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ABSTRACT 

Connected and automated vehicle (CAV) technologies have recently drawn an increasing attention 

from governments, vehicle manufacturers, and researchers. Connected vehicle (CV) technologies 

provide real-time information about the surrounding traffic condition (i.e., position, speed, 

acceleration) and the traffic management center’s decisions. The CV technologies improve the 

safety by increasing driver situational awareness and reducing crashes through vehicle-to-vehicle 

(V2V) and vehicle-to-infrastructure (V2I). Vehicle platooning with CV technologies is another 

key element of the future transportation systems which helps to simultaneously enhance traffic 

operations and safety. CV technologies can also further increase the efficiency and reliability of 

automated vehicles (AV) by collecting real-time traffic information through V2V and V2I. 

However, the market penetration rate (MPR) of CAVs and the higher level of automation might 

not be fully available in the foreseeable future. Hence, it is worthwhile to study the safety benefits 

of CAV technologies under different MPRs and lower level of automation. None of the studies 

focused on both traffic safety and operational benefits for these technologies including different 

roadway, traffic, and weather conditions. In this study, the effectiveness of CAV technologies (i.e., 

CV /AV/CAV/CV platooning) were evaluated in different roadway, traffic, and weather 

conditions. To be more specific, the impact of CVs in reduced visibility condition, longitudinal 

safety evaluation of CV platooning in the managed lane, lower level of AVs in arterial roadway, 

and the optimal MPRs of CAVs for both peak and off-peak period are analyzed using simulation 

techniques. Currently, CAV fleet data are not easily obtainable which is one of the primary reasons 

to deploy the simulation techniques in this study to evaluate the impacts of CAVs in the roadway. 

The car following, lane changing, and the platooning behavior of the CAV technologies were 

modeled in the C++ programming language by considering realistic car following and lane 
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changing models in PTV VISSIM. Surrogate safety assessment techniques were considered to 

evaluate the safety effectiveness of these CAV technologies, while the average travel time, average 

speed, and average delay were evaluated as traffic operational measures. Several statistical tests 

(i.e., Two sample t-test, ANOVA) and the modelling techniques (Tobit, Negative binomial, and 

Logistic regression) were conducted to evaluate the CAV effectiveness with different MPRs over 

the baseline scenario. The statistical tests and modeling results suggested that the higher the MPR 

of CAVs implemented, the higher were the safety and mobility benefits achieved for different 

roadways (i.e., freeway, expressway, arterials, managed lane), weather (i.e., clear, foggy), and 

traffic conditions (i.e., peak and off-peak period). Interestingly, from the safety and operation 

perspective, at least 30% and 20% MPR were needed to achieve both the safety and operational 

benefits of peak and off-peak period, respectively. This dissertation has major implications for 

improving transportation infrastructure by recommending optimal MPR of CAVs to achieve 

balanced mobility and safety benefits considering varying roadway, traffic, and weather condition. 
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CHAPTER ONE: INTRODUCTION 

1.1 Background 

Connected and automated vehicle (CAV) technologies have been considered as a vital strategy for 

both traffic operation and safety improvement. The combination of connected and automated 

vehicle technologies has generated high expectations regarding traffic safety by minimizing 

drivers’ errors, which is considered a major cause solely or in combination with other factors for 

more than 94% of traffic crashes (Singh, 2015; Yue et al., 2018). By leveraging vehicle-to-vehicle 

(V2V) and vehicle-to-infrastructure (V2I) communications, connected vehicle (CV), automated 

vehicle (AV), CAV, and CV platooning technologies are expected to provide cooperative 

movements and thus increase freeway/expressway traffic safety and operations (Kockelman et al., 

2016; Papadoulis et al., 2019; M. S. Rahman et al., 2019d; Rahman and Abdel-Aty, 2018).  

Nevertheless, the evaluation of their safety and operational benefits has still been a major challenge 

due to the lack of real-world CAV data. Recent studies have attempted two directions of CAV 

research to predict the effectiveness of CAV technologies: (1) real-world CAV data (2) simulation 

techniques. The former one focuses on real-world CAV data extracted from the Safety Pilot Model 

Deployment (SPMD). The latter one has focused on CAV simulation during the past few years. A 

very limited portion of the SPMD CAV test data is available to the public and was used in some 

recent studies. This is one of the primary reasons to deploy the simulation techniques in the existing 

part of the literature to evaluate the impacts of CAV fleets (Fagnant and Kockelman, 2015; Kim et 

al., 2015; Papadoulis et al., 2019). More recently, researcher has relied on simulation techniques 

which might be the only viable alternative method to evaluate the impacts of CAV and can provide 

the initial insights into the implementation of CAVs.  
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This dissertation has focused both traffic safety and operational benefits of multiple CAV 

technologies including different roadway, traffic, and weather conditions. The impact of CV in fog 

condition, longitudinal safety evaluation of CV platooning in the managed lane, lower level of 

AVs on arterials, and the optimal MPRs of CAV for both peak and off-peak periods are analyzed 

using simulation techniques. The CAV will not be available 100% in the near future. Hence, the 

market penetration rate (MPR) of CAVs are also considered due to the unavailability of CAV in 

the foreseeable future. The different roadway types including freeway, expressway, arterial, and 

the managed lane were designed, calibrated, and validated based on real-world traffic data in PTV 

VISSIM. From the modeling standpoint, capturing the effects of driving behaviors of CAV in the 

simulation software are a very challenging task (M. S. Rahman et al., 2019d). The driving behavior 

of CAVs and standard vehicles are significantly different from each other. Therefore, the 

understanding of the driving behavior of CAV technologies are essential for studying the impact 

on traffic operations and safety benefits considering different roadway, weather, and traffic 

conditions. A driving behavior model for all the CAV technologies (CV, AV, CAV, and CV 

platooning) were modeled in VISSIM using C++ programming language which overrides the 

VISSIM default driving behavior. To the best of our knowledge, this is the first study which utilizes 

different types of CAV technologies to evaluate both traffic safety and operation characteristics 

considering multiple conditions sets including roadway, weather, and traffic conditions. 

 

Both traffic safety and operational characteristics were evaluated in order to observe the CAV 

benefits in the transportation infrastructure. Surrogate safety assessment techniques were 

considered as safety indicators, while average travel time, speed, and delay were assessed as traffic 

mobility indicators. Some statistical testing and modelling were conducted to obtain the 
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significance of the safety and mobility indicators. The optimal MPRs of CAV were also quantified 

by conducting statistical modelling techniques.  

 

1.2 Objectives of the Research 

The specific objectives for the dissertation are described here: 

Objective 1. Understanding the Highway Safety Benefits of Different Approaches of Connected 

Vehicles in Reduced-Visibility Conditions 

 

The dissertation examines the effectiveness of CV technologies in adverse visibility conditions 

using microscopic traffic simulation. Under fog condition, traffic flow characteristics change 

significantly compared to the normal weather condition which might result in high crash risk. In 

order to improve safety in fog condition, this study tested CV technologies in microsimulation at 

the segment of I-4, Florida. The technologies included connected vehicles without platooning and 

connected vehicles with platooning which were applied in fog condition to reduce the crash risk 

in terms of surrogate measures of safety. The standard deviation of speed, the standard deviation 

of headway, and rear end crash risk index (RCRI) were considered as three surrogate measures of 

safety in this study. This chapter implemented CVs as a Vehicle-to-Vehicle protocol, which offers 

Dedicated Short-Range Communication (DSRC) system to acquire real-time traffic data with the 

help of microsimulation software VISSIM. The car following model was also proposed for both 

technologies with an assumption that the CVs will follow this car following behavior in fog 

condition. The impact of traffic safety and operations were evaluated under two approaches of CV 

technologies. 
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Objective 2. Longitudinal safety evaluation of connected vehicles’ platooning on expressways  

 

The main objective this task was to evaluate longitudinal safety of CV platoons by comparing the 

implementation of managed-lane CV platoons and all lanes CV platoons (with same MPR) over 

non-CV scenario. This study applied the CV concept on a congested expressway (SR408) in 

Florida to improve traffic safety. The Intelligent Driver Model (IDM) along with the platooning 

concept were used to regulate the driving behavior of CV platoons with an assumption that the 

CVs would follow this behavior in real-world. A high-level control algorithm of CVs in a 

managed-lane was proposed in order to form platoons with three joining strategies: rear join, front 

join, and cut-in joint. Results of this study provide useful insight for the management of CV MPR 

as managed-lane CV platoons based on traffic safety. 

 

Objective 3. Assessing the Safety Benefits of Arterials’ Crash Risk under Connected and 

Automated Vehicles. 

 

This section examines the safety benefit of CV and the connected vehicles lower level automation 

(CVLLA) on arterials’ using micro-simulation. Examining the lower level of automation is more 

realistic in the foreseeable future. This study considered two automated features: automated 

braking and lane keeping assistance which are available in the market. Driving behaviors of CV 

and CVLLA were proposed by considering car following models that approximate the decision 

processes of CV and CVLLA using C++ programming interface in VISSIM. The safety impact of 

both segment and intersection crash risks were quantified under various MPRs of CV and CVLLA 

based on surrogate safety assessment techniques.  
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Objective 4. Traffic Safety and Operational Benefits of Connected and Automated Vehicles on 

Expressways under varying traffic conditions 

 

This task explores the traffic safety and operational benefits of CAVs in expressway. The optimal 

market penetration rates of CAV technologies for both peak and off-peak periods are also 

recommended. The CAV applications were tested in the studied simulated network using PTV 

VISSIM 11. PTV VISSIM 11 has the new capability to model the CAV with validated driving 

behavior models based on real-word CAV data. The safety and operation performance for various 

scenarios were evaluated using different measures of effectiveness. Operational measures included 

average travel time and average delay, while the safety measures considered both time proximity 

(conflicts) based and evasive action based (jerk) surrogate measures of safety. To achieve balanced 

mobility and safety benefits from mixed traffic environment, optimal CAV market penetration 

should be determined at varying traffic conditions. 

 

1.3 Dissertation Structure 

In Chapter 2, a detailed literature review is conducted on the effectiveness of different approaches 

of CAV technologies including CV, AV, CAV, and CV platooning. In recent years, an increased 

number of studies are undertaking with detailed analysis of CAV technologies. These studies 

examine traffic safety and mobility characteristics under CAV environment using mostly the 

traffic simulation techniques.   
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Chapter 3 examines the impact of CV technologies under reduced visibility conditions. This 

research estimates traffic safety and mobility benefits under connected vehicle without platooning 

(CVWPL) and the connected vehicle with platooning condition (CVPL). The car following model 

was also proposed for both technologies with an assumption that the CVs will follow this car 

following behavior in fog condition. The model performances were evaluated under different CV 

market penetration rates (MPRs). The results showed that both CV approaches improved safety 

significantly in fog conditions as MPRs increase. The results also indicated a significant 

improvement in the traffic operation characteristics in terms of average speed. 

 

Chapter 4 presents details to evaluate the longitudinal safety evaluation of managed-lane CV 

platoons on a congested expressway. The simulation experiments are first designed, including 

deployment of both CV platoons as managed-lane and all lanes in this expressway. Then, a driving 

behavior model for CVs along with the platooning concept were used with an assumption that the 

CVs would follow this driving behavior in real-world. From our analysis, it is evident that managed 

lane CV platoons and all lanes CV platoons significantly improved the longitudinal safety in the 

studied expressway segments compared to the base condition. In terms of surrogate safety 

measures, the managed-lane CV platoons significantly outperformed all lanes CV platoons with 

the same MPR. 

 

Chapter 5 discusses the evaluation of vehicle to vehicle (V2V) and infrastructure-to-vehicle (I2V) 

communication technologies along with the automated vehicles in an arterial section. The lower 

level of automation features was considered due to the unavailability of the higher-level 

automation in the foreseeable future. Driving behavior of connected and lower level of automated 
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vehicles were modeled in the C++ programming languages. The safety impact on both segment 

and the intersection crash risk were explored through surrogate safety assessment techniques.  

 

Chapter 6 explores both safety and operational benefits of CAV with considering different market 

penetration rates and traffic condition. The optimal market penetration rates were calculated based 

on both traffic safety and operational characteristics. Tobit and negative binomial models were 

developed for traffic operation and traffic safety, respectively, to investigate the market penetration 

rate (MPR) and the traffic condition (peak, off-peak) effectiveness. 

 

Finally, Chapter 7 summarizes the dissertation and raises potential improvement for future 

applications and proposes studies in the era of CAV technologies. 
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CHAPTER TWO: LITERATURE REVIEW 

CAV technologies which have the potential to reduce traffic congestion, road crashes and vehicle 

emissions have been drawn an increasing attention recently  (Fagnant and Kockelman, 2015; 

Poczter, 2014). Most of the recent studies attempted two directions of CAV research to predict the 

effectiveness of CAV technologies: (1) real-world CAV data (2) simulation techniques. The former 

one focused on real-world CAV data extracted from the Safety Pilot Model Deployment (SPMD). 

The latter one focused on CAV simulation during the past few years. A very limited portion of the 

SPMD CAV test data is available to the public and was used in some recent studies. These studies 

have been evaluated the safety and operation benefits of CAV data using volatile measures, 

surrogate safety assessment techniques, and traffic operation characteristics. It is beyond the scope 

of this paper for exhaustive review of these studies using real-world CAV data (see (Arvin et al., 

2019; Kamrani et al., 2018, 2017, Liu and Khattak, 2018, 2016; Xie et al., 2019; Zhang and 

Khattak, 2018; Zheng and Liu, 2017) for detailed review).  

 

Despite the real-world CAV deployment data is available, CAV fleet data are not easily obtainable. 

However, the SPMD deployment data are not enough to evaluate the CAV impact on traffic safety 

and operations because of their limited scope of data. This is one of the primary reasons to deploy 

the simulation techniques in the existing part of literature to evaluate the impacts of CAV fleets 

(Fagnant and Kockelman, 2015; Kim et al., 2015; Papadoulis et al., 2019). More recently, several 

studies have relied on simulation techniques which might be the only viable alternative method to 

evaluate the impacts of CAV and can provide initial insights of the CAVs implementation. 

However, the recent attempts in CAV simulations have some limitations. The driving behaviors of 

CAV are significantly different from conventional vehicles. From the modeling standpoint, 
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capturing the effects of driving behaviors of CAV in the simulation software are very challenging 

tasks (M. S. Rahman et al., 2019d; Talebpour and Mahmassani, 2016a). Most of the previous 

studies employed the Intelligent Driver Model (IDM) to replicate the behavior of CAVs in 

simulation as the IDM has the validated car following models for CAV data (Li et al., 2016a; M. 

S. Rahman et al., 2019c; Rahman and Abdel-Aty, 2018; Talebpour et al., 2015; Talebpour and 

Mahmassani, 2016a; Wu et al., 2019a) using very limited real-world public test track. However, 

they are solely focused on the longitudinal driving behaviors (i.e., car following model) of CAV 

without considering the lateral behaviors (i.e., lane changing model). Moreover, modeling the 

interaction between CAVs and conventional vehicles are very challenging tasks which are also not 

validated in the previous studies. 

 

Florida is among the highest ranked states in the United States with regards to traffic safety 

problems resulting from adverse weather conditions, especially in fog. As an example, a fog related 

severe crash caused 5 fatalities, several injuries, and left a pileup of 70 vehicles on I-4, Polk 

County, Florida (Hassan et al., 2011). The injury and death rates (per 100 crashes) for fog-related 

crashes were found to be 3.75 and 2.25 times of the corresponding type of crashes occurring in 

normal weather conditions, respectively (Al-Ghamdi, 2007). This study has examined previous 

studies to evaluate the traffic characteristics in fog conditions. Abdel-Aty et al. (Abdel-Aty et al., 

2014) conducted a comprehensive study with an effort to examine the traffic characteristics in fog 

conditions. The study concluded that speed and headway decreased significantly under reduced 

visibility conditions. Furthermore, the standard deviation of speed and headway increased in fog 

conditions compared to the clear conditions. A more recent study by Peng et al. (Peng et al., 2017) 

identified that reduced visibility would significantly increase the standard deviation of speed and 
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headway which intensifies traffic crash risk. It was also observed that time to collision decreased 

significantly in reduced visibility conditions, which means that the crash risk would be higher 

under reduced visibility conditions. They also found that the impact of low visibility on crash risk 

was different for different vehicle types and for different lanes. The crash risk is higher for 

passenger vehicles compared to the heavy vehicles, and the inner lane (close to the median) has 

higher crash risk compared to the middle and outer lanes. Other studies also pointed out that 

headway distance was reduced in fog conditions and sometimes reduced headway would have a  

perceptual control benefit to the driver in terms of reduction in response time  under fog conditions 

(Broughton et al., 2007; Caro et al., 2009). Brooks et al. (Brooks et al., 2011) examined the effect 

of fog conditions on the lane-keeping ability using driving simulator. It was shown that lane 

keeping performances were significantly degraded by the existence of fog.  

 

There is relatively little work in the literature describing the countermeasures in reduced visibility 

conditions. The findings of the previous studies provided several recommendations as guidelines 

to improve safety in reduced visibility conditions. Based on a questionnaire survey, Hassan et al. 

(Hassan et al., 2011) suggested that changeable message signs can be a good countermeasure to 

reduce the driving speed. Pang et al. (Pang et al., 2015) used a simulation based study to examine 

the traffic safety and operation in fog conditions. The study showed that fog-related crashes were 

reduced by controlling upstream traffic flow (decreasing upstream traffic volume) and 

implementing VSL. Peng et al. (Peng et al., 2017) suggested that implementing the algorithms in 

real-time with Intelligent Transport System (ITS) measures, such as VSL and VMS, can reduce 

the crash risk in reduced visibility conditions. Speed variance would be lower with the 

implementation of VSL, which in turn decrease crash risk (Abdel-Aty et al., 2009, 2006; Lyles et 
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al., 2004; Wang et al., 2017). In terms of safety, VSL has been used during the inclement weather 

in order to decrease both the mean and the standard deviation of speed (Perrin et al., 2002; Rämä, 

1999). However, the success of the VSL application is more dependent on the compliance level. 

In the low level of compliance, the VSL might fail to improve traffic safety (Hellinga and 

Mandelzys, 2011; Lee et al., 2006; Yu and Abdel-Aty, 2014). The research by Abdel-Aty et al. 

(Abdel-Aty et al., 2009) also evaluated that the implementation of VSL might reduce the rear-end 

and lane-change crash risks at uncongested traffic conditions but not successfully reduce the crash 

risk in the congested situation. Hence, the success of the VSL is also dependent on the level of 

congestion.  

 

The new ITS technologies, CV, has been recently recognized as an auspicious approach which 

proved its potential to improve traffic safety, including mitigating crash severity and declining the 

possibility of crashes by offering vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) 

communication. The majority of the previous research was concerned about the mobility and the 

traffic operations under CV environment but did not focus on traffic safety. Fyfe and Sayed (Fyfe 

and Sayed, 2017) combined VISSIM and the Surrogate Safety Assessment Model (SSAM) with 

the application of the Cumulative Travel Time (CTT) algorithm which evaluates the safety under 

CV environment. The study showed a 40 percent reduction of rear-end conflicts’ frequency at a 

signalized intersection with the application of CV. Olia et al. (Olia et al., 2016) experimented with 

CV technologies in PARAMICS and estimated that the safety index improved up to 45% under 

CV environment. Paikari et al. (Paikari et al., 2014) also used PARAMICS which combined the 

V2V and V2I technologies and obtained higher safety and mobility enhancement on freeways 

under the CV environment. Vehicle platooning with CV technologies is another key element of 
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the future transportation systems which help us to enhance traffic operations and safety 

simultaneously. Tian et al. (Tian et al., 2016) proposed a stochastic model to evaluate the collision 

probability for the heterogeneous vehicle platoon which can deal with the inter-vehicle distance 

distribution. The results have the great potential to decrease the chain collisions and alleviate the 

severity of chain collisions in the platoon at the same time. However, until this point, no researcher 

has potentially analyzed CV technologies which are expected to decrease the crash risk in reduced 

visibility conditions. When compared to the previous studies, this study is unique in a sense that it 

reflects the fog conditions in microscopic simulation and apply CV technologies which are 

expected to improve traffic safety in reduced visibility conditions. 

 

Vehicle platooning with CV technologies is another key element of the future transportation 

systems which help us to enhance traffic operations and safety simultaneously. Recent research 

(Tian et al., 2016) proposed a stochastic model to evaluate the collision probability for the 

heterogeneous vehicle platooning which can deal with the inter-vehicle distance distribution. The 

results showed great potential in decreasing the chain collisions and alleviating the severity of 

chain collisions in the platoon at the same time. The platoon-based driving may significantly 

improve traffic safety and efficiency because a platoon has closer headways and lower speed 

variations compared to traditional traffic flow. The platoon-based cooperative driving system has 

been widely studied. However, there have not been enough studies that allocate managed-lane CV 

platoons which is highly related to CV MPR. The safety benefits of managed-lane CV platoons 

are expected to be positive because of the dissociation of conventional vehicles and CVs in the 

same lane. Most of the researches in CV technologies were related to the implementation of CV 

in all the lanes of the entire roadway with different MPRs. However, until this point, no researcher 
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has potentially analyzed the managed-lane CV platoons which are expected to decrease the crash 

risk.  

 

Moreover, CAV technologies have great potentials to reduce crash costs all over the world. Those 

technologies are expected to reduce crash risk as the majority of the crashes are owing to driver’s 

human error. However, very little research has been conducted to estimate the safety impacts of 

connected and automated vehicles on arterials. The CV technologies would inform a vehicle about 

the traffic conditions from its surrounding environment, such as a nearby vehicle’s position, speed, 

acceleration, signal status, and other traffic information through V2V and I2V communications. 

According to the National Highway Traffic Safety Administration (NHTSA), CV technologies 

will annually prevent 439,000 to 615,000 crashes with adoption of full V2V communication 

(National Highway Traffic Safety Administration, 2016; Rahman and Abdel-Aty, 2018). Yue et 

al., (Yue et al., 2018) conducted a comprehensive study with an effort to examine the exact safety 

benefits when all vehicles are equipped with these technologies. This research effort found that the 

CV technologies could lead to the reduction of light vehicle and heavy truck involved crashes by 

at least about 33% and 41%, respectively. However, the safety impact of implementing I2V 

communication has not been sufficiently explored. Li et al., (Li et al., 2016b) investigated the I2V  

communication technology along with variable speed limit strategy under adaptive cruise control 

environment. This simulation-based study indicated that I2V communication system provides 

significant safety benefits in terms of surrogate measures of safety under adaptive cruise control 

environment.  
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The CV technologies can also further increase the efficiency and reliability of automated vehicles 

by collecting real time traffic information through V2V and I2V communications. There are 

considerable amount of work in the literature describing the effectiveness of automated vehicle 

(Mirheli et al., 2018; Talebpour et al., 2017; Talebpour and Mahmassani, 2015, 2016b). Morando 

et al., (Morando et al., 2018) investigated full level of automated vehicle and found the reduction 

of the number of conflicts by 20% to 65% with the penetration rates of between 50% and 100%. 

None of the studies focus on lower level of automation features under connected vehicle 

environment which are available in the market with low penetration rates. Kockelman et al., 

(Kockelman et al., 2016) conducted a comprehensive study about the adoption of automated 

vehicles in United States based on questionnaire survey. Most respondents were interested about 

lower level automation technologies which would be the most promising for US over the next 25 

years. This research team also anticipated that, lower levels of automation technologies are 

estimated to have adoption rates of more than 90% by 2045. Hence, it is worthwhile to study the 

safety benefits of lower level automation under connected vehicle environment using V2V and 

I2V communication technologies. CAVs can also reduce the vulnerable road user crashes which 

is the most active forms of transportation (i.e., walking and bicycling) using vehicle-to-pedestrian 

(V2P) connectivity (M. S. Rahman et al., 2019a, 2019b; Rahman, 2018; Saad et al., 2019a). 

 

As mentioned earlier, the driving behavior of connected and automated vehicle are significantly 

different from conventional vehicles. From the modeling standpoint, capturing the effects of 

driving behavior of connected and automated vehicles are very challenging task. An exhaustive 

summary of earlier studies employing simulation based connected and automated vehicle 

effectiveness in transportation literature are presented in Table 1 (Fernandes and Nunes, 2010; 
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Genders and Razavi, 2016; Guériau et al., 2016; Ilgin Guler et al., 2014; Jin et al., 2014, 2013; Lee 

and Park, 2012; Letter and Elefteriadou, 2017; Li et al., 2013; Mirheli et al., 2018; Qian et al., 

2014; Rahman et al., 2018a; Rahman and Abdel-Aty, 2018; Tajalli and Hajbabaie, 2018; 

Talebpour and Mahmassani, 2016b; Wan et al., 2016; Wu et al., 2015). The information provided 

in the table includes the simulation software used, the car following behavior employed, the area 

of interest (connected vehicle/automated vehicle or both), and the measure of effectiveness. The 

following observations can be concluded from the table. From the Table 1, it is evident that most 

of the existing literature used VISSIM as their simulation platform for the connected and 

automated vehicle. However, some study used SUMO, PARAMICS, CORSIM, MOVSIM, and 

MATLAB in order to approximate the behavior of connected and automated vehicle. Those studies 

evaluated the effectiveness of connected and automated vehicle technologies considering full road 

networks of freeway and arterial section but did not focus the segments and intersections safety 

concurrently. It is also noticed that most of the studies used their default car following behavior 

except for six studies (Genders and Razavi, 2016; Guériau et al., 2016; Jin et al., 2013; Rahman et 

al., 2018a; Rahman and Abdel-Aty, 2018; Talebpour and Mahmassani, 2016b). Among these six 

studies, three of them have been used validated car following model for CAV, however no study 

considers validated lane changing model based on the real-world CAV data. It is worth noting that 

default car following behavior would not approximate the behavior of connected and automated 

vehicle in real-world. Some studies used deterministic acceleration modeling framework such as 

Intelligent Driver Model (IDM) which is considered to be more suitable to approximate the 

connected vehicle behaviors in the real world (Rahman et al., 2018a; Rahman and Abdel-Aty, 

2018; Talebpour and Mahmassani, 2016b). However, none of the studies implement the IDM 

model to simulate the connected vehicle behaviors on an arterial section. 
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Table  1 Summary of Previous Simulation Based Study for Connected and Autonomous Vehicles 

Studies 
Car Following Model 

Used 

Lane Changing 

Model Used 

Simulation 

Software Used 
Area of Interest 

Analysis 

Area 

Measure of 

Effectiveness 

Talebpour et. al, (2016) IDM 
Platooning 

algorithm 
NA 

Connected and 

Autonomous Vehicle 

Freeway Traffic Operations 

Rahman et. al, (2017) IDM VISSIM Default VISSIM Connected Vehicle Freeway Traffic Safety 

Guler et. al, (2014) NA VISSIM Default MATLAB Connected Vehicle Arterial Traffic Operations 

Rahman et. al, (2018) IDM 
Platooning 

algorithm 
VISSIM Connected Vehicle 

Freeway Traffic Safety and 

Operations 

Tajalli et. al, (2018) VISSIM Default 
MOBIL lane change 

model 
VISSIM Connected Vehicle 

Arterial Traffic Safety 

Mirheli et. al, (2018) VISSIM Default 
PARAMICS 

Default 
VISSIM Connected vehicle 

Arterial Traffic Safety and 

Operations 

Guériau et. al, (2016) IDM 
PARAMICS 

Default 
MOVSIM Connected Vehicle 

Freeway Traffic Operations and 

Safety 

Lee et. al, (2012) VISSIM Default NA VISSIM Connected Vehicle Arterial Traffic Operations 

Li et. al, (2015) VISSIM Default NA VISSIM Connected Vehicle Arterial Traffic Operations 

Fernandes et. al, (2010) Gipps-model extension Sumo Default SUMO Autonomous Vehicle Freeway Traffic Operations 

Jin et. al, (2013) Sumo Default 
Optimal driving 

behavior algorithm 
SUMO Connected Vehicle 

Arterial Traffic Operations and 

fuel consumption 

Qian et. al, (2013) Sumo Default VISSIM Default SUMO 
Connected and 

Autonomous Vehicle 

Arterial Traffic Operations 

Jin et. al, (2013) 
Optimal driving behavior 

algorithm 
CORSIM Default SUMO Connected Vehicle 

Arterial Traffic Operations and 

fuel consumption 

Wan et. al, (2016) PARAMICS Default VISSIM Default PARAMICS Connected Vehicle 
Arterial Traffic Operations and 

fuel consumption 

Genders et. al, (2015) 
Modified driving 

behavior 

Default lane 

changing model 
PARAMICS Connected Vehicle 

Arterial Traffic Safety 

Letter et.al, (2017) CORSIM Default 

Gap-acceptance 

based lane-

changing model 

CORSIM Autonomous Vehicle 

Freeway Traffic Operations 

Li et. al, (2013) VISSIM Default NA VISSIM Autonomous Vehicle 
Arterial Traffic Safety and 

Operations 
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Previous studies have shown that parameters of the default car-following model of a 

microsimulation software can be modified to model the behaviors of automated vehicle (Atkins, 

2016; Kockelman et al., 2016; Morando et al., 2018). Those studies applied fully automated 

vehicle behavior in VISSIM with changing only the parameters of default car following model 

(Wiedmann-99) but did not focused on the lane changing model. However, it is intuitive that the 

lane changing behavior of fully automated vehicle would also be significantly different from the 

conventional vehicles. Therefore, a more realistic driving behavior model is required to simulate 

the behavior of fully automated vehicles under connected vehicle environment. This study 

proposed a car following model to simulate CVLLA in simulation based on a recent study by Wen-

Xing et al., (Wen-Xing and Li-Dong, 2018) along with lane keeping assistance feature adopted in 

VISSIM which would approximate the decision processes of CVLLA. 

 

PTV VISSIM has been using Wiedemann car following model to simulate the roadway network 

under human-driven vehicles for the last three decades (VISSIM, 2017). Very few studies have 

utilized the default car-following model of VISSIM to simulate the behavior of CAV (Atkins, 2016; 

Kockelman et al., 2016; Morando et al., 2018). However, they did not consider the calibrated 

parameters of Weidmann model based on real world CAV data. Those studies tried to approximate 

CAV behavior in VISSIM without considering the lane changing model. Moreover, the interaction 

between CAV and conventional vehicles (passenger cars, trucks, etc.) were largely unknown in the 

Weidmann car following model. Recently, PTV VISSIM (version 11.0) offers validated car 

following and lane changing models with multiple additional attributes using real-world CAV data. 

To the best authors’ knowledge, this is the first application of validated CAV driving behavior 

model (both car following and lane changing) provided in the commercially available software 

using real-world CAV data. The interaction between the CAVs and conventional vehicles have also 
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been validated based on time headway. This study also utilized the real world validated driving 

behavior models to simulate CAV in simulation which would better replicate the decision 

processes of CAVs.  

 

In summary, the current study contributes to the traffic safety and mobility impacts in the CAV 

research along some directions: (1) first application of CV technologies under reduced visibility 

conditions (2) evaluate the effectiveness of managed lane CV platooning in expressway segments 

(3) application of lower automated vehicle in arterials under V2V and V2I technologies (4) first 

application of validated driving behavior model in VISSIM to approximate the CAV behavior on 

an expressway using real-word CAV data (5) evaluate the both safety and operational benefits of 

CAV for both peak and off-peak hours traffic (6) provide recommendation of the optimal market 

penetration rates of CAV for both peak and off-peak hours to achieve balanced mobility and safety 

benefits with varying traffic condition. 
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CHAPTER THREE: DIFFERENT APPROACHES OF CONNECTED VEHICLES 

IN REDUCED VISIBILTY CONDITIONS 

3.1 Introduction 

It is known that reduced visibility due to fog has caused serious traffic safety and flow issues. 

Florida had experienced a total of 4,954 fog-related crashes between the year of 2008 and 2012, 

of which 132 crashes were fatal, and about 30% of the total fog-related crashes were fatal and 

injury crashes (Peng et al., 2017). It is worth mentioning that fog-related crashes tend to result in 

more severe injuries and involve more vehicles compared to clear conditions crashes (Abdel-Aty 

et al., 2011; Hassan et al., 2012). Fog affects roadway safety by increasing crash risk. Therefore, 

it is necessary to evaluate the appropriate countermeasures to enhance traffic safety under fog 

conditions. There have already been a lot of research conducted on traffic safety under normal 

weather conditions. On the other hand, traffic safety under fog conditions has attracted much less 

attention. However, some researchers have already proposed the traditional approach of Variable 

Speed Limits (VSL) or Variable Message Signs (VMS) to decrease the crash risk in reduced 

visibility conditions (Hassan et al., 2011, 2012; Peng et al., 2017). It can possibly improve traffic 

safety and mitigate traffic crashes by adjusting vehicle speeds and decreasing speed variation 

among vehicles in reduced visibility conditions. Nevertheless, the success of VSL or VMS is 

dependent on the level of compliance. Therefore, the VSL would not guarantee the improvement 

of the traffic safety if drivers do not follow the new speed limit. 

 

An innovative feature of this study was to apply the Connected Vehicle (CV) technologies in 

adverse visibility conditions under microsimulation environment. To be more specific, this 

research aims to contribute to the implementation of two CV approaches such as connected vehicle 
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without platooning (CVWPL) and connected vehicle with platooning (CVPL) to improve the 

traffic safety in reduced visibility conditions. CVPL concept is an extension of CVWPL approach 

wherein several CVs form a “platoon” that behaves as a single unit. A car following model for 

both CV approaches was also used in fog conditions with an assumption that applied CVs would 

follow this car following behavior in the simulation. The most significant difference of CVs 

driving behavior between two approaches was joining vehicles to maintain a platoon. At the near 

future, the MPR will not achieve 100%, meanwhile, the penetration will increase gradually. Hence, 

it is worthwhile to study the safety benefits of CV technologies under different MPRs (Hellinga 

and Mandelzys, 2011; Yu and Abdel-Aty, 2014). 

 

3.2 Data Preparation 

A section of Interstate, a main arterial for the Orlando metropolitan area, was selected for this 

study. The studied section had experienced severe fog-related crashes (Hassan et al., 2012). Data 

from two different sources were collected for this study. Weather data were collected from Fog 

Monitoring System (FMS), a new visibility detection system, installed in the segment of I-4. And, 

real-time traffic data were collected from Regional Integrated Transportation Information System 

(RITIS) augmented with a device installed close to the FMS. RITIS indicates the basic traffic 

characteristics of the selected road segment, while the added device captures both regular traffic 

parameters and the headway between each vehicle on each lane. The study area along with the 

FMS and RITIS detectors is shown in Figure 1. The collected weather data contain 21 variables, 

including visibility distance, air temperature, surface moisture, dew point, wind speed, barometric 

pressure, rainfall, etc. Among these parameters, visibility distance is significant for fog conditions. 

The traffic data were collected from RITIS detectors installed in the above-mentioned areas 
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(Figure 1). The traffic dataset comprises eight important variables related to traffic flow 

characteristics, including vehicle speed, vehicle length, duration of detection, and lane assignment. 

In this study, vehicles were classified into two categories: (1) passenger car (PC) and (2) heavy 

goods vehicle (HGV). A vehicle was considered as a PC if its length is equal to or less than 7.32 

meters (24 feet).  

 

Figure 1 The study area showing Fog Monitoring System (FMS) and Regional Integrated 

Transportation Information System (RITIS). 

 

According to the weather data, the visibility distance from 6:45 am to 7:45 am on February 2, 2016 

(Tuesday) was the lowest among all days of field data collection between the observed months of 

January to May in 2016. And this hour’s maximum and minimum visibility distance were recorded 

as 88 meters and 45 meters, respectively. Referring to the traffic flow data, the data of traffic 



   

 

24 

 

volume and traffic speed in the same time period, 6:45 am to 7:45 am on February 2, were chosen 

for basic simulation model development. 

 

3.3 VISSIM Simulation Model 

A well calibrated and validated VISSIM network replicating the fog conditions was one of the 

most important parts of this study. Simulations were conducted in PTV VISSIM, version 8.0. The 

testbed was a 10-miles section of I-4 which had experienced a severe fog-related crash. The traffic 

information on the simulation network, including traffic volume (aggregated into 15 minutes), PC 

and HGV percentages, and desired speed distribution were obtained from the RITIS detectors. In 

addition to that, the “Look Ahead Distance” was changed in VISSIM driving behavior to replicate 

reduced visibility conditions based on field visibility distance. The simulation time was set from 

6:15 A.M. to 8:15 A.M in VISSIM. After excluding first 30 minutes of VISSIM warm up time and 

last 30 minutes of cool-down time (no statistics were collected during this time), 60 minutes 

VISSIM data was used for calibration and validation. Geoffrey E. Heavers (GEH) statistic was 

used to compare the field volumes with simulation volumes. The GEH statistic is a modified Chi-

square statistic that incorporates both relative and absolute differences. The definition of GEH is 

as follows, 

𝐺𝐸𝐻 = √
(𝑀𝑜𝑏𝑠(𝑛) − 𝑀𝑠𝑖𝑚(𝑛))2

0.5 × (𝑀𝑜𝑏𝑠(𝑛) + 𝑀𝑠𝑖𝑚(𝑛))
 (1) 

 

Where 𝑀𝑜𝑏𝑠(𝑛) is the observed volume of field detectors and 𝑀𝑠𝑖𝑚(𝑛) is the simulated 

volume obtained from the simulation network. The simulated volume would precisely reflect the 

field volume if more than 85% of the measurement locations GEH values are less than five (Abdel-
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Aty et al., 2017; M. H. Rahman et al., 2019; Moatz Saad et al., 2018a; Yu and Abdel-Aty, 2014). 

As for speed, the absolute speed difference between simulated speeds and field speeds should be 

within five mph for more than 85% of the checkpoints (Cai et al., 2018; Nezamuddin et al., 2011; 

Moatz Saad et al., 2018a, 2018b; Saad et al., 2019c). The simulated traffic volumes and speeds 

were aggregated to 15-minute intervals and then compared with the corresponding field traffic 

data. Ten simulation runs with different random seeds worth of results showed that 91.25% of 

observed GEHs were less than five, and 92.50% of the aggregated speeds in the simulation were 

within five mph of field speeds. The results above proved that the traffic calibration and validation 

satisfy the requirements and indicate that the network was consistent with that of the field traffic 

conditions. 

 

3.3.1 Further calibration to reflect fog conditions 

To reflect the fog conditions, there was a need to revalidate the VISSIM network with respect to 

both traffic and safety. For further validation, headway was used to validate the VISSIM network 

using two-sample t-test and the result showed that the mean simulated headway was significantly 

different from the mean field headway when all the driver behavior parameters in VISSIM were 

set as default. Previous studies considered only ‘Look Ahead Distance’ as one of the most essential 

simulation parameters in VISSIM to replicate the fog conditions (Abdelfatah et al., 2013; Zhang, 

2015). Hence, changing only the “Look Ahead Distance” in VISSIM driving behavior may not 

reflect the fog conditions. To simplify the further calibration process, a sensitivity analysis was 

conducted on VISSIM driver behavior parameters in simulation models to reflect the fog 

conditions. The ten sets of the car following parameters (CC0 to CC9) were tried and each set was 

run ten times with different random seeds. For each parameter, a range of values (9 values), which 
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includes the default, was determined based on previous studies and engineering judgment 

(Habtemichael and Picado-Santos, 2013; Lownes and Machemehl, 2006). A total of 730 

simulation runs [(1 base-models + 9×8 car-following parameters) times 10 random seeds] were 

conducted. Toward this end, the standard deviation of speed (significant traffic characteristic in 

fog condition) was selected in order to compare the field and simulated value with two-sample t-

test at 5% significance level. For each value of parameters, the results of t-test with 10 different 

random seeds proved whether the distribution of the field and simulated standard deviation of 

speed were identical or not. The sensitivity analysis results showed that three most important 

parameters were vital to reflect the fog conditions. These include CC0 (standstill distance), CC1 

(headway time), and CC2 (following variation). From the results of sensitivity analysis, the safety 

distance parameters (i.e. CC0, CC1, CC2) decreased compared to the default values in fog 

conditions. The default value of CC0, CC1, CC2 in VISSIM were 1.5 meters, 0.9 seconds, and 4 

meters whereas the calibrated values were found to be 1 meter, 0.7 seconds, and 3 meters, 

respectively. Thus, the safety distance of calibrated network has lower value compared to the 

uncalibrated network. Therefore, the safety distance between two vehicles has been reduced in fog 

conditions. For further validation, headway was again used to validate the new calibrated VISSIM 

network using two-sample t-test. After replicating the fog conditions, there were no significant 

difference between the simulated mean headway and the field mean headway. Therefore, the 

simulation network was well calibrated and validated with respect to both traffic and safety. 

 

3.4. Methodologies 

In order to assess the safety performance in fog conditions, this study tested two distinct CV 

approaches including CVWPL and CVPL on the segment of I-4. Therefore, the understanding of 
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the car following behavior of CV technologies is essential for studying the impact on traffic safety 

in fog conditions under microsimulation. A car following model for both CV approaches was used 

in fog conditions with an assumption that applied CVs would follow this car following behavior 

in the simulation. 

 

3.4.1 Car following model in fog conditions 

A car following model is a prerequisite to regulate the driving behavior of CVs in microsimulation. 

The desired model should be able to simulate user defined driving behavior significantly differing 

from the traditional ones (i.e. Wiedemann model). The basic Intelligent Driver Model (IDM) 

which was proposed by Treiber et al. (Treiber et al., 2000) has been used as machine driving by 

many researchers (Kesting et al., 2010a; Li et al., 2017a) Many researchers have already used IDM 

or modified IDM in order to simulate their own machine driving platform named Adaptive Cruise 

Control (ACC) and Cooperative Adaptive Cruise Control (CACC) (Kesting et al., 2010a, 2008; 

Khondaker and Kattan, 2015; Li et al., 2017a). The basic IDM model is a nonlinear car following 

model in which the acceleration (�̇�𝐼𝐷𝑀) is the function of desired gap distance 𝑠∗ and the speed 

difference between leading and following vehicles ∆𝑣, expressed by the following Equation 2. 

                                      �̇�𝐼𝐷𝑀(𝑡 + 𝑡𝑎) = max {𝑏𝑚, 𝑎𝑚 [1 − (
𝑣

𝑣𝑜
)

𝛿
− (

𝑠∗

𝑠
)

2

]}                                              

(2) 

                                   Where, 𝑠∗ = 𝑠0 + 𝑚𝑎𝑥 [0, 𝑣𝑇 +
𝑣∆𝑣

2√𝑎𝑚𝑏
]     

                  

where, 𝑡𝑎  = the perception-reaction time, 𝑏𝑚 = the maximum deceleration, 𝑎𝑚 = the maximum 

acceleration, 𝑣 = the speed of the following vehicle, 𝑣0 = the desired speed, 𝛿 = the acceleration 

exponent, 𝑠 = the gap distance between two vehicles, 𝑠0 = the minimum gap distance at standstill, 

𝑇 = the safe time headway, 𝑏 = the desired deceleration 
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In this study, this IDM model was used for CVs car following behavior in fog conditions. The 

parameter settings for this model were potentially determined according to previous studies 

(Kesting et al., 2010a; Li et al., 2017a; Milanés and Shladover, 2014). The desired speed (𝑣0) , 

acceleration exponent (𝛿) , maximum acceleration (𝑎𝑚), desired deceleration (𝑏), minimum gap distance 

at standstill (𝑠0) , Safe time headway (𝑇) , maximum deceleration (𝑏𝑚) , and Time delay (𝑡𝑎) were selected 

120 km/h, 4, 1 m/sec2, 2 m/sec2, 2 m, 0.6 sec, 2.8 m/sec2, and 1.5 sec, respectively. 

 

Additionally, CVs were implemented as a platooning concept (CVPL), wherein several vehicles 

form a “platoon” that behaves as a single unit. However, the IDM model was followed by CVs in 

both approaches (i.e., CVWPL and CVPL) under fog conditions. The most significant difference 

of CVs driving behavior between two approaches was joining vehicles to maintain a platoon. A 

minimum five CVs were considered to maintain a platoon in this study. Three grouping schemes 

for CVs, such as rear, front, and cut-in joins, as depicted in Figure 2 (a), were implemented to 

maintain the platoon. The rear join leads a new CV following the last vehicle of a CV group driving 

along the most adjacent lane of the joining vehicle. The front join performs the same process to 

allow a new CV to join into an existing CV group except that it leads the joining vehicle to the 

front of the first vehicle in the CV group. The cut-in join method is implemented by cooperatively 

adjusting the maneuvers of the joining vehicle and a CV in the group. As shown in Figure 2 (a), 

once the joining vehicle identifies a target CV group, it approaches the group and determines a 

proper position to be inserted based on its current driving information such as speed, position, etc. 

Then the deceleration rate of a CV in the target group is adjusted to create a safe gap for the joining 

vehicle while the leading vehicle maintains its current speed. If the safe gap is satisfied for the lane 
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change behavior of the joining vehicle, which is governed by VISSIM’s lane changing model, the 

joining vehicle begins to change the lane. 

 

We developed a high-level control algorithm architecture for CVPL approach as shown in Figure 

2 (b). It is worth mentioning that the algorithm continuously adjusted the acceleration or 

deceleration rates using the above-mentioned Equation 4 between the leading and the subject 

vehicles using two-way communications under CV environment which offers a dedicated short-

range communication (DSRC) of 300 meters (1000 feet). 

 

The aforementioned two driving behavior models were implemented as Dynamic Link Library 

(DLL) plug-in for both approaches, which overrides the VISSIM default driving behavior. This 

two DLL were written in C++ which offers VISSIM an option to replace the internal driving 

behavior. During the simulation, the DLL file is called up in each time step and then controls the 

behavior of the vehicle for all or part of the vehicles depending on the MPRs. Note that the car 

following and the lane changing behavior of non-CVs were determined by VISSIM’s default 

driving behavior model. 
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2 (a) Joining of CVs to maintain a platoon. 

 

2 (b) Control algorithm of CVs to maintain a platoon. 

Figure 2 Platooning behavior of CVs (a) Joining of CVs to maintain a platoon (b) Control 

algorithm of CVs to maintain a platoon. 
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3.5 Surrogate Measures of Safety 

Traffic crashes are rare events which involve numerous human factors along with the road 

environment and vehicle factors. A surrogate safety assessment technique should be adopted to 

measure safety as microsimulation software cannot be directly used to measure crashes or traffic 

safety. A number of previous studies used surrogate measures including speed variance, headway 

variance, time to collision, post-encroachment time, and rear-end crash risk index (Abdel-Aty et 

al., 2009; Gettman and Head, 2003; Peng et al., 2017). From the above-mentioned literature review 

the crash risk increased in fog conditions compared to normal weather conditions as the standard 

deviation of speed and headway increased significantly. Additionally, the rear-end crash is the 

significant type of crash in reduced visibility conditions (Abdel-Aty et al., 2012, 2011; Al-Ghamdi, 

2007). A rear-end crash may occur if the leading vehicle stops suddenly, and the following vehicle 

does not decelerate in time because of the low visibility. Maintaining insufficient safety distance 

between the leading and the following vehicle is the primary cause of rear-end crashes. To avoid 

the rear-end crashes, the stopping distance of the following vehicle should be smaller than the 

leading vehicle. A rear-end crash risk index (RCRI) proposed by Oh et al. (Oh et al., 2006) in 

which the dangerous condition can be mathematically expressed as: 

                                                                       𝑆𝐷𝐹 > 𝑆𝐷𝐿                                                                            (3) 

                                                             𝑆𝐷𝐿 = 𝑣𝐿 × ℎ +
𝑣𝐿

2

2×𝑎𝐿
+ 𝑙𝐿                                                              (4) 

                                                              𝑆𝐷𝐹 = 𝑣𝐹 × 𝑃𝑅𝑇 +
𝑣𝐹

2

2×𝑎𝐹
                                                                (5) 

 

Where 𝑆𝐷𝐿 and 𝑆𝐷𝐹 are the stopping distance of the leading and the following vehicles, 

respectively. 𝑙𝐿 the length of the leading vehicle, 𝑣𝐿 the speed of the leading vehicle, 𝑣𝐹 the speed 

of the following vehicle, 𝑃𝑅𝑇 is the perception-reaction time, ℎ the time headway, 𝑎𝐿 the 
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deceleration rate of the leading vehicle and 𝑎𝐹 is the deceleration rate of the following vehicle. As 

mentioned earlier, for the VISSIM model, I used two types of vehicles PC and HGV. Therefore, 

different deceleration rates were employed to estimate the reliable safe distance for the leading and 

following vehicles. The deceleration rates of PC and HGV were selected as 3.42 m/s2 and 2.42 

m/s2 respectively, while the PRT was used as 1.5 s, these values are generally accepted by 

AASHTO (American Association of State Highway and Transportation Officials (AASHTO), 

2004). So, the RCRI is defined by the following formula, 

                              RCRI= {
1 (𝐷𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠)                         𝐼𝑓 𝑆𝐷𝐹 > 𝑆𝐷𝐿 

0 (𝑠𝑎𝑓𝑒)                                              𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                          (6) 

 

In a nutshell, the standard deviation of speed, the standard deviation of headway, and RCRI were 

considered as surrogate measures of safety to evaluate the safety performances in fog conditions 

in a microsimulation platform. 

3.6 Results and Discussions 

Three surrogate measures of safety were considered to evaluate the safety performances in fog 

conditions under two CV approaches. Two sample t-test was applied to compare the differences 

between two group means and their average variations in two minutes. This technique provides a 

method for comparing the mean standard deviation of speed and headway between base scenario 

and CV scenarios. Base scenario comprised of 100% regular vehicles, and CV scenarios were 

comprised of two types of CV approaches (i.e., CVWPL and CVPL) with different MPRs. The 

Chi-square test was also applied to analyze the significance in the difference of RCRI between 

base scenario and CV scenarios. Ten simulation runs, each with a different random number of 

seeds were conducted to eliminate random effects for each scenario. 
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Table 2 illustrates the summary of two surrogate measures of safety, (i.e., standard deviation of 

speed, standard deviation of headway) with the implementation of CVWPL and CVPL techniques. 

Compared to the base scenario, the standard deviation of speed and headway decreased 

significantly in both CV approaches. Model performances were evaluated for three different 

condition sets (Base, CVWPL and CVPL) each under five different MPRs (20%, 30%, 50%, 70%, 

and 100%). To find out the safety impact of the applied technologies the mean values of the 

surrogate safety measures were compared with the base condition. In 100% MPR, the standard 

deviation of speed and the standard deviation of headway were found to be reduced by 28.49% 

and 18.68%, respectively, in CVWPL compared to base condition. On the other hand, in CVPL, 

the reductions were found to be 38.90% and 33.22%, respectively. The results revealed that the 

applied CV technologies enhanced traffic safety by decreasing the surrogate measures of safety in 

fog conditions. From Table 2 it was found that the maximum significant improvement resulted at 

100 % MPR, while the improvement below 30% MPRs was insignificant at 5% level of 

significance. 

 

For each of the 15 scenarios listed in Table 2, the mean differences of standard deviation of speed 

and standard deviation of headway were higher for CVPL than CVWPL. It was also found that the 

CVPL achieved significant reductions in the standard deviation of speed and headway compared 

to CVWPL when the MPRs were equal or greater than 50%. For instance, standard deviation of 

speed and standard deviation of headway for CVPL were 14.58% and 17.88% lower respectively 

than CVWPL at 100% MPR. Thereby, CVPL approach clearly outperformed CVWPL approach 

in terms of safety improvement. In terms of traffic operation, simulation results demonstrated 

higher speed for CVWPL and CVPL compared to the base condition. Additionally, compared to 
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CVWPL, the average speed was higher in CVPL. Hence, for both traffic safety and operation the 

CVPL approach outperformed CVWPL approach. 

Table  2 Summary of Measure of Effectiveness 

MPR Comparisons 

Speed (km/h) 

Standard deviation of speed 

in 2 mins (km/h) 

Standard deviation of 

headway in 2 mins (s) 

Mean difference 

(P-value) 

Mean difference 

(P-value) 

% 

Reduction 

Mean difference 

(P-value) 

% 

Reduction 

20% 

Base - CVWPL -0.288 (0.0322) 0.264# (0.1915) 2.78 0.139# (0.2645) 3.31 

Base- CVPL -0.398 (0.0030) 0.375# (0.0642) 3.96 0.184# (0.1371) 4.39 

CVWPL -CVPL -0.108# (0.4062) 0.111# (0.4997) 1.20 0.045# (0.6519) 1.11 

30% 

Base - CVWPL -0.570 (<0.0001) 0.597 (0.0042) 6.29 0.344 (0.0060) 8.19 

Base- CVPL -1.149 (<0.0001) 0.769 (0.0002) 8.12 0.453 (0.0003) 10.79 

CVWPL -CVPL -0.579 (<0.0001) 0.174# (0.2503) 1.96 0.109# (0.2055) 2.83 

50 % 

Base - CVWPL -1.334 (<0.0001) 0.848 (<0.0001) 8.95 0.456 (0.0002) 10.87 

Base- CVPL -2.457 (<0.0001) 1.476 (<0.0001) 15.57 0.764 (<0.0001) 18.21 

CVWPL -CVPL -1.125 (<0.0001) 0.626 (0.0005) 7.25 0.308 (<0.0001) 8.24 

70 % 

Base - CVWPL -2.395 (<0.0001) 1.745 (<0.0001) 18.41 0.584 (<0.0001) 13.92 

Base- CVPL -3.275 (<0.0001) 2.536 (<0.0001) 26.76 1.005 (<0.0001) 23.95 

CVWPL -CVPL -0.880 (<0.0001) 0.793 (<0.0001) 10.24 0.421 (<0.0001) 11.66 

100 % 

Base - CVWPL -4.897 (<0.0001) 2.700 (<0.0001) 28.49 0.784 (<0.0001) 18.68 

Base- CVPL -5.535 (<0.0001) 3.687 (<0.0001) 38.90 1.394 (<0.0001) 33.22 

CVWPL -CVPL -0.637 (<0.0001) 0.988 (<0.0001) 14.58 0.610 (<0.0001) 17.88 

#Difference is insignificant at 5% level      

 

Figure 3 shows the decreasing trend of standard deviation of speed and headway for CVWPL and 

CVPL approaches with increasing MPRs. As seen from the figure, the higher the percentage of 
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the CVs implemented, the lower were the standard deviations of speed and headway, and therefore 

the higher were the safety benefits achieved. 

 

  
 

Figure 3 Reduction of surrogate measures of safety with different MPRs. 

 

Apart from statistical significance, Figure 4(a) and 4(b) compares the profile of both the surrogate 

measures of safety under base, CVWPL and CVPL scenario in 100 % MPR. For every 2-minute 

time interval which is denoted in the x axis, the standard deviation of speed and standard deviation 

of headway (denoted in y axis) were calculated. Figure 4 (a) and 4 (b) illustrates that both CV 

approaches not only reduced the standard deviation of speed and headway but were able also to 

stabilize the profile. With lower variances in standard deviation of speed and headway these CV 

technologies are expected to decrease the crash risks. 
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(a) 

 
(b) 

 

Figure 4 Stabilize profile of surrogate measures of safety at 100% MPR. 

 

The RCRI was considered as another surrogate measure for rear-end crashes. The Chi-square test 

was applied to test the significance in differences of RCRI between base scenario and CV 

scenarios. The percentages of vehicles under potential rear-end crash risk for different scenarios 

are listed in Table 3 with the Chi-square significance test.  
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It can be seen from Table 3 that the percentages of potential rear-end crash observations were 

lower for CVWPL and CVPL than the base condition. At 100% MPR, the percentage of vehicles 

with potential rear-end crash risks were 11.55% lower in CVWPL and 14.67% lower in CVPL 

compared to the base condition.  

Table 3 Summary of Measure of Effectiveness 

MPR Classification 

Total 

observation 

Number of 

potential rear-

end crash 

observation 

Comparison 

Chi-

square 

P-value 

 

20% 

Base 10035 4161 (41.46%) Base vs CVWPL 0.780# 0.3770 

CVWPL 10034 4099 (40.85%) Base VS CVPL 3.274# 0.0704 

CVPL 10035 4035 (40.21%) CVWPL VS CVPL 0.858# 0.3544 

 

30% 

Base 10035 4161 (41.46%) Base vs CVWPL 23.487 <0.0001 

CVWPL 10037 3823 (38.12%) Base VS CVPL 39.848 <0.0001 

CVPL 10030 3725 (37.11%) CVWPL VS CVPL 2.151# 0.1425 

 

50% 

Base 10035 4161 (41.46%) Base vs CVWPL 75.775 <0.0001 

CVWPL 10035 3561 (35.49 %) Base VS CVPL 118.091 <0.0001 

CVPL 10035 3414 (34.03 %) CVWPL VS CVPL 4.704 0.0301 

 

70% 

Base 10035 4161 (41.46%) Base vs CVWPL 169.646 <0.0001 

CVWPL 10035 3270(32.59%) Base VS CVPL 264.023 <0.0001 

CVPL 10031 3055 (30.46 %) CVWPL VS CVPL 10.548 0.0012 

 

100% 

Base 10035 4161 (41.46%) Base vs CVWPL 291.941 <0.0001 

CVWPL 10040 3003 (29.91%) Base VS CVPL 480.641 <0.0001 

CVPL 10037 2689 (26.79%) CVWPL VS CVPL 24.045 <0.0001 

#Difference is insignificant on 5% level       
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Hence, the rear-end crash risk decreased with the application of CV technologies. Also, the CVPL 

approach performed better than the CVWPL approach for each MPR in terms of RCRI. It was also 

found that at least 30% MPR was needed to have significant reduction in rear-end crash risk. 

Additionally, CVPL achieved higher reductions of RCRI compared to CVWPL when the MPRs 

were equal or greater than 50%. It is worth mentioning that, the higher the MPRs implemented, 

the lower were the potential rear-end crash observations, and therefore the higher were the safety 

benefits achieved. 

 

Overall, the deployment of CVs in reduced visibility conditions would significantly decrease the 

standard deviation of speed, standard deviation of headway, and RCRI; thereby might decrease the 

probability of crashes. 

3.7 Summary 

Traffic flow characteristics deteriorate significantly in fog conditions compared to normal weather 

conditions which might result in high crash risk. In order to improve traffic safety in fog conditions, 

two CV strategies were applied in microsimulation. The strategies include connected vehicle 

without platooning and connected vehicle with platooning. A car following model for both 

approaches was used with an assumption that the CVs would follow this car following behavior in 

fog conditions. Three surrogate measures of safety including the standard deviation of speed, the 

standard deviation of headway, and RCRI were considered as safety indicators in this study. The 

safety benefits were observed under different MPRs for both approaches.  In general, both CV 

approaches improved safety in fog conditions by providing significant reductions in standard 

deviation of speed, standard deviation of headway, and RCRI. It was found that the higher the 

MPRs of CV implemented the higher were the safety benefits achieved. Maximum improvement 
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was found to be at 100% MPR. A minimum of 30% MPR was needed to observe significant safety 

benefits of the applied CV approaches compared to the base scenario. The results showed that the 

CVPL significantly outperformed CVWPL in terms of three surrogate measures of safety. It was 

also found that at least 50% MPR was needed to achieve the safety benefits for the CVPL 

compared to CVWPL. To be more specific, both approaches of CV technologies achieved 

significant safety benefits over the base scenario with at least 30% MPR. Additionally, CVPL 

achieved higher safety benefits compared to CVWPL when the MPRs were equal or greater than 

50%. From the profiles of standard deviation of speed and headway, it was found that the variances 

of these values decreased thereby providing a stabilized flow with fewer crash risk. On the other 

hand, simulation results asserted that speed was higher in both CV approaches compared to the 

base scenario. Therefore, the CV technologies not only improved traffic safety but also enhanced 

traffic operation. However, the average speed was higher in CVPL compared to CVWPL. Hence, 

taking both traffic safety and operation into consideration, the CVPL approach performed better 

than CVWPL approach.  

 

For the car following model, this study considered several parameters implemented in previous 

studies. However, the optimization of these parameters was out of the scope for this study. This 

study can be a good platform for further analysis with a combination of VSL and CV technologies. 

With this regard, V2I protocol might be useful with combination of V2V communication under 

CV environment.  

 

As a follow-up study, it may consider a full-scale field experiment. Nevertheless, the experiment 

will be limited for several reasons. First of all, this study tested the effects of CV by market 



   

 

40 

 

penetration rate (MPR) in this study. Nevertheless, the full market penetration of CVs will not be 

accomplished in the near future. Thus, it is difficult to incorporate the effective full-scale field 

experiment with V2V communication. A full-scale field experiment with a small group of 

experimental cars with V2V communication might be needed to substantiate and extend the results 

of this simulation study. That would be very important to policy makers or researchers working 

toward the implementation of CV technologies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

 

41 

 

CHAPTER FOUR: EFFECTIVENESS OF MANAGED LANE CONNECTED 

VEHICLES’ PLATTONING IN EXPRESSWAY’S 

4.1 Introduction 

Connected vehicles (CV) technologies has recently drawn an increasing attention from 

governments, vehicle manufacturers, and researchers. One of the biggest issues facing CVs 

popularization associates it with the market penetration rate (MPR). The full market penetration 

of CVs might not be accomplished recently. Therefore, traffic flow will likely be composed of a 

mixture of conventional vehicles and CVs. In this context, the study of CV MPR is worthwhile in 

the CV transition period. The overarching goal of this study was to evaluate longitudinal safety of 

CV platoons by comparing the implementation of managed-lane CV platoons and all lanes CV 

platoons (with same MPR) over non-CV scenario. This study applied the CV concept on a 

congested expressway (SR408) in Florida to improve traffic safety. The Intelligent Driver Model 

(IDM) along with the platooning concept were used to regulate the driving behavior of CV 

platoons with an assumption that the CVs would follow this behavior in real-world. A high-level 

control algorithm of CVs in a managed-lane was proposed in order to form platoons with three 

joining strategies: rear join, front join, and cut-in joint. Five surrogate safety measures, standard 

deviation of speed, time exposed time-to-collision (TET), time integrated time-to-collision (TIT), 

time exposed rear-end crash risk index (TERCRI), and sideswipe crash risk (SSCR) were utilized 

as indicators for safety evaluation. The results showed that both CV approaches (i.e., managed-

lane CV platoons, and all lanes CV platoons) significantly improved the longitudinal safety in the 

studied expressway compared to the non-CV scenario. In terms of surrogate safety measures, the 

managed-lane CV platoons significantly outperformed all lanes CV platoons with the same MPR. 

Different time-to-collision (TTC) thresholds were also tested and showed similar results on traffic 
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safety. Results of this study provide useful insight for the management of CV MPR as managed-

lane CV platoons. Figure 5 illustrates the managed-lane CV concept along with the regular 

vehicles’ lanes.  

 

Figure 5 Illustration of CV managed lane and regular vehicle lane 

 

The overarching goal of this study was to evaluate the longitudinal safety evaluation of managed-

lane CV platoons on a congested expressway. To have better understanding of managed-lane CV 

effectiveness, this study selected a congested expressway SR408 which has 17 weaving segments. 

The simulation experiments are first designed, including deployment of both CV platoons as 

managed-lane and all lanes in this expressway. Then, a driving behavior model for CVs along with 

the platooning concept were used with an assumption that the CVs would follow this driving 

behavior in real-world. Five surrogate safety measures, standard deviation of speed, time exposed 

time-to-collision (TET), time integrated time-to-collision (TIT), time exposed rear-end crash risk 

index (TERCRI), and sideswipe crash risk (SSCR) were utilized as indicators for safety evaluation. 

Sensitivity analysis were also conducted for the different time-to-collision (TTC) thresholds. 

Results of this study provide useful information for expressway safety when CVs are applied as 

managed-lane concept for the management of CV MPR in the near future. 
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4.2 Data Preparation 

A congested expressway Holland East-West Expressway (SR408) in Orlando, Florida was selected 

as a testbed for this study. The testbed was a 22-miles section of SR408 with 17 weaving segments 

from West Colonial Drive, Orlando to Challenger Parkway, Orlando. This expressway is 

monitored by Microwave Vehicle Detection System (MVDS), and almost all ramps have an 

MVDS detector to provide ramp traffic information. MVDS indicates the basic traffic 

characteristics of the selected road segment. The study area along with the MVDS detectors is 

shown in Figure 6.  

  

Figure 6 The study area showing MVDS detectors. 

 

The collected traffic dataset contains seven important variables including volume, speed, and lane 

occupancy for each lane at 1-minute interval, and also categorizes vehicles into four types 

according to their length; type 1: vehicles 0 to 3 meters in length, type 2: vehicles 3 to 7.5 meters 



   

 

44 

 

in length, type 3: vehicles 7.5 to 16.5 meters in length, type 4: vehicles over 16.5 meters in length. 

The type 3 and type 4 vehicles in MVDS data were considered to be heavy goods vehicles (HGV) 

whereas the type 1 and type 2 vehicles were passenger vehicles (PC). The traffic data were 

collected from MVDS detectors installed in the above-mentioned areas (Figure 6).  

 

4.3 VISSIM Simulation Model and Calibration 

A well calibrated and validated VISSIM network replicating the field condition is the prerequisite 

of microsimulation-based study. Simulations were conducted in PTV VISSIM, version 9.0. The 

testbed was around 22-miles section of SR 408. The traffic information on the simulation network 

including, traffic volume aggregated into 5 minutes intervals, PC and HGV percentages, and 

desired speed distribution were obtained from the MVDS detectors. The simulation time was set 

from 6:30 A.M. to 9:30 A.M in VISSIM. After excluding first 30 minutes of VISSIM warm up 

time and last 30 minutes of cool-down time, 180 minutes VISSIM data was used for calibration 

and validation. Geoffrey E. Heavers (GEH) statistic was used to compare the field volumes with 

simulation volumes. The GEH statistic is a modified Chi-square statistic that takes into account 

both the absolute difference and the percentage difference between the modelled and the observed 

flows. The definition of GEH is as follows, 

𝐺𝐸𝐻 = √
(𝑀𝑜𝑏𝑠(𝑛) − 𝑀𝑠𝑖𝑚(𝑛))2

0.5 × (𝑀𝑜𝑏𝑠(𝑛) + 𝑀𝑠𝑖𝑚(𝑛))
 (7) 

 

 

Where 𝑀𝑜𝑏𝑠(𝑛) is the observed volume from field detectors and 𝑀𝑠𝑖𝑚(𝑛) is the simulated 

volume obtained from the simulation network. The simulated volume would precisely reflect the 

field volume if more than 85% of the measurement locations GEH values are less than five (M 
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Saad et al., 2018; Wang et al., 2017; Wu et al., 2019a; Yu and Abdel-Aty, 2014). It is worth 

mentioning that, for GEH < 5, flows can be considered a good fit; for 5 < GEH < 10, flow may 

require further investigation; and for 10 < GEH, flow cannot be considered a good fit. To validate 

the simulation network, average speeds from the field and simulation have been utilized. Mean, 

minimum, and maximum values of the average speeds from in-field detectors were calculated. As 

for speed, the absolute speed difference between simulated speeds and field speeds should be 

within five mph for more than 85% of the checkpoints (Lee et al., 2018; Nezamuddin et al., 2011). 

The simulated traffic volumes and speeds were aggregated to 5-minute intervals and then 

compared with the corresponding field traffic data. Ten simulation runs with different random 

seeds worth of results showed that 93.23% of observed GEHs were less than five, and 92.92% of 

the aggregated speeds in the simulation were within five mph of field speeds. The results above 

proved that the traffic calibration and validation satisfy the requirements and indicate that the 

network was consistent with that of the field traffic conditions. 

 

Traffic safety deteriorated significantly in weaving segments compared to non-weaving segments 

which increase crash risk in weaving segments (Glad, 2001; Golob et al., 2004; Kim and Park, 

2016; Pulugurtha and Bhatt, 2010; Saad et al., 2019b; Yuan et al., 2019a). So, there was a need to 

revalidate the weaving segment VISSIM network with respect to both traffic and safety. To 

simplify the further validation process, a sensitivity analysis was conducted on VISSIM driver 

behavior parameters in simulation models to reflect the weaving segments condition. Based on the 

literature review, six parameters were chosen for VISSIM calibration and validation for weaving 

segments (Jolovic and Stevanovic, 2012; Koppula, 2002; Woody, 2006; Wu et al., 2005). They 

were DLCD (desired lane change distance), CC0 (standstill distance), CC1 (headway time), CC2 
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(following variation), waiting time per diffusion, and safety distance reduction factor. For each 

parameter, a range of values (9 values), which includes the default, was determined based on 

previous study and engineering judgment (Habtemichael and Picado-Santos, 2013). A total of 490 

simulation runs [(1 base-models + 6×8 car-following parameters) times 10 random seeds] were 

conducted. For sensitivity analysis, standard deviation of speed was calculated in 5 minutes of 

each run and compared it with the corresponding field standard deviation of speed in 5 minutes by 

two sample t-test. The sensitivity analysis results showed that three most important parameters 

were vital to reflect the safety in weaving segment. These include DLCD, CC1, and safety distance 

reduction factor. The default value of DLCD, CC1, and safety distance reduction factor in VISSIM 

were 200 meters, 0.9 seconds, and 0.60, respectively whereas the calibrated values were found to 

be 400 meters, 0.8 seconds, and 0.50, respectively. 

 

4.4 Methodology 

The overview of whole methodology is expressed in Figure 7. The CV platoon was deployed in 

the simulation experiments in a fashion of managed-lane CV platoons and the all lanes CV 

platoons with same MPR of 40%. For the managed lane simulation experiment, CV platoons were 

dedicated only in the inner lane (close to the median) and all other lanes were implemented as 

regular vehicles. While the simulation experiment for all lanes, CV platoons were implemented all 

the lanes of the expressway along with regular vehicles. To be more specific, this simulation 

experiment tested two scenarios including managed-lane CV platoons and all lanes CV platoons 

which would be compared with the base condition (non-CV scenario). All the CVs behavior are 

controlled by a car following model and the control algorithm of the CV platoons will be described 

in the next section. The outputs of the CV platoons’ behavior model were microscopic simulation 
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traffic data, such as position, speed, occupancy, time interval, vehicle length, and acceleration. 

Based on surrogate safety measures, a relation can be established between these microscopic data 

and longitudinal safety. 

                  

Figure 7 A flowchart of entire methodology. 

 

4.4.1 CV with platooning behavior model 

A car following model is a prerequisite to regulate the driving behavior of CVs in microsimulation. 

The intelligent driver model (IDM), introduced by (Treiber et al., 2000), is a non-linear car 

following model for which the acceleration (�̇�𝐼𝐷𝑀)  is calculated by the speed differences (∆𝑣) and 

the dynamic desired gap distance (𝑠∗). Most researchers used IDM as machine driving platform in 

order to simulate their own driving behavior such as adaptive cruise control (ACC) and cooperative 

adaptive cruise control (CACC) in microsimulation (Kesting et al., 2010b, 2008; Khondaker and 

Kattan, 2015; Li et al., 2017a). The acceleration (�̇�𝐼𝐷𝑀) is expressed in Equation 8. 

�̇�𝐼𝐷𝑀(𝑡 + 𝑡𝑎) = max {𝑏𝑚, 𝑎𝑚 [1 − (
𝑣

𝑣𝑜
)

𝛿

− (
𝑠∗

𝑠
)

2

]} (8) 
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𝑠∗ = 𝑠0 + 𝑚𝑎𝑥 [0, 𝑣𝑇 +
𝑣∆𝑣

2√𝑎𝑚𝑏
] 

 

where, 𝑡𝑎  = the perception-reaction time, 𝑏𝑚 = the maximum deceleration, 𝑎𝑚 = the maximum 

acceleration, 𝑣 = the speed of the following vehicle, 𝑣0 = the desired speed, 𝛿 = the acceleration 

exponent, 𝑠 = the gap distance between two vehicles, 𝑠0 = the minimum gap distance at standstill, 

𝑇 = the safe time headway, and 𝑏 = the desired deceleration 

 

All the model parameters of this IDM model were potentially determined according to previous 

studies (Kesting et al., 2010b; Li et al., 2017a, 2017b; Milanés and Shladover, 2014). The main 

reason of the selection of model parameter values based on previous research is the unavaiability 

of empirical data of CVs so that parameter calibrations are intractable. The parameters of CVs 

behavior model are presented below in Table 4. 

Table  4 Model Parameter Setting 

Model Parameters Connected Vehicle 

Desired speed, 𝑣0 120 km/h 

Acceleration exponent, 𝛿 4 

Maximum acceleration, 𝑎𝑚 1 m/sec2 

Desired deceleration, 𝑏 2 m/sec2 

Minimum gap distance at standstill, 𝑠0 2 m 

Safe time headway, 𝑇 0.6 sec 

Maximum deceleration, 𝑏𝑚 2.8 m/sec2 

Time delay, 𝑡𝑎 1.5 sec 

 

Additionally, CVs were implemented as a platooning concept (CVPL), wherein several vehicles 

form a “platoon” that behaves as a single unit. In this study, three joining schemes for CVs, such 

as rear, front, and cut-in joins were implemented to maintain the platoon. For managed- lane CV 

platoons’ scenario, platoons form in the lane dedicated for CV managed lane. While all lanes CV 
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platoons’ scenario, platoons form in any lane of the designated roadway. The joining scheme of 

CVs in CV manage-lane and all lanes CV scenarios are presented in Figures 8 and 9, respectively 

to maintain a platoon. The rear join leads a new CV from regular vehicle lane following the last 

vehicle of a CV group in a managed lane driving along the most adjacent lane of the joining vehicle 

(Figure 8). For the all lanes CV scenario, the rear join leads a new CV following the last vehicle 

of a CV group in any lane driving along the most adjacent lane of the joining vehicle (Figure 9). 

Thus, the joining process is similar between the managed-lane CV platoons and all lanes CV 

platoons. The only difference is that platooning occurs at the designated managed lane in the 

managed-lane CV platoons. While the simulation experiment for all lanes, CV platoons were 

implemented at all the lanes of the expressway along with regular vehicles.  The front join performs 

the same process as rear join to allow a new CV from regular vehicle lane to join into an existing 

CV group in CV managed lane except that it leads the joining vehicle to the front of the first vehicle 

in the CV group. The cut-in join method is implemented by cooperatively adjusting the maneuvers 

of the joining vehicle from regular lane and a CV of managed lane in the group. As shown in Figure 

8, once the joining vehicle identifies a target CV group in the CV managed lane, it approaches the 

group and determines a proper position to be inserted based on its current driving information such 

as speed, position, etc. Then the deceleration rate of a CV in the target group is adjusted to create 

a safe gap for the joining vehicle while the leading vehicle maintains its current speed. If the safe 

gap is satisfied for the lane change behavior of the joining vehicle, which is governed by VISSIM’s 

lane changing model, the joining vehicle begins to change the lane. 

 

We developed high-level control algorithm architecture for managed-lane and all lanes CV 

platoons as shown in Figures 10 and 11, respectively. The all lanes CV platoon’s scenario is almost 
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the same as the managed lane CV platoon’s scenario. The same car following model (IDM) along 

with the platooning concept were used in both scenarios to simulate the behavior of CVs. The only 

difference is that CVs were allowed to occupy all the lanes of the roadway in the all lanes CV 

platoon’s scenario. Moreover, platooning can form at any lane of the roadway in the all lanes CV 

platoon. For managed-lane CV platoon’s scenario, CVs were allowed only in the designated 

managed lane of the roadway. The platoons were also formed in the managed-lane only.  It is worth 

mentioning that the algorithm continuously adjusted the acceleration or deceleration rates using 

the above-mentioned IDM equation between the leading and the subject vehicles using dedicated 

short-range communication (DSRC) system of 300 meters (1000 feet). The main assumption is 

that all the CV vehicles will follow the control algorithm in the real-world. 

 

The driving behavior model of CV platoons for both approaches (i.e., managed-lane CV platoons, 

all lanes CV platoons) were implemented as Dynamic Link Library (DLL) plug-in, which 

overrides the VISSIM default driving behavior. The DLL were written in C++ which offers 

VISSIM an option to replace the internal driving behavior and create the V2V communication 

system. Note that the car following and the lane changing behavior of non-CVs were determined 

by VISSIM’s default driving behavior model. 
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Figure 8 Illustration of CV join to maintain a platoon in managed-lane CV scenario. 

 

Figure 9 Illustration of CV join to maintain a platoon in all lanes CV scenario. 
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Figure 10 Control algorithm of CVs to maintain a platoon in the managed-lane CV scenario. 

 

Figure 11 Control algorithm of CVs to maintain a platoon in the all lanes CV scenario. 

 

The comparison among these three scenarios (base, all lanes CV platoons’, and managed-lane CV 

platoons’ scenarios) are presented in Table 5. 
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Table  5 Comparisons among the Three Scenarios (Base, All lanes CV, Managed-lane CV). 

Attributes Base Scenario All lanes CV platoon’s 

Scenario 

Managed-lane CV 

platoon’s scenario 

Car following model Wiedemann 99 

(VISSIM Default) 

IDM model 

(Equation 1) 

IDM model 

(Equation 1) 

Parameters VISSIM default Presented in Table 4 Presented in Table 4  

Communication No communication V2V V2V 

Control method 

(Platooning) 

No platooning Platooning   

(Figures 9 and 11) 

Platooning 

(Figures 8 and 10) 

 

4.4.2 Surrogate measures of safety  

Traffic crashes are rare events which involve numerous human factors along with the road 

environment and vehicle factors. A surrogate safety assessment technique should be adopted to 

measure safety as microsimulation software cannot be directly used to measure crashes or traffic 

safety. So, the surrogate measures of safety are widely used as proxy indicators to evaluate the 

crash risk in microsimulation. A number of previous studies used surrogate measures including 

speed variance, time to collision, post-encroachment time, and rear-end crash risk index (Abdel-

Aty et al., 2009; Gettman and Head, 2003; Peng et al., 2017). In this study, four surrogate measures 

of safety were considered to evaluate the traffic safety. Standard deviation of speed was considered 

one of the surrogate measures of safety. Two surrogate measures of safety, derived from TTC and 

denoted as time exposed time-to-collision (TET) and time integrated time-to-collision (TIT), are 

utilized to establish relation between microscopic traffic data and longitudinal safety of CVs. 

 

The TTC is firstly introduced by (Hayward, 1972), referring to the time that remains until a 

collision between the leading and following vehicles will occur if the speed difference is 

maintained. To be more specific, the TTC represents the time required for two successive vehicles, 
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occupying the same lane, to collide if they continue at their present speed when vehicle n moves 

faster than the preceding vehicle (n-1). The TTC notion can be expressed as Equation 9: 

                                 𝑇𝑇𝐶𝑛(𝑡) = {

𝑥𝑛−1(𝑡)−𝑥𝑛(𝑡)−𝐿𝑛−1

𝑣𝑛(𝑡)−𝑣𝑛−1(𝑡)
, 𝑖𝑓 𝑣𝑛(𝑡) > 𝑣𝑛−1(𝑡)

∞, 𝑖𝑓 𝑣𝑛(𝑡) ≤ 𝑣𝑛−1(𝑡)
                                               (9) 

 

where 𝑇𝑇𝐶𝑛(𝑡) = the TTC value of vehicle n at time t, 𝑥 = the positions of vehicles, 𝑣= 

the velocities of vehicles, 𝐿𝑛−1= Length of preceding vehicles. 

 

Furthermore, two types of TTC are usually utilized in traffic safety analysis: TTC1 and TTC2. 

TTC1 assumes the preceding vehicle maintains its speed, while TTC2 describes situations when 

the preceding vehicle stops suddenly, which is also called TTC at braking (Peng et al., 2017; Wu 

et al., 2019b).  During the simulation, traffic data was collected at eighteen detectors in the VISSIM 

network, and few small TTC1 was observed during the simulation. Thus, TTC at braking (TTC2) 

is employed in this study to evaluate traffic safety in different situations. In this study, the 

definition of the TTC at braking ( 𝑇𝑇𝐶𝑏𝑟𝑎𝑘𝑒 ) is as follows (Peng et al., 2017): 

𝑇𝑇𝐶𝑏𝑟𝑎𝑘𝑒(𝑡) =
𝑥𝑛−1(𝑡) − 𝑥𝑛(𝑡) − 𝐿𝑛−1

𝑣𝑛(𝑡)
 (10) 

 

The smaller 𝑇𝑇𝐶𝑏𝑟𝑎𝑘𝑒 value indicates the lager risk at a certain time instant. The TET and TIT, two 

aggregate indictors developed by (Minderhoud and Bovy, 2001), are potentially used in this study 

as surrogate safety measures. The TET refers to the total time spent under dangerous traffic 

conditions, determined by 𝑇𝑇𝐶𝑏𝑟𝑎𝑘𝑒 value below the threshold value of TTC (TTC*). 

𝑇𝐸𝑇 (𝑡) = ∑ 𝛿𝑡 × 𝛥𝑡,   

𝑁

𝑛=1

𝛿𝑡 = {
1, 0 < 𝑇𝑇𝐶𝑏𝑟𝑎𝑘𝑒(𝑡) ≤ 𝑇𝑇𝐶∗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (11) 
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𝑇𝐸𝑇 = ∑ 𝑇𝐸𝑇(𝑡)

𝑇𝑖𝑚𝑒

𝑡=1

 (12) 

 

where t = the time ID, n = the vehicle ID, N = the total number of vehicles, δ = the switching 

variable, ∆t = the time step, which was 0.1 s in simulation, Time = the simulation period, and TTC* 

= the threshold of TTC. The TTC* is used to differentiate the unsafe car following conditions from 

ones considered safe. According to previous studies, the values of TTC* varies from 1 to 3 s (Li 

et al., 2016a, 2014; Sultan et al., 2002). 

 

The TIT notion refers to the entity of the 𝑇𝑇𝐶𝑏𝑟𝑎𝑘𝑒 lower than the threshold. The reciprocal 

transformation was made considering that a lower TTC means a higher collision risk: 

𝑇𝐼𝑇(𝑡) = ∑ [
1

𝑇𝑇𝐶𝑏𝑟𝑎𝑘𝑒(𝑡)
−

1

𝑇𝑇𝐶∗
]

𝑁

𝑛=1

. 𝛥𝑡, 0 < 𝑇𝑇𝐶𝑏𝑟𝑎𝑘𝑒(𝑡) ≤ 𝑇𝑇𝐶∗ (13) 

𝑇𝐼𝑇 = ∑ 𝑇𝐼𝑇(𝑡)

𝑇𝑖𝑚𝑒

𝑡=1

 (14) 

 

Additionally, rear end crashes are the most common type of crashes in any roadway. A rear-end 

crash may occur if the leading vehicle stops suddenly, and the following vehicle does not 

decelerate in time. So, maintaining insufficient safety distance between the leading and the 

following vehicle is the primary cause of rear-end crashes. To avoid the rear-end crashes, the 

stopping distance of the following vehicle should be smaller than the leading vehicle. A rear-end 

crash risk index (RCRI) proposed by Oh et al. (Oh et al., 2006) in which the dangerous condition 

can be mathematically expressed as: 

𝑆𝐷𝐹 > 𝑆𝐷𝐿 (15) 
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𝑆𝐷𝐿 = 𝑣𝐿 × ℎ +
𝑣𝐿

2

2 × 𝑎𝐿
+ 𝑙𝐿 (16) 

𝑆𝐷𝐹 = 𝑣𝐹 × 𝑃𝑅𝑇 +
𝑣𝐹

2

2 × 𝑎𝐹
 (17) 

 

Where 𝑆𝐷𝐿 and 𝑆𝐷𝐹 are the stopping distance of the leading and the following vehicles, 

respectively. 𝑙𝐿 the length of the leading vehicle, 𝑣𝐿 the speed of the leading vehicle, 𝑣𝐹 the speed 

of the following vehicle, 𝑃𝑅𝑇 is the perception-reaction time, ℎ the time headway, 𝑎𝐿 the 

deceleration rate of the leading vehicle and 𝑎𝐹 is the deceleration rate of the following vehicle. As 

mentioned earlier, for the VISSIM model, we used two types of vehicles PC and HGV. Therefore, 

different deceleration rates were employed to estimate the reliable safe distance for the leading and 

following vehicles. The deceleration rates of PC and HGV were selected as 3.42 m/s2 and 2.42 

m/s2 respectively, while the PRT was used as 1.5 s, these values are generally accepted by 

AASHTO (American Association of State Highway and Transportation Officials (AASHTO), 

2004). I proposed one surrogate measures of safety, derived from RCRI and denoted as time 

exposed rear-end crash risk index (TERCRI). 

𝑇𝐸𝑅𝐶𝑅𝐼 (𝑡) = ∑ 𝑅𝐶𝑅𝐼𝑛(𝑡) × 𝛥𝑡,   

𝑁

𝑛=1

𝑅𝐶𝑅𝐼𝑛 (𝑡) = {
1, 𝑆𝐷𝐹 > 𝑆𝐷𝐿
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (18) 

𝑇𝐸𝑅𝐶𝑅𝐼 = ∑ 𝑇𝐸𝑅𝐶𝑅𝐼(𝑡)

𝑇𝑖𝑚𝑒

𝑡=1

 (19) 

 

Moreover, the rear-end crash type is not the only crash type on expressways. Sideswipe crashes 

are another type of frequent crashes on expressways. It is worth mentioning that the most common 

way of a sideswipe crash occurs during the lane changing maneuver. However, it can also happen 

in a lane changing maneuver on ramps. Therefore, the lane changing conflict can be a surrogate 
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measure of the sideswipe crash risk (SSCR). It is difficult to find out the surrogate measures of 

sideswipe crashes analytically. Therefore, the Surrogate Safety Assessment Model (SSAM), 

developed by the Federal Highway Administration, was applied to analyze the lane changing 

conflict which can be related to the surrogate measures of the sideswipe crashes. The experimental 

VISSIM model generated several groups of traffic trajectory data files. The vehicle conflicts’ data 

were stored in these trajectory data files which, contains the conflict locations’ coordinates, 

conflict time, time-to-conflict, and post-encroachment-time among other measures. Hence, the 

SSAM was applied to analyze these conflict data in order to compare the SSCR among the three 

scenarios. 

 

In a nutshell, the standard deviation of speed, TET, TIT, and TERCRI were considered as surrogate 

measures of safety in order to evaluate the longitudinal safety of managed-lane CV platoons. 

 

4.5 Results and Discussion 

Five surrogate measures of safety were considered to evaluate the safety performances of 

managed-lane CV platoons in an expressway. To have a better understanding, this particular study 

introduced CV platoons in all the lanes and only in a managed-lane on the expressway with similar 

MPR. These two CV scenarios were compared with the base scenario (non-CV scenario) in order 

to observe the effectiveness of CV platoons. As mentioned earlier standard deviation of speed, 

TET, TIT, TERCRI, and SSCR are the five surrogate measures of safety considered in this study. 

Each scenario (base scenario, all lanes CV platoons, and managed-lane CV platoons) was 

repeatedly simulated for 20 times in order to consider random effects of simulation and the 

preliminary results are shown in Figure 12. The TTC threshold was considered 2 seconds for the 
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preliminary analysis and then a sensitivity analysis is conducted for different TTC thresholds from 

1 to 3 seconds. 

 

As shown in Figure 12, the distribution of standard deviation of speed, TET, TIT, TERCRI, and 

SSCR of each scenario approximately followed the normal distribution because of the random 

effect of simulation. However, the magnitudes (minimum value, maximum value) were 

significantly different for each scenario. The values (minimum, maximum) of standard deviation 

of speed, TET, TIT, TERCRI, and SSCR of base scenario were found to be ranged between [12, 

16], [4400, 4725], [2175, 2475], [2700, 2925], and [1212, 1310] respectively.  

 

While the five indicators of all lanes CV platoons’ scenario were within approximately [12, 14], 

[3485, 3725], [1725, 1970], [2125, 2375], and [712, 787] respectively and the scenario with 

managed-lane CV platoons were within approximately [10.75, 11.5], [3250, 3450], [1600, 1775], 

[1910, 2060], and [538, 612] respectively. The larger values of each surrogate safety indicator 

imply the more dangerous situations. Hence, there are the higher longitudinal crash risks in base 

scenario compared to managed-lane CV platoons and all lane CV platoons. Among the three 

scenarios, all five indicators had the lowest values for managed-lane CV platoons representing a 

safer situation. 
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Figure 12 Standard deviation of speed, TET, TIT, TERCRI, and SSCR distribution with different 

scenarios. 

 

The descriptive statistics of standard deviation of speed, TET, TIT, TERCRI, and SSCR in three 

scenarios are presented in Table 6. The non-CV scenario has the largest mean value of each 
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standard deviation of speed (14.26), TET (4569.45), TIT (2333.05), TERCRI (2807.40), and SSCR 

(1263.80) followed by the all lanes CV platoons with 12.91 of standard deviation of speed, 3601.15 

of TET, 1857.90 of TIT, 2249.00 of TERCRI, and 751.30 of SSCR, respectively.  

Table  6 Summary Statistics of Standard Deviation of Speed, TET, TIT, TERCRI, and SSCR. 

Scenarios Measures Number 

of Runs 

Minimum Maximum Mean Standard 

Deviation 

Base SD of speed (Km/h) 

TET (s) 

TIT (s) 

TERCRI (s) 

SSCR 

20 

20 

20 

20 

20 

13.04 

4482 

2258 

2734 

1212 

15.83 

4692 

2440 

2881 

1310 

14.26 

4569.45 

2333.05 

2807.40 

1263.80 

0.80 

55.10 

50.28 

37.51 

25.56 

All lane CV SD of speed (Km/h) 

TET (s) 

TIT (s) 

TERCRI (s) 

SSCR 

20 

20 

20 

20 

20 

11.98 

3512 

1801 

2103 

712 

 

13.56 

3675 

1934 

2301 

787 

12.91 

3601.15 

1857.90 

2249.00 

751.30 

0.36 

38.16 

39.97 

42.99 

19.41 

CV managed 

lane  

SD of speed (Km/h) 

TET (s) 

TIT (s) 

TERCRI (s) 

SSCR 

20 

20 

20 

20 

20 

10.83 

3307 

1645 

1947 

538 

11.32 

3417 

1756 

2036 

612 

11.12 

3345.60 

1688.10 

1984.25 

564.95 

0.14 

32.88 

29.31 

24.77 

22.37 

 *SD of speed=standard deviation of speed 

 

The mean value of five surrogate indicators of managed-lane CV platoons were lowest with mean 

standard deviation of speed (11.12), TET (3345.60), TIT (1688.10), TERCRI (1984.25), and SSCR 
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(564.95), respectively. Therefore, the scenario with managed-lane CV platoons has the lowest 

longitudinal crash risks compared to all lane’s CV platoon, while the scenario with base condition 

has the highest crash risk. 

 

The One-way ANOVA analysis are also presented in Table 7 which indicates significant 

differences among these three scenarios and infer that managed-lane CV platoons significantly 

outperformed all lane CV platoon. 

Table  7 One-way ANOVA Analysis of Standard Deviation of Speed, TET, TIT, TERCRI, 

and SSCR. 

Measures Attribute Sum of 

squares 

DF Mean 

Squares 

F-value Significance 

Standard 

deviation 

of Speed 

(km/h) 

Between Groups 

Within Groups 

Total 

99.32 

15.03 

114.35 

2 

57 

59 

49.66 

0.26 

188.33 <0.0001 

TET (s)  Between Groups 

Within Groups 

Total 

16671463.43 

105898.30 

16777361.73 

2 

57 

59 

8335731.72 

1857.86 

4486.73 <0.0001 

TIT (s) Between Groups 

Within Groups 

Total 

4470400.43 

94714.55 

4565114.98 

2 

57 

59 

2235200.22 

1661.66 

1345.16 <0.0001 

TERCRI 

(s) 

Between Groups 

Within Groups 

Total 

7063193.63 

73514.55 

7136708.18 

2 

57 

59 

3531596.82 

1289.73 

2738.25 <0.0001 

SSCR Between Groups 

Within Groups 

Total 

5238492.63 

29084.35 

5267576.98 

2 

57 

59 

2619246.32 

510.25 

5133.24 <0.0001 

 

A heat map is also represented in Figure 13 which shows the effectiveness of managed-lane CV 

platoons and all lanes CV platoon over non-CV scenario. Managed-lane CV platoons has the 

highest safety improvement in terms of five surrogate measures of safety presented in heat map. 
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In managed-lane CV platoons’ scenario, the values of standard deviation of speed, TET, TIT, 

TERCRI, and SSCR were lowest with lighter color in heat map.  

 

  

  

 
 

Figure 13 Heat map of surrogate measures of safety. 
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On the other hand, the values of five surrogate measures of safety were largest representing higher 

crash risk in non-CV scenario with darker color. In all lanes CV platoons’ scenario, the values of 

aforementioned surrogate measures of safety are smaller than base scenario but larger than the 

managed-lane CV platoons’ scenario. From the above discussion, it is inferred that managed-lane 

CV platoons clearly outperformed the all lanes CV platoons in terms of surrogate measures of 

safety. 

Table  8 Sensitivity Analysis of Different Values of TTC Threshold 

TTC* (s) 

Scenarios Base condition 

Scenario 1 

(All lane CV) 

Scenario 2 

(Managed-lane CV) 

Measures TET TIT TET TIT TET TIT 

1.0 Average value 2238 674 1765 539 1602 497 

Changing proportion - - 21% 20% 28% 26% 

1.5 Average value 3634 1654 2921 1326 2647 1182 

Changing proportion - - 19% 19% 27% 29%  

2.0 Average value 4569 2333 3601 1858 3346 1688 

Changing proportion - - 21% 20% 27% 28% 

2.5 Average value 5290 2824 4222 2251 3820 2045 

Changing proportion   20% 20% 28% 28% 

3.0 Average value 5889 3205 4634 2554 4227 2313 

Changing proportion - - 21% 20% 28% 28% 

 

The above results of TET and TIT are mainly based on the same parameter setting of TTC threshold 

is 2 s. Sensitivity analysis of TTC thresholds were also conducted. The various values TTC 

threshold do not affect the results of simulations. The five values of TTC threshold ranging from 

1 to 3 seconds have almost same results which is presented in Table 8. Compared with base 

scenario, all the reductions of TIT and TET values maintain within 19% to 21% for all lanes CV 



   

 

64 

 

platoons with different values of TTC threshold. And the TIT and TET values are all reduced within 

26% to 28% of managed-lane CV platoons compared with that of base condition. 

 

Overall, the deployment of CV platoon of all lanes and managed lane in studied congested 

expressway would significantly decrease the standard deviation of speed, TET, TIT, TERCRI, and 

SSCR; thereby might decrease the probability of crashes. Moreover, it is clearly seen that 

managed- lane CV platoons significantly outperformed all lanes CV platoons with same MPR. 

 

4.6 Summary 

The primary objective of this study was to evaluate longitudinal safety of managed-lane CV 

platoons on expressways based on simulation results. The simulation experiments were designed, 

by deploying managed-lane CV platoons and all lanes CV platoons on a congested expressway. 

Then, a vehicle behavior model for CV platoon was used based on the IDM model and five 

surrogate safety measures, standard deviation of speed, TET, TIT, TERCRI, and SSCR were 

measured as safety indicators. Sensitivity analysis were also conducted for different TTC 

thresholds to compare the results among the three scenarios. 

 

The distribution of five surrogate measures of safety approximately follow the normal distribution 

because of the stochastic nature of simulation. The values of standard deviation of speed, TET, 

TIT, TERCRI, and SSCR were largest for the base (non-CV) scenario. The results showed that 

both CV platoons scenarios improved safety significantly over non-CV scenario. However, the 

surrogate safety measures were smaller in managed lane CV platoons compared to all lanes CV 

platoons. Hence, traffic stream with managed-lane CV platoons has lower longitudinal crash risks 
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compared to all lanes CV platoons. One-way ANOVA analysis showed significant differences 

among the three tested scenarios and inferred that managed-lane CV platoons significantly 

outperformed all lanes CV platoons. And, the results of sensitivity analysis indicated that the TTC 

threshold ranging from 1 to 3 seconds have almost the same results. Hence, the different TTC 

thresholds did not affect the simulation results. 

 

From our analysis, it is evident that managed lane CV platoons and all lanes CV platoons 

significantly improved the longitudinal safety in the studied expressway segments compared to the 

base condition. In terms of surrogate safety measures, the managed-lane CV platoons significantly 

outperformed all lanes CV platoons with the same MPR. The study is not without limitations. In 

our research effort, we considered several IDM parameters that were implemented in previous 

studies. The parameters should be calibrated based on the empirical data of CVs which are 

unavailable, thus parameter calibrations are currently intractable. However, the optimization of 

these parameters was out of the scope for this study. This study can be a good platform for further 

analysis with a combination of variable speed limit, ramp metering, and CV technologies in any 

congested expressway.   
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CHAPTER FIVE: SAFETY BENEFITS OF ARTERIALS’ CRASH RISK 

UNDER CONNECTED AND AUTOMATED VEHICLES 

5.1 Introduction 

Connected and automated vehicles are the most recent development of information and 

communication technologies that can significantly improve the safety and efficiency of the 

transportation road network. In general, connected vehicle (CV) technologies utilize two main 

types of communications (1) vehicle-to-vehicle (V2V), and (2) infrastructure-to-vehicle (I2V) 

through various possible ways, mostly dedicated short-range communication system (DSRC). 

With reliable connectivity of V2V communication, each CV would receive information about other 

CVs’ statuses (i.e., position, speed, acceleration, etc.). On the other hand, CV would receive 

information from I2V such as signal status, signal timing, etc. With the advent of V2V and I2V 

communications along with automated driving features, traffic safety and efficiency are expected 

to improve significantly in the transportation road network. The combination of connected and 

automated vehicle technologies are capable to minimize drivers’ errors, which is considered a 

major cause solely or in combination with other factors for more than 94% of traffic crashes (Singh, 

2015; Yue et al., 2018). The driving environment and associated driver-vehicle behaviors are 

expected to change with the introduction of connected and automated vehicles. At the operational 

level, these technologies are intended to help drivers and vehicles make safe and reliable decisions 

about acceleration choice, lane keeping assistance, and lane changing decisions etc.  

 

Automated vehicles are expected to decrease crash risk on urban arterial roads under connected 

vehicle environment with the adoption of both V2V and I2V communication technologies. This 

study considered two automated features (1) automated braking and (2) lane keeping assistance 
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which are currently available in many vehicles in the market. Examining lower level of automation 

is feasible since it will be the most realistic in the context of connected and automated vehicles in 

the foreseeable future. To be more specific, this research aims to contribute to the safety literature 

by evaluating connected vehicle (CV) and connected vehicle lower level automation (CVLLA) to 

improve the traffic safety of both segments and intersections on an arterial section through VISSIM 

microsimulation. To the best of our knowledge, this is the first study which utilizes lower level of 

automation under connected vehicle environment to reduce the crash risk of both segments and 

the intersections on arterials. However, the realistic driving behavior models are prerequisite to 

approximate the decision processes of these technologies. Towards this end, the Intelligent Driver 

Model (IDM) (Kesting et al., 2008) was applied to model the CV behavior while the modified 

Bando’s model (Wen-Xing and Li-Dong, 2018) along with lane keeping assistance was developed 

to model the CVLLA behavior through C++ programming language in microsimulation. In the 

immediate future, the MPRs will not achieve 100%, meanwhile, the penetration will increase 

gradually. Hence, it is worthwhile to study the safety benefits of CV and CVLLA technologies 

under different MPRs. 

 

5.2 Simulation Test Bed and Data 

Alafaya Trail is an arterial near the University of Central Florida, Orlando, Florida, was selected 

as the testbed. This testbed is approximately 3.8 miles in length and includes nine signalized 

intersections. The testbed is often heavily congested because of the presence of the University of 

Central Florida, which is one of the largest universities in the United States, in terms of 

undergraduate enrollment. The simulation model used in this study was VISSIM Version 10.0. The 

study period spans 2 hours of the A.M. peak, from 7:00 A.M. to 9:00 A.M. on October 11, 2017, 
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and the field traffic data (i.e. flow) was aggregated into 15-minute traffic counts. Speed and travel 

time data were also collected on the same day which were used for the calibration and the 

validation of the VISSIM baseline simulation model. Traffic counts, speed, and travel time data 

were collected from Bluetooth detectors. Moreover, further traffic information for building the 

simulation network including passenger car (PC) and heavy goods vehicle (HGV) percentages, 

and desired speed distribution were also calculated for the input of the VISSIM model. The signal 

timing for the nine signals in the simulation network were also coded in VISSIM from the signal 

timing data obtained from the county. The simulation time was set from 6:30 A.M. to 9:30 A.M in 

VISSIM. After excluding first 30 minutes of VISSIM warm up time and last 30 minutes of cool-

down time (no statistics were collected during this time), 120 minutes VISSIM data was used for 

model calibration and validation. 

 

5.2.1 Model Calibration and Validation 

The most important part of any simulation model is calibrating the model by defining or fine-

tuning the values of the parameters so that the difference between observed and simulated traffic 

measurement (i.e., traffic counts, speed, travel time, etc.) is minimum (Duell et al., 2016; FHWA, 

2012; Gong et al., 2019; Hadi et al., 2016, 2015; Luo and Joshua, 2011; Pravinvongvuth and 

Loudon, 2011; Shafiei et al., 2017; Tokishi and Chiu, 2013; Ziliaskopoulos et al., 2004; Zitzow et 

al., 2015). In this regard, calibration criteria are formulated by the general optimization framework 

as follows. 

min 𝑓(𝑀𝑜𝑏𝑠, 𝑀𝑠𝑖𝑚)  (20) 

Which is subjected to the constraints: 

𝑙𝜃𝑖
≤ 𝜃𝑖 ≤ 𝑢𝜃𝑖

,   𝑖 = 1,2, … , 𝑛 (21) 

Where, 



   

 

69 

 

𝜃𝑖=the vectors of continuous variable (i.e. model parameters to be calibrated) 

𝑓(. ) =Objective function (or fitness function). 

𝑀𝑜𝑏𝑠, 𝑀𝑠𝑖𝑚=Observed and simulated traffic measurements. 

𝑙𝜃𝑖
, 𝑢𝜃𝑖

=the respective lower and upper bounds of model parameter  

n = number of parameters. 

In this study, we used mean absolute normalized error (MANE) as objective function (fitness 

function) using both traffic counts and speeds. The specification of minimizing MANE is given as 

follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑀𝐴𝑁𝐸(𝑞, 𝑣) =
1

𝑁
∑

(|𝑞𝑜𝑏𝑠𝑗
− 𝑞𝑠𝑖𝑚𝑗

|)

𝑞𝑜𝑏𝑠𝑗

𝑁

𝑗=1

+
(|𝑣𝑜𝑏𝑠𝑗

− 𝑣𝑠𝑖𝑚𝑗
|)

𝑣𝑜𝑏𝑠𝑗

 (22) 

𝑞𝑜𝑏𝑠𝑗
, 𝑣𝑜𝑏𝑠𝑗

=actual traffic counts and speed for a given time interval j. 

𝑞𝑠𝑖𝑚𝑗
, 𝑣𝑠𝑖𝑚𝑗

=simulated traffic counts and speed for a given time interval j. 

𝑁 =total number of observations. 

 

VISSIM uses two car following models developed by Rainer Wiedemann named Wiedmann-74 

and Wiedmann-99, which captures psychophysical driver behavior model (Brackstone and 

McDonald, 1999). The former one (Wiedemann-74) is suitable for urban traffic while the latter 

one (Wiedmann-99) is designed for freeway segments. The base calibration parameters for 

VISSIM that have been considered in this research are the driver behavior parameters of 

Wiedmann-74 as the test bed was selected on an arterial section. Wiedmann-74 model includes 

both car following and lane changing parameters in VISSIM. The parameters are shown in Table 

2 with minimum and maximum allowable values that are selected in the calibration procedure 

which was determined based on previous studies (Cai et al., 2018; Kim et al., 2005; Rahman et al., 
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2018a; Rahman and Abdel-Aty, 2018; Moatz Saad et al., 2018b). A sensitivity analysis was 

conducted on VISSIM driver behavior parameters based on their allowable minimum and 

maximum values in the simulation model. For each parameter, a range of values between the 

minimum and maximum (include default value) were chosen to run the VISSIM model and the 

corresponding values of the objective function MANE were calculated. It is worth mentioning that 

each parameter value was run ten times with different random seeds and averaged to calculate the 

simulated traffic measurement which captures the random effects of the simulation. For each 

parameter, the minimum value of MANE is the corresponding calibrated value for that parameter. 

The calibrated values of the selected parameter such as average standstill distance, additive part of 

desired safety distance, multiplicative part of desired safety distance, and lane change distance 

were found to be 2.5 meters, 3, 4, and 150 meters, respectively, whereas the VISSIM default values 

were 2 meters, 2, 3, and 200 meters, respectively (see Table 9).  

Table  9 VISSIM Calibration Parameters  

Parameters Unit Default value 

 

Allowable value Calibrated value 

based on MANE Minimum Maximum 

Average standstill distance meter 2 1 4 2.5 

Additive part of desired 

safety distance 

N/A 2 1 10 3 

Multiplicative part of desired 

safety distance 

N/A 3 1 10 4 

Lane change distance meter 200 50 300 150 

NA=not applicable 

 

For the validation of the VISSIM model, the Kolmogorov–Smirnov (KS) test was used to test the 

hypothesis that whether the distribution of the simulated and the observed travel times are 

statistically identical or not. The Kolmogorov–Smirnov tests is a nonparametric technique which 



   

 

71 

 

can be used to prove that two populations have the same distribution. Let X1, . . ., Xm be the field 

travel time with cumulative distribution function (CDF) F1, and Y1, …., Yn be the travel time from 

the VISSIM simulation averaging 10 runs (different random seeds) with CDF F2. The null 

hypothesis is the distribution between the field and simulated travel time are identical. The 

Kolmogorov–Smirnov test statistic is defined as follows: 

𝐷 = 𝑀𝑎𝑥|𝐹1(𝑥) − 𝐹2(𝑥)| (23) 

The hypothesis is rejected if the test statistic, D, is greater than the critical value obtained from a 

KS table which can be found from the statistical textbook (Teukolsky, W. H. et al., 2002). The 

travel time data for all vehicles are recorded from VISSIM simulation runs and compared with the 

field observations by KS test. From the KS test result, it is found that the D is less than the critical 

value with 5% significance level. Hence, the distribution of the simulated and the observed travel 

times are statistically identical which confirmed the good validation results of the VISSIM model.  

 

5.3 Methodologies 

The methodologies of this chapter are mainly focused on the modeling of driving behaviors in 

VISSIM to simulate the connected vehicles (CV) and the connected vehicles lower level 

automation (CVLLA). The car following model is a crucial component in simulation which 

regulates the driving behavior of vehicles to represent the real-world traffic system. The driving 

behavior of conventional vehicle, CV, and CVLLA should be significantly different from each 

other. PTV VISSIM uses Wiedemann car following model in order to simulate the road network 

under human-driven vehicles. This model is not reasonable to represent connected and automated 

vehicles as it is designated to model human behavior and requiring complex tuning of the multitude 

of parameters. In order to understand the behavior of introducing CV and CVLLA into the traffic 
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system, this study utilizes realistic driving behavior models for both CV and CVLLA in accordance 

with the recent literature that would approximate the decision processes of these technologies.  

5.3.1 Driving Behavior Model for CV 

To better assess the impact of CV on an arterial, a driving behavior model is prerequisite for micro-

simulation studies. The choice of the car following model largely determines the driving behavior 

of CV to represent the real-world traffic system. The Intelligent Driver Model (IDM) has already 

been proven as the most realistic car following model in order to simulate the CV in freeway 

section described in simulation based literature (Guériau et al., 2016; Rahman et al., 2018a; 

Rahman and Abdel-Aty, 2018; Talebpour and Mahmassani, 2016b). The time-continuous 

Intelligent Driver Model (IDM) is the simplest complete model that is able to model oscillations, 

stop-and-go traffic, and start and stop of a vehicle platoon between two traffic lights producing 

realistic accelerations and braking decelerations profile (Kesting et al., 2010b; Kesting and Treiber, 

2013; Treiber et al., 2007). Although this model captures different congestion dynamics, it 

provides greater realism than most deterministic acceleration modeling frameworks. The most 

recent simulation study proved that the IDM model can replicate the best driving behaviors 

compared to the other competing car following models (Pourabdollah et al., 2018). In the literature, 

there are plenty of safety studies utilizing the IDM  as the car following model in microscopic 

simulation (Derbel et al., 2012; Li et al., 2017b; Plattner et al., 2007).  However, the 

implementation of IDM on an arterial section is significantly different from the freeway traffic 

because of the presence of signals. In general, there can be two distinct cases of IDM 

implementation of CV on an arterial section (1) vehicle to vehicle (2) signal to vehicle. The former 

one is designed for the car following behavior between two vehicles through V2V communication 

range while the latter on is focused on the vehicle approaching a signalized intersection by I2V 
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communication. The illustration of the IDM implementation on an arterial section under CV 

environment (both V2V and I2V) is presented in Figure 14.  

 

The first case in Figure 14(a) shows the car following case of vehicle to vehicle by V2V 

communication under CV environment. In this case, the IDM model acceleration (�̇�𝐼𝐷𝑀) is the 

function of desired gap distance 𝑠∗ and the speed difference between following (𝑉𝐹 = 𝑣) and 

leading (𝑉𝐿) vehicles (∆𝑣 = 𝑉𝐹 − 𝑉𝐿) by offering V2V communication under CV environment, 

expressed by the following Equation 24. 

�̇�𝐼𝐷𝑀(𝑡 + 𝑡𝑎) = max {𝑏𝑚, 𝑎𝑚 [1 − (
𝑣

𝑣𝑜
)

𝛿

− (
𝑠∗

𝑠
)

2

]} 

Where, 𝑠∗ = 𝑠0 + 𝑚𝑎𝑥 [0, 𝑣𝑇 +
𝑣∆𝑣

2√𝑎𝑚𝑏
] 

(24) 

where, 𝑡𝑎 = the perception-reaction time, 𝑏𝑚 = the maximum deceleration, 𝑎𝑚 = the maximum 

acceleration, 𝑣 = the speed of the following vehicle, 𝑣0 = the desired speed, 𝛿 = the acceleration 

exponent, 𝑠 = the gap distance between two vehicles, 𝑠0 = the minimum gap distance at standstill, 

𝑇 = the safe time headway, and 𝑏 = the desired deceleration. 

 
Figure 14 Illustration of the IDM implementation on an arterial. 
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Figure 14(b) describes the I2V implementation of IDM model in order to assess the impact of 

infrastructure communication under CV environment. The real-time signal timing status are 

implemented through I2V communication technologies of CVs. Let’s assume a vehicle is 

approaching a signalized intersection and the traffic lights switches from green to yellow with 

signal timing information conveyed to CVs through I2V communication technologies as shown in 

Figure 14(b). Hence, it is necessary to decide whether it is better to cruise over the intersection 

with unchanged speed, or to stop. Generally, this decision can be estimated by the safety criterion 

alone (Kesting and Treiber, 2013). The decision to stop is considered as safe if the anticipated 

braking deceleration will not exceed the desired deceleration at any time of the braking maneuver. 

In this case, traffic light is considered as a standing virtual vehicle (𝑉𝐿 = 0), speed difference 

between following (𝑉𝐹 = 𝑣) and leading (𝑉𝐿 = 0) vehicles, ( ∆𝑣 = 𝑣 − 0 = 𝑣) such that 𝑠 denotes 

the distance of the front bumpers to the stopping line. In order to decide the cruise or stop when 

the driver approaches a signalized intersection at his desired speed, the IDM parameters satisfy 

𝑎𝑚 = 𝑏 in Equation 24 and the condition become: 

Cruise, if Where, 𝑠 < 𝑠∗ = 𝑠0 + 𝑣0𝑇 +
𝑣0

2

2𝑏
 

(25) 

Stop, Otherwise 

 

The parameter settings for the aforementioned IDM model were potentially determined according 

to previous studies (Rahman et al., 2018a; Rahman and Abdel-Aty, 2018) except for desired speed 

and time delay. Those previous studies had undertaken the CV impact on the freeway for which 

the desired speed and time delay of 120 km/h and 1.5 seconds, respectively were reasonable, while 

the arterial section the corresponding values were selected 72 km/h and 1.0 second, respectively 

based on widely accepted research (Kesting and Treiber, 2013). Therefore, the desired speed (𝑣0) , 



   

 

75 

 

acceleration exponent (𝛿) , maximum acceleration (𝑎𝑚), desired deceleration (𝑏), minimum gap 

distance at standstill (𝑠0) , safe time headway (𝑇) , maximum deceleration (𝑏𝑚) , and time delay 

(𝑡𝑎) were selected 72 km/h, 4, 1 m/sec2, 2 m/sec2, 2 m, 0.6 sec, 2.8 m/sec2, and 1 sec, respectively. 

The aforementioned car following behavior of CV was coded in C++ programming language 

which overrides the VISSIM default car following behavior in order to approximate the decision 

processes of CV. Note that the car following behavior of non-CVs was determined by VISSIM’s 

default car following model depending on the different MPRs. 

 

5.3.2 Driving Behavior Model for CVLLA 

In this study, we have implemented lower level automation features under connected vehicle 

environment which is already available in many vehicles in the market with relatively lower level 

of penetration rate. Towards that end, this chapter have considered automated braking control and 

lane keeping assistance as two specific automated functions for CVLLA. Therefore, a driving 

behavior model is prerequisite to simulate the CVLLA which is significantly different from the 

normal human driving. To approximate the behavior of CVLLA, a car following model is required 

for the automated braking feature in the form of acceleration choice while lateral behavior model 

would represent the lane keeping assistance feature. However, there are very limited studies 

describing the decision processes of automated vehicle with calibrated parameters of car following 

model. In a recent study, to describe the driving behavior of automated vehicles, a dynamical car 

following model was developed considering mean expected velocities field using basic the 

Bando’s car following model (Wen-Xing and Li-Dong, 2018). The parameters of the proposed car 

following model were calibrated along with the stability control based on the lateral driving 

behaviors of automated vehicle flows. Hence, this study proposes a  car following model to 
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represent automated braking feature for CVLLA based on the recent study by Wen-Xing et al., 

(Wen-Xing and Li-Dong, 2018) which was developed and validated for acceleration choice of 

automated vehicles. Nevertheless, the lane keeping assistance feature for CVLLA was 

implemented by changing the lateral behavior of VISSIM default in a sense that the vehicle would 

be positioned in the middle of the occupying lane representing lane centering with steering assist. 

To be more specific, the automated braking feature would help CVLLA vehicles by maintaining 

the distance between the leading and following vehicles, while lane keeping assistance would 

provide steering assist by centering the vehicles within the lane. The aforementioned car following 

and lateral behavior of CVLLA was applied as Dynamic Link Library (DLL) plug-in using C++ 

programming interface which overrides the VISSIM default driving behavior in order to 

approximate the decision processes of CVLLA. However, CVLLA allows only two control 

functions such as automated braking and lane keeping ability so that other controls must be done 

by human (i.e., lane changing). Therefore, the proposed driving behavior model performed two 

control functions (i.e., automated braking and lane keeping assistance) of CVLLA vehicle while 

lane changing behavior was utilized by VISSIM default lane changing model to represent the 

human behavior control in the real-world.  

 

The first feature of CVLLA was considered automated braking control which would be governed 

by a realistic car following model of automated vehicles. Like CV, CVLLA also has two cases of 

the car following model implementation on an arterial section (1) vehicle to vehicle (2) signal to 

vehicle. The illustration of car following model for CVLLA vehicles on an arterial section under 

the CV environment is presented in Figure 15. The first case Figure 15 (a) describes the V2V 

communication with a stream of N CVLLA vehicles. The connected vehicle part collects the status 
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information of each CVLLA vehicle such as the real-time position, velocity, and acceleration. 

Based on these information, CVLLA vehicles would use automated braking control by utilizing 

realistic car following model proposed by Wen-Xing et al., (Wen-Xing and Li-Dong, 2018). This 

car following behavior is based on the Bando’s basic car following model which is given in 

Equation 26 in which �̈�𝑗(𝑡) and 𝑥�̇�(𝑡) denote the acceleration and velocity, respectively,  of the jth 

vehicle at time t (M Bando, K Hasebe, a Nakayama, a Shibata, 1995).  

�̈�𝑗(𝑡) = 𝛼[𝑉 (𝛥𝑥𝑗(𝑡)) − 𝑥�̇�(𝑡)] (26) 

Where, 𝛼 representing the drivers sensitivity. 𝛥𝑥𝑗(𝑡) = 𝑥𝑗+1(𝑡) − 𝑥𝑗(𝑡) denotes the headway 

between 𝑗th vehicle and (𝑗 + 1)th vehicle [see Figure 15(a)]. 𝑉 (𝛥𝑥𝑗(𝑡)) is the optimal velocity 

function of the 𝑗th vehicle which is given in Equation 27 based on the previous literature (Helbing 

and Tilch, 1998; Zhu and Zhang, 2014).  

𝑉 (𝛥𝑥𝑗(𝑡)) =
𝑣𝑚𝑎𝑥

2
[tanh (0.13 (𝛥𝑥𝑗(𝑡) − 𝐿𝑗)) − 1.57 + tanh (0.13𝐿𝑗 + 1.57)] (27) 

Where, 𝑣𝑚𝑎𝑥 represents the maximum velocity and 𝐿𝑗  denotes the length of the jth vehicle. 

 

 
 

Figure 15 Illustration of the CVLLA implementation on an arterial section. 
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It is worth noting that Bando’s basic model is widely accepted car following model to represent 

the human driving behavior. Nevertheless, CVLLA are equipped with V2V communication so that 

real-time position, velocity, and acceleration can be timely collected. Therefore, the CVLLA 

vehicles move forward according to the forward traffic states. Based on Bando’s model, Wen-Xing 

et al., (Wen-Xing and Li-Dong, 2018) proposed a new car following model which added an extra 

term in Bando’s model to replicate the automated car following behavior but did not focus on lane 

changing behavior. The proposed car following model is shown in Equation 28 and 29. 

�̈�𝑗(𝑡) = 𝛼[𝑉 (𝛥𝑥𝑗(𝑡)) + 𝛽𝛥𝑉(𝛥𝑥𝑗(𝑡)) − 𝑥�̇�(𝑡)] (28) 

𝛥𝑉(𝛥𝑥𝑗(𝑡)) = 𝑉 (𝛥𝑥𝑗+1(𝑡)) − 𝑉 (𝛥𝑥𝑗(𝑡))] (29) 

 

The extra added term in Bando’s model 𝛽𝛥𝑉(𝛥𝑥𝑗  (𝑡)) was used to model the automated behavior 

in which β is a constant named strength factor. The strength factor should be less than 0.5 which 

make sure that the optimal velocity 𝑉(𝛥𝑥𝑗  (𝑡)) plays the dominant role in the base car following 

model. This proposed model can infer that if the leading vehicle’s optimal velocity is greater than 

the following (i.e. ∆𝑉 (∆𝑥𝑗(𝑡)) > 0) then the following vehicle will move with a higher velocity. 

If the leading vehicle’s optimal velocity is less than the following vehicle (i.e.  ∆𝑉 (∆𝑥𝑗(𝑡))  <  0) 

then the following vehicle will move with a lower velocity. If the leading vehicle’s optimal velocity 

equals to the following vehicle i.e. ∆𝑉 (∆𝑥𝑗(𝑡))  =  0 then the following vehicle will move with 

same velocity (Wen-Xing and Li-Dong, 2018). 

 

The proposed car following behavior of CVLLA vehicles mentioned above is accurate for freeway 

traffic because of the absence of signals. However, CVLLA vehicles follow exactly the same car 

following model in Equations 9 and10 when the signal is green on an arterial section. In contrast, 
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when the signal becomes red, the nearest moving vehicle to the stop line would stop at the stop 

line. Therefore, CVLLA vehicle near the stop line in a red phase does not satisfy the car following 

model described Equations 9 and 10. This behavior is also modeled from the basic Bando’s car 

following model (Zhu and Zhang, 2014). The latter case in Figure 15 (b) describes the vehicle to 

signal with a stream of n CVLLA vehicles having N signals under I2V communications. The 

CVLLA vehicle can collect the signal status with signal timing information’s using I2V 

communications. The car following behavior of the nearest CVLLA vehicle approaching the red 

signal is formulated as follows in Equation 11 in which �̈�𝑗(𝑡) and 𝑥�̇�(𝑡) denote the acceleration 

and velocity of the ith vehicle at time t. In contrast with Equation 9, there is no extra term in 

Equation 30 as there is only one vehicle which is supposed to be stop near the stop line in red 

signal phase. 

�̈�𝑖(𝑡) = 𝛼[𝑉(𝑙𝑛 − 𝑥𝑖 ,𝑛 (𝑡)) − �̇�𝑖,𝑛(𝑡)] (30) 

 

Where, 𝛼 representing the drivers’ sensitivity as mentioned above. �̇�𝑖,𝑛(𝑡) is the position of ith 

vehicle and 𝑙𝑛 is the position of the nth signal at the nth stop line. 𝑉(𝑙𝑛 − 𝑥𝑖,𝑛 (𝑡)) is the optimal 

velocity function of the ith vehicle and the idea is that the ith vehicle moving with an expected 

velocity closes to the Nth stop line and finally stops at the stop line which is given in Equation 31 

(Zhu and Zhang, 2014). 

𝑉 (𝑙𝑛 − 𝑥𝑖𝑖,𝑛
(𝑡)) =

𝑣𝑚𝑎𝑥

2
[tanh (0.13 (𝑙𝑛 − 𝑥𝑖,𝑛(𝑡) − 𝐿𝑖)) − 1.57 + tanh(0.13𝐿𝑖 + 1.57)] (31) 

 

Where, 𝑣𝑚𝑎𝑥  represents the maximum velocity and 𝐿𝑖  denotes the length of the ith vehicle. The 

parameters of the α and β are considered 2 and 0.4, respectively based on the stability of the 

proposed car following model for automated vehicles (Wen-Xing and Li-Dong, 2018).  
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The second feature of CVLLA was considered lane keeping assistance which would be governed 

by a lateral behavior model in VISSIM. There are three lateral position for addressing the lateral 

behavior in VISSIM-0: at the right lane edge, 0.5: middle of the lane, and 1: at the left lane edge 

(VISSIM, 2017). However, there are four lateral position options in PTV VISSIM which defines 

the desired lateral position of a vehicle within the lane. The options are: “Left of lane”, Middle of 

lane, Right of lane, and Any. The options “Any” means that the vehicle can occupy either middle 

of lane or left of lane or right of lane. In the base scenario, the authors selected the “Any” option 

as default lateral driving behavior model in VISSIM to replicate the behavior of conventional 

vehicle. The default lateral behavior model in VISSIM was considered to keep the vehicles at any 

of those three cases which represent the lateral driving behavior of conventional vehicles in the 

real-world.  It is worth mentioning that the “Any” options would approximate the lateral driving 

behaviors in the real-world as the conventional vehicles do not have the lane centering assists so 

that the vehicle would not be positioned middle of the lane all the time. However, to approximate 

the behavior of CVLLA, a car following model is required for the automated braking feature in 

the form of acceleration choice while lateral behavior model would represent the lane keeping 

assistance feature. Toward that end, for the lateral driving behavior of CVLLA, we coded lateral 

position to be equal to 0.5 (middle of lane) which means that the vehicle would be positioned in 

the middle of the occupying lane representing lane centering with steering assist. To be more 

specific, the lateral behavior of VISSIM for conventional vehicles ensure that the vehicle would 

occupy in any of the occupying lane but not only the middle of the lane all the time, while CVLLA 

ensures that the vehicle will occupy always the middle of the lane representing lane keeping 

assistance. The above logic of this lateral behavior model was coded in C++ programming 

language which overrides the VISSIM default lateral driving behavior model in order to 
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approximate the behavior lane centering along with the car following model within CVLLA. 

Therefore, two features such as automated braking and lane keeping assistance are implemented 

within CVLLA vehicle to approximate the lower level automated vehicle behavior under 

connected vehicle environment. 

 

In a nutshell, several car following models have been introduced to capture the human drivers’ 

longitudinal driving behavior such as Wiedemann model, Intelligent Driver Model, Gazis-

Herman-Rothery model, Gipps model etc. Nevertheless, the car following models are prerequisite 

for any traffic simulation software. It is worth mentioning that the commercially available 

software’s are using previously developed car following models. For example, VISSIM and 

AIMSUN are using Wiedemann and Gipps car following models, respectively in order to regulate 

the traffic in the simulation. Most of the car-following models have their own set of parameters. 

However, the parameters of the car following models for CV and CVLLA vehicles were not 

calibrated because of unavailability of those vehicles in the corresponding studied section. It is 

unfortunate that the availability of connected and automated vehicles might not be accomplished 

in the immediate future. Nevertheless, some deployment of CV’s has been carried out in very 

limited segments and the parameters of the car following models were calibrated based on the 

available connected and automated vehicle in some studies (Kesting et al., 2010b; Li et al., 2017a, 

2017b; Milanés and Shladover, 2014). This study adopted these parameters in the corresponding 

car following model such as IDM (Kesting et al., 2010b; Li et al., 2017a, 2017b; Milanés and 

Shladover, 2014) and modified Bando’s (Wen-Xing and Li-Dong, 2018) in order to test the 

effectiveness of CV and CVLLA in the studied arterial segments. 
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5.4 Surrogate Measures of Safety 

Surrogate safety measures are a widely used technique to assess the crash risk of a road network 

because crashes are rare events. Nevertheless, microsimulation software is modeled with crash 

free car following algorithm. Therefore, surrogate measures of safety can be used to evaluate the 

crash risk from the VISSIM vehicle trajectory data. This study divided two major parts of the road 

network to evaluate the surrogate measures of safety to identify the crash risk on an arterial section: 

(1) segments’ crash risk and (2) intersections’ crash risk. 

 

5.4.1 Segment Crash Risk 

Two types of surrogate measures of safety indicators are used in measuring the segment crash risk 

in the studied sections. The first type represents the time proximity-based indicator (i.e., time-to-

collision, post encroachment time). The second type represents evasive action–based indicators 

(i.e., yaw rate and jerk). In our study, four-time proximity-based surrogate measures of safety were 

used to estimate the segment crash risk for both CV and CVLLA technologies. Time-to-Collison 

(TTC) is the most commonly used time proximity-based surrogate measure of safety in the 

burgeoning traffic safety literature. The TTC is the time required for a collision to occur between 

the leading and following vehicles if the speed difference is unchanged (Hayward, 1972). To be 

more specific, the TTC represents the time required for two successive vehicles, occupying the 

same lane, to collide if they continue at their present speed when the following vehicle (n) moves 

faster than the leading vehicle (n-1). The TTC notion can be expressed as in equation 32: 

𝑇𝑇𝐶𝑛(𝑡) = {

𝑥𝑛−1(𝑡) − 𝑥𝑛(𝑡) − 𝐿𝑛−1

𝑣𝑛(𝑡) − 𝑣𝑛−1(𝑡)
, 𝑖𝑓 𝑣𝑛(𝑡) > 𝑣𝑛−1(𝑡)

∞, 𝑖𝑓 𝑣𝑛(𝑡) ≤ 𝑣𝑛−1(𝑡)

 (32) 

where 𝑇𝑇𝐶𝑛(𝑡) = the TTC value of following vehicle n at time t, 𝑥 = the positions of vehicles, 𝑣= 
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the velocities of vehicles, 𝐿𝑛−1= Length of leading vehicle. 

 

Furthermore, two distinct types of TTC are usually considered in traffic safety analysis: TTC1 and 

TTC2. TTC1 assumes that the preceding vehicle maintains its speed, while TTC2 describes 

situations when the preceding vehicle stops suddenly, which is also called TTC at braking (Peng 

et al., 2017).  For the segment crash risk analysis, traffic data were collected at eighteen detectors 

in the mid segments among the intersections in the VISSIM network, and few small TTC1 values 

were observed during the simulation. Thus, TTC at braking (TTC2) is employed in this study to 

evaluate traffic safety for segment crash risk from VISSIM data collection points. The definition 

of the TTC at braking (𝑇𝑇𝐶𝑏𝑟𝑎𝑘𝑒) is as follows (Peng et al., 2017): 

𝑇𝑇𝐶𝑏𝑟𝑎𝑘𝑒(𝑡) =
𝑥𝑛−1(𝑡) − 𝑥𝑛(𝑡) − 𝐿𝑛−1

𝑣𝑛(𝑡)
 (33) 

 

The smaller 𝑇𝑇𝐶𝑏𝑟𝑎𝑘𝑒 value indicates the lager risk at a certain time instant. Two surrogate safety 

measures, derived from TTC, denoted as Time Exposed Time-to-Collision (TET) and Time 

Integrated Time-to-Collision (TIT), are utilized to evaluate the effect of both CV and CVLLA 

technologies. The TET refers to the total time spent under dangerous traffic conditions, determined 

by 𝑇𝑇𝐶 value below the threshold value of 𝑇𝑇𝐶 (𝑇𝑇𝐶∗)(Minderhoud and Bovy, 2001). 

𝑇𝐸𝑇 (𝑡) = ∑ 𝛿𝑡 × 𝛥𝑡,   

𝑁

𝑛=1

𝛿𝑡 = {
1, 0 <  𝑇𝑇𝐶𝑏𝑟𝑎𝑘𝑒 (𝑡) ≤ 𝑇𝑇𝐶∗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (34) 

𝑇𝐸𝑇 = ∑ 𝑇𝐸𝑇(𝑡)

𝑇𝑖𝑚𝑒

𝑡=1

 (35) 

where t = the time ID, n = the vehicle ID, N = the total number of vehicles, δ = the switching 

variable, ∆t = the time step, which was 0.1 s in simulation, Time = the simulation period, and TTC* 
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= the threshold of TTC. The TTC* is used to differentiate the unsafe car following conditions from 

the ones that are considered safe. 

 

The TIT is referred to as the entity of the 𝑇𝑇𝐶 lower than the 𝑇𝑇𝐶 threshold. The reciprocal 

transformation was made considering that a lower 𝑇𝑇𝐶 means a higher collision risk: 

𝑇𝐼𝑇(𝑡) = ∑ [
1

𝑇𝑇𝐶𝑏𝑟𝑎𝑘𝑒(𝑡)
−

1

𝑇𝑇𝐶∗]

𝑁

𝑛=1

. 𝛥𝑡, 0 < 𝑇𝑇𝐶𝑏𝑟𝑎𝑘𝑒(𝑡) ≤ 𝑇𝑇𝐶∗ (36) 

𝑇𝐼𝑇 = ∑ 𝑇𝐼𝑇(𝑡)

𝑇𝑖𝑚𝑒

𝑡=1

 (37) 

 

The third time proximity-based surrogate measure of safety utilized for the segment crash risk, 

derived from the rear-end crash risk index (RCRI), is Time Exposed Rear-end Crash Risk Index 

(TERCRI) which was proposed by first author (M. S. Rahman et al., 2019d; Rahman et al., 2018b; 

Rahman and Abdel-Aty, 2018). A rear-end crash can happen if the leading vehicle stops suddenly 

while the following vehicle does not decelerate timely to avoid a collision. So, the principal cause 

of a rear end crash is maintaining insufficient stopping distance between the leading and the 

following vehicles. To avoid rear-end crashes, the stopping distance of the following vehicle 

should be smaller than the leading vehicle. Oh et al., (Oh et al., 2006) proposed rear-end crash risk 

index (RCRI) in which the dangerous condition can be mathematically expressed as follows: 

𝑆𝐷𝐹 > 𝑆𝐷𝐿 (38) 

𝑆𝐷𝐿 = 𝑣𝐿 × ℎ +
𝑣𝐿

2

2 × 𝑎𝐿
+ 𝑙𝐿 (39) 

𝑆𝐷𝐹 = 𝑣𝐹 × 𝑃𝑅𝑇 +
𝑣𝐹

2

2 × 𝑎𝐹
 (40) 
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Where 𝑆𝐷𝐿 and 𝑆𝐷𝐹 are the stopping distance of the leading and the following vehicles, 

respectively. 𝑙𝐿 the length of the leading vehicle, 𝑣𝐿 the speed of the leading vehicle, 𝑣𝐹 the speed 

of the following vehicle, 𝑃𝑅𝑇 is the perception-reaction time, ℎ the time headway, 𝑎𝐿 the 

deceleration rate of the leading vehicle. and 𝑎𝐹 is the deceleration rate of the following vehicle. As 

mentioned earlier, we used two types of vehicles PC and HGV in VISSIM simulation. Therefore, 

different maximum deceleration rate of PC and HGV were selected to estimate the reliable safety 

distance of leading and following vehicles using Equations 39 and 40. The deceleration rates of 

PC and HGV were selected as 3.42 m/s2 and 2.42 m/s2, respectively, while the PRT was used as 

1.5 s, these values are generally accepted by AASHTO (American Association of State Highway 

and Transportation Officials (AASHTO), 2004).The proposed TERCRI was governed by the 

following equations: 

𝑇𝐸𝑅𝐶𝑅𝐼 (𝑡) = ∑ 𝑅𝐶𝑅𝐼𝑛(𝑡) × 𝛥𝑡,   

𝑁

𝑛=1

𝑅𝐶𝑅𝐼𝑛 (𝑡) = {
1, 𝑆𝐷𝐹𝐹 > 𝑆𝐷𝐿

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (41) 

𝑇𝐸𝑅𝐶𝑅𝐼 = ∑ 𝑇𝐸𝑅𝐶𝑅𝐼(𝑡)

𝑇𝑖𝑚𝑒

𝑡=1

 (42) 

Therefore, the TERCRI refers to the total time spent under rear-end crash risk, determined by 

stopping distance of the leading and the following vehicles.  

 

Additionally, lane changing crashes are among the most common type of crashes in multilane 

arterials. The fourth and final time proximity based surrogate measures for segment crash risk 

considered in our study is lane changing conflicts (LCC). The Surrogate Safety Assessment Model 

(SSAM), developed by the Federal Highway Administration, was applied to analyze the LCC 

which can be related to the surrogate measures of the lane changing or angle or sideswipe crashes. 

The experimental VISSIM model generated several groups of traffic trajectory data files. The 
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vehicle conflicts’ data were stored in these trajectory data files which contains the conflict 

locations’ coordinates, conflict time, time-to-conflict, post-encroachment-time etc. Hence, the 

SSAM was applied to analyze these conflict data in order to compare the LCC among the three 

scenarios. 

 

This study also considered the evasive action-based indicator in our study. Several studies have 

shown the usefulness of evasive action-based indicators in measuring the severity of conflicts 

(Tageldin et al., 2015; Tageldin and Sayed, 2016; Zaki et al., 2014). Several traffic conflict 

indicators based on detecting evasive actions such as deceleration, jerk, and yaw-rate are 

recommended to better measure traffic conflicts in less organized traffic environments (China) 

with a high mix of road user (Guo et al., 2018; Tageldin et al., 2015). This chapter also considered 

jerk as evasive action-based indicator to calculate the safety critical driving behavior in order to 

compare the three scenarios. Jerk represents the derivative of the acceleration. It is used for braking 

behavior that varies as a reaction to the environment. The evasive action involving powerful 

braking or sudden acceleration can be reflected in the jerk profile. The acceleration is the derivative 

of speed, which can be calculated by Equation 43. The jerk can be calculated using Equation 44, 

as follows: 

𝐴(𝑡) = 𝑉�̇� = (�̈�𝑡, �̈�𝑡) (43) 

Jerk (t) = 𝐴�̇� (44) 

Where, 𝐴(𝑡) is the acceleration of vehicle at instant t; (𝑥𝑡, 𝑦𝑡) is the position of vehicle at instant 

t; and Jerk (t) is the jerk of vehicle at instant t. 

 

Bagdadi and Várhelyi (Bagdadi and Várhelyi, 2011) argue that jerks may be a better way of relating 
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acceleration behavior to crashes. In their study, a regression model was developed using the sample 

of 166 drivers with 33 crash-involved in order to test the relationship between the number of 

critical or dangerous jerks (defined as critical jerks that are equal to or below than -9.9 m/s3) and 

self-reported crashes. The regression results showed that the number of accidents increased by 

1.13 times for each additional critical jerk over a three-year period. Hence, jerkiness in driving 

may be an indication of a riskier driving style and a higher probability of accident involvement. In 

our study, I collected the trajectory data containing acceleration values for all vehicles from 

Fritzing Part File (.FZP) in VISSIM. Therefore, this study calculated the number of critical jerk 

(NCJ) from the Fritzing Part File for each of three scenarios. A threshold level of -9.9 m/s3 is used 

for the jerks as an indicator of safety-critical driving behavior based on previous studies (Bagdadi 

and Várhelyi, 2011; Nygård, 1999). This study calculated the NCJ from all jerk values that are 

equal to or below the threshold value of −9.9 m/s3. 

 

5.4.2 Intersection Crash Risk   

One of the most dominant type of crashes on an arterial section is intersections’ crash. However, 

rear-end crash is the most prevalent type of crash in a segment. Angle and sideswipe crash along 

with rear-end crashes are common at intersections. Therefore, it is necessary to evaluate the 

segment and intersection crash risks separately for CV and CVLLA technologies. The surrogate 

measure of intersection crashes can be obtained using Surrogate Safety Assessment Model 

(SSAM) developed by the Federal Highway Administration. SSAM conflict analysis can offer 

rational conflict estimations of signalized intersections which can be considered as surrogate 

measure of intersection crash risk. SSAM uses several parameters to measure the conflicts and 

describe the conflict locations, and characteristics. The main conflict measure parameters 
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considered in SSAM are Time-to-collision (TTC), Post encroachment time (PET), Maximum 

speed (MaxS), Speed difference (DeltaS), the second vehicle’s initial deceleration rate (DR), the 

second vehicle’s maximum deceleration (MaxD), and the maximum speed difference value among 

the two-crashed vehicle (MaxDeltaV) (see Gettman et al., (Gettman et al., 2008)for detailed 

review). A conflict is recorded in SSAM when the minimum TTC and PET values exceed the 

predetermined threshold values, and the conflict type associated with each conflict is identified 

according to the lane and link information or the angle between the two converging vehicles (Fan 

et al., 2013). This study uses the default maximum TTC threshold and PET threshold value 1.50 

and 5.00 seconds, respectively, in order to calculate the conflicts from the VISSIM trajectory file. 

To identify the potential conflicts at intersections, the influence area of the intersection was defined 

as within 250 ft. along any leg of the intersection from the center of the intersection. From 

recognition of this chosen value, in several studies conducted in the state of Florida (Abdel-Aty 

and Wang, 2006a, 2006b; Wang et al., 2018; Wang and Abdel-Aty, 2006; Yuan et al., 2019b, 2018a, 

2018b; Yuan and Mohamed Abdel-Aty, 2018), the default value of 250 ft. was used to identify the 

intersection related crashes. Hence, the nine studied intersections in our VISSIM network were 

analyzed to compare the effectiveness CV and CVLLA technologies of each MPR over non-CV 

scenarios. Furthermore, binary logistic regression was employed to evaluate the intersection crash 

risk since the dependent variable Y can only take on two values: Y = 1 for conflicts, and Y = 0 for 

non-conflicts. The probability that a conflict will occur in the studied intersections is modeled as 

logistic distribution in Equation 45 for three scenarios with different MPRs. 

𝜋(𝑥) =
𝑒𝑔(𝑥)

1 + 𝑒𝑔(𝑥)
 (45) 

The logit of the multiple logistic regression model (Link Function) is given by Equation 46. 
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𝑔(𝑥) = ln [
𝜋(𝑥)

1 − 𝜋(𝑥)
] = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + … . … … … 𝛽𝑛𝑥𝑛

 (46) 

where π(x) is conditional probability of conflicts (surrogate measure of crashes), which is equal to 

the number of conflicts divided by the total number of observations (sum of conflicts and non-

conflicts). 𝑥𝑛 are independent variables (scenarios with different MPR: base, CV, and CVLLA). 

𝛽𝑛 are model coefficients, which directly determines odds ratio involved in the number of conflicts. 

The odds of an event are defined as the probability of the outcome event (conflicts) occurring 

divided by the probability of the event not occurring (non-conflicts). The odds ratio that is equal 

to 𝑒𝑥𝑝(𝛽𝑛) tells the relative amount by which the odds of the outcome increase (OR greater than 

1.0) or decrease (OR less than 1.0) when the value of the predictor value is increased by 1.0 unit 

(quantitative variables) or one category (categorical variables) compared to the base category (Yan 

et al., 2005). 

 

5.5 Results and Discussion 

As mentioned earlier, the CV and CVLLA technologies were applied on an urban arterial section 

to evaluate the segment and intersection crash risks separately.  

 

5.5.1 Segment Crash Risk 

To evaluate the safety performance of segment crash risk for both CV and CVLLA technologies 

on an arterial section, five surrogate measures of safety were considered: TET, TIT, and TERCRI, 

LCC, and NCJ. To have a better understanding, I implemented CV and CVLLA with varying 

market penetration rates and then the two technologies were compared with the base scenario (non-

CV scenario) in order to observe the segment crash risks of those technologies. Each scenario (base 
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scenario, CV, CVLLA) was repeatedly simulated for 30 times with MPRs of 30%, 40%, 60%, 

80%, and 100% (CV and CVLLA) in order to consider random effects of simulation. To calculate 

the TET and TIT from VISSIM data collection points utilizing the segments of the network, TTC 

threshold was considered 2 seconds for the preliminary analysis and then a sensitivity analysis is 

conducted for different TTC thresholds from 1 to 3 seconds. In SSAM, the potential lane changing 

conflicts (LCC) are considered if the TTC and the PET values are lower than 1.5 sec and 5.0 sec, 

respectively (Gettman et al., 2008). The descriptive statistics of TET, TIT, TERCRI, LCC, and 

NCJ in three scenarios (Base, CV, and CVLLA) are presented in Table 10 with 5 selected MPRs 

(30%, 40%, 60%, 80%, and 100%) for CV and CVLLA technologies. The results of the table 

showed that, non-CV scenario has the largest mean value of each TET (1755.97), TIT (443.10), 

TERCRI (388.83), LCC (519), and NCJ (804) while the lower TET, TIT, TERCRI, LCC, and NCJ 

were obtained in CV and CVLLA compared to the base scenario for each MPRs. For each MPR, 

CVLLA has lower segment crash risk compared to CV in terms of TET, TIT, TERCRI, LCC, and 

NCJ. Looking at the 40% MPR, the mean values of the five surrogate indicators of CVLLA 

scenario were lower with TET (1685.77), TIT (398.83), TERCRI (371.34), LCC (484), and NCJ 

(767), respectively, compared to CV scenario of TET (1703.33), TIT (407.70), TERCRI (376.39), 

LCC (493), and NCJ (781), respectively. Therefore, the scenario with CVLLA for each MPRs has 

the lowest segment crash risks compared to CV scenario, while the scenario with base condition 

(non-CV) has the highest segment crash risks. 
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Table  10 Summary Statistics of TET, TIT, TERCRI, LCC, and NCJ with Different MPRs 

Scenario MPR SSM TET (s) TIT (s) TERCRI (s) LCC (#) NCJ (#) 

Base 0% 

Mean  1755.97 443.1 388.83 519 804 

Std deviation 47.09 27.23 9.22 52.49 23.14 

Minimum 1651 406 370 433 769 

Maximum 1842 513 405 618 889 

CV 

30% 

Mean  1720.83 425.43 386.5 499 790 

Std deviation 46.08 26.12 9.17 52.63 22.96 

Minimum 1618 390 368 413 757 

Maximum 1805 492 403 598 875 

40% 

Mean  1703.33 407.7 376.39 493 781 

Std deviation 45.71 25.06 9.39 52.49 23.49 

Minimum 1601 374 359 407 746 

Maximum 1787 472 393 592 868 

60 % 

Mean  1650.6 385.43 361.67 485 762 

Std deviation 44.15 23.67 8.59 52.93 23.45 

Minimum 1552 353 344 399 720 

Maximum 1731 446 377 548 847 

80 % 

Mean  1562.8 367.6 342.2 473 729 

Std deviation 41.98 22.67 8.1 52.47 22.72 

Minimum 1469 337 326 387 699 

Maximum 1639 426 356 572 814 

100 % 

Mean  1457.4 345.7 308.03 458 708 

Std deviation 39.09 21.25 14.91 52.49 23.14 

Minimum 1370 317 251 372 673 

Maximum 1529 400 324 557 793 

CVLLA 

30% 

Mean  1712.07 420.9 384.56 491 779 

Std deviation 45.88 25.78 9.12 53.37 22.87 

Minimum 1610 386 366 401 744 

Maximum 1796 487 401 590 862 

40% 

Mean  1685.77 398.83 371.34 484 767 

Std deviation 45.21 24.58 8.81 52.48 22.95 

Minimum 1585 365 353 398 734 

Maximum 1768 462 387 583 852 

60 % 

Mean  1606.7 367.6 342.2 464 726 

Std deviation 43.01 22.67 8.1 52.48 22.87 

Minimum 1511 337 326 378 691 

Maximum 1685 426 356 563 809 

80 % 

Mean  1492.7 341.23 311.1 435 676 

Std deviation 40.16 20.95 7.41 52.49 23.60 

Minimum 1403 313 296 349 641 

Maximum 1566 395 324 534 761 

100 % 

Mean  1369.6 314.6 263.67 407 622 

Std deviation 36.85 19.37 13.12 52.48 23.15 

Minimum 1288 288 248 321 584 

Maximum 1437 364 316 506 707 

 

This study applies Analysis of Variance (ANOVA) to compare the differences between several 
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group means and their associated variations, which provides a statistical test of comparing means 

of more than two groups. Since conducting multiple two-sample t-tests is not convenient and 

would result in an increased chance of errors (Peng et al., 2017), ANOVA is applied to analyze the 

five surrogate measures of safety under three driving scenarios (Base, CV, and CVLLA) with 

different MPRs of CV and CVLLA. Table 11 shows the results of one-way ANOVA test for 

comparing five surrogate measures of safety between the base and CV scenarios. In summary, the 

results of Table 11 illustrate the significant reduction of the five surrogate measures of safety, (i.e., 

TET, TIT, TERCRI, LCC, and NCJ) with the implementation of CV and CVLLA technologies. 

Compared to the base scenario, the TET, TIT, TERCRI, LCC, and NCJ decreased significantly in 

both CV and CVLLA technologies. Model performances were evaluated for three different 

condition sets (Base, CV and CVLLA) and CV scenarios each under five different MPRs (30%, 

40%, 60%, 80%, and 100%).  To find out the segment crash risks of the applied technologies, the 

mean values of the surrogate safety measures were compared with the base condition. The results 

revealed that the applied CV technologies enhanced traffic safety by decreasing the surrogate 

measures of safety for segment crash risks on an arterial section. The maximum significant safety 

improvement of arterial segment was found at 100 % MPR, while the improvement below 30% 

MPRs was insignificant for TET, TIT, and NCJ value at 5% level of significance. For TERCRI 

and LCC, the minimum significant reduction was found equal to or more than 40% MPR. For each 

of the 15 scenarios listed in Table 11, the mean differences of TET, TIT, TERCRI, LCC, and NCJ 

were higher for CV compared to CVLLA. It was also found that the CVLLA achieved significant 

reductions in TET, TIT, TERCRI, LCC, and NCJ compared to CV when the MPRs were equal or 

greater than 60%. Thereby, CVLLA clearly outperformed CV in terms of segment crash risks on 

the arterial section. 
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Table  11 Comparisons of Measure of Effectiveness by Conducting One-way ANOVA 

 MPR 
Compa

risons 

Surrogate Safety Measures 

Time Proximity-Based Evasive Action-Based 

TET (s) TIT (s) TERCRI (s) LCC (#) NCJ (#) 

Mean 

differe

nce 

95% 

Confidence 

Interval 

Mean 

differe

nce 

 

95% 

Confidence 

Interval 

Mean 

differe

nce 

95% Confidence 

Interval 

Mean 

differe

nce 

95% Confidence 

Interval 

Mean 

differe

nce 

95% Confidence 

Interval 

30% 

Base-

CV 
35.1 5.9 64.3 17.6 1.0 34.2 2.3# -3.4 8.1 20.0* -13.0 53.0 14.0* -1.0 28.0 

Base-

CVLLA 
43.9 14.7 73.1 22.2 5.5 38.8 4.2# -1.5 10.1 28.0* -5.3 61.2 25.0 10.0 39.0 

CV-

CVLLA 
8.8# -20.5 37.9 4.5# -12.1 21.1 1.9# -7.7 3.8 8.0* -25.0 41.0 11.0* -3.0 25.0 

40% 

Base-

CV 
52.6 23.6 81.6 35.4 19.2 51.5 12.4 6.6 18.2 26.0* -7.0 59.0 23.0 8.0 38.0 

Base-

CVLLA 
70.2 41.2 99.2 44.2 28.1 60.4 17.5 11.7 23.2 35.0 2.0 68.0 37.0 22.0 52.0 

CV-

CVLLA 
17.6# -11.4 46.5 8.8# -7.3 25.0 5.0# -0.7 10.8 9.0* -24.0 42.0 14.0* -1.0 29.0 

60 % 

Base-

CV 
105.3 77.1 133.5 57.6 42.2 73.1 27.1 21.7 32.6 34.0 1.0 67.0 42.0 27.0 56.0 

Base-

CVLLA 
149.2 121.0 177.4 75.5 59.9 91.0 46.6 41.1 52.0 55.0 22.0 88.0 78.0 63.0 92.0 

CV-

CVLLA 
43.9 15.7 72.1 17.8 2.3 33.3 19.4 14.0 24.9 21.0* -12.0 54.0 36.0 21.0 51.0 

80 % 

Base-

CV 
193.2 165.9 220.3 75.5 60.5 90.4 46.6 41.4 51.8 46.0 13.0 79.0 75.0 60.0 90.0 

Base-

CVLLA 
263.3 236.1 290.4 101.8 86.8 116.8 77.7 72.5 82.9 84.0 51.0 117.0 128.0 113.0 143.0 

CV-

CVLLA 
70.1 42.9 97.3 26.3 11.3 41.3 31.1 25.8 36.3 38.0 5.0 71.0 53.0 38.0 68.0 

100 % 

Base-

CV 
298.5 272.6 324.5 97.4 82.9 111.8 80.8 72.8 88.7 61.0 28.0 94.0 96.0 81.0 111.0 

Base-

CVLLA 
386.3 360.4 412.3 128.5 114.1 142.9 125.1 117.2 133.1 112.0 79.0 145.0 182.0 167.0 197.0 

CV-

CVLLA 
87.8 61.8 113.8 31.1 16.6 45.5 44.3 36.4 52.3 51.0 18.0 84.0 86.0 71.0 101.0 
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#Difference is insignificant at 5% level   
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(a) TET (a) TIT 

  
(c) TERCRI (c) LCC  

Figure 16 Reduction of surrogate measures of safety with different MPRs. 
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Figure 16 shows the decreasing trend of TET, TIT, TERCRI, and LCC for CV and CVLLA 

scenarios with increasing MPRs. As seen from the figures, the higher the percentage of the CV and 

CVLLA implemented, the lower were the TET, TIT, TERCRI, and LCC therefore the higher were 

the safety benefits achieved.  Moreover, the TET, TIT, TERCRI, and LCC were lowest in the 

CVLLA scenario compared to the CV scenario for each MPR.  

 

In the aforementioned results, this study have selected 2 seconds as the TTC threshold in order to 

test the statistical significance of TET and TIT values between the base and CV scenarios with 

different market penetration rate based on the previous research (Li et al., 2017a, 2017b, 2016b, 

2014; Rahman and Abdel-Aty, 2018). However, the validation of the TTC threshold is not 

undertaken in the safety literature. Therefore, a sensitivity analysis of how the safety comparison 

between base and CV scenarios vary with a range of TTC threshold value was conducted. 

Sensitivity analysis of TTC threshold is worthwhile as different researchers used different values 

of TTC thresholds ranging from 1 to 3 seconds. Towards that end, I calculated TET and TIT values 

based on different TTC thresholds ranging from 1 to 3 seconds. The different values TTC 

thresholds provide similar results of segment crash risks in the studied urban arterial section. Table 

12 shows the similar results of segment crash risks considering five different values of TTC 

thresholds ranging from 1 to 3 seconds at 100% MPR of CV and CVLLA. For different values of 

TTC thresholds, all TET (TIT) values were decreased within 16% to 19% (20% to 23%) for CV 

technologies compared to base scenario, while TET (TIT) values are all reduced within 21% to 

23% (27% to 29%) of CVLLA compared with that of base condition. For example, at TTC value 

of 2.5 seconds, TIT value of base scenario is 661.07 while the CV scenario is 509.02 which is 23% 

less than the base scenario. And, for the TTC value of 3 seconds, TIT values of both base and CV 
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scenarios are 844.07 and 661.49, respectively. Therefore, the CV scenario is 22% lesser than the 

base scenario which showed almost similar result using TTC threshold 2.5 seconds. So, the TET 

and TIT values of the corresponding CV and CVLLA scenarios are compared with the base 

scenario for each TTC threshold of 1.0, 1.5, 2.0, 2.5, and 3.0 seconds and obtained almost similar 

results. 

Table  12 Sensitivity Analysis of Different Values of TTC Threshold for 100% MPR 

TTC* (s) 
Scenarios Base condition CV CVLLA 

Measures TET TIT TET TIT TET TIT 

1.0 Average 159.73 141.20 130.97 112.96 122.99 103.08 

% of change - - 18% 20% 23% 27% 

1.5 Average 688.06 245.43 577.97 191.43 543.57 179.16 

% of change - - 16% 22% 21% 27% 

2.0 Average 1755.97 443.10 1457.40 345.70 1369.60 314.60 

% of change - - 17% 22% 22% 29% 

2.5 Average 2584.03 661.07 2170.58 509.02 2015.54 475.97 

% of change - - 16% 23% 22% 28% 

3.0 Average 3086.47 848.07 2500.04 661.49 2438.31 619.09 

% of change - - 19% 22% 21% 27% 

 

For better visual representation, Figure 17 shows the results of TET and TIT values for three 

scenarios including base, CV at 100% MPR, and CVLLA at 100% MPR in terms of different TTC 

thresholds (1 to 3 seconds). For each TTC threshold in base, 100% MPR of CV and CVLLA 

scenarios, TET and TIT values were lowest in the CVLLA scenario. In the CV scenario, the values 

of TET and TIT for every TTC threshold are smaller than the base scenario but larger than the 

CVLLA scenario. Therefore, irrespective of TTC thresholds, both CV approaches have higher 

safety benefits and CVLLA clearly outperformed CV technologies in terms of the segment’s crash 
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risk. 

In a nutshell, the deployment of CV and CVLLA have significantly decreased the TET, TIT, 

TERCRI, LCC, and NCJ; thereby might decrease the probability of segment crashes on an arterial 

segment. However, it is clearly seen that lower level automation features with CV technology 

significantly outperformed CV scenario with no automation. 

 

Figure 17 Sensitivity analysis of TTC thresholds. 

 

5.5.2 Intersection Crash Risk 

As indicated earlier, SSAM software was used to analyze the number of conflicts within the nine 

studied intersections influence area each of 250 feet for three scenarios (i.e., Base, CV, and 

CVLLA) with different MPRs of CV and CVLLA. The potential conflicts are considered if the 

TTC and the PET values are lower than 1.5 sec and 5.0 sec, respectively (Gettman et al., 2008). 

The descriptive statistics of total number of conflicts for the three scenarios are presented in Table 

6 with 30%, 40%, 60%, 80%, and 100% MPRs of CV scenarios. From Table 13, the non-CV 
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scenario has the largest mean value of total number of conflicts 1702 resulting from 30 simulation 

runs. Lower number of conflicts were found in both CV and CVLLA scenarios compared to non-

CV scenario for each MPR. Furthermore, the result clearly inferred that CVLLA has lower 

intersection related crash risk compared to CV in terms of total number of conflicts for each 

corresponding MPRs. At 100% MPR, the mean value of total number of conflicts was found to be 

1125 in CVLLA scenario while total number of conflicts of CV scenario was 1302. Therefore, the 

scenario with CVLLA for each MPR has the lowest intersection crash risk compared to the 

corresponding CV scenario, while the scenario with base condition (non-CV) has the highest 

intersection crash risk. 

Table  13 Summary Statistics of Conflicts with Different MPR 

Scenario MPR 
Number of 

Runs 

Mean Standard 

Deviation 

Minimum Maximum 

Base 0% 30 1702 57.71 1598 1837 

CV 

30% 30 1645 57.30 1491 1769 

40% 30 1584 56.31 1445 1691 

60 % 30 1532 54.23 1390 1627 

80 % 30 1488 51.30 1311 1535 

100 % 30 1302 48.77 1208 1452 

CVLLA 

30% 30 1621 57.28 1553 1728 

40% 30 1546 55.45 1408 1684 

60 % 30 1422 52.52 1288 1545 

80 % 30 1276 48.49 1122 1386 

100 % 30 1125 44.80 1056 1305 

 

A logistic regression model was also developed to test the significance of binary outcome (conflict 

or non-conflict) variable and the different scenarios with different MPRs. There are 11 scenarios 

with three different condition sets (Base, CV and CVLLA) for which each CV and CVLLA has 

five different MPRs (30%, 40%, 60%, 80%, and 100%). Table 14 lists the model estimation results 
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and odds ratios of conflicts in different scenarios compared to the base scenario. The parameter 

estimates of all the CV scenarios (both CV and CVLLA with different MPRs) are significant at 

5% significance level compared to base scenario except at 30% MPR of CV and CVLLA. The 

odds ratio of conflicts was also not significant at 5% significance level for the CV scenarios (CV30% 

and CVLLA30%) compared to the base scenario at 30% MPR. Moreover, the odds ratios of conflicts 

in CVLLA scenarios compared to CV scenarios were also calculated to evaluate the effectiveness 

of those technologies for each MPR and the model results showed that odds ratios of conflicts in 

CVLLA scenarios compared to CV scenarios were significant when the MPRs is equal or greater 

than 60%.  

Table  14 Model Estimation and Odds Ratios of Different Scenarios 

Parameter Coefficient 

estimate (p value) 

Odds ratio (One 

relative to other) 

Odds ratio 95% Wald confidence limit  

Lower Limit Upper Limit 

Intercept -2.060 (<0.001) - - - 

Scenarios - - - - 

Base Reference  - - - 

CV30% -0.038 (0.296) # CV30% vs Base 0.962# 0.896 1.034 

CVLLA30%  -0.055 (0.136) # CVLLA30% vs Base 0.947# 0.881 1.017 

- - CVLLA30% vs CV30% 0.984# 0.915 1.058 

CV40% -0.081 (0.029) CV40% vs Base 0.922 0.858 0.992 

CVLLA40%  -0.108 (0.004) CVLLA40% vs Base 0.898 0.835 0.966 

- - CVLLA40% vs CV40% 0.973# 0.904 1.048 

CV60% -0.119 (0.002) CV60% vs Base 0.888 0.826 0.955 

CVLLA60%  -0.199 (<0.001) CVLLA60% vs Base 0.819 0.761 0.882 

- - CVLLA60% vs CV60% 0.922 0.855 0.995 

CV80% -0.177 (<0.001) CV80% vs Base 0.838 0.778 0.902 

CVLLA80%  -0.309 (<0.001) CVLLA80% vs Base 0.734 0.680 0.793 

- - CVLLA80% vs CV80% 0.876 0.810 0.948 

CV100% -0.291 (<0.001) CV100% vs Base 0.747 0.693 0.807 

CVLLA100%  -0.450 (<0.001) CVLLA100% vs Base 0.638 0.589 0.690 

- - CVLLA100% vs CV100% 0.853 0.785 0.927 

#Difference is insignificant at 5% level     
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Looking at the 100% MPR, the odds of having conflicts in CVLLA scenario is about 36% lower 

than the same odds of having conflicts in the base scenario, while the odds of having conflicts in 

CV scenario is about 25% lower than the same odds of having conflicts in the base scenario. 

Moreover, the odds of having conflicts in CVLLA scenario at 100% MPR is about 15% lower than 

the same odds of having conflicts in CV scenario at 100% MPR.  

 

The aforementioned results of odds ratio between base and CV scenarios are obtained from 

considering TTC and PET thresholds of 1.5 and 5.0 seconds, respectively. However, it is possible 

to accept lower TTC and PET values to calculate the total number of conflicts in connected and 

automated vehicle technologies. Therefore, the study also considered different sets of TTC and 

PET values to calculate conflicts and found similar results in a sense that CVLLA scenario 

outperformed other two scenarios, while non-CV scenario has the highest crash risk in terms of 

intersection crash risk. The authors added another sensitivity analysis including different sets of 

TTC and PET values in order to see the effectiveness of CV and CVLLA over non-CV scenario. 

Table 15 shows the results of intersection crash risks considering five different sets of TTC and 

PET thresholds at 100% MPR of CV and CVLLA. For different values of TTC and PET thresholds, 

the total number of conflicts were decreased by 21% to 24% for CV technologies compared to 

base scenario, while total number of conflicts are all reduced by 31% to 34% of CVLLA compared 

with that of base condition. 
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Table  15 Sensitivity Analysis of Different Values of TTC and PET Threshold for 100% MPR 

TTC* 

(s) 

PET* 

(s) 

Scenarios Base  CV CVLLA 

Measures Total Number of 

Conflicts 

Total Number of 

Conflicts 

Total Number of 

Conflicts 

0.5 1.0 
Average 759 592 523 

% of change - 22% 31% 

0.8 2.0 
Average 1119 884 750 

% of change - 21% 33% 

1.0 3.0 
Average 1490 1148 1013 

% of change - 23% 32% 

1.2 4.0 
Average 1648 1286 1087 

% of change - 22% 34% 

1.5 5.0 
Average 1702 1302 1125 

% of change - 24% 34% 

 

Like segment crash risks, the application of both CV and CVLLA technologies improved safety 

significantly in terms of conflict frequency in the intersections’ influence area. It is worth noting 

that, CVLLA technology significantly outperformed CV scenario with no automation features in 

terms of safety improvement of intersections. 

 

5.6 Summary 

This chapter investigated the safety impact of connected vehicles (CV) and connected vehicle 

lower level automation (CVLLA) utilizing both vehicle to vehicle (V2V) and infrastructure-to-

vehicle (I2V) communications on an urban arterial using microsimulation. Two automated feature 

such as automated braking and lane keeping assistance were considered to model the lower level 

automated vehicle under V2V and I2V communication technologies. Safety performance of both 

CV technologies were tested in terms of segment and intersection crash risks using surrogate safety 
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assessment modeling techniques. The driving behaviors of both CV and CVLLA were applied in 

VISSIM through C++ programming language. Five surrogate measures of safety including the 

TET, TIT, TERCRI, LCC, and NCJ were considered as segment crash risks indicators, while the 

intersection crash risks were evaluated using Surrogate Safety Assessment Model (SSAM). The 

safety benefits were observed under different MPRs for both CV technologies. In general, both 

CV and CVLLA technologies reduce segment crash risks by providing significant reductions of 

TET, TIT, and TERCRI. For intersection crash risks, logistic regression model results showed 

significant reduction of conflict frequency for CV scenarios compared to base scenario. For both 

segment and the intersection crash risks, it was found that the higher the MPRs of CV implemented 

the higher were the safety benefits achieved. Maximum improvement was found to be at 100% 

MPR for both CV and CVLLA technologies. For segment crash risks, a minimum of 30% MPR 

was needed to observe significant safety benefits of both CV and CVLLA technologies in terms 

of TET, TIT, and NCJ compared to the base scenario. However, it was found that at least 40% 

MPR is needed to achieve the safety benefits of intersection crash risks. Hence, taking both 

segment and the intersection crash risks into consideration, the CV and CVLLA technologies 

performed better than non-CV scenario. Finally, the results showed that the CVLLA significantly 

outperformed CV in terms of both segment and intersection crash risks. It was also found that at 

least 60% MPR was needed to achieve the safety benefits of segment and intersection crash risks 

of CVLLA compared to CV technologies.  

 

The chapter highlighted simulation-based approach that might be a viable tool to evaluate both 

segment and intersection crash risks concurrently under CV and CVLLA technologies, while there 

has been limited empirical data on safety performance of those technologies. To be sure, there are 
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no research without limitations. First, the ability of the proposed driving behaviors of CV and 

CVLLA technologies as the parameter of those behaviors are not calibrated within a real-world 

road network due to the fact that those technologies are still being developed. The full market 

penetration of those CV technologies might not be accomplished in the immediate future. 

Therefore, traffic flow will likely be composed of a mixture of conventional vehicles and CVs. 

With this regard, the interaction between CV technologies and the conventional vehicles are largely 

unknown. However, this study modeled CV and CVLLA behaviors by changing VISSIM’s default 

car-following model in accordance with the recent literature, there is a clear scope to develop a 

more realistic car-following model for CVs and would calibrate it with real-world data. 
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CHAPTER 6: TRAFFIC SAFETY AND OPERATIONAL BENEFITS OF 

CONNECTED AND AUTOMATED VEHICLE ON EXPRESSWAYS: 

APPLICATION OF REAL-WORLD VALIDATED CAV DATA 

6.1 Introduction 

Connected and automated vehicle (CAV) technologies have been regarded as a promising solution 

for improving safety and mobility performance of the roadway network. By leveraging vehicle-to-

vehicle (V2V) and vehicle-to-infrastructure (V2I) communications, CAV is expected to provide 

cooperative movements and thus increase freeway/expressway traffic safety and operations 

(Kockelman et al., 2016; Papadoulis et al., 2019; M. S. Rahman et al., 2019d; Rahman and Abdel-

Aty, 2018). The combination of the two types of technologies (i.e. connected vehicle technologies, 

automated vehicle technologies) has generated high expectations regarding traffic safety by 

minimizing drivers’ errors, which is a major cause solely or in combination with other factors for 

more than 94% of traffic crashes (Singh, 2015; Yue et al., 2018). Nevertheless, the evaluation of 

their safety and mobility benefits are still ambiguous because of the unattainability of real-world 

CAV data. Based on this disadvantage, few previous studies have implemented the simulation 

techniques to evaluate the potential safety and mobility benefits of CAVs. However, none of the 

studies has considered validated car following and lane changing models based on real-world CAV 

data. The interactions between the CAV and conventional vehicles are largely unknown in their 

chosen CAV models. Moreover, the optimal market penetration rates (MPRs) of both peak and off-

peak hours have not been evaluated based on both traffic safety and operational characteristics. 

 

This study considers the traffic safety and operational benefits of CAV on expressway segments. 

Microscopic traffic simulation was used to achieve the objectives of the study. The simulated area 
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consisted of a twenty-two miles network of SR-408 in Central Florida. The two-baseline 

simulation model were built, calibrated, and validated using real-word minute level detector data 

considering both peak and off-peak hours traffic. The CAV applications were tested in the studied 

simulated network using PTV VISSIM 11, which has the capability to model CAVs with validated 

driving behavior models based on real-world CAV data. Afterward, the numbers of CAV scenarios 

were tested including different MPRs (0% to 100%, for every 10% interval) and the traffic 

condition (peak hour vs non-peak hour). The safety and operation performance for various 

scenarios were evaluated using different measures of effectiveness. Operational measures included 

average travel time and average delay, while the safety measures considered both time proximity 

(i.e., conflicts) based and evasive action based (i.e., jerk) surrogate measures of safety. To achieve 

balanced mobility and safety benefits from mixed traffic environment, optimal CAV MPR could 

be determined at varying traffic conditions. 

 

6.2 Methodology 

The overall architecture of the proposed simulation framework is presented in Figure 18. First of 

all, a real-world simulation network was developed in order to replicate the baseline scenarios. 

The calibration and the validation of the simulation network must be conducted with the help of 

real-world traffic data. In this study, the traffic volume and speed data were collected from 

Microwave Vehicle Detection System (MVDS) detectors for every 20 seconds. Then, the CAV 

models in the simulation network were selected based on the validated car following and lane 

changing models in VISSIM using real world CAV data. Finally, the trajectory files were exported 

from the VISSIM simulation scenarios including both traffic operation (.rsr file) and safety (.trj 

file) measures. For traffic safety measures, the Surrogate Safety Assessment Model (SSAM) were 
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used to process the vehicle trajectory data.  

 

The driving behaviors of CAV is the prerequisite to better assess the impact of CAV in traffic 

simulation. The driving behaviors of CAVs and conventional vehicles should have significant 

differences in terms of car following and lane changing models. Most of the previous studies 

replicate the CAV behavior by adopting the calibrated Intelligent Driver Model (IDM) which is 

the simplest complete car following (Li et al., 2016a; Rahman et al., 2018a; Rahman and Abdel-

Aty, 2018; Wu et al., 2019a). However, the lane changing models were not considered in CAV 

modelling which is one of the most important limitations of these research. Moreover, the 

interactions between the CAV and the conventional vehicles (passenger cars, trucks) is still  a great 

constraint to CAV MPRs. To address these important issues, VISSIM 11 provides the validated car 

following and lane changing models using real-world CAV data as a part of the project CoEXist 

(PTV Group, 2019). It is worth mentioning that CoEXist is a European project (May 2017-April 

2020) which aims at preparing for the transition phase during which CAV and conventional 

vehicles will coexist on cities’ roads. To the best authors’ knowledge, this is the first application 

of CAV behavior embedded in commercially available software based on real word data from 

public test track with connected and automated vehicles. 
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Figure 18 Architecture of the simulation framework. 

 

Three types of connected and/or automated vehicles behavior are designed in VISSIM (version 

11.0) including cautious, normal, and all-knowing driving logic. In the cautious driving logic, 

vehicles always respect the road code and safe behavior. Regarding the normal driving logic, the 

vehicles follow the existing average driver. The all-knowing driver logic predicts all other road 

users’ behavior with the help of communication (V2V and/or V2I) technologies (PTV Group, 

2019). Figure 19 shows the different vehicles’ gaps between different driving logics.  
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Figure 19 Gap between the vehicles for different CAV models in VISSIM. 

 

From Figure 19, the cautious driving logic has the largest gaps compared to other driving logics. 

The normal driving logic has gaps similar to human drivers but with higher safety in terms of other 

added attributes in the corresponding driving behavior model. The all-knowing driving logic has 

smaller gaps with the help of connectivity which replicate the behavior of CAV. Hence, the all-

knowing driving logic provided by VISSIM 11 is used to investigate the effects of CAV in the 

studied network. The following paragraph of the method section is focused on the all-

knowing/CAV driving behaviors utilizing the validated parameters for both car following and lane 

changing models using real-world CAV data. 

 

6.2.1 Driving behaviors of CAV in simulation 

As mentioned earlier, the all-knowing driving behavior model of PTV VISSIM 11.0 were 

implemented to approximate the behavior of CAVs in the studied expressway section. The car 

following and lane changing models’ parameters were calibrated based on the real-world CAV 
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projects named CoEXits. Moreover, multiple additional attributes are available in the driving 

behavior dialogs in VISSIM for modelling CAVs. One of the important new features of this CAV 

model is enforce absolute braking distance which will always make sure that CAV could brake 

without a collision, even if the leading vehicle comes to an immediate stop. This condition applies 

(1) lane changes for the vehicle itself on the adjacent lane and for the trailing vehicle on the new 

lane (2) conflict areas for the following vehicle on the major road and (3) car following, lane 

changing and gap acceptance at the freeway and/or intersections. In this case, I checked the enforce 

absolute braking distance which would be reasonable for the automated features of CAVs. The 

second important added attribute is the number of interaction objects and vehicles. Figure 20 shows 

the absolute braking and the number of interaction objects and vehicle (red marking) in the driving 

behavior dialogue box of the CAV model. 

 

 
Figure 20 Driving behavior window with the new attributes to model CAV in VISSIM. 

 

From Figure 20, the attribute of  observed vehicles from the previous versions of VISSIM (Version 
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less or equal 10.0) has been split into two features: (1) number of interaction objects refers to 

vehicles and internal objects (reduced speed areas, stop signs, priority rules, red signal head) (2) 

number of interaction vehicles refers only to real vehicles. The number of interaction vehicles 

defines an upper limit for the observed leading vehicles, therefore, for example, this could be set 

to 1 for CAV that cannot see through the leading vehicle. A red signal downstream of the leading 

vehicle would still be observed, but not the second real vehicle downstream. Figure 21 shows an 

example of number of interaction objects=3 (First three objects are visible to the red car) and 

number of interaction vehicles=1 (only one vehicle is visible for red car). This study assumed 

number of interaction objects=4 and number of interaction vehicles=3 which is consistent with the 

results of CoEXits project because of choosing the all-knowing/CAV driving logics. Therefore, the 

red car is communicating with at most 3 vehicles in the front with the help of V2V 

communications. 

 

 
 

Figure 21 Number of interaction objects and number of interaction vehicle concept. 

 

On the new tab in car following, some of the parameter values affecting the desired safety distance 

can be specified per vehicle class of the leading vehicle in addition to the value for all other 

vehicles. To be specific, the headway distance between the CAV and the conventional vehicles are 

obtained based on the public test track CAV data. From the results of CAV data, it was found a 

smaller safety distance when following another CAV but a larger safety distance when following 

a human driver. We selected the headway between the CAVs to be 0.6 second; the CAV and the 
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human driver is 0.9 seconds based on the results of the CoExists project. This is very important 

attribute in this CAV modelling which was ignored in the previous CAV studies. Therefore, the 

interaction between CAV and the conventional vehicles would be better assessed in terms of 

market penetration rates of CAV.  

 

The car following CC parameters of Weidmann 99 model were validated using real-world public 

test track CAV data. The CC parameters of the conventional vehicle and the CAV in the Weidmann 

car following model are presented in Table 16. 

 

Table  16 Car Following CC Parameters of CAV Compared to Standard Vehicle 

Car 

following 

parameter 

Description Units Human 

Driver 

Parameter 

CAV 

Driving 

Logic 

CC0 The average standstill distance meter 1.50 1.00 

CC1 The headway time seconds 0.90 0.60 

CC2 The distance difference in the oscillation 

condition 

meter 4.00 0 

CC3 Controls the deceleration process N/A -8.00 -6.00 

CC4 Defines negative speed difference N/A -0.35 -0.1 

CC5 Defines positive speed difference N/A 0.35 0.1 

CC6 The distance influence on speed oscillation N/A 11.44 0 

CC7 The acceleration at the oscillation condition m/s2 0.25 0.1 

CC8 The desired standstill acceleration m/s2 3.50 4 

CC9 The desired acceleration at 50 mph  m/s2 1.50 2 

 

The lane changing behavior are also validated based on the real-world CAV data. Table 17 shows 

the validated lane changing model which is the first application in CAV modelling based on real-

world CAV data in terms of lateral movement. The aforementioned car following and lane 

changing models are the main factors to approximate the driving behaviors of CAVs in the VISSIM 

simulation software.  
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Table  17 Lane Changing Parameters of CAV Compared to Standard Vehicle 

Lane Changing Model Units Human Driving 

Logic 

CAV Driving Logic 

Own Trailing 

Vehicle 

Own Trailing 

Vehicle 

Maximum Deceleration m/s2 -4.00 -3.00 -4.00 -4.00 

-1 m/s per distance meter 200 200 100 100 

Accepted deceleration m/s2 -1.00 -0.50 -1.00 -1.50 

Waiting time per diffusion seconds 60.00 60.00 

Min. net headway (front to rear) meter 0.50 0.50 

Safety distance reduction factor N/A 0.60 0.75 

Maximum deceleration for 

cooperative braking 

m/s2 -3.00 -6.00 

 

 

6.3 Network of Interest 

A freeways section of Holland East-West Expressway (SR408), Orlando, Florida was selected as 

a test bed of this study. This test bed is approximately 22-miles section of SR408 having 17 

weaving segments from West Colonial Drive, Orlando to Challenger Parkway, Orlando. The 

simulation model used in this study was VISSIM latest version 11.0. Both peak and off-peak hour 

were considered in the simulation model. The peak period was defined from 7:00 a.m. to 9:00 a.m. 

and the off-peak period from 10:00 a.m. to 12:00 p.m. The field traffic data (i.e. flow) were 

aggregated into 5-minute traffic counts and the speed data were also collected on the same day to 

use in  the validation of the VISSIM baseline simulation model. Traffic counts and speed data were 

collected from the Microwave Vehicle Detection System (MVDS) detector system. Moreover, 

further traffic information for building the simulation network including passenger car (PC) and 

heavy goods vehicle (HGV) percentages, and desired speed distribution were also calculated for  

input in the VISSIM model. The simulation time was set from 6:30 A.M. to 9:30 A.M and 9:30 

A.M. to 12:30 P.M. for peak and off-peak period, respectively. After excluding the first 30 minutes 

of VISSIM warm up time and the last 30 minutes of cool-down time, 120 minutes VISSIM data 
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was used for model calibration and validation.  

 

6.3.1 Network calibration and validation 

The most important part of any simulation model is calibrating the model by defining or fine-

tuning the values of the parameters so that the difference between observed and simulated traffic 

measurement (i.e., traffic counts, speed, travel time etc.) is minimum. In this regard, calibration 

criteria are formulated by the general optimization framework as follows. 

min 𝑓(𝑀𝑜𝑏𝑠, 𝑀𝑠𝑖𝑚)  (1) 

Which is subjected to the constraints: 

𝑙𝜃𝑖
≤ 𝜃𝑖 ≤ 𝑢𝜃𝑖

,   𝑖 = 1,2, … , 𝑛 (2) 

Where, 

𝜃𝑖=the vectors of continuous variable (i.e. model parameters to be calibrated) 

𝑓(. ) =Objective function (or fitness function). 

𝑀𝑜𝑏𝑠, 𝑀𝑠𝑖𝑚=Observed and simulated traffic measurements. 

𝑙𝜃𝑖
, 𝑢𝜃𝑖

=the respective lower and upper bounds of model parameter  

n = number of parameters. 

In this study, we used Geoffrey E. Heavers (GEH) as objective function (fitness function) using 

traffic counts. The specification of minimizing GEH is given as follows: 

𝐺𝐸𝐻 = ∑ √
2 × (𝑀𝑜𝑏𝑠(𝑛) − 𝑀𝑠𝑖𝑚(𝑛))2

(𝑀𝑜𝑏𝑠(𝑛) + 𝑀𝑠𝑖𝑚(𝑛)

𝑁

𝑗=1

 (3) 

𝑀𝑜𝑏𝑠(𝑛)=actual traffic counts for a given time interval j. 

𝑀𝑠𝑖𝑚(𝑛)=simulated traffic counts for a given time interval j. 

𝑁 =total number of observations. 
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The base calibration parameters for VISSIM that have been considered in this research are the 

driver behavior parameters of Wiedmann-99 as the test bed was selected in a freeway section. A 

sensitivity analysis was conducted on VISSIM driver behavior parameters based on their allowable 

minimum and maximum values in the simulation model. For each parameter, a range of values 

between the minimum and maximum (include default value) were chosen to run VISSIM model 

and the corresponding values of objective function GEH were calculated. It is worth mentioning 

that each parameter value was run ten times with different random seeds and averaged it to 

calculate the simulated traffic measurement which captures the random effects of the simulation. 

For each parameter, the minimum value of GEH is the corresponding calibrated value for that 

parameter. Based on the literature review, six parameters were chosen for VISSIM calibration and 

validation for weaving segments (Jolovic and Stevanovic, 2012; Koppula, 2002; Woody, 2006; 

Wu et al., 2005). They were DLCD (desired lane change distance), CC0 (standstill distance), CC1 

(headway time), CC2 (following variation), waiting time per diffusion, and safety distance 

reduction factor. A total of 490 simulation runs [(1 base-models + 6×8 car-following parameters) 

times 10 random seeds] were conducted. The sensitivity analysis results showed that three most 

important parameters were vital to reflect the safety in weaving segment. These include DLCD, 

CC1, and safety distance reduction factor. The default value of DLCD, CC1, and safety distance 

reduction factor in VISSIM were 200 meters, 0.9 seconds, and 0.60, respectively whereas the 

calibrated values were found to be 400 meters, 0.8 seconds, and 0.50, respectively. The simulated 

volume would precisely reflect the field volume if more than 85% of the measurement locations 

GEH values are less than five (Wang et al., 2017; Yu and Abdel-Aty, 2014) and the criteria was 

met with minimizing the objective function. 
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For the validation of the VISSIM model, the two-sample t-test was used to test the hypothesis that 

whether the distribution of the simulated and the observed speeds are statistically identical or not. 

The two-sample test is a parametric technique which can be used to prove that difference between 

the two population’s means are equal. Let X1, . . ., Xm be the field speed and Y1, …., Yn be the 

simulated speed from the VISSIM simulation averaging 10 runs (different random seeds). The null 

hypothesis is the difference between the two population’s means is equal to some constant as 

follows: 

𝑇 =
�̅� − �̅�

𝑠1
2

𝑁1
+

𝑠2
2

𝑁2

 
(4) 

The hypothesis is rejected if the test statistic, T, is greater than the critical value obtained from t- 

table considering level of significance. The speed data for vehicles are recorded from VISSIM data 

collection point and compared with field observations by two sample t-test . From the t-test result, 

it is found that the T is less than the critical value with 5% significance level. Hence, the 

distribution of the simulated and the observed speeds are statistically identical which confirmed 

the good validation results of the VISSIM model. 

6.4 Measure of Effectiveness 

Both traffic operation and safety measures were utilized in order to assess the benefits of CAV 

application in expressway segments. Two measures of effectiveness (MOE) were considered to 

assess the mobility performances of CAV with different market penetration rate: Average Travel 

Time (ATT), and Average Delay (AD). Ten similar travel time measurements location were 

selected in the VISSIM network for both base and CAV scenarios. A travel time measurement 

section consists of a “From Section” and a “To Section”. The mean travel time and delay from 

traversing the “From Section” up to the traversing of the “To Section”, including the waiting time 
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and/or holding time, is calculated. For these ten measurement locations, the average travel time 

and average delay for each vehicle were extracted from the vehicle travel time raw data as .rsr file 

in VISSIM. The data contains both travel time and delay information of each individual vehicle 

for every second.  

 

In terms of safety performance, surrogate safety assessment techniques were used to assess the 

crash risk in the studied expressway segments. Surrogate safety measures are a widely used 

technique to assess the crash risk of a road network due to the rare events of crashes. In this study, 

two types of surrogate measures of safety indicators were considered. The first type represents the 

time proximity-based indicator (i.e., time-to-collision, post-encroachment time). The second type 

represents evasive action–based indicators (i.e., yaw rate and jerk). In our study, two surrogate 

safety measures (i.e. time proximity based, evasive action based) were used to estimate the crash 

risks in the studied section. For time proximity-based indicator, the Surrogate Safety Assessment 

model (SSAM) was used to offer rational conflict estimations of expressway segments. SSAM 

uses several parameters to measure the conflicts and describe the conflict locations, and 

characteristics. The main conflict measure parameters considered in SSAM are Time-to-collision 

(TTC) and Post-encroachment time (PET) (See (Gettman et al., 2008) for detailed review). A 

conflict is recorded in SSAM when the two time proximity based indicators such as TTC and PET 

values exceed the predetermined threshold values, and the conflict type associated with each 

conflict is identified according to the lane and link information or the angle between the two 

converging vehicles (Fan et al., 2013). This study uses the default maximum TTC threshold and 

PET threshold values 1.50 and 5.00 seconds, respectively, in order to calculate the total number of 

conflicts (TNC) from the VISSIM trajectory file.  
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Furthermore, we also considered jerk as evasive action-based indicator to calculate the safety 

critical driving behavior in order to compare the corresponding scenarios. Jerk represents the 

derivative of the acceleration. It is used for braking behavior that varies as a reaction to the 

environment. The evasive action involving powerful braking or sudden acceleration can be 

reflected in the jerk profile. The acceleration is the derivative of speed, which can be calculated by 

Equation 5. The jerk can be calculated using Equation 6, as follows: 

𝐴(𝑡) = 𝑉�̇� = (�̈�𝑡, �̈�𝑡) (5) 

Jerk (t) = 𝐴�̇� (6) 

Where, 𝐴(𝑡) is the acceleration of vehicle at instant t; (𝑥𝑡, 𝑦𝑡) is the position of vehicle at instant 

t; and Jerk (t) is the jerk of vehicle at instant t. 

 

In the beginning, Bagdadi and Várhelyi (Bagdadi and Várhelyi, 2011) pointed out that jerks would 

have a better surrogate measure which consider the deceleration behavior to crashes. In their study, 

33 crashes involving 166 drivers’ behaviors were analyzed using regression model in terms of the 

number of critical or dangerous jerks (defined as critical jerks that are equal to or below than -9.9 

m/s3) and self-reported crashes. The regression results found that the number of accidents increased 

by 1.13 times for each additional critical jerk over a three-year period. Hence, jerkiness in driving 

may be an indication of a riskier driving style and a higher probability of accident involvement. 

This study collected the trajectory data containing acceleration values for all vehicles from Fritzing 

Part File (.FZP) in VISSIM. Therefore, the study calculated the total number of critical jerk (TNCJ) 

from the Fritzing Part File for each of three scenarios. A threshold level of -9.9 m/s3 is used for the 

jerks as an indicator of safety-critical driving behavior based on previous studies (Bagdadi and 
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Várhelyi, 2011; Nygård, 1999). This study calculated the TNCJ from all jerk values that are equal 

to or below the threshold value of −9.9 m/s3. 

 

6.5 Results 

 

6.5.1 Operation analysis 

Traffic operation measurements were analyzed to assess the operational impact of CAV in the 

studied section.  As indicated earlier, the performance measures for traffic operation included ATT 

and AD. ATT and AD for every vehicle were obtained from the VISSIM trajectory data. 

Performance measures of CAV scenarios with different MPRs ranging 10% to 100% (with 10% 

increment) were compared with the baseline scenario (0% CAV) to quantify the mobility benefits. 

Both peak and off-peak period were considered, hence, a total of 22 scenarios (including baseline) 

were build and tested using microsimulation. All the scenarios were repeatedly simulated for 30 

times to consider random effects of simulation.  Table 18 shows the studied scenarios with the 

descriptive statistics of ATT and AD. The results in the table showed that, baseline (0% CAV) 

scenario had the largest mean values of both ATT and AD, while lower ATT and AD were obtained 

in CAV scenarios for each MPRs. For instance, 100% MPR of peak period, the mean values of the 

ATT and AD for CAV scenario were lower with ATT (145.80 s) and AD (16.50 s), compared to 

non-CV scenario of ATT (176.20 s), and AD (21.03 s). In terms of 100% MPR in off-peak period, 

the mean values of the ATT and AD for the CAV scenario were lower with ATT (97.24 s) and AD 

(8.32 s), compared to non-CV scenario of ATT (138.50 s), and AD (12.59 s). Therefore, the CAV 

for each MPRs has higher mobility benefits for both peak and off-peak period compared to the 

baseline condition.  
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Table  18 Descriptive Statistics of Traffic Operations Performance Measures in Every 5 Minutes 
Scenarios Time of 

Day 

MOE Minimum 

(seconds) 

Maximum 

(seconds) 

Mean 

(seconds) 

Standard 

Deviation 

(seconds) 

Base 

(0% CAV) 

Peak ATT (s) 167.60 182.30 176.20 3.54 

AD (s) 16.60 25.13 21.03 2.49 

Off-peak ATT (s) 130.80 145.40 138.5 3.17 

AD (s) 9.90 15.76 12.59 1.49 

CAV Scenario 

(10% MPR) 

Peak ATT (s) 165.90 179.30 174.50 3.36 

AD (s) 16.19 24.34 20.38 2.36 

Off-peak ATT (s) 128.20 145.40 135.80 3.10 

AD (s) 9.31 14.80 11.84 1.41 

CAV Scenario 

(20% MPR) 

Peak ATT (s) 161.70 176.70 171.60 2.73 

AD (s) 15.73 23.81 19.92 2.36 

Off-peak ATT (s) 125.50 139.60 132.90 3.04 

AD (s) 9.08 14.45 11.55 1.37 

CAV Scenario 

(30% MPR) 

Peak ATT (s) 157.20 178.60 165.30 3.32 

AD (s) 15.16 22.94 19.19 2.27 

Off-peak ATT (s) 121.2 134.8 128.4 2.93 

AD (s) 8.78 13.98 11.17 1.32 

CAV Scenario 

(40% MPR) 

Peak ATT (s) 153.3 166.8 161.2 3.24 

AD (s) 14.69 22.24 18.61 2.21 

Off-peak ATT (s) 116.40 129.40 123.3 2.81 

AD (s) 8.45 13.46 10.75 1.28 

CAV Scenario 

(50% MPR) 

Peak ATT (s) 150.30 163.50 158.0 3.18 

AD (s) 14.46 21.89 18.31 2.16 

Off-peak ATT (s) 112.10 124.60 118.70 2.71 

AD (s) 8.03 12.78 10.21 1.21 

CAV Scenario 

(60% MPR) 

Peak ATT (s) 147.3 160.2 154.9 3.11 

AD (s) 14.19 21.49 17.98 2.13 

Off-peak ATT (s) 107.90 120.00 114.30 2.61 

AD (s) 7.80 12.41 9.92 1.18 

CAV Scenario 

(70% MPR) 

Peak ATT (s) 144.5 157.1 151.9 3.05 

AD (s) 13.89 21.03 17.59 2.08 

Off-peak ATT (s) 104.90 116.60 111.10 2.54 

AD (s) 7.46 11.80 9.49 1.13 

CAV Scenario 

(80% MPR) 

Peak ATT (s) 142.8 155.3 150.1 3.02 

AD (s) 13.50 20.43 17.09 2.02 

Off-peak ATT (s) 101.6 113.00 107.60 2.46 

AD (s) 7.04 11.20 8.95 1.06 

CAV Scenario 

(90% MPR) 

Peak ATT (s) 140.90 153.3 148.20 2.98 

AD (s) 13.30 20.13 16.84 1.99 

Off-peak ATT (s) 95.58 106.30 101.20 2.31 

AD (s) 6.90 1098 8.78 1.04 

CAV Scenario 

(100% MPR) 

Peak ATT (s) 138.8 150.90 145.80 2.66 

AD (s) 13.03 19.72 16.50 1.95 

Off-peak ATT (s) 91.80 102.10 97.24 2.25 

AD (s) 6.54 10.41 8.32 0.99 

 

 

Moreover, Table 19 illustrates the summary of two sample t-test at 95% confidence level for 
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comparing the ATT and AD between CAV and baseline scenarios. Compared to the base scenario, 

ATT and AD decreased significantly in the CAV scenarios. For both peak and off-peak period, 

simulation model performances were evaluated for two different condition sets (Base and CAV) 

each under 10 different MPRs (10% to 100%, 10% increment) of CAV scenarios. To find out the 

mobility impact of the CAV technologies, the mean values of the mobility measures were 

compared with the baseline scenario. From Table 19, it was found that the maximum significant 

improvement resulted at 100 % MPR for both peak and off-peak hours. For example, in the peak 

period of 100% MPR, the ATT and AD were found to be reduced by 17.22% and 21.50%, 

respectively, in CAV case compared to base condition.  

 

Table  19 Summary of Measure of Effectiveness in Terms of Traffic Operation 
MPR Comparisons Traffic 

Condition 

ATT in 5 minutes (s) AD in 5 minutes (s) 

Mean difference 

(P-value) 

% Reduction Mean difference 

(P-value) 

% Reduction 

10 % Base – CAV Peak  1.68 (0.100) # 0.95 0.65 (0.360) # 3.09 

Off-Peak 2.77 (0.0037) 2.01 0.76 (0.078) # 6.03 

20% Base – CAV Peak  4.46 (<0.0001) 2.59  1.10 (0.122) # 5.23 

Off-Peak 5.59 (<0.0001) 4.04 1.04 (0.015) 8.26 

30 % Base – CAV Peak  11.06 (<0.0001) 6.27 1.83 (0.0001) 8.70 

Off-Peak 10.14 (0.0001) 7.32 1.43 (0.0011) 11.35 

40 % Base – CAV Peak  14.97 (<0.001) 8.49 2.41 (<0.0001) 11.41 

Off-Peak 15.26 (<0.0001) 11.02 1.84 (<0.0001) 14.61 

50 % Base – CAV Peak  18.15 (<0.0001) 10.30 2.71 (<0.0001) 12.88 

Off-Peak 19.84 (<0.0001) 14.32 2.38 (<0.0001) 18.90 

60 % Base – CAV Peak  21.32 (<0.0001) 12.09 3.05 (<0.0001) 14.50 

Off-Peak 24.27 (<0.0001) 17.52 2.67 (<0.0001) 21.20 

70 % Base – CAV Peak  24.31 (<0.0001) 13.79 3.43 (<0.0001) 16.26 

Off-Peak 27.47 (<0.0001) 19.83 3.10 (<0.0001) 24.62 

80 % Base – CAV Peak  26.07 (<0.0001) 14.80 3.93 (<0.0001) 18.69 

Off-Peak 30.92 (<0.0001) 22.32 3.64 (<0.0001) 28.91 

90% Base – CAV Peak  28.01 (<0.0001) 15.89 4.18 (<0.0001) 19.87 

Off-Peak 37.29 (<0.0001) 26.92 3.82 (<0.0001) 30.34 

100 % Base – CAV Peak  30.35 (<0.0001) 17.22 4.52 (<0.0001) 21.50 

Off-Peak 41.30 (<0.0001) 29.82 4.27 (<0.0001) 33.92 

#Difference is insignificant at 5% level     

 

On the other hand, in off-peak hours, the reductions were found to be 29.82% and 33.92%, 

respectively. The results revealed that the applied CAV technologies enhanced operations by 
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decreasing the traffic operational measures (ATT and AD) in the studied section. It is interesting 

to note that the mobility improvement for off-peak and peak hours were found to be insignificant 

below 20% and 30% MPRs, respectively in considering both AD and ATT. So, it is concluded that 

off-peak period has more improvement compared to the peak period in terms of CAV scenarios in 

the studied section of expressway.  

 

Furthermore, statistical model was applied to better asses the effects of traffic operational 

characteristic (i.e., ATT and AD) on CAV effectiveness for different MPRs and traffic condition. 

Tobit model was used for identifying the different MPRs and traffic condition that maximize the 

traffic operational performance at the studied section. In the Tobit model, different scenario 

variables of various MPRs (0% to 100%) and traffic conditions (peak and off-peak) were included. 

The statistical analysis software (SAS 9.4) was used for generating the model results. The model 

formulation takes the following form: 

𝑦𝑖 = {
𝑦𝑖

∗            𝑖𝑓𝑦𝑖
∗ > 0

  0,             𝑖𝑓  𝑦𝑖
∗ ≤ 0

 
(2) 

𝑦𝑖
∗ = 𝛽0 + 𝛽𝑧𝑋 + 휀𝑖          (3) 

 

Where, 𝑦𝑖 is the response variable (ATT or AD in expressway segment 𝑖) and 𝑦𝑖
∗is a latent variable. 

The observable variable 𝑦𝑖 becomes equal to 𝑦𝑖
∗when the latent variable is above zero and becomes 

zero otherwise. 𝛽0 is the intercept, 𝛽𝑧 represents the coefficients of the independent variables (i.e., 

different MPRs and traffic condition); 휀𝑖 is a normally distributed error term with a mean equal to 

zero and a variance (α2); z represents the different scenarios of various MPRs and traffic condition 

of all studied cases; X is the different scenarios in all cases. The results of the models are shown 

in Table 20. In our model settings, we considered 0% MPR (baseline scenario) and peak period as 
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reference category.   

Table  20 Tobit Model Results for Traffic Operation Analysis 
Parameter Average Travel Time (ATT) Average Delay (AD) 

Estimate P-value Estimate p-value 

Intercept 177.74 <0.0001 20.89 <0.0001 

MPR 0% Reference 

MPR 10% -2.20 0.2270 -0.70 <0.0001 

MPR 20% -5.10 0.0051 -1.08 <0.0001 

MPR 30% -10.50 <0.0001 -1.63 <0.0001 

MPR 40% -15.10 <0.0001 -2.13 <0.0001 

MPR 50% -19.00 <0.0001 -2.55 <0.0001 

MRP 60% -22.75 <0.0001 -2.86 <0.0001 

MPR 70% -25.85 <0.0001 -3.27 <0.0001 

MPR 80% -28.50 <0.0001 -3.79 <0.0001 

MPR 90% -32.65 <0.0001 -4.00 <0.0001 

MPR 100% -35.83 <0.0001 -4.40 <0.0001 

Off-peak (vs Peak) -40.78 <0.0001 -8.17 <0.0001 

Log Likelihood (Convergence) -44.4016 20.3955 

AIC 114.8033 -14.79 

 

From Table 20, the parameter estimates for MPRs indicate that the ATT and AD decreases with 

increasing MPRs of CAV. It is worth mentioning that the higher the percentage of the CAV 

implemented, the higher were the operational benefits achieved. Regarding the traffic condition, 

the off-peak period had a significantly lower ATT and AD compared with the peak period.  

 

Apart from statistical significance, Figure 22(a) and 22(b) compares the profile of average travel 

time between the baseline and CAV scenarios in 100 % MPR for both peak and off-peak period. 

For every 5-minute time interval which is denoted in the x axis, the ATT (denoted in y axis) were 

calculated. 
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(a) Peak Period 

 
(b) Off-peak period 

 

Figure 22 Stabilized profile of travel time at 100% MPR. 

 

Figure 22 (a) and 22 (b) illustrates that CAV technologies not only reduced the travel time but were 

able also to stabilize the profile. With lower variances in travel time of CAV technologies are 

expected to increase the travel time reliability of the studied network. In a nutshell, the deployment 
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of CAV in the studied expressway segment would significantly decrease ATT and AD, and thereby 

significantly increase the mobility performance of the road network.  

 

6.5.2 Traffic Safety 

As mentioned earlier, this study considered both time proximity based and the evasive action-

based surrogate measures as traffic safety indicators. The total number of conflicts (TNC) extracted 

from SSAM was considered as time proximity-based measures, while the total number of critical 

jerk (TNCJ) considered as the evasive action-based measures. Afterwards, the CAV scenarios were 

compared with the base scenario to quantify the crash risk in term of surrogate measures of safety 

with different MPRs ranging from 10% to 100% with the increment of 10%. As previously 

explained, both scenarios (baseline and CAV) were repeatedly simulated for 30 times to consider 

random effects of simulation. The descriptive statistics of traffic safety performance measures are 

shown in Table 21. The results of the table showed that the non-CAV scenario has the largest mean 

value of TNC and TNCJ, while the lower TNC and TNCJ were obtained in CAV scenario for each 

MPR. Hence, CAV scenarios have higher safety benefit compared to base scenario in terms of both 

surrogate measures of safety. Looking at the 100% MPR in peak condition, the mean values of the 

surrogate measures of safety for CAV scenarios were lower with TNC (1011) and TNCJ (609) , 

compared to non-CV scenario of TNC (1618) and TNCJ (952). In terms of 100% MPR in off-peak 

period, the mean values of the TNC and TNCJ for CAV scenarios were lower with TNC (309) and 

TNCJ (207), compared to non-CV scenario of TNC (736), and TNCJ (504).  Therefore, the 

scenarios with CAV for each MPRs has the higher safety benefits compared to the baseline 

condition. 
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Table  21 Descriptive Statistics of Traffic Safety Measures 
Scenarios Time of 

Day 

Surrogate 

Measures 

Minimum Maximum Mean Standard 

Deviation 

Base 

(0% CAV) 

Peak TNC 1271 2157 1618 215.50 

TNCJ 856 1038 952 58.76 

Off-peak TNC 664 866 736 47.17 

TNCJ 425 589 504 36.24 

CAV Platooning 

(10% MPR) 

Peak TNC 1207 2049 1538 204.80 

TNCJ 834 1012 928 57.30 

Off-peak TNC 644 840 714 45.73 

TNCJ 412 571 489 35.14 

CAV Platooning 

(20% MPR) 

Peak TNC 1195 2028 1521 202.60 

TNCJ 830 1007 924 56.96 

Off-peak TNC 604 788 669 42.91 

TNCJ 383 530 454 32.59 

CAV Platooning 

(30% MPR) 

Peak TNC 1169 1984 1489 198.30 

TNCJ 805 976 895 55.27 

Off-peak TNC 571 745 633 40.59 

TNCJ 353 489 419 29.97 

CAV Platooning 

(40% MPR) 

Peak TNC 1118 1898 1425 189.70 

TNCJ 779 945 867 53.48 

Off-peak TNC 498 650 552 35.39 

TNCJ 315 436 373 26.76 

CAV Platooning 

(50% MPR) 

Peak TNC 1055 1790 1344 178.90 

TNCJ 745 903 828 51.14 

Off-peak TNC 458 598 508 32.57 

TNCJ 285 395 338 24.33 

CAV Platooning 

(60% MPR) 

Peak TNC 991 1682 1263 168.10 

TNCJ 702 851 781 48.15 

Off-peak TNC 405 528 449 28.71 

TNCJ 264 365 313 22.37 

CAV Platooning 

(70% MPR) 

Peak TNC 941 1596 1184 154.50 

TNCJ 659 799 733 45.19 

Off-peak TNC 365 476 405 25.91 

TNCJ 225 312 267 19.28 

CAV Platooning 

(80% MPR) 

Peak TNC 864 1467 1101 146.60 

TNCJ 633 768 705 43.56 

Off-peak TNC 332 433 368 23.58 

TNCJ 208 289 247 17.68 

CAV Platooning 

(90% MPR) 

Peak TNC 813 1380 1036 138.00 

TNCJ 574 695 638 39.29 

Off-peak TNC 305 398 339 21.65 

TNCJ 187 259 222 15.99 

CAV Platooning 

(100% MPR) 

Peak TNC 796 1345 1011 133.70 

TNCJ 548 664 609 37.62 

Off-peak TNC 279 364 309 19.85 

TNCJ 174 241 207 14.75 
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To address the statistical significance, Table 22 illustrates the summary of two sample t-test for 

two surrogate measures of safety, (i.e., TNC and TNCJ) between the scenarios for both peak and 

of-peak period condition. Compared to the base scenario, TNC and TNCJ were decreased 

significantly within CAV technologies. The safety performances were evaluated for base and CAV 

settings each under 10 different MPRs (10% to 100%, with 10% increment). To find out the safety 

impacts of CAV technologies, the mean values of the surrogate safety measures of each CAV 

scenarios were compared with the base condition. From Table 22, it was found that the maximum 

significant improvement happened at 100 % MPR for both peak and off-peak conditions. For 

example, in 100% MPR of peak condition, TNC and TNCJ found to be reduced by 37.55% and 

36.03%, respectively, in CAV case compared to baseline case. On the other hand, in off-peak hours, 

the reductions of TNC and TNCJ were found to be 58.02% and 59.13%, respectively. The results 

revealed that CAVs can enhance traffic safety by decreasing both evasive action-based and time 

proximity based surrogate measures. It is interesting to note that the safety improvement for off-

peak and peak hours were found to be insignificant below 20% and 30% MPRs which is consistent 

results in terms of traffic operation benefits. It is worth noting that the off-peak period had more 

traffic safety improvement compared to the peak period in terms of CAV MPRs. 
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Table  22 Summary of Measure of Effectiveness in Terms of Traffic Safety 
MPR Comparisons Traffic 

Condition 

TNC  TNCJ  

Mean difference 

(P-value) 

Percentages % Mean difference 

(P-value) 

Percentages % 

10 % Base – CAV Peak  80 (0.141) # 4.94 24 (0.118) # 2.52 

Off-Peak 22 (0.071) # 2.98 15 (0.105) # 2.97 

20% Base – CAV Peak  97 (0.080) # 5.99 29 (0.060) # 3.05 

Off-Peak 66 (0.001) 8.96 50 (0.001) 9.92 

30 % Base – CAV Peak  130 (0.019) 8.03 57 (0.0003) 5.98 

Off-Peak 103 (0.001) 13.99 85 (0.001) 16.86 

40 % Base – CAV Peak  194 (0.001) 11.99 86 (0.001) 9.03 

Off-Peak 184 (0.001) 25.00 131 (0.001) 25.99 

50 % Base – CAV Peak  275 (0.001) 17.00 124 (0.001) 13.02 

Off-Peak 228 (0.001) 30.97 166 (0.001) 32.94 

60 % Base – CAV Peak  356 (0.001) 22.00 171 (0.001) 17.96 

Off-Peak 287 (0.001) 38.99  192 (0.001) 38.09 

70 % Base – CAV Peak  434 (0.001) 26.82 219 (0.001) 23.00 

Off-Peak 331 (0.001) 42.65 237 (0.001) 47.02 

80 % Base – CAV Peak  518 (0.001) 32.01 248 (0.001) 26.05 

Off-Peak 368 (0.001) 47.42 257 (0.001) 50.99 

90% Base – CAV Peak  582 (0.001) 35.97 314 (0.001) 32.98 

Off-Peak 398 (0.001) 54.07 283 (0.001) 56.15 

100 % Base – CAV Peak  607 (0.001) 37.55  343 (0.001) 36.03 

Off-Peak 427 (0.001) 58.02% 298 (0.001) 59.13 

#Difference is insignificant at 5% level 

 

Furthermore, the negative binomial model was also developed for the two surrogate safety 

measures (i.e., TNC and NCJ) in order to quantify the effect of safety benefits in terms of MPRs 

and traffic conditions. The results of the models are shown in Table 23. Based on the results of 

negative binomial models, I found that the higher MPRs had significant lower number of conflicts 

and critical jerk compared to the baseline condition. It is worth mentioning that the higher the 

percentage of the CAV implemented, the higher were the safety benefits achieved in terms of 

surrogate safety measures. Regarding the traffic conditions, the off-peak period had significantly 

smaller number of conflicts and jerk value compared with the peak period.  
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Table  23 Negative Binomial Model Results for Traffic Safety Analysis 

 
Parameter TNC  TNCJ  

Estimate Wald Chi Square  

(P-value) 

Estimate Wald Chi Square  

(P-value) 

Intercept 7.469 24220.70 (<0.0001) 6.963 15657.90 (<0.0001) 

MPR 0% Reference 

MPR 10% -0.041 0.40 (0.527) -0.028 0.14 (0.708) 

MPR 20% -0.079 1.46 (0.227) -0.067 0.79 (0.374) 

MPR 30% -0.116 3.18 (0.075) -0.122 2.60 (0.1066) 

MPR 40% -0.202 9.55 (0.002) -0.192 6.39 (0.0115) 

MPR 50% -0.272 17.03 (<0.0001) -0.260 11.65 (0.0006) 

MRP 60% -0.359 29.40 (<0.0001) -0.326 18.11 (<0.0001) 

MPR 70% -0.439 43.32 (<0.0001) -0.428 30.45 (<0.0001) 

MPR 80% -0.520 59.96 (<0.0001) -0.481 38.08 (<0.0001) 

MPR 90% -0.589 75.80 (<0.0001) -0.582 54.72 (<0.0001) 

MPR 100% -0.638 87.89 (<0.0001) -0.637 64.63 (<0.0001) 

Off-peak (vs Peak) -0.959 1091.21 (<0.0001) -0.859 649.26 (<0.0001) 

Log Likelihood (Convergence) -119.3390 -112.7880 

AIC 264.6779 251.5760 

     

For better visual representation, Figure 23 shows the decreasing trend of TNC and TNCJ 

for CAV scenarios with increasing MPRs.  
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(b) Total Number of Critical Jerk (TNCJ) 

 

Figure 23 Reduction of surrogate measures of safety with different MPRs. 

 

As seen from the figures, the higher CAV implementation, the lower TNC and TNCJ values, and 

therefore the higher were the safety benefits achieved. Overall, the deployment of CAV 

technologies in the studied expressway would significantly decrease conflicts and jerk, and thereby 

increase the safety performance of the road network. 

 

6.6 Summary and Conclusions 

The primary objective of this study was to evaluate both traffic operation and safety benefits under 

connected and automated vehicle (CAV) technologies. The simulation experiments were designed 

in VISSIM and the baseline condition was calibrated and validated for both peak and of-peak 

period utilizing real-time detectors data. The driving behaviors of CAV were validated in VISSIM 

to approximate the decision process of CAV in simulation. Both traffic operation and safety 

measures were considered to evaluate the CAV technologies under different market penetration 

rates (MPRs). Average travel time (ATT) and the average delay (AD) were considered as traffic 
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mobility indicators, while total number of conflicts (TNC) (time proximity based surrogate 

measures) and total number of critical jerk (TNCJ) (evasive action –based surrogate measures) 

were considered as traffic safety indicators.  

 

In general, CAV technologies improved the mobility and safety performances in expressway 

segments by providing significant reductions in ATT, AD, TNC, and TNCJ. Two sample t-test were 

conducted to evaluate the significance of CAV effectiveness for different MPRs over baseline 

scenario. From the results it is found that the higher percentages of CAV technologies 

implemented, higher were the mobility and safety benefits achieved. However, at least 30% and 

20% MPR was needed to achieve both the safety and operational benefits of peak and off-peak 

hour, respectively. This chapter also found the lower variances in travel time and delay of CAV 

technologies for every 5 minutes interval which are expected to increase the travel time reliability 

of studied network. Tobit and negative binomial models were successfully developed to investigate 

the impacts of MPRs of CAV and traffic condition for traffic operation and safety effectiveness, 

respectively. Analysis of both operation and safety characteristics suggested that higher MPR 

increase both mobility and safety benefits and off-peak periods had better safety and operational 

performance (e.g., lower travel time, lower conflicts) compared to peak periods. Hence, the study 

has major implications for improving expressway facilities by recommending optimal market 

penetration of the CAV technologies considering both peak and off-peak periods. 

 

The results of this particular study could provide useful insights to the decision maker or traffic 

operators about the optimized CAV MPR with considering both traffic operation and safety 

perspective including both peak and off-peak periods. The CAV technologies could be integrated 
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into a traffic microsimulation platform to simulate CAVs at a corridor-level in a mixed traffic 

stream and under different infrastructure and vehicle-based scenarios. 
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CHAPTER 7: CONCLUSIONS 

7.1 Summary 

This dissertation concentrates on different types of CAV effectiveness in both traffic safety and 

operation characteristics for different roadways, traffic, and weather conditions. The traffic safety 

and the mobility benefits were explored by utilizing different types of CAV technologies including 

CV, AV, and CV platooning. In this study, simulation modelling techniques were performed to 

analyze the effectiveness of CAV due to the lack of high-resolution CAV data. The baseline 

scenarios of the simulation model were built, calibrated, and validated by utilizing multiple 

detectors including traffic count, speed, and travel time. Meanwhile, the driving behavior of 

different types of CAV were modelled using C++ programming language in order to approximate 

the behavior of CAVs. Then, different MPR of CAVs were analyzed as the MPR is among the 

most critical issues in the near future. Furthermore, different scenarios of CAVs with different 

MPRs were compared with the baseline scenario. Different types of statistical tests (Two sample 

t-test, ANOVA) and modelling techniques were utilized (i.e., Logistic regression, Negative 

binomial, Tobit) to evaluate the effectiveness of market penetration rates and the traffic condition. 

Finally, the optimal market penetration rates of CAVs were identified to obtain the significant 

benefits for different types of traffic (i.e., peak and off-peak hour), roadway (i.e., freeway, 

expressway, arterial, managed lane), and weather condition (i.e., clear, reduced visibility). 

 

In Chapter 3, two CV strategies were applied in dense fog condition in microsimulation. The 

strategies include connected vehicle without platooning (CVWPL) and connected vehicle with 

platooning (CVPL) technology. The car following model was proposed for both technologies with 

an assumption that the CVs will follow this car following behavior in fog condition. Additionally, 
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surrogate measures of safety including the standard deviation of speed, the standard deviation of 

headway, and read-end crash risk index (RCRI) were considered as proximal safety indicator in 

this study. Different MPRs were tested to observe the safety benefit under CV environment. In 

general, both CV technologies were improved safety in fog condition by providing significant 

reduction of standard deviation speed, headway, and RCRI. It was found that the higher MPRs of 

CV implemented, the higher safety benefit achieved. It is worth mentioning that maximum 

improvement was found to be significant at 100 % MPR while the improvement also achieved at 

20% MPR but the result was not significant. A minimum of 30% MPR was needed to observe 

benefits from safety perspective compared to base scenario. The result showed that the connected 

vehicle with platooning technology significantly outperformed the one without platooning 

technology in terms of three surrogate measure of safety mentioned above. It was also found that 

at least 50 % market penetration rates were needed to achieve the benefit of safety for the CV with 

platooning technology compared to CV without platooning technology. Additionally, stabilize 

profile of both standard deviation of speed and headway also demonstrated that crash risk would 

decrease by implementing both CV technologies. On the other hand, simulation results asserted 

that speed was higher in both CV technologies compared to base scenario. Therefore, both CV 

technologies not only improved the traffic safety but also traffic operation. However, the average 

speed was larger in CV with platooning technology compared to CV without platooning 

technology. Hence, taking both traffic safety and operation into consideration, the CV with 

platooning technology outperformed CV without platooning technology. Overall, the traffic safety 

in fog condition was improved by the implementation of CV technologies. Additionally, the CVPL 

technology outperformed the CVWPL technology from a safety and operation perspective. 
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In Chapter 4, the primary objective of this study was to evaluate longitudinal safety of managed-

lane CV platoons on expressways based on simulation results. The simulation experiments were 

firstly designed, including deployment of managed-lane CV platoons and all lanes CV platoons on 

a congested expressway. Then, a vehicle behavior model for CV platoon was used based on the 

IDM model and four surrogate safety measures, standard deviation of speed, TET, TIT, and 

TERCRI were utilized as indicators for safety evaluations. Sensitivity analysis were also 

conducted for different TTC thresholds to compare the results among the three scenarios. The 

distribution of four surrogate measures of safety approximately follow the normal distribution 

because of the stochastic nature of simulation. The values of standard deviation of speed, TET, 

TIT, and TERCRI of base scenario was largest. The results showed that both CV platoons 

scenarios improved safety significantly over non-CV scenario. However, managed-lane CV 

platoons showed the smaller value of those surrogate measures of safety compared to all lanes CV 

platoons. Hence, the scenario with managed-lane CV platoons has the lower longitudinal crash 

risks compared to all lanes CV platoons. Moreover, the result of one-way ANOVA analysis 

showed that the significant differences among the three tested scenarios and inferred that managed-

lane CV platoons significantly outperformed all lanes CV platoons. And, the results of sensitivity 

analysis indicated that the TTC threshold ranging from 1 to 3 seconds have almost same results. 

Hence, the different TTC thresholds did not affect the simulation results. 

 

In Chapter 5, we investigated the safety impact of connected vehicles (CV) and connected vehicle 

lower level automation (CVLLA) utilizing both vehicle to vehicle (V2V) and infrastructure-to-

vehicle (I2V) communications on an urban arterial using microsimulation. Two automated feature 

such as automated braking and lane keeping assistance were considered to model the lower level 
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automated vehicle under V2V and I2V communication technologies. Safety performance of both 

CV technologies were tested in terms of segment and intersection crash risks using surrogate safety 

assessment modeling techniques. The driving behaviors of both CV and CVLLA were applied in 

VISSIM through C++ programming language. Five surrogate measures of safety including the 

TET, TIT, TERCRI, LCC, and NCJ were considered as segment crash risks indicators, while the 

intersection crash risks were evaluated using Surrogate Safety Assessment Model (SSAM). The 

safety benefits were observed under different MPRs for both CV technologies. In general, both 

CV and CVLLA technologies reduce segment crash risks by providing significant reductions of 

TET, TIT, and TERCRI. For intersection crash risks, logistic regression model results showed 

significant reduction of conflict frequency for CV scenarios compared to base scenario. For both 

segment and the intersection crash risks, it was found that the higher the MPRs of CV implemented 

the higher were the safety benefits achieved. Maximum improvement was found to be at 100% 

MPR for both CV and CVLLA technologies. For segment crash risks, a minimum of 30% MPR 

was needed to observe significant safety benefits of both CV and CVLLA technologies in terms 

of TET, TIT, and NCJ compared to the base scenario. However, it was found that at least 40% 

MPR is needed to achieve the safety benefits of intersection crash risks. Hence, taking both 

segment and the intersection crash risks into consideration, the CV and CVLLA technologies 

performed better than non-CV scenario. Finally, the results showed that the CVLLA significantly 

outperformed CV in terms of both segment and intersection crash risks. It was also found that at 

least 60% MPR was needed to achieve the safety benefits of segment and intersection crash risks 

of CVLLA compared to CV technologies.  
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In Chapter 6, the primary objective was to evaluate the  traffic operation and safety benefits under 

CAV technologies. The simulation experiments were designed in VISSIM and the baseline 

condition was calibrated and validated for both peak and of-peak period utilizing real-time 

detectors data. The driving behaviors of CAV were validated in VISSIM to approximate the 

decision process of CAV in simulation. Both traffic operation and safety measures were considered 

to evaluate the CAV technologies under different market penetration rates (MPRs). Average travel 

time (ATT) and the average delay (AD) were considered as traffic mobility indicators, while total 

number of conflicts (TNC) (time proximity based surrogate measures) and total number of critical 

jerk (TNCJ) (evasive action –based surrogate measures) were considered as traffic safety 

indicators. In general, CAV technologies improved the mobility and safety performances in 

expressway segments by providing significant reductions in ATT, AD, TNC, and TNCJ. Two 

sample t-test were conducted to evaluate the significance of CAV effectiveness for different MPRs 

over baseline scenario. From the results it is found that the higher percentages of CAV technologies 

implemented, higher were the mobility and safety benefits achieved. However, at least 30% and 

20% MPR was needed to achieve both the safety and operational benefits of peak and off-peak 

hour, respectively. We also found the lower variances in travel time and delay of CAV 

technologies for every 5 minutes interval which are expected to increase the travel time reliability 

of studied network. Tobit and negative binomial models were successfully developed to investigate 

the impacts of MPRs of CAV and traffic condition for traffic operation and safety effectiveness, 

respectively. Analysis of both operation and safety characteristics suggested that higher market 

penetration rate increase both mobility and safety benefits and off-peak periods had better safety 

and operational performance (e.g., lower travel time, lower conflicts) compared to peak periods. 
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Hence, the study has major implications for improving expressway facilities by recommending 

optimal market penetration of the CAV technologies considering both peak and off-peak periods. 

 

7.2 Implications 

Chapter 3 evaluated the traffic safety and operational benefits of different CV technologies (i.e., 

CVPL, CVWPL) in reduced visibility conditions. From the simulation model results, both CVPL 

and CVWPL significantly outperformed the baseline condition when the MPRs were at least 30%. 

Meanwhile, the model results also found that the CVPL significantly outperformed CVWPL for 

the MPRs of 50% or higher in reduced visibility (i.e., fog) conditions. These findings imply that 

driving behaviors of CV would have significant impacts on both traffic safety and operations under 

inclement weather. It is recommended that at least 30% MPR of CV technologies could reduce 

significant number of traffic conflicts (surrogate of traffic crashes) and enhance traffic mobilities 

in fog conditions compared to clear weather conditions. Hence, if engineers intend to decrease fog 

related crashes, the CV technologies would be a viable option to improve both the traffic safety 

and operational characteristics.  

 

Chapter 4 have already proved that the usage of CV managed-lane would reduce the significant 

number of conflicts for the studied congested expressways. As the full MPRs of CV may not be 

available in the foreseeable future, the decision maker can operate the CVs in the managed-lane to 

obtain the significant safety benefits. Meanwhile, the interaction between CVs and conventional 

vehicles might not have great issues if CVs are implemented as managed lane concept. Therefore, 

it is suggested that CV managed-lane could be useful strategies in the CV transition period. 
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Chapter 5 provides some important implications for CAV practitioners for arterial traffic. CV and 

CVLLA can reduce both intersection and segment crash risk considering both evasive action-based 

and time-proximity based surrogates measures. Meanwhile, for segment crash risks, a minimum 

of 30% MPR was needed to observe significant safety benefits of CAVs in terms surrogate safety 

measures. However, it was found that at least 40% MPR is needed to achieve the safety benefits 

of intersection crash risks. This finding implies that studying the connected and lower level 

automated vehicle in arterials might be a worthwhile endeavor in the transition period of lower 

level to full automation.  

 

Chapter 6 utilized CAV model validated by real-world CAV data to observe both traffic safety and 

operation benefits under different traffic conditions (i.e., peak and off-peak hours). Meanwhile, 

the interaction between the CAVs and conventional vehicles were evaluated correctly in terms of 

real-world validated CAV data. The optimal market penetration rates of CAV for both peak and 

off-peak period were evaluated. From both traffic safety and operation perspective, at least 20% 

and 30% MPR is needed to achieve significant safety and operational benefits for off-peak and 

peak hour, respectively. Therefore, the finding of this study has major implications for improving 

expressway facilities by recommending optimal MPR of CAV to achieve balanced mobility and 

safety benefits with varying traffic conditions. 
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