akyt−k + ξn for t = k + 1, . . . ,n (5.6)
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where yt = (y
(1)
t , y

(2)
t , ..., y

(M)
t ) ∈ RM×1 is the tth sample of M -dimensional time series,

Ai ∈ R(M×M) regression coefficient matrices and ξn ∈ RM×1 is additive gaussian noise with

E(ξt) = 0 and Cov(ξt) = Σ.

Model (5.6) can be represented in the form of a multivariate linear regression model [39] as

follows .

yt = Axt + ξn (5.7)

where xt = (yt−1; yt−2; ...; yt−k) ∈ R(Mk×1) and A = (A1; A2; ...; Ak) ∈ R(M×Mk) . For a

given rs-fMRI signal (M × n), we use a simple sliding window block (M × k) and at each

step the block signal is taken as an input for xt and the (k + 1)th instance as the output

yt. The block window is moved across the signal by stride s until it reaches the end of the

signal and the total number of blocks can be calculated as r = T−k
s

+ 1. We stacked the

block signals and created X = (xk+1; xk+s+1; xk+2s+1...; xk+(r−1)s+1) ∈ R(Mk×r) and (k+1)th

stacked into Y = (yk+1; yk+s+1; yk+2s+1...; yk+(r−1)s+1) ∈ R(M×r). This can be modeled

as a group lasso regression problem (5.8) where block windows are groups and λ is the

regularization parameter.

Â ∈ argmin
A

{
‖Y −AX‖2

F + λPen(A)
}

where Pen(A) =
Mk∑
i=1

M∑
j=1

‖(Ai)j:‖2 (5.8)

The output of (5.8) helps to produce the predicted (k+1)th instances Ŷ = AX. The predic-

tion error of each block can be computed using (5.7). In order to test the performance of the

models we used different window lengths and strides. We recorded relative prediction error

(5.9) corresponding to different window lengths k and strides s. We chose the best window
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length k and stride s combinations which gives smaller prediction errors.

ε =
‖Ŷ −Y‖F
‖Y‖F

(5.9)

If there are p different window sizes and q different strides, the relative prediction errors can

be represented in the matrix form as

Ξ =


ε11 ε21 . . .

...
. . .

ε1p εqp


In order to select the best window, stride combination we setup the threshold τ = 0.1. If

εji ≤ τ , and considered that the corresponding window length and stride are significant for

further analysis. In order to clearly identify the best window length stride combination, we

created a binary matrix Γ with the entries (5.10) .

Γ =


γ1

1 γ2
1 . . .

...
. . .

γ1
p γqp



γji =


1, if εji ≤ τ

0, otherwise

(5.10)
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5.4 Dynamic Functional Connectivity with AR/VAR

Dynamic Functional Connectivity accounts for the uncharacteristic activations in the brain

by treating the signal as non-static. A sliding window approach is used with a connectivity

matrix computed for each window. This approach helps to identify the effect of the unchar-

acteristic activations within smaller windows. The choice of window size k and stride s is

determined by using AR (Sec. 5.3.2) or VAR (Sec. 5.3.3) approaches. Connectivity matrices

are generated from inverse covariance matrices for each window using [33].

5.4.1 Graphical Lasso

Graph theoretical approaches are considered a powerful framework to study the functional

connectivity of fMRI brain networks. The brain is modeled as an undirected graph where

the brain regions correspond to the nodes and the connection between the nodes correspond

to the edges. The number of edges incident to the node are called the degree of the node.

In the network the brain regions, which is our region of interest, the nodes and strength of

the edges represent the degree of functional connectivity between a pair of regions.

The correlation method cannot find true physical connections in the brain network. Since two

brain regions might show a high correlation even when they are not directly connected, the

high correlation could be due to a strong interaction between the two regions with common

input from the third region. We can compute the functional connectivity more accurately

using partial correlations [18] [54]. Partial correlation provides better characterization of

the brain connectivity than the correlation analysis because partial correlation measures the

strong direct interactions between the pairs of brain regions while simultaneously removing

the influence of the rest of the brain regions. This is done by measuring the correlation

between a pair after having regressed out the effects from all other regions in the brain.
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The zero value of the partial correlation between two brain regions is interpreted as their

conditional independence given the activity of the other brain regions.

The problem with the estimation of functional connectivity using partial correlation is an

ill-posed problem when the degree of the node is larger compared to the number of nodes

considered. Therefore, the Graphical Lasso method originally proposed by Friedman et.al

[33] implements the sparse regularization of the network connections by using the L1 penalty.

It also helps to interpret the estimated networks from the functional view point. Let the em-

pirical covariance matrix of observations be S as the Graphical Lasso estimates the precision

matrix Θ by solving the following optimization problem :

max
Θ�0

[log det Θ− tr(SΘ)− ρ‖Θ‖1] (5.11)

which maximizes the log likelihood over the non-negative definite matrices Θ.

We implemented Graphical Lasso to find the precision matrix for the implementation of the

VAR model. We selected a significant window stride combination and moved across the

fMRI signal. At each step (stride), we centered the window entries corresponding to ROI

(Region of Interest, n=116) averages. We constructed sample covariance matrices for each

window steps and took the average of all constructed covariance matrices. Finally we had

one single covariance matrix per subject. We plugged the covariance matrix to (5.11) and

obtained the precision matrix.
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5.5 Real data Experiments

5.5.1 Data sets

We tested our proposed technique using two different data sets. From the Autism Brain

Imaging Data Exchange we obtained the Kennedy Krieger Institute (KKI) data set. KKI

data includes Total: 55 (Age: 8.0-12.8), Autism Spectrum Disorders (ASD): 22 (Age: 8.0-

12.5)(11 Autism, 11 Asperger’s Disorder)and typical controls (TC): 33 (Age: 8.0-12.8). Next,

we used Chess Masters and Novice data (CM&N). The studies have demonstrated that non-

invasive MRI techniques are valuable for researchers to investigate the underlying neural

mechanism of chess. For professional chess players (e.g., chess grand masters and masters

CM/Ms), they show what the structural and functional alterations are due to longtime

professional practice, and how these alterations, which relate to their behavior, are largely

veiled. The data set reported a multi-modal MRI dataset of 29 professional Chinese chess

players, most of which are CM/Ms, and 29 well-matched age and gender chess novices. The

objective of the data analysis is classify on the basis of f-MRI data. Our aim is to classify

KKI testing subjects into Autism Spectrum Disorder or typical control and CM&N testing

subjects into professional chess players or novices.

5.5.2 Static Functional Connectivity based Classification

For each subject, we generated the sample correlation matrix and derive the precision matrix

by the covariance matrix. We obtained two vectors by taking the upper triangular part of the

correlation and the precision matrices, thus obtaining the correlation and precision vectors

with 6670 features. For testing our classification procedure, we carried out 10 fold cross

validation. For this purpose we divided the samples into the training and testing portions.

56



We selected only the significant features on these vectors using three different approaches; the

Wilcoxon rank sum test, the T-test and F-test. We standardized both training and testing

vectors using parameters (mean and standard deviation) of the training set. We included

training vectors to A and their true classification (binary vector) y then used LeastR function

in SLAP package to get the weight vector (w) for classification.

min
w

1

2
‖Aw − y‖2

2 + λ‖w‖1 (5.12)

where A ∈ Rm×n, y ∈ Rm×1 and x ∈ Rn×1.

We multiplied the weight matrix and the testing precision vector to obtain predictive classi-

fication. Since the values are real we convert it into binary values by comparing with zero.

Finally, we evaluate the classification accuracy by Sensitivity (SE), Specificity (SP), Positive

predictive value (PPV), Negative predictive value (NPV) and Correct rate (Acc).

Table 5.1 summarizes the accuracies obtained for the Chess Masters and Novice (CM&N)

data set. We obtained higher accuracy with the precision matrix than with the correlation

matrix. According to our study, the Wilcoxon Rank Sum test provides more accurate feature

selection for the CM&N data set.

Table 5.2 summarizes results for the Kennedy Krieger Institute (KKI) data set. According

to Table 5.2, results are similar to those for the CM&N data set, while we obtained higher

accuracy with the precision matrices. Comparatively, the T-test and F-test indicate more

accurate feature selection for the KKI data set.

Figure 5.1 represents the behaviour of the accuracies in the Chess master and novice (CM&N)

data set against lambda along the different feature selection techniques (Wilcoxon Rank

Sum,T-test and F-test). The figure summarizes the behaviour of both correlation and
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precision vectors. It is noticeable when lambda increases the accuracy decreases in most

of the cases except the Precision+F-test and Precision+T-test. In particular, the Preci-

sion+Wilcoxon Rank Sum test reaches higher accuracy in most regularization parameters.

Finally, Figure 5.2 illustrates the accuracy against lambda (regularization parameter) in the

KKI data set along the different feature selection techniques (Wilcoxon Rank Sum,T-test

and F-test). Similarly, the figure summarizes the behaviour of both correlation and precision

vectors. It can observe the decreasing behaviour of accuracy when lambda increases, yet it is

not possible to observe with the correlation+F-test and Precision+F-test. The Precision+T-

test reaches higher accuracy for most lambdas.

Table 5.1: Classification Accuracy in the context of static functional connectivity for the
Chess Masters and Novice dataset obtained by using the Correlation matrices and Precision
matrices

WRST +
LASSO

T-Test +
LASSO

F-Test+ LASSO

Accuracy (Corr) 59% 52% 57%
Accuracy (Prec) 70% 66% 69%

Table 5.2: Classification Accuracy in the context of static functional connectivity for the the
KKI dataset obtained by using the Corelation matrices and Precision matrices

WRST +
LASSO

T-Test +
LASSO

F-Test+ LASSO

Accuracy (Corr) 63% 61% 53%
Accuracy (Prec) 73% 76% 76%
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Figure 5.1: Accuracy of Classification of Chess Masters and Novices from various methods
for the static functional Connectivity against different λ′s in (5.12). Here, S refers to static,
C refers to the Corelation matrix, P refers to precision matrix, F refers to F−Test, W
refers to Wilcoxon rank sum test, T refers to T-test and L refers to Lasso (SCFL stands for
Static+ Correlation+F-test+Lasso ). The points in the graph represent the accuracy of the
corresponding method for the corresponding values of lambda.
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Figure 5.2: Accuracy of Classification for the KKI data set from various methods for the
Static functional Connectivity against different λ′s in (5.12). Here, S refers to static, C
refers to the Corelation matrix, P refers to precision matrix, F refers to F-Test, W refers
to Wilcoxon rank sum test and L refers to Lasso. The points in the graph represent the
accuracy of the corresponding method for the corresponding values of lambda.
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Figure 5.3: In vector auto regression the number of significant window stride combinations
occur less than threshold for different λ′s in (5.8). Threshold=0.1 (Orange ) and Thresh-
old=0.15 (green ) for chess masters and novice (CM&N) data.

Table 5.3: In vector auto regression the number of significant window strides combinations
occurs less than threshold for different λ′s in (5.8). For Threshold=0.1 are results shows in
rows 2 and 3. Threshold=0.15 results are shown in rows 5 and 6 for CM&N data.

Thresholed=0.1
λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Num of 75 74 68 66 64 62 59 56 56
Thresholed=0.15

λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Num of 91 86 82 82 80 79 79 78 77
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5.6 Dynamic functional connectivity based classification

In order to determine the order of the VAR processes, 10 subjects were randomly selected

from the dataset while ensuring representation from both groups/classes. For the Lasso

to Regression order prediction, we fixed λ and then computed the error (5.9) for different

window lengths and strides. The process was then repeated across different λ values to study

the effect of sparsity on order prediction. These experiments were repeated for determining

the order of the VAR process. The observations for VAR can be seen in Table 5.3 and Fig.

5.3 for Chess Masters and Novice data. It can be seen from Fig. 5.3 when lambda increases

the number of significant window lengths and strides decreases. Furthermore, at λ = 0.1

we achieved the highest number of significant window stride combinations, thus we set our

regularization parameter as λ = 0.1 for our further analysis in Chess Masters and Novice

data.

Based on the selected λ and their corresponding window lengths k and stride s, we carried

out classification in VAR. We selected a significant window stride combination and moved

across the fMRI signal. At each step (stride) we centered the window entries’ corresponding

ROI (Region of Interest, n=116) averages. We constructed a sample covariance matrix for

each window step and took the average of all constructed covariance matrices. Finally we

had one single covariance matrix per subject. We constructed the Inverse Covariance Matrix

(Precision Matrix) using the function “sparse Inverse Covariance” on the SLEP package.

max
Θ�0

[log |Θ|− < S,Θ > −λ‖Θ‖1] (5.13)

where S ∈ Rn×n is the sample covariance matrix estimated from the data, Θ ∈ Rn×n is the

(sparse) inverse covariance matrix to be estimated, and λ > 0 is the regularization parameter.
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Then we chose the upper triangular entries form Θ and vectorized it (6670). For testing our

classification procedure, we carried out 10 fold cross validation. In each fold we divided the

samples into the training and testing portions. Then we divided the training vectors into

control and healthy and selected only the significant features using three diferent approaches;

the Wilcoxon rank sum test, the T-test and F-test. Finally, we standardized both training

and testing vectors using parameters(mean and standard deviation) of the training set. We

included training vectors into A and their true classification y (binary vector) then used the

LeastR function in the SLAP package to get the weight vector (w) for classification.

min
w

1

2
‖Aw − y‖2

2 + λ‖w‖1 (5.14)

where A ∈ Rm×n, y ∈ Rm×1 and w ∈ Rn×1.

We multiplied the weight matrix and the testing precision vector to obtain predictive classi-

fication. Since the values are real we convert them to binary values by comparing them with

zero. Finally, we evaluate the classification accuracy for Sensitivity (SE), Specificity (SP),

Positive predictive value (PPV), Negative predictive value (NPV) and Correct rate (Acc).
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5.6.1 Dynamic feature selection and comparison

We obtained higher classification accuracy in the dynamic functional connectivity approach

comparative to the static functional connectivity approach . Table 5.4 and Table 5.5 represent

the highest accuracy of each case(WRST, T-Test and F-Test ). We always achieve more

accuracy in precision vectors than with the correlation vector based classification. Table 5.4

shows that the Wilcoxon Rank Sum test obtained the highest classification accuracy with

precision vectors while in Table 5.5 the F-test with precision vectors achieve the highest

accuracy.

In order to demonstrate accuracy distribution along the different window lengths and strides

we create Figure 5.6 for Chess Masters and Novice data. The figure illustrates the accuracy

distribution along the different window lengths and strides via box plot against differnt

lambda’s in (5.14). This box-plot confirms that classification accuracies are correspond

higher to λ = 0.1, λ = 0.2. Similarly we create Figure 5.7 to present the same distribution

setting across the regularization parameter for the KKI data set. Hence the box-plot confirms

λ = 0.2 gives better accuracy along other regularization parameters.

In order to discuss the accuracy against the regularization parameter in (5.14), we create the

Figure 5.4 for Chess Masters and Novice data. Similarly Figure 5.5 represents the accuracy

against lambda in (5.14) for the KKI data set. In general both graphs indicate when the

lambda increases and the accuracy decreases. It is clear from Figure 5.4 the precision vectors

with the Wilcoxon Rank Sum test gives the highest accuracy for chess master and novice

data. In particular Figure 5.5 indicates that the F-test with the precision matrix gives the

highest accuracy for KKI data.
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Table 5.4: Highest classification accuracy for Chessmasters/Novice in the context of the
Dynamic functional connectivity obtained by using precision and correlation matrices.

WRST +
LASSO

T-Test +
LASSO

F-Test+ LASSO

Accuracy (Corr) 61% 72% 65%
Accuracy (Prec) 81% 74% 69%

Table 5.5: Highest classification accuracy for the KKI dataset in the context of Dynamic
functional connectivity obtained by using precision and correlation matrices.

WRST +
LASSO

T-Test +
LASSO

F-Test+ LASSO

Accuracy (Corr) 63% 61% 69%
Accuracy (Prec) 80% 80% 82%
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Figure 5.4: Accuracy of Classification of Chess masters/Novice from various methods for
dynamic functional connectivity across different λ′s in (5.14). Here P refers to the precision
matrix, F refers to F-Test, T refers to T-test, W refers to Wilcoxon rank sum test and
L refers to Lasso, then (PFL stands for precision+F-test+Lasso /PWL stands for preci-
sion+Wilcoxon+Lasso ) and (70, 2) refers to the result obtained using the window length 70
and stride 2.
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Figure 5.5: Accuracy of Classification of he KKI dataset from various methods for dynamic
functional connectivity across different λ′s in (5.14). Here P refers to the precision matrix, F
refers to F-Test, T refers to T-test and W refers to Wilcoxon rank sum test, L refers to Lasso,
then ((PFL stands for precision+F-test+Lasso /PWL stands for precision+Wilcoxon+Lasso)
and (120, 3) refers to the result obtained using the window length 120 and stride 3.
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Figure 5.6: Distribution of accuracies of different window lengths and strides against different
regularization parameters for classification of Chessmasters and Novice data for the case
where precision matrix as connectivity, Wilcoxon rank sum test for feature selection and
Lasso for classification for dynamic functional connectivity across different λ′s in (5.14). In
the Figure, the height of the box represents the inter-quartile range, the horizontal line inside
the box represents the median and small circles below and above the whiskers represents the
outliers of the accuracy of classification.
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Figure 5.7: Distribution of accuracies of different window lengths and strides against dif-
ferent regularization parameters for of classification of in KKI dataset for the case where
precision matrix as connectivity, F- test for feature selection and Lasso for classification for
dynamic functional connectivity across different λ′s in (5.14). In the Figure, the height of
the box represents the inter-quartile range, the horizontal line inside the box represents the
median and small circles below and above the whiskers represents the outliers of the accuracy
of classification.
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CHAPTER 6: CONCLUSION AND FUTURE WORK

6.1 Conclusion

We investigate theoretically and via a limited simulation study, the effect of clustering on

the accuracy of recovery in ill-posed linear inverse problems. As we stated earlier, in many

applications leading to such problems, clustering is carried out at a pre-processing step and

later is totally forgotten when it comes to error evaluation. We conclude that when the sizes

of the vectors and the number of functions under investigation are large enough, clustering

does not have an adverse effect on the precision. However, as both Corollary 1 and Tables

1–4 show, the improvement due to clustering is more significant when the problem is less

ill-posed. It is easy to notice that the difference in precision of estimators with and without

clustering is more pronounced for larger values of λ and for α = β = 0. Indeed, in the

case when the problem is not ill-posed (α = β = γ = 0 in (4.3)), as findings of Klopp et

al. [41] show, clustering always improves estimation precision. On the other hand, when

the problem is severely ill-posed (α > 0, β > 0), the recovery can be very poor even when

clustering errors are small or even zero (see, e.g. Table 4 where reconstruction errors are

high even when clustering errors are small). This is due to the fact that the reduction in the

noise level due to clustering is not sufficient to counteract the ill-posedness of the problem

and, thus, and does not lead to a meaningful improvement in estimation accuracy.
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6.2 Future Work

At this moment we are working on the extension of our research work on clustering in sta-

tistical inverse problems. Currently, we consider a homogeneous set of functions and do not

take into account the distances between them. We are planning to extend the methodology

to the set of inhomogeneous functions and take the distances between them into account.

We are finishing the rest of the work in Learning Functional Brain Connectivity through

Auto-Regressive (AR) Models. We are also planning to extend our analysis with more data

sets and identify the top brain regions for classification.
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APPENDIX A: DERIVATIONS AND PROOFS PART 1
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In order to prove Theorem 1, we use Lemma A1 of Bunea et al. (2007), which we will

reformulate for the squared risk case.

Lemma 3 Let Θ be a set of functions of cardinality card(Θ) ≥ 2 such that

(i) ‖f − g‖2 ≥ 4δ2, for f, g ∈ Θ, f 6= g,

(ii) the Kullback divergences K(Pf , Pg) between the measures Pf and Pg satisfy the inequality

K(Pf , Pg) ≤ log(card(Θ))/2, for f, g ∈ Θ.

Then, for some absolute positive constant C1, one has

inf
fn

sup
f∈Θ

Ef‖fn − f‖2 ≥ C1δ
2

where inffn denotes the infimum over all estimators.

In order to obtain lower bounds, we introduce a triangular Toeplitz matrix associated with

Laurent series (1 − z)−r and denote by Q(L) = TL ((1− z)−r) its reduction to the set of

indices 0 ≤ l ≤ L− 1. Following Vareschi (2013), consider function

h(t) =
∞∑
l=0

hlϕl(t) with hl =
(−1)l

log(l ∨ e)

(
−1/2

l

)
(A.1)

Denote θ(L) = (θ0, · · · , θL−1)T = Q(L)h(L) where hL is the vector of the first L coefficients

of function h in (A.1). In what follows we shall use Lemma 6.5 of Vareschi (2013) that was

in the original version of the paper posted on ArXiv but did not make it to the published

version of Vareschi (2015).

Lemma 4 Let h(t) be a defined in (A.1) and θ(L) = Q(L)h(L) where Q(L) = TL ((1− z)−r)

and h(L) are reductions of the infinite-dimensional Toeplitz matrix T ((1− z)−r) and vector

h of coefficients of h(t) to the set of indices 0 ≤ l ≤ L − 1. Then, h(t) is square integrable
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and there exist positive constants Cr1and Cr2 that depend on r only such that for all r ≥ 1

and any l ≥ 0 one has

Cr1
(l ∨ 1)r−1/2

log(l ∨ e)
≤ θl ≤ Cr2 (l ∨ 1)r−1/2. (A.2)

Let ϑ be a matrix with components ϑk1,k2 = {−1, 1}, k1 = 0, 1, · · · , 2j1−1, k2 = 0, 1, · · · , 2j2−

1. Denote the set of all possible values of ϑ by Θ and let functions fL,j1,j2 be of the form

fL,j1,j2(t, x1, x2) = ρ qL(t) pj1,j2(x1, x2) (A.3)

qL(t) =
L−1∑
l=0

θl ϕl(t), pj1,j2(x1, x2) =
2j1−1∑
k1=0

2j2−1∑
k2=0

ϑk1,k2 ψj1,k1(x1)ψj2,k2(x2), (A.4)

where θ(L) is the vector with components θl, l = 0, · · · , L − 1 where θ(L) = Q(L)h(L) and

Q(L) and h(L) are defined above. Since fL,j1,j2 ∈ B
s1,s2,s3
γ,β (A), Lemma 4 implies that one can

choose

ρ2 = CrA
22−2j1(s1+ 1

2
)−2j2(s2+ 1

2
) (L ∨ 1)−2(r+s3) exp

{
−2γLβ

}
, (A.5)

where 0 < Cr ≤ C2
r2/2r. If f̃L,j1,j2 is of the form (A.3) but with ϑ̃k1,k2 ∈ Θ instead of ϑk1,k2 ,

then, by Lemma 4, the L2-norm of the difference is of the form

‖f̃L,j1,j2−fL,j1,j2‖2
2 = ρ2

(
L−1∑
l=0

θ2
l

) 2j1−1∑
k1=0

2j2−1∑
k2=0

I
(
ϑ̃k1,k2 6= ϑk1,k2

) ≥ C2
r1ρ

2H
(
ϑ̃, ϑ

)
(L ∨ 1)2r

2r [log(L ∨ e)]2
.

Here H
(
ϑ̃, ϑ

)
is the Hamming distance between the binary sequences vec(ϑ) and vec(ϑ̃)

where vec(ϑ) is a vectorized version of matrix ϑ.

Observe that matrix ϑ has ℵ = 2j1+j2 components, and hence, card(Θ) = 2ℵ. In order to

find a lower bound for H
(
ϑ̃, ϑ

)
, we apply the Varshamov-Gilbert lemma which states that
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one can choose a subset Θ1 of Θ, of cardinality of at least 2ℵ/8, and such that H
(
ϑ̃, ϑ

)
≥ ℵ

8

for any ϑ, ϑ̃ ∈ Θ1. Hence, for any ϑ, ϑ̃ ∈ Θ1, one has the following expression for δ2 defined

in Lemma 3:

‖f̃L,j1,j2 − fL,j1,j2‖2 ≥ C2
r1ρ

22j1+j2(L ∨ 1)2r

16r [log(L ∨ e)]2
= 4δ2. (A.6)

Note that, since
∣∣∣ϑ̃l,k,k′ − ϑl,k,k′∣∣∣ ≤ 2, due to (A.3) and (A.4), the Kullback divergence can

be written as

K(Pf , Pf̃ ) =
(
2ε2
)−1 ‖(f̃ − f) ∗ g‖2

2 ≤ 2ε−2 ρ242j1+j2‖qL ∗ g‖2
2 = 2ε−2 ρ242j1+j2‖G(L)θ(L)‖2

2,(A.7)

where matrix G(L) and vector θ(L) are defined in (3.9) and Lemma 4, respectively. By

Lemma ?? in section ??, and under Assumptions A1 and A2, one obtains that G(L) =

TL((1 − z)rv(z)) and ‖TL(v(z))‖2 = λmax[T TL (v(z))TL(v(z))] < ‖v‖2
circ < ∞. Therefore,

G(L)θ(L) = G(L)Q(L)h(L) = TL((1− z)rv(z))TL((1− z)−r)h(L) and

‖G(L)θ(L)‖2
2 = ‖TL(v(z))h(L)‖2

2 ≤ ‖TL(v(z))‖2‖h(L)‖2
2 ≤ ‖v‖2

circ ‖h‖2
2 <∞ (A.8)

where ‖h‖2
2 is the L2-norm of the function h(t) and ‖h‖2 < ∞ due to Lemma 4. Combi-

nation of (A.7) and (A.8) yields K(Pf , Pf̃ ) ≤ C̃ε−2ρ22j1+j2/16 where C̃ = 128‖v‖2
circ‖h‖2

2.

Application of Lemma 3 requires the constraint

K(Pf , Pf̃ ) ≤ log(card(Θ1)) ≤ 2j1+j2/16.

Therefore, one can choose ρ2 = ε2/C̃, so that, by Lemma 3 for some C1 > 0 one has

inf
fn

sup
f∈Θ

Ef‖fn − f‖2 ≥ C1ε
22j1+j2 (L ∨ 1)2r [log(L ∨ e)]−2 (A.9)
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where L, j1 and j2 are such that

22j1(s1+ 1
2

)+2j2(s2+ 1
2

) (L ∨ 1)2(r+s3) exp
{

2γLβ
}

= C2A
2ε−2 (A.10)

with C2 = CrC̃. Thus, one needs to choose j1, j2 and L that maximize 2j1+j2 (L∨1)2r [log(L∨

e)]−2 subject to condition (A.10). Denote

τε = log(A2ε−2) (A.11)

It is easy to check that the solution of the above linear constraint optimization problem

is of the form {j1, j2, L} =
{

0, 0, [A2ε−2]
1

2s3+2r

}
if s3 ≤ min{2rs1, 2rs2} and γ = β = 0,

{j1, j2, L} =
{

0, (log(2))−1 (2s2 + 1)−1 τε, e
}

if s1 ≥ s2, s3 ≥ 2rs2 − 2s2 − 1 and γ = β = 0,

{j1, j2, L} =
{

(log(2))−1 (2s1 + 1)−1 τε, 0, e
}

if s1 ≤ s2 and s3 ≥ 2rs1−2s1−1 and γ = β = 0.

{j1, j2, L} =
{

0, (log(2))−1 (2s2 + 1)−1 τε, e
}

if s1 ≥ s2 and γ > 0, β > 0, and {j1, j2, L} ={
(log(2))−1 (2s1 + 1)−1 τε, 0, e

}
if s1 ≤ s2 and γ > 0, β > 0. By noting that

s3

s3 + r
≤ min

{
2s2

2s2 + 1
,

2s1

2s1 + 1

}
, if s3 ≤ min{2rs1, 2rs2}, γ = β = 0, (A.12)

2s1

2s1 + 1
≤ min

{
2s2

2s2 + 1
,

s3

s3 + r

}
, if s1 ≤ min{s3/2r, s2}, γ = β = 0, (A.13)

2s2

2s2 + 1
≤ min

{
2s1

2s1 + 1
,

s3

s3 + r

}
, if s2 ≤ min{s3/2r, s1}, γ = β = 0, (A.14)

and

2s1

2s1 + 1
≤ 2s2

2s2 + 1
, if s1 ≤ s2, γ > 0, β > 0. (A.15)

we then choose the highest lower bounds in (A.9). This completes the proof of the theorem.
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The proof of Theorem 2. Denote

µ =

 min
{

s3
s3+r

, 2s2
2s2+1

, 2s1
2s1+1

}
, if γ = β = 0,

min
{

2s2
2s2+1

, 2s1
2s1+1

}
, if γ > 0, β > 0.

(A.16)

χε,A =
[
A−2ε2 log(1/ε)

]
(A.17)

2j10 = [χε,A]
− µ

2s1 , 2j20 = [χε,A]
− µ

2s2 (A.18)

and

M0 =

 [χε,A]
− µ

2s3 if γ = β = 0[
log(1/ε)

γ

]1/β

if γ > 0, β > 0.
(A.19)

and notice that with the choices of J1, J2 and M given by (3.6), the estimation error can be

decomposed into the sum of four components as follows

E‖f̂n − f‖2 ≤
∑
ω

∞∑
l=0

E‖θ̂l:ωI
(
|θ̂l:ω| > λl,ε

)
− θl:ω‖2 ≤ R1 +R2 +R3 (A.20)
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where

R1 =
J−1∑
j=m0

J ′−1∑
j′=m′0

M−1∑
l=0

∑
k,k′

E
[∣∣∣θ̂l:ω − θl:ω∣∣∣2 I(∣∣∣θ̂l:ω∣∣∣ > λl,ε

)]

R2 =
J−1∑
j=m0

J ′−1∑
j′=m′0

M−1∑
l=0

∑
k,k′

∣∣∣θ̂l:ω∣∣∣2 Pr
(∣∣∣θ̂l:ω∣∣∣ < λl,ε

)

R3 =

 ∞∑
j=J

∞∑
j′=J ′

∞∑
l=M

+
J−1∑
j=m0

∞∑
j′=J ′

∞∑
l=M

+
∞∑
j=J

J ′−1∑
j′=m′0

∞∑
l=M

+
∞∑
j=J

∞∑
j′=J ′

M−1∑
l=0

· · ·

∑
k,k′

|θl:ω|2

For R3, one uses assumption (3.2) to obtain,

R3 = O

 J1−1∑
j1=m0

J2−1∑
j2=m′0

∞∑
l=M

+
J−1∑
j1=m0

∞∑
j2=J2

M∑
l=1

+
∞∑

j1=J1

J2−1∑
j2=m′0

M∑
l=1

A22−2j1s1−2j2s2l−2s3 exp{−2γlβ}


= O

(
A22−2J1s1 + A22−2J2s2 + A2M−2s3 exp{−2γMβ}

)
(A.21)

If γ = β = 0, then since M � [ε2]
−1/2r

, R3 becomes

R3 = O

(
A2
[
A−2ε2

]2s1 + A2
[
A−2ε2

]2s2 + A2
[
A−2ε2

] 2s3
2r

)
= O

(
A2 [χε,A]µ

)
(A.22)

If γ > 0, β > 0, then

R3 = O
(
A2
[
A−2ε2

]2s1 + A2
[
A−2ε2

]2s2)
= O

(
A2 [χε,A]

min
{

2s2
2s2+1

,
2s1

2s1+1

})
(A.23)

To evaluate the remaining two terms, notice that both R1 and R2 can be partitioned into
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the sum of two error terms as follows

R1 ≤ R11 +R12, R2 ≤ R21 +R22 (A.24)

where

R11 =

J1−1∑
j1=m0

J2−1∑
j2=m′0

M∑
l=1

∑
k,k′

E
[∣∣∣θ̂l:ω − θl:ω∣∣∣2 I(∣∣∣θ̂l:ω − θl:ω∣∣∣ > 1

2
λl;ε

)]
(A.25)

R12 =

J1−1∑
j1=m0

J2−1∑
j2=m′0

M∑
l=1

∑
k,k′

E
[∣∣∣θ̂l:ω − θl:ω∣∣∣2 I(|θl:ω| > 1

2
λl;ε

)]
(A.26)

R21 =

J1−1∑
j1=m0

J2−1∑
j2=m′0

M∑
l=1

∑
k,k′

|θl:ω|2 Pr

(∣∣∣θ̂l:ω − θl:ω∣∣∣ > 1

2
λl;ε

)
(A.27)

R22 =

J1−1∑
j1=m0

J2−1∑
j2=m′0

M∑
l=1

∑
k,k′

|θl:ω|2 I
(
|θl:ω| <

3

2
λl;ε

)
(A.28)

Combining (A.25) and (A.27) and applying Cauchy-Schwarz inequality, Lemma 2 and the

fact that M � [ε2]
−1/2r

, yields

R11 +R21 = O

 J1−1∑
j1=m0

J2−1∑
j2=m′0

M∑
l=1

(
2j1+j2ε2l2r−1ετ/2 + ετ

∑
k,k′

|θl:ω|2
)

= O
(
ε22J1+J2M2r

(
ε2
) τ

4 + A2ετ
)

= O
((
ε2
) τ

4
−2

+ A2ετ
)

Hence, for τ ≥ 12 and under condition (3.8), as ε→ 0, one has

R21 +R31 = O
(
ε2
)

= O
(
A2 [χε,A]µ

)
(A.29)
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Now, combining (A.26) and (A.28), and using (3.3) and (3.7), one obtains

∆ = R12 +R22 = O

 J1−1∑
j1=m0

J2−1∑
j2=m′0

M∑
l=1

∑
k,k′

min
{
|θl:ω|2 , ε2 log(1/ε)l−1‖(G(l))−1‖2

}
= O

 J1−1∑
j1=m0

J2−1∑
j2=m′0

M∑
l=1

min

{∑
k,k′

|θl:ω|2 , 2j1+j2ε2 log(1/ε)l2r−1

} (A.30)

Then, ∆ can be decomposed into three components, ∆1, ∆2 and ∆3, as follows

∆1 = O

 J1−1∑
j1=j10+1

J2−1∑
j2=m′0

M∑
l=1

+

J1−1∑
j1=m0

J2−1∑
j2=j20+1

M∑
l=1

+

J1−1∑
j1=m0

J2−1∑
j2=m′0

M∑
l=M0

∑
k,k′

|θl:ω|2
(A.31)

∆2 = O

 j10∑
j1=m0

j20∑
j2=m′0

M0∑
l=1

A22j1+j2 [χε,A] l2r−1I
(
ηcl:j1,j2

) (A.32)

∆3 = O

 j10∑
j1=m0

j20∑
j2=m′0

M0∑
l=1

[∑
k,k′

|θl:ω|2
]
I (ηl:j1,j2)

 (A.33)

where ηl:j1,j2 =
{
l, j1, j2 : 2j1+j2l2r > [χε,A]µ−1}. For ∆1, it is easy to see that for j10, j20 and

M0 given in (A.18),

∆1 = O
(
A22−2j10s1 + A22−2j20s2 + A2M−2s3

0 exp{−2γMβ
0 }
)

Consequently, if γ = β = 0, as ε→ 0, one has

∆1 = O
(
A2 [χε,A]µ

)
(A.34)
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If γ > 0, β > 0, then

∆1 = O
(
A22−2j10s1 + A22−2j20s2

)
= O

(
A2 [χε,A]

min
{

2s2
2s2+1

,
2s1

2s1+1

})
(A.35)

For ∆2 in (A.32), as ε→ 0, one obtains

∆2 = O
(
A2
[
A−2ε2 log(1/ε)

]
[χε,A]µ−1) = O

(
A2
[
χαε,A

]µ)
(A.36)

In order to evaluate (A.33), we need to consider five different cases.

Case 1: γ = β = 0, s1 ≤ min{s2,
s3
2r
}. In this case, µ = 2s1

2s1+1
, (A.33) becomes, as ε→ 0

∆3 = O

A2

j10−1∑
j1=m0

M0∑
l=1

j20−1∑
j2=m′0

2−2j1s1−2j2s2l−2s3I

(
2j1 > 2−j2

[χε,A]µ−1

l2r

)
= O

A2 [χε,A]2s1(1−µ)
M0∑
l=1

l−2(s3−s12r)

j20∑
j2=m′0

2−2j2(s2−s1)


= O

(
A2 [χε,A]

2s1
2s1+1

[
log(ε−1)

]I(s1=s2)+I(s1=s3/2r)
)

(A.37)

Case 2: γ = β = 0, s2 ≤ min{s1,
s3
2r
}. In this case, µ = 2s2

2s2+1
, (A.33) becomes, as ε→ 0

∆3 = O

A2

j10−1∑
j1=m0

M0∑
l=1

j20−1∑
j2=m′0

2−2j1s1−2j2s2l−2s3I

(
2j2 > 2−j1

[χε,A]µ−1

l2r

)
= O

(
A2 [χε,A]2s2(1−µ)

M0∑
l=1

l−2(s3−s22r)

j10∑
j1=m0

2−2j1(s1−s2)

)
= O

(
A2 [χε,A]

2s2
2s2+1

[
log(ε−1)

]I(s1=s2)+I(s2=s3/2r)
)

(A.38)

Case 3: γ = β = 0, s3 ≤ min{2rs1, 2rs2}. In this case, µ = 2s3
2s3+2r

, (A.33) becomes, as
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ε→ 0

∆3 = O

A2

j10−1∑
j1=m0

M0∑
l=1

j20−1∑
j2=m′0

2−2j1s1−2j2s2l−2s3I
(
l2r > 2−j1−j2 [χε,A]µ−1)

= O

A2 [χε,A]−
µ−1
2r

2s3

j10−1∑
j1=m0

2−
2j1
2r

(2rs1−s3)

j20∑
j2=m′0

2−
2j2
2r

(2rs2−s3)


= O

(
A2 [χε,A]

s3
s3+r

[
log(ε−1)

]I(s2=s3/2r)+I(s1=s3/2r)
)

(A.39)

Case 4: γ > 0, β > 0, s1 ≤ s2. In this case, µ = 2s1
2s1+1

, (A.33) becomes, as ε→ 0

∆3 = O

A2

j10−1∑
j1=m0

M0∑
l=1

j20−1∑
j2=m′0

2−2j1s1−2j2s2l−2s3 exp{−2γlβ}I

(
2j1 > 2−j2

[χε,A]µ−1

l2r

)
= O

A2 [χε,A]
2s1

2s1+1

j20∑
j2=m′0

2−2j2(s2−s1)


= O

(
A2 [χε,A]

2s1
2s1+1

[
log(ε−1)

]I(s1=s2)
)

(A.40)

Case 5: γ > 0, β > 0, s2 ≤ s1. In this case, µ = 2s2
2s2+1

, (A.33) becomes, as ε→ 0

∆3 = O

A2

j10−1∑
j1=m0

M0∑
l=1

j20−1∑
j2=m′0

2−2j1s1−2j2s2l−2s3 exp{−2γlβ}I

(
2j2 > 2−j1

[χε,A]µ−1

l2r

)
= O

(
A2 [χε,A]

2s2
2s2+1

j10∑
j1=m0

2−2j1(s1−s2)

)
= O

(
A2 [χε,A]

2s2
2s2+1

[
log(ε−1)

]I(s1=s2)
)

(A.41)

Now, to complete the proof, combine formulae (A.22)-(A.41).
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APPENDIX B: DERIVATIONS AND PROOFS PART 2
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Proof of Theorem 3. Note that it follows from the optimization problem (5.8) that for

any fixed G,Z, J and K one has

‖Ĝ‖2
F − 2Tr(YTΥĜΠẐ,K̂) + Pen(Ĵ , K̂) ≤ ‖G‖2

F − 2Tr(YTΥGΠZ,K) + Pen(J,K).

Therefore, equation (4.9) yields

‖Ĝ−G∗‖2
F ≤ ‖G−G∗‖2

F +
2σ√
n

Tr[ETΥ(Ĝ−G)] + Pen(J,K)− Pen(Ĵ , K̂) (B.1)

We choose G = WJG∗ΠZ,K and in order to analyze the cross term Tr[ETΥ(Ĝ −G)] we

use vectorization of the model. For this purpose, we denote

ΠẐ,K̂,Ĵ = (ΠẐ,K̂ ⊗WĴ), ΠZ,K,J = (ΠZ,K ⊗WJ) (B.2)

ĝ = vec(Ĝ), g = vec(G), Γ = (IM ⊗Υ), δ = (IM ⊗ S−1)ε, (B.3)

here E(δδT ) = In,M ,thus δ ∼ N(0, In,M), where ε is defined in (4.11) and Σ = SST . Then,

equation (4.9) can be re-written as

Γy = g∗ +
σ√
n

Γ(IM ⊗ S)δ. (B.4)

Observe that by Theorem 1.2.22 of Gupta and Nagar (2000), one has

ĝ = vec(WĴΥYΠẐ,K̂) = ΠẐ,K̂,ĴΓy, g = ΠZ,K,Jg∗

and Tr[ETΥ(Ĝ −G)] = δT (IM ⊗ STΥ)(ΠẐ,K̂,ĴΓy −ΠZ,K,Jg∗). Now (B.1) can be rewrite

84



in a vector form as

‖ĝ − g∗‖2 ≤ ‖g − g∗‖2 + ∆ + Pen(J,K)− Pen(Ĵ , K̂) (B.5)

where

∆ =
2σ√
n
δT (IM ⊗ STΥ)(ΠẐ,K̂,ĴΓy −ΠZ,K,Jg∗) = ∆1 + ∆2 (B.6)

with

∆1 =
2σ√
n
δT (IM ⊗ STΥ)(ΠẐ,K̂,Ĵ(Γy− g∗)), ∆2 =

2σ√
n
δT (IM ⊗ STΥ)(ΠẐ,K̂,Ĵ −ΠZ,K,J)g∗.

(B.7)

Derivation of upper bounds for ∆1 and ∆2 is based on the following lemma.

Lemma 5 Let K, J be fixed, Ĵ be an arbitrary random subset of {1, ·, n} and K̂ be a random

integer between 1 and M . Let Z and Ẑ be a fixed and a random matrices of ranks K and

K̂, respectively. Denote the projection matrices on the column spaces of matrices Z and Ẑ,

respectively, by ΠZ,K and ΠẐ,K̂. Let S be a matrix with ‖S‖op ≤ Cψ and δ ∼ N(0, InM).

Then, for any s > 0, there exist sets Ω1τ and Ω2τ with P(Ω1τ ) ≥ 1−n−τ and P(Ω2τ ) ≥ 1−n−τ

such that

‖(ΠZ,K ⊗ (WJΥS))δ‖2 ≤ 2KC2
ψ(
∑
j∈J

ν2
j ) + 3C2

ψ(max
j∈J

ν2
j )(τ lnn), ∀ω ∈ Ω1τ ; (B.8)

‖(ΠẐ,K̂ ⊗ (WĴΥS))δ‖2 ≤ 2K̂C2
ψ(
∑
j∈Ĵ

ν2
j )

+ 3C2
ψ(max

j∈Ĵ
ν2
j )

{
M ln K̂ + |Ĵ | ln

(
ne

|Ĵ |

)
+ lnM + (τ + 1) lnn

}
∀ω ∈ Ω2τ .

(B.9)
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Note that ∆1 can be re-written as ∆1 = 2n−1σ2 δT (IM⊗STΥ)(ΠẐ,K̂⊗WĴ)(IM⊗ΥS)δ. Due

to n−1/2σΓε = Γy− g∗ and (B.3), obtain ∆1 = 2n−1σ2 ‖(ΠẐ,K̂ ⊗ (WĴΥS))δ‖2. Therefore,

by (B.9), obtain that for ω ∈ Ω2τ

|∆1| ≤
2σ2C2

ψ

n

2K̂(
∑
j∈Ĵ

ν2
j ) + 3(max

j∈Ĵ
ν2
j )

{
M ln K̂ + |Ĵ | ln

(
ne

|Ĵ |

)
+ lnM + (τ + 1) lnn

}
(B.10)

In order to construct an upper bound for ∆2, consider the following sets

J̃ = J ∪ Ĵ , J1 = J ∩ Ĵ , J2 = J c ∩ Ĵ , J3 = Ĵ c ∩ J. (B.11)

The sets J1, J2 and J3 are non-overlapping and J̃ = J1 ∪ J2 ∪ J3. Furthermore, consider

matrix Z̃ that includes all linearly independent columns in matrices ZK and ẐK̂ , so that

Span{Z̃} = Span{ZK , ẐK̂}. Let K̃ be the number of columns of matrix Z̃. Then, one has

ΠẐ,K̂ΠZ̃,K̃ = ΠZ̃,K̃ΠẐ,K̂ = ΠẐ,K̂ ,

WJ = WJ1 + WJ3 , WĴ = WJ1 + WJ2 , WJ̃ = WJ1 + WJ2 + WJ3 .

In order to obtain an upper bound for ∆2 defined in (B.7), note that using notations above,

we can rewrite ∆2 as

∆2 =
2σ√
n
δT (IM ⊗ STΥ)[(ΠẐ,K̂ ⊗WJ2) + (ΠẐ,K̂ ⊗WJ1)− (ΠZ,K ⊗WJ1)− (ΠZ,K ⊗WJ3)]g∗

=
2σ√
n
δT (IM ⊗ STΥ)[(ΠẐ,K̂ ⊗WJ2) + (ΠZ̃,K̃ ⊗WJ1) + (ΠZ,K ⊗WJ3)][(ΠẐ,K̂ ⊗WJ2)

+ (ΠẐ,K̂ ⊗WJ1)− (ΠZ,K ⊗WJ1)− (ΠZ,K ⊗WJ3)]g∗

=
2σ√
n
δT (IM ⊗ STΥ)[(ΠẐ,K̂ ⊗WJ2) + (ΠZ̃,K̃ ⊗WJ1) + (ΠZ,K ⊗WJ3)][(ΠẐ,K̂,Ĵ −ΠZ,K,J)]g∗

86



Using Cauchy inequality and 2ab ≤ 4a2 + b2

4
, obtain

|∆2| ≤ |∆2,1|+ |∆2,2|, |∆2,2| = 0.25 ‖(ΠẐ,K̂,Ĵg∗ −ΠZ,K,Jg∗)‖2 (B.12)

|∆2,1| = 4
σ2

n
‖[(ΠẐ,K̂ ⊗WJ2) + (ΠZ̃,K̃ ⊗WJ1) + (ΠZ,K ⊗WJ3)](IM ⊗ΥS)δ‖2

Applying Cauchy Inequality to the term ∆2,1 and using that J2 ⊆ Ĵ and J3 ⊆ J we rewrite

∆2,1 ≤
12σ2

n

[
‖(ΠẐ,K̂ ⊗ (WJ2ΥS))δ‖2 + ‖(ΠZ̃,K̃ ⊗ (WJ1ΥS))δ‖2 + ‖(ΠZ,K ⊗ (WJ3ΥS))δ]‖2

]

|∆2,1| ≤
12σ2

n

[
‖(ΠẐ,K̂ ⊗ (WĴΥS))δ‖2 + ‖(ΠZ̃,K̃ ⊗ (WJ1ΥS))δ‖2 + ‖(ΠZ,K ⊗ (WJΥS))δ]‖2

]
The upper bounds for the first and the third term in the inequality above can be obtained

directly from Lemma 5. For the second term, note that since K̃ ≤ K + K̂ and J1 ⊆ J and

J1 ⊆ Ĵ for any ω ∈ Ω1τ ∩ Ω2τ one has

‖(ΠZ̃,K̃ ⊗ (WJ1ΥS))δ‖2 ≤ C2
ψ

2K
∑
j∈J

ν2
j + 2K̂

∑
j∈Ĵ

ν2
j (B.13)

+3 (max
j∈Ĵ

ν2
j )

{
M ln K̂ + |Ĵ | ln

(
ne

|Ĵ |

)
+ lnM + (τ + 1) lnn

}]

Combining (B.13) with equations (B.8) and (B.9), obtain

|∆2,1| ≤ 12
σ2

n
C2
ψ

4K̂
∑
j∈Ĵ

ν2
j + 4K

∑
j∈J

ν2
j + +3(max

j∈J
ν2
j )(τ lnn) (B.14)

+6(max
j∈Ĵ

ν2
j )

{
M ln K̂ + |Ĵ | ln

(
ne

|Ĵ |

)
+ lnM + (τ + 1) lnn

}]

for any ω ∈ Ω1τ ∩ Ω2τ .
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Now consider |∆2,2| defined in (B.12). Rewrite |∆2,2| as |∆2,2| = 0.25‖(ΠẐ,K̂,Ĵg∗ − g∗) −

(ΠZ,K,Jg∗ − g∗)‖2, so that

|∆2,2| ≤ 0.5 ‖(ΠẐ,K̂,Ĵg∗ − g∗)‖2 + 0.5‖(ΠZ,K,Jg∗ − g∗)‖2.

Since ĝ = ΠẐ,K̂,ĴΓy and

‖(ΠẐ,K̂,ĴΓy − g∗)‖2 = ‖(ΠẐ,K̂,Ĵ(g∗ + n−1/2σΓε)− g∗)‖2

= ‖(I−ΠẐ,K̂,Ĵ)g∗‖2 + n−1σ2 ‖ΠẐ,K̂,Ĵ Γε‖2,

we derive

‖ĝ − g∗‖2 ≥ ‖ΠẐ,K̂,Ĵg∗ − g∗‖2 (B.15)

Taking into account that g = ΠZ,K,Jg∗, so that ‖g − g∗‖2 = ‖ΠZ,K,Jg∗ − g∗‖2, we obtain

|∆2,2| ≤ 0.5‖ĝ − g∗‖2 + 0.5‖g − g∗‖2. (B.16)

By combining upper bounds of ∆1, ∆2,1 and ∆2,2, we derive from (B.10) and (B.14)– (B.16)

that for any ω ∈ Ω1τ ∩ Ω2τ upper bound for ∆ can be written as

|∆| ≤ 0.5‖ĝ − g∗‖2 + 0.5‖g − g∗‖2 +
2σ2C2

ψ

n

26K̂
∑
j∈Ĵ

ν2
j + 24K

∑
j∈J

ν2
j

+39(max
j∈Ĵ

ν2
j )

[
M ln K̂ + |Ĵ | ln

(
ne

|Ĵ |

)
+ lnM + (τ + 1) lnn

]
+ 18(max

j∈J
ν2
j )τ lnn

}
(B.17)

Since it follows from (B.3) that ‖Ĝ − G∗‖2
F = ‖ĝ − g∗‖2, obtain from (B.5) that for any
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G = ΠZ,K,JG∗ on the set Ω1τ ∩ Ω2τ one has

‖Ĝ−G∗‖2
F ≤ 3‖G−G∗‖2

F +
2σ2C2

ψ

n

48K
∑
j∈J

ν2
j + 36(max

j∈J
ν2
j )τ lnn+ 52K̂

∑
j∈Ĵ

ν2
j

(B.18)

+78(max
j∈Ĵ

ν2
j )

[
M ln K̂ + |Ĵ | ln

(
ne

|Ĵ |

)
+ ln(Mn) + τ lnn

]}
+ 2[Pen(J,K)− Pen(Ĵ , K̂)]

Choose Pen(J,K) in the form (4.20) and note that all terms containing Ĵ and K̂ in (B.18)

cancel. Finally we obtained for any G = WJG∗ΠZ,K that with probability at least 1−2n−τ

‖Ĝ−G∗‖2
F ≤ 3‖G−G∗‖2

F +
2σ2C2

ψ

n

{
48K

∑
j∈J

ν2
j + 36(max

j∈J
ν2
j )τ lnn

}
+ 2 Pen(J,K)

which yeilds (4.2).

Proof of Theorem 4. Note that, in this case, the optimal set J is of the form J =

{1, · · · , L}, so that |J | = L, and find (Ẑ, Ĝ, L̂, K̂) as a solution of optimization problem

(5.8) with the penalty given by expression (4.20).

Note that for the true number of classes K∗ with Nk, k = 1, . . . , K∗ elements in each class,

G are coefficients of each fm and Θ is the clustered version of those coefficients. it follows

from (4.8) that

R(f̂ ,S(r,A),M,K∗) ≤M−1‖Ĝ−G∗‖2
F +M−1

K∗∑
k=1

Nk

∞∑
j=n+1

Θjk. (B.19)

Therefore, application of Theorem 3 with Ĝ = WJG∗ΠZ∗,K∗ where Z∗ and K∗ are respec-
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tively the true clustering matrix and the true number of classes, yields

‖WJG∗ΠZ∗,K∗ −G∗‖2
F = ‖(WJ − In)G∗‖2

F =
K∗∑
k=1

Nk

n∑
j=L+1

Θ2
jk (B.20)

where Nk is the number of functions fm = hk in the cluster k, k = 1, · · · , K∗, and Θjk are

the true coefficients of those functions. Note that it follows from (4.13) that

n∑
j=L+1

Θ2
jk ≤ A2L−2r. (B.21)

Therefore,
K∗∑
k=1

Nk = M , (B.20) and (B.21) yield

‖WJG∗ΠZ∗,K∗ −G∗‖2
F ≤ A2ML−2r (B.22)

Moreover, it follows from (B.22) that

K∗∑
k=1

Nk

∞∑
j=n+1

Θjk ≤ A2Mn−2r,

so that the last term in (B.19) is smaller than the first term.

Now, consider the second term in (4.2). Due to the condition (4.3) and J = {1, · · · , L}, one

obtains

max
j∈J

ν2
j ≤ ℵ2

2 L
2γ exp

(
2αLβ

)
,
∑
j∈J

ν2
j ≤ ℵ2

2 L
2γ+1 exp

(
2αLβ

)
.

Note also that, due to condition (4.3), in order M−1 ‖Ĝ −G∗‖2
F tends to zero as n → ∞,

one needs L ≤ Cn1/(2γ) if α = 0 and L ≤ [lnn/(2α)]1/β, so that ln(ne/L) � lnn. Denote

R1 ≡ R1(K∗, n) = K∗ + lnn, R2 ≡ R2(M,K∗, n) �M lnK∗ + ln(Mn). (B.23)
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Therefore, it follows from (4.2) that

M−1‖Ĝ−G∗‖2
F ≤ C̃ min

L

{
L−2r +

σ2 L2γ

M n
exp

(
2αLβ

)
[LR1(K∗, n) +R2(M,K∗, n)]

}
(B.24)

where R1(K∗, n) and R2(M,K∗, n) are defined in (B.23) and C̃ depends only on µ, A, ℵ2,

C2
ψ and is independent of M ,L, n and K∗.

In order to find the minimum of the right hand side of (B.24), denote

R(L,M,K∗, n) = L−2r + σ2 (Mn)−1 exp
(
2αLβ

) [
L2γ+1R1 + L2γR2

]
(B.25)

and observe that

M−1 ‖Ĝ−G∗‖2
F ≤ C̃ min

L
R(L,M,K∗, n) = C̃ R(Lopt,M,K∗, n) (B.26)

where Lopt is the value of L minimizing the right hand side of (B.24). Denote

L1,opt = argmin
L

[L−2r + σ2 (Mn)−1 exp
(
2αLβ

)
L2γ+1R1], (B.27)

L2,opt = argmin
L

[L−2r + σ2 (Mn)−1 exp
(
2αLβ

)
L2γR2], (B.28)

and set Lopt = min(L1,opt;L2,opt). It is easy to see that since the first terms in expressions

(B.27) and (B.28) are decreasing in L while the second terms are increasing, the values L1,opt

and L2,opt are such that those terms are equal to each other up to a multiplicative constant

and, therefore, due to (B.25), one has

R(Lopt,M,K∗, n) � (Lopt)
−2r (B.29)
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Consider two cases.

Case 1: α = β = 0.

Direct calculations yield

L1,opt �
(
Mn

σ2R1

) 1
2γ+2r+1

, L2,opt �
(
Mn

σ2R2

) 1
2γ+2r

,

so that

L1,opt = min

{(
Mn

σ2K∗

) 1
2γ+2r+1

;

(
Mn

σ2 lnn

) 1
2γ+2r+1

}
,

L2,opt = min

{(
n

σ2 lnK∗

) 1
2γ+2r

;

(
Mn

σ2 ln (Mn)

) 1
2γ+2r

}

Then

Lopt = min

{(
n

σ2 lnK∗

) 1
2γ+2r

;

(
Mn

σ2 (K∗ + lnn)

) 1
2γ+2r+1

}
.

which, together with (B.26) and (B.29), yield the expression (4.6).

Case 2: α > 0, β > 0.

Minimizing expressions in (B.27) and (B.28) obtain

Li,opt �
{[

ln

(
Mn

σ2Ri

)]} 1
β

, i = 1, 2,

Taking into account that R2 > R1 and that, for large M and n, ln (Mn lnn−1) � ln (Mn),

obtain

L1,opt = min

{[
ln

(
Mn

σ2K∗

)]
;

[
ln

(
Mn

σ2 lnn

)]} 1
β

=

[
ln

(
Mn

σ2K∗

)] 1
β

.
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Similarly,

L2,opt = min

{[
ln

(
n

σ2 lnK∗

)]
;

[
ln

(
Mn

σ2 ln (Mn)

)]} 1
β

=

[
ln

(
n

σ2 lnK∗

)] 1
β

Hence

Lopt = min

{[
ln

(
n

σ2 lnK∗

)]
;

[
ln

(
Mn

σ2K∗

)]} 1
β

.

which, together with (B.26) and (B.29), yield the expression (4.7).

Proof of Theorem 5. Since the estimation error is comprised of the error due to non-

parametric estimation and to clustering, we consider two cases here.

Lower bound for the error due to clustering.

Let K be the fixed number of classes. Consider a subset Z(M,K) ⊂ M(M,K) of the set

of all clustering matrices which contain all matrices that cluster M
K

vectors into each class.

The cardinality of the set Z(M,K)

|Z(M,K)| = M !

[
(
M
K

)
!]K
≥ exp

(
M

4
lnK

)
(B.30)

by Lemma 5 in Pensky (2018) with γ = 1. Let set J be of the form J = {L1, ..., L2} where

1 ≤ L1 < L2 ≤ n. Choose Θjk = 0 if j /∈ J . In what follows, we use the packing lemma

(Lemma 4 of Pensky (2018)):

Lemma 6 (The Packing lemma). Let Z(M,K) ⊆ M(M,K) be a collection of clustering

matrices. Then, there exists a subset SM,K(r) ⊂ Z(M,K) such that for Z1,Z2 ∈ SM,K(r)

one has ‖Z1 − Z2‖H = ‖Z1 − Z2‖2
F ≥ r and ln |SM,K(r)| ≥ ln |Z(M,K)| − r ln(MKe/r).
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Apply this lemma with r = dM , 0 < d < 1/4. Then, by (B.30), derive

ln |SM,K (dM) | ≥M [lnK − 4d ln(Ke/d)]
/

4.

Use the following statement:

Lemma 7 If K ≥ 2 and d is such that

d− d ln d ≤ (ln 2)/9, (B.31)

then lnK − 4d ln(Ke/d) ≥ (lnK)/9.

It is easy to calculate that, e.g., d = 0.0147 satisfies the condition (B.31). Then, for d

obeying (B.31), one has

ln |SM,K(dM)| ≥ M

36
lnK, ‖Z1 − Z2‖H ≥ dM for any Z1,Z2 ∈ SM,K(dM), Z1 6= Z2

(B.32)

Consider a collection of binary vectors ω ∈ {0, 1}|J |. By Varshamov-Gilbert bound lemma,

there exists a subset W of those vectors such that, for any ω,ω′ ∈ W such that ω 6= ω′

one has ‖ω − ω′‖H ≥ |J |/8 and ln |W| ≥ |J | ln(2)/8. Choose a subset WK of W such that

|WK | = K. This is possible if K ≤ 2|J |/8 which equivalent to |J | ≥ 8 lnK/ ln 2. Consider a

set of vectors w ∈ {0, 1}n obtained by packing ω with zeros for components not in J . Then

WK = {w1, ...,wK ∈ {0, 1}n : ‖wi‖0 ≤ |J |, ‖wi −wj‖0 ≥ |J |/8, i 6= j} (B.33)

Define matrix W with columns wk, k = 1, ..., K. Finally, form the set GM,K of matrices G
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of the form

GM,K =
{
G ∈ RM×K : G = θWZT ,Z ∈ SM,K(dM)

}
where d satisfies (B.31) and θ > 0 depends on M ,n and K. Note that, due to (B.32), one

has

ln |GM,K | ≥ (M lnK)/36 (B.34)

Let Z1,Z2 ∈ SM,K be two clustering matrices. Set G1 = θWZT
1 G2 = θWZT

2 , so that

G1,G2 ∈ GM,K . Since for any i, i′ one has ‖wi −wi′‖0 = ‖wi −wi′‖2, derive that

‖θW (Z1 − Z2)T ‖2
F =

M∑
m=1

n∑
j=1

θ2
[(

wz1(m)

)
j
−
(
wz2(m)

)
j

]2

=

= θ2

M∑
m=1

‖wz1(m) −wz2(m)‖2 ≥ #{m : z1 (m) 6= z2 (m)} θ2|J |/8. (B.35)

On the other hand, observe that for Z1,Z2 ∈ SM,K one has

#{m : z1 (m) 6= z2 (m)} = 0.5 ‖Z1 − Z2‖H ≥ dM/2.

Therefore, the last two inequalities yield for any G1,G2 ∈ GM,K

‖G1 −G2‖2
F ≥ d θ2|J |M/16. (B.36)

Now, it is easy to calculate that for any G1,G2 ∈ GM,K and corresponding probability

measures PG1 and PG2 , one has

K (PG1 , PG2) ≤
n

2σ2C2
ψ

‖Υ−1 (G2 −G1) ‖2
F (B.37)

95



Since G1 = θWZ1, G2 = θWZ2, we obtain

‖Υ−1 (G2 −G1) ‖2
F ≤ θ2 ‖Z2 − Z1‖2

op ‖Υ−1W‖2
F (B.38)

Note that SM,K(dM) ⊂ Z(M,K), so that for any Z ∈ SM,K(dM) one has ZTZ = (M/K) IK ,

hence ‖Z‖op =
√
M/K. Then, ‖Z1 − Z2‖2

op ≤ 4M/K. Also, due to J = {L1, ..., L2} and

condition (4.3), one has

∑
j∈J

ν−2
j ≤ ℵ−2

1 |J |L
−2γ
1 exp

(
−2αLβ1

)
. (B.39)

Since ‖Υ−1W‖2
F =

∑K
k=1

∑
j∈J ν

−2
j , obtain

K (PG1 , PG2) ≤
2

ℵ2
1C

2
ψ

θ2σ−2n|J |M L−2γ
1 exp

(
−2αLβ1

)
. (B.40)

Finally, due to condition (4.13), one needs θ2
∑

j∈J(j + 1)2r ≤ A2, so that we can choose

θ2 = A2|J |−1L−2r
2 (B.41)

In order to apply Theorem 2.5 of Tsybakov (2009), we need K (PG1 , PG2) ≤ α ln |GM,K |

which, due to (B.32), is guaranteed by

θ2n|J |
σ2ℵ2

1C
2
ψ

L−2γ
1 exp

(
−2αLβ1

)
≤ lnK

648
. (B.42)

If inequality (B.42) holds, then application of Theorem 2.5 of Tsybakov (2009) with α = 1/9

yields that, with probability at least 0.1, one has Rmin(S(r,A),M,K∗) ≥ CRmin(M,K∗, n)
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where, due to (4.1) and (B.36),

Rmin(M,K∗, n) = θ2|J |. (B.43)

Now, we consider two choices of L1 and L2: L1 = L2 = L and L1 = L/2 + 1 , L2 = L leading

to the following values of θ2:

θ2 �

 L−2r, if L1 = L2 = L

L−(2r+1), if L1 = L/2 + 1, L2 = L
(B.44)

We study the cases of α = β = 0 and α > 0, β > 0 separately.

Case 1: α = 0 , β = 0, L1 = L2 = L, |J | = 1.

In this case, by (B.44), inequality (B.42) holds if L � (σ2n−1 lnK)
− 1

2r+2γ . Hence,

Rmin(M,K∗, n)
(
σ2 n−1 lnK∗

) 2r
2r+2γ . (B.45)

Case 1 (b) α = 0 , β = 0, L1 = L/2 + 1 , L2 = L, |J | = L/2.

Since L1 � L2 � |J | � L, inequality (B.42) holds if L � (σ2n−1 lnK)
− 1

2r+2γ and

Rmin(M,K∗, n)
(
σ2 n−1 lnK∗

) 2r
2r+2γ . (B.46)

Case 2: α > 0, β > 0, L1 = L2 = L, |J | = 1.

Plugging the first expression from (B.44) into (B.42), derive that L−(2γ+2r) exp
(
−2αLβ

)
σ2n−1 lnK,
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so that L �
[
ln
(

n
σ2 lnK

)] 1
β . Therefore,

Rmin(M,K∗, n)

[
ln

(
n

σ2 lnK∗

)]− 2r
β

. (B.47)

Case 2 (b) α > 0, β > 0, L1 = L/2 + 1 , L2 = L, |J | = L/2.

Plugging the second expression from (B.44) into (B.42), derive that L−(2γ+2r) exp
(
−2αLβ

)
σ2n−1 lnK.

Then, the asymptotic value of L is the same as in the Case 2(a) and

Rmin(M,K∗, n)

[
ln

(
n

σ2 lnK∗

)]− 2r
β

. (B.48)

Lower bound for the error due to estimation.

Let, as before, J = {L1, ..., L2} where 1 ≤ L1 < L2 ≤ n. Consider a set of binary vectors

ω ∈ {0, 1}|J |K and set N = |J |K. Complete vectors ω with zeros to obtain vectors w ∈

{0, 1}nK . By Varshomov Gilbert lemma, there exists a subset B of those vectors such that

for any w,w′ ∈ B such that w 6= w′ one has ‖w − w′‖H ≥ N/8 and ln |B| ≥ N ln(2)/8.

Pack vectors w into matrices W ∈ {0, 1}n×K . Denote the set of those matrices by W and

observe that

‖W1 −W2‖F ≥ N/8 for all W1,W2 ∈ W , W1 6= W2; ln |W| ≥ N/8. (B.49)

Let Z be the clustering matrix that corresponds to uniform sequential clustering, M/K
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vectors per class. Finally, form the set GM,K of matrices G of the form

GM,K =
{
G ∈ RM×K : G = θWZT , W ∈ W

}
where θ > 0 depends on M ,n and K. Then, for any G1,G2 ∈ GM,K , G1 6= G2, due to

ZTZ = (M/K) IK and (B.49), obtain

‖(G1 −G2)‖2
F = θ2‖(W1 −W2)ZT‖2

F =
θ2M

K
‖W1 −W2‖2

F ≥
θ2MN

8K
(B.50)

Now, since G1 = θW1Z and G2 = θW2Z, using formula (B.37), derive that

K (PG1 , PG2) ≤
n θ2

2σ2C2
ψ

‖Υ−1 (W2 −W1) ‖2
F ‖Z‖2

op

Recalling that ‖Z‖2
op = M/K and ‖Υ−1 (W2 −W1) ‖2

F ≤
∑K

k=1

∑
j∈J ν

−2
j , and using (B.39),

arrive at

K (PG1 , PG2) ≤
nMθ2

2σ2 ℵ2
1C

2
ψ

|J |L−2γ
1 exp

(
−2αLβ1

)
.

In order to apply Theorem 2.5 of Tsybakov (2009), we need K (PG1 , PG2) ≤ α ln |GM,K |

which, due to (B.49), is guaranteed by

θ2nM

σ2ℵ2
1C

2
ψ

L−2γ
1 exp

(
−2αLβ1

)
≤ K

36
. (B.51)

If inequality (B.51) holds, then application of Theorem 2.5 of Tsybakov (2009) with α = 1/9

yields that, with probability at least 0.1, one has Rmin(S(r,A),M,K∗) ≥ CRmin(M,K∗, n)

where, due to (4.1) and (B.36),

Rmin(M,K∗, n) = θ2|J | (B.52)
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Now, as before, we consider two choices of L1 and L2: L1 = L2 = L and L1 = L/2 + 1 ,

L2 = L leading to the values of θ2 given by (B.44). Again, we consider the cases of α = β = 0

and α > 0, β > 0 separately.

Case 3 (a) α = 0 , β = 0, L1 = L2 = L, |J | = 1.

In this case, by (B.44), inequality (B.51) holds if L � (σ2n−1M−1K)
− 1

2r+2γ . Hence,

Rmin(M,K∗, n)

(
σ2K

M n

) 2r
2r+2γ

. (B.53)

Case 3: α = 0 , β = 0, L1 = L/2 + 1 , L2 = L, |J | = L/2.

Since L1 � L2 � |J | � L, inequality (B.51) holds if L � (σ2n−1M−1K)
− 1

2r+2γ+1 and

Rmin(M,K∗, n)

(
σ2K

M n

) 2r
2r+2γ+1

. (B.54)

Case 4: α > 0, β > 0, L1 = L2 = L, |J | = 1.

Plugging the first expression from (B.44) into (B.51), derive that L−(2γ+2r) exp
(
−2αLβ

)
σ2n−1M−1K,

so that L �
[
ln
(
Mn
σ2K

)] 1
β . Therefore,

Rmin(M,K∗, n)

[
ln

(
Mn

σ2K

)]− 2r
β

(B.55)

Now, in order to obtain the expressions for the lower bounds, we find the maximum of (B.45)
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and (B.54) if α = 0 , β = 0, and of (B.47) and (B.55) if α > 0 , β > 0.

Proof of Corollary 1. First observe that expressions (4.11) are obtained directly from

(4.6) and (4.7) by setting M = K∗ = 1 since all functions belong to the same Sobolev ball

(4.12). In order to compare the upper bounds (4.6) and (4.7) obtained with clustering with

the upper bound (4.11) derived without clustering, we consider several cases.

Case 1 α = 0 , β = 0.

If K∗ = 1, then lnK∗ = 0 and

Rmin(M,K∗, n) =

(
σ2 lnn

Mn

) 2r
2r+2γ+1

<

(
σ2 lnn

n

) 2r
2γ+2r+1

.

Moreover,

R̃(n)/Rmin(M,K∗, n) = M
2r

2γ+2r+1 →∞ as M →∞ (B.56)

and clustering is asymptotically advantageous. If K∗ ≥ 2, then clustering is advantageous if

(
σ2 lnn

n

) 2r
2r+2γ+1

≥ max

{(
σ2 lnK∗

n

) 2r
2r+2γ

,

(
σ2K∗
M n

) 2r
2r+2γ+1

,

(
σ2 lnn

M n

) 2r
2r+2γ+1

}
(B.57)

Compare (σ2 n−1 lnn)
2r

2r+2γ+1 with the first term in the maximum in (B.57)

(
σ2 lnn

n

) 2r
2r+2γ+1

/(
σ2 lnK∗

n

) 2r
2r+2γ

=

[
n (lnn)2r+2γ

σ2 (lnK∗)2r+2γ+1

] 2r
(2r+2γ)(2r+2γ+1)

Consider now the ratio between (σ2 n−1 lnn)
2r

2r+2γ+1 and the second term in the maximum

in (B.57): (
σ2 lnn

n

) 2r
2r+2γ+1

/(
σ2K∗
M n

) 2r
2r+2γ+1

=

(
M lnn

K∗

) 2r
2r+2γ+1
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Finally the ratio between (σ2 lnn n−1)
2r

2r+2γ+1 and the last term in(B.57) is

(
σ2 lnn

n

) 2r
2r+2γ+1

/(
σ2 lnn

M n

) 2r
2r+2γ+1

= M
2r

2r+2γ+1

Therefore, clustering asymptotically reduces the estimation error

R̃(n)

Rmin(M,K∗, n)
→∞ if n→∞, M →∞, n (lnn)2r+2γ

σ2 (lnK∗)2r+2γ+1
→∞. (B.58)

Case 2 α > 0 , β > 0.

If K∗ = 1, then, due to the condition (4.5),

Rmin(M,K∗, n) =

[
ln

(
Mn

σ2

)]− 2r
β

�
[
ln
( n
σ2

)]− 2r
β

= R̃(n). (B.59)

If K∗ ≥ 2, then one has ln(n/ lnK∗) < 2 lnn and, since lnK∗ < lnM , also

ln(n/ lnK∗) ≥ ln(n/ lnM) � lnn− ln lnM � lnn− ln lnn � lnn.

Hence,

Rmin(M,K∗, n) =

[
ln

(
n

σ2 lnK∗

)]− 2r
β

�
[
ln
( n
σ2

)]− 2r
β

= R̃(n), (B.60)

which completes the proof.

Proof of Lemma 5. Proof of Lemma 5 is based on the following statement provided in

Gendre(1999)

Lemma 8 Gendre(1999). Let A ∈ Rp×p be a fixed matrix and ε ∼ N(0, Ip). Then, for
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any x > 0 one has

P(‖Aε‖2 ≥ Tr(ATA)) + 2
√
‖A‖2

opTr(ATA)x+ 2‖A‖2
opx) ≤ e−x (B.61)

Note that, due to 2ab ≤ a2 + b2, probability (B.61) can be re-written as

P(‖Aε‖2 ≥ 2‖A‖2
F + 3‖A‖2

opx) ≤ e−x (B.62)

Consider ‖(ΠZ,K ⊗ (WJΥS))δ‖2 where Z, J,K fixed. Note that, due to ‖ΠZ,K‖2
op = 1,

‖S‖2
op ≤ C2

ψ, ‖WJΥ‖2
op = maxj∈J ν

2
j and ‖WJΥ‖2

F = K
∑

j∈J ν
2
j , one has

‖(ΠZ,K ⊗ (WJΥS))‖2
op ≤ ‖ΠZ,K‖2

op‖WJΥ‖2
op‖S‖2

op ≤ C2
ψ max

j∈J
ν2
j (B.63)

‖(ΠZ,K ⊗ (WJΥS))δ‖2
F ≤ ‖ΠZ,K‖2

op‖WJΥ‖2
F‖S‖2

op ≤ KC2
ψ

∑
j∈J

ν2
j (B.64)

Now applying inequality (B.62) to ‖(ΠZ,K ⊗ (WJΥS))δ‖2 where δ ∼ N(0, InM), obtain for

any x > 0

P
(
‖(ΠZ,K ⊗ (WJΥS))δ‖2 ≥ 2‖(ΠZ,K ⊗ (WJΥS))‖2

F + 3‖(ΠZ,K ⊗ (WJΥS))‖2
op x
)
≤

P

(
‖(ΠZ,K ⊗ (WJΥS))δ‖2 − C2

ψ

[
2K
∑
j∈J

ν2
j + 3x max

j∈J
ν2
j

]
≥ 0

)
≤ e−x, (B.65)

setting s = τ lnn yields (B.8).
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In order to prove inequality (B.9), note that for

x(M,K, |J |, s) = M lnK + |J | ln(
ne

|J |
) + lnn+ lnM + s

due to ln
(
n
j

)
≤ j ln(ne

j
), one has

∑
Z,K,J

e−x(M,K,|J |,s) ≡
M∑
K=1

n∑
j=1

∑
|J |=j

∑
Z∈M(M,K)

e−x(M,K,j,s)

=
M∑
K=1

n∑
j=1

(
n

j

)
KMe−x(M,K,j,s)

≤
M∑
K=1

n∑
j=1

(
ne

j

)j
KMe−x(M,K,j,s) ≤ e−s (B.66)

Therefore, by (B.65) and (B.66), obtain

P
(
‖(ΠẐ,K̂ ⊗ (WĴΥS))δ‖2 − 2‖(ΠẐ,K̂ ⊗ (WĴΥS))‖2

F − 3‖(ΠẐ,K̂ ⊗ (WĴΥS))‖2
op x(M, K̂, |Ĵ |, s) ≥ 0

)
≤∑

Z,K,J

P

(
‖(ΠZ,K ⊗ (WJΥS))δ‖2 − C2

ψ

[
2K
∑
j∈J

ν2
j + 3x(M,K, |J |, s)

(
max
j∈J

ν2
j

)]
≥ 0

)
≤

∑
Z,K,J

e−x(M,K,|J |,s) ≤ e−s

setting s = τ lnn yields (B.9). �

Proof of Lemma 7. By using (B.31), K ≥ 2 and 0 < d < 1/4

lnK − 4d ln(Ke/d) = lnK − 4[d ln(K) + d− d ln d] ≥ lnK − 4d lnK − 4

9
lnK ≥ 5

9
lnK − lnK ≥ lnK

9
.

Starting from (4.19) we can expand it follows
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‖(I−WJ)ΥGΠZ,K‖2
F + ‖ΥGΠ⊥Z,K‖2

F

= ‖G‖2
F − 2〈G,ΥYΠZ〉+ ‖ΥYΠZ‖2

F + ‖ΥYΠ⊥Z‖2
F

= ‖G‖2
F − 2〈G,ΥYΠZ〉+ ‖ΥY‖2

F ; combining last two terms

= ‖G‖2
F − 2〈G,ΥYΠZ〉; last term independent from U,G, J

= ‖G‖2
F−2Tr(YTΥGΠZ); writing inner product as a trace and cyclic rearrangement inside.
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