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ABSTRACT

Phase retrieval tackles the problem of recovering a signal after loss of phase. The phase problem

shows up in many different settings such as X-ray crystallography, speech recognition, quantum

information theory, and coherent diffraction imaging. In this dissertation we present some results

relating to three topics on phase retrieval. Chapters 1 and 2 contain the relevant background materi-

als. In chapter 3, we introduce the notion of exact phase-retrievable frames as a way of measuring a

frame’s redundancy with respect to its phase retrieval property. We show that, in the d-dimensional

real Hilbert space case, exact phase-retrievable frames can be of any lengths between 2d − 1 and

d(d+ 1)/2, inclusive. The complex Hilbert space case remains open.

In chapter 4, we investigate phase-retrievability by studying maximal phase-retrievable subspaces

with respect to a given frame. These maximal PR-subspaces can have different dimensions. We are

able to identify the ones with the largest dimension and this can be considered as a generalization

of the characterization of real phase-retrievable frames. In the basis case, we prove that if M is

a k-dimensional PR-subspace then |supp(x)| ≥ k for every nonzero vector x ∈ M . Moreover, if

1 ≤ k < [(d + 1)/2], then a k-dimensional PR-subspace is maximal if and only if there exists a

vector x ∈M such that |supp(x)| = k.

Chapter 5 is devoted to investigating phase-retrievable operator-valued frames. We obtain some

characterizations of phase-retrievable frames for general operator systems acting on both finite

and infinite dimensional Hilbert spaces; thus generalizing known results for vector-valued frames,

fusion frames, and frames of Hermitian matrices.

Finally, in Chapter 6, we consider the problem of characterizing projective representations that

admit frame vectors with the maximal span property, a property that allows for an algebraic recov-

ering of the phase-retrieval problem. We prove that every irreducible projective representation of
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a finite abelian group admits a frame vector with the maximal span property. All such vectors can

be explicitly characterized. These generalize some of the recent results about phase-retrieval with

Gabor (or STFT) measurements.
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CHAPTER 1: FRAMES AND THEIR BASIC PROPERTIES

The concept of a frame has its roots in the theory of nonharmonic Fourier series, which studies

the expansion and completeness properties of sequences of complex exponentials {eiλnt}n∈Z in

Lp[−π, π]. It was first introduced by R.J. Duffin and A.C. Schaeffer in their 1952 paper titled A

Class of Nonharmonic Fourier Series. They first defined a frame in the following manner

A set of functions {eiλnt}n∈Z is a frame over an interval (−γ, γ) if there exist positive constants A

and B which depend exclusively on γ and the set of functions {eiλnt}n∈Z such that

A ≤
1

2π

∑
n

∣∣∣∫ γ−γ g(t)eiλnt dt
∣∣∣2∫ γ

−γ |g(t)|2 dt
≤ B

for every function g ∈ L2(−γ, γ).

In that same paper, Duffin and Schaeffer extended this definition to separable Hilbert spaces. We

now have a notion of frames in the context of Banach spaces. Frames have a wide range of appli-

cations in signal processing, image processing, and internet coding. In this chapter we will go over

some of the basic properties of frames and present some well-known results. We begin with the

definition of a frame in a separable Hilbert space.
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1.1 Frames in Separable Hilbert Spaces

Definition 1.1.1. Let H be a separable Hilbert space. A sequence of vectors {fn}∞n=1 is a frame

forH if there exist positive constants A and B such that for all f ∈ H

A‖f‖2 ≤
∞∑
n=1

|〈f, fn〉|2 ≤ B‖f‖2 (1.1)

The numbers A and B are called lower frame bound and upper frame bound for {fn}∞n=1,

respectively. The optimal lower frame bound is the supremum amongst all lower frame bounds,

and the optimal upper frame bound is the infimum amongst all upper frame bounds. It is easily

shown that the optimal frame bounds are frame bounds; that is, they are finite, positive and satisfy

(1.1). The frame is called a tight frame if A = B. It is called a Parseval frame if A = B = 1.

Every tight frame can be turned into a Parseval frame by scaling its elements by the square root of

the frame bound. A frame is said to be exact if it is no longer a frame when any one element is

removed from the sequence. A frame which is not exact is said to be overcomplete. We will only

be concerned with Hilbert spaces that are either finite-dimensional or separable.

Note that some sequences satisfy the upper bound condition but not the lower bound condition.

Sequences that satisfy the upper bound condition of (1.1) are called Bessel sequences.

We provide some examples of frames.

Example 1.1.2. LetH be a Hilbert space and let {en}∞n=1 be an orthonormal basis forH.

i) {0, e1, 0, 0, e2, 0, 0, 0, e3, ...} is a Parseval frame for H with frame bounds A = B = 1. It is

not exact.

ii) {e1, e1, e1, e2, e2, e2, e3, e3, e3, ...} is a tight frame forH with frame bounds A = B = 3.
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iii) {3e1, e2, e3, ...} is an exact frame forH with A = 1 and B = 3.

iv) {e1, e2/
√

2, e2/
√

2, e3/
√

3, e3/
√

3, e3/
√

3, ...} is a Parseval frame forH.

If {fn}∞n=1 is a frame forH then its analysis operator T : H → `2(N) is defined by

T (f) = {< f, fn >}∞n=1 for all f ∈ H.

Since T is a bounded operator, it has a bounded adjoint T ∗, called the synthesis operator. Let

{en}∞n=1 be the standard orthonormal basis for `2(N). For every f in H, the j-th coordinate of Tf

is given by both 〈f, fj〉 and 〈Tf, ej〉. Hence for f inH, we have

0 = 〈Tf, ej〉 − 〈f, fj〉

= 〈f, T ∗ej〉 − 〈f, fj〉

= 〈f, T ∗ej − fj〉.

It follows that T ∗ej = fj for j ∈ N. Therefore,

T ∗({cn}∞n=1) =
∞∑
n=1

cnfn for all {cn}∞n=1 ∈ `2(N).

The following theorem provides a characterization of frames in separable Hilbert spaces using the

analysis and synthesis operators. Its proof can be found in [Heil98].

Theorem 1.1.3. Let H be a Hilbert space and let {fn}∞n=1 be a sequence of vectors in H. The

following are equivalent:
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i. {fn}∞n=1 is a frame forH.

ii. The synthesis operator T ∗ is well-defined for all {cn}∞n=1 ∈ `2(N). It is bounded and onto

H.

iii. The analysis operator T is a bijective map between H and the closed subspace range(T ) of

`2(N).

When we compose the analysis operator and the synthesis operator, we obtain the frame operator,

defined as follows

S : H → H, Sf = T ∗Tf =
∞∑
n=1

〈f, fn〉fn.

The proof of the following theorem can be found in [Chris03].

Theorem 1.1.4. LetH be a Hilbert space and let {fn}∞n=1 be a frame with frame bounds A and B

and frame operator S. Then the following holds:

i. S is bounded, invertible, self-adjoint, and positive.

ii. {S−1fn}∞n=1 is a frame with frame operator S−1 and frame bounds B−1, A−1.

iii. If A,B are optimal frame bounds for {fn}∞n=1, then B−1, A−1 are optimal frame bounds for

{S−1fn}∞n=1.

iv. For each f ∈ H,

f =
∞∑
n=1

〈f, S−1fn〉fn =
∞∑
n=1

〈f, fn〉S−1fn (1.2)
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v. {S−1/2fn}∞n=1 is a Parseval frame forH.

Equation 1.2 is called the frame decomposition (or reconstruction formula) and the numbers

{〈f, S−1fn〉}∞n=1 are called frame coefficients. When the frame {fn}∞n=1 is overcomplete then

there are many coefficients {cn}∞n=1 ∈ `2(N) such that

f =
∞∑
n=1

cnfn.

The next proposition, which can be found in [Chris03], shows that the frame coefficients have

minimal `2-norm amongst all such coefficients.

Proposition 1.1.5. Let {fn}∞n=1 be a frame for H and let S be its frame operator. If f is in H and

f =
∑∞

n=1 cnfn for some coefficients {cn}∞n=1 ∈ `2(N) then

∞∑
n=1

|〈f, S−1fn〉|2 ≤
∞∑
n=1

|cn|2.

Proof. We will show that

∞∑
n=1

|cn|2 =
∞∑
n=1

|〈f, S−1fn〉|2 +
∞∑
n=1

|cn − 〈f, S−1fn〉|2. (1.3)

Write

{cn}∞n=1 = {cn}∞n=1 − {〈f, S−1fn〉}∞n=1 + {〈f, S−1fn〉}∞n=1.

Then we have
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∞∑
n=1

(
cn − 〈f, S−1fn〉

)
fn = 0.

Thus {cn−〈f, S−1fn〉}∞n=1 ∈ null(T ∗) = [range(T )]⊥ and {〈f, S−1fn〉}∞n=1 = {〈S−1f, fn〉}∞n=1 ∈

range(T ). We obtain 1.3.

Note that 1.3 also says that the frame coefficients are the unique coefficients minimizing the `2-

norm.

Definition 1.1.6. Let {fn}∞n=1 be a frame for H. If {gn}∞n=1 is another frame for H such that for

all f ∈ H

f =
∞∑
n=1

〈f, gn〉fn

then we say that {gn}∞n=1 is a dual frame of {fn}∞n=1.

It turns out that if {gn}∞n=1 is a dual frame for {fn}∞n=1 then {fn}∞n=1 is a dual frame for {gn}∞n=1.

Equation (1.2) says that {fn}∞n=1 and {S−1fn}∞n=1 are dual frames. If {fn}∞n=1 is an overcomplete

frame then it has many duals. The proofs of the following results can be found in [Chris03].

Proposition 1.1.7. If {fn}∞n=1 is an overcomplete frame. Then there exists frames {gn}∞n=1 6=

{S−1fn}∞n=1 such that

f =
∞∑
n=1

〈f, gn〉fn,∀h ∈ H.

Proposition 1.1.8. If {fn}∞n=1 and {gn}∞n=1 are frames forH then the following are equivalent:

i. f =
∑∞

n=1〈f, gn〉fn,∀f ∈ H.
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ii. f =
∑∞

n=1〈f, fn〉gn,∀f ∈ H.

The next theorem, also in [Chris03], provides a characterization of all dual frames for a given

frame.

Theorem 1.1.9. Let {fn}∞n=1 be a frame for H. Then {gn}∞n=1 is a dual frame for {fn}∞n=1 if and

only if

{gn}∞n=1 =

{
S−1fn + hn −

∞∑
j=1

〈S−1fn, fj〉hj

}∞
n=1

where {hn}∞n=1 is a Bessel sequence inH.

The following theorem states that when an orthogonal projection is applied to a frame we still get

a frame.

Theorem 1.1.10 (Compression Property [HKLW07]). LetH be a Hilbert space and let {fn}∞n=1

be a frame for H with frame bounds A and B. If P is an orthogonal projection of H onto a

closed subspace M , then {Pfn}∞n=1 is a frame for M with frame bounds A and B. In particular, if

{fn}∞n=1 is an orthonormal basis forH then {Pfn}∞n=1 is a Parseval frame for M .

Proof. Pick f ∈M . Then Pf = f and we have

〈f, fn〉 = 〈Pf, fn〉 = 〈f, Pfn〉.

Therefore

7



A‖f‖2 ≤
∞∑
n=1

|〈f, Pfn〉|2 ≤ B‖f‖2 for allf ∈M.

Thus {Pfn}∞n=1 is a frame for M . Moreover, if {fn}∞n=1 is an orthonormal basis forH then we can

take A = B = 1 and it follows that {Pfn}∞n=1 is a Parseval frame for M .

Theorem 1.1.11 (Dilation Property [HKLW07]). Let H be a Hilbert space and let {fn}∞n=1 be a

sequence of vectors inH

i. If {fn}∞n=1 is a frame forH then there exists a Hilbert space K ⊇ H and a basis {gn}∞n=1 for

K such that Pgn = fn. Here P is the orthogonal projection of K ontoH.

ii. If {fn}∞n=1 is a Parseval frame for H then there exists a Hilbert space K ⊇ H and an

orthonormal basis {un}∞n=1 for K such that Pun = fn. Here again P is the orthogonal

projection of K ontoH.

Proof. The proofs of both parts are very similar so we only prove item ii. Let T be the analysis

operator for {fn}∞n=1. Recall from Theorem 1.1.3 that range(T ) is a closed subspace of `2(N).

Hence the orthogonal projection Q of `2(N) onto range(T ) is defined. Let Q⊥ = I − Q be the

orthogonal projection onto [range(T )]⊥. The direct sum H ⊕ [range(T )]⊥ is a Hilbert space with

the inner product given by

〈(f1, c1), (f2, c2)〉 = 〈f1, f2〉H + 〈c1, c2〉`2(N)

and we can identifyH withH⊕{0}. Let {en}∞n=1 be the standard orthonormal basis for `2(N) and

let un = fn ⊕Q⊥en. Then Pun = fn where P is the orthogonal projection of K ontoH.

8



Now we show that {un}∞n=1 is an orhonormal basis for K. Consider the Parseval frame {Qen}∞n=1

for range(T ). Then the restriction of T ∗ to range(T ) is an invertible operator. Denote this restric-

tion by Γ. Since en−Qen ∈ [range(T )]⊥ = ker(T ∗) we have fn = T ∗en = T ∗Qen = ΓQen. Also

for every f ∈ H, we have

‖Γ∗f‖2 =
∞∑
n=1

|〈Γ∗f,Qen〉|2

=
∞∑
n=1

|〈f,ΓQen〉|2

=
∞∑
n=1

|〈f, T ∗Qen〉|2

=
∞∑
n=1

|〈f, fn〉|2

= ‖f‖2

Thus Γ is a unitary operator. It follows that

un = fn ⊕Q⊥en = ΓQen ⊕Q⊥en = U(Qen +Q⊥en) = Uen,

where U = Γ⊕ I is a unitary operator from `2(N) to K. We conclude that {un}∞n=1 is an orthonor-

mal basis for K.

9



1.2 Frames in Finite-Dimensional Spaces

In the finite-dimensional setting, one can construct frames with infinitely many elements. For

example, the sequence

{(
1

0

)
,

(
0

1

)}⋃{(
1

2n/2

0

)}∞
n=1

is a frame for R2 with upper frame bound B = 2 and lower frame bound A = 1. But any finite

spanning set for a finite-dimensional vector space is a frame for that space. In fact, we have the

following theorem.

Theorem 1.2.1. Let H be a finite-dimensional vector space and let {fk}mk=1 be a sequence of

vectors inH. Then {fk}mk=1 is a frame forH if and only if span{fk}mk=1 = H.

Proof. If {fk}mk=1 does not span H, then we can find a nonzero vector f ∈ [span{fk}mk=1]⊥. Thus

we have
∑m

k=1 |〈f, fk〉|2 = 0 and so {fk}mk=1 is not a frame forH.

Now suppose that {fk}mk=1 spans H. We may assume that H is not the trivial vector space and so

necessarily not all fk are zero. By the Cauchy-Schwarz inequality, for any f ∈ H, we have

m∑
k=1

|〈f, fk〉|2 ≤
m∑
k=1

‖f‖2‖fk‖2 =

(
m∑
k=1

‖fk‖2

)
‖f‖2.

Hence we can chooseB =
∑m

k=1 ‖fk‖2 > 0 as the upper frame bound. We now show the existence

of a positive lower frame bound. Consider the continuous mapping φ : H → R, defined for all

f ∈ H, by
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φ(f) =
m∑
k=1

|〈f, fk〉|2.

SinceH is finite-dimensional, the unit sphere is compact and so φ attains a minimum at some unit

vector f0. Call this minimum A. Clearly A > 0 and for any f ∈ H, with f 6= 0, we have

m∑
k=1

|〈f, fk〉|2 =
m∑
k=1

|〈 f
‖f‖

, fk〉|2‖f‖2 ≥ A‖f‖2.

Thus {fk}mk=1 is a frame forH.

Theorem 1.2.1 is not true ifH is not finite-dimensional or the sequence is not finite.

Remark 1.2.2. We note that ifH is a finite-dimensional Hilbert space then a sequence {xn}∞n=1 is

a frame for H if and only if {xn}∞n=1 contains a basis for H and
∑∞

n=1 ‖xn‖2 < ∞. To see this,

note that if {xn}∞n=1 contains a basis for H and
∑∞

n=1 ‖xn‖2 < ∞, then an upper frame bound is

obtained as in the proof of Theorem 1.2.1 and a lower frame bound can be obtained by defining

the function φ for any finite subsequence of {xn}∞n=1 which contains a basis for H. For the other

direction, we first suppose that {xn}∞n=1 is a Parseval frame for H. Let {ei}mi=1 be an orthonormal

basis forH. Then

m =
m∑
i=1

‖ei‖2 =
m∑
i=1

∞∑
n=1

|〈ei, xn〉|2

=
∞∑
n=1

m∑
i=1

|〈xn, ei〉|2

=
∞∑
n=1

‖xn‖2.

11



If {xn}∞n=1 is not a Parseval frame then {S−1/2xn}∞n=1 is a Parseval frame. Furtheremore, we have

‖xn‖2 = ‖S1/2S−1/2xn‖2 ≤ ‖S1/2‖‖S−1/2xn‖2.

Since
∑∞

n=1 ‖S−1/2xn‖2 is convergent, the desired result follows from the comparison test. In fact,

we know that
∑∞

n=1 ‖xn‖2 ≤ m‖S−1/2‖2.

Because of Theorem 1.2.1 we only consider frames consisting of finite sequences in the finite-

dimensional setting. Theorem 1.1.4 tells us that if {fk}mk=1 is a frame forH, then its frame operator

S is self-adjoint and positive. As such all the eigenvalues of S are real and positve. We have the

following theorem.

Theorem 1.2.3. Let {fk}mk=1 be a frame for and d-dimensional vector spaceH. Then the following

holds:

i. The optimal lower frame bound is the smallest eigenvalue for S, and the optimal upper frame

bound is the largest eigenvalue.

ii. If {λk}dk=1 is the set of eigenvalues for S (taking into account the algebraic multiplicity of

each eigenvalue), then

d∑
k=1

λk =
m∑
k=1

‖fk‖2

.

Proof. (i)Since S is self-adjoint, we know that H has an orthonormal basis {uk}dk=1 consisting of

eigenvectors for S. Let {λk}dk=1 be the corresponding eigenvalues. Then for every f ∈ H, we have
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f =
d∑

k=1

〈f, uk〉uk

and so

Sf =
d∑

k=1

〈f, uk〉Suk =
d∑

k=1

λk〈f, uk〉uk.

This implies that

m∑
k=1

|〈f, fk〉|2 = 〈Sf, f〉 =
d∑

k=1

λk|〈f, uk〉|2.

From the above, we conclude that

λmin‖f‖2 ≤
m∑
k=1

|〈f, fk〉|2 ≤ λmax‖f‖2.

Hence λmin is a lower frame bound and λmax is an upper frame bound. Now if A > λmin and uj

is any eigenvector corresponding to λmin then
∑m

k=1 |〈uj, fk〉|2 = λmin‖uj‖2 < A‖uj‖2. Hence

A cannot be a lower frame bound for {fk}mk=1. We conclude that λmin is the optimal lower frame

bound. Similarly, λmax is the optimal upper frame bound.

(ii) We have
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d∑
k=1

λk =
d∑

k=1

λk‖uk‖2

=
d∑

k=1

〈Suk, uk〉

=
d∑

k=1

m∑
l=1

|〈uk, fl〉|2

=
m∑
l=1

d∑
k=1

|〈uk, fl〉|2

=
m∑
l=1

‖fl‖2.

1.3 Frames in Fd and Matrices

In this section we will let H = Fd where F = R or F = C. Theorem 1.1.11 takes the following

form.

Theorem 1.3.1 (Dilation Property). Let {fk}mk=1 be a frame for Fd. Then there exist vectors gk,

1 ≤ k ≤ m, in Fm−d such that the vectors {f̃k}mk=1, where

f̃k =

fk
gk

 ,
constitute a basis for Fm. If {fk}mk=1 is a Parseval frame then the gk’s can be chosen so that

{f̃k}mk=1 is an orthonormal basis for Fm.
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Proof. Consider the matrix

F = [f1 f2 · · · fm] .

Since {fk}mk=1 spans Cd we have that rank(F ) = d. Thus, the rows of F , viewed as vectors in Cm,

constitute a linearly independent set. We can therefore extend them to a basis for Cm by adjoining

m− d additional vectors. In doing so, we obtain in an m×m matrix

F̃ =

f1 f2 · · · fm

g1 g2 · · · gm

 .

Since rank(F̃ ) = m, its columns are linearly independent and therefore {f̃k}mk=1 is a basis for Cm.

Now suppose that {fk}mk=1 is a Parseval frame. Let f ∗ denote the conjugate transpose f̄T of f .

Then 〈f, g〉 = g∗f . For every f in Cm, we have

‖f‖2 =
m∑
k=1

|〈f, fk〉|2

=
m∑
k=1

〈f, fk〉〈fk, f〉

=
m∑
k=1

f ∗fkf
∗
kf

= f ∗

(
m∑
k=1

fkf
∗
k

)
f.

This holds for every f ∈ Cd and it follows that
∑m

k=1 = Id the d × d identity matrix. If

fk(j) denotes the jth entry of the vector fk then we obtain that
∑m

k=1 fk(j)fk(l) = δjl. But∑m
k=1 fk(j)fk(l) = δjl is the inner product between the jth and lth rows of F . So the rows of F

15



are othormal and so by they Gram-Schmidt algorithm we can extend them to an orthonormal basis

for Cm. This concludes the proof.

Given a frame {fk}mk=1 for Cd, the matrix representation for its analysis operator with respect to

the standard orthonormal basis is the m× d matrix

Θ =



← f ∗1 →

← f ∗2 →
...

← f ∗m →


.

Consequently, the matrix representation for its synthesis operator with respect to the standard or-

thonormal basis is the d×m matrix

Θ∗ =


↑ ↑ ↑

f1 f2 · · · fm

↓ ↓ ↓

 .

Given a matrix F with at least d columns. The following proposition gives a criterion to determine

when its column vectors constitute a frame for Fd.

Proposition 1.3.2. Let F = [f1 f2 · · · fm] be an d×m matrix with column vectors fk.

i. {fk}mk=1 is a frame for Fd if and only if rank(F ) = d.

ii. {fk}mk=1 is a tight frame for Fd if and only if the rows for F are orthogonal and have the

same norm. Furthermore, {fk}mk=1 is a Parseval frame for Fd if and only if the rows are

orthonormal.
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Proof. (i) {fk}mk=1 is a frame for Fd if and only if span({fk}mk=1) = Fm and this is true if and only

if rank(F ) = d.

(ii){fk}mk=1 is a tight frame with frame bound A if and only if its analysis operator F ∗ is a scalar

multiple of an isometry. That is, if and only if F ∗ = AV for some isometry V . The columns of V

are orthonormal and since the rows of F are obtained by multiplying the columns of V by A we

obtain that the rows of F are orthogonal and have the same norm. If {fk}mk=1 is a Parseval frame

then A = 1 and the result follows immediately from the previous argument.

1.4 Application of Finite Frames to Signal Processing

One of the most common applications of frames is in signal processing. In this setting we would

like to send a signal f ∈ H, where H is finite-dimensional, from a transmitter T to a receiver

R. If {fk}mk=1 is a frame for H we can do this by encoding {fk}mk=1 into both T and R and then

transmits the coefficients {〈f, fk〉}mk=1 from T to R. The signal f can then be reconstructed using

the formula

f =
m∑
k=1

〈f, fk〉S−1fk.

Two complications that may arise during this process are noises and erasures. Noises occur when

at least one of the coefficients is perturbed: R receives the coefficients {〈f, fk〉+ ck}mk=1. Erasure

occurs when at least of the coefficients is deleted. Both complications may take place at the same

time but we will look at them separately.

First, note that the overcompleteness of {fk}mk=1 gives it some advantages over a basis. In the case

of noises, the reconstructed signal will be given by
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m∑
k=1

(〈f, fk〉+ ck)S
−1fk =

m∑
k=1

〈f, fk〉S−1fk +
m∑
k=1

ckS
−1fk

= f + S−1

m∑
k=1

ckfk

Now if {fk}mk=1 is linearly dependent (overcomplete) there are nonzero coefficients ck such that∑m
k=1 ckfk = 0. Thus the noise may not have any effect at all on the reconstruction of the signal.

This would never happen with an orthonormal basis.

In the case of erasure, we see that once again overcompleteness is an advantage because the frame

{fk}mk=1 may still remain a spanning set even when some of its vectors have been removed. In the

best case scenerio we may remove anym−dimH elements of the frame and still get a spanning set.

For example, this is true when the frame is obtained by compressing a discrete Fourier transform

basis. In a slightly more general case, we have the following proposition.

Proposition 1.4.1. Let {fn}mk=1 forH with lower frame bound A > 1. Suppose that ‖fk‖ = 1, for

1 ≤ k ≤ m. Then for any J ⊂ {1, ...,m} with |J | < A, the family {fk}k/∈J is a frame for H with

lower bound A− |I|.

Proof. For f ∈ H, we have

∑
k∈J

|〈f, fk〉| ≤
∑
k∈J

‖fk‖2‖f‖2 = |J |‖f‖2.

Thus

(A− |J |)‖f‖2 ≤
∑
k/∈J

|〈f, fk〉|2.
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Now going back to signal transmission we see that in order to reconstruct f using the coefficients

{〈f, fk〉}mk=1 we need to compute the inverse S−1 of the frame operator. This may get costly

if the dimension of H or the condition number of S (the ratio between its largest and smallest

eigenvalue) is very large. The next result is a numerical scheme that allows us to get better and

better approximation of f without computing S−1.

Proposition 1.4.2 (Frame Algorithm). Let {fk}mk=1 be a frame for H with frame bounds A and

B. Given f ∈ H, consider the sequence {gn}∞n=0 defined recursively by

g0 = 0, gn = gn−1 +
2

A+B
S(f − gn−1), n ≥ 1.

Then {gn}∞n=0 converges to f and the convergence speed is given by

‖f − gn‖ ≤
(
B − A
B + A

)n
‖f‖.

Proof. Let I be the identity operator onH. Then for any f ∈ V , we have

〈(I − 2

A+B
S)f, f〉 = ‖f‖2 − 2

A+B

m∑
k=1

|〈f, fk〉|2.

By the lower frame bound condition we get

〈(I − 2

A+B
S)f, f〉 ≤ ‖f‖2 − 2

A+B
‖f‖2 =

B − A
A+B

‖f‖2.
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Similarly, by using the upper frame bound condition, we get

−B − A
B + A

≤ 〈(I − 2

A+B
S)f, f〉.

Therefore,

∥∥∥∥I − 2

A+B

∥∥∥∥ ≤ B − A
B + A

.

Now we have

f − gn = f − gn−1 −
2

A+B
S(f − gn−1)

=

(
I − 2

A+B
S

)
(f − gn−1).

Repeating this argument, we obtain

f − gn =

(
I − 2

A+B

)n
(f − g0).

It follows that
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‖f − gn‖ =

∥∥∥∥(I − 2

A+B
S

)n
(f − g0)

∥∥∥∥
≤
∥∥∥∥I − 2

A+B
S

∥∥∥∥n ‖f‖
≤
(
B − A
B + A

)n
‖f‖.

This completes the proof.
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CHAPTER 2: PHASE RETRIEVAL

Phase retrieval tackles the problem of recovering a signal after loss of phase. One of the earliest

instances of the phase problem comes from X-ray crystallography, where the goal is to determine

the structure of a crystal based on diffraction images. The structure of the crystal depends on

the distribution of the electrons in the crystal and this can be represented by an electron density

function. Thus once we know the electron density function we can determnine the structure of the

crystal. However, the diffraction image only shows intensity measurements – the number of X-ray

photons in a given spot. These can be used to compute the magnitude of the fourier transform of

the density function but its phase is lost.

Today, phase retrieval arises in many different settings such as speech recognition, astronomy, and

coherent diffractive imaging. Phase retrieval using frames was introduced by Balan, Casazza, and

Edidin in 2006 [BCE06].

2.1 Phase-Retrievable Frames

Definition 2.1.1. LetH be a Hilbert space and let {fn}∞n=1 be a frame forH. We say that {fn}∞n=1

does phase retrieval forH if whenever h, g ∈ H and |〈h, fn〉| = |〈g, fn〉| for every n then h = αg,

where |α| = 1.

A frame that does phase retrieval for a Hilbert space will often be referred to as a phase-retrievable

frame or, simply, a PR-frame. The numbers |〈h, fn〉| are called intensity measurements (or

measurements, for short). We provide a quick example.

Example 2.1.2. Let x1 =

1

0

, x2 =

0

1

, and x3 =

1

1

. We claim that the frame {xi}3
i=1 does
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phase retrieval for R2. To see this, suppose we have

x =

a
b

, y =

c
d

 ∈ R2 with |〈x, xi〉| = |〈y, xi〉| for 1 ≤ i ≤ 3. This means that |a| = |c|, |b| =

|d| and |a + b| = |c + d|. If a = c, then |c + b| = |c + d|. So either c + b = c + d, which implies

that b = d, or c+ b = −c− d. This last equality gives us 2c+ b = −d. By the triangle inequality,

we obtain

|d| ≤ |2c|+ |b|.

Since |b| = |d| we must have 2c = 0 and so b = −d. In either cases, we see that x = ±y.

Now suppose that a = −c. Then | − c + b| = |c + d|. If −c + b = c + d, then b = 2c + d and

|b| ≤ |2c| + |d|. We must have c = 0 which gives us b = d. If −c + b = −c − d then b = −d.

Again we see that x = ±y. So {xi}3
i=1 does phase retrieval for R2.

Remark 2.1.3. The theory of phase retrieval in real Hilbert spaces is much simpler than the theory

of phase retrieval in complex Hilbert spaces. This is due to the fact that in the real case the phase

factors consist only of the two-element set {±1} while in the complex case the phase factors

consist of the uncountably infinite set T. Because of this, the phase retrievable frames in real

Hilbert spaces have been characterized by the complement property (to be defined), which, in the

finite-dimensional case, provides a computionally finite method for determining whether or not a

real Hilbert space frame does phase retrieval. At the time of this writing there is no computationally

finite method to determine if a complex Hilbert space frame does phase retrieval.
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2.2 Existence and Characterization of Phase-Retrievable Frames

Example 2.1.2 gives a frame that does phase retrieval for R2. In this section we will discuss

some existence theorems for phase-retrievable frames; we will also present two characterization

theorems. The interested reader can find more details in [BCE06], and [BCMN14]. The discussion

will be restricted to the finite-dimensional setting.

Definition 2.2.1. A frame {fn}mn=1 for a Hilbert space H is said to have the complement property

if for any subset Λ of {1, ...,m} we have either span{fn : n ∈ Λ} = H or span{fn : n /∈ Λ} = H.

The proof of the following theorem can be found in [BCE06].

Theorem 2.2.2. The complement property is necessary for a frame to be phase-retrievable. It is

also sufficient for real Hilbert spaces.

The following example shows that the complement property is not enough in the complex Hilbert

space case.

Example 2.2.3. Let x1 =

1

0

, x2 =

0

1

, and x3 =

1

1

. The frame {xi}3
i=1 clearly has the

complement property but does not do phase retrieval for C2. To see this consider the two vectors

x =

1

i

, y =

i
1

 ∈ C2. Then y cannot be obtained from x by multiplying by a unimodular

factor. But a quick computation shows that |〈x, xi〉| = |〈y, xi〉| for 1 ≤ i ≤ 3. Hence {xi}3
i=1 does

not do phase retrieval for C2.

To state the existence theorem we need some preliminary results. The following proposition from

[BCE06] is not hard to verify.
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Proposition 2.2.4. Let {fn}mn=1 be a phase-retrievable frame for a Hilbert space H. If T is an

invertible operator onH then {Tfn}mn=1 is a phase-retrievable frame forH.

Two frames {fn}mn=1 and {gn}mn=1 for H are said to be equivalent if there exists an invertible

operator T such that Tfn = gn, for 1 ≤ n ≤ m.

The proof of the following theorem can be found [HKLW07].

Theorem 2.2.5. Let {fn}mn=1 and {gn}mn=1 be two frames forH and K, respectively. Then they are

equivalent if and only if their analysis operators have the same range.

We will use the following lemma to help state the existence theorem for phase retrievable frames.

Lemma 2.2.6. LetH be an d-dimensional Hilbert space and let W be an d-dimensional subspace

of Km, with m > d. Then there exists a frame {fn}mn=1 for H such that the range of its analysis

operator is W .

Proof. Let P be the orthogonal projection onto W and let {en}mn=1 be the standard orthonormal

basis for Km. Choose a d-element subset Λ of {1, ...,m} such that {Pen}n∈Λ is a basis for W .

Pick a basis {v1, ..., vd} forH and define an operator

B : H → Km

by B(vi) = eni
, ni ∈ Λ. Since B∗ has rank d the sequence {B∗Pen}mn=1 is a frame for H. Let Γ

its analysis operator. Then, for 1 ≤ i ≤ d, we have
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Γvi =
m∑
n=1

〈vi, B∗Pek〉en

=
m∑
n=1

〈Bvi, P en〉en

=
m∑
n=1

〈eni
, P en〉en

=
m∑
n=1

〈Peni
, en〉en

= Peni
.

Therefore Γ(H) = W .

Now let H be an d-dimensional Hilbert space and let FmH denote the set of all m-element frames

for H. Define an equivalence relation ∼ on FmH by using the definition above and let [FmH ] =

FmH / ∼. From Proposition 2.2.4 we see that the set of points in [FmH ] corresponding to phase-

retrievable frames are precisely the classes where at least one element in the class does phase

retrieval. Consider the Grassmannian Gr(d,m) of Km. Then by Theorem 2.2.5 and Lemma 2.2.6

there is a one-to-one correspondence between [FmH ] and Gr(d,m). Now recall that Gr(d,m) is a

projective algebraic variety in KP(m
d)−1; that is, Gr(d,m) is the common zero set of a collection of

homogeneous polynomials in
(
m
d

)
variables, see [SKKT00]. So it inherits the subspace topology

from the Zariski topology on KP(m
d)−1. The correspondence between [FmH ] and Gr(d,m) induces

a topology on [FmH ]: the open sets in [FmH ] are inverse images of open sets in Gr(d,m). The proof

of the following theorem can be found in [BCE06]

Theorem 2.2.7. LetH be a Hilbert space of dimension d.

i. IfH is a real Hilbert space and m ≥ 2d− 1 then the set of points in [FmH ] corresponding to
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phase-retrievable frames is open dense in [FmH ].

ii. IfH is a complex Hilbert space andm ≥ 4d−2 then the set of points in [FmH ] corresponding

to phase-retrievable frames is open dense in [FmH ].

As we saw in example 2.2.3, the complement property does not characterize phase-retrievable

frames for complex Hilbert spaces. But it is possible to characterize the complex case by using the

PhaseLift operator, even though that method is not finitely computational.

Let f, g ∈ H. The rank-one operator f⊗g is defined by (f⊗g)k = 〈k, g〉f , for every k ∈ H. Given

a frame F = {fn}mn=1 for H, consider the family of rank-one Hermitian operators {fn ⊗ fn}mn=1.

Identify the operators on H with the set of matrices Kd×d, endowed with the Hilbert-Schmidt

innner product. The mapping AF : Kd×d → Km defined by

AF(B) = {〈B, fn ⊗ fn〉}mn=1

is called the PhaseLift operator (or super analysis operator). If B = x ⊗ x, then we see that

〈x⊗ x, fn ⊗ fn〉 = |〈x, fk〉|2. The proof of the following theorem can be found in [BCMN14].

Theorem 2.2.8. A frame F = {fn}mn=1 does phase retrieval if and only if the kernel of AF does

not contain any Hermitian matrix of rank 1 or 2. That is, F does phase retrieval if and only if

ker(AF) ∩ S2 = {0}, where S2 is the set of all Hermitian matrices of rank less than or equal to 2.

2.3 Reconstruction Algorithms and Frames with the Maximal Span Property

In this section we discuss some algorithms that reconstruct a vector up a to unimodular constant,

given the absolute values of its frame coefficients. We also discuss conditions under which we can
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still perform the reconstruction even after the loss of some of these absolute values. These results

can all be found [BBCE09].

Let F = {fn}mn=1 be a frame forH and let S = {fn⊗ fn}mn=1. If span(S) contains all the rank-one

Hermitian operators defined onH then we say that S has maximal span.

Note that if x and y are in H, then x ⊗ x = y ⊗ y if and only if x = αy, where |α| = 1.

Thus, recovering x up to a unimodular constant is equivalent to recovering the rank-one Hermitian

operator x⊗ x. But if S has maximal span and we have dual for it, then every rank-one Hermitian

operator x⊗ x can be recovered from its inner products with the elements of S. Also since

〈x⊗ x, fn ⊗ fn〉 = tr[(x⊗ x)(fn ⊗ fn)] = |〈x, fn〉|2

we see that we can reconstruct x, up to a unimodular constant, from the magnitudes of its frame

coefficients.

If H is a real Hilbert space of dimension d, then the Hermitian operators form a subspace of

dimension d(d + 1)/2. If H is a complex Hilbert space the Hermitian operators do not form a

subspace. Hence in the real case we need m ≥ d(d + 1)/2 for S to have maximal span, while in

the complex case we need m ≥ d2.

We now give examples of frames whose associated rank-one Hermitian operators have maximal

span.

Definition 2.3.1. A tight frame F = {fn}mn=1 is said to be 2-uniform if ‖fn‖ = b for 1 ≤ n ≤ m

and there exists c > 0 such that for all 1 ≤ j, n ≤ m, j 6= k, we have |〈fj, fn〉| = c.

Example 2.3.2. An example of a 2-uniform tight frame in R2 is the Mercedes-Benz frame {x1, x2, x3}
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given by
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Figure 2.1: The Mercedes Benz frame in R2.

This is a 2-uniform Parseval frame. We have the following proposition.

Proposition 2.3.3. Let H be a Hilbert space and let F = {fk}mk=1 be a 2-uniform tight frame.

Then S = {fk ⊗ fk}mk=1 has maximal span if and only if m = d(d + 1)/2 in the real case or

m = d2 in the complex case.

Definition 2.3.4. Le H be a Hilbert space of dimension d. A family of vectors {e(j)
k }, where

1 ≤ k ≤ d and 1 ≤ j ≤ l, is said to form l mutually unbiased bases for H if for all j, j′ and k, k′

we have

|〈ejk, e
j′

k′〉| = δk,k′δj,j′ +
1√
d

(1− δj,j′)

We have the following proposition due to Delsarte, Goethals, and Seidel.
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Proposition 2.3.5. LetH be a Hilbert space and let F form [d/2] + 1 mutually unbiased bases in

the real case or d+ 1 mutually unbiased bases in the complex case. Then the associated rank-one

operators S have maximal span.

We now present the reconstruction theorem.

Theorem 2.3.6. Let H be a d-dimensional Hilbert sapce and let F = {fn}mn=1 be a m/d-tight

frame such that the associated rank-one Hermtian operators S has maximal span. Let M denote

the pseudo-inverse of the Grammian G. If {Rn}mn=1 is the canonical dual for S then for every

x ∈ H

x⊗ x =
m∑
n=1

|〈x, fn〉|2Rn.

Corollary 2.3.7. If F is a 2-uniform m/d-tight frame formed by mutually unbiased bases and S

has maximal span then for every x ∈ H

x⊗ x =
d(d+ 1)

m

m∑
n=1

|〈x, fn〉|2(fn ⊗ fn − I/(d+ 1)).

In application we may loose some of the coefficients. The following theorem provide conditions

under which we may still be able to perform the reconstruction.

Definition 2.3.8. Let {fn}mn=1 be a frame forH and let S = {fn ⊗ fn}mn=1 be the associated rank-

one Hermitian operators. An erasure of coefficients indexed by Λ ⊂ Ω = {1, ...,m} is correctible

if span({fn ⊗ fn}n∈Ω\Λ) = span({fn ⊗ fn}n∈Ω).

Theorem 2.3.9. Let H be a Hilbert space of dimension d. Let {e(j)
k }, where 1 ≤ k ≤ d and

1 ≤ j ≤ l, be a family of l mutually unbiased bases such that {e(j)
k ⊗ e

(j)
k } has maximal span. If
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we lose at most one vector from each family and there is a family with no loss, then the remaining

rank-one operators have maximal span.
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CHAPTER 3: EXACT PHASE-RETRIEVABLE FRAMES

3.1 Redundancy with Respect to Phase Retrievability

For certain phase-retrievable frames, it is possible to lose some of the frame elements and still

obtain a phase-retrievable frame. While that’s a desirable property, we may also be interested in

minimizing the number of measurements (due to computational cost). In this chapter we introduce

a way to measure redundancy with respect to phase retrievability. More precisely, we will study

the concept of exact phase-retrievable frames. The results in this chapter are taken from [HJLS].

Theorem 2.2.8 indicates that ker(AF) ∩ S2 is a good candidate to measure the phase-retrievability

for a frame F . This motivates the fowllowing definition.

Definition 3.1.1. Given a frame F = {fn}mn=1 for H. Let k be the smallest integer such that there

exists a subset Λ of {1, ...,m} with the property that |Λ| = k and

ker(AFΛ
) ∩ S2 = ker(AF) ∩ S2.

Then we call m/k the PR-redundancy of F . A frame is said to have the exact PR-redundancy

property if its PR-redundancy is 1, and a phase-retrievable frame with the exact PR-redundancy

will be called an exact phase-retrievable frame.

Given a frame F = {fn}mn=1 for H. Three conclusions follow immediately from the above def-

inition: (i) There exists a subset Λ of {1, ...,m} such that FΛ is a frame for H with the exact

PR-redundancy property; (ii) F has the exact PR-redundancy property if and only if for any proper

subset Λ of {1, ...,m}, there exist two vectors x, y ∈ H such that |〈x, fj〉| = |〈y, fj〉| for every

j ∈ Λ, but |〈x, fi〉| 6= |〈y, fi〉| for some i ∈ Λc; and (iii) If F is phase-retrievable, then it is an
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exact phase-retrievable frame if and only if FΛ is no longer phase-retrievable for any proper subset

Λ of {1, ...,m}.

In what follows we always assume that H = Rd and use Hd to denote the space of all the d × d

Hermitian matrices.

Lemma 3.1.2. If a frame F = {fn}mn=1 for Rd has the exact PR-redundancy property, then

{fn ⊗ fn}mn=1 is linearly independent (and hence m ≤ dimHd = d(d + 1)/2). The converse is

false.

Proof. If {fn⊗fn}mn=1 is linearly dependent, then there exists a proper subset Λ of {1, ...,m} such

that span {fn ⊗ fn : n ∈ Λ} = span {fn ⊗ fn : 1 ≤ n ≤ m}. This implies that ker(AFΛ
) =

ker(AF). Hence F does not have the exact PR-redundancy property. Therefore {fn ⊗ fn}mn=1 is

linearly independent.

Let d ≥ 3. Then 2d−1 < d(d+1)/2. Let {f1, ..., f2d−1} be a phase-retrievable frame forH. Then

{fn⊗fn}2d−1
n=1 is linearly independent. Since dimHd = d(d+1)/2 and span {f⊗f : f ∈ H} = Hd,

we can extend {fn ⊗ fn}2d−1
n=1 to a basis {fn ⊗ fn}d(d+1)/2

n=1 for Hd. But clearly F = {fn}d(d+1)/2
n=1

does not have the exact PR-redundancy.

Lemma 3.1.2 immediately implies the following length bound for exact phase-retrievable frames.

Corollary 3.1.3. If F = {fn}mn=1 is an exact phase-retrievable frame for Rd, then 2d− 1 ≤ m ≤

d(d+ 1)/2.

Our main result will show that every m between 2d− 1 and d(d + 1)/2 is attainable. But first we

make the following observation.

For a given frameF = {fn}mn=1, the spark ofF is the cardinality of the smallest linearly dependent

subset of the frame. A full-spark frame is a frame whose spark is d+1; that is, every subcollection
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of F consisting of d vectors is linearly independent. It is known that for each m ≥ d, the set of

full-spark frames of length m is open and dense in the direct sum space H(m) := H ⊕ ... ⊕ H

(m-copies). It is clear that if m > 2d − 1 and F = {fn}mn=1 has the full spark, then m can not be

an exact phase-retrievable frame. Therefore the set of exact phase-retrievable frames of length m

has measure zero, and so the existence proof of exact phase-retrievable frames is quite subtle, as

the proof in the next section shows.

3.2 Existence of Exact Phase-Retrievable Frames

In this section we prove the existence theorem for exact phase-retrievable frames of length m with

2d− 1 ≤ m ≤ d(d+ 1)/2.

Theorem 3.2.1. For every integer m with 2d− 1 ≤ m ≤ d(d+ 1)/2, there exists an exact phase-

retrievable frame of length m.

Before giving a proof for the above theorem, we introduce some preliminary results. We use the

following notations for matrices: A(I, J) is the submatrix of A consisting of the entries with row

indices in I and column indices in J . A(:, J) = A({1, . . . , d}, J) and A(i, j) = A({i}, {j})

Lemma 3.2.2. Let f(x1, . . . , xd) be a polynomial and ai be independent continuous random vari-

ables. Then f(a1, . . . , ad) 6= 0 almost surely.

Proof. The conclusion can be proved by induction on d and we omit the details.

Lemma 3.2.3. Let A be a d × p random matrix such that rank(A) = r almost surely. Let B be a

(d+ 1)× (p+ 1) matrix such that B(1..d, 1..p) = A and B(d+ 1, p+ 1) is a continuous random

variable which is independent of the entries of A. Then we have rank(B) ≥ r + 1 almost surely.
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Proof. Let Ω be the sample space. Since A has only finitely many submatrices and rank(A) = r

almost surely, there is a partition {Ωi}mi=1 of Ω such that for each 1 ≤ i ≤ m, there is an r × r

submatrix Ai which is of rank r almost surely on Ωi. Therefore, the submatrix of A consisting of

rows and columns in Ai and the (d + 1)-th row and the (p + 1)-th column is of rank r + 1 almost

surely on Ωi by Lemma 3.2.2. This completes the proof.

The following lemma can be proved similarly.

Lemma 3.2.4. Let A be a d× p random matrix such that rank(A) = r ≤ d− 1 almost surely. Let

a be a d-dimensional vector with entries consisting of continuous independent random variables,

which are also independent of the entries of A. Then we have rank((A a)) = r + 1 almost surely.

We are ready to give a proof of Theorem 3.2.1.

Proof of Theorem 3.2.1. Since every full-spark frame of length 2d − 1 is an exact PR-frame, we

only need to prove the theorem for 2d ≤ m ≤ d(d + 1)/2. First, we show that for 2d ≤ m ≤

d(d+ 1)/2, there exist d×m matrices A such that

(P1) A contains the d× d identity matrix as a submatrix;

(P2) the rest m−d columns of A consisting of independent continuous random variables or zeros

and each column contains at least one 0 and two non-zero entries;

(P3) there are exactly d non-zero entries in every row of A;

(P4) for each 1 ≤ i ≤ d, there exist mutually different indices j1, . . ., jd such that ai,jl , al,jl 6= 0;

(P5) columns of A form an exact PR frame with probability 1.
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It is obvious that a phase-retrievable frame which satisfies (P3) is exact. Let us explain (P4) in

more details.

Fix some i, say, i = 1. By (P3), there exist mutually different indices j1, . . ., jd such that a1,jl 6= 0

for 1 ≤ l ≤ d. (P4) says that every row contains a non-zero entry in such columns and different

rows correspond to different columns.

Consider the following example,

A =


1 0 0 a1,4 a1,5 0

0 1 0 a2,4 0 a2,3

0 0 1 0 a3,5 a3,3

 , (3.1)

where ai,j are independent continuous random variables. For i = 1, set {j1, j2, j3} = {1, 4, 5}.

Then we have a1,jl , al,jl 6= 0 for 1 ≤ l ≤ 3.

It is easy to see that A satisfies (P1)∼ (P5). In other words, such matrix exists for d = 3.

Now we assume that such matrix A exists for some d and m with d ≥ 3. Let us consider the case

of d+ 1. We prove the conclusion in the following four steps.

Fix some 0 ≤ k ≤ d − 2. By rearranging columns of A, we can assume that ai,d+i 6= 0 for

1 ≤ i ≤ k (for k = 0, this says nothing).

(I). There is an (d+ 1)× (m+ d+ 1) matrix satisfying (P1) ∼ (P5).
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Define the (d+ 1)× (m+ d) matrix B as follows,

B =



a1,m+1 0 0 0

0 a2,m+2 0 0

A 0 0 · · · 0 0

. . .

0 0 ad,m+d 0

0 . . . 0 ad+1,m+1 ad+1,m+2 ad+1,m+d 1


.

where all the symbols ai,j are independent continuous random variables. It is easy to see that B

meets (P1) ∼ (P4). It remains to prove that (P5) holds for B.

Take some J ⊂ {1, . . . ,m+ d+ 1}. Set

J c = {1 ≤ j ≤ m+ d+ 1 : j 6∈ J},

J |m = {j ∈ J : j ≤ m},

J c|m = {j ∈ J c : j ≤ m},

Without loss of generality, we assume that m+ d+ 1 ∈ J c.

Suppose that rank(B(:, J c)) < d+ 1 on some sample set Ω′ which is of positive probability. Since

m + d + 1 ∈ J c, we have rank(A(:, J c|m)) < d a.s. on Ω′. Consequently, rank(A(:, J |m)) = d

a.s. on Ω′.

On the other hand, Since m + d + 1 ∈ J c, not all of m + 1, . . ., m + d are contained in J c.

Otherwise, rank(B(:, J c)) = d+ 1 a.s. on Ω′. Hence there is some 1 ≤ i ≤ d such that m+ i ∈ J .

By Lemma 3.2.3, rank(B(:, J)) = d+ 1 a.s. on Ω′.
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(II). There is an (d+ 1)× (m+ d) matrix satisfying (P1) ∼ (P5).

Since A satisfies (P2), by rearranging columns of A, we may assume that A(:,m) = (0, a2,m, . . .)
t,

where at least two entries are non-zero. Define the (d+ 1)× (m+ d) matrix B as follows,

B =



0 a1,m+1 0 0 0

a2,m a2,m+1 0 0 0

. . . ∗ 0 a3,m+2 · · · 0 0

. . .

∗ 0 0 ad,m+d−1 0

ad+1,m ad+1,m+1 ad+1,m+2 ad+1,m+d−1 1


.

Again, we only need to prove that (P5) holds for B.

As in Step I, we take some J ⊂ {1, . . . ,m + d}. We suppose that m+ d ∈ J c and that rank(B(:,

J c)) < d + 1 on some sample set Ω′ which is of positive probability. Then we have rank(A(:,

J |m)) = d a.s. on Ω′.

If there is some 1 ≤ i ≤ d such that m + i ∈ J , then we have rank(B(:, J)) = d + 1 a.s. on Ω′,

thanks to Lemma 3.2.3.

Next we assume that m + i ∈ J c for 1 ≤ i ≤ d. Since rank(B(:, J c)) < d + 1 a.s. on Ω′, for any

j ≤ m with A(1, j) 6= 0, we have j ∈ J , thanks to Lemma 3.2.2. Similarly we get that m ∈ J .

By setting i = 1 in (P4), we get mutually different 1 ≤ j1, . . . , jd ≤ m such thatA(1, jl), A(l, jl) 6=

0. Hence j1, . . . , jd ∈ J |m. Moreover, rank(A(:, {j1, . . . , jd})) = d a.s. on Ω′, thanks to

Lemma 3.2.2. Note that m ∈ J |m and m 6= jl for 1 ≤ l ≤ d. By Lemma 3.2.3, we have

rank(B(:, {j1, . . . , jd,m})) = d+ 1, a.s. on Ω′.
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Hence

rank(B(:, J)) ≥ rank(B(:, {j1, . . . , jd,m})) = d+ 1, a.s. on Ω′.

(III). There is an (d+ 1)× (m+ 2) matrix satisfying (P1) ∼ (P5).

By rearranging columns of A, we may assume that

(1) A(:, {1, . . . , d}) is the d× d identity matrix (P1),

(2) A(d,m) = 0 and there are at least two non-zero entries in the m-th column (P2),

(3) A(i,m− i), A(d,m− i) 6= 0 for 1 ≤ i ≤ d− 1 (P4).

Without loss of generality, we assume that A(d− 1,m) 6= 0. Define the (d+ 1)× (m+ 2) matrix

B as follows,

B =



∗ ∗ a1,m−1 ∗ a1,m+1 0

∗ a2,m−2 ∗ ∗ a2,m+1 0

Id×d ∗ ∗ ∗ ∗ a3,m+1 0

. . . . . . . . .

ad−1,m−d+1 ∗ ∗ ∗ 0

ad,m−d+1 ad,m−2 ad,m−1 0 ad,m+1 0

0 . . . 0 ad+1,m−d+1 ad+1,m−2 ad+1,m−1 ad+1,m 0 1



.

Again, we only need to prove that (P5) holds for B.

As in Step I, take some J ⊂ {1, . . . ,m+2} and suppose thatm+2 ∈ J c and rank(B(:, J c)) < d+1

on some sample set Ω′ which is of positive probability. Then we have rank(A(:, J |m)) = d a.s. on

Ω′.
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There are three cases.

(i). m+ 1 ∈ J c

In this case, we conclude that

(a) rank(B(1..d, J c|m)) ≤ d− 2, a.s. on Ω′;

(b) there is some 1 ≤ j0 ≤ d− 1 such that m− j0 ∈ J .

In fact, if there is some Ω′′ ⊂ Ω′ with positive probability such that rank(B(1..d, J c|m)) = d − 1

a.s. on Ω′′, then we see from Lemma 3.2.4 that rank(B(1..d, J c|m ∪{m+ 1})) = d a.s. on Ω′′. By

Lemma 3.2.3, we get rank(B(:, J c)) = d + 1 a.s. on Ω′′, which contradicts with the assumption.

This proves (a).

On the other hand, if m− j ∈ J c for any 1 ≤ j ≤ d− 1, then the expansion of the determinant of

B(:, {m− d+ 1,m− d+ 2, . . . ,m− 1,m+ 1,m+ 2}) contains the term

A(d,m+ 1) · 1 ·
∏d−1

i=1 A(i,m− i), which is not zero a.s. By Lemma 3.2.2, rank(B(:, J c)) = d+ 1

a.s. on Ω′. Again, we get a contradiction with the assumption. Hence (b) holds.

We see from (a) and (b) that rank(B(1..d, J c|m ∪ {m− j0})) ≤ d− 1, a.s. on Ω′. Since A is a PR

frame a.s., we have rank(B(1..d, J |m \ {m − j0})) = d a.s. Now we see from Lemma 3.2.3 that

rank(B(:, J |m)) = d+ 1 a.s. on Ω′.

(ii). m+ 1 ∈ J and m− j0 ∈ J for some 0 ≤ j0 ≤ d− 1.

Since rank(A(:, J |m)) = d a.s. on Ω′, by Lemma 3.2.3,

rank(B({1, . . . , d}, J |m ∪ {m+ 1} \ {m− j0})) = d, a.s. on Ω′.
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Using Lemma 3.2.3 again, we get

rank(B(:, J |m ∪ {m+ 1})) = d+ 1, a.s. on Ω′.

Hence

rank(B(:, J)) = d+ 1, a.s. on Ω′.

(iii). m+ 1 ∈ J and m− j ∈ J c for any 0 ≤ j ≤ d− 1.

By (P2), there is some 1 ≤ i0 ≤ d − 1 such that A(i0,m) 6= 0. Hence the expansion of the

determinant ofB(:, {m−d+1,m−d+2, . . . ,m,m+2}) contains the termB(d+1,m+2)A(d,m−

i0)A(i0,m)
∏

1≤i≤d−1,i 6=i0 A(i,m − i), which is not zero a.s. By Lemma 3.2.2, rank(B(:, J c)) =

d+ 1 a.s. on Ω′, which contradicts with the assumption.

(IV). For 2d ≤ m ≤ d(d+ 1)/2, there exist d×m matrices satisfying (P1) ∼ (P5).

Let Kd be the set of all integers k such that there exists an d× k matrix A satisfying (P1) ∼ (P5).

Since K3 ⊃ {6}, we see from the previous arguments that

K4 ⊃ {8, 9, 10},

K5 ⊃ {10, 11, 12, 13, 14, 15}.

Hence for 3 ≤ d ≤ 5,

Kd ⊃ {k : 2d ≤ k ≤ d(d+ 1)/2}. (3.2)

Now suppose that (3.2) is true for some d ≥ 5. Since 2d+ (d+ 1) ≤ d(d+ 1)/2 + 2 for d ≥ 5, we
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have

{k + 2 : 2d ≤ k ≤ d(d+ 1)/2} ∪ {k + d : 2d ≤ k ≤ d(d+ 1)/2}

∪{k + d+ 1 : 2d ≤ k ≤ d(d+ 1)/2}

= {k : 2(d+ 1) ≤ k ≤ (d+ 1)(d+ 2)/2}.

Hence Kd+1 ⊃ {k : 2(d+ 1) ≤ k ≤ (d+ 1)(d+ 2)/2}. By induction, (3.2) is true for d ≥ 3.

Finally, since columns of a randomly generated d× (2d−1) matrix form an exact PR frame almost

surely, we get the conclusion as desired.

The following are some explicit examples for d = 5 and 10 ≤ m ≤ 15. In each case, column

vectors of A form an exact PR frame. Moreover, such matrices correspond to exact PR frames

almost surely if the non-zero entries are replaced with independent continuous random variables.

(d,m) = (5, 10):

A =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

6 4 2 11 0

13 10 8 0 3

7 7 0 9 8

16 0 8 30 13

0 4 12 14 18


.
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(d,m) = (5, 11):

A =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

5 0 3 35 7 0

18 0 14 27 0 2

0 23 5 0 1 14

0 8 0 14 7 14

0 0 3 30 3 14


.

(d,m) = (5, 12):

A =



1 0 0 0 0 7

0 1 0 0 0 4

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 10 10 11 0 0

0 7 16 0 15 0

16 2 0 2 3 0

1 0 23 3 0 9

0 12 2 11 0 2


.

(d,m) = (5, 13):

A =



1 0 0 0 0 6 0

0 1 0 0 0 6 0

0 0 1 0 0 0 9

0 0 0 1 0 0 16

0 0 0 0 1 0 0

4 12 16 0 0 0

8 5 0 0 15 0

5 0 0 11 12 0

0 6 1 0 0 8

7 6 0 10 0 9


.
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(d,m) = (5, 14):

A =



1 0 0 0 0 11 0

0 1 0 0 0 5 0

0 0 1 0 0 0 3

0 0 0 1 0 0 17

0 0 0 0 1 0 0

20 0 16 4 0 0 0

0 1 16 0 0 4 0

6 0 0 0 13 8 0

0 0 8 8 0 0 4

0 1 2 0 1 0 3


.

(d,m) = (5, 15):

A =



1 0 0 0 0 12 0 4

0 1 0 0 0 17 0 0

0 0 1 0 0 0 1 8

0 0 0 1 0 0 3 0

0 0 0 0 1 0 0 0

0 7 0 13 0 0 0

3 0 10 0 0 2 0

0 0 0 0 12 17 0

0 0 1 15 0 0 2

3 1 0 0 13 0 18


.

Remark 3.2.5. In the real case, the minimal length for phase retrievable frames is 2d − 1. But

in the complex case, the minimal length varies depending on the demension. For example, it is

known that the minimum length satisfies the following inequality [HMW13]

m ≥ 4d− 2− 2b(d) +


2 if d is odd and b = 3 mod 4

1 if n is odd and b = 2 mod 4

0 otherwise

If d = 2k + 1, then the minimal length is 4d − 4. Thus determining whether we can have exact

phase retrievable frames of any length between the minimum and maximum is a tricky problem.
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On a positive note, for any d the d2-element frames {e1, ..., ed} ∪ {ei + ej +
√
−1ej}1<i<j≤d are

exact.
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CHAPTER 4: MAXIMAL PHASE-RETRIEVABLE SUBSPACES

4.1 Phase-Retrievable Subspaces

Frames that do not do phase retrieval can be very useful in applications. For a non-phase-retrievable

frame F , researchers have been interested in identifying the subsets of the signal space for which

F can do phase-retrieval. A typical example is the subset of sparse signals (see [EHM16] and

[WX14]). To gain a better understanding about frame phase-retrievability, we will look at the

problem of identifying the largest subspaces M such that F does the phase-retrieval for all the

signals in M . The results in the first two sections of this chapter are taken from [HJLS].

Definition 4.1.1. Let F = {fn}mn=1 be a frame forH and M is a subspace ofH. We say that M is

a phase-retrievable subspace with respect to F if {PMfn}mn=1 is a phase-retrievable frame for M ,

where PM is the orthogonal projection fromH onto M . A phase-retrievable subspace M is called

maximal if it is not a proper subspace of any other phase-retrievable subspaces with respect to F .

We will use the abbreviation “F-PR subspace ” to denote a phase-retrievable subspace with respect

to F . Given a frame F , there are some natural questions that come up about phase-retrievable

subspaces. For example: what are possible dimensions k such that there exists a k-dimensional

maximal F-PR subspace? What is the largest (or the smallest) dimension for all the maximal F-

PR subspaces? Can we characterize all the maximal phase-retrievable subspaces? We will explore

the answers to these questions in Section 3 and Section 4.

As a motivating example, we will show that if F = {fi}dn=1 is a basis forH, then there exists a k-

dimensional maximal F-PR subspace if and only if 1 ≤ k ≤ [(d+1)/2]. For any general frame F ,

we will identify the largest k such that there exists a k-dimensional maximal F-PR subspace. This

leads to a generalization of the complement property characterization for real phase-retrievable
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frames. In the case that F = {fn}dn=1 is a basis, we show that if M is a F-PR subspace, then the

support supp(x) (with respect to the dual basis) of every nonzero vector x in M has the cardinality

greater than or equal to k. Moreover, we will prove that for any given vector x with |supp(x)| = k,

there exists a k-dimensional maximal F-PR subspace M containing x. This support condition is

also necessary in the case that k < [(d+ 1)/2], i.e, in this case we have that a k-dimensional F-PR

subspace M is maximal if and only if there exists an nonzero vector x in M whose support has the

cardinality k.

The following simple property will be needed.

Lemma 4.1.2. Suppose that H is the direct sum of two subspaces X and Y . If F1 is a frame for

X with the exact PR-redundancy property and F2 is a frame for Y with the exact PR-redundancy

property, then F = F1 ∪ F2 is a frame forH with the exact PR-redundancy property.

Proof. By passing to a similar frame we can assume that Y = X⊥. Clearly F is a frame for

H. Now assume that a vector f is removed from F1. Since F1 is a frame for X with the exact

PR-redundancy property, there exists some nonzero operator A = u ⊗ u − v ⊗ v with u, v ∈ X

such that A ∈ ker(AF1\{f}) and A /∈ ker(AF1). Since Y ⊥ X , we also have A ∈ ker(AF2). This

implies that A ∈ ker(AF\{f}) and A /∈ ker(AF). The same argument works if we remove one

element from F2. Thus F has the exact PR-redundancy property.

We first prove the following special case.

Theorem 4.1.3. Let F = {fn}dn=1 be a basis for H. Then there exists a k-dimensional maximal

F-PR subspace if and only if 1 ≤ k ≤ [(d+ 1)/2].

Proof. Suppose that M is a k-dimensional F-PR subspace. Then we have that d ≥ 2k − 1 and
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hence k ≤ (d + 1)/2. For the other direction, note that for each invertible operator T on H, M is

a maximal F-PR subspace if and only if (T t)−1M is a maximal TF-PR subspace. So it suffices

to show that for each k-dimensional subspace M with 1 ≤ k ≤ [(d + 1)/2] there exists a basis

{un}dn=1 such that M is an maximal PR subspace with respect to {un}dn=1.

Let {ϕj}2k−1
j=1 ⊂ M be a PR-frame for M . Without losing the generality we can assume that

{ϕ1, ..., ϕk} is an orthonormal basis for M . Extend it to an orthonormal basis {en}dn=1 for H,

where en = ϕn for n = 1, ..., k. Define un by

un = en (n = 1, .., k, 2k, ..., d) and un = en + ϕn (n = k + 1, ..., 2k − 1).

Let PM be the orthogonal projection onto M . Clearly we have

{PMun}dn=1 = {ϕ1, ..., ϕ2k−1, 0, ..., 0},

and hence {un}dn=1 is a phase-retrievable for M . It is also easy to verify that {un}dn=1 is a basis

for H. Now we show that M is an maximal PR subspace with respect to {u1, ..., ud}. Let M̃ =

span {M,u} with u =
∑d

j=k+1 ajej in M⊥ and ||u|| = 1. Then PM̃un = en for 1 ≤ n ≤ k,

PM̃un = ϕn + anu for k + 1 ≤ n ≤ 2k − 1 and PM̃un = anu for n ≥ 2k − 1. If an = 0 for

n = 2k, ..., d, then {PM̃un}dn=1 is not phase-retrievable for M̃ since it only contains at most 2k− 1

nonzero elements. If an0 6= 0 for some n0 ≥ 2k, then clearly {PM̃un}dn=1 is phase-retrievable for

M̃ if and only if {PM̃un}
2k−1
n=1 ∪ {an0u} is phase-retrievable for M̃ . Thus M̃ is not a PR subspace

with respect to {u1, ..., ud} since we need at least 2k+ 1 number of elements in a phase-retrievable

frame for the (k + 1)-dimensional space M̃ .

We now consider the general frame case. Let F be a frame forH. For each subset Λ of {1, ...,m},
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let

dΛ = max{dim span (FΛ), dim span (FΛc)}.

Define

d(F) = min{dΛ : Λ ⊂ {1, ...,m}}.

Theorem 4.1.4. Let F be a frame for H. Then k is the largest integer such that there exists a

k-dimensional maximal F-PR subspace if and only if k = d(F).

Clearly, d(F) = d if and only if F has the complement property. Thus the above theorem is a

natural generalization of Theorem 2.2.2 . We need following lemma for the proof of Theorem

4.1.4.

Lemma 4.1.5. Let Tx =
∑k

n=1〈x, xn〉xn be a rank-k operator andM be a subspace ofH such that

dimTM = k, then dimP (M) = k, where P is the orthogonal projection onto span {x1, ..., xk}.

Proof. Since 〈x, xn〉 = 〈Px, xn〉, we get that range(T |M) = range(T |PM). Thus dimP (M) ≥ k

and hence dimP (M) = k.

Proof of Theorem 4.1.4. Clearly we only need to prove that if d(F) = k, then there exists a

k-dimensional F-PR subspace and every (k + 1)-dimensional subspace is not phase-retrievable

with respect to F .

Suppose that M is a (k + 1)-dimensional subspace of H and it is also phase-retrievable with

respect to F . Then, by Theorem 2.2.2, we get that d(PF) = k + 1, and hence d(F) ≥ d(PF) ≥

k + 1, which leads to a contradiction. Therefore every (k + 1)-dimensional subspace is not phase-

retrievable with respect to F .

Next we show that there exists a k-dimensional F-PR subspace. Let Ω be a subset of {1, ...,m}
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such that dimHΩ ≥ k, whereHΩ = spanFΩ. For X = (x1, ..., xk) ∈ H(k) := H⊕ ...⊕H, define

TX(z) =
∑k

n=1〈z, xn〉xn.

Consider the following set

SΩ = {(x1, ..., xk) ∈ H(k) : dimTX(HΩ) = k}.

Since dim spanFΩ ≥ k, we get that there exists a linearly independent set (fi1 , ..., fik) in FΩ. This

implies that (fi1 , ..., fik) ∈ SΩ and hence SΩ is not empty.

Moreover, since dimTX(HΩ) = k if and only if there exists an k × k submatrix of the d × |Ω|

matrix [TXfω] whose determinant is a nonzero polynomial of the input variables x1, ..., xk, we

obtain that SΩ is open dense inH(k).

Now for each subset Λ in {1, ...,m}. Let ΩΛ = Λ if dΛ = dim span (FΛ), and otherwise ΩΛ = Λc.

Thus we have dim spanFΩΛ
≥ k for every subset Λ. Since each SΩΛ

is open dense inH(k), we get

that

S :=
⋂

Λ⊂{1,...,m}

SΩΛ

is open dense inH(k). Let X = (x1, ..., xk) ∈ S and M = span {x, ..., xk}. Then by Lemma 4.1.5

we obtain that dimP (HΩΛ
) = k. This implies that either dim spanPFΛ = k or dim spanPFΛc =

k for each subset Λ. Hence {Pfj}mj=1 is a frame for M that has the complement property, which

implies by Theorem 2.2.2 that M is a k-dimensional F-PR subspace.

From the proof of Theorem 4.1.4, we also have the following:

Corollary 4.1.6. Let F be a frame for H. Then for almost all the vectors (x1, ...x`) in H(`) (here

` ≤ d(F)), the subspace span {x1, ..., x`} is phase-retrievable with respect to F . More precisely,
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for each ` ≤ d(F), the following set

{(x1, ...x`) ∈ H(`) : span {x1, ..., x`} is phase retrievable with respect to F}

is open dense inH(`).

The following lemma follows immediately from the definitions, and it tells us that it is enough

to focus on maximal phase-retrievable subspaces for frames that have the exact PR-redundancy

property.

Lemma 4.1.7. Let F = {fn}mn=1 be a frame for H, and Λ ⊂ {1, ...,m}. If ker(AFΛ
) ∩ S2 =

ker(AF) ∩ S2, then M is a F-PR subspace if and only if it is a FΛ-PR subspace. Consequently,

M is an maximal F-PR subspace if and only if it is an maximal FΛ-PR subspace.

Now we would like to know what are the possible values of d(F). Since every frame contains a

basis, we get by Proposition 4.1.3 that d(F) ≥ [d+1
2

]. The following theorem tells us that for every

k between [(d + 1)/2] and d, there is a frame F with the exact PR-redundancy property such that

k = d(F).

Theorem 4.1.8. Let H = Rd and k be an integer such that d ≥ k ≥ [d+1
2

]. Then for each m

between 2k − 1 and k(k + 1)/2 + (d− k)(d− k + 1)/2, there exists a frame F of length m such

that it has the exact PR-redundancy property and d(F) = k, i.e., k is the largest integer such that

there exists a k-dimensional maximal F-PR subspace.

Before giving the proof we remark that while the proof of the this theorem uses Theorem 3.2.1, it

is also a generalization of Theorem 3.2.1 since it clearly recovers Theorem 3.2.1 if we let d = k.

Proof. Let M be a k-dimensional subspace ofH.
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We divide the proof into two cases.

Case (i). Assume that 2k − 1 ≤ m ≤ k(k + 1)/2.

By Theorem 3.2.1, there exists an exact PR-frame G = {gn}mn=1 forM . Without losing the general-

ity we can also assume that {g1, ..., gk} is an orthonormal basis for M . Extend it to an orthonormal

basis {en}dn=1 with e1 = g1, ..., ek = gk. Let

F = {fn}mn=1 = {e1, ..., ek, gk+1 + ek+1, ..., gd + ed, gd+1...., gm}.

Then F is a frame for H. Consider the subset Λ = {1, ..., k, d + 1, ...,m} of {1, ...,m}. We have

dim spanFΛ = dimM = k, and dim spanFΛc ≤ d − k. Note that from k ≥ [d+1
2

] we get that

d− k ≤ k. Thus we have d(F) ≤ max{d− k, k} = k. On the other hand, it is easy to prove that

d(F) ≥ d(PMF) = d(G) = k, where PM is the orthogonal projection onto M . Therefore we have

d(F) = k.

Now we show that F has the exact PR-redundancy property. If fact, if Λ is a proper subset of

{1, ...,m}, then PMFΛ is not a PR frame for M since PMF = G is an exact PR-frame for M .

Therefore, there exists x and y in M such that |〈x, PMfn〉| = |〈y, PMfn〉| for all n ∈ Λ and

A = x⊗x−y⊗y 6= 0. Since PMF is a PR-frame forM , we obtain that |〈x, PMfn〉| 6= |〈y, PMfn〉|

for some n ∈ Λc. Note that |〈z, fn〉 = 〈z, PMfn〉 for every z ∈ M . Therefore, we have that

A ∈ ker(AFΛ
) ∩ S2 but A /∈ ker(AF) ∩ S2, and hence ker(AFΛ

) ∩ S2 6= ker(AF) ∩ S2 for any

proper subset Λ. So F has the exact PR-redundancy property.

Case (ii): Assume that k(k + 1)/2 < m ≤ k(k + 1)/2 + (d− k)(d− k + 1)/2.

Since k ≥ [(d+ 1)/2] ≥ d/2, it is easy to verify that

k(k + 1)/2 ≥ (2k − 1) + 2(d− k)− 1 = 2d− 2.
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Then we can write m = m1 +m2 such that

2k − 1 ≤ m1 ≤ k(k + 1)/2 and 2(d− k)− 1 ≤ m2 ≤ (d− k)(d− k + 1)/2.

By Theorem 3.2.1, there exist an exact PR-frame F1 of length m1 for M and an exact PR-frame

F2 of length m2 for the M⊥. By Lemma 4.1.2, we know that F = F1 ∪ F2 is a frame of length m

with the exact PR-redundancy property. Clearly d(F) ≤ k since

max{dim spanF1, dim spanF2} = k.

On the other hand, since F has a k-dimensional PR-subspace M , we get from Theorem 4.1.4 that

d(F) ≥ k. Thus we have d(F) = k.

The following example shows that k(k+ 1)/2 + (d− k)(d− k+ 1)/2 is not necessarily the upper

bound of m such that there exists a frame F of length m with the exact PR-redundancy property

and d(F) = k.

Example 4.1.9. Let {e1, e2, e3} be an orthonormal basis for R3. Consider the following frame

F = {e1, e2, e3, e1 + e2, e1 + e2 + e3}.

Then k = d(F) = 2 and 5 > k(k+1)/2+(3−k)(3−k+1)/2 = 4 . We can check that F has the

exact PR-redundancy property. Let G be the frame after removing an element f from F . Based on

the following five cases, we can easily construct A = x⊗x− y⊗ y such that A 6= 0, A ∈ ker(AG)

but A /∈ ker(AF):

(i) f = e1: Let x = 2e1 = e2 and y = 4e1 − e2.
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(ii) f = e2: Let x = 2e2 + e1 and y = 4e2 − e1.

(iii) f = e3: Let x = e1 + e3 and y = e1 − 3e3.

(iv) f = e1 + e2: Let x = e1 + (e2 + e3) and y = e1 − (e2 + e3)

(v) f = e1 + e2 + e3: Let x = e1 + e3 and y = e1 − e3.

Theorem 4.1.10. Let H = Rd. Suppose that a frame F of length m has the exact PR-redundancy

property and d(F) < d. Then m < d(d+ 1)/2.

Proof. Since F has the exact PR-redundancy, we get that m ≤ d(d + 1)/2. If m = d(d + 1)/2,

then, by Lemma 3.1.2, {fn⊗fn}mn=1 is linearly independent and hence a basis for Hd. This implies

that F is phase-retrievable and so d(F) = d. This contradiction shows that m < d(d+ 1)/2.

4.2 Maximal Phase-Retrievable Subspaces

Given a basis F = {f1, ..., fd}. We would like to have a better understanding about the maximal

phase-retrievable subspaces with respect to F . We will first focus on orthonormal bases and then

use the similarity to pass to general bases.

Now we assume that E = {e1, ..., ed} is an orthonormal basis for Rd. By Proposition 4.1.3, we

know that there exists a k-dimensional maximal E-PR subspace for ever integer k with 1 ≤ k ≤

[d+1
2

]. What more can be said about these k-dimensional maximal E-PR subspaces? We explore

this question by establishing a connection with the support property of the vectors in maximal

PR-subspaces. Recall that for a vector x =
∑d

n=1 αnen ∈ Rd, the support of x is defined by

suppE(x) := {n |αn 6= 0}. We will also use supp(x) to denote suppE(x) if E is well understood in

the statements, and use |Λ| to denote the cardinality of any set Λ.
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Proposition 4.2.1. Suppose that M is a k-dimensional E − PR subspace. Then for any nonzero

vector x ∈M , we have |supp(x)| ≥ k.

Proof. Assume to the contrary that there exists a nonzero x ∈ M with |supp(x)| = j < k. We

may assume that ‖x‖ = 1 and that supp(x) = {1, 2, ..., j}. Pick vectors y1, ..., yk−1 in M such that

the set {x, y1, ..., yk−1} is an orthonormal basis for M . Then we have,

PM(e1) = 〈e1, x〉x+ 〈e1, y1〉y1 + · · ·+ 〈e1, yk−1〉yk−1

PM(e2) = 〈e2, x〉x+ 〈e2, y1〉y1 + · · ·+ 〈e2, yk−1〉yk−1

...

PM(ej) = 〈ej, x〉x+ 〈ej, y1〉y1 + · · ·+ 〈ej, yk−1〉yk−1

PM(ej+1) = 〈ej+1, y1〉y1 + · · ·+ 〈ej+1, yk−1〉yk−1

...

PM(ed) = 〈ed, y1〉y1 + · · ·+ 〈ed, yk−1〉yk−1.

The partition {PM(e1), ..., PM(ej)} and {PM(ej+1), ..., PM(ed)} does not have the complement

property since the first set contains less than k elements and the members of the second set are

all contained in the (k − 1)-dimensional subspace span {y1, ..., yk−1}. Thus M is not a E − PR

subspace, which leads to a contradiction.

Corollary 4.2.2. If M is a k-dimensional E − PR subspace and there exists x ∈ M such that

|supp(x)| = k, then M is maximal.

Proof. If M is not maximal then there exists a (k + 1)-dimensional F − PR subspace W which
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contains M . Thus we have x ∈ W with |supp(x)| = k, a contradiction.

Now suppose that k ≤ [(d+1)/2]. Let x ∈ H be a vector of norm one and |supp(x)| = k. We show

that x can be extended to an orthonormal set {x, u1, ..., uk−1} such thatM = span {x, u1, ..., uk−1}

is a k-dimensional E-PR subspace.

Theorem 4.2.3. Let u1 ∈ Rd be a unit vector such that |supp(u1)| = k and k ≤ [(d + 1)/2].

Then u1 can be extended to an orthonormal set {u1, ..., uk} such that M = span {u1, ..., uk} is a

k-dimensional maximal E-PR subspace.

Proof. We can assume that {e1, ..., ed} is the standard orthonormal basis for Rd and u1 =
∑k

n=1 αnen

such that αn 6= 0 for every 1 ≤ n ≤ k.

It is easy to observe the following fact: Let m : 1 ≤ m ≤ k. Suppose that {u1, ..., um} is an

orthonormal set extension of u1 and

A(u1, ..., um) = [u1, ..., um].

is the matrix consisting of column vectors u1, ..., um. Also let AΛ(u1, ..., um) be the matrix con-

sisting of the row vectors of A(u1, ..., um) corresponding to an index set Λ. If AΛ(u1, ..., um) is

invertible for every subset Λ of {1, ..., d} of cardinalitym with the property that Λ∩{1, ..., k} 6= ∅,

then the row vectors of A(u1, ..., um) form a frame for Rm that has the complement property.

Now we use the induction to show that such an matrixA(u1, ..., um) exists for everym ∈ {1, ..., k}.

Clearly, the d× 1 matrix A(u1) satisfies the requirement. Now assume that such an d×m matrix

A(u1, ..., um) has been constructed and m < k. We want to prove that there exists a unit vector

um+1 ⊥ ui(1 ≤ i ≤ m) such that A(u1, ..., um, um+1) has the required property.

Let U = span{u1, ..., um}⊥, and let Λ be a subset of {1, ..., d} such that |Λ| = m + 1 and Λ ∩
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{1, ..., k} 6= ∅. Define

ΩΛ = {u ∈ U : AΛ(u1, ..., um, u) is invertible}.

We claim that ΩΛ is an open dense subset of U .

Using the fact that the set of invertible matrices form an open set in the space of all matrices, it is

clear that ΩΛ is open in U .

Now we show that ΩΛ 6= ∅. Let Λ′ be a subset of Λ with cardinality m and Λ′ ∩ {1, ..., k} 6= ∅.

Then, by our induction assumption, we have that AΛ′(u1, ..., um) is invertible, which implies that

the m column vectors of AΛ(u1, ..., um) form a linearly independent set in the m+ 1 dimensional

space RΛ = Πi∈ΛR. Let z ∈ Rm+1 be a nonzero vector such that it is orthogonal to all the column

vectors of AΛ(u1, ..., um). Define u = (u1, ..., ud)
T ∈ Rd by letting ui = zi for i ∈ Λ, and 0

otherwise. Then u ∈ U and hence u ∈ ΩΛ. Therefore we get that ΩΛ 6= ∅.

For the density of ΩU , let y ∈ U be an arbitrary vector and pick a vector u ∈ ΩΛ. Consider the

vector ut = tu + (1 − t)y ∈ U for t ∈ R. Since AΛ(u1, ..., um, u) is invertible, we have that

det(AΛ(u1, ..., um, ut)) is a nonzero polynomial of t, and hence it is finitely many zeros. This

implies that there exists a sequence {tj} such that utj ∈ ΩΛ and limj→∞ tj = 0. Hence utj → y

and therefore ΩU is dense in U .

By the Baire Category theorem we obtain that the intersection Ω of all such ΩΛ is open dense

in Y . Pick any um+1 ∈ Ω, then A(u1, ..., um, um+1) has the required property. This completes

the induction proof for the existence of such an matrix A = [u1, ..., uk], where {u1, ..., uk} is an

orthonormal set extending the given vector u1.

Write uj = (a1j, a2j, ..., adj)
T for 1 ≤ j ≤ k. Let M = span{u1, ..., uk} and P be the orthogonal
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projection onto M . Then

Pei =
k∑
j=1

< ei, uj > uj =
d∑
j=1

aijuj

for all 1 ≤ i ≤ d. For every subset Λ of {1, ..., n}, since {u1, ..., uk} is an orthonordal set, we have

that {Pej : j ∈ Λ} are linearly independent if and only if AΛ is invertible. Thus, {Pei}di=1 has the

complement property since the set of row vectors of A has the complement property.

Remark 4.2.4. Note that from the proof of the above theorem it is easy to see that the existence

of such a matrix A(u1, ..., uk) does not require the condition k ≤ [(d + 1)/2]. However, the

complement property of the row vectors for Rk does require this condition.

We already knew that if M is a k-dimensional PR-subspace with respect to an orthonormal basis

E , then the condition min{|supp(x)| : 0 6= x ∈ M} = k is sufficient for M to be maximal. The

following example show that this condition is not necessary in general. However, we will prove in

Theorem 4.2.6 that it is indeed also necessary if k < [d+1
2

].

Example 4.2.5. There exists a 2-dimensional maximal PR-subspaceM in R4 such that |supp(x)| =

3 for every nonzero x ∈ M . Indeed, let {e1, e2, e3, e4} be the standard orthonormal basis for R4

and be M = span {e1 + e2 + e3, e1 − e2 + e4}. Then it can be easily verified that M is a PR-

subspace and |supp(x)| = 3 for every nonzero x ∈ M . It is clear that M is maximal since there is

no 3-dimensional PR-subspace with respect to {e1, e2, e3, e4} in R4.

Theorem 4.2.6. Assume that M = span {u1, ..., uk} is a k-dimensional maximal PR-subspace

with respect to {e1, ..., ed} and k < [d+1
2

]. Then min{|supp(x)| : 0 6= x ∈M} = k.

Proof. By Proposition 4.2.1, it suffices to show there is an nonzero vector x ∈ M such that

|supp(x)| ≤ k.

Let {u1, ..., uk} be an orthonormal basis forM . We adopt the notation used in the proof of Theorem

4.2.3: For every subset Λ of {1, ..., d}, let AΛ(u1, ..., uk) be the matrix consisting of row vectors
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of [u1, ..., uk] corresponding to the row index set Λ. It is obvious that if there is a subset Λ with

|Λ| = d − k such that rankAΛ(u1, ..., uk) < k, then there is a nonzero vector x ∈ M such that

supp(x) ⊆ Λc and hence |supp(x)| ≤ k. We will prove that such a subset Λ exists.

Assume, to the contrary, that rankAΛ(u1, ..., uk) = k for any subset Λ with |Λ| = d− k. Thus we

have rankAΛ(u1, ..., uk) = k for any subset Λ with |Λ| ≥ d− k.

For each subset Λ, since k < [d+1
2

], we only have three possible cases:

(i) |Λ| ≥ d− k and |Λc| < d− k.

(ii) |Λc| ≥ d− k and |Λ| < d− k.

(iii) |Λ| < d− k and |Λc| < d− k.

Note that case (iii) implies that |Λ| > k and |Λc| > k. Now we assign each Λ to a subset S(Λ)

by the following rule: Set S(Λ) to be Λ or Λc depending case (i) or case (ii). Suppose that Λ

satisfies (iii). Since the row vectors of [u1, ..., uk] has the complement property, we have that

either rankAΛ(u1, ..., uk) = k or rankAΛc(u1, ..., uk) = k. In this case we set S(Λ) = Λ if

rankAΛ(u1, ..., uk) = k, and otherwise set S(Λ) = Ac. Let

S =
{
S(Λ) : Λ ⊆ {1, ..., d}

}
.

Then for each Λ we have either S(Λ) = Λ or S(Λ) = Λc, rankAS(Λ)(u1, ..., uk) = k and |S(Λ)| ≥

k + 1.

Let U = span{u1, ..., uk}⊥ and

ΩΛ = {u ∈ U : rankAS(Λ)(u1, ...uk, u) = k + 1}.
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Then by the exact same argument as in the proof of Theorem 4.2.3, we get that ΩΛ is open dense

in U . The Baire-Category theorem implies that there exists unit vector uk+1 ∈ U such that

rankAS(Λ)(u1, ...uk, uk+1) = k+1 for every subset Λ ⊆ {1, ..., d}. This shows that the row vectors

of the matrix [u1, ..., uk, uk+1] has the complementary property, and hence span{u1, .., uk, uk+1} is

a PR-subspace with respect to the orthonormal basis {e1, ..., ed}, which contradicts the maximality

of M .

Example 4.2.7. Let F = {e1, ..., ed} be an orthonormal basis for Rd. Then M = span {x} is a

one-dimensional maximal F-PR subspace if and only if |supp(x)| = 1.

Example 4.2.8. Let x ∈ Rn be a unit vector such that |supp(x)| = 2 and M be a 2-dimensional

subspace containing x. Then M is maximal F-PR subspace if and only if there exists an orthonor-

mal basis {x, y} for M such that y = y1 + y2 with 0 6= y1 ∈ span {en : n ∈ supp(x)} and

0 6= y2 ∈ span {en : n /∈ supp(x)}. Indeed, by Corollary 4.2.2, it suffices to show that M is a

F − PR subspace. We may assume that supp(x) = {1, 2}. Then we have

PM(e1) = 〈e1, x〉x+ 〈e1, y1〉y

PM(e2) = 〈e2, x〉x+ 〈e2, y1〉y

PM(e3) = 〈e3, y2〉y
...

PM(ed) = 〈ed, y2〉y

.

Then it is easy to check that {PMei} has the complement property if and only if {PMe1, PMe2}

are linearly independent, and 〈ei, y2〉 6= 0 for some 3 ≤ i ≤ n. This is in turn equivalent to the

60



conditions that y1 6= 0 and y2 6= 0.

Finally, let examine the general basis case. Let F = {f1, ..., fd} be a basis for Rd, and F∗ =

{f ∗1 , ..., f ∗d} be its dual basis. Let T be the invertible matrix such that fn = Ten for all n, where

E = {e1, ..., ed} be the standard orthonormal basis for Rd. We observe the following facts:

(i) M is a PR-subspace with respect to F if and only if T tM is a PR-subspace with respect to E .

(ii) The dual basis of F is F∗ = {(T−1)tT−1ed}dn=1, i.e., f ∗n = (T−1)tT−1en.

(iii) The coordinate vector of x with respect to the basis F∗ is the same as the coordinate vector of

T tx with respect to the basis E .

Based on the above observations we summarize the main results of this section in the following

theorem:

Theorem 4.2.9. Let F = {f1, ..., fd} be a basis for Rd, and F∗ = {f ∗1 , ..., f ∗d} be its dual basis.

Then we have

(i) If M is a k-dimensional PR-subspace with respect to F , then |suppF∗(x)| ≥ k for any nonzero

vector x ∈M . Consequently,M is maximal if there exists a vector x ∈M such that |suppF∗(x)| =

k.

(ii) For any vector x ∈ Rd such that |suppF∗(x)| = k, there exists a k-dimensional maximal

PR-subspace M with respect to F such that x ∈M .

(iii) If k < [(d + 1)/2] and M is a k-dimensional PR-subspace with respect to F , then M is

maximal if and only if there exists a vector x ∈M such that |suppF∗(x)| = k.
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4.3 Characterization via the PhaseLift Operator

In this section we provide a characterization of phase-retrievable subspaces using the PhaseLift

operator. Recall that if T ∈ Rd×d then a subspace M of Rd is said to be T -invariant if T (M) ⊆M .

Let S = {T ∈ Rd×d : T t = T, rank(T ) = 1 or 2}. If T ∈ S and rank(T )=1, then T = λ (x⊗ x)

for some nonzero scalar λ and some unit vector x ∈ Rd. If rank(T )=2, then by the spectral

decomposition theorem there exists orthonormal vectors x1, x2 ∈ Rd, and nonzero scalars λ1, λ2

such that T = λ1 (x1 ⊗ x1) + λ2 (x2 ⊗ x2). In the following preliminary lemmas, we fix a k-

dimensional subspace M of Rd.

Lemma 4.3.1. Assume that M 6⊆ ker(T ). If T ∈ S and T = λ (x⊗ x), then M is T -invariant if

and only if x ∈M .

Proof. If x ∈M then clearlyM is T -invariant. Now suppose thatM is T -invariant. Let TM denote

the restriction of T to M . Then TM is a self-adjoint operator and so there exists an orthonormal

basis {u1, ..., uk} for M consisting of eigenvectors of TM . TM has exactly one nonzero eigenvalue

so we may assume that λ 6= 0 is the eigenvalue corresponding to u1. Thus we have

TM(u1) = λ (x⊗ x) (u1) = λ〈u1, x〉x = λu1.

Note that 〈u1, x〉 6= 0. Hence x = 1
〈u1,x〉u1 ∈M and the claim is proved.

Note: We could also argue that T has rank one and both x and u1 are eigenvectors of T corre-

sponding to the eigenvalue λ.

Lemma 4.3.2. Assume that there exist linearly independent vectors x, y ∈ M such that x, y /∈

ker(T ). If T ∈ S and T = λ1 (x1 ⊗ x1) + λ2 (x2 ⊗ x2), then M is T -invariant if and only if
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x1, x2 ∈M .

Proof. M is clearly T -invariant if x1, x2 ∈ M . So suppose that M is T -invariant. Let {u1, ..., uk}

be an orthonormal basis for M consisting of eigenvectors of TM . Let ui be eigenvectors corre-

sponding to λi, for i = 1, 2. Then we have

TM(u1) = λ1 (x1 ⊗ x1) (u1) + λ2 (x2 ⊗ x2) (u1)

= λ1〈u1, x1〉x1 + λ2〈u1, x2〉x2

= λ1u1

and

TM(u2) = λ1 (x1 ⊗ x1) (u2) + λ2 (x2 ⊗ x2) (u2)

= λ1〈u2, x1〉x1 + λ2〈u2, x2〉x2

= λ2u2

From the above we obtain,

 λ1〈u2, x1〉u1 = λ1〈u2, x1〉〈u1, x1〉x1 + λ2〈u2, x1〉〈u1, x2〉x2

−λ2〈u1, x1〉u2 = −λ1〈u2, x1〉〈u1, x1〉x1 − λ2〈u2, x2〉〈u1, x1〉x2

This implies that
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λ2[〈u2, x1〉〈u1, x2〉 − 〈u2, x2〉〈u1, x1〉]x2 = λ1〈u2, x1〉u1 − λ2〈u1, x1〉u2

Since u1 and u2 are linearly independent we have that 〈u2, x1〉〈u1, x2〉−〈u2, x2〉〈u1, x1〉 6= 0. Thus

we have,

x2 =
λ1〈u2, x1〉

A
u1 −

λ2〈u1, x1〉
A

u2

where A = λ2[〈u2, x1〉〈u1, x2〉 − 〈u2, x2〉〈u1, x1〉]. So x2 ∈M .

Similarly,

x1 =
λ1〈u2, x2〉

B
u1 −

λ2〈u1, x2〉
B

u2

where B = λ1[〈u2, x2〉〈u1, x1〉 − 〈u2, x1〉〈u1, x2〉]. This proves the claim.

Before stating the main result, we make the following conventions. For a fixed subspace M of

Rd, let SM = {T ∈ S : M is T -invariant and M has rank(T ) l.i. vectors not in ker(T )}. Define

AM : Rd×d → Rd by AM(L) = {〈L, (PMei) ⊗ (PMei)〉HS}di=1, for L ∈ Rd×d. We have the

following result.

Theorem 4.3.3. Let M be a k-dimensional subspace of Rd. Then M is F-PR if and only if

ker(AM) ∩ SM = ∅.
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CHAPTER 5: PHASE-RETRIEVABLE OPERATOR-VALUED FRAMES

In this chapter, we consider the phase-retrieval problem for more general system of measurements.

More precisely, let H be a Hilbert (signal) space over F (= C or R) and let Fj : H → F (j ∈ J)

be a system of measurement functions that satisfy the condition Fj(λx) = Fj(x) for all x ∈ H

and every unimodular scalar λ ∈ F. We say that {Fj}j∈J does phase-retrieval (or, is a phase-

retrievable system) if the measurements {Fj(x) : j ∈ J} uniquely determines x ⊗ x for every

x ∈ H.

In the previous chapters, we considered the case where the measurement functions were given

by Fj(x) = |〈x, xj〉|2 and this led to the recently well-studied problems for vector valued phase-

retrievable frames {xj}j∈J. Vector-valued phase-retrievable frames can also be viewed as a special

case of a phase-retrievable problem from positive (or more generally self-adjoint) operator in-

duced quadratic measurements. This chapter examines several aspects of general phase-retrievable

operator-valued frames. The elementary (both in terms of statements and proofs) characterizations

of such frames will be presented in connection with several applications to group representation

frames, point-wisely tight frames, and almost point-wise phase-retrievable. The results presented

in the following three sections have been published by the author as part of [HJ19].

5.1 Phase-Retrievable Operator-Valued Frames

Notation: A denotes a von Neumann algebra acting on H and S(A) denotes the (quantum) state

space of A; that is, the set of all normal positive linear functionals f such that f(I) = 1.

Definition 5.1.1. Let {Tj}j∈J be an operator system in A. We say that {Tj}j∈J is

(i) an operator-valued frame forH if
∑

j∈J T
∗
j Tj is bounded and invertible;
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(ii) phase-retrievable from quadratic measurement (QM-phase-retrievable for short) if {〈x, Tjx〉}j∈J

uniquely determines x⊗ x for every x ∈ H;

(iii) state-retrievable if {ρ(Tj)}j∈J uniquely determines ρ for every ρ ∈ S(A).

Recall that a (vector-valued) frame for a Hilbert spaceH is a sequence {xj}j∈J such that

AI ≤
∑
j∈J

xj ⊗ xj ≤ BI

for some constants A,B > 0. Therefore if we let Tj = xj ⊗ xj then {Tj}j∈J is a QM-phase-

retrievable operator-valued frame if and only if {xj}j∈B is a phase-retrievable frame. The following

is an easy consequence from the definition.

Proposition 5.1.2. Let {Tj}j∈J be an operator family in A such that
∑

j∈J T
∗
j Tj is bounded.

(i) If {Tj}j∈J is state-retrievable , then it is QM-phase-retrievable.

(ii) If dimH <∞, then the QM-phase-retrievability of {Tj}j∈J implies that it is an operator-valued

frame

Proof. (i) follows from the fact that ρx(T ) = 〈Tx, x〉 defines a normal positive linear functional

on A for every vector x ∈ H . For (ii), assume that {Tj} is not an operator-valued frame. Then

there exists an nonzero vector x ∈ H such that
∑

j∈J T
∗
j Tjx = 0, which implies that Tjx = 0

for every j ∈ J. Hence we get 〈x, Tjx〉 = 0 for each j and therefore {Tj}j∈J is not QM-phase-

retrievable.

Remark 5.1.3. Even in the finite-dimensional case, it is easy to construct examples showing that

the converses of the statements in the above proposition are false.
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It is easy to prove that the complement property is equivalent to the condition that

span{〈x, xj〉xj : j ∈ J} = H

for every nonzero vector x ∈ H. The following slightly more general statement (for non-self-

adjoint operators Tj = xj ⊗ yj) remains to be true.

Proposition 5.1.4. Let Tj = xj ⊗ yj with xj, yj ∈ H (j ∈ J). Then the following are equivalent:

(i) span{Tjx : j ∈ J} = H for every nonzero vector x ∈ H;

(ii) For any Ω ⊆ J we have either span{xj}j∈Ω = H or span{yj}j∈Ωc = H.

Proof. (i)⇒ (ii): Suppose that (ii) is false. Then there exists Ω ⊆ J such that

span{xj : j ∈ Ω} 6= H and span{yj : j ∈ Ωc} 6= H.

Pick a nonzero vector x ∈ H such that x ⊥ yj for all j ∈ Ωc. Then we get

span{Tjx : j ∈ J} = span{〈x, yj〉xj : j ∈ Ω} 6= H.

Thus (i) implies (ii).

(ii) ⇒ (i): Let x ∈ H be a nonzero vector. Consider Ω = {j ∈ J : 〈x, yj〉 = 0}. Then clearly

span{yj : j ∈ Ω} 6= H. Thus we must have that span{xj : j ∈ Ωc} = H. Note that 〈x, yj〉 6= 0 for

evry j ∈ Ωc. Thus we get

span{Tjx : j ∈ J} = span{〈x, yj〉xj : j ∈ J} = span{xj : j ∈ Ωc} = H.
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Condition (i) (and its variations) of Proposition 5.1.4 can be stated for any operator-valued frames

and in fact it has been used in the characterization of phase-retrievable frames of self-adjoint op-

erators (c.f. [CEHV15], [WX17]). Here we generalize some of those to arbitrary operator-valued

frames.

Lemma 5.1.5. An operator-valued frame {Tj}j∈J is not QM-phase-retrievable if and only if there

exist nonzero vectors x, y such that x /∈ iRy and

〈x, Tjy〉+ 〈x, T ∗j y〉 = 0

for j ∈ J.

(Note that in the real Hilbert space case, the condition x /∈ iRy is automatically satisfied)

Proof. For x, y ∈ H, write u = x + y and v = x − y. Then we have that 〈u, Tju〉 = 〈v, Tjv〉 if

and only if 〈x, Tjy〉+ 〈x, T ∗j y〉 = 0.

Now first assume that that {Tj}j∈J is not QM-phase-retrievable. Then there exists u, v such that

u ⊗ u 6= v ⊗ v but 〈u, Tju〉 = 〈v, Tjv〉 for every j. Let x = 1
2
(u + v) and y = 1

2
(u − v). Then

u = x + y and v = x − y, and 〈x, Tjy〉 + 〈x, T ∗j y〉 = 0. Clearly x and y are nonzero. If x = iay

for some a ∈ R in the complex Hilbert space case, then we have u = (1 + ia)y and v = (1− ia)y,

which implies that u⊗ u = v ⊗ v. Thus we also have x /∈ iRy.

Conversely, assume that 〈x, Tjy〉+ 〈x, T ∗j y〉 = 0 for some nonzero vectors x and y with x /∈ iRy .

Then 〈u, Tju〉 = 〈v, Tjv〉 with u = x+y and v = x−y. If u⊗u = v⊗v, then u and v are linearly

dependent and ||u|| = ||v||, which implies that x and y are linearly dependent. Write x = cy with

c 6= 0. On the other hand, from ||u|| = ||v||, we also get that c = 0 in the real Hilbert space case

and c = ia for some a ∈ R in the complex Hilbert space case, both lead to contradictions. Thus
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we obtain that u⊗ u 6= v ⊗ v and so {Tj}j∈J is not QM-phase-retrievable.

5.2 Characterizations

Proposition 5.2.1. Let {Tj}j∈J be an operator-valued frame for a real Hilbert space H. Then the

following are equivalent:

(i) {Tj}j∈J is QM-phase-retrievable.

(ii) span{(Tj + T ∗j )x}j∈J = H for every nonzero vector x ∈ H.

In the finite-dimensional and |J| <∞ case, this condition is also equivalent to:

(iii)
∑

j∈J(Tj + T ∗j )(x⊗ x)(Tj + T ∗j ) is invertible for every nonzero vector x ∈ H.

Proof. Clearly (ii) and (iii) are equivalent in the finite-dimensional case. Write Sj = Tj + T ∗j .

Then 〈x, Sjy〉 + 〈x, S∗j y〉 = 2(〈x, Tjy〉 + 〈x, T ∗j y〉). Thus, by Lemma 5.1.5, we have that {Tj} is

QM-phase-retrievable if and only if {Tj +T ∗j } is QM-phase-retrievable. Therefore we can assume

that T ∗j = Tj . By Lemma 5.1.5 we have that {Tj} is not QM-phase-retrievable if and only if there

exist nonzero vectors x, y such that 〈y, Tjx〉 = 0. Thus we establish the equivalence of (i) and

(ii).

Remark 5.2.2. If we do not assume that Tj is self-adjoint, then the condition that span{Tjx} = H

for every nonzero vector x ∈ H is neither necessary nor sufficient for the QM-phase-retrievabilty

of {Tj}. For example, in R2, let T1 = e1 ⊗ e1, T2 = e2 ⊗ e2 and T3 = e1 ⊗ e2. Then it is easy

to verify that span{(Tj + T ∗j )x}3
j=1 = R2 for every nonzero vector x ∈ R2. Thus, by Proposition

5.2.1, {Tj}3
j=1 is QM-phase-retrievable. However, we also have span{Tjx}3

j=1 = Re1 for every

nonzero vector x.
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Conversely, if we let T1 = e1 ⊗ e1, T2 = e2 ⊗ e2 and T3 = e1 ⊗ e2 − e2 ⊗ e1. Then∑3
j=1 Tj(x⊗ x)T ∗j is invertible for every x 6= 0. However, by using the fact that T3 + T ∗3 = 0, we

get that span{(Tj + T ∗j )x}3
j=1 6= R2 for x = e1, which shows by Proposition 5.2.1 that {Tj} is not

QM-phase-retrievable.

For complex Hilbert spaces, without losing the generality, we will work on the concrete space

H = `d2(C), where `d2(C) = Cd when d is finite and `d2(C) = `2(C) is the space of square-

summable sequences when d = ∞. Similarly `d2(R) represents the real Hilbert space. For every

vector x ∈ `d2(C), we write x = Re(x) + iIm(x) with Re(x), Im(x) ∈ `d2(R). A closed subspace

of a Hilbert space W is said to have co-dimension one if dimW⊥ = 1.

Proposition 5.2.3. An operator-valued frame for `d2(C) is QM-phase-retrievable if and only if for

every nonzero vector x ∈ `d2(C) the subspace

Wx := span{Re((Tj + T ∗j )x)⊕ Im((Tj + T ∗j )x), Im((T ∗j − Tj)x)⊕Re((Tj − T ∗j )x) : j ∈ J}

has co-dimension one in `d2(R)⊕ `d2(R).

Proof. A simple calculation shows that

〈y, Tjx〉+ 〈y, T ∗j x〉 = 〈Re(y)⊕ Im(y), Re((Tj + T ∗j )x)⊕ Im((Tj + T ∗j )x)〉

+i〈Re(y)⊕ Im(y), Im((T ∗j − Tj)x)⊕Re((Tj − T ∗j )x)〉.

Thus 〈y, Tjx〉+ 〈y, T ∗j x〉 = 0 for all j if and only if Re(y)⊕ Im(y) is orthogonal to Wx.

If y = iax for some nonzero vector x and nonzero scalar a ∈ R, then 〈y, Tjx〉 + 〈y, T ∗j x〉 = 0.

Note that Re(y) ⊕ Im(y) = a((−Im(x)) ⊕ Re(x)). Thus span{(−Im(x)) ⊕ Re(x)} is a one-

dimensional subspace of the W⊥
x . Thus dimW⊥

x ≥ 1.
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On the other hand, we also have dimW⊥
x > 1 if and only if there exist vectors u, v ∈ `d2(R) such

that u ⊕ v /∈ span{(−Im(x)) ⊕ Re(x)} and u ⊕ v ∈ W⊥
x , which, in turn, is equivalent to the

condition that there exists y = u + iv /∈ iRx such that 〈y, Tjx〉 + 〈y, T ∗j x〉 = 0 for every j ∈ J.

Therefore we get that for a nonzero vector x, dimW⊥
x = 1 if and only if there exists no nonzero

vector y such that 〈y, Tjx〉 + 〈y, T ∗j x〉 = 0 for every j ∈ J. Hence, Lemma 5.1.5 implies that

{Tj}j∈J is QM-phase-retrievable if and only if the following Wx has co-dimension one for every

nonzero vector x ∈ `d2(C).

Remark 5.2.4. Although we have assumed that {Tj}j∈J is a finite or countable set, from their

proofs it is clear that all the above results remain to be true even when the index set J is not

countable (in this case we drop off the requirement that {Tj}j∈J is an operator-valued frame).

In the case thatH is finite-dimensional and each Tj is self-adjoint we get the following consequence

that was due to Wang and Xu [WX17] (also see the work of P. Casazza and his collaborators for

the case where each Tj is an orthogonal projection).

Corollary 5.2.5. Let H = Cd and assume that each Tj ∈ B(H) is self-adjoint. Then {Tj} is

QM-phase-retrievable if and only if

dim span{Re(Tjx)⊕ Im(Tjx) : j ∈ J} = 2d− 1

holds for every nonzero x ∈ Cd. In particular |J| ≥ 2d− 1 if {Tj}j∈J does QM-phase-retrieval.

Remark 5.2.6. Note that for a finite sequence {zj}kj=1, span{zj} is m-dimensional if and only if

rank(
∑k

j=1 zj ⊗ zj) = m. Therefore for self-adjoint matrices Tj ∈ Md(C), we have that {Tj}kj=1

is QM-phase-retrievable if and only if

rank

 ∑k
j=1Re(Tjx)⊗Re(Tjx)

∑k
j=1Re(Tjx)⊗ Im(Tjx)∑k

j=1 Im(Tjx)⊗Re(Tjx)
∑k

j=1 Im(Tjx)⊗ Im(Tjx)

 = 2d− 1
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for every nonzero vector x ∈ Cd.

The following corollary is a simple consequence of the characterizations of QM-phase-retrievable

operator-valued frames.

Corollary 5.2.7. Let {Tj}j∈J be an operator-valued frame on a Hilbert spaceH . Then QM-phase-

retrievability of {Tj + T ∗j } implies the QM-phase-retrievability of {Tj}. The converse is also true

for real Hilbert case but false for the complex case.

Proof. The real Hilbert space case follows from the proof of Proposition 5.2.1, and the complex

Hilbert space case follows from Proposition 5.2.3. For a counterexample of the converse, let

H = C2, T1 = i(e1 ⊗ e1), T2 = i(e2 ⊗ e2), T3 = e1 ⊗ e2 and T4 = e2 ⊗ e1. Then span{Tj}4
j=1 =

M2×2(C). Thus {Tj}4
j=1 is QM-phase-retrievable. However, by Proposition 5.2.3 , we get that

{Tj + T ∗j }4
j=1 = {0, 0, T4, T3} is not QM-phase-retrievable.

5.3 Point-Wise Tight Phase-Retrievable Operator-Valued Frames

For an operator-valued frames {Tj}j∈J, we establish in this section some connections among

the phase-retrievability of the operator-valued frames, the (almost everywhere) point-wise phase-

retrievability, and point-wise tight frame property for {Tj}. We will assume that H = Rd or Cd is

finite-dimensional and J = {1, ..., N} is finite.

For the real Hilbert space Rd case, it is easy to prove that {Tjx}Nj= is phase-retrievable for some x

if and only if {Tjx}Nj= is phase-retrievable for any generic vector x. Moreover, if Tj = xj ⊗ xj ,

then {Tj}Nj=1 is QM-phase-retrievable if and only if and if {Tjx}Nj= is phase-retrievable for some

x ∈ H. However, this is no longer true in general as demonstrated by the following example.
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Example 5.3.1. Again we use the example of Z. Xu [Xu18] which is a QM-phase-retrievable

operator-valued frame with six Hermitian operators {Tj}6
j=1 for R4. Clearly {Tjξ}6

j= is not phase

retrievable for any ξ ∈ R4 since it requires at least 7 vectors for a vector-valued frame to be

phase-retrievable for R4.

Conversely, letH = R2 and {e1, e2} be its standard orthonormal basis. Define T1 = e1⊗ e1 + e2⊗

e2, T2 = e1 ⊗ e1 + 2e2 ⊗ e2 and T3 = e1 ⊗ e1 + 3e2 ⊗ e2. Then {T1, T2, T3} is an operator-valued

frame for R2. For x = e1 we have span{T1x, T2x, T3x} = Re1 6= R2. Thus, by Proposition 5.2.1,

{T1, T2, T3} is not QM-phase-retrievable. However, for x = e1 + e2 we have {T1x, T2x, T3x} =

{e1 + e2, e1 + 2e2, e1 + 3e2}, which is clearly is phase-retrievable for R2.

If an operator-valued frame {Tj}j∈J has the property that {Tjx}j∈J is phase-retrievable for some

x ∈ H (and hence for almost all x ∈ H), then we say that {Tj}j∈J is almost everywhere point-

wise phase-retrievable. The above example naturally leads to the the following question: Can

we characterize all the operator-valued frames{Tj}j∈J such that {Tj}j∈J is QM-phase-retrievable

if and only if {Tj}j∈J is almost everywhere point-wise phase-retrievable?

The following was recently proved by Y. Wang and Z. Xu.

Theorem 5.3.2 ([WX17], Theorem 4.1). Let N ≥ 2d − 1 Then a generic operator-valued frame

A = (A1, ..., AN) of Hermitian matrices has the phase retrieval property for Rd.

By Corollary 5.2.7 and the above theorem we immediately get

Corollary 5.3.3. Let N ≥ 2d− 1 Then a generic operator-valued frame A = (A1, ..., AN) has the

phase retrieval property for Rd.

Next we prove that the same result holds for almost everywhere point-wise phase-retrievable

operator-valued frames.
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Theorem 5.3.4. Assume that N ≥ 2d − 1. Let P the set of all n-tuples (A1, ..., AN), where

Aj ∈ Md(R), such that {Ajx}Nj=1 is phase-retrievable for some x ∈ Rd. Then P is open dense in

the direct sum space Md(R)⊕ ...⊕Md(R) (N -copies).

Proof. Write A = (A1, ..., AN). Let {xj}Nj=1 be a phase-retrievable frame for Rd such that xj 6= 0

for each j. Set Aj = xj ⊗ xj , and pick x ∈ Rd such that 〈x, xj〉 6= 0 for every j. Then clearly

{Ajx} is phase-retrievable and hence P is nonempty.

Now let A = (A1, ..., AN) ∈ P and x ∈ Rd be such that {Ajx} is phase-retrievable. We clearly

can assume that ||x|| = 1. Since the set of all the phase-retrievable vector-valued frames of length

N is open in Rd ⊕ ... ⊕ Rd, there exists δ > 0 such that {yj}Nj=1 is phase-retrievable whenever∑N
j=1 ||Ajx − yj||2 < δ. This implies that if

∑N
j=1 ||Aj − Bj||2 < δ, then {Bjx}Nj=1 is phase-

retrievable and consequently B = (B1, ..., BN) ∈ P . Thus P is open.

For density, let B = (B1, ..., BN) ∈ Md(R) ⊕ ... ⊕ Md(R) be an arbitrary element and let

A = (A1, ..., AN) ∈ P be a fixed element with {Ajx} being phase-retrievable for some x ∈ Rd.

Consider C(t) = tA + (1 − t)B. We show that C(t) is in P for all but finitely many number of

t′s, which will imply that B is a limit point of P . Since {Ajx} is phase-retrievable, we have that

either span{Ajx : j ∈ Λ} = Rd or span{Ajx : j ∈ Λc} = Rd for every Λ ⊆ {1, ..., N}. Thus we

can associate every Λ with a set Φ(Λ) of cardinality d such that it is either a subset of Λ or a subset

of Λc and det[Ajx]j∈Φ(Λ) 6= 0. Define

fΛ(t) = det[(tAj + (1− t)Bj)x]j∈Φ(Λ).

Then these are nonzero polynomials since fΛ(1) 6= 0 for every Λ. By the complement property

for phase-retrievable frames, we clearly have that {tAj + (1 − t)Bj)x}Nj=1 is phase retrievable if

fΛ(t) 6= 0 for every Λ. Since the union of the zero sets of fΛ is finite, we conclude that C(t) is in
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P for all but finitely many number of t′s.

We have seen that the characterizations of QM-phase-retrievable frames are much more simpler

for frames of self-adjoint operators. However this might be too restrictive since, there are many

useful and interesting examples (e.g. frames of unitary operators) that do not fall into this category.

In what follows, we will call an operator family S a self-adjoint family if T ∈ S implies T ∗ ∈ S.

Lemma 5.3.5. Let {Tj}Nj=1 be a self-adjoint family. If {Tj}Nj=1 is QM-phase-retrievable, then for

every nonzero vector x ∈ H we have that
∑N

j=1 Tj(x⊗ x)T ∗j is invertible.

Proof. We only need to prove for the complex Hilbert space case. Assume that
∑N

j=1 Tj(x⊗x)T ∗j

is not invertible for some x 6= 0. Then there exists y 6= 0 such that 〈y, Tjx〉 = 0 for every j. If

y = iax for some 0 6= a ∈ R, then we get 〈x, T ∗j x〉 = 0, which implies that {Tj} is not QM-phase-

retrievable. So we have that y /∈ iRx. Since S is self-adjoint we obtain that that 〈y, T ∗j x〉 = 0

for every j. Thus 〈y, Tjx〉 + 〈y, T ∗j x〉 = 0, which implies by Lemma 5.1.5 that {Tj} is not QM-

phase-retrievable. This contradiction shows that
∑N

j=1 Tj(x ⊗ x)T ∗j must be invertible for every

x 6= 0.

Remark 5.3.6. The converse of the above lemma is not true. For the complex case, let {xj}Nj=1 be a

frame for Cd such that it has the complement property but not phase-retrievable (existence of such a

frame is guaranteed for complex Hilbert spaces). Let Tj = xj⊗xj . Clearly {Tj}Nj=1 is a self-adjoint

family,
∑N

j=1 Tj(x ⊗ x)T ∗j is invertible for every nonzero vector x and {Tj} is not QM-phase-

retrievable. However, this phenomenon can not happen for some well-structured operator-valued

frames. Here we examine the example of projective unitary group representation frames. For a

counterexample for real space case, we use the modified example of Remark 5.2.2: Conversely, if

we let T1 = e1 ⊗ e1, T2 = e2 ⊗ e2, T3 = e1 ⊗ e2 − e2 ⊗ e1 and T4T
∗
3 . Then

∑4
j=1 Tj(x ⊗ x)T ∗j

is invertible for every x 6= 0. However, by using the fact that T3 + T ∗3 = 0 = T4 + T ∗4 , we get
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that span{(Tj + T ∗j )x}4
j=1 6= R2 for x = e1, which shows by Proposition 5.2.1 that the self-adjoint

family {Tj}4
j=1 is not QM-phase-retrievable.

We would like to see how much of the previous proposition can be generalized to more general

operator-valued frames. For this purpose we introduce:

Definition 5.3.7. We say an operator family {Tj}j∈J is point-wisely tight if for every x 6= 0,

{Tjx}j∈J is a tight frame forH, i.e.,
∑

j∈J Tjx⊗ Tjx = λxI for some λx > 0.

Theorem 5.3.8. Let {Tj}j∈J be an operator family for a complex Hilbert space H. Then the

following are equivalent:

(i) There exists a positive invertible operator B such that {TjB}j∈J is a Parserval frame for B(H).

(ii) {Tj}j∈J is point-wisely tight.

(iii) For every x, y ∈ H, there exists λx,y such that

∑
j∈J

Tj(x⊗ y)T ∗j = λx,yI,

and λx,x > 0 when x 6= 0.

Proof. (i) ⇒ (ii): Suppose that there exists a positive invertible operator B such that {TjB} is a

Parserval frame for B(H). Then for any T ∈ B(H) we have

∑
j∈J

〈T, TjB〉TjB = T.

Note that

〈TB−1, TjB〉 = Tr(TB−1(TjB)∗) = Tr(TT ∗j ) = 〈T, Tj〉.
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Thus, by replacing T with TB−1, we get
∑

j∈J〈T, Tj〉TjB = TB−1 and hence we have
∑

j∈J〈T, Tj〉Tj =

T (B−1)2.

Let S = (B−1)2. Now for a fixed x 6= 0, define

A =
∑
j∈J

Tjx⊗ Tjx.

Then for any z, y ∈ H we have that

〈Az, y〉 =
∑
j∈J

〈z, Tjx〉 · 〈Tjx, y〉 =
∑
j∈J

〈z ⊗ x, Tj〉〈Tj, y ⊗ x〉

= 〈
∑
j∈J

〈z ⊗ x, Tj〉Tj, y ⊗ x〉

= 〈(z ⊗ x)S, y ⊗ x〉 = 〈x, Sx〉〈z, y〉.

This implies that Az = 〈x, Sx〉z for any z ∈ H, and hence A = 〈x, Sx〉I . Therefore {Tj}j∈J is

point-wisely tight.

(ii) ⇒ (iii): Assume that
∑

j∈J Tjx ⊗ Tjx = λxI for each x with λx > 0 when x 6= 0. Now fix

any x, y ∈ H . We have

λx+yI =
∑
j∈J

Tj(x+ y)⊗ Tj(x+ y)

= (λx + λy)I +
∑
j∈J

Tjy ⊗ Tjx+
∑
j∈J

Tjx⊗ Tjy,

and

λx+iyI =
∑
j∈J

Tj(x+ iy)⊗ Tj(x+ iy)

= (λx + λy)I + i
∑
j∈J

Tjy ⊗ Tjx− i
∑
j∈J

Tjx⊗ Tjy,
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This implies that

∑
j∈J

Tjx⊗ Tjy =
1

2
[λx+y + iλx+iy − (1 + i)(λx + λy)]I.

Thus we get (iii) by setting λx,y = 1
2
[λx+y + iλx+iy − (1 + i)(λx + λy)].

(iii)⇒ (i): Assume that ∑
j∈J

Tj(x⊗ y)T ∗j = λx,yI.

and λx,x > 0 when x 6= 0. Then clearly λx,y defines a positive bilinear form onH, and hence there

exists a positive invertible operator S such that λx,y = 〈Sx, y〉 for all x, y ∈ H. Let B = S−1/2. A

simple calculation shows that (iii) implies

∑
j∈J

〈u⊗ v, TjB〉TjB = u⊗ v

for all u, v ∈ H. Since span{u ⊗ v : u, v ∈ H} = B(H), we get that {TjB}j∈J is a Parserval

frame for B(H).

From the proof of Theorem 5.3.8, we have that λx,y = 〈B−1/2x, y〉 when {TjB}j∈J is a Parserval

frame for B(H). Thus we obtain the following consequence:

Corollary 5.3.9. Let {Tj}j∈J be an operator family for a complex Hilbert space H. Then the

following are equivalent:

(i) {Tj}j∈J is a tight frame for B(H).

(ii) There exists λ > 0 such that
∑

j∈J Tj(x⊗ x)T ∗j = λ〈x, x〉I.

(iii) There exists λ > 0 such that
∑

j∈J Tj(x⊗ y)T ∗j = λ〈x, y〉I.
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Using the fact that every operator is a linear combination of rank-one operators, we also have:

Corollary 5.3.10. An operator family {Tj}j∈J is a point-wisely tight operator system for a complex

Hilbert spaceH if and only if there exists a positive operator B such that

∑
j∈J

TjAT
∗
j = tr(AB)I

for every A ∈ B(H).

Remark 5.3.11. In the real Hilbert space case, λx,y in (iii) is positive symmetric. So it is obvious

from the proof of Theorem 5.3.8 that we still have the equivalence between (i) and (iii).
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CHAPTER 6: PHASE-RETRIEVABLE PROJECTIVE

REPRESENTATION FRAMES

We know that when a frame has the maximal span property, we can perform linear phase-less re-

construction. In this chapter we prove that every irreducible projective representation of a finite

abelian group admits a frame with maximal span property. This generalizes results obtained by Bo-

jarovska and Flinth for Gabor frames [BojFli16]. The results presented here have been published

by the author in [LJBCH19].

Definition 6.0.1. Let G be a group and let U(H) denote the group of unitary operators on H. We

say that the mapping π : G→ U(H) is a projective unitary representation if there exist a function

µ : G×G→ T such that

π(g)π(h) = µ(g, h)π(gh) for all g, h ∈ G.

µ is called a multiplier of π and π is said to be a µ-projective unitary representation. π is called

irreducible if span{π(g) : g ∈ G} = B(H), the set of all operators onH.

Definition 6.0.2. Let π be a projective group representation. A vector x ∈ H is called a π-maximal

spanning vector if {π(g)x}g∈G has the maximal span property.

LetMπ denote the set of all π-maximal spanning frame vectors. We have the following result.

Proposition 6.0.3. IfMπ is not empty, then it is an open dense subset ofH.

Proof. We can assume thatH = Fd. Let Hd be the space spanned by the all the Hermitian operators

and let {B1, ..., Bk} be a basis for Hd (note that k = d(d + 1)/2 if F = R and k = d2 if F = C).
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For each g ∈ G and x = (x1, ...xd), write

π(g)x⊗ π(g)x =
k∑
i=1

ci,g(x)Bi.

The ci,g(x)’s are polynomials in the entries of x when F = R and they are polynomials in the real

and imaginary parts of the entries of x when F = C. Let C(x) = [ci,g]k×|G| and let PΛ be the

determinant of the submatrix of C(x) indexed by Λ ⊂ G, where |Λ| = k. Each PΛ is a polynomial

in the entries of x or a polynomial in the real and imaginary parts of x. Since x ∈ Mπ if and only

if rank(C(x)) = k, we have that

Mπ = Hr ∩Λ⊂G,|Λ|=kZ(PΛ),

where Z(P ) = {x ∈ H : P (x) = 0}.

SinceMπ is nonempty, there exist x ∈ H and Λ ⊂ G such that PΛ(x) 6= 0. Since PΛ is a nonzero

polynomial,HrMπ is open dense inH.

The main theorem of this chapter is the following

Theorem 6.0.4. Suppose that π is a µ-projective unitary representation for a finite Abelian group

G on an d-dimensional complex Hilbert spaceH. If π is irreducible, then π admits a frame vector

with the maximal span property. Moreover, {π(g)x}g∈G has the maximal span property if and only

if 〈π(g)x, x〉 6= 0 for every g ∈ G.

To prove the theorem we need a couple of lemmas and the following notation. For x ∈ H, the

matrix
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A(x) = [ag,h(x)]G×G

has entries ag,h = 〈π(h)π(g)x, π(g)x〉.

Lemma 6.0.5. If there exists x ∈ H such that A(x) has rank d2, then π is irreducible and

{π(g)x}g∈G has the maximal span property.

Proof. Let X = {π(g)}g∈G and Y = {π(g)x ⊗ π(g)x}g∈G be two sequences in B(H). Note that

the mixed Gramian matrix ΘY Θ∗X is exactly the matrix A(x) which is assumed to have rank d2.

Thus rank(ΘY ) ≥ d2 and rank(ΘX) ≥ d2. Since we also have rank(ΘY ) ≤ d2 and rank(ΘX) ≤

d2, we get that rank(ΘY ) = d2 = rank(ΘX), which implies that π is irreducible and {π(g)x}g∈G

has the maximal span property.

Lemma 6.0.6. Suppose that π is a µ-projective unitary representation for a finite group G on an

d-dimensional complex Hilbert space H. Then there exists x ∈ H such 〈π(g)x, x〉 6= 0 for all

g ∈ G. Moreover, the set of all such vectors x is open and dense inH.

Proof. We can assume thatH = Cd. By the Baire-Category theorem it is enough to prove that for

each g ∈ G, the set {x ∈ Cd : 〈π(g)x, x〉 6= 0} is open and dense in Cd. Since 〈π(g)x, x〉 is a

quadratic polynomial of x, we only need to point out that this is a nonzero polynomial. Indeed, if

〈π(g)x, x〉 = 0 for all x ∈ Cd, then we have π(g) = 0, which is a contradiction.

Lemma 6.0.7. Suppose that π is a µ-projective unitary representation for an Abelian group G. If

there exists x ∈ H such that {π(g)x}g∈G has the maximal spanning property, then 〈π(g)x, x〉 6= 0

for every g ∈ G.

Proof. Since {π(g)x}g∈G has the maximal spanning property we have that span{π(g)x⊗ π(g)x :

g ∈ G} = B(H). So if 〈π(h)x, x〉 = 0 for some h ∈ G, then for every g ∈ G we get
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|〈π(h)π(g)x, π(g)x〉| = |〈π(g−1)π(h)π(g)x, x〉| = |〈π(g−1hg)x, x〉|

= |〈π(h)x, x〉| = 0.

Thus tr(π(h)(π(g)x⊗ π(g)x)) = 0, and so π(h) = 0 which leads to a contradiction.

The proof of the following lemma can be found in [BB72]

Lemma 6.0.8. Let µ be a multiplier for an abelian group G. Then all the irreducible µ-projective

representations have the same representation dimension.

Let µ be a multiplier for an abelian group G. The symmetric multiplier matrix is defined by

Cµ = [cg,h] with cg,h = µ(g, h)µ(h, g).

Theorem 6.0.9. Suppose that π is a µ-projective unitary representation for an abelian group G

on H = Cd. Then rank(Cµ) ≤ d2. Moreover, π is an irreducible µ-representation if and only if

rank(Cµ) = d2.

Proof. By Lemma 6.0.6, there exists η ∈ Cd such that

〈π(g)η, η〉 6= 0 for any g ∈ G. Let Θ1 : Md×d(C) 7→ `2(G) be the analysis operator for {π(g)}g∈G,

and Θ2 : Md×d(C) 7→ `2(G) be the analysis operator for {π(g)η ⊗ π(g)η}g∈G. Then we have

Θ2Θ∗1 = [〈π(g)π(h)η, π(h)η〉]G×G.

Note that

〈π(g)π(h)η, π(h)η〉 = cg,h〈π(g)η, η〉.
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and 〈π(g)η, η〉 6= 0 for every g ∈ G. So we get that

rank(Cµ) = rank(Θ2Θ∗1) ≤ rank(Θ1) = dim (span{π(g) : g ∈ G}) ≤ d2.

Now assume that rank(Cµ) = d2. Then the above inequality implies that dim (span{π(g) : g ∈

G}) = d2, and thus π is irreducible. Conversely, let us assume that π is irreducible. We will prove

that rank(Cµ) = d2.

We first introduce a couple of notations: Let Ĝ be the dual group of G, and π̄ : g 7→ π(g), the

complex conjugation of π(g). Then π̄ is a projective representation with multiplier µ̄. Consider the

group representation π⊗π̄ : g 7→ π(g)⊗π(g). Then it is a projective representation with multiplier

µµ̄ = 1, and so it is a group representation. Hence π ⊗ π̄ can be decomposed as the direct sum of

one-dimensional group representations of G. Moreover, each one dimensional representation of G

appears at most once in the direct sum decomposition of π ⊗ π̄. Let Tµ = {χ ∈ Ĝ : χ ⊂ π ⊗ π̄}.

Then Tµ is a subgroup of Ĝ. Define

Gµ = T⊥µ = {g ∈ G : χ(g) = 1,∀χ ∈ Tµ}.

Note that |Tµ| = dim H × dim H = d2. Thus |Gµ| = [G : Gµ] = |Tµ| = d2.

SinceG is abelian, it is easy to verify that c : G×G→ T defined by c(g, h) = cgh = µ(g, h)µ(h, g)

is a bi-homomorphism, i.e., c(gg′, h) = c(g, h)c(g′h) and c(g, hh′) = c(g, h)c(g, h′) for all

g, g′, h, h′ ∈ G. This induces a homomorphism λµ : G 7→ Ĝ. By Proposition 2.4 in [?] we

know that

Gµ = Ker(λµ) = {g ∈ G : λµ(g) = 1}.
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Therefore we get

|λµ(G)| = [G : Ker(λµ)] = d2.

Recall that the characters ofG are linearly independent. Since each row of the symmetric multiplier

matrixCµ defines a character ofG by h 7→ c(g, h), we get that the rank ofCµ is equal to the number

of different characters appeared in the rows of Cµ. By the definition of λµ, we know that this

number is exactly the cardinality of the image of λµ. This implies that rank(Cµ) = |λµ(G)| = d2

as claimed.

Corollary 6.0.10. Let µ be a multiplier of an abelian group G and d2 = rank(Cµ). Then every

d-dimensional µ-projective representation π of G is irreducible.

Proof. Let σ be an irreducible subrepresentation of π on a n-dimensional π-invariant subspace.

Then, by Theorem 6.0.9, the representation dimension of σ is equal to rank(Cµ) = n2. This

implies that n = d and thus σ = π. Therefore π is irreducible.

We now prove the main theorem

Proof of Theorem 6.0.4:

Assume that π is an irreducible µ-projective representation of G on H = Cd. By Lemma 6.0.7

we know that if {π(g)x}g∈G has the maximal span property, then 〈π(g)x, x〉 6= 0 for every g ∈

G. Therefore, to complete the proof, it suffices to show that {π(g)x}g∈G has the maximal span

property when 〈π(g)x, x〉 6= 0 for every g ∈ G.

Let Θ1 and Θ2 : Md×d(C)→ `2(G) be the analysis operators defined in the proof of Theorem 6.0.9.

Then we know that rank(Θ2Θ∗1) = rank(Cµ). Since π is irreducible, we get that rank(Θ∗1) = d2

and by Theorem 6.0.9 that rank(Cµ) = d2. This implies that rank(Θ2Θ∗1) = d2 which implies that
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rank(Θ2) = d2 since we also have rank(Θ2) ≤ d2. Therefore {π(g)x ⊗ π(g)x : g ∈ G} spans

Md×d(C), i.e., {π(g)x}g∈G has the maximal span property.
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