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ABSTRACT 

Wireless communication systems have rapidly evolved over the past decade which has led to an 

explosion of mobile data traffic. Since more and more wireless devices and sensors are being 

connected, the transition from the current 4G/LTE mobile network to 5G is expected to happen 

within the next decade. In order to improve signal-to-noise ratio (SNR), system capacity, and link 

budget, beam steerable antenna arrays are desirable due to their advantage in spatial selectivity 

and high directivity. Electronically steerable parasitic array radiator (ESPAR) that can achieve 

low-cost continuously beamsteering using varactor diodes have attracted a lot of attention. This 

dissertation explores bandwidth enhancement of the ESPAR using frequency-reconfigurable 

microstrip patch and cavity-backed slot (CBS) antennas.  

In chapter 2, an ESPAR of three closely-coupled rectangular patch elements that do not use phase 

shifters is presented; the beamsteering is realized by tunable reactive loads which are used to 

control the mutual coupling between the elements. Additional loading varactors are strategically 

placed on the radiating edge of all the antenna elements to achieve a 15% continuous frequency 

tuning range while simultaneously preserving the beamsteering capability at each operating 

frequency. Therefore, this frequency-reconfigurable ESPAR is able to provide spectrum diversity 

in addition to the spatial diversity inherent in a frequency-fixed ESPAR. A prototype of the patch 

ESPAR is fabricated and demonstrated to operate from 0.87 to 1.02 GHz with an instantaneous 

fractional bandwidth (FBW) of ~1%. At each operating frequency, this ESPAR is able to scan 

from -20 to +20 degrees in the H plane. However, the beamsteering of the patch ESPAR is limited 

in the H-plane and its instantaneous S11 fractional bandwidth (FBW) is very narrow.  
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This dissertation also explores how to achieve 2-D beamsteering with enhanced FBW using CBS 

antennas. A 20-element cavity-backed slot antenna array is designed and fabricated based on a 

CBS ESPAR cross subarray in chapter 5. This ESPAR array is able to steer the main beam from 

+45o to -45o in the E plane and from +40o to -40o in the H plane, respectively, without grating lobes 

in either plane. The impedance matching is maintained below -10 dB from 6.0 to 6.4 GHz (6.4% 

fractional bandwidth) at all scan angles. In addition, the CBS ESPAR exhibits minimum beam 

squint at all scan angles within the impedance matching bandwidth. This array successfully 

demonstrates the cost savings and associated reduction in required number of phase shifters in the 

RF front end by employing ESPAR technology. 
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CHAPTER 1 INTRODUCTION 

This chapter begins by introducing the advantage of phased arrays in meeting the requirements of 

modern wireless communications systems. An overview of the electronically steerable parasitic 

array radiators (ESPARs) is presented to show how the ESPARs can reduce the cost and design 

complexity of phased arrays. In the end, an outline of this dissertation is listed. 

1.1 Motivation 

Phased arrays play an important role in modern military and commercial communications systems 

due to their advantages in high directivity and beamsteering ability. In point-to-point 

communications systems such as satellite networks [1]-[5], signals suffers from severe free space 

path loss (FSPL) due to the long distance between the satellites and ground stations. In order to 

compensate for the large FSPL, phased arrays are desirable to ensure a high signal-to-noise ratio 

(SNR) and track the satellite when the terminal moves or maneuvers [3]. In the cellular telephony 

industry, there has been significant growth in wireless communications devices such as 

smartphones, tablets and smart home systems in recent years; such rapid growth has led to an 

explosion of mobile data traffic with zettabytes of data being transmitted and received every year 

[6]. As a result, the demand for faster network speeds and larger system capacities is greater than 

ever. The transition from the current 4G/LTE mobile network to 5G is expected to happen within 

the next decade [7]-[10]. The increasingly crowded frequency spectrum hinders the 

implementation of next-generation communication systems and sensor networks. In order to 

efficiently exploit the existing frequency spectrum, the main communication system (primary user) 
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should be able to allow other systems (secondary users) to access the licensed bands 

opportunistically and dynamically. The secondary users are required to sense the spectrum in real 

time and identify transmission opportunities whenever the licensees (primary users) are not using 

their allocated spectrum. In such a system, phased arrays can further improve system capacity by 

enabling the spatial selectivity of both the transmitter and receiver. 

For applications in target detection such as snow avalanches [11]-[13], frequency-modulated 

continuous wave (FMCW) radar is used to continuously transmitting chirps towards the target. In 

order to monitor the whole track of the snow avalanche, an antenna array with steering capability 

is required. In a mechanically scanned system, the beam agility is greatly limited by the speed of 

the antenna mounting structure, which takes around one second to scan the beam [14]. On the other 

hand, a fast-scanning phased array is more suitable to effectively track the fast-moving snow 

avalanches. However, the application of phased array antennas has been historically limited to 

military systems due to their prohibitively high fabrication cost. 

In conventional phased arrays [15]-[19], each antenna element requires either a phase shifter or 

transmit/receive (T/R) module both of which are very costly. Therefore, the reduction in the 

number of required phase shifters would significantly reduce the total cost of a phased array system, 

making them much more attractive for commercial use. In addition, phase shifters exhibit a 

considerable amount of insertion loss which will reduce the antenna efficiency of the phased array 

and typically require the use of additional amplifiers, increasing system cost and DC power 

consumption [20], [21]. Therefore, it is of great benefit to reduce the number of phase shifters in 

the phased array while maintaining comparable beam steering performance. 
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1.2 Overview of Phased Arrays with Reduced Number of Phase Shifters 

A great deal of research effort has gone towards reducing the number of phase shifters used in 

phased arrays. Nemit [22] proposed a network approach to divide a large array into several in-

phase subarrays and use a single phase shifter for each subarray. Various microstrip patch phased 

arrays have been designed to demonstrate this concept [23]-[25]. However, this approach has a 

few inherent disadvantages such as many crossovers in the feeding network, limited beam scan 

angles, large scan losses, and narrow FBWs due to the use of long transmission lines connecting 

antenna elements. Alternatively, Akbar [26] presented a scalable phased array technique with a 

reduced number of phase shifters. Nevertheless, this approach requires the use of multiple 

amplifiers and showed limited scan angles of ±18.5o.   

1.2.1 Operation Mechanism of ESPAR 

The development of the ESPAR has grown from the desire for low-cost beam steerable array with 

large scan ranges and low scan losses.  The first prevalent ESPAR was proposed by Roger 

Harrington in 1974 [27]. The basic concept of the ESPAR is to feed one antenna element directly 

with an RF source and excite the surrounding parasitic antenna elements through the mutual 

coupling between them. The phase difference between the antenna elements can be controlled by 

adjusting the variable reactive loads connected to the parasitic elements. By properly designing 

the magnitude and phase of the induced current on the parasitic elements, the main beam of the 

ESPAR can be steered to a desired direction. 
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1.2.2 Advantages and Challenges of the ESPAR 

The immediate benefit of employing the ESPAR technique in phased arrays is apparent. By 

utilizing an inexpensive tunable load, which is typically designed using varactors, within the 

ESPAR subarray, the total cost of the array can be substantially reduced. In addition, it is possible 

to independently control the frequency and spatial diversities in ESPAR antenna systems [28]. 

However, such benefits do not come without a new set of design challenges. While enabling 

frequency and radiation pattern reconfigurability is desired, the loss from the tuning elements 

degrades the efficiency of the ESPAR, especially at lower operating frequencies. High-Q 

microelectromechanical systems (MEMS) varactors [29]-[32] can be used to alleviate this issue. 

There are also challenges for wideband ESPAR designs. First, it is possible to have wider 

impedance matching bandwidth of ESPAR than a single antenna element. However, this increased 

impedance-matching bandwidth comes at the cost of poor pattern shapes and cross-polarization 

levels. Therefore, the useful operation bandwidth of the ESPAR is limited. Wideband antennas 

such as stacked patch antenna, slot antenna and dielectric resonator antenna can be employed to 

address this issue. Another important phenomenon that can limit ESPAR FBW is beam squinting, 

i.e. the changing of the main beam direction as a function of the operating frequency. Because the 

frequency variation of the mutual coupling can cause significant phase variation of the induced 

currents on the parasitic elements, beam squinting occurs within the impedance-matching 

bandwidth of the ESPAR, limiting its useful operation bandwidth. Care must be taken to achieve 

a relatively smooth frequency response of the Z-parameters for the ESPAR. In addition, a 

customized tunable load which incorporates a fixed inductor and varactor can be designed to 

extend reactively tuning range. By using this customized load, substantial magnitude of the 



5 

 

induced current can be maintained during beamsteering, which also alleviates the beam squinting 

issue. 

1.3 Literature Review of ESPARs 

1.3.1 Monopole ESPARs  

The ESPAR has been an active area of research for the past ten years. This inexpensive beam 

steerable antenna array is initially designed to reduce DC power consumption and fabrication costs 

as compared to digital beamforming (DBF) antennas.  This advantage is of great importance, 

especially for implementation in battery-operated wireless devices [33]. The arrays presented in 

[34]-[36] represented the first significant design improvement after [27] in which, the profile of 

the parasitic array was significantly reduced by using monopole antennas with a ground plane 

instead of the dipole antennas as shown in Figure 1. A conductive ground skirting is used to 

maximize the horizontal gain by lowering the elevation angle of the maximum radiation [37], [38]. 

It is noted in [39] that a further improvement in the design profile was achieved by embedding the 

ESPAR antenna array in a homogeneous dielectric material. However, this device only exhibits 

azimuthal beamsteering and its ability to be incorporated into electrically large arrays has not been 

explored. Moreover, manufacture of these devices is also a complex process compared to standard 

PCB fabrication, requiring precise machining of the ground plane and the conductive skirt. On the 

other hand, the ability to steer the beam around the boresight and simpler PCB fabrication process 

associated with microstrip patch antenna array have attracted strong research interest for 

employing ESPAR technique into planar array designs. 
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Figure 1: Monopole ESPAR structure (reprinted from Schlub, Lu, and Ohira (2003) [34]).  

1.3.2 Microstrip Patch ESPARs 

The extension of the ESPAR technique to microstrip patches has been previously explored. The 

coupling between the patch elements has been characterized in [40] and [41], which demonstrated 

that substantial magnitude coupling is possible with the coupling in the H plane. A three-element 

microstrip patch ESPAR H-plane array was presented in [42]. In this design, H-plane beam 

steering was achieved by placing tunable reactive loads at the ports of parasitic patch elements 

which are mutually coupled to the center driven patch element. However, the tunable reactive loads 

were realized by switching out various chip capacitors with fixed capacitances, avoiding the 

complications introduced by the requisite DC biasing network. A second design [43] introduced 

new reactive loading locations on the parasitic element as shown in Figure 2, allowing the mutual 

coupling between the antennas to be enhanced and well controlled. In addition, these devices 

include fully implemented DC biasing to realize individually control for the varactors with 

different functions. However, all the aforementioned patch ESPARs have a very limited 

impedance matching FBW, e.g. 1% [42]-[46]. Additionally, their beam steering capability is 
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limited in the H plane due to the difficulty of using the mutual coupling in the E plane without 

disturbing the radiating mode of the patch. 

It is clear that frequency reconfigurable antenna techniques [47]-[51] can be utilized to extend the 

operational bandwidth of the patch ESPAR but the efficiency of the ESPAR will be degraded due 

to the introduction of the varactors on the radiating edges of the patch. In addition, it is desirable 

to achieve 2-D beamsteering. The best candidate for such an antenna will have wide impedance 

matching FBW and straightforward control of the mutual coupling in both E and H planes. 

 

Figure 2: Single-layer microstrip patch ESPAR (reprinted from Luther, Ebadi, and Gong (2012) 

[43]). 
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1.3.3 Dielectric Resonator Antennas ESPARs 

The dielectric resonator antenna (DRA) was originally proposed in the early 1980s [52]. Compared 

with microstrip antennas, the DRA exhibits many attractive features such as wide impedance 

matching FBW and low dissipation loss at high frequencies [56]. Mutual coupling between DRAs 

was studied in [53]-[55], which demonstrates that the DRA technique can accommodate a parasitic 

element coupled to the driven element in both E and H planes. The configuration of the five-

element ESPAR using DRAs is displayed in Figure 3. The DRA ESPAR cross array was shown 

to be able to achieve 2-D boresight beamsteering with wider impedance-matching FBW in [56]-

[59]. Nevertheless, the element spacing in the E plane needs to be much larger than that in the H 

plane in order to achieve the proper phase shift; this reduces the energy coupled to the E-plane 

parasitic elements and ultimately compromises the antenna gain [57]. In addition, the beam squint 

performance was not directly reported for DRA ESPARs. However, the 3-dB gain FBW of 5.7% 

for a 240-element DRA ESPAR is much narrower than its impedance-matching FBW of 13.6% 

[58]. 
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Figure 3: (a) Top and (b) bottom view of the five-element DRA ESPAR (reprinted from 

Movahedinia, Chaharmir, Sebak, Nikkhah, and Kishk (2017) [58]). 

1.3.4 Cavity-Backed Slot ESPAR 

Currently, the existing ESPARs have limitations in different aspects. In order to achieve a new 

ESPAR with 2-D beamsteering, large scan angles, wide FBW, high efficiency, and minimum beam 

squint, a 20-element cavity-backed slot (CBS) ESPAR is proposed in this dissertation as shown in 

Figure 4. The antenna array consists of four identical five-element cavity-backed slot ESPAR cross 

(a) 

(b) 
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subarrays. The beamsteering of the CBS ESPAR cross array is achieved by the tunable reactive 

loads on the parasitic elements, which reduces 80% of phase shifters compared to a conventional 

phased array. Since the mutual coupling between the cavities can be easily adjusted by the 

dimensions of the irises, the CBS ESPARs can achieve proper phase shifts in the E plane without 

the aforementioned element spacing issue of the DRA ESPARs, with the benefit of high antenna 

efficiency using substrate integrated waveguide (SIW) technology [60]-[62]. Additionally, several 

critical parameters are systematically studied to understand and optimize the beam squinting 

performance of the CBS ESPAR so that the useful operational FBW can match the S11 FBW. A 

comparison of ESPAR using different radiating elements is summarized in Table 1. 

. 

 

Figure 4: Proposed 20-element CBS ESPAR. 

RF input 2 

RF input 4 

RF input 3 

RF input 1 
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Table 1: Comparison of ESPARs with different radiating elements 

 20-element CBS ESPAR [46] [58] 

Radiating element CBS Patch DRA 

Beamsteering capabilities 2-D 1-D 2-D 

PS reduction (%) 80 67 80 

Center freq. (GHz) 6.2 1.0 10.5 

Aperture size (λ0
2) 2.4×2.6* 2.0×1.7 7.0×9.4 

Gain (dBi) 14.0 12.1 22.4 

Antenna efficiency (%) 85 N/A 56 

Aperture efficiency (%) 32* 38 20 

Max. scan angles (deg.) ±45  ±20 ±25 

Scan loss (dB) 1.5 0.5 0.5 

S11 FBW (%) 6.4 1.0 13.6 

3-dB Gain FBW (%) 6.4 1.5 5.7 

Max. SLL (dB) -10 -7 -10 

*The aperture size is defined by the smallest rectangle that can include the 20 cavities. If the 

total area of 20 cavities is used as the aperture size, then the aperture efficiency increases to 

58%. 
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1.4 Dissertation Outline 

 This dissertation explores the advantages of applying frequency-reconfigurable patch antenna and 

cavity-backed slot antenna techniques to ESPAR applications. Chapter 2 presents a frequency-

reconfigurable microstrip patch ESPAR. Chapter 3 shows an ESPAR using CBS antennas in the 

E plane. A five-element CBS ESPAR cross array with 2-D beam steering is also discussed in this 

chapter. An approach to achieve enhanced FBW for the CBS ESPAR E-plane array is 

demonstrated in Chapter 4. In Chapter 5, the design details of the 20-element CBS ESPAR with 

2-D beamsteering and minimized beam squint is presented. Finally, a summary and some future 

work, which can further enhance the FBW of the CBS ESPAR by using microstrip-line-fed cavity, 

are presented in Chapter 6.   
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CHAPTER 2 A FREQUENCY-RECONFIGURABLE MICROSTRIP 

PATCH ESPAR 

This chapter begins by presenting a microstrip patch ESPAR with continuous frequency 

reconfigurability. Similar to fixed-frequency ESPARs, only the driven element is fed by radio 

frequency (RF) power. The parasitic elements receive energy from the driven element through the 

mutual coupling, which can be controlled by varactors. By properly designing the mutual coupling 

level and adjusting the loading varactors on the parasitic elements, continuous beam steering can 

be realized. In addition, the return loss of this ESPAR can be maintained for all beam scanning 

angles since the mutual coupling is incorporated in the ESPAR design. In this work, loading 

varactors are strategically placed on the radiating edge of all antenna elements to achieve a 15% 

continuous frequency tuning range, while preserving all the aforementioned ESPAR features at 

each operating frequency. Therefore, this frequency-reconfigurable ESPAR is able to provide 

spectrum diversity in addition to the spatial diversity inherent in a frequency-fixed ESPAR. Herein, 

a low-cost microstrip patch ESPAR is demonstrated to operate from 0.87 to 1.02 GHz with an 

instantaneous fractional bandwidth of ~1%. At each operating frequency, this ESPAR is able to 

scan from -20 to 20 degree in H plane. The ESPAR gain and The input third-order intercept point 

(IIP3) are also measured and presented here. 

2.1 Introduction of the Patch ESPAR 

Wireless communication systems and sensor networks have witnessed a rapid growth in the past 

decade. As a result, there are more and more wireless devices used in these systems. However, the 
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designated frequency spectrum is limited. The increasingly-crowded frequency spectrum hinders 

the implementation of next-generation communication systems and sensor networks. To resolve 

this challenge, millimeter-wave technology is exploited to provide larger bandwidth by operating 

at higher frequencies [63]-[66]. However, millimeter-wave signals exhibit higher path losses and 

are more susceptible to the terrain/building effects for wireless applications. It was reported that 

on average less than 15% spectrum was actually utilized from 450 to 2,700 MHz [67]. Therefore, 

it is of great importance to efficiently exploit this existing frequency spectrum which is more 

suitable for wireless applications within complex terrains. 

In order to achieve this goal, the main communication system (primary user) should be able to 

allow other systems (secondary users) to access the licensed bands opportunistically and 

dynamically. The secondary users are required to sense the spectrum in real time and identify 

transmission opportunities, whenever the licensees (primary users) are not using their allocated 

spectrum. Typically, the instantaneous frequency bandwidth for various applications is relatively 

narrow. Therefore, a frequency-reconfigurable antenna is advantageous in that it can cover wide 

frequency range while maintaining a relatively narrow instantaneous bandwidth, by either discrete 

[68]-[70] or continuous [71]-[73] tuning mechanism. On the other hand, a beam-steerable antenna 

can boost the communication system capacity through the introduction of spatial diversity [74]-

[76]. By combining both frequency and spatial diversity in the same device, the system capacity 

can be further improved. There has been a very limited number of works in this category [77]-[81]. 

Frequency-reconfigurable antennas with azimuth beamscanning capability were reported in[77], 

[78]. While frequency-agile antennas with beascanning capability at boresight were proposed in 

[79]-[81]. However, there are limited beam directions in [79], [80] while the frequency and spatial 
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diversity are not independent in [78] and [81]. It is highly desirable to realize a low-cost antenna 

with independent control on operating frequency and radiation pattern. 

The Electronically-Steerable Parasitic Array Radiator (ESPAR) has been previously studied as an 

economic way to perform continuous beam steering using varactor diodes. This concept was first 

proposed in [27]. One of the original ESPARs was designed with seven monopole antennas [33]-

[36] with azimuth beamscanning capability. Additionally, frequency-agile monopole ESPARs 

were demonstrated in [82] and [83] using a similar configuration. ESPARs employing dielectric 

resonator antennas (DRAs) were demonstrated to be able to scan the beam around boresight in 

both H and E planes [56]-[58]. Microstrip patch ESPARs with continuous beamscanning around 

boresight were presented in [42]-[46].  ESPARs exploiting inverted-F and inverted-L structures 

were also reported for cellphone applications in [84].  

In this chapter, a three-element microstrip patch ESPAR with frequency reconfigurability is 

presented as shown in Figure 5. In order to achieve the frequency reconfigurability, each patch is 

loaded with a tunable capacitor on the radiating edge. These varactors are able to not only achieve 

the frequency reconfigurability but also realize beamscanning at each operating frequency. In 

comparison, the ESPAR design in [43], which is illustrated in Figure 6, contains no varactors on 

the radiating edge. It should be noted that there is no frequency reconfigurability in [43] due to the 

fact that the compensation varactors are placed on the non-radiating edges. In addition, the 

instantaneous bandwidth is narrow, approximately 1%, limiting the application of this antenna. 

The ESPAR presented in this chapter is able to tune the center frequency from 0.87 to 1.02 GHz, 
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which effectively covers 15 times of frequency spectrum compared to the one in [43]. In addition, 

±20° continuous beam steering in H plane is realized at each operating frequency.  

 

Figure 5: (a) Top layer of the frequency-reconfigurable ESPAR. Inset: zoomed-in view of the 

inter-element gap with coupling varactors. (b) Ground plane layer. (L=97, D=38.5, C=31, S=31, 

W=77, G=3, Dimensions are in mm. Substrate thickness: 62 mil) 
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Figure 6: Single-layer microstrip patch ESPAR. (reprinted from Luther, Ebadi, and Gong (2012) 

[43]) 

This chapter is organized as follows. Section II describes the theory and design of the frequency-

reconfigurable ESPAR antenna. Section III presents simulation results. Section IV provides the 

fabrication procedure and measurement results. 

2.2 Antenna Theory and Design 

2.2.1 Radiating Element Design 

Single-layer inset-fed microstrip patch antenna is chosen as the radiating element designed on a 

62-mil-thick Rogers RT/Duroid 5880 (εr=2.2, tanδ=0.0009) substrate. The driven element without 

varactor loading is initially designed to resonate at 5% higher than 1 GHz to compensate for the 

frequency downshift caused by the varactors. Two parasitic patches are symmetrically placed on 

both sides of the driven patch with a gap distance G. It should be noted that a smaller G can create 

stronger mutual coupling, which is beneficial for realizing larger beamscanning angles. However, 
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G = 3 mm is selected in this design to avoid the adverse effects from fabrication tolerances. In 

addition, a very small G can disturb the field distribution of the resonant patch, resulting in a higher 

cross-polarization level. 

2.2.2 Varactor Loading 

In order to reconfigure the resonant frequency of the ESPAR, each patch element is loaded with a 

frequency control varactor on its radiating edge. These varactors are placed in the middle of the 

radiating edge to maintain the symmetry, thereby minimizing the cross-polarization level. Two 

pairs of coupling control varactors are placed in the gap between the driven and parasitic elements 

to provide a stronger mutual coupling. In addition, it is noted that the phase shifts between the 

driven and parasitic elements are realized by these coupling control varactors rather than varactors 

loaded at the ports of the parasitic elements. Even though the coupling control varactors can 

provide stronger mutual coupling and larger phase shifts when they are placed closer to the 

radiating edges, a comprise needs to be made to avoid the disturbance of the field distribution of 

the natural resonant mode of the patch, which can deteriorate the radiation pattern and increase the 

cross-polarization level. When the coupling control varactors are tuned, the resonant frequency of 

each patch element is slightly modified. The frequency control capacitors on the parasitic elements 

can be adjusted accordingly to compensate for this frequency detuning and therefore maintain 

good impedance matching at all scan angles. 
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Figure 7: Simulated frequency-reconfigurable ESPAR with and without slot inside the ground 

plane for boresight radiation at 0.95 GHz. a) S11, b) E-plane Co-pol., c) H-plane Co-pol., d) E-

plane X-pol., e) H-plane X-pol. 
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2.2.3 DC Biasing Network Design 

In order to achieve independent control on the resonant frequency and coupling level, each 

frequency control varactor and each pair of coupling control varactors need to have their own bias 

voltage. As shown in Figure 5, the ground plane on the backside of the ESPAR is divided into four 

isolated regions by 6-mil-wide slots. To demonstrate the minimal impact of the slot inside the 

ground plane, the simulated S11 and boresight radiation patterns at 0.95 GHz with and without the 

slot are compared in Figure 7. The difference between the two cases is negligible. The coupling 

control varactors are biased by V1-V2 and V3-V2, respectively. The frequency control varactors are 

tuned by V4-V1, V5-V2, and V6-V3, respectively, from left to right in Figure 5. The bias voltages 

on the patches are provided by drilling 500-μm-diameter holes (patch voltage access) as shown in 

Figure 5 and connecting the patches to individual voltage supplies using insulated wires. The 

location of the patch voltage access is selected in the middle of the non-radiating edge where the 

electric field is minimum (virtual ground), which exhibits the least amount of adverse effects on 

RF performance. Three grounding vias are fabricated to connect the frequency control varactors 

to their respective ground plane section.     

2.3 Design Procedure and Simulation Results 

The frequency-reconfigurable ESPAR shown in Figure 5 is simulated using ANSYS High 

Frequency Structure Simulator (HFSS). Varactors are modeled by a lumped-element series RC 

network. The resistance for the varactor is set to be different values corresponding to various 

capacitance, which is extracted from the measurement results in the varactor datasheet. It is 

observed in Figure 8 that the varactor-loaded patch antenna is able to tune its center frequency 
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from 0.87 to 1.02 GHz. In order to quickly identify the desired coupling control capacitance 

combination for a certain beamscanning angle, the relationship between the coupling control 

capacitance and induced currents on the parasitic patches can be calculated from the Z-matrices of 

the frequency-reconfigurable microstrip patch ESPAR. A modified ESPAR structure with three 

ports as shown in Figure 9 is used to extract the Z-matrices. To validate the equivalency of the 

modified structure, the simulated H-plane radiation patterns for different beamscanning cases at 1 

GHz are compared with the structure shown in Figure 5. It should be noted that the coupling control 

capacitors (C_CPL1 and C_CPL2) are set to be identical in both designs while the frequency 

tuning capacitors are slightly adjusted to maintain the same resonant frequency. It is observed in 

Figure 10 that the main lobes of both cases closely match each other while the side lobe levels are 

slightly different for some beamscanning cases. Therefore, it can be concluded that the modified 

structure is able to accurately predict the radiation direction with the capability of providing Z-

matrices. With the help of the Z-matrices, the ratio of currents between the parasitic patches and 

the driven patch can be analytically analyzed as shown below. 

[
𝑍11 𝑍12 𝑍13

𝑍21 𝑍22 𝑍23

𝑍31 𝑍32 𝑍33

] [
𝐼1
𝐼2
𝐼3

] = [
𝑉1

𝑉2

𝑉3

]                                                      ( 1 ) 

𝑉2 = −𝐼2𝑍𝑇2, 𝑉3 = −𝐼3𝑍𝑇3                                                         ( 2 ) 

After applying the boundary conditions defined by V2 and V3, the current ratios can be found with 

(3) and (4). 

𝐼2

𝐼1
=

(𝑍13∗𝑍23)−𝑍12∗(𝑍33+𝑍𝑇3)

−𝑍23
2 +𝑍22∗𝑍33+𝑍22∗𝑍𝑇3+𝑍33∗𝑍𝑇2+𝑍𝑇2∗𝑍𝑇3

                             ( 3 ) 
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𝐼3

𝐼1
=

(𝑍12∗𝑍23)−𝑍13∗(𝑍22+𝑍𝑇2)

−𝑍23
2 +𝑍22∗𝑍33+𝑍22∗𝑍𝑇3+𝑍33∗𝑍𝑇2+𝑍𝑇2∗𝑍𝑇3

                             ( 4 ) 

Finally, the array factor of the ESPAR can be calculated using (5): 

𝐴𝐹 = 1 + |
𝐼2

𝐼1
| 𝑒

−𝑗𝑘𝑑 cos𝜃+𝑎𝑛𝑔[
𝐼2
𝐼1

]
+ |

𝐼3

𝐼1
| 𝑒

+𝑗𝑘𝑑 cos𝜃+𝑎𝑛𝑔[
𝐼3
𝐼1

]
                       ( 5 ) 

In which, k is the wavenumber and d is the center-to-center distance between antenna elements. 

ZT2 and ZT3 are infinite at the ports on the parasitic patches, therefore, a different reference plane 

as shown in Figure 9 needs to be chosen in order to provide correct results using (3) and (4). As a 

result, the corresponding Z-matrices for different coupling control capacitance can be extracted 

from the modified structure to predict the radiation pattern instead of using the electric field from 

full-wave simulations, which can significantly reduce the design time.  

 

Figure 8: S11 vs. frequency control capacitance on the driven element for boresight radiation. 

 



23 

 

 

Figure 9: Schematic of the modified ESPAR structure. 

 

Figure 10: Simulated H-plane Co-pol. of frequency-reconfigurable ESPAR with and without 

microstrip line loading on the parasitic patches for a) 0o, b) 18o, and c) 24o beamscanning at 1.00 

GHz. 
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For boresight radiation, the four coupling control capacitances are set to be identical. By adjusting 

C_CPL1 and C_CPL2 simultaneously, the relationship between the induced current and driven 

current vs. different coupling control capacitances from 0.5 to 4.5 pF at 1.00 GHz is displayed in 

Figure 11. It is observed that magnitude of the induced current on the parasitic patches increases 

as the coupling control capacitance increases. Meanwhile the phase difference between the induced 

current and driven current decreases from 175o to 25o as the C_CPLs increase from 0.5 to 2.0 pF. 

When the C_CPLs keep increasing beyond 2.0 pF, the phase difference stays around 0o. It can be 

quickly identified that 4.5 pF is the optimum coupling control capacitance for the boresight 

radiation by considering both the desired phase difference and uniform magnitude distribution. 

 

Figure 11: The magnitude ratio and phase difference between the induced currents and driven 

current vs. C_CPL(C_CPL1=C_CPL2). 

In order to investigate the beamscanning capability, the phase tuning range provided by the 

coupling control capacitors can be obtained by sweeping C_CPL1 from 0.5 to 4.5 pF while the 
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in Figure 12. It is observed that the phase difference between patch 2 and patch 1 can be tuned 

from -50o to 175o. However, the -50o to 0o tuning range is not useful due to the small induced 

current magnitude on Patch 2. Since the C_CPL2 is fixed at 3.0 pF all the time, the phase difference 

between Patch 3 and Patch 1 is maintained around 0o. To perform the beamscaning, it can be 

quickly calculated from the array factor that 152o phase difference is required for 24o 

beamscanning in the H plane. According to Figure 12, the corresponding phase difference can be 

achieved when C_CPL1 equals to 1.7 pF. In order to find the optimum value of C_CPL2, a second 

simulation is performed where the C_CPL2 is swept from 0.5 to 4.5 pF meanwhile the C_CPL1 is 

fixed at 1.7 pF. It is noted in Figure 20 that only -60o phase difference can be reached for the 

negative phase difference. Moreover, the induced current magnitude is extremely low on Patch 3 

at -60-degree phase difference due to the small value of C_CPL2. Therefore, C_CPL2=3.5 pF is 

found to be the optimum coupling control capacitance by considering both the phase difference 

and uniform magnitude distribution. As for the 18o beamscanning in the H plane, 74o phase 

difference is desired. Therefore, C_CPL1 is found to be 2.0 pF from Figure 12. Similar simulations 

are performed by sweeping C_CPL2 meanwhile C_CPL1 is fixed at 2.0 pF. It can be easily found 

in Figure 14 that C_CPL2=3.0 pF is the optimum value for 18o beamscanning in the H plane. The 

same method can be applied to any combination of operating frequency and beamscanning angle.  

The H-plane Co-pol. radiation patterns for different beamscaninng cases at 1.00 GHz can be 

calculated by multiplying the array factor and element radiation pattern as shown in Figure 15. 

There is a slight deviation (< 2o) from the designed main lobe direction. Therefore, the coupling 

control capacitances are further optimized to align the main lobe to the designed directions. The 

final values of all the capacitances are listed in Table 2. The radiation patterns using optimized 
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capacitance values and full-wave HFSS simulations are also shown in Figure 15. A lookup table 

like Table 2 can be created for this frequency-reconfigurable microstrip patch ESPAR. 

 

Figure 12: The magnitude ratio and phase difference between the induced currents and driven 

current vs. C_CPL1 (C_CPL2=3.0 pF). 

 

Figure 13: The magnitude ratio and phase difference between the induced currents and driven 

current vs. C_CPL2 (C_CPL1=1.7 pF). 
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Figure 14: The magnitude ratio and phase difference between the induced currents and driven 

current vs. C_CPL2 (C_CPL1=2.0 pF). 

 

Figure 15: Predicted and simulated H-plane Co-pol. of frequency-reconfigurable patch ESPAR 

for a) 0o b) 18o, and c) 24o beamscanning at 1.00 GHz.  
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Table 2: Frequency-Reconfigurable ESPAR Design Table 

Scan Angle 

[Deg.] 

Gain and Varactor Values at Resonant Frequency of 0.92 GHz 

Gain 

[dBi] 

C_CPL1 

[pF] 

C_CPL2 

[pF] 

C_FT1 

[pF] 

C_FT2 

[pF] 

C_FT3 

[pF] 

0 0.72 3.5 3.5 6.5 4.5 6.5 

10 0.2 2.5 4 4.5 5 6.5 

20 -0.86 2.5 3.5 4.5 4.5 6.5 

 Gain and Varactor Values at Resonant Frequency of 0.95 GHz 

0 3.80 3 3 5 3.3 5 

10 3.0 2 4 3.8 3.4 5 

20 1.87 2.5 4 3.3 2.8 5 

 Gain and Varactor Values at Resonant Frequency of 1.00 GHz 

0 8.13 4.5 4.5 1.8 0.8 1.8 

18 7.83 1.7 2.2 0.8 1 1.2 

24 7.54 1.7 3 0.8 1 1.2 

 

2.4 Fabrication and Measurement results 

The frequency-reconfigurable ESPAR is fabricated on a 62-mil-thick Duroid 5880 substrate as 

shown in Figure 16 using standard PCB fabrication process. Infineon BB837 silicon tuning diode 

is used with a tuning range of 0.52-6.6 pF. The three-varactors grounding vias are copper 

electroplated. Three insulated bias wires are placed inside three small holes (not electroplated) and 
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soldered to the microstrip patches. To facilitate antenna pattern measurement in the anechoic 

chamber, a mounting bracket is made by a 3D printer and held on the backside of the ESPAR. 

 

Figure 16: (a) Top and (b) bottom side of frequency-reconfigurable ESPAR. 

The S11 corresponding to different beamscanning angles at the resonant frequency of 0.92, 0.95 

and 1.00 GHz, respectively, is measured by an Agilent N5230A network analyzer and shown in 

Figure 17. Overall, the measured S11 matches the simulation except for some additional resonances 

outside the operating bandwidth. Moreover, it is observed that the S11 is maintained at different 

beamscanning angles for all resonant frequencies of the frequency-reconfigurable ESPAR.  
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Figure 17: Simulated and measured S11 for different beamscanning angles at resonant frequency 

of (a) 0.92, (b) 0.95, and (c) 1.00 GHz, respectively. 
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The simulated and measured H-plane radiation patterns are compared from Figure 18 to Figure 20 

for both co-pol. and cross-pol. Again, the agreement between the two is apparent. The measured 

cross-pol. level is less than -13 dB for all the cases. The measured backside lobe is below -13 dB 

for all the cases as well. The frequency-reconfigurable ESPAR presented in this chapter exhibits 

H-plane beamscanning capability only. When the beam scans in the H plane, the radiation pattern 

in the E plane maintains the same shape as shown in Figure 21. It is noted that the cross-pol. level 

is slightly larger in the E plane due to the asymmetric loading of the frequency-control varactors. 

 

Figure 18 : Normalized H-plane radiation patterns for different beam scan angles at resonant 

frequency of 0.92 GHz. 

The ESPAR gain at boresight vs. frequency for resonant frequencies of 0.92, 0.95 and 1.00 GHz, 

respectively, are plotted in Figure 22. The measured peak gain increases from -1.08 to 7.46 dBi 

when the frequency-reconfigurable ESPAR is tuned from 0.92 to 1.00 GHz. In HFSS simulations, 

the effective series resistances (ESRs) of the varactors are considered. These resistance values are 

extracted from the measured results of the Infineon BB837 varactor and found to be 3.15 ohm 

(0.92 GHz), 3.12 ohm (0.95 GHz), and 1.5 ohm (1.00 GHz), respectively. The discrepancies 
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between simulated and measured peak gains, particularly at lower resonant frequencies, are 

possibly due to extra losses inside the varactors and interconnects which are unaccounted for.  

 

Figure 19: Normalized H-plane radiation patterns for different beam scan angles at resonant 

frequency of 0.95 GHz. 

 

Figure 20: Normalized H-plane radiation patterns for different beam scan angles at resonant 

frequency of 1.00 GHz. 

In order to understand how losses inside varactors reduce the antenna gain, HFSS simulations are 

performed for the boresight radiation case where the ESR of the varactor is set to 0 ohm. The 

realized gain at 1.00 and 0.92 GHz is found to be 8.82 and 8.28 dBi, respectively. This 0.54 dB 

(8.82-8.28) reduction in gain can only be attributed to the reduced electrical size when the antenna 



33 

 

is reconfigured from 1.00 to 0.92 GHz. When the ESRs are set to be 1.5 ohm for 1 GHz operation 

or 3.15 ohm for 0.92 GHz operation, the simulated gain at 1.00 GHz and 0.92 GHz is found to be 

8.13 and 0.72 dBi, respectively. It is found that at 1 GHz operation, the 1.5-ohm ESR caused a 

0.69-dB (8.82-8.13) reduction in gain compared with the lossless varactor case. While at 0.92 GHz 

operation, the reduction in gain compared with the lossless varactor case is 7.56 dB (8.28-0.72), 

which is from the varactor loss (3.15 ohm ESR) at 0.92 GHz. To better understand the effect of 

ESR on the antenna efficiency of the ESPAR, full-wave simulation results are provided in Table 

3. Therefore, high-Q varactors based on GaAs diodes or Micro-Electrical-Mechanical-System 

(MEMS) technology have great potentials to improve the antenna gain significantly. The antenna 

gain of this ESPAR is relatively low when the center frequency is below 0.95 GHz. However, the 

agility in both frequency and beam of this ESPAR is still critical in many modern communication 

and sensor systems in which a large spectrum is shared. There are many unlicensed commercial 

systems that are currently operating at low power levels over a spectrum that is already 

overcrowded, as shown in the United States Federal Communication Commission (FCC) Part 15 

rules [85]. Even though each user uses a narrowband signal, however, this narrowband interference 

(NBI) significantly increases the bit-error probability (BEP) for other users who are using the same 

spectrum [86]. The proposed ESPAR is able to use the frequency agility to mitigate this NBI when 

the spatial diversity is impossible, i.e. the interference signal is from the same direction as the 

desirable communication links. When more and more wireless devices are connected in the future, 

this NBI issue becomes increasingly severe. 
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Table 3: Frequency-Reconfigurable ESPAR Radiation Efficiency vs. ESRs of the varactor 

Efficiency 

 

 

Freq. [GHz] 

ESR in the varactor equivalent circuit [ohm] 

0.5 1.0 1.5 2.0 2.5 3.0 

0.92 48.9% 37.1% 30.0% 24.7% 21.1% 18.6% 

0.95 62.4% 53.1% 45.7% 40.1% 35.6% 31.7% 

1.00 81.6% 79.8% 77.5% 75.3% 73.3% 71.6% 

 

 

Figure 21: Normalized E-plane radiation patterns for different beam scan angles at resonant 

frequency of 0.92, 0.95, and 1.00 GHz, respectively. 

The gain vs. scan angle for several resonant frequencies are shown in Figure 23. The scan losses 

for 0.92, 0.95 and 1.00 GHz from boresight to maximum scan angles are 1.92, 1.55 and 0.6 dB, 

respectively. The summary of the simulated and measured gains as well as simulated radiation 

efficiency is shown in Table 4.  
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Figure 22: Gain vs. frequency at resonant frequency of 0.92, 0.95, and 1.00 GHz, respectively for 

boresight radiation. 

Table 4: Simulated/Measured Gain and Simulated Radiation Efficiency 

Scan Angle [Deg.] 

Resonant Frequency of 0.92 GHz 

Simulated Gain [dBi] Measured Gain [dBi] Radiation Efficiency 

0 0.72 -1.08 18.36% 

10 0.20 -1.36 17.36% 

20 -0.86 -3.0 13.34% 

 Resonant Frequency of 0.95 GHz 

0 3.8 1.1 31.56% 

10 3.0 0.83 26.11% 

20 1.87 -0.45 21.88% 

 Resonant Frequency of 1.00 GHz 

0 8.13 7.46 77.5% 

18 7.83 7.36 62.50% 

24 7.54 6.86 62.03% 
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Figure 23: Simulated and measured gain vs. beam scan angle at resonant frequency of 0.92, 0.95, 

and 1.00 GHz, respectively. 

 

Figure 24: Measured IIP3 at boresight vs. frequency. 

The IIP3 of the frequency-reconfigurable ESPAR is characterized using the measurement setup in 

Figure 24 for boresight radiation cases at 0.92, 0.95 and 1.00 GHz, respectively. The frequency 

difference between the two tones is set to be 60 kHz. The IIP3 is 17 dBm at 0.92 GHz and 33 dBm 

at 1.00 GHz. At lower resonant frequency, the nonlinearity performance is worse since larger 
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varactor values correspond to lower DC bias voltages. The IIP3 performance of this ESPAR is 

better than that of the slot-ring antenna using similar semiconductor varactors [47], i.e. 30 dBm 

for the highest frequency operation (low capacitance) and -6 dBm for the lowest frequency 

operation (high capacitance). 

2.5 Conclusion 

A novel inexpensive frequency-reconfigurable microstrip patch ESPAR has been designed, 

fabricated and measured. This ESPAR exhibits 15% frequency tuning range. At any resonant 

frequency, this ESPAR can scan beam up to at least ±20 degree while maintaining good impedance 

matching. This frequency-reconfigurable ESPAR approach can significantly extend the useful 

frequency range from a fixed-frequency ESPAR, thereby increase the capacity of communication 

systems by providing both frequency and spatial diversity.  

However, the efficiency of the frequency-reconfigurable ESPAR degraded due to the increased 

loss from the varactors at lower frequency operation. In addition, since it is difficult to control the 

mutual coupling in the E plane, the beamsteering of the patch ESPAR is limited in the H plane 

only. Because of the advantages in high antenna efficiency and ease of mutual coupling control, 

the CBS antenna are studied in the next chapter as a promising solution to improve the antenna 

efficiency and realize 2-D beamsteering  
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CHAPTER 3 CAVITY-BACKED SLOT (CBS) ESPAR E-Plane Array 

The frequency-reconfigurable patch ESPAR presented in Chapter 2 can tune continuously over a 

frequency range from 0.92 to 1.05 GHz. In addition, the beamsteering ability is preserved at each 

operating frequency. However, the bandwidth of the patch ESPAR is very narrow (~1%) and its 

beamsteering is limited in the H plane only. In order to achieve E-plane beamsteering, an ESPAR 

using cavity-backed slot (CBS) antennas is introduced in this chapter. After that, a CBS ESPAR 

using wider slot and thicker substrate is designed to further extend the operational bandwidth of 

the CBS ESPAR.  

As with conventional ESPAR antennas, the parasitic cavities are fed by mutually coupling to the 

center cavity and each parasitic cavity is terminated with a tunable capacitor that provides the 

necessary phase shift for the desired beam scanning performance. Due to the difficulty of achieving 

E-plane coupling while simultaneously controlling the coupling level and phase, there have been 

few reported E-plane ESPAR antennas in the literature. In this chapter, it is shown that these 

challenges can be overcome by exploiting the cavity geometry to achieve the desired coupling 

values; the required phase shift is achieved by changing the load impedance of the parasitic cavities. 

In full-wave simulations, it is observed that the proposed ESPAR E-plane array is able to steer the 

beam from -30 to 30 degrees, which is comparable to the beam-steering range of ESPAR antennas 

operating in the H-plane. 

In addition, a CBS ESPAR using thick substrate and wide slot is fabricated and measured to extend 

impedance-matching FBW of a single CBS antenna to 6.0%. Moreover, it is found that a tunable 
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load which uses a fixed inductor, a varactor, and a delay line can provide a much larger impedance 

tuning range compared to that without the inductor. This tunable load is critical to enhance the 

FBW by considering beam squinting. The three-element ESPAR in this chapter is able to scan 

from -26 to 20 degrees in the E plane, operating around 5.15 GHz. The measured peak gain is 

between 5.52 and 6.05 dBi at all scan angles. The radiation patterns are measured at different scan 

angles in E plane. In addition, they are measured at different frequencies to demonstrate the beam 

squinting performance.   

3.1 Introduction of the CBS ESPAR E-plane Array 

Phased arrays are commonly used for satellite communication due to their outstanding beam 

steering performance [87], [88]. However, the required phase shifters and T/R modules are very 

expensive and usually take 50% of the total fabrication cost, which prevents phased arrays from 

being used for commercial applications. As modern wireless communications systems move 

forward, employing beam steerable antennas can improve the spectrum usage efficiency compared 

to omnidirectional antennas. Additionally, being able to scan a highly directional beam can help 

the system avoid noisy environment or line-of-sight issues; the system efficiency is significantly 

improved by the higher SNR and signal quality. As a result, a low-cost beam steerable antenna is 

desirable for commercial communication applications. Herein, the ESPAR antenna is introduced 

as a practical alternative to achieve phased array beam steering. Since the phase shifts are 

implemented using commercially available tunable capacitors instead of phase shifters, the 

fabrication cost is significantly reduced.  
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Most current planar microstrip patch ESPAR designs are limited to only H-plane coupling due to 

the difficulty of introducing and controlling the E-plane coupling level and phase [42]-[46]. To 

tackle these challenges, a new coupling method and antenna design are needed to preserve the 

radiation performance while achieving the desired E-plane coupling. 

In this chapter, a three-element cavity-backed slot ESPAR E-plane array is presented. Unlike 

conventional phased arrays, only the center driven element is fed with RF power and all of the 

parasitic elements are fed by the driven element through mutual coupling. By properly designing 

the loading varactor (CTi) as shown in Figure 25, the required phase shift can be obtained for 

different beam scanning cases. It is noted that the H-plane radiation pattern is fixed at 0 degrees 

when the beam scans from -30 to 30 degrees in the E-plane. 

 

Figure 25: Schematic of the cavity-backed slot ESPAR cross array. L1=22, L2=22.75, L3=22.25, 

W=22, Ws=1.5, S=20, D=7.59, G=4. All dimensions are in mm. 

This proposed ESPAR array achieves E-plane beam steering performance comparable to patch 

ESPARs operating in the H-plane; it also provides E-plane beam steering capability on par with 
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planar ESPAR designs without sacrificing simultaneous H- plane beam steering. Additionally, this 

array can readily be extended to a full-scale array.   

3.2 CBS Antenna Design 

The three-element cavity-backed slot ESPAR E-plane array is designed on a 100-mil-thick Rogers 

RT Duroid 6006 (εr=6.15, tanδ=0.0019) substrate. The high dielectric constant material is used to 

reduce the antenna spacing, which eliminates grating lobes. As shown in Figure 25, the driven 

element is initially designed to resonate at 4.1 GHz and an SMA cable is used to feed the cavity 

with the center pin touching the cavity’s bottom surface. Similar parasitic cavities are placed along 

the E-plane and receive the energy from the center driven element through coupling irises. The 

cavity sizes are made to be asymmetric to compensate for the off-center position of the feeding 

probe; modifying the cavity sizes individually also allows for control of the resonant frequencies. 

The radiating slots are etched at the center of the top of each cavity and the tuning varactors CT are 

loaded on each parasitic cavity at the same location as on the driven cavity to achieve a maximum 

tuning range. By varying the capacitance CT, both the coupling level and the phase can be changed 

to achieve the desired beam steering angles in the E-plane. Since the tuning capacitor is directly 

connected to the cavity and isolated from the slot antenna, the slot resonance is unaffected by 

different terminating capacitances. 
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3.3 Current Ratio between Parasitic and Driven Elements 

This ESPAR can be modeled as a three-port reciprocal network with the reference planes shown 

in Figure 25. The Z matrix of the ESPAR can be extracted from ANSYS HFSS simulations, as 

described in [42]. Therefore, the currents at the three reference planes can be related using (6). 

[
𝑍11 𝑍12 𝑍13

𝑍21 𝑍22 𝑍23

𝑍31 𝑍32 𝑍33

] [
𝐼1
𝐼2
𝐼3

] = [
𝑉1

𝑉2

𝑉3

] , 𝑉2 = −𝐼2𝑍𝑇2, 𝑉3 = −𝐼3𝑍𝑇3                    ( 6 ) 

By solving the equation above, the current ratios I2/I1 and I3/I1 can be calculated as (7) and (8), 

where Ii and ZTi are the induced current and load impedance at the reference plane of port i, 

respectively. The array factor of the ESPAR can be easily calculated using the results from eqn. 

(7) and (8) [42]. 

 
𝐼2

𝐼1
=

(𝑍13∗𝑍23)−𝑍12∗(𝑍33+𝑍𝑇3)

−𝑍23
2 +𝑍22∗𝑍33+𝑍22∗𝑍𝑇3+𝑍33∗𝑍𝑇2+𝑍𝑇2∗𝑍𝑇3

                 ( 7 ) 

𝐼3

𝐼1
=

(𝑍12∗𝑍23)−𝑍13∗(𝑍22+𝑍𝑇2)

−𝑍23
2 +𝑍22∗𝑍33+𝑍22∗𝑍𝑇3+𝑍33∗𝑍𝑇2+𝑍𝑇2∗𝑍𝑇3

               ( 8 ) 

It is found using HFSS simulations that a wider iris width G can provide smoother variations over 

frequency in terms of Z12 and Z13, which is critical to minimize beam squinting for the ESPAR. At 

the same time, large G values lead to the deterioration of the impedance matching. A tradeoff must 

be made to achieve both good impedance matching and beam squinting performance. 
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3.4 Simulation Results of CBS ESPAR E-plane Array 

The ESPAR E-plane array in Figure 25 is simulated using ANSYS HFSS and the tuning varactors 

are modeled as lumped-element ports. Figure 26 demonstrates the overall beam scanning 

performance in the E-plane of the ESPAR array. It is observed in Figure 27 that the return loss of 

the array is better than 15 dB for all scanning cases at 4.08 GHz. Due to the aforementioned 

asymmetry in the E-plane, a beam with a maximum gain of 6.6 dBi is able to be scanned from -30 

degrees to 30 degrees. The maximum scan loss is directed in the boresight direction at a level of 

1.2 dBi. In Figure 28, the H-plane and E-plane radiation patterns are plotted to show that the H-

plane radiation pattern is fixed at boresight while the beam is scanning in the E-plane. The stability 

of the H-plane radiation characteristics allows beam steering in the H-plane without interfering 

with the E-plane beam steering performance. Further study will be performed to investigate the H-

plane beam steering capability of current design. 

 

Figure 26: E-plane beam steering angles in linear scale at 4.08 GHz. 
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Figure 27: S11 for different beam scanning angles. 

 

Figure 28: -30̊ beam steering angles in the E-plane at 4.08 GHz. 

A novel cavity-backed slot ESPAR E-plane array has been demonstrated. A beam scanning range 

of ±30 degrees is observed in the E-plane; this breakthrough in ESPAR design introduces a new 

degree of freedom in spatial diversity that sets it apart from conventional ESPAR designs and 

significantly improves the antenna’s flexibility over the current state of the art. Moreover, H-plane 

parasitic cavities can be easily coupled to the proposed design to form a cross array which is able 

to perform simultaneous E-plane and H-plane beam steering. 
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3.5 Introduction of the CBS ESPAR with Enhanced Bandwidth  

Wireless communication systems have rapidly evolved over the past decade, which led to an 

explosion of mobile data traffic. More and more wireless devices and sensors need to be connected. 

Therefore, the transition from the current 4G/LTE mobile network to 5G is expected to happen 

within the next decade [7]. Though millimeter-wave (mmW) frequency spectrum can provide 

larger bandwidth, the sub-6 GHz spectrum is still desirable in applications when line of sight (LOS) 

is unavailable due to complex terrains or costly mmW beam-steerable antenna arrays are not 

affordable. Thus, the proposed 5G standards will contain sub-6 GHz frequency spectrum. The 

ESPAR can provide low-cost beam steering capability without using expensive phase shifters, 

which can enhance the link budget of sub-6 GHz wireless communication systems and reduce 

interference in a densely-populated user environment by offering spatial diversity. 

Based on the radiation pattern, ESPARs can be divided into two categories: azimuthal directions 

using monopole antennas [34] and boresight directions with microstrip patches [42]-[46] or 

dielectric resonator antennas (DRAs) [57]. ESPARs using microstrip patches have a very narrow 

FBW of approximately 1.0% and scan in H plane only [42]-[46]. An E-plane DRA ESPAR was 

reported to have a 3.5% impedance matching FBW [57]. However, the beam squinting 

performance was not demonstrated. In the same paper [57], a DRA ESPAR with both E- and H-

plane beam steering capability was presented. Nevertheless, its impedance matching FBW is only 

1.0%. It is highly desirable to explore ESPARs with wider FBWs by considering both impedance 

matching and beam squinting. In addition, it is interesting to demonstrate E-plane beam steering 

capabilities. In [90], an E-plane ESPAR using cavity-backed slot antennas was shown to have 2.4% 
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S11 FBW. In [91], a five-element ESPAR using cavity-backed slot antennas exhibits 5.8% S11 

FBW with both E- and H-plane beam steering capability. However, only simulation results were 

presented. In addition, the usable FBWs in [90] and [91] are reduced to 1.0% and 2.0%, 

respectively, by considering beam squinting.  

In this section, the S11 and usable FBWs for the three-element E-plane ESPAR using cavity-backed 

slot antennas are extended to 8% and 4%, respectively, by using wider slots and custom-designed 

tunable loads. In the past, a continuously-impedance-tunable load for ESPARs was often realized 

by a varactor only. Even though the varactor can provide the necessary impedance for ESPAR 

matching and beam steering, it was found herein that due to the limited load impedance tuning 

range, severe beam squinting issues can occur. Therefore, by designing a tunable load which 

incorporates a fixed inductor, a varactor and a delay line, the impedance tuning range can be 

significantly increased. The ESPAR using this new tunable load exhibits wider FBW by 

considering not only S11 but also beam squinting performance, which has been experimentally 

verified. Alternatively, non-foster loads can be exploited to extend the operational FBW of 

ESPARs [92]. This three-element ESPAR can be readily extended to a large array, with 66% 

reduction in the number of phase shifters compared to a conventional phased array. 
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Figure 29: (a) Top and (b) side view of the three-element E-plane ESPAR using cavity-backed slot 

antennas. (La=26.5, Lb=7.7, Lc=21.7, Ls=20.0, Ws=11.5, W1=22.6, W2=23.2, W3=22.8, S1=13.8, 

S2=13.9, S3=14.3, D=5.0, G=3.5, H=5.1, da=0.9, g=1.4, t=2.4. All dimensions are in mm.) 

 

3.6 Antenna Theory and Design 

3.6.1 CBS Antenna Design 

The cavity-backed slot antennas are designed on a 200-mil-thick Rogers TMM6 (𝜀𝑟 = 6, tanδ =

0.0023) substrate as shown in Figure 29. The choice of this dielectric constant renders the spacing 

between antenna elements to be 0.41 λ0, which can avoid grating lobes in beam steering. A slot 

with length Ls and width Ws is formed at the center of the cavity on the top surface. The FBW of 

the cavity-backed slot antenna is enhanced by using a thicker substrate thickness H and wider slot 
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width Ws, compared with the designs in [90] and [91]. The antennas are fed by short-ended 

subminiature version A (SMA) connectors. The location of the inner conductor of the SMA 

connector is chosen to achieve critical coupling to the antenna. Two parasitic elements are coupled 

to the driven element through irises in the metallic walls between them. The driven element is 

initially designed to resonate 5% higher than 5.10 GHz. Due to the loading effects from parasitic 

elements, the final resonant frequency of the ESPAR will be close to the design frequency, i.e. 

5.10 GHz. The iris width G and the widths of the parasitic elements, W2 and W3, need to be slightly 

adjusted in order to maximize the impedance matching bandwidth. S2 and S3 are also adjusted to 

achieve critical coupling for the parasitic elements. 

3.6.2 Tunable Load Design 

In addition to the iris width, the frequency-dependent load impedance is an important factor to 

cause beam squinting. To investigate this phenomenon, two cases regarding the tunable load are 

studied: Case 1) a varactor terminating a 21.5-mm-long delay line similar to Figure 30 (a); Case 

2) a varactor in series with a fixed inductor terminating an 18-mm-long delay line as shown in 

Figure 30 (c). The delay line is introduced to rotate the impedance of 1) the varactor or 2) varactor 

+ fixed inductor on the Smith Chart to achieve the required tuning range of ZTi.  
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Figure 30: Tunable load with (a) varactor and DL1, (b) varactor and DL2, (c) varactor and DL3 with 

fixed inductor Lind. The simulations in (a)-(c) are performed at 5.10 GHz with varactor CT tuning 

from 0.2 to 2.2 pF. d) Fabricated tunable load shown in (c). (DL1=19 mm, DL2=25 mm, DL3=18 

mm. Lind=2 nH) 

 

 

 

 

 



50 

 

 

Figure 31: Simulated normalized E-plane radiation patterns at different frequencies for -26o scan 

angle with (a) case 1 and (b) case 2 tunable loads.  

 

Figure 32: Simulated ESPAR S11 for -26o scan angle with (a) case 1 and (b) case 2 tunable loads. 
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To study the beam squinting performance, the ESPAR is steered to -26o in the E plane for both 

cases. It is observed in Figure 31 (a) that for Case 1, the ESPAR main beam is towards -26o only 

within 5.20-5.30 GHz, which is 25% of the S11 FBW as shown in Figure 32 (a). In contrast, for 

Case 2 as shown in Figure 31 (b), the ESPAR main beam is maintained at -26o from 5.05 to 5.30 

GHz, which is 63% of the S11 FBW as shown in Figure 32 (b). Therefore, it is apparent that though 

the S11 FBW is similar for both cases, the usable operational bandwidth is very different by 

considering the beam squinting performance for this ESPAR. The beam squinting is mainly due 

to the induced currents on the parasitic elements. The phase difference and magnitude ratio of Ii/I1 

(i=2, 3) are plotted in Figure 33. Since Z23 is a very small quantity compared with other Z 

parameters, Ii/I1 is approximately equal to -Z1i/(Zii+ZTi). Im[Z22] is approximate -50 Ω from HFSS 

simulations. Due to the limited impedance tuning range, Im[ZT2] is around -150 Ω in Case 1 

compared to -20 Ω in Case 2. Therefore, |Z22+ ZT2| is much larger in Case 1, leading to a much 

smaller |I2/I1| in Case 1. For Case 1, due to the small |I2/I1| and decreased |I3/I1| below 5.20 GHz, 

the beam squinting occurs below 5.20 GHz. While in Case 2, either |I2/I1| or |I3/I1| remains 

sufficiently large from 5.05 to 5.30 GHz. Therefore, the squint-free bandwidth is much wider for 

Case 2. 
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Figure 33: (a) Phase difference and (b) magnitude ratio between the induced current at port i and 

driven current at port 1 for both tunable load cases. 

The impedance of the tunable load for both cases is presented in Figure 30 (a)-(c) for three different 

configurations. Herein the same varactor (MACOM 46580 beam lead constant gamma GaAs 

tuning varactor) with 0.2-2.2 pF tuning range and bias tee (TCBT-14+) are used for all three cases. 

For Case 2, the total effective reactance of the inductor and varactor can be calculated by (3). 

𝑋𝑒𝑓𝑓𝑒𝑐𝑡 = 𝜔𝐿𝑖𝑛𝑑 −
1

𝜔𝐶𝑇
                                        ( 9 ) 

As seen in (3), the existence of the fixed inductor can improve the reactance tuning range in the 

+jXeffect region. In Figure 30 (a) and (b), two different delay lines are studied to illustrate the 

impedance tuning range for Case 1. Compared with Case 2 shown in Figure 30 (c) in which Lind = 

2 nH, the impedance tuning range of the Case 1 tunable load is always less than Case 2. The Case 

2 tunable load is fabricated using a 31-mil-thick Rogers 5880 (𝜀𝑟 = 2.2,tanδ = 0.0009) substrate 

as shown in Figure 30 (d).  
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Figure 34: Simulated and measured ESPAR S11 for -26o, -16o, -2o and 20o scan angles. Inset: 

photos of the fabricated ESPAR. 

 

3.7 Fabrication and Measurement Results 

The ESPAR using the cavity-backed slot antennas is fabricated using an LPKF S100 milling 

machine as shown in the Figure 34. The vias are formed using 0.9-mm-diameter copper wires to 

realize the substrate integrated waveguide (SIW) cavity. The tunable load is connected to the 

ESPAR through an SMA connector at the backside of each parasitic cavity. 
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Figure 35: Simulated and measured normalized E-plane radiation patterns of the ESPAR for (a) -

26o, (b) -16o, (c) -2o and (d) 20o scan angles at 5.20 GHz. 
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Figure 36: Measured normalized E-plane Co-pol. radiation patterns of the ESPAR for (a) -26o, 

(b) -16o, (c) -2o, and (d) 20o scan angles at seven different frequencies. 

 

The measured S11 corresponding to -26o, -16o, -2o and 20o scan angles are compared to the 

simulations in Figure 34. The close agreement between the simulation and measurement results is 

apparent. In addition, the S11 is maintained below -10 dB from 4.89 to 5.30 GHz for all scan angles, 

which corresponds to 8% FBW.  
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The simulated and measured E-plane radiation patterns are compared in Figure 35 in terms of both 

Co-pol. and X-pol. It is observed that the measured E-plane radiation patterns match the simulation 

results. The measured X-pol. level is better than -17 dB in all cases. The simulated X-pol. levels 

are less than -25 dB so that they are not shown in the plots. When the beam scans in the E plane, 

the H-plane radiation patterns are fixed at the boresight. This feature provides the potential for this 

ESPAR to achieve independent control of E- and H-plane beam steering when two additional 

parasitic cavities in the H plane are added [91].  

 

Figure 37: Simulated and measured realized gain vs. frequency of the ESPAR for (a) -26o, (b) -

16o, (c) -2o and (d) 20o scan angles. 
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To demonstrate the beam squinting performance, the E-plane radiation patterns at seven different 

frequencies are plotted in Figure 36. It is noted that all the radiation patterns at different frequencies 

are normalized to the peak gain at each scan angle, respectively. At -16o and -2o scan angles, the 

beam squinting is not obvious from 5.00 to 5.30 GHz. However, at 20o scan angle, the beam 

squinting appears when the frequency is below 5.10 GHz. At -26o scan angle, the beam squinting 

shows up at frequencies below 5.05 GHz. Therefore, by taking the worst-case scenario, the usable 

operational bandwidth of the ESPAR is 5.10-5.30 GHz, which is approximately 4%, as shown in 

Figure 37.  

Table 5: Summary of Load Inductance/Capacitance, Simulated and Measured Realized Gain and 

Efficiency η 

Scan Angle 

[Deg.] 

CT2 

[pF] 

Equ. L2 

or C2 

CT3 

[pF] 

Equ. L3 

or C3 

Sim. Gain 

[dBi] 

Mea. Gain 

[dBi] 

Sim.η Meas.η 

-26 2.2  1.3 pF 0.3  3.0 nH 6.16 6.05 95% 93% 

-16 2.2  1.3 pF 0.8  0.5 pF 5.80 5.94 95% 98% 

-2 1.5  1.0 pF 2.2  1.3 pF 5.84 5.52 95% 88% 

20 0.3  3.0 nH 2.2  1.3 pF 5.82 5.93 95% 97% 

 

The ESPAR realized gains versus frequency for the -26o, -16o, -2o, and 20o scan angles are plotted 

in Figure 37. The gain-bandwidth performance is consistent with the results found in Figure 36.  

The gain is relatively flat at -16o and -2o scan angles. While at 20o scan angle, the gain quickly 

reduces below 5.10 GHz, which is due to the beam squinting. The measured peak gain is found to 

be 6.05 dBi at -26o. Across all beam scan angles, the realized gain of the ESPAR is maintained to 



58 

 

be greater than 5.52 dBi. The varactor values, the equivalent inductance/capacitance of the tunable 

loads, the simulated and measured gains, and efficiency η, are summarized in Table 5.  

3.8 Conclusion 

A novel ESPAR using the cavity-backed slot antennas has been designed, fabricated and measured. 

This ESPAR is able to achieve 8% impedance FBW and scan from -26o to 20o in the E plane with 

fixed H-plane radiation pattern. The beam squinting performance is studied for this ESPAR. With 

a tunable load composed of a varactor and a delay line only, the operational FBW is reduced to 

2%. In this paper, an improved tunable load which incorporates a fixed inductor can enhance the 

operational FBW to 4%. Efficiencies as high as 88% were realized in this ESPAR due to the low-

loss SIW cavities. In order to realize 2-D beamsteering, a CBS ESPAR cross array is studied in 

next chapter. Additionally, several critical parameters are systematically studied to understand and 

optimize the beam squinting performance so that the useful operational FBW can match the S11 

FBW.  
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CHAPTER 4 CBS ESPAR CROSS ARRAY WITH 2-D 

BEAMSTEERING  

In previous chapters, the ESPAR is just considered specifically as individual three-element array. 

However, many applications require reconfigurable radiation characteristics that may not be 

achievable with the three-element ESPAR. In order to achieve 2-D beamsteering, a novel cavity-

backed slot ESPAR cross array with plane-independent beam scanning capability is presented in 

this chapter. Independent E- and H-plane beam steering control is achieved by dynamically 

changing the load impedance of corresponding parasitic elements. It is shown that this ESPAR 

cross array is able to steer the beam from -24 to 24 degrees in the E-plane and -20 to 20 degrees in 

the H-plane; the demonstrated beam steering performance in either plane is comparable to ESPAR 

antennas only able to operate in a single plane. 

In order to demonstrate the implantation of ESPAR to large planar array, a 20-element cavity-

backed slot (CBS) antenna array is presented herein based on the five-element CBS ESPAR cross 

subarray. This ESPAR array is able to steer the main beam within ±45o in the E plane and ±40o in 

the H plane, respectively, without grating lobes. Inside each subarray, the beamsteering is realized 

by tuning the reactance of the loads on the four parasitic elements. Therefore, only four phase 

shifters are needed for this 20-element array to achieve 2-D beamsteering, corresponding to an 80% 

reduction on the number of phase shifters compared to a classic phased array. The subarray is 

optimized to exhibit minimum beam squint within the impedance-matching bandwidth. This 20-

element ESPAR array is designed, fabricated and measured. The impedance matching is 

maintained below -10 dB from 6.0 to 6.4 GHz (6.4% fractional bandwidth) at all scan angles. The 
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radiation patterns are measured at five different scan angles in the E- and H-planes. At each scan 

angle, the measured radiation patterns at five frequencies across the impedance-matching 

bandwidth exhibit very small beam squint. The gain vs. frequency responses are measured at five 

different scan angles with the highest value of 14.0 dBi occurring at 6.2 GHz at the boresight 

direction. IIP3 of the ESPAR cross subarray is also measured. 

4.1 Introduction of the CBS ESPAR Cross Array with 2-D Beamsteering  

As the development of modern wireless communication systems and sensor networks move 

forward, spatial diversity plays an important role in the system’s efficiency. There are significant 

obstacles in the operational environment such as a dense frequency spectrum, line-of-sight issues, 

and a noisy environment; having a highly directional beam can significantly improve the SNR and 

communication quality. It is known that traditional phased arrays can easily achieve the desired 

beam scanning performance [87]-[89] however the required phase shifters and T/R modules for 

the phased arrays are extremely expensive, close to 50% of total phased array cost, which is a 

barrier for commercial applications. For these reasons, the ESPAR antenna is accepted as a 

practical alternative for achieving beam steering performance in phased array design. Unlike 

traditional phased arrays, only the center driven element is fed with RF power; all of the parasitic 

elements are fed by the driven element. The required phase delay for beam scanning is provided 

by changing the parasitic element’s load impedance. By replacing the phase shifters with 

commercially available tunable capacitors in conventional phased arrays, the fabrication cost can 

be significantly reduced.  Most current ESPAR designs are limited to the H-plane [42]-[46] due to 

the difficulty of introducing and controlling E-plane coupling in planar microstrip patch designs. 
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To address these challenges, a new coupling method is required to independently control E- and 

H-plane beam scanning.  

 

Figure 38: Schematic of the cavity-backed slot ESPAR cross array. L1=20, L2=18, L3=22.5, 

L4=22.25, W1=22, W2=24, W3=1.5, D=7.59, G=4. All dimensions are in mm. 

In this section, a five-element cavity-backed slot ESPAR cross array with separate E- and H-plane 

beam steering control is presented. The required phase shift of each parasitic element is provided 

by a loading tunable capacitor (varactor) as shown in Figure 38. Due to the small cross coupling 

between the H- and E-plane parasitic cavities, separate beam steering control in either plane is 

achieved. By properly designing the values of the varactors, a beam scanning range of -24 to 24 

degrees is achieved in the E-plane and -20 to 20 degrees in the H-plane. 

This cavity-backed ESPAR cross array introduces E-plane beam steering control without 

sacrificing performance in the H-plane. Such beam steering performance is comparable to another 
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three-dimensional design demonstrated in [57] but that work uses only capacitance to achieve all 

beam scanning angles. Moreover, this array can readily be extended to a full-scale array. 

4.2 CBS ESPAR Cross Array Design  

The five-element cavity-backed slot ESPAR cross array is designed on a 100-mil-thick Rogers RT 

Duroid 6006 (εr=6.15, tanδ=0.0019) substrate. As shown in Figure 38, the driven element is first 

designed to resonate at 4.1GHz; the cavity is fed by an SMA cable with the center pin touching 

the cavity’s bottom surface. Similar parasitic cavities are placed surrounding the driven element 

and receive energy through coupling irises. Slots are etched at the center of the top of each cavity 

and a shorter slot length is used on the H-plane parasitic cavity to reduce mutual coupling with the 

slot on the driven cavity. The tuning varactors CT are loaded on each parasitic cavity at the same 

location as on the excited cavity to achieve a maximum tuning range. By varying the capacitance 

CT, the phase shift required to independently steer the beam in either the E- or H-plane is achieved. 

4.3 Current Ratio between Parasitic and Driven Elements 

The CBS ESPAR cross subarray is a five-port reciprocal network. The voltages and currents at the 

five reference planes are related by the Z matrix of this network. The current ratios Ii/I1 can be 

derived from (1), where ZTi is the load reactance at the ith load.  
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The Z matrix of the ESPAR is first extracted from ANSYS HFSS full-wave simulations. Then the 

radiation pattern of the subarray can be calculated by multiplying the CBS element pattern with 

the array factor [58]. This allows us to quickly compute the radiation pattern for different ZTi 

combinations and plot radiation patterns at different frequencies. 

4.4 Simulation Results of the CBS ESPAR Cross Array  

The ESPAR cross array in Figure 38 is simulated using ANSYS HFSS. Tuning varactors are 

modeled in HFSS as lumped-element ports. Figure 39 and Figure 40 illustrates the overall beam 

scanning performance of the ESPAR cross array. It is noted in Figure 41 that the return loss of the 

array is better than 10 dB for all scanning cases. The performance of the antenna in the H-plane 

from 0 to -20 degrees is identical to 0 to 20 degrees due to geometric symmetry. There is slight 

asymmetry observed in E-plane of the design which can be compensated for using asymmetric 

cavity dimensions. Due to the tilted radiation pattern in E-plane, the maximum gain occurs at 24 

degrees and is found to be 7.31 dBi.    
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Figure 39: E-plane beam steering angles in linear scale at 4.1 GHz. 

 

 

Figure 40: H-plane beam steering angles in linear scale at 4.1 GHz. 
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Figure 41: S11 for different beam scanning angles. 

 

A novel cavity-backed slot ESPAR cross array has been demonstrated. Two-dimensional beam 

scanning performance is observed in E-plane and H-plane; this independent beam scanning 

capability significantly improves the flexibility of the current ESPAR design without 

compromising the maximum beam scanning range. This novel ESPAR cross array can enable more 

powerful wireless communication systems with its fast beamsteering capability. It should be noted 

that the impedance-matching FBW is only 2% for a single CBS antenna presented in this chapter. 

Although the impedance-matching FBW of ESPAR is much larger than a single antenna element, 

this increased impedance-matching bandwidth comes at the cost of poor pattern shapes and cross-

polarization levels. As a result, wideband CBS antennas are studied to improve the usable FBW 

of the ESPAR in the next section. 
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4.5 Introduction of the 20-Element CBS ESPAR 

Phased arrays have found their use in various applications such as radar systems [93], [94], satellite 

communications [1], [2], radio-frequency identification (RFID) [95], [96],  and microwave 

imaging [11], [97]. By taking advantage of spatial selectivity and high directivity, phased arrays 

are able to improve signal-to-noise ratio (SNR), system capacity and link budget.  

In conventional phased arrays, each antenna element requires one phase shifter or transmit/receive 

(T/R) module [98], [99], which are typically expensive. However, the growing demands for high 

data rate and large system capacity in modern communications systems such as 5G make phased 

arrays highly desirable. There have been research works to reduce the number of phase shifters by 

grouping several antenna elements into one subarray and using one phase shifter for each subarray 

[23]-[25]. However, this approach has a few inherent disadvantages such as many crossovers in 

the feeding network, limited beam scan angles, large scan losses, and narrow FBWs due to the use 

of long transmission lines connecting antenna elements. Akbar [26] presented a scalable phased 

array technique with reduced number of phase shifters. However, this approach requires the use of 

multiple amplifiers with limited scan angles of ±18.5o.   

Alternatively, Harrington [27] proposed to realize low-cost beamsteering by using ESPARs. The 

basic concept for ESPAR is to feed the parasitic antenna elements through the mutual coupling 

between the driven and parasitic antennas and to control the phase of the parasitic elements through 

tuning the reactive load on the parasitic elements. The earlier works in ESPAR focused on 

azimuthal beamsteering using monopoles [33]-[36]. Later, microstrip patch ESPARs were 

demonstrated with boresight beamsteering capability [42]-[46], however, with very limited FBW 
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around 1%. In addition, the beamsteering of microstrip patch ESPARs is limited to the H plane 

due to the difficulty of using the mutual coupling in the E plane without disturbing the radiating 

mode of the patch. Dielectric resonator antennas (DRAs) were shown to be able to achieve 2-D 

boresight beamsteering with wider impedance-matching FBW [56]-[59]. Nevertheless, the 

element spacing in the E plane needs to be much larger than that in the H plane in order to achieve 

the proper phase shift, which reduces the energy coupled to the E-plane parasitic elements and 

ultimately compromises the antenna gain [57]. The beam squint performance was not directly 

reported for DRA ESPARs. However, the 3-dB gain FBW of 5.7% for a 240-element DRA ESPAR 

is much narrower than its impedance-matching FBW of 13.6% [58]. 

Cavity-backed slot (CBS) ESPARs can achieve proper phase shifts in the E plane without the 

aforementioned element spacing issue [90], [100], with the benefit of high radiation efficiency 

using substrate integrated waveguide (SIW) technology. This concept was extended to a five-

element cross array but with simulations only [91]. It should be noted that in these CBS ESPARs, 

the actual operational FBW is approximately half of the impedance-matching FBW due to beam 

squinting issues.  

In this paper, several critical parameters, which affect the beam squint for a CBS ESPAR, are 

systematically studied. For the first time, the actual operating bandwidth for CBS ESPARs can 

reach the impedance-matching FBW. In addition, a 20-element CBS ESPAR using a five-element 

cross subarray is demonstrated herein using a triangular lattice to efficiently use the antenna 

aperture, as illustrated in Figure 42(a). This 20-element CBS ESPAR is able to scan ±45o and ±40o 

in the E- and H-plane, respectively, without grating lobes. The impedance matching is maintained 
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at all scan angles. The radiation patterns at each scan angle are measured at different frequencies 

within the operational bandwidth to ensure minimum beam squint.  

4.6 CBS ESPAR Subarray Design 

The five-element CBS cross subarray, as shown in Figure 42(b), is designed on a 200-mil-thick 

Rogers TMM6 (𝜀𝑟 = 6, tanδ = 0.0023) substrate. First, the SIW CBS is designed to resonate at 

6.2 GHz [101]. A short-ended semi-rigid coaxial cable with 0.047” outer diameter is used to feed 

the antenna as shown in Figure 50 (c). The maximum coupling from the coax occurs when the 

feeding location is very close to the SIW cavity sidewall. Critical coupling can be realized by 

moving the coax feed towards the center of the cavity. Four parasitic CBS antennas are coupled to 

the driven CBS through the irises between SIW cavities. The amount of energy coupling is 

determined by the width (G) and length (t) of the irises. All four parasitic cavities are terminated 

with a reactive load to achieve phase shifts. In the following subsections, the detailed analysis 

regarding the choice of critical parameters such as feeding location (S1) and iris dimensions (t1, G1, 

t2 and G2) will be presented and discussed. 

Compared with the subarray design in [91], the substrate is thicker and the slot is wider. Even 

though the S11 of the five-element ESPAR [91] exhibits 5.8% FBW, there are beam squinting 

issues within this impedance-matching FBW. It was found that the impedance-matching FBW for 

a single CBS antenna in [91] is actually 2%. Using the dimensions presented in this paper, the 

impedance-matching FBW for a single CBS is increased to 6.0%. 
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Figure 42: (a) 20-element CBS ESPAR. (b) Top and (c) side view of a cross subarray. Ports 2 

and 3 are omitted in (c) since they overlap with Port 1. L=19.5 Ls=15.5, Lc=15.8, W1=18.9, 

W2=19.2, Ws=8.5, S1=10.0, S2=9.0, t1=1.6, t2=3.4, G1=4.0, G2=5.5, H=5.1, d=0.7, dx=19.6, 

dy=42.4, g=1.3. All dimensions are in mm. 
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4.6.1 Effects fom the Coax Size 

When a subminiature version A (SMA) connector is used, the critical coupling is achieved when 

the SMA connector is placed at a location as shown in Figure 43(a). As mentioned earlier, the 

SMA connector needs to be moved towards the center of the cavity to achieve critical coupling. 

However, the wider slot prevents the SMA connector from moving further. As a result, the SMA 

connector is moved away from the symmetry plane of the SIW cavity, which leads to asymmetric 

beam scan angles in the H plane as shown in Figure 43(a). Instead, a 0.047”-diameter semi-rigid 

coaxial cable is used herein for the CBS ESPAR as shown in Figure 43(b). Critical coupling can 

still be achieved at the symmetry plane of the cavity.  

 

Figure 43: Simulated normalized H-plane radiation patterns of five-element CBS ESPAR cross 

subarray for different scan angles using (a) SMA and (b) 0.047”-diameter semi-rigid coaxial cables 

at 6.2 GHz in linear scale.    
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4.6.2 Effects from the Feeding Location 

The CBS ESPAR cross subarray is a five-port reciprocal network. The voltages and currents at the 

five reference planes are related by the Z matrix of this network. 
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, 𝑉𝑖 = −𝐼𝑖𝑍𝑇𝑖(𝑖 = 2,3,4,5)    ( 12 ) 

In which ZTi is the load reactance at the ith load. The current ratios Ii/I1 can be derived from (1) and 

shown as follows. 
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The Z matrix of the ESPAR is first extracted from ANSYS HFSS full-wave simulations. Then the 

radiation pattern of the subarray can be calculated by multiplying the CBS element pattern with 

the array factor [58]. This allows us to quickly compute the radiation pattern for different ZTi 

combinations and plot radiation patterns at different frequencies. 

It should be noted that there are infinite number of solutions if the antenna performance is only 

evaluated at a single frequency. In order to minimize the beam squint, it is critical to reduce 

variations of the Z parameters vs. frequency. Therefore, Zii (i=2, 3, 4, 5) and Zmn (m=1 or 2; n=4 
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or 5) are analyzed here for different feeding locations and iris dimensions since they exhibit 

significantly different frequency responses.  

 

Figure 44: (a) Simulated Z22 phase vs. frequency for different S2. Simulated normalized E-plane 

co-pol. radiation patterns for 30o scan angle with S2 = (b) 10.75 and (c) 9 at different frequencies 

in linear scale.  All dimensions are in mm. 

Zii (i=2, 3, 4, 5) is primarily affected by the feeding location S2. Since all four parasitic antenna 

elements are identical in size, only Z22 responses are presented here for brevity. In Figure 44(a), 

Z22 phase vs. frequency is shown for several S2 values ranging from 8.50 to 10.75 mm. Between 
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6.0 and 6.4 GHz, all solutions can satisfy |S11| < -10 dB, which defines the impedance-matching 

FBW of the ESPAR subarray. However, the Z22 phase sensitivity vs. frequency is quite different 

for various S2 values, ultimately affecting the Ii/I1 response vs. frequency. The beam squinting 

issue for the 30o scan case in the E plane can be analyzed using (2) and the aforementioned method 

to calculate the radiation pattern for the subarray. When S2 = 10.75 (9) mm, the I2/I1 phase changes 

by 158o (82o) within the impedance-matching FBW. The normalized radiation patterns at five 

discrete frequencies from 6.0 to 6.4 GHz are plotted in Figure 44(b), (c) for these two cases. It is 

apparent that S2 = 9 mm can significantly improve beam squint performance. Though S2 = 8.5 mm 

exhibits even better beam squint performance, the coax feeding is too close to the slot, which will 

create fabrication tolerance issues. 

4.6.3 Effects from Iris Dimensions 

Similarly, there are infinite number of combinations of ti and Gi (i=1, 2) to provide the desirable 

amount of energy coupling between the driven element and parasitic elements. However, the phase 

response vs. frequency for Zmn (m=1 or 2; n=4 or 5) is quite different. In this study, the magnitude 

and phase responses vs. frequency for both Z12 and Z13 (Z12 ≈ Z13) are found to be very similar for 

different G1 and t1 values, therefore they are not shown here. 

The mutual coupling between the driven and parasitic elements in the H plane is represented by 

Z14 and Z15.  Owing to the geometry symmetry, Z14 = Z15. The Z14 magnitude response vs. frequency 

is illustrated in Figure 45(a). It is noted that (1) all the  t2 and G2 values must ensure |S11| < -10 dB 

from 6.0 to 6.4 GHz, and (2) the Z14 phase response vs. frequency is very similar for different cases 

therefore it is not shown here. The radiation patterns at five different frequencies from 6.0 to 6.4 
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GHz for the 25o scan angle in the H plane are compared in Figure 45(b) and 4(c) for (1) t2=1.4 mm, 

G2=4.5 mm and (2) t2=3.4 mm, G2=5.5 mm, respectively. In Figure 45(a), it is observed that the 

Z14 magnitude variation vs. frequency is less for Case 2, which leads to better beam squint. There 

are two other cases, which also exhibit relatively smooth variations versus frequency below the 

trace for Case 2 in Figure 45(a). However, the beam scan range is limited, therefore they are not 

chosen for this design. 

 

Figure 45: Simulated Z14 magnitude vs. frequency for different iris dimensions t2 and G2. 

Simulated normalized H-plane co-pol. radiation patterns for 25o scan angle with (b) t2=1.4, G2=4.5, 

and (c) t2=3.4, G2=5.5 at different frequencies in linear scale. All dimensions are in mm. 
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Figure 46: (a) Simulated Z24 phase vs. frequency for different iris dimensions of t1 and G1. 

Simulated normalized E-plane co-pol. radiation patterns for 30o scan angle with (b) t1=5.4, G1=6.0, 

and (c) t1=1.6, G1=4.0 at different frequencies in linear scale. All dimensions are in mm. 
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Figure 47: Design flowchart for the five-element CBS ESPAR subarray. 

As mentioned earlier, Z12 and Z13 magnitude and phase responses vs. frequency are similar for 

different combinations of t1 and G1. However, it is desirable to design |Z12| ≈ |Z14| in order to evenly 

distribute the power from the driven element to every parasitic element. It is observed in this study 

that the different t1 and G1 values affect the Z24 (= Z25) phase response vs. frequency, consequently 
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leading to different beam squinting performance. As a result, the parametric study on Z24 phase vs. 

frequency for different t1 and G1 combinations is presented in Figure 46(a). It is noted that for all 

cases in Figure 46(a): (1) |S11| < -10 dB from 6.0 to 6.4 GHz, (2) |Z12| ≈ |Z14|, and (3) |Z24| magnitude 

vs. frequency is similar. It is observed in Figure 46(a) that t1=1.6 mm and G1=4.0 mm provide the 

smoothest variation over the frequency range, which gives rise to the best beam squinting 

performance at 30o scan angle in the E plane. The I2/I1 phase changes by 291o and 82o from 6.0 to 

6.4 GHz for the cases in Figure 46(b) and (c), respectively.   

Overall, the iris thickness in the H plane, t2, needs to be larger for smaller |Z14| variations. However, 

further increasing t2 will limit the scan angle since the amount of energy coupled to the parasitic 

elements in the H plane is too small. The iris thickness in the E plane, t1, should be as small as 

possible. In this design, t1 is the smallest dimension for two rows of vias. 

The design flow of the five-element CBS ESPAR subarray is illustrated in Figure 47. The feeding 

location S1 and cavity width W1 for the driven element need to be slightly adjusted during the 

design process in order to ensure good impedance matching from 6.0 to 6.4 GHz. The final 

dimensions for the subarray are listed in Figure 42.  

4.7 CBS ESPAR Subarray Simulation Results 

To simulate the CBS ESPAR cross subarray designed in Section II, each parasitic element is 

terminated with a tunable reactive load at the reference plane illustrated in Figure 42(c). This 

tunable reactive load incorporates a varactor (0.2-2.2 pF), an inductor (2 nH), a bias tee and a 

microstrip delay line with a length of 8.3 (7.3) mm for the parasitic elements in the H (E) plane. 
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This tunable reactive load can provide either an equivalent inductance or capacitance by varying 

the bias voltage on the varactor. Compared with a varactor-only load, it can reduce the amount of 

beam squint. The details on how to design such tunable reactive loads are in [27]. 

 

Figure 48: Simulated S11 of the ESPAR cross subarray for different scan angles. 

The reflection coefficients at Port 1 for the boresight, the maximum scan angle in the E plane of 

30 degree, and the maximum scan angle in the H plane of 25 degree are plotted using HFSS, 

demonstrating |S11|<-10 dB for all scan angles from 6.0 to 6.4 GHz, corresponding to a 6.4% FBW. 

The radiation patterns for the boresight and extreme scan angles in both E and H planes are shown 

in Fig 8, for five discrete frequencies across the entire operational bandwidth. Very minor beam 

squint is observed for all scan angles. The maximum realized gain for the subarray is found to be 

7.6 dBi at the boresight. The maximum scan losses are 0.4 and 0.3 dB in the E and H plane, 

respectively.  
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Figure 49: Simulated normalized subarray radiation patterns for 0o scan angle in the (a) E and (b) 

H plane, (c) 30o scan angle in the E plane, and (d) 25o scan angle in the H plane at five discrete 

frequencies. 

4.8 Array Formation 

In order to reduce grating lobes at large scan angles, the subarrays are arranged to form a triangular 

lattice as shown in Figure 42(a). The radiation pattern of the entire 20-element ESAPR is equal to 

the product of the radiation pattern of the subarray and the array factor for the four driven elements. 
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This array formation is similar to the DRA ESPAR array in [24] since both ESPAR subarrays use 

a five-element cross shape. As discussed in [23], if a classic rectangular lattice is adopted for this 

cross subarray, grating lobes appear when the beam is scanned.  

 

Figure 50: (a) Front and (b) back side of the 20-element ESPAR array. (c) Four-way power 

divider and microstrip delay lines for the driven elements. MACOM 46580 beam lead constant 

gamma GaAs tuning varactor, Murata LQP03TN chip inductor, Mini-Circuits surface mount bias 

tee (TCBT-14+) are used here. 

(c) 

(a) (b) 
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4.9 Fabrication and Measurement 

4.9.1 Antenna Fabrication and Measurement Setup 

The CBS ESPAR array is fabricated using standard PCB fabrication process by Hughes Circuits 

Inc. as shown in Figure 50. The 0.7-mm-diameter vias are drilled and then copper electroplated to 

form the SIW cavities. The inner conductors of the 0.047”-diameter coax lines, which are made 

by Taoglas Ltd., are placed inside the non-plated 0.4-mm-diameter feed vias and soldered to the 

top surface of the antenna. The tunable loads are connected to the parasitic elements at the backside 

using SMA connectors as shown in Figure 50(b). For the boresight radiation measurement, the 

four driven elements are combined together using a four-way power divider (RF-Lambda 

RFLT4W2G08G). In order to measure the radiation patterns scanned in either E or H plane, four 

microstrip delay lines are inserted in the power-combining network to provide the required phase 

shifts for the driven elements, as illustrated in Figure 50(c).  

4.9.2 Measurement Results 

The S11 of each subarray is measured using an Agilent N5230A PNA-L. To verify the maintained 

impedance matching at different scan angles, the simulated and measured S11 corresponding to 

boresight radiation, 20o, 45o scan angles in the E plane, and 20o, 40o scan angles in the H plane are 

compared in Figure 51. The close agreement between the simulation and measurement, as well as 

stable impedance matching within the entire scan range is apparent. The operational bandwidth of 

this ESPAR subarray is from 6.0 to 6.4 GHz, which corresponds to a 6.4% FBW.  
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Figure 51: Simulated and measured S11 of the subarray for different scan angles. 

To facilitate the radiation pattern and gain measurement, a mounting bracket is fabricated by a 3-

D printer to hold the antenna aperture as shown in Figure 50(a). The far field measurement is 

performed in an anechoic chamber in the ARMI laboratory at the University of Central Florida. 

The simulated and measured E-plane radiation patterns for 0o, 20o, and 45o scan angles in the E 

plane are plotted in Figure 52(a)-(c). It is observed that the measured E-plane radiation patterns 

agree with the simulation results. The X-pol. levels are less than -25 dB for all scan cases. The 

simulated and measured H-plane radiation patterns for 0o, 20o and 40o scan angles in the H plane 

are displayed in Figure 52(d)-(f). The X-pol. levels are 20 dB below the Co-pol. for all scanning 

cases, with the highest X-pol. level at 40o scan angle. Overall, the agreement between the 

simulation and measurement is very good. The measured sidelobe levels (SLLs) at the boresight 

are slightly, i.e. 5 dB, higher than the simulation. However, the measured SLLs are below -12.5 

dB in all cases shown Figure 52.  
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Figure 52: Simulated and measured normalized E-plane radiation patterns of the ESPAR for (a) 

0o, (b) 20o, (c) 45o scan angles for E-plane scanning, and H-plane radiation patterns of the ESPAR 

for (d) 0o, (e) 20o, and (f) 40o scan angles for H-plane scanning at 6.2 GHz. 
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Figure 53: Measured normalized E-plane radiation patterns for (a) 0o, (b) 20o, (c) 45o scan angles 

and H-plane radiation patterns for (d) 0o, (e) 20o, and (f) 40o scan angles of the ESPAR at five 

discrete frequencies. 
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The E- and H-plane Co-pol. radiation patterns are also plotted at five discrete frequencies from 6.0 

to 6.4 GHz for the aforementioned scan angles in Figure 53. It is observed that the maximum 

radiation directions are maintained for all scan angles within the operational bandwidth. The 

variations of the realized gain are less than 3 dB across the antenna bandwidth.  

The realized gains of the ESPAR versus frequency for five different scan angles are plotted in 

Figure 54. The measured peak gain is found to be 14.0 dBi at 0o. The scan loss is 1.51 and 1.53 

dB for the E and H plane, respectively. The equivalent inductance or capacitance of the tunable 

loads at the reference planes and the simulated and measured gains are summarized in Table 6.  

Table 6: Summary of Equivalent Load Inductance/Capacitance, Simulated and Measured 

Realized Gain 

Scan Angle (ɸ, θ) 

[deg.] 

Eq. L2 or 

C2 

Eq. L3 or 

C3 

Eq. L4 or 

C4 

Eq. L5 or 

C5 

Sim. Gain 

[dBi] 

Meas. Gain 

[dBi] 

(0, 0) 1.0 nH  1.0 nH 0.2 pF 0.2 pF 14.1 14.0 

(0, 20) 0.1 pF 2.0 nH 0.2 pF  0.2 pF 13.6 13.4 

(0, 45) 0.3 pF 0.5 nH 0.2 pF  0.2 pF 12.5 12.5 

(90, 20) 1.0 nH 1.0 nH 3.0 nH  0.4 pF 13.3 13.2 

(90, 40) 1.0 nH 1.0 nH 1.0 nH  0.5 pF 12.5 12.5 
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The input third-order intercept point (IIP3) of the CBS ESPAR subarray is characterized using the 

measurement setup as shown in Figure 55(a). Two isolators (ISOs) (RF-Lambda RFLI-402-4) and 

one two-way power divider (RF-Lambda RFLT2W2G08G) are used to combine two main tones 

with 100 kHz frequency separation at a center frequency f0 of 6.2 GHz and feed the CBS ESPAR 

subarray. As shown in Figure 55(b) and (c), the measured IIP3 is 44.3 (46.2) dBm for 0o (30o) scan 

angle in the E plane. The tunable slot-ring antenna presented in [47] exhibits IIP3 values ranging 

from -5 to 30 dBm depending on the bias voltage. It should be noted that the antenna in [47] uses 

a different varactor (M/A-Com MA46H071-1056, 2.5-0.45 pF from 0-20V) and operates from 

0.95 to 1.8 GHz. The high IIP3 for the CBS ESPAR is due to the fact that (1) a significant portion 

of energy incident into the driven element is coupled to the four parasitic elements, and (2) not all 

the energy coupled to the parasitic elements enters the reactive loads. In HFSS simulations, it is 

found the Si,1 (i=2, 3, 4, 5) is between -15 and -12.5 dB, which represents the percentage of the 

incident power that is coupled to the ports on the parasitic elements.     
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Figure 54: Simulated and measured realized gain of the ESPAR for (a) 0o, (b) 20o, (c) 45o scan 

angles in the E plane and (d) 20o, (e) 40o scan angles in the H plane. 

(c) 

(a) (b) 

(d) 

(e) 



88 

 

  

 

Figure 55: (a) Measurement setup for IIP3. IIP3 of CBS ESPAR subarray for (b) 0o and (c) 30o scan 

angle in the E plane at 6.2 GHz.  

Table 7 compares the proposed CBS ESPAR and other passive phased arrays with reduced number 

of phase shifters. In contrast to the patch [46] and DRA [58] ESPARs, the CBS ESPAR exhibits 

much wider scan angles, higher antenna efficiency, and larger 3-dB gain FBW. [25] uses an 

interwoven feeding network to achieve 50% phase shifter reduction. However, its beamscanning 

range, FBW and scan loss are inferior to the CBS ESPAR presented herein.  
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Table 7: Comparison of phased array antennas with reduced number of phase shifters (PSs) 

 This work [46] [58] [25] 

Radiating element CBS Patch DRA Patch 

Beamsteering capabilities 2-D 1-D 2-D 1-D 

PS reduction (%) 80 67 80 50 

Center freq. (GHz) 6.2 1.0 10.5 7.8 

Aperture size (λ0
2) 2.4×2.6* 2.0×1.7 7.0×9.4 14.9×2.6 

Gain (dBi) 14.0 12.1 22.4 26.4 

Antenna efficiency (%) 85 N/A 56 N/A 

Aperture efficiency (%) 32* 38 20 88 

Max. scan angles (deg.) ±45  ±20 ±25 ±24 

Scan loss (dB) 1.5 0.5 0.5 3.0 

S11 FBW (%) 6.4 1.0 13.6 3.6 

3-dB Gain FBW (%) 6.4 1.5 5.7 3.6 

Max. SLL (dB) -10 -7 -10 -10 

*The aperture size is defined by the smallest rectangle that can include the 20 cavities. If the 

total area of 20 cavities is used as the aperture size, then the aperture efficiency increases to 

58%. 
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4.10 Conclusion 

A 20-element CBS ESPAR has been demonstrated in both simulations and measurements to 

operate at 6.2 GHz with 6.4% FBW. Minimum beam squint exists within the entire impedance 

matching FBW through rigorous studies on the feeding location and coupling iris. This array is 

able to scan within ±45o and ±40o in the E and H plane, respectively, with the maximum scan loss 

of 1.5 dB. At all scan angles, the impedance-matching FBW is maintained. The maximum realized 

gain of 14.0 dBi indicates an 85% antenna efficiency, which is attributed to the use of low-loss 

SIW cavities. The IIP3 is found to be above 44.3 dBm. This CBS ESPAR provides an alternative 

way to develop high-efficiency phased array antennas with large scan angles and reduced costs. 
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CHAPTER 5 MICROSTRIP-LINE-FED CBS ESPAR 

In order to further increase the impedance-matching bandwidth of the CBS antenna presented in 

chapter 5, a three-element ESPAR using a microstrip-line-fed cavity-backed slot in the E plane is 

presented in this chapter. The driven element at the center is fed by an open-ended microstrip line 

and the two parasitic cavities lying in the E-plane are fed by the center driven cavity through 

coupling irises. The microstrip line coupled to the parasitic cavity is terminated with varactors to 

provide variable load reactance. By properly designing the load reactance, continuous E-plane 

beam steering capability can be achieved. The proposed design is able to achieve a 27.2% 

impedance-matching fractional bandwidth. Additionally, the tunable load can be integrated into 

the same layer as the microstrip line, which reduces the size of the CBS ESPAR. It is shown that 

the proposed ESPAR can steer its beam from -30 to 30 degrees in the E plane. The return loss is 

maintained from 5.00 to 6.58 GHz for all scan angles. 

5.1 Introduction of the Microstrip-Line-Fed CBS ESPAR 

The 5G mobile network is expected to deploy within the next decade to resolve the significantly 

increased demand on mobile data traffic. The millimeter-wave (mmW) spectrum has attracted 

much interest by providing larger allocated signal bandwidth in a densely-populated environment. 

However, the sub-6 GHz frequency spectrum is still desirable for offering broad 5G coverage 

within a complex terrain. Therefore, the sub-6 GHz spectrum plays an important role in the future 

5G network. In order to further improve the system capacity in the overcrowded sub-6 GHz 

spectrum, a wideband antenna array with beam scanning capability is desired.  
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ESPARs are known to be an economical way to achieve beam scanning capability by replacing 

phase shifters with low-cost varactors but most ESPARs with boresight radiation exhibit a narrow 

instantaneous FBW. For example, a three-element ESPAR formed by microstrip patches exhibits 

only 1% FBW and similar bandwidth is observed for a five-element DRA ESPAR in [57]. In [90], 

an E-plane ESPAR using cavity-backed slot antennas using coaxial feeding was reported to have 

only 2.4% S11 FBW. An ESPAR with a larger FBW is desired to further improve the system 

capacity for future 5G applications.     

In this section, a three-element ESPAR using microstrip-line-fed cavity-backed slot antennas in 

the E plane is demonstrated to achieve a wide operational bandwidth as shown in Figure 56. By 

properly designing the load impedance, ±30-degree continuous beam steering capability is realized 

in the E plane. In addition, the impedance matching of the proposed ESPAR is maintained from 

5.00 to 6.58 GHz for all beam scan angles. Compared to [90], the tunable load can be easily 

integrated with the microstrip line on top of the parasitic element, which reduces the size of the 

CBS ESPAR. 
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Figure 56: (a) Top and (b) side view of the three-element ESPAR in the E plane. L1=13.5, L2=8.2, 

L3=6.2, Ls=8.7, W1=27.0, W2=1.4, Ws=26.0, d1=4.3, d2=8.3, g=5.0, h1=0.8, h2=5.1. All 

dimensions are in mm. 

 

5.2 Microstrip-Line-Fed CBS ESPAR Design 

The cavity-backed slot antenna is designed on a 200-mil-thick Rogers TMM 3 (𝜀𝑟 = 3.27, tanδ =

0.002) substrate and the microstrip line is designed on a 30-mil-thick Rogers TMM 4 (𝜀𝑟 =

4.5, tanδ = 0.002) on top of the cavity as shown in Figure 56. The driven cavity is initially 

designed to resonate at 5% higher than 6.5 GHz and a slot with length Ls and width Ws is cut at the 

center of its top surface. The driven element is fed by an open-ended microstrip line which is offset 

by d1 to achieve critical coupling to the antenna. A 0.047” semi-rigid cable is used to feed the 
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microstrip line from the bottom of the cavity. Two parasitic elements are coupled to the driven 

element through coupling irises in the E plane. The coupling iris width g and offset distance d2 are 

slightly adjusted to maximize the impedance matching bandwidth. The microstrip line on top of 

the parasitic element is terminated by a varactor to provide a variable load impedance for different 

beam scanning angles. The Z-matrix of the ESPAR is extracted from full-wave simulations and 

imported into the ANSYS circuit simulator. A co-simulation can be performed to obtain the desired 

load impedance for different scan angles. 

5.3 Microstrip-Line-Fed CBS ESPAR Simulation Results 

The ESPAR array shown in Figure 56 is simulated using ANSYS HFSS. The tunable loads are 

modeled as lumped elements and the equivalent series resistance (ESR) is set to be 1.5 ohm. The 

impedance matching for different scan angles is displayed in Figure 57. It is observed that S11 is 

maintained below -10 dB from 5.00 to 6.58 GHz for all scan angles. It is observed in Figure 58 

that the proposed ESPAR is able to scan from -30o to 30o in the E plane. It is noted that the 

simulated peak gain is found to be 6.77 dBi at -30o and the realized gain of the ESPAR is 

maintained to be larger than 5.72 dBi for all beam scan angles. To demonstrate the squint-free 

bandwidth, the E-plane radiation patterns are plotted in Figure 59 at five different frequencies for 

boresight radiation. Approximately 93% simulated antenna efficiency is obtained with metallic 

walls and ideal varactors. The simulated antenna efficiency is reduced to 87% when the ESR is 

increased to 3.0 ohm. To achieve high antenna efficiency, high-Q Microelectromechanical systems 

(MEMS) could be used in place of varactors.   



95 

 

 

Figure 57: Simulated S11 of the ESPAR for different scan angles. 

 

Figure 58: Simulated E-plane radiation patterns for different scan angles at 6.0GHz in linear 

scale. 

4 5 6 7 8
-30

-25

-20

-15

-10

-5

0

S
1

1
 [

d
B

]

Frequency [GHz]

 -30
o
 scan angle in E plane

 -15
o
 scan angle in E plane

 0
o
 scan angle in E plane

 15
o
 scan angle in E plane

 30
o
 scan angle in E plane

0

30

60

90

120

150

180

210

240

270

300

330

-5

0

5

-5

0

5

G
a
in

 [
d

B
i]

  -30
0
 scan angle(C

2
=2.20 pF, C

3
=0.28 pF)

  -15
0
 scan angle(C

2
=0.41 pF, C

3
=0.99 pF)

  0
0
 scan angle   (C

2
=0.52 pF, C

3
=0.52 pF)

  15
0
 scan angle (C

2
=0.38 pF, C

3
=0.99 pF)

  30
0
 scan angle (C

2
=0.28 pF, C

3
=2.20 pF)



96 

 

 

Figure 59: Simulated E-plane radiation patterns at different frequencies for boresight radiation. 

 

5.4 Conclusion 

A novel ESPAR using microstrip-line-fed cavity-backed slot antennas in the E plane has been 

demonstrated. This ESPAR exhibits a 27.2% FBW and ±30-degree beam steering capability in the 

E-plane. The size of the ESPAR using cavity-backed slot antennas is also further reduced by 

integrating the tunable load into the same layer as the microstrip line. Moreover, it can be readily 

extended to a large array with 66% reduction in the number of phase shifters compared to 

conventional phased arrays. 
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CHAPTER 6 SUMMARY AND FUTURE WORK 

6.1 Summary 

The low-cost benefit associated with reducing the number phase shifters and uncomplicated PCB 

fabrication process has inspired the development of planar ESPARs in the past decade. In order to 

design an ESPAR with 2-D beamsteering, large scan angles, wide FBW, high efficiency, and 

minimum beam squint, different antennas are studied in this dissertation. A number of 

contributions are made in these ESPARs, which are summarized as follows. 

First, the introduction of a frequency-reconfigurable microstrip patch ESPAR has enabled 

frequency diversity of ESPARs without sacrificing the beamsteering performance. The measured 

results showed that the proposed frequency-reconfigurable patch ESPAR can scan up to ±20o at 

each operating frequency, which extends the operational bandwidth by 15 times compared to a 

frequency-fixed ESPAR. The introduction of DC isolation slits gives explicit control for both 

mutual coupling and frequency tuning. The simple fabrication associated with the single-layer 

microstrip patch has made the proposed patch ESPAR readily extendable to large arrays. 

In order to achieve E-plane beamsteering, a CBS ESPAR in the E plane was demonstrated. Since 

the mutual coupling can be easily controlled by adjusting the dimension of the irises in between 

the cavities, the proposed CBS ESPAR can achieve proper phase shifts in the E plane without the 

element spacing issue of the DRA ESPARs while maintaining high antenna efficiency as a result 

of using SIW technology. Moreover, 2-D beamsteering was achieved by coupling two additional 

parasitic cavities to the driven cavity in the H plane. Since the mutual coupling between the E- and 
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H-plane parasitic cavities is minimal, independent E- and H-plane beam steering control is 

achieved by dynamically changing the load reactance of corresponding parasitic elements. The 

proposed ESPAR cross array is able to steer the beam up to ±24o in the E plane and ±20o in the H 

plane; the demonstrated scan ranges in either plane are comparable to the CBS ESPAR with 1-D 

beamsteering. 

To further extend the impedance-matching FBW of CBS ESPARs, a three-element CBS ESPAR 

using a thick substrate and wide slot was designed and measured. In order to suppress the beam 

squinting within the impedance-matching bandwidth, a customized tunable load which 

incorporates a delay line, a fixed inductor, and varactor was designed. The measurement results 

showed that this CBS ESPAR is able to scan from -26o to 20o in the E plane with 4% operational 

FBW by considering beam squinting.  

In addition, a 20-element cavity-backed slot (CBS) ESPAR with 2-D beamsteering and minimized 

beam squint was designed to demonstrate the implementation of ESPAR in large planar arrays. 

This 20-element CBS ESPAR is able to scan ±45o and ±40o without grating lobes in the E- and H-

planes, respectively; the impedance matching is maintained at all scan angles. The radiation 

patterns at each scan angle were measured at five discrete frequencies within the operational 

bandwidth to ensure minimum beam squint.  

Finally, a novel microstrip-line-fed CBS ESPAR was shown to further improve the impedance-

matching FBW of the CBS ESPARs in simulations. 
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6.2 Future Work 

6.2.1 ESPAR Using Stacked Patch Antennas 

Enabling frequency reconfigurability of the patch ESPAR has significantly extended its 

operational bandwidth but the loss of the varactor increases at lower operating frequencies, 

degrading the efficiency of patch ESPAR. The introduction of stacked patch antennas has opened 

up a new solution to achieve wideband patch ESPARs [102]-[104]. In order to achieve the phase 

shift, tunable loads similar to those presented in chapter 4 can be used to terminate the parasitic 

stacked patches. As a result, the operational bandwidth of the patch ESPAR can be significantly 

improved without sacrificing the antenna efficiency.  

6.2.2 Circularly Polarized CBS ESPAR 

Circularly polarized antenna arrays are desirable for various applications such as satellite 

navigation and target tracking systems due to their advantages in high link reliability and resistance 

to the change of atmospheric conditions. The introduction of circularly polarized ESPARs can 

provide low-cost solutions for the aforementioned applications. Circularly polarized slot backed 

by cavities has been an active research area for the past decade [105]-[107]. Therefore, it is 

promising to achieve circularly polarized ESPARs by employing the circular polarized CBS 

technique. Moreover, sequential feeding can be utilized on the parasitic elements to further 

improve the axial ratio bandwidth of the ESPAR [59]. 
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