Hadwiger Numbers and Gallai-Ramsey Numbers of Special Graphs

Christian Bosse
University of Central Florida

Part of the Mathematics Commons

Find similar works at: https://stars.library.ucf.edu/etd
University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact STARS@ucf.edu.

STARS Citation

Bosse, Christian, "Hadwiger Numbers and Gallai-Ramsey Numbers of Special Graphs" (2019). Electronic Theses and Dissertations, 2004-2019. 6455.
https://stars.library.ucf.edu/etd/6455

HADWIGER NUMBERS AND GALLAI-RAMSEY NUMBERS OF SPECIAL GRAPHS

by

CHRISTIAN BOSSE
MS University of Central Florida, 2016
MS University of California, Riverside, 2011
BS La Sierra University, 2009
BA La Sierra University, 2009

A disseration submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy in the Department of Mathematics
in the College of Sciences at the University of Central Florida

Orlando, Florida

Summer Term
2019

Major Professor: Zi-Xia Song
(c) 2019 Christian Bosse

ABSTRACT

This dissertation explores two separate topics on graphs.

We first study a far-reaching generalization of the Four Color Theorem. Given a graph G, we use $\chi(G)$ to denote the chromatic number; $\alpha(G)$ the independence number; and $h(G)$ the Hadwiger number, which is the largest integer t such that the complete graph K_{t} can be obtained from a subgraph of G by contracting edges. Hadwiger's conjecture from 1943 states that for every graph $G, h(G) \geq \chi(G)$. This is perhaps the most famous conjecture in Graph Theory and remains open even for graphs G with $\alpha(G) \leq 2$. Let W_{5} denote the wheel on six vertices. We establish more evidence for Hadwiger's conjecture by proving that $h(G) \geq \chi(G)$ for all graphs G such that $\alpha(G) \leq 2$ and G does not contain W_{5} as an induced subgraph.

Our second topic is related to Ramsey theory, a field that has intrigued those who study combinatorics for many decades. Computing the classical Ramsey numbers is a notoriously difficult problem, leaving many basic questions unanswered even after more than 80 years. We study Ramsey numbers under Gallai-colorings. A Gallai-coloring of a complete graph is an edge-coloring such that no triangle is colored with three distinct colors. Given a graph H and an integer $k \geq 1$, the Gallai-Ramsey number, denoted $G R_{k}(H)$, is the least positive integer n such that every Gallai-coloring of K_{n} with at most k colors contains a monochromatic copy of H. It turns out that $G R_{k}(H)$ is more well-behaved than the classical Ramsey number $R_{k}(H)$, though finding exact values of $G R_{k}(H)$ is far from trivial. We show that for all $k \geq 3, G R_{k}\left(C_{2 n+1}\right)=n \cdot 2^{k}+1$ for $n \in\{4,5,6,7\}$, and $G R_{k}\left(C_{2 n+1}\right) \leq$ $(n \ln n) \cdot 2^{k}-(k+1) n+1$ for all $n \geq 8$, where $C_{2 n+1}$ denotes a cycle on $2 n+1$ vertices.

To Casey and Rowan

ACKNOWLEDGMENTS

Any accomplishment I have achieved throughout the course of my life is not due solely to my own efforts. The completion of this degree is no different. None of the best things in my life would be possible were it not for the support of others. In my own small way I want to express my gratitude to the many people who shared this experience with me and gave me the mental fortitude and encouragement to keep going.

To my closest friends in the department: Nathaniel, Jingmei, Fangfang, Ramchandra, Ted, Dave, Elliot, Cheng, Wei, Blake and Majid, thank you. Thanks for the many jokes, academic help, political discussions, and for commiserating with me throughout this entire process. You kept me sane.

To Dr. Gurel, thank you. I deeply appreciate the funding you allocated to me for two summers, which made it financially possible for me to remain focused on my studies.

To my committee members, Dr. Zhao, Dr. Brennan and Dr. DeMara, thank you for your service on my dissertation committee.

To Cory, Jen, Mark, Neena, Shay, Sonny, Dave and Sue thank you for your love and support, and for poking fun at me all the time and distracting me from my worries with this degree. To Bob, Charel, Eric, Holly, Scot and Patti, thank you for the immense support and interest you have invested in my education over the years. To my dear friends Xousaen, Mary, Jay, Kathy, Mario and Kori, thanks for the emotional support throughout this program, and for your curiosity about my progress. To the rest of my very large family, please know that I also deeply appreciate your love and support. To Dr. Vanderwerff, Dr. Howe and Dr. Clarke, thank you for teaching me to love mathematics as an undergraduate.

To my parents, Blayne and Laurin, I am deeply indebted. I still remember when I first started school, you told me to simply do my best. I always felt that advice released me of an obligation to perform at any particular level, and that you were implicitly giving me permission to make mistakes so long as I try. I have certainly made uncountably many mistakes but I always try remember those words. Without your love and support from the beginning I would not be here, so thank you, from the bottom of my heart.

To my advisor Dr. Song, thank you. I have always been amazed that you agreed to take me on as a student in the first place, especially because I knew precisely nothing about Graph Theory prior to taking your course. From the beginning you were encouraging, and always have pushed me to do more, write as nicely as possible, clarify arguments, and in general think deeply about mathematics. Suffice it to say I have not been a perfect student, but without your patience through my many, many mistakes I would not have made it to this point. On a personal level, I also profoundly appreciate your support while I went through the process of becoming a new father. Pursuing a degree is hard enough without also having to care for an infant, so your understanding of my personal circumstance is the only reason I was able to complete the program. There is no way I can think of to truly express the gratitude I feel for your guidance over the past few years, but I hope I can convey here, even in the smallest sense, my appreciation for your efforts to mould me into a better person.

Without a doubt, most importantly and above all, I am grateful to my wife, Casey. You have seen me through sleepless and anxious nights, encouraged me hundreds of times when I was sure I was going to fail, congratulated me on my successes, and believed in me even when I did not believe in myself. There is nothing I can do to repay you for your love, selflessness and support while I pursued a dream. To you I owe any good thing that comes of this degree, because you have sacrificed right along with me throughout this process. Thank you, and I love you and Rowan with all my heart.

TABLE OF CONTENTS

LIST OF FIGURES ix
LIST OF TABLES x
CHAPTER 1: INTRODUCTION 1
1.1 Preliminary Definitions and Results 2
1.2 Hadwiger's Conjecture 7
1.3 Ramsey Theory 17
1.3.1 Classical Ramsey Numbers 17
1.3.2 Gallai-Ramsey Numbers 24
CHAPTER 2: HADWIGER'S CONJECTURE FOR W_{5}-FREE GRAPHS 34
2.1 Proof of Theorem 1.2.14 34
CHAPTER 3: GALLAI-RAMSEY NUMBERS OF SMALL ODD CYCLES 38
3.1 Preliminaries 38
3.2 Proof of Theorem 1.3.26 39
3.3 Proof of Theorem 1.3.27 59
CHAPTER 4: IMPROVED UPPER BOUND FOR $G R_{k}\left(C_{2 n+1}\right)$ 93
4.1 Proof of Theorem 1.3.28 93
CHAPTER 5: FUTURE WORK 102
5.1 Hadwiger Numbers 102
5.2 Ramsey Theory and Gallai-Ramsey Numbers 103
LIST OF REFERENCES 105

LIST OF FIGURES

Figure 1.1: A graph G with example subgraphs and minor 4
Figure 1.2: Examples of common graphs 5
Figure 1.3: Contracting the red edges of the Petersen graph gives a K_{5} minor 9
Figure 1.4: The graphs H_{6}, H_{7} and W_{5} 14
Figure 1.5: A bad coloring of K_{5} 19
Figure 1.6: A lower bound construction showing $R_{3}\left(C_{2 n+1}\right) \geq 8 n+1$ 22
Figure 1.7: A Gallai partition and the corresponding reduced graph 26
Figure 3.1: An example of a green C_{11} arising from a green C_{7} 42
Figure 3.2: Constructing the set X 44
Figure 3.3: Gallai partition of $G \backslash X$ and a partition of X 47
Figure 3.4: Three large parts in the Gallai partition 54
Figure 3.5: Possible ways a green C_{15} arises from a green C_{9} 62
Figure 3.6: Partition of W 64
Figure 3.7: A green C_{13} arising from a green C_{5} 65

LIST OF TABLES

1.1 Partial Results for HC 11
1.2 HC Results for Graph Classes 12
1.3 Diagonal Ramsey Numbers of Cycles 21
1.4 Diagonal Gallai-Ramsey Numbers of Small Cycles 31

CHAPTER 1: INTRODUCTION

The first part of this dissertation explores a deep conjecture attributed to Swiss mathematician Hugo Hadwiger. Motivated by what was then the Four Color Conjecture, Hadwiger posed his famous conjecture at a colloquim at Eidgenössiche Technische Hochschule on December 15, 1942 [84]. This conjecture is regarded by many as one of the most profound in Graph Theory because of its relationship to what is now the Four Color Theorem (4CT) (see [84] or [77]). Specifically, Hadwiger's Conjecture (HC) implies 4CT, and in two cases is actually equivalent to 4 CT . As a result, HC is viewed as a far-reaching generalization of 4 CT . To date, only five cases are known, but many partial results have been subsequently shown. In this dissertation, we develop more partial results by restricting the maximum order of an independent set in a graph to two and forbidding certain induced subgraphs.

The second area of focus in this dissertation concerns Ramsey theory, named after British mathematician Frank Ramsey [45]. Problems in Ramsey theory can typically be simply stated and easily understood even by those without much formal mathematical training. However, this subject is quite profound despite its apparent simplicity. Ramsey theory asserts that "complete disorder is an impossibility," a characterization often attributed to mathematician Theodore Motzkin [45]. Due to the incredible level of difficulty, many basic problems in Ramsey theory remain unsolved despite being nearly a century old. Often the best information we have on a classical Ramsey number is a relatively poor bound. Motivated by this, we study Gallai-Ramsey numbers, a topic which falls under the umbrella of Ramsey theory, but whose computations usually prove to be more tractable due to a structural result of Hungarian mathematician Tibor Gallai [44, 65]. However, Gallai-Ramsey numbers are still far from trivial to compute.

We begin this dissertation by providing a review of the relevant graph-theoretic definitions and then move on to supply historical context and motivation for the problems we study. The remainder of the dissertation is organized as follows. First, we provide our partial results concerning HC. Next, we supply the proofs for the Gallai-Ramsey numbers of four odd cycles, and then establish an improved upper bound on the Gallai-Ramsey numbers of all odd cycles. Finally, we conclude this dissertation with a discussion of possible avenues for future research.

1.1 Preliminary Definitions and Results

Following the conventions set out in [26], a graph $G=(V, E)$ is a pair such that $E \subseteq[V]^{2}$, where the notation $[A]^{r}$ denotes the set of r-element subsets of a set A. The elements of V represent the vertices and the elements of E the edges of a graph G. The notation $V(G)$ and $E(G)$ is commonly used to denote the vertex set and edge set, respectively, of a graph G. A loop is an edge such that both ends are the same vertex. A graph G has multiple edges if there are at least two edges sharing the same ends. A graph G is simple if it contains neither loops nor multiple edges. The number of vertices in a graph G is its order, commonly denoted either as $|G|$ or $|V(G)|$. Similarly, the number of edges in a graph G is its size, denoted either $\|G\|$ or $|E(G)|$. A graph G is finite if $|G|$ is finite; otherwise it is infinite. For the purposes of this dissertation, we shall assume that all graphs here and henceforth are finite and simple.

If the 2 -element set defining $e \in E(G)$ contains $v \in V(G)$, we say the vertex v is incident with the edge e. Two vertices $u, v \in V(G)$ are adjacent in G if both $u \in e$ and $v \in e$ for some $e \in E(G)$, and we say that u and v are the ends of e. Similarly, $e, f \in E(G)$ are said to be adjacent if $v \in e \cap f$ for some $v \in V(G)$. If $u, v \in V(G)$ are adjacent, we will use the notation $u v$ to denote the edge containing them; additionally, we will say u and v
are neighbors and call the set of vertices adjacent to u its neighborhood, denoted by $N(u)$. Similarly, we define $N[u]:=N(u) \cup\{u\}$ to be the closed neighborhood of the vertex u. More generally, let $U, W \subseteq V(G)$. We say that U is complete to W if for every $u \in U$ and $w \in W$ we have $u w \in E(G)$. Likewise, U is anticomplete to W if for every $u \in U$ and $w \in W$ we have $u w \notin E(G)$. The degree of a vertex v, denoted $d_{G}(v)$ or simply $d(v)$ if the graph G is understood, is the number of edges incident with v, or equivalently, the number of neighbors of v. A matching M is a set of independent edges in a graph G. The complement of the graph G is denoted \bar{G}, where \bar{G} has vertex set V and edge set $[V]^{2} \backslash E$. In other words, for $u, v \in V(G), u v \in E(\bar{G})$ if and only if $u v \notin E(G)$.

A graph $H=\left(V^{\prime}, E^{\prime}\right)$ is a subgraph of $G=(V, E)$, denoted by $H \subseteq G$, if both $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$. Given $A \subseteq V(G)$, let $G[A]$ denote the subgraph of G obtained from G by deleting all vertices in $V(G) \backslash A$. A graph H is an induced subgraph of G if $H=G[A]$ for some $A \subseteq V(G)$. We say that two graphs G and H are isomorphic, denoted $G \simeq H$, if there exists a bijection $\varphi: V(G) \rightarrow V(H)$ such that $x y \in E(G)$ if and only if $\varphi(x) \varphi(y) \in E(H)$. We say the graph G is H-free if G contains no induced subgraph isomorphic to the graph H. If $e=u v \in E(G)$, we denote by G / e the graph obtained from G by contracting the edge e into a new vertex, say w, which is adjacent to all the former neighbors of u and v. In particular, we have $G / e=\left(V^{\prime}, E^{\prime}\right)$, where $V^{\prime}:=V(G \backslash\{u, v\}) \cup\{w\}$ and $E^{\prime}:=E(G \backslash\{u, v\}) \cup\{w z$: $u z \in E(G) \backslash u v$ or $v z \in E(G) \backslash u v\}$. Therefore, we say a graph G contains an H minor, denoted $G \succcurlyeq H$, if H can be obtained from a subgraph of G through a sequence of (possibly empty) edge contractions. A graph G is said to be H minor-free if G does not contain the graph H as a minor. See Figure 1.1 for examples of these definitions.

Figure 1.1: A graph G with example subgraphs and minor

Let us now describe some frequently used graphs. A path $P=(V, E)$ of order n, denoted P_{n}, is a graph of the form $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E=\left\{v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{n-1} v_{n}\right\}$. If $n \geq 3$, the graph $P_{n} \cup\left\{v_{n} v_{1}\right\}$ is called a cycle of order n, denoted C_{n}. A cycle C_{n} (resp., path $\left.P_{n}\right)$ is odd if n is odd, and even if n is even. If G is a simple graph with $|G|=n$ and all vertices in G are pairwise adjacent, we say G is a complete graph on n vertices, or more simply a complete graph, denoted by K_{n}. A set of pairwise adjacent vertices is called a clique. A complete bipartite graph G admits a partition of $V(G)$ into two sets, called partite sets, such that two vertices are adjacent if and only if they belong to different partite sets. A complete bipartite graph G with partite sets A and B where $|A|=n$ and $|B|=m$ is denoted by $K_{n, m}$. A star is a complete bipartite graph of the form $K_{1, n}$, with the singleton vertex set in the vertex partition being the center of the star. The notation $G+H=(V, E)$ to denotes the join of two vertex disjoint graphs G and H, where $V:=V(G) \cup V(H)$ and $E=E(G) \cup E(H) \cup\{u v: u \in V(G)$ and $v \in V(H)\}$. Thus using this notation we see that $K_{1, n} \simeq K_{1}+\overline{K_{n}}$. Finally, we use K_{n}^{-}or $K_{n}^{=}$to represent the graph obtained by deleting one edge or two edges from K_{n}, respectively. Examples of these graphs are depicted in Figure 1.2.

Figure 1.2: Examples of common graphs

Some important graph invariants we shall need are as follows. Define the minimum degree of a graph G to be $\delta(G):=\min \{d(v): v \in V(G)\}$. Similarly, $\Delta(G):=\max \{d(v): v \in V(G)\}$ denotes the maximum degree. Next, the clique number of a graph G, denoted $\omega(G)$, is the largest integer t such that $K_{t} \subseteq G$. A set of pairwise non-adjacent vertices in G is called an independent set, or sometimes a stable set. Thus, the independence number, denoted $\alpha(G)$, is the largest integer t such that $K_{t} \subseteq \bar{G}$. In other words, the independence number is simply the order of the largest independent set in G. From here one readily observes that $\alpha(G)=\omega(\bar{G})$ and $\alpha(\bar{G})=\omega(G)$.

With the definition of independent sets in mind, let us discuss general bipartite graphs. A graph G is said to be bipartite if $V(G)$ can be partitioned into two (possibly empty) independent sets. It is easy to see that every odd cycle is not bipartite, and so every bipartite graph contains no odd cycles. A well-known result of König from 1936 [60] states that this obvious necessary condition is also sufficient.

Theorem 1.1.1 ([60]) A graph is bipartite if and only if it contains no odd cycle.

The notion of bipartite graphs can be generalized. An r-partite graph G admits a partition of $V(G)$ into r independent sets such that every edge in G has its ends in distinct sets in the partition. A complete r-partite graph (or a complete multipartite graph) is an r -
partite graph such that every pair of vertices belonging to distinct sets in the partition are adjacent. A complete r-partite graph with partite sets $A_{1}, A_{2}, \ldots, A_{r}$, where $n_{i}:=\left|A_{i}\right|$ for all $i \in\{1,2, \ldots, r\}$ is denoted $K_{n_{1}, \ldots, n_{r}}$.

A Hamilton cycle contains all vertices of the graph. If a graph G contains a Hamilton cycle, we say G is Hamiltonian. There are many well-known sufficient conditions which guarantee a graph G to be Hamiltonian. We state a particularly useful one here, due to Dirac in 1952 [28].

Theorem 1.1.2 ([28]) Every graph G with $|G| \geq 3$ and $\delta(G) \geq|G| / 2$ is Hamiltonian.
Define $[k]:=\{1,2, \ldots k\}$ for any positive integer k. A k-coloring of the vertices of a graph G is a function $c: V(G) \rightarrow[k]$ such that $c(u) \neq c(v)$ for all $u v \in E(G)$. If a graph G admits a k-coloring, we say that G is k-colorable. The minimum value of k for which the graph G is k-colorable is the chromatic number of G, denoted $\chi(G)$. For all $i \in[k]$, we say $V_{i}:=\{v \in V(G): c(v)=i\}$ is the vertex color class (or just color class) associated with color i. Similarly, a k-edge coloring of a graph G is a function $c: E(G) \rightarrow[k]$, and a proper edge coloring is one in which $c(e) \neq c(f)$ for any pair of adjacent edges in G. Likewise, we say $E_{i}:=\{e \in E(G): c(e)=i\}$ is the edge color class associated with color i for all $i \in[k]$. For two disjoint sets $U, W \subseteq V(G)$, we say U is mc-complete to W under the edge coloring c if all the edges between U and W in G are colored the same color under c. In particular, we say U is j-complete to W if all the edges between U and W in G are colored by color $j \in[k]$ under c. Thus, for example, we will often say U is blue-complete to W if all the edges between U and W in G are colored blue under c. On occasion we shall wish to focus on the graph induced by a particular edge color. We will use the notation $G_{i}[U]$ to denote the graph induced by all edges with both ends in the vertex set U having the color i under the k-edge coloring c. In particular, we will use the notation $G_{b}[U]$ (resp., $G_{r}[U]$) when i is blue (resp., i is red).

Finally, we shall require the following simple but well-known result, often referred to as the Pigeonhole Principle. It is stated here in the mould of [87].

Theorem 1.1.3 Let k and n be positive integers. If a set consisting of more than $k n$ elements is partitioned into n subsets, then some subset contains more than k elements.

1.2 Hadwiger's Conjecture

The story of Hadwiger's Conjecture begins with a well-known problem in Graph Theory that traces its origins back to 1852. According to the account by Maritz and Mouton [67], a young South African lawyer at University College London by the name of Francis Guthrie had been coloring the counties on a map of England when he noticed he never needed more than four colors to ensure no two counties with a common border would share a color. Though at the time he was studying law, Francis had previously been a student of Augustus De Morgan, and by this time his brother Frederick Guthrie was studying under De Morgan. Francis asked Fredrick to relay this problem to De Morgan, who ultimately passed it along to Sir William Rowan Hamilton for insight, though Hamilton declined to consider it further. De Morgan would spend the remainder of his life looking for a solution to this problem, which came to be known as the Four Color Conjecture.

We need a definition to formally state this problem in graph-theoretic terms. A graph G is planar if it can be drawn in such a way that no two edges intersect, except for the possibility that they share a common end. Francis Guthrie's original observation can then be reduced to a graph theory problem by replacing each county in England with a vertex and drawing edges to represent their border relationships. Naturally, such a graph is planar. Thus Guthrie's question can be generalized and restated as follows: is it true that every planar graph G is 4-colorable?

As Thomas points out in [83], two failed attempts to prove this conjecture arose in 1879 and 1880 by Kempe and Tait, respectively. Both proofs stood intact for 11 years, with Kempe's finally being disproven by Heawood in 1890, and Tait's falling one year later in 1891 due to Petersen. Even though both Kempe and Tait had incorrect proofs, neither one was completely without merit. Kempe managed to show that all planar graphs are 5colorable in addition to developing a still-useful tool known as Kempe chains. Similarly, Tait showed the conjecture is actually equivalent to a cubic (meaning the degree of every vertex is three) planar graph having a proper 3-edge coloring. Finally in 1977, albeit with the help of computers, Appel and Haken proved what is now known as the Four Color Theorem (4CT).

Theorem 1.2.1 ([3, 4]) Every planar graph is 4-colorable.

However, this proof was not entirely clear, so Robertson, Sanders, Seymour and Thomas deduced a much shorter proof (see [72]), though still computer-assisted.

As many learn early on in any traditional course in Graph Theory, neither K_{5} nor $K_{3,3}$ are planar. These two graphs turn out to be a certificate of planarity of sorts, as discovered by Kuritowski and Wagner in the 1930's. Before stating the formal results, we shall need a definition. We say two paths are independent if they do not share an inner vertex. Suppose now that given a graph H, we replace all the edges of H with independent paths to obtain a graph H^{\prime}. Then H^{\prime} is a subdivision of H. If H^{\prime} is a subgraph of another graph G, we then say that H is a topological minor of G. As a note, a graph H may be a minor of a graph G, but not necessarily a topological minor. To see a demonstration of this, consider the Petersen graph G. Upon making 5 edge contractions, we find that $G \succcurlyeq K_{5}$ (see Figure 1.3). However, because there is no vertex of degree 4 in G, we see that K_{5} is not a topological minor of G. Thus every topological minor is a minor, but in general the converse is not true.

Figure 1.3: Contracting the red edges of the Petersen graph gives a K_{5} minor

We now state the well-known results of Kuratowski and Wagner, given in 1930 and 1937, respectively.

Theorem 1.2.2 ([62]) A graph G is a planar graph if and only if neither K_{5} nor $K_{3,3}$ is a topological minor of G.

Theorem 1.2.3 ([86]) A graph G is a planar graph if and only if neither K_{5} nor $K_{3,3}$ is a minor of G.

As Seymour points out in his survey [77], it seems completely reasonable on some level that K_{5} should be excluded as a minor, because K_{5} is not 4-colorable. But one may wonder: why is it necessary to also exclude $K_{3,3}$? Suppose we relaxed these restrictions and only excluded K_{5} as a minor. Is the resulting class of such graphs still 4-colorable? More generally, one may ask: if K_{5} is changed to K_{t+1}, and 4-colorable to t-colorable, is the result true?

This is exactly what Swiss mathematician Hugo Hadwiger first proposed during a colloquium at Eidgenössiche Technische Hochschule on December 15, 1942 [84], which has since come to be known as Hadwiger's Conjecture (HC), and first appeared in print the following year.

Conjecture 1.2.4 ([50]) For all $t \geq 0$, every K_{t+1} minor-free graph is t-colorable.

An equivalent formulation of this conjecture is frequently stated as follows: every t-chromatic graph has a K_{t} minor. As Toft points out in his survey [84], Hadwiger had actually been originally inspired by Wagner's proof in 1937 [86] that HC and 4CT were logically equivalent. Interestingly, Thomas [83] and many others have noted that for all $t \geq 4$, HC implies 4 CT . This fact can be seen by starting with any planar graph G, then adding a K_{t-4} to obtain a new graph $H:=G+K_{t-4}$. Since G is planar, then by Theorem 1.2.3, $G \not \not \neq K_{5}$, meaning that H must be K_{t+1} minor-free. Assuming HC is true, we have $\chi(H) \leq t$. Since no vertex in G can share the same color as any vertex in K_{t-4} under a proper coloring, $\chi(G)+(t-4)=\chi(G)+\chi\left(K_{t-4}\right)=\chi(H) \leq t$, giving $\chi(G) \leq 4$ as desired. Therefore, HC can be viewed as a generalization of 4 CT .

Hadwiger's original presentation of the conjecture [50] contains proofs for the cases $t \leq 3$. Dirac [27] also independently supplied a proof for these cases in 1952. Wagner [86] proved that 4CT is equivalent to HC, establishing the case $t=4$. It was not until 1993 that Robertson, Seymour and Thomas [73] proved the case $t=5$, a result which earned them the 1994 Fulkerson Prize. The cases $t \geq 6$ remain open as of this writing.

Further historical explanation of the development of HC can be found in [84]. We now move on to set the stage for our particular results concerning HC.

Given the considerable effort expended by many to show even the first six cases of HC , and with no real promise of generalization, researchers began to apply restrictions on the graphs being investigated in a hopes of discovering either further confirmation of the conjecture or possibly a counterexample. We presently survey some of these results for the purposes of this dissertation, though a fairly recent and comprehensive collection of partial results can
be found in [77].

Although HC appears too difficult to prove in general, some have managed to obtain partially affirming results, summarized in Table 1.1. We also note in particular the proof of the result mentioned in the table due to [1] is computer-assisted. In 2016, Rolek and Song supplied a much shorter, computer-free version in addition to the results listed in the table.

Table 1.1: Partial Results for HC

Excluded Minor(s)	$\chi(G) \leq t$	Reference
$K_{7}, K_{4,4}$	$t=6$	$[57]$
$K_{7}^{=}$	$t=6$	$[52]$
K_{7}^{-}	$t=8$	$[53]$
K_{7}	$t=8$	$[1]$
K_{8}	$t=10$	
$K_{8}^{=}$	$t=8$	
K_{8}^{-}	$t=9$	$[75]$
K_{9}	$t=12$	
$K_{9}^{=}$	$t=10$	$[74]$

Rather than look at general graphs with excluded minors, some have instead chosen to restrict the class of graph in question. Some promising and affirming results have consequently arisen. First, let us briefly mention a special class of graphs. A graph G is said to be perfect if every induced subgraph H of G satisfies $\chi(H)=\omega(H)$. Hence, every perfect graph satisfies HC. Far less trivial classes of graphs have of course been studied. We say a graph G is claw-free if G is $K_{1,3}$-free. A graph G is quasi-line if for every vertex $v \in V(G)$, the neighborhood $N(v)$ can be partitioned into two cliques. Finally, given a graph G, its line graph $L(G)$ is defined such that each vertex of $L(G)$ is an edge in G, and two vertices in $L(G)$ are adjacent if and only if their corresponding edges in G share an end vertex. As pointed
out in [21], line graphs are a proper subclass of quasi-line graphs, which in turn are a proper subclass of claw-free graphs. The results for these classes are summarized in Table 1.2.

Table 1.2: HC Results for Graph Classes

Graph Class	$G \succcurlyeq K_{t}$	Reference
Line Graphs	$t=\chi(G)$	$[71]$
Quasi-line Graphs	$t=\chi(G)$	$[19]$
Claw-free Graphs	$t=\left\lceil\frac{2}{3} \chi(G)\right\rceil$	$[20]$

Given a graph G, let $c: V(G) \rightarrow[k]$ be a k-coloring of $V(G)$, with color classes V_{i}, for all $i \in[k]$. Since $\left|V_{i}\right| \leq \alpha(G)$ for all $i \in[k]$, we have the following fact.

Fact 1.2.5 $|G| \leq \chi(G) \alpha(G)$ for any graph G.

In other words, Fact 1.2.5 gives that $\chi(G) \geq|G| / \alpha(G)$ for any graph G.

Let us now introduce some new notation which we shall use frequently. Define the Hadwiger number to be $h(G):=\max \left\{t: G \succcurlyeq K_{t}\right\}$. Conjecture 1.2.4 can now be restated as follows: for every graph $G, h(G) \geq \chi(G)$. Motivated by this observation, one direction is to try to prove (or disprove) that $h(G)=\lceil|G| / \alpha(G)\rceil$, as this would be the minimum-order minor one should now expect. One of the earliest results in this direction, due to Duchet and Meyniel in 1982, is as follows.

Theorem 1.2.6 ([29]) $h(G) \geq|G| /(2 \alpha(G)-1)$.

This is not ideal, of course, primarily because of the factor of two. In 2010, Fox [40] improved this to the following.

Theorem 1.2.7 ([40]) $h(G) \geq|G| /(1.983 \alpha(G))$.

One year later, Balogh and Kostochka [5] proved a slightly better result.

Theorem 1.2.8 ([5]) $h(G) \geq|G| /(1.94792 \alpha(G))$.

Still other work was done by Kawarabayashi and Song [58] to improve the previous results for smaller values of $\alpha(G)$.

Theorem 1.2.9 ([58]) If $\alpha(G) \geq 3$, then $h(G) \geq|G| /(2 \alpha(G)-2)$.

Additionally, B. Thomas and Song [82] showed that upon forbidding certain induced subgraphs, HC can be verified outright, by way of quasi-line graphs.

Theorem 1.2.10 ([82]) If $\alpha(G) \geq 3$ and G is $\left\{C_{4}, C_{5}, C_{6}, \ldots, C_{2 \alpha(G)-1}\right\}$-free, then $h(G) \geq$ $\chi(G)$.

The case of verifying HC when $\alpha(G)=2$ is of particular interest. This may seem to be quite a substantial limitation at first, but this restriction means that \bar{G} is triangle-free. As Plummer, Stiebitz and Toft observe in [68], a vast number of triangle-free graphs exist so this limitation is not as restrictive as one may initially think. In his survey, Seymour says the following about the case $\alpha(G)=2$, which we quote directly (pp. 424-425, [77]).

> "This seems to me to be an excellent place to look for a counterexample. My own belief is, if it is true for graphs with stability number two then it is probably true in general, so it would be very nice to decide this case."

We first mention a very useful result of Plummer, Stiebitz and Toft [68] that establishes an equivalence of Hadwiger's conjecture in this context.

Figure 1.4: The graphs H_{6}, H_{7} and W_{5}

Theorem 1.2.11 ([68]) Let G be a graph with $\alpha(G)=2$. Then $h(G) \geq \chi(G)$ if and only if $h(G) \geq\lceil|G| / 2\rceil$.

In the same paper, Plummer, Stiebitz and Toft [68] proved the following.

Theorem 1.2.12 ([68]) Let G be a graph with $\alpha(G) \leq 2$. If G is H-free, where H is a graph with $|H|=4$ and $\alpha(H) \leq 2$, or $H=C_{5}$, or $H=H_{7}$ (see Figure 1.4), then $h(G) \geq \chi(G)$.

In 2010, Kriesell [61] further augmented this list of forbidden subgraphs to include all cases of graphs with independence number at most two on five vertices.

Theorem 1.2.13 ([61]) Let G be a graph with $\alpha(G) \leq 2$. If G is H-free, where H is a graph with $|H|=5$ and $\alpha(H) \leq 2$, or $H=H_{6}$ (see Figure 1.4), then $h(G) \geq \chi(G)$.

Let W_{5} denote the wheel on six vertices (see Figure 1.4). We study Conjecture 1.2.4 for W_{5}-free graphs with independence number at most two. Our main result is stated as follows.

Theorem 1.2.14 ([8]) Let G be a graph with $\alpha(G) \leq 2$. If G is W_{5-} free, then $h(G) \geq \chi(G)$.

The proof of Theorem 1.2.14, given in Chapter 2, relies only on Theorem 1.2.11, Theorem 1.2.12 when $H=C_{5}$ and the following result of Chudnovsky and Seymour [22].

Theorem 1.2.15 ([22]) Let G be a graph with $\alpha(G) \leq 2$. If

$$
\omega(G) \geq \begin{cases}|G| / 4, & \text { if }|G| \text { is even } \\ (|G|+3) / 4, & \text { if }|G| \text { is odd }\end{cases}
$$

then $h(G) \geq \chi(G)$.

Before we continue, let us recall several useful results.

Theorem 1.2.16 ([75]) For $7 \leq t \leq 9$, let G be a graph with $2 t-5$ vertices and $\alpha(G)=2$. Then $h(G) \geq t-2$.

Theorem 1.2.17 ([55]) Let G be a graph on n vertices with $e(G) \geq 6 n-19$. Then $h(G) \geq 8$.

Theorem 1.2.18 ([78]) Let G be a graph on n vertices with $e(G) \geq 7 n-26$. Then $h(G) \geq 9$.

Using the above theorems we can prove a similar result for $\overline{K_{1,5}}$-free graphs.

Corollary 1.2.19 ([8]) Let G be a graph with $\alpha(G) \leq 2$. If G is $\overline{K_{1,5}}$-free, then $h(G) \geq$ $\chi(G)$.

Proof. Let G be a $\overline{K_{1,5}}$-free graph on n vertices with $\alpha(G) \leq 2$. By Theorem 1.2.11, it suffices to show that $h(G) \geq\lceil n / 2\rceil$. Suppose that $h(G)<\lceil n / 2\rceil$, where G is chosen with n to be minimum. By the minimality of n, G has no dominating edges. By Theorem 1.2.14, G must contain an induced W_{5}. Since $h\left(W_{5}\right) \geq 4$, we see that $n \geq 9$. We next claim that $n \leq 17$. Let $v \in V(G)$ be a vertex of minimum degree. Then $d(v) \geq n-5$ because G
is $\overline{K_{1,5}}$-free. Let $A:=V(G) \backslash N[v]$ and $B:=N(v)$. Then $|A| \leq 4$ and $G[A]$ is a clique because $\alpha(G) \leq 2$. Note that every vertex in A has at most three non-neighbors in B. Additionally, every vertex $b \in B$ must have a non-neighbor in A, else $b v$ is a dominating edge. Hence, by counting the number of edges between A and B in $\bar{G},|B| \leq 3|A| \leq 12$. Then $n=|G| \leq|A|+|B|+|\{v\}| \leq 4+12+1=17$. Since $e(G) \geq(n-5) n / 2$, from Theorems $1.2 .16,1.2 .17$ and 1.2 .18 , it is straightforward to check that $h(G) \geq\lceil n / 2\rceil$ for all $9 \leq n \leq 17$, a contradiction.

This completes the proof of Corollary 1.2.19.

It is worth noting that if G is a K_{6}-free graph on n vertices with $\alpha(G) \leq 2$ but does not satisfy Conjecture 1.2.4, then G contains a K_{5} subgraph by Theorem 1.2.13, and $n \leq 17$ because $R\left(K_{3}, K_{6}\right)=18$ (see [59], and Section 1.3 for a discussion of Ramsey numbers). But then by Theorem 1.2.15, $h(G) \geq \chi(G)$, a contradiction. Thus Conjecture 1.2.4 holds for K_{6}-free graphs G with $\alpha(G) \leq 2$.

Similarly, if G is a K_{7}-free graph on n vertices with $\alpha(G) \leq 2$ but does not satisfy Conjecture 1.2.4, then G contains a K_{6} subgraph from the previous paragraph, and $n \leq 22$ because $R\left(K_{3}, K_{7}\right)=23$ (see [46] and [56]). But then by Theorem 1.2.15, $h(G) \geq \chi(G)$, a contradiction. Thus Conjecture 1.2 .4 holds for K_{7}-free graphs G with $\alpha(G) \leq 2$. We summarize these results in the following remark.

Remark 1.2.20 ([8]) Let G be a K_{t}-free graph with $\alpha(G) \leq 2$, where $t \leq 7$. Then $h(G) \geq$ $\chi(G)$.

We now spend the remainder of this chapter introducing our primary area of study in this dissertation.

1.3 Ramsey Theory

In 1930, Frank Ramsey tragically passed away at the young age of 26 from complications of abdominal surgery, but in the same year a paper of his appeared posthumously, entitled On a Problem of Formal Logic. His main goal was to address "the problem of finding a regular procedure to determine the truth or falsity of any given logical formula [70]," but along the way proved two famous results which now bear his name, and consequently founded an entire branch of combinatorics.

1.3.1 Classical Ramsey Numbers

Consider any k-edge coloring (not a proper edge coloring) of the complete graph K_{n}. Then $H \subseteq K_{n}$ is monochromatic if all edges of the subgraph H are colored the same.

Let G, H_{1}, \ldots, H_{k} be graphs. A common and useful notational convention used in this area, as observed in [7], is as follows. We write $G \longrightarrow\left(H_{1}, \ldots, H_{k}\right)$ if every k-edge coloring of G contains a monochromatic copy of H_{i} for some color $i \in[k]$. For a given collection of graphs we write $R\left(H_{1}, \ldots, H_{k}\right)=\min \left\{n: K_{n} \longrightarrow\left(H_{1}, \ldots, H_{k}\right)\right\}$. In particular, if H_{i} is isomorphic to the graph H for all $i \in[k]$, we write $R_{k}(H)$. If $R\left(H_{1}, \ldots, H_{k}\right)=R$ for some collection of graphs, then there is some k-edge coloring of K_{R-1} such that for all $i \in[k]$, no monochromatic copy of H_{i} in color i appears. To indicate this, we will write $K_{R-1} \nrightarrow\left(H_{1}, \ldots, H_{k}\right)$, and we call such a k-edge coloring of K_{R-1} bad.

We now state Ramsey's theorem below with modern phrasing and notation.

Theorem 1.3.1 ([70]) For any $k \geq 1$, let H_{1}, \ldots, H_{k} be any collection of graphs. Then there exists a number $R\left(H_{1}, \ldots, H_{k}\right)$ such that for any k-edge coloring of K_{n} with $n \geq$
$R\left(H_{1}, \ldots, H_{k}\right), K_{n}$ contains a monochromatic copy of H_{i} in color i for some $i \in[k]$.

One of the most attractive aspects of Ramsey-related problems is the simplicity in which they can be stated. Often encountered early in one's exposure to Graph Theory is the so-called "Party Problem." Here, it is stated as presented in [12].
"Prove that at a gathering of any six people, some three of them are either mutual acquaintances or complete strangers to each other."

Interestingly, this problem also appeared on a Putnam exam in 1953 [15], phrased slightly differently.
"Six points are in general position in space (no three in a line, no four in a plane). The fifteen line segments joining them in pairs are drawn and then painted, some segments red, some blue. Prove that some triangle has all its sides the same color."

Restated in graph-theoretic terms, the above asks for proof that $R\left(K_{3}, K_{3}\right)=6$. As it turns out, this proof is quite elegant and straightforward, and as such is quite commonly assigned as a "homework problem" for those learning Ramsey theory. Many versions of the solution exist, see for example [12]. For completeness, we supply a proof here.

Proof. To see that $K_{5} \nrightarrow\left(K_{3}, K_{3}\right)$, consider the bad coloring of K_{5} depicted in Figure 1.5.

To see that $K_{6} \longrightarrow\left(K_{3}, K_{3}\right)$, choose one vertex v. Label its neighbors u_{1}, \ldots, u_{5}. By the Pigeonhole Principle (Theorem 1.1.3), at least three of the edges $v u_{i}, i \in[5]$ must be the same color, say blue. In particular, we may assume that $v u_{1}, v u_{2}$ and $v u_{3}$ are blue.

Figure 1.5: $\quad \mathrm{A}$ bad coloring of K_{5}

If any of $u_{1} u_{2}, u_{2} u_{3}$ or $u_{1} u_{3}$ are blue, then we find a blue triangle with vertices v, u_{1}, u_{2}, or v, u_{2}, u_{3}, or v, u_{1}, u_{3}. Thus, each of $u_{1} u_{2}, u_{2} u_{3}$ or $u_{1} u_{3}$ are red, giving a red triangle with vertices u_{1}, u_{2}, u_{3}.

Taken together, the above shows that $R\left(K_{3}, K_{3}\right) \geq 6$ and $R\left(K_{3}, K_{3}\right) \leq 6$, from which we conclude that $R\left(K_{3}, K_{3}\right)=6$.

After witnessing the beauty of the proof for $R\left(K_{3}, K_{3}\right)=6$, one might have hope that a general formula for $R\left(K_{t}, K_{t}\right)$ may exist for all $t \geq 1$. In 1955, Greenwood and Gleason [47] provided a proof for $R\left(K_{4}, K_{4}\right)=18$. However, it was beyond evident by this point in time that calculating exact Ramsey numbers is, to say the least, a nontrivial task. As of this writing, even the exact value of $R\left(K_{5}, K_{5}\right)$ remains unknown. Graham and Spencer [45] shared the following anecdote of Erdős to convey the true difficulty of calculating Ramsey numbers.
"Aliens invade the earth and threaten to obliterate it in a year's time unless human beings can find the Ramsey number for red five and blue five. We could marshall the world's best minds and fastest computers, and within a year we could probably calculate the value. If the aliens demanded the Ramsey number
for red six and blue six, however, we would have no choice but to launch a preemptive attack."

A natural follow-up question is: what general bounds can be achieved if the exact values are too difficult to compute? Ramsey [70] was able to show in his original paper that $R\left(K_{t}, K_{t}\right) \leq$ $2^{2 t-3}$. In 1947, Erdős [33] proved that $R\left(K_{t}, K_{t}\right)>2^{t / 2}$, and thus according to these bounds, $6 \leq R\left(K_{5}, K_{5}\right) \leq 128$. Since that time, these bounds have been improved considerably. The best known lower bound of 43 was provided by Exoo [36] in 1989. More recently, in 2017 Angeltveit and McKay [2] improved the upper bound to 48 with the assistance of a computer program. More diagonal and off-diagonal Ramsey numbers and bounds of complete graphs can be found in [69].

Generalizations of the two-edge coloring complete graph case explored above have also been studied extensively. One naturally can extend the problem to the case of multiple colors and other collections of graphs. In fact, Greenwood and Gleason also proved [47] that $R_{3}\left(K_{3}\right)=17$. In the early 1970's, other collections of graphs began to be examined in more depth, including cycles, paths and much more (see for example [16] and [24]). The list of known results pertaining to classical Ramsey numbers has vastly grown throughout the years, with perhaps the most complete and up-to-date collection appearing in the dynamic survey by Radziszowski [69].

Since this dissertation focuses primarily on the Ramsey-type results for cycles, we highlight in the below theorem a particularly useful set of results. These and other known diagonal Ramsey numbers are summarized also in Table 1.3.

Theorem 1.3.2 ([39, 76]) For all $n \geq 4, R\left(C_{2 n}, C_{2 n}\right)=3 n-1$. Moreover, for all $n \geq 2$, $R\left(C_{2 n+1}, C_{2 n+1}\right)=4 n+1$.

Table 1.3: Diagonal Ramsey Numbers of Cycles

Ramsey Number	Reference(s)
$R\left(C_{4}, C_{4}\right)=6$	$[16]$
$R\left(C_{6}, C_{6}\right)=8$	$[16]$
$\left.R C_{2 n}, C_{2 n}\right)=3 n-1, n \geq 4$	$[39,76]$
$R\left(C_{2 n+1}, C_{2 n+1}\right)=4 n+1, n \geq 2$	$[39,76]$
$R_{3}\left(C_{3}\right)=17$	$[47]$
$R_{3}\left(C_{4}\right)=11$	$[6]$
$R_{3}\left(C_{5}\right)=17$	$[89]$
$R_{3}\left(C_{6}\right)=12$	$[90]$
$R_{3}\left(C_{7}\right)=25$	$[37]$
$R_{3}\left(C_{8}\right)=16$	$[80]$
$R_{4}\left(C_{4}\right)=18$	$[35,81]$

To the author's knowledge, this is the most up-to-date list of known diagonal results. In particular, the two-color Ramsey numbers for cycles were completely solved independently by Faudree and Schelp [39] and Rosta [76] in the early 1970's. Additionally, mixed parity cycles for the two-color case were considered in the same papers.

Theorem 1.3.3 ([39, 76]) For $4 \leq m<\ell$ with m even and ℓ odd, $R\left(C_{m}, C_{\ell}\right)=\max \{\ell-$ $1+m / 2,2 m-1\}$.

Permitting additional edge colors naturally complicates the computation of Ramsey numbers. As of this writing, $R_{3}\left(C_{n}\right)$ remains open for all $n \geq 9$. With regard to odd cycles, Bondy and Erdős [7] are often credited with making the following conjecture for the three-color case, sometimes called the Triple Odd Cycle Conjecture. However, it should be noted that although researchers frequently point to [7] as the source of this conjecture, it does not explicitly appear there.

Conjecture 1.3.4 $R_{3}\left(C_{2 n+1}\right)=8 n+1$ for all $n \geq 2$.

Figure 1.6: A lower bound construction showing $R_{3}\left(C_{2 n+1}\right) \geq 8 n+1$

It is not difficult to show that $R_{3}\left(C_{2 n+1}\right) \geq 8 n+1$ for all $n \geq 2$. Following the construction of a bad coloring outlined in [34], begin with a $K_{2 n}$ and color all edges the same color, say blue. Since $\left|K_{2 n}\right|=2 n$, there is no possibility of a blue $C_{2 n+1}$ appearing as a subgraph. For the second step, create two copies of the $K_{2 n}$ with all edges colored blue and insert all edges between these copies colored the same color, say red. The graph induced on the blue edges certainly contains no blue $C_{2 n+1}$ because both cliques have order $2 n$. Moreover, there is no red $C_{2 n+1}$ because the graph induced on the red edges is bipartite and thus contains no odd cycle by Theorem 1.1.1. Finally, create two copies of the graph in step two, this time joined together by all edges of a new color, say green. Again, there is no blue or red $C_{2 n+1}$ for the same reasons as above, and no green $C_{2 n+1}$ because the graph induced on the green edges is again bipartite. This process is illustrated in the Figure 1.6. Note that the rightmost graph in Figure 1.6 has exactly $8 n$ vertices and no monochromatic $C_{2 n+1}$.

Although Conjecture 1.3.4 remains open, there are asymptotic results. The following was proved by Łuczak in 1999.

Theorem 1.3.5 ([64]) $R_{3}\left(C_{2 n+1}\right) \leq 8 n+o(n)$.

In 2016, Jenssen and Skokan [54] proved that the conjecture holds for sufficiently large n.

Theorem 1.3.6 ([54]) $R_{3}\left(C_{2 n+1}\right)=8 n+1$ for sufficiently large n.

An analogous situation exists for even cycles. In 2005, Dzido, Nowik and Szuca [31] supplied a lower bound construction.

Theorem 1.3.7 ([31]) $R_{3}\left(C_{2 n}\right) \geq 4 n$ for all $n \geq 2$.

As such, a similar "Triple Even Cycle Conjecture" exists, where $R_{3}\left(C_{2 n}\right)$ is conjectured to be $4 n$ for all $n \geq 3$ due to Dzido [30] in his Ph.D. thesis. Related asymptotic results have been similarly shown, but since this dissertation focuses on examining odd cycles, they are omitted here. We do wish to point out, however, that as of this writing $R_{3}\left(C_{10}\right)$ remains the first open case for even cycles, but by Theorem 1.3 .7 we know that $R_{3}\left(C_{10}\right) \geq 20$.

Interestingly, the lower bound construction given above for odd cycles extends to k colors by simply continuing the aforementioned process. For example, a bad coloring with four colors would be achieved by creating two copies of the rightmost graph in Figure 1.6 and joining these copies with all edges between them colored by a new color, say yellow. Again no yellow $C_{2 n+1}$ occurs because the graph induced on the yellow edges is bipartite. In general, if G_{k-1} is the graph formed with the bad coloring as described above using $k-1$ colors, we find a bad coloring with k colors by creating two copies of G_{k-1} and coloring all edges between them with color k, forming G_{k}. By construction, $\left|G_{k}\right|=n \cdot 2^{k}$, from which the following conjecture arises. Bondy and Erdős are likewise credited with this conjecture in [7], although the explicit statement of it does not appear there.

Conjecture 1.3.8 $R_{k}\left(C_{2 n+1}\right)=n \cdot 2^{k}+1$ for all $n \geq 2$.

When $k \geq 2$ is fixed and n is sufficiently large, Jenssen and Skokan [54] proved that the conjecture holds.

Theorem 1.3.9 ([54]) For any fixed $k \geq 2$ and n sufficiently large, $R_{k}\left(C_{2 n+1}\right)=n \cdot 2^{k}+1$.

Curiously, however, Day and Johnson disproved Conjecture 1.3.8 when n is fixed and k is sufficiently large.

Theorem 1.3.10 ([25]) For all n there exists a constant $\epsilon=\epsilon(n)>0$ such that, for all sufficiently large $k, R_{k}\left(C_{2 n+1}\right)>2 n \cdot(2+\epsilon)^{k-1}$.

As one may imagine, many variants of the problem discussed above exist. For example, researchers have extended this problem to include hypergraphs, where edges may contain more than two vertices. Another avenue of research involves coloring graphs which are not complete. For instance, what is the smallest value of n such that $K_{n, n} \longrightarrow\left(K_{t, t}, K_{t, t}\right)$ for some t ? Yet another is the size Ramsey number. Let \mathcal{G} denote the set of all graphs G such that $G \longrightarrow\left(H_{1}, H_{2}\right)$. The size Ramsey number is defined as $\hat{R}\left(H_{1}, H_{2}\right)=\min \{|E(G)|: G \in \mathcal{G}\}$. In this way we study particular variant which is computationally more feasible though still far from trivial.

1.3.2 Gallai-Ramsey Numbers

A rainbow triangle is a copy of K_{3} with all edges colored differently. A Gallai coloring of a complete graph is an edge-coloring that contains no rainbow triangle. A Gallai k-coloring is a Gallai coloring that uses at most k colors. Let $G, H_{1}, H_{2}, \ldots, H_{k}$ be a collection of graphs. Following the notational convention of the previous section, we write $G \xrightarrow{\text { Gallai }}\left(H_{1}, \ldots, H_{k}\right)$ if every Gallai k-coloring of G contains a monochromatic copy of H_{i} for some color $i \in[k]$. We can therefore define the Gallai-Ramsey number to be $G R\left(H_{1}, \ldots, H_{k}\right):=\min \left\{n: K_{n} \xrightarrow{\text { Gallai }}\right.$ $\left.\left(H_{1}, \ldots, H_{k}\right)\right\}$. If H_{i} is isomorphic to the graph H for all $i \in[k]$, we simply write $G R_{k}(H)$.

Because we must have $k \geq 3$ for a rainbow triangle to occur, we note the following.

Fact 1.3.11 Let H_{1}, H_{2} be any graphs. Then $G R\left(H_{1}, H_{2}\right)=R\left(H_{1}, H_{2}\right)$.

Alternatively, one may define the Gallai-Ramsey number as the least integer n such that every k-edge coloring of K_{n} contains either a rainbow triangle or a monochromatic copy of the graph H_{i} for some color $i \in[k]$. Therefore, intuitively one expects n to be smaller when searching for a rainbow triangle or a monochromatic copy of H_{i} for some color i in a given k-edge coloring, as opposed to searching for only a monochromatic copy of H_{i} for some color i. Because of this, we have the following fact.

Fact 1.3.12 $G R\left(H_{1}, \ldots, H_{k}\right) \leq R\left(H_{1}, \ldots H_{k}\right)$.

Therefore the Gallai-Ramsey number provides a natural lower bound to the classical Ramsey number. In particular, $G R_{k}(H) \leq R_{k}(H)$ for any graph H.

Central to the theory behind Gallai-Ramsey numbers is a structural result due to Tibor Gallai in 1967 [44]. Originally intended to discuss the properties of "transitively orientable graphs," Gallai's paper also included some structural results that happen hold for all graphs, which have found a variety of other applications. It should be noted that Gallai's original paper appeared in German but an English translation of it was published in 2001 by Maffray and Preissmann [65].

Theorem 1.3.13 ([44, 65]) For any Gallai k-coloring c of a complete graph G with $|G| \geq$ 2, $V(G)$ can be partitioned into nonempty sets $V_{1}, V_{2}, \ldots, V_{p}$ with $p>1$ so that at most two colors are used on the edges in $E(G) \backslash\left(E\left(G\left[V_{1}\right]\right) \cup \cdots \cup E\left(G\left[V_{p}\right]\right)\right)$ and only one color is used on the edges between any fixed pair $\left(V_{i}, V_{j}\right)$ under c, for all $i \neq j$.

Gallai Partition

Reduced Graph

Figure 1.7: A Gallai partition and the corresponding reduced graph

We call the partition of $V(G)$ into $V_{1}, V_{2}, \ldots, V_{p}$ described in Theorem 1.3.13 a Gallai partition of the vertices. Often we will refer to V_{i}, where $i \in[p]$, as the parts of the Gallai partition. Although Theorem 1.3.13 is indeed a powerful structural result, we are careful to note that no information is provided regarding $\left|G\left[V_{i}\right]\right|$, nor about the colors appearing on the edges in $G\left[V_{i}\right]$, for all $i \in[p]$. Given a Gallai partition, we can define a new graph. Let $v_{i} \in V_{i}$ for each $i \in[p]$. Define the reduced graph \mathcal{R} to be the graph $G\left[\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}\right]$. In other words, contracting each part of the Gallai partition to one vertex produces a new complete graph of smaller order, the reduced graph, with at most two colors appearing on its edges. An example of a Gallai partition and its corresponding reduced graph is shown in Figure 1.7. If H is any graph, we therefore see that a monochromatic copy of H appearing as a subgraph of \mathcal{R} must also appear as a subgraph of G. For this reason, $R(H, H)$ closely relates to $G R_{k}(H)$.

Fortunately, the behavior of the Gallai-Ramsey number is more predictable than that of the classical Ramsey number. In 2010, Gyárfás, Sárközy, Sebő, and Selkow [49] classified the
nature of $G R_{k}(H)$ depending on whether or not H is bipartite.

Theorem 1.3.14 ([49]) Let H be a fixed graph with no isolated vertices and let $k \geq 1$ be an integer. Then $G R_{k}(H)$ is exponential in k if H is not bipartite, linear in k if H is bipartite but not a star, and constant (does not depend on k) when H is a star.

We now survey some of the relevant known results for Gallai-Ramsey numbers. In 1983, Chung and Graham [23] contributed what is possibly the first result for Gallai-Ramsey numbers. Their research was motivated by an earlier question attributed to T. A. Brown in their paper, which we mention here.
"What is the largest number $f(k)$ of vertices a complete graph can have such that it is possible to k-color its edges so that every triangle has edges of exactly two colors?"

Fascinatingly, their proof did not rely on Gallai's structural result in [44].
Theorem 1.3.15 ([23]) For all $k \geq 1, G R_{k}\left(K_{3}\right)= \begin{cases}5^{k / 2}+1, & \text { if } k \text { is even } \\ 2 \cdot 5^{(k-1) / 2}+1, & \text { if } k \text { is odd. }\end{cases}$
Gyárfás, Sárközy, Sebő, and Selkow [49] provided an alternative proof to Theorem 1.3.15 in 2010 which does use Gallai's result, and is therefore somewhat shorter. Liu, Magnant, Saito, Schiermeyer, and Shi [63] established the next open case in 2017.

Theorem 1.3.16 ([63]) For all $k \geq 1, G R_{k}\left(K_{4}\right)= \begin{cases}17^{k / 2}+1, & \text { if } k \text { is even } \\ 3 \cdot 17^{(k-1) / 2}+1, & \text { if } k \text { is odd. }\end{cases}$

Magnant and Schiermeyer [66] announced a proof of the analogous result for K_{5} in 2019, though the author of this dissertation has not personally verified it. We state it here for completeness.

Theorem 1.3.17 ([66]) For all $k \geq 2$,

$$
G R_{k}\left(K_{5}\right)= \begin{cases}\left(R\left(K_{5}, K_{5}\right)-1\right)^{k / 2}+1, & \text { if } k \text { is even } \\ 4\left(R\left(K_{5}, K_{5}\right)-1\right)^{(k-1) / 2}+1, & \text { if } k \text { is odd }\end{cases}
$$

unless $R\left(K_{5}, K_{5}\right)=43$, in which case

$$
\begin{cases}G R\left(K_{5}\right)=43, & \text { if } k=2 \\ 42^{k / 2}+1 \leq G R_{k}\left(K_{5}\right) \leq 43^{k / 2}+1, & \text { if } k \geq 4 \text { is even } \\ 169 \cdot 42^{(k-3) / 2}+1 \leq G R_{k}\left(K_{5}\right) \leq 4 \cdot 43^{(k-1) / 2}+1, & \text { if } k \geq 3 \text { is odd. }\end{cases}
$$

In 2015, Fox, Grinshpun and Pach [41] posed a conjecture to describe this apparent pattern.

Conjecture 1.3.18 ([41]) For all $k \geq 1$ and $t \geq 3$,

$$
G R_{k}\left(K_{t}\right)= \begin{cases}\left(R\left(K_{t}, K_{t}\right)-1\right)^{k / 2}+1, & \text { if } k \text { is even } \\ (t-1)\left(R\left(K_{t}, K_{t}\right)-1\right)^{(k-1) / 2}+1, & \text { if } k \text { is odd }\end{cases}
$$

As we have seen, Conjecture 1.3.18 has been verified for $t=3,4$ and 5. Interestingly, Magnant and Schiermeyer [66] also constructed a three-edge-colored K_{169} that contains neither a rainbow K_{3} nor a monochromatic K_{5}. If $R\left(K_{5}, K_{5}\right)=43$ (the current best-known lower bound from [36]), then the above conjecture is false because the formula would give $G R_{3}\left(K_{5}\right)=4 \cdot 42+1=169$.

Naturally, some have conducted research on the Gallai-Ramsey numbers of other graphs, including stars, books, paths, and cycles among others. In the same 2010 paper mentioned previously, Gyárfás, Sárközy, Sebő, and Selkow [49] established the Gallai-Ramsey number of stars.

Theorem 1.3.19 ([49]) For all $t \geq 2$ and $k \geq 3, G R_{k}\left(K_{1, t}\right)= \begin{cases}(5 t-3) / 2, & \text { if } t \text { is odd } \\ 5 t / 2-3, & \text { if } t \text { is even. }\end{cases}$
As a minor note regarding Theorem 1.3.19, the formula is not true for $t=2$ as originally stated. Clearly, one requires at least three vertices to obtain a monochromatic $K_{1,2}$ or a rainbow K_{3}, so $G R_{k}\left(K_{1,2}\right) \geq 3$. On the other hand, we see that $G R_{k}\left(K_{1,2}\right) \leq 3$ because with any k-coloring of the edges of a K_{3}, there are exactly two choices: either there is a monochromatic $K_{1,2}$ subgraph; or all edges of the K_{3} are colored differently, yielding a rainbow K_{3}. However, the formula for Theorem 1.3 .19 gives $(5 \cdot 2) / 2-3=2$.

Noting that $K_{1,2} \simeq P_{3}$, this result was proven in 2010 by Faudree, et. al. [38] along with the Gallai-Ramsey number for other paths.

Theorem 1.3.20 ([38]) For all $k \geq 1$ and $n \in\{3,4,5,6\}, G R_{k}\left(P_{n}\right)=\lfloor(n-2) / 2\rfloor k+$ $\lceil n / 2\rceil+1$.

This list was subsequently expanded by J. Zhang, Lei, Shi and Song [91].

Theorem 1.3.21 ([91]) For all $k \geq 1$ and $n \in\{7,9,10,11\}, G R_{k}\left(P_{n}\right)=\lfloor(n-2) / 2\rfloor k+$ $\lceil n / 2\rceil+1$.

The bounds for all paths were also given in [38] and improved upon by Hall, Magnant, Ozeki and Tsugaki [51] in 2014.

Theorem 1.3.22 ([51]) For all integers $k \geq 1$ and $n \geq 3$,

$$
\left\lfloor\frac{n-2}{2}\right\rfloor k+\left\lceil\frac{n}{2}\right\rceil+1 \leq G R_{k}\left(P_{n}\right) \leq\left\lfloor\frac{n-2}{2}\right\rfloor+3\left\lfloor\frac{n}{2}\right\rfloor
$$

A list of the Gallai-Ramsey numbers for a variety of other graphs, as well as some mixed and off-diagonal cases, can be found in the dynamic survey by Fujita, Magnant and Ozeki [43]. However, as these other cases are not the primary focus of this dissertation, we now turn our attention to the known results for the diagonal Gallai-Ramsey numbers of cycles. In Table 1.4, we provide a list of the diagonal Gallai-Ramsey numbers and their references for small even and odd cycles, including those proven in this dissertation.

We note that although Song and J. Zhang [79] are not credited with the original proofs of $G R_{k}\left(C_{6}\right)$ and $G R_{k}\left(C_{8}\right)$, we cite them in Table 1.4 because their proof was different and substantially shorter than those appearing in [42] and [48], respectively. We also wish to point out that the new proof by Song and J. Zhang both fixes the incomplete proof for $G R_{k}\left(C_{8}\right)$ originally provided in [48] and handles some mixed Gallai-Ramsey numbers of even cycles and paths.

When the original work was done for this dissertation, there were some best known general bounds at the time, which we summarize in the following theorem. The lower bounds were provided in 1976 by Erdős et. al. [34], whereas the upper bounds are found in the 2014 paper by Hall et. al. [51].

Theorem 1.3.23 ([34, 51]) For all $k \geq 1$ and $n \geq 2$,
(i) $(n-1) k+n+1 \leq G R_{k}\left(C_{2 n}\right) \leq(n-1) k+3 n$,
(ii) $n \cdot 2^{k}+1 \leq G R_{k}\left(C_{2 k+1}\right) \leq\left(2^{k+3}-3\right) n \ln n$.

Table 1.4: Diagonal Gallai-Ramsey Numbers of Small Cycles

Gallai-Ramsey Number	Reference(s)
$G R_{k}\left(C_{3}\right)= \begin{cases}5^{k / 2}+1, & \text { if } k \text { is even } \\ 2 \cdot 5^{(k-1) / 2}+1, & \text { if } k \text { is odd }\end{cases}$	$[23]$
$G R_{k}\left(C_{4}\right)=k+4$	$[38]$
$G R_{k}\left(C_{5}\right)=2 \cdot 2^{k}+1$	$[42]$
$G R_{k}\left(C_{6}\right)=2 k+4$	$[42,79]$
$G R_{k}\left(C_{7}\right)=3 \cdot 2^{k}+1$	$[13]$
$G R_{k}\left(C_{8}\right)=3 k+5$	$[10,9]$
$G R_{k}\left(C_{9}\right)=4 \cdot 2^{k}+1$	$[91]$
$G R_{k}\left(C_{10}\right)=4 k+6$	$[10]$
$G R_{k}\left(C_{11}\right)=5 \cdot 2^{k}+1$	$[91]$
$G R_{k}\left(C_{12}\right)=5 k+7$	$[11]$
$G R_{k}\left(C_{13}\right)=6 \cdot 2^{k}+1$	$[11]$
$G R_{k}\left(C_{15}\right)=7 \cdot 2^{k}+1$	

Recently, the Gallai-Ramsey numbers for all even cycles were settled by Chen, Song and F. Zhang [18].

Theorem 1.3.24 ([18]) For all $k \geq 2$ and $n \geq 2$,

$$
G R_{k}\left(C_{2 n}\right)= \begin{cases}(n-1) k+n+1 & \text { if } n \geq 3 \\ (n-1) k+n+2 & \text { if } n=2\end{cases}
$$

The upper bound for odd cycles was subsequently improved in 2018 by Chen, Li and Pei.

Theorem 1.3.25 ([17]) For all $k \geq 2, G R_{k}\left(C_{2 n+1}\right) \leq\left(4 n+n \log _{2} n\right) \cdot 2^{k}$.

With the exceptions of C_{3} and C_{4}, it is believed that the lower bounds are likely the true values of the Gallai-Ramsey numbers for all cycles. We also note here that $G R_{3}\left(C_{10}\right)=18$ [91], but by Theorem 1.3.7, $R_{3}\left(C_{10}\right) \geq 20$. Thus, in contrast with the odd cycle case, the Gallai-Ramsey numbers for even cycles do not provide strong partial evidence for the "Triple Even Cycle Conjecture."

The first segment of our work in this area concerns $G R_{k}\left(C_{2 n+1}\right)$ for $n \in\{4,5,6,7\}$. Due to the nature of their proofs, we now state our results in the following separate theorems to be proven in Chapter 3.

Theorem 1.3.26 ([9, 10]) For all $k \geq 1$ and $n \in\{4,5\}, G R_{k}\left(C_{2 n+1}\right)=n \cdot 2^{k}+1$.

Theorem 1.3.27 ([11]) For all $k \geq 1$ and $n \in\{6,7\}, G R_{k}\left(C_{2 n+1}\right)=n \cdot 2^{k}+1$.

After the above work was completed, we managed to improve Theorem 1.3.25 which was at the time the best-known general upper bound. We supply the proof of Theorem 1.3.28 in Chapter 4.

Theorem 1.3.28 ([11]) For all $k \geq 1$ and $n \geq 8, G R_{k}\left(C_{2 n+1}\right) \leq(n \ln n) \cdot 2^{k}-(k+1) n+1$.

Since the time we completed our main work (see Chapters 3 and 4), Chen, Song and F. Zhang [18] announced a generalization of our results which confirms the long-held belief that the Gallai-Ramsey number for all odd cycles (with the exception of C_{3}) should match the lower bound. The results of this dissertation are indeed cited in [18].

Theorem 1.3.29 ([18]) For all $k \geq 1$ and $n \geq 3, G R_{k}\left(C_{2 n+1}\right)=n \cdot 2^{k}+1$.

Let us then return to our main goal. In Chapter 2 we supply the proof of Theorem 1.2.14. In Chapter 3 we prove Theorem 1.3.26 in Section 3.2 and Theorem 1.3.27 in Section 3.3. We then prove Theorem 1.3.28 in Chapter 4. Finally, we conclude this dissertation with a discussion of future work in Chapter 5.

CHAPTER 2: HADWIGER'S CONJECTURE FOR W_{5}-FREE GRAPHS

2.1 Proof of Theorem 1.2.14

Let G be a W_{5}-free graph on n vertices with $\alpha(G) \leq 2$. By Theorem 1.2.11, it suffices to show that $h(G) \geq\lceil n / 2\rceil$. Suppose $h(G)<\lceil n / 2\rceil$. We choose such a graph G with n minimum. By Theorem 1.2.12, G must contain an induced C_{5}. Then $\alpha:=\alpha(G)=2$. Note that $(n+3) / 4 \leq\lceil(n+2) / 4\rceil$ for odd n. By Theorem 1.2.15, $\omega(G)<\lceil(n+2) / 4\rceil$ when n is odd, and $\omega(G)<\lceil n / 4\rceil$ when n is even.

Since G has an induced C_{5}, let $X:=\bigcup_{i=1}^{5} X_{i}$ be a maximal inflation of C_{5} in G such that for all $i \in[5], G\left[X_{i}\right]$ is a clique, X_{i} is complete to $X_{i-1} \cup X_{i+1}$ and anticomplete to $X_{i-2} \cup X_{i+2}$, where all arithmetic on indices here and henceforth is done modulo 5 . Then $X_{i} \neq \emptyset$ for all $i \in[5]$. Since $\alpha=2$ and G is W_{5}-free, no vertex in $V(G) \backslash X$ is complete to X and every vertex in $V(G) \backslash X$ must be complete to at least three consecutive X_{i} 's on the maximal inflation of C_{5}. For each $i \in[5]$, let
$Y_{i}:=\left\{v \in V(G) \backslash X \mid v\right.$ is complete to $X \backslash X_{i}$ and has a non-neighbor in $\left.X_{i}\right\}$ $Z_{i}:=\left\{v \in V(G) \backslash X \mid v\right.$ is complete to $X \backslash\left(X_{i} \cup X_{i+1}\right)$ and has a non-neighbor in X_{i} and in $\left.X_{i+1}\right\}$.

Let $Y:=\bigcup_{i=1}^{5} Y_{i}$ and $Z:=\bigcup_{i=1}^{5} Z_{i}$. By definition, $Y \cap Z=\emptyset$ and $Y \cup Z=V(G) \backslash X$. By the maximality of $|X|$, no vertex in Z_{i} is anticomplete to $X_{i} \cup X_{i+1}$ in G, else, such a vertex can be placed in X_{i+3} to obtain a larger inflation of C_{5}.

Claim 2.1.1 For all $i \in[5], G\left[Z_{i}\right]$ is a clique.

Proof. Suppose some $G\left[Z_{i}\right]$, say $G\left[Z_{1}\right]$, is not a clique. Then there exist $z_{1}, z_{1}^{\prime} \in Z_{1}$ such that $z_{1} z_{1}^{\prime} \notin E(G)$. By definition of Z_{1}, there exist $x_{1} \in X_{1}$ and $x_{2} \in X_{2}$ such that $z_{1} x_{1}, z_{1} x_{2} \notin$ $E(G)$. Since $\alpha=2$, we see that $z_{1}^{\prime} x_{1}, z_{1}^{\prime} x_{2} \in E(G)$. But then $G\left[\left\{z_{1}^{\prime}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}\right]=W_{5}$, where $x_{i} \in X_{i}$ for all $i \in\{3,4,5\}$, a contradiction.

We can use similar reasoning to deduce an analogous statement for $G\left[Y_{i}\right]$ for all $i \in[5]$.

Claim 2.1.2 For all $i \in[5], Y_{i}$ is anticomplete to X_{i}, and so $G\left[Y_{i}\right]$ is a clique.

With the following observation, we can partition the sets Z_{i} for all $i \in[5]$.

Claim 2.1.3 For all $i \in[5]$, every vertex in Z_{i} is either anticomplete to X_{i}, or anticomplete to X_{i+1}, but not both.

Proof. As observed earlier, for all $i \in[5]$, no vertex in Z_{i} is anticomplete to $X_{i} \cup X_{i+1}$. Suppose there exists some $i \in[5]$, say $i=1$, such that some vertex, say $z \in Z_{1}$ is neither anticomplete to X_{i} nor anticomplete to X_{i+1}. Then there exist $x_{1} \in X_{1}$ and $x_{2}, \in X_{2}$ such that $z x_{1}, z x_{2} \notin E(G)$. Let $x_{i} \in X_{i}$ for all $i \in\{3,4,5\}$. By definition of Z_{1}, z is complete to $\left\{x_{3}, x_{4}, x_{5}\right\}$. But then $G\left[\left\{z, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}\right]=W_{5}$, a contradiction.

For each $i \in[5]$, let

$$
\begin{aligned}
Z_{i}^{i} & :=\left\{z \in Z_{i} \mid z \text { is anticomplete to } X_{i}\right\} \\
Z_{i}^{i+1} & :=\left\{z \in Z_{i} \mid z \text { is anticomplete to } X_{i+1}\right\} .
\end{aligned}
$$

By Claim 2.1.3, $Z_{i}=Z_{i}^{i} \cup Z_{i}^{i+1}$ and $Z_{i}^{i} \cap Z_{i}^{i+1}=\emptyset$ for all $i \in[5]$.

Since $\alpha=2$, by the choice of $Y_{i}, Z_{i}, Z_{i}^{i}, Z_{i}^{i+1}$, we see that

Claim 2.1.4 For all $i \in[5]$, both $G\left[Z_{i-1}^{i} \cup Y_{i} \cup Z_{i}\right]$ and $G\left[Z_{i-1} \cup Y_{i} \cup Z_{i}^{i}\right]$ are cliques.

We next show that

Claim 2.1.5 For all $i \in[5]$, every vertex in Z_{i}^{i} is complete to Y_{i-1} or complete to Z_{i+1}^{i+2}.

Proof. Suppose the statement is false. We may assume that there exists some vertex $z \in Z_{1}^{1}$ such that $z y_{5}, z z_{2} \notin E(G)$, where $y_{5} \in Y_{5}$ and $z_{2} \in Z_{2}^{3}$. Since $\alpha=2$, we see that $y_{5} z_{2} \in E(G)$. Then $G\left[\left\{x_{4}, y_{5}, z_{2}, x_{5}, z, x_{3}\right\}\right]=W_{5}$, where $x_{i} \in X_{i}$ for all $i \in\{3,4,5\}$, a contradiction.

Claim 2.1.6 For all $i \in[5]$, every vertex in Y_{i} is either complete to Y_{i-1} or complete to Y_{i+2}.

Proof. Suppose not. We may assume there exist vertices $y_{1} \in Y_{1}, y_{3} \in Y_{3}$ and $y_{5} \in Y_{5}$ such that $y_{1} y_{3}, y_{1} y_{5} \notin E(G)$. Then $y_{3} y_{5} \in E(G)$ because $\alpha=2$. Then $G\left[\left\{x_{4}, y_{5}, y_{3}, x_{5}, y_{1}, x_{3}\right\}\right]=$ W_{5}, where $x_{i} \in X_{i}$ for all $i \in\{3,4,5\}$, a contradiction.

By Claim 2.1.5, $Z_{1}^{1}=A_{1} \cup B_{1}$ and $Z_{3}^{3}=A_{3} \cup B_{3}$, where $A_{i} \cap B_{i}=\emptyset$, and

$$
\begin{aligned}
& A_{i}:=\left\{v \in Z_{i}^{i} \mid v \text { is complete to } Y_{i-1}\right\} \\
& B_{i}:=\left\{v \in Z_{i}^{i} \mid v \text { is complete to } Z_{i+1}^{i+2} \text { and has a non-neighbor in } Y_{i-1}\right\} .
\end{aligned}
$$

for $i \in\{1,3\}$. By Claim 2.1.6, $Y_{1}=Y_{1}^{\prime} \cup Y_{1}^{\prime \prime}$, where

$$
\begin{aligned}
Y_{1}^{\prime} & :=\left\{v \in Y_{1} \mid v \text { is complete to } Y_{5}\right\} \\
Y_{1}^{\prime \prime} & :=\left\{v \in Y_{1} \mid v \text { is complete to } Y_{3} \text { and has a non-neighbor in } Y_{5}\right\} .
\end{aligned}
$$

Then $Y_{1}^{\prime} \cap Y_{1}^{\prime \prime}=\emptyset$. We claim that A_{3} is complete to $Y_{1}^{\prime \prime}$ in G. To see this, suppose there exist vertices $z \in A_{3}$ and $y_{1} \in Y_{1}^{\prime \prime}$ such that $z y_{1} \notin E(G)$. By the choice of $Y_{1}^{\prime \prime}$, there exists a vertex $y_{5} \in Y_{5}$ such that $y_{1} y_{5} \notin E(G)$. Then $z y_{5} \in E(G)$ because $\alpha=2$. Since $z \in Z_{3}^{3}$, there exists some vertex $x_{4} \in X_{4}$ such that $z x_{4} \in E(G)$. But then $G\left[\left\{x_{4}, z, y_{5}, x_{3}, y_{1}, x_{5}\right\}\right]=W_{5}$, where $x_{3} \in X_{3}$ and $x_{5} \in X_{5}$, a contradiction. This proves that A_{3} is complete to $Y_{1}^{\prime \prime}$ in G, as claimed. Let

$$
\begin{aligned}
& H_{1}:=G\left[X_{3} \cup X_{4} \cup Y_{5} \cup Z_{5} \cup Y_{1}^{\prime} \cup A_{1}\right] \\
& H_{2}:=G\left[X_{4} \cup X_{5} \cup B_{1} \cup Z_{1}^{2} \cup Y_{2} \cup Z_{2}\right] \\
& H_{3}:=G\left[X_{1} \cup X_{2} \cup B_{3} \cup Z_{3}^{4} \cup Y_{4} \cup Z_{4}\right] \\
& H_{4}:=G\left[X_{5} \cup Y_{1}^{\prime \prime} \cup Y_{3} \cup A_{3}\right]
\end{aligned}
$$

Note that each of H_{1}, H_{2}, H_{3} and H_{4} is a clique in G, and $\left|H_{1}\right|+\left|H_{2}\right|+\left|H_{3}\right|+\left|H_{4}\right|=$ $|G|+\left|X_{4}\right|+\left|X_{5}\right| \geq n+2$. It follows that $\omega(G) \geq \max \left\{\left|H_{1}\right|,\left|H_{2}\right|,\left|H_{3}\right|,\left|H_{4}\right|\right\} \geq\lceil(n+2) / 4\rceil$, a contradiction.

This completes the proof of Theorem 1.2.14.

CHAPTER 3: GALLAI-RAMSEY NUMBERS OF SMALL ODD CYCLES

In this chapter, our goal is to prove our results concerning Gallai-Ramsey numbers of odd cycles. First, we introduce some very useful lemmas in Section 3.1 which we shall require at various points later on. We then prove Theorem 1.3.26 in Section 3.2, followed by the proof of Theorem 1.3.27 in Section 3.3 because its proof is substantially more complicated.

3.1 Preliminaries

Lemma 3.1.1 ([9, 10]) For all $n \geq 3$ and $k \geq 1$, let c be a k-coloring of the edges of a complete graph G on at least $2 n+1$ vertices. Let $U, W \subseteq V(G)$ be two disjoint sets with $|U| \geq n$ and $|W| \geq n$. If U is mc-complete, say blue-complete, to W under the coloring c, then no vertex in $V(G) \backslash(U \cup W)$ is blue-complete to $U \cup W$ in G. Moreover, if $|W| \geq n+1$ (resp. $|U| \geq n+1$), then $G[W]$ (resp. $G[U]$) has no blue edges.

Proof. For the first case, suppose there exists a vertex $x \in V(G) \backslash(U \cup W)$ such that x is blue-complete to $U \cup W$ in G. Let $U=\left\{u_{1}, \ldots, u_{|U|}\right\}$ and $W=\left\{w_{1}, \ldots, w_{|W|}\right\}$. We then obtain a blue $C_{2 n+1}$ with vertices $u_{1}, x, w_{1}, u_{2}, w_{2}, \ldots, u_{n}, w_{n}$ in order when $|U| \geq n,|W| \geq n$. For the second case, assume $|W| \geq n+1$ and $w_{1} w_{2}$ is colored blue under c. Then we find a blue $C_{2 n+1}$ with the vertices $u_{1}, w_{1}, w_{2}, u_{2}, w_{3}, \ldots, u_{n}, w_{n+1}$ in order, a contradiction. If $|U| \geq n+1$, the proof is identical.

Lemma 3.1.2 ([9, 10]) For all $\ell \geq 3$ and $n \geq 1$, let $n_{1}, n_{2}, \ldots, n_{\ell}$ be positive integers such that $n_{i} \leq n$ for all $i \in[\ell]$ and $\sum_{i=1}^{\ell} n_{i} \geq 2 n+1$. Then the complete multipartite graph $K_{n_{1}, n_{2}, \ldots, n_{\ell}}$
has a cycle of length $2 n+1$.

Proof. Let $G:=K_{n_{1}^{\prime}, n_{2}^{\prime}, \ldots, n_{\ell}^{\prime}}$ be an induced subgraph of $K_{n_{1}, n_{2}, \ldots, n_{\ell}}$ such that: $\ell^{\prime} \geq 3$; $\sum_{i=1}^{\ell^{\prime}} n_{i}^{\prime}=2 n+1$; and for all $i \in\left[\ell^{\prime}\right], 1 \leq n_{i}^{\prime} \leq n$. Then $\delta(G) \geq n+1 \geq|G| / 2$. By Theorem 1.1.2, G has a Hamilton cycle, and so $K_{n_{1}, n_{2}, \ldots, n_{\ell}}$ has a cycle of length $2 n+1$.

The final lemma due to Hall et. al. will be used in the proof of Theorem 1.3.28.

Lemma 3.1.3 ([51]) For $1 \leq t \leq n$, any Gallai-colored complete graph having a Gallai partition with at least $4\lceil n / t\rceil+1$ parts each of order at least t contains a monochromatic $C_{2 n+1}$.

3.2 Proof of Theorem 1.3.26

Let $n \in\{4,5\}$. As mentioned in Section 1.3.1, Erdős, Faudree, Rousseau and Schelp [34] gave a construction for the lower bound of $R_{k}\left(C_{2 n+1}\right)$, illustrated in Figure 1.6. Because this construction is also rainbow triangle-free, we have $G R_{k}\left(C_{2 n+1}\right) \geq n \cdot 2^{k}+1$ for all $k \geq 1$. Therefore, the remainder of the proof will show that $G R_{k}\left(C_{2 n+1}\right) \leq n \cdot 2^{k}+1$ for all $k \geq 1$.

First, note that the case $k=1$ is trivial. Combining the result $R\left(C_{2 n+1}, C_{2 n+1}\right)=4 n+1$ for all $n \geq 2[39,76]$ with Fact 1.3.11, we may assume that $k \geq 3$. Let $G:=K_{n \cdot 2^{k}+1}$ and let c be any Gallai k-coloring of G.

Suppose that G does not contain any monochromatic $C_{2 n+1}$ under c, so that the coloring c is bad. Among all complete graphs on $n \cdot 2^{k}+1$ vertices with a bad Gallai k-coloring, we choose G with k minimum; that is, G is the minimum-order counterexample to the desired result. We next show such a graph G cannot exist through a series of claims, therefore concluding
that G must contain a monochromatic copy of $C_{2 n+1}$ under the coloring c.

The first claim asserts that provided enough vertices are mc-complete to certain vertex sets, the order of these sets can be controlled.

Claim 3.2.1 ($[9,10]$) Let $W \subseteq V(G)$ and let $\ell \geq 3$ be an integer. Let $x_{1}, \ldots, x_{\ell} \in$ $V(G) \backslash W$ such that $\left\{x_{1}, \ldots, x_{\ell}\right\}$ is mc-complete, say blue-complete, to W under c. Let $q \in\{0,1, \ldots, k-1\}$ be the number of colors, other than blue, missing on $G[W]$ under c.
(i) If $\ell \geq n$, then $|W| \leq n \cdot 2^{k-1-q}$.
(ii) If $\ell=n-1$, then $|W| \leq n \cdot 2^{k-1-q}+2$.
(iii) If $\ell=n-2$, then $n=5$ and $|W| \leq 8 \cdot 2^{k-1-q}-1$.

Proof. If $|W|<\max \{2 n+1-\ell, n+1\}$, then the above statements hold trivially, so we may assume that $|W| \geq \max \{2 n+1-\ell, n+1\}$. We may further assume that $G[W]$ contains at least one blue edge, otherwise by the minimality of $k,|W| \leq n \cdot 2^{k-1-q}$, giving the result. Note that $q \leq k-1$. If $q=k-1$, then all the edges of $G[W]$ are colored only blue. Since $\left\{x_{1}, \ldots, x_{\ell}\right\}$ is blue-complete to W and $|W| \geq \max \{2 n+1-\ell, n+1\}$, we see that $G\left[W \cup\left\{x_{1}, \ldots, x_{\ell}\right\}\right]$ contains a blue $C_{2 n+1}$, a contradiction. Thus $q \leq k-2$. Since $|W| \geq n+1$ and $G[W]$ contains at least one blue edge, by Lemma 3.1.1, $\ell \leq n-1$. Let W^{*} be a minimal set of vertices in W such that $G\left[W \backslash W^{*}\right]$ has no blue edges. By minimality of $k,\left|W \backslash W^{*}\right| \leq n \cdot 2^{k-1-q}$. Our strategy now is to examine the possible longest blue paths that can occur in $G[W]$.

We now consider the case when $\ell=n-1$. As there are exactly three possible ways to create longest blue paths using three blue edges, define $\mathcal{F}:=\left\{3 P_{2}, P_{3} \cup P_{2}, P_{4}\right\}$. Given $F \in \mathcal{F}$,
enumerate its vertices with $v_{1}, v_{2}, \ldots, v_{j}$, where $4 \leq j \leq 6$, and enumerate the remaining vertices of W with $v_{j+1}, v_{j+2}, \ldots, v_{|W|}$, noting that $|W| \geq 2 n+1-\ell=n+2$. If $F \subseteq G_{b}[W]$ for some $F \in \mathcal{F}$, we obtain a blue $C_{2 n+1}$ in one of the following ways.

$$
C_{2 n+1}= \begin{cases}x_{1} P_{2} x_{2} P_{2} x_{3} P_{2} x_{4} v_{7} \cdots x_{n-1} v_{n+2} x_{1}, & \text { if } F=3 P_{2} \\ x_{1} P_{3} x_{2} P_{2} x_{3} v_{6} \cdots x_{n-1} v_{n+2} x_{1}, & \text { if } F=P_{3} \cup P_{2} \\ x_{1} P_{4} x_{2} v_{5} \cdots x_{n-1} v_{n+2} x_{1}, & \text { if } F=P_{4}\end{cases}
$$

a contradiction. Thus $\left|W^{*}\right| \leq 2$, and so $|W| \leq n \cdot 2^{k-1-q}+2$. This establishes (ii).

Finally, let $\ell=n-2$. Since $3 \leq \ell$, then $n=5$ and thus $\ell=3$. Note that $|W| \geq$ $2 n+1-\ell \geq 8$. Let P be a longest blue path in $G[W]$ with vertices $v_{1}, \ldots, v_{|P|}$ in order. Since $\left\{x_{1}, x_{2}, x_{3}\right\}$ is blue-complete to W, we see that $|P| \leq 5$, else we obtain a blue C_{11} with vertices $x_{1}, v_{1}, \ldots, v_{6}, x_{2}, v_{7}, x_{3}, v_{8}$ in order, where $v_{7}, v_{8} \in W \backslash\left\{v_{1}, \ldots, v_{6}\right\}$, a contradiction. If $\left|W^{*}\right| \leq 4$, then

$$
|W|=\left|W \backslash W^{*}\right|+\left|W^{*}\right| \leq n \cdot 2^{k-1-q}+4<8 \cdot 2^{k-1-q}-1,
$$

because $q \leq k-2$ and $k \geq 3$. Thus we may assume that $\left|W^{*}\right| \geq 5$. By the choice of W^{*}, we see that $|P| \in\{2,3\}$, else we obtain a blue C_{11}. Furthermore, if $|P|=3$, then $G[W \backslash V(P)]$ has no blue path on three vertices. Thus all the blue edges in $G[W \backslash V(P)]$ induce a blue matching. Let $m:=\left|W^{*} \backslash V(P)\right|$ and let $u_{2} w_{2}, \ldots, u_{m+1} w_{m+1}$ be all the blue edges in $G[W \backslash V(P)]$, where $u_{2}, \ldots, u_{m+1}, w_{2}, \ldots, w_{m+1}$ are all distinct. By the choice of W^{*}, we may assume that $u_{2}, \ldots, u_{m+1} \in W^{*}$. Let $u_{1}=v_{1}$ and $w_{1}=v_{2}, A:=W \backslash(V(P) \cup$
$\left.\left\{u_{2}, \ldots, u_{m+1}, w_{2}, \ldots, w_{m+1}\right\}\right)$, and

$$
B:= \begin{cases}\left\{u_{1}, u_{2}, \ldots, u_{m+1}\right\}, & \text { if }|A| \leq 1 \\ \left\{u_{1}, u_{2}, \ldots, u_{m+1}\right\} \cup\left\{a_{1}, a_{2}\right\}, & \text { if }|A| \geq 2\end{cases}
$$

where $a_{1}, a_{2} \in A$ with $a_{1} \neq a_{2}$. We claim that $|B| \leq 3 \cdot 2^{k-1-q}$. Suppose $|B| \geq$ $3 \cdot 2^{k-1-q}+1$. By the main result of $[13], G[B]$ has a monochromatic, say green, C_{7}. Then $\left|V\left(C_{7}\right) \cap\left\{u_{1}, u_{2}, \ldots, u_{m+1}\right\}\right| \geq 5$ and so $C_{7} \backslash\left\{a_{1}, a_{2}\right\}$ has a matching of size two. We may assume that $u_{2} u_{3}, u_{4} u_{5} \in E\left(C_{7}\right)$. Since G has no rainbow triangles under the coloring c, we see that for any $i \in\{2,4\},\left\{u_{i}, w_{i}\right\}$ is green-complete to $\left\{u_{i+1}, w_{i+1}\right\}$. Thus we obtain a green C_{11} from the C_{7} by replacing the edge $u_{2} u_{3}$ with the path $u_{2} w_{3} w_{2} u_{3}$ and edge $u_{4} u_{5}$ with the path $u_{4} w_{5} w_{4} u_{5}$, a contradiction (see Figure 3.1). Thus $|B| \leq 3 \cdot 2^{k-1-q}$, as claimed.

Figure 3.1: An example of a green C_{11} arising from a green C_{7}

When $|A| \leq 1$, we have $|W|=|A|+2|B|+\left|V(P) \backslash\left\{v_{1}, v_{2}\right\}\right| \leq 1+6 \cdot 2^{k-1-q}+1<8 \cdot 2^{k-1-q}-1$ because $q \leq k-2$ and $k \geq 3$. When $|A| \geq 2$, since $G\left[A \cup\left\{w_{1}, w_{2}, \ldots, w_{m+1}\right\}\right]$ has no blue
edges, by minimality of $k,\left|A \cup\left\{w_{1}, w_{2}, \ldots, w_{m+1}\right\}\right| \leq 5 \cdot 2^{k-1-q}$. Hence,

$$
\begin{aligned}
|W| & =\left|A \cup\left\{w_{1}, w_{2}, \ldots, w_{m+1}\right\}\right|+\left|B \backslash\left\{a_{1}, a_{2}\right\}\right|+\left|V(P) \backslash\left\{v_{1}, v_{2}\right\}\right| \\
& \leq 5 \cdot 2^{k-1-q}+\left(3 \cdot 2^{k-1-q}-2\right)+1 \\
& =8 \cdot 2^{k-1-q}-1 .
\end{aligned}
$$

This completes the proof of Claim 3.2.1.

As it turns out, although we are guaranteed a Gallai partition when c is bad, we have no control over the partition itself. In particular, as mentioned in Section 1.3.2, the order of the parts cannot be controlled. Parts that are too small are difficult to deal with, so we put them aside for later use. We formally define this process below. An illustration of this can be found in Figure 3.2.

Let X_{1}, \ldots, X_{m} be a disjoint subsets of $V(G)$ such that m is maximum and for all $j \in[m]$, one of the following holds.
(a) $1 \leq\left|X_{j}\right| \leq 2$, and X_{j} is mc-complete to $V(G) \backslash \bigcup_{i \in[j]} X_{i}$ under c, or
(b) $3 \leq\left|X_{j}\right| \leq 4$, and X_{j} can be partitioned into two non-empty sets $X_{j_{1}}$ and $X_{j_{2}}$, where $j_{1}, j_{2} \in[k]$ are two distinct colors, such that for each $t \in\{1,2\}, 1 \leq\left|X_{j_{t}}\right| \leq 2, X_{j_{t}}$ is j_{t}-complete to $V(G) \backslash \bigcup_{i \in[j]} X_{i}$ but not j_{t}-complete to $X_{j_{3-t}}$, and all the edges between $X_{j_{1}}$ and $X_{j_{2}}$ in G are colored using only the colors j_{1} and j_{2}.

With the above in mind, define the set $X:=\bigcup_{j \in[m]} X_{j}$. We point out that such a sequence X_{1}, \ldots, X_{m} may not exist. For each $x \in X$, let $c(x)$ be the unique color on the edges between x and $V(G) \backslash X$ under c. For all $i \in[k]$, let $X_{i}^{*}:=\{x \in X: c(x)=$ color $i\}$. Then $X=\bigcup_{i \in[k]} X_{i}^{*}$. Note that X_{i}^{*} is possibly empty for all $i \in[k]$. In line with our notation thus far, we write X_{b}^{*} (resp., X_{r}^{*}) to denote X_{i}^{*} when $i=$ blue (resp., $i=$ red).

Figure 3.2: Constructing the set X

Claim 3.2.2 ([9, 10]) For all $i \in[k],\left|X_{i}^{*}\right| \leq 2$.

Proof. Suppose the statement is false. Then $m \geq 2$. When choosing $X_{1}, X_{2}, \ldots, X_{m}$, let $j \in[m-1]$ be the largest index such that $\left|X_{p}^{*} \cap\left(X_{1} \cup X_{2} \cup \cdots \cup X_{j}\right)\right| \leq 2$ for all $p \in[k]$. Then $3 \leq\left|X_{i}^{*} \cap\left(X_{1} \cup X_{2} \cup \cdots \cup X_{j} \cup X_{j+1}\right)\right| \leq 4$ for some color $i \in[k]$ by the choice of j, where the indices i and and j exist from our assumption that the statement is false. Let $A:=X_{1} \cup X_{2} \cup \cdots \cup X_{j} \cup X_{j+1}$. By the choice of $X_{1}, X_{2}, \ldots, X_{m}$, there are at most two colors $i \in[k]$ such that $3 \leq\left|X_{i}^{*} \cap A\right| \leq 4$. We may assume that such a color i is either blue or red. Let $A_{b}:=\{x \in A: c(x)=$ blue $\}$ and $A_{r}:=\{x \in A: c(x)=$ red $\}$. It suffices to consider the worst case, namely when $3 \leq\left|A_{b}\right| \leq 4$ and $3 \leq\left|A_{r}\right| \leq 4$. For any color $p \in[k]$ other than red and blue, $\left|X_{p}^{*} \cap A\right| \leq 2$. Then by the choice of $j,\left|A \backslash\left(A_{b} \cup A_{r}\right)\right| \leq 2(k-2)$. We may assume that $\left|A_{b}\right| \geq\left|A_{r}\right|$. Suppose $\left|A_{b}\right| \geq n-1$. By Claim 3.2.1(ii) applied to any
$n-1$ vertices in A_{b} and $V(G) \backslash A$, then $|V(G) \backslash A| \leq n \cdot 2^{k-1}+2$. Since $\left|A_{b}\right| \leq 4 \leq n$,
$|G|=\left|A \backslash\left(A_{b} \cup A_{r}\right)\right|+\left|A_{b}\right|+\left|A_{r}\right|+|V(G) \backslash A| \leq 2(k-2)+n+n+\left(n \cdot 2^{k-1}+2\right)<n \cdot 2^{k}+1$
for all $k \geq 3$ and $n \in\{4,5\}$, a contradiction. Finally, if $3 \leq\left|A_{b}\right| \leq n-2$, then $\left|A_{b}\right|=3$ and $n=5$. By Claim 3.2.1(iii) applied to A_{b} and $V(G) \backslash A$, we see that $|V(G) \backslash A| \leq 8 \cdot 2^{k-1}-1$. Thus,
$|G|=\left|A \backslash\left(A_{b} \cup A_{r}\right)\right|+\left|A_{b}\right|+\left|A_{r}\right|+|V(G) \backslash A| \leq 2(k-2)+3+3+\left(8 \cdot 2^{k-1}-1\right)<5 \cdot 2^{k}+1$
for all $k \geq 3$, a contradiction.

It immediately follows that $|X| \leq 2 k$ from Claim 3.2.2. We now define a useful partition of X. Let $X^{\prime} \subseteq X$ be such that for all $i \in[k],\left|X^{\prime} \cap X_{i}^{*}\right|=1$ when $X_{i}^{*} \neq \emptyset$. Let $X^{\prime \prime}:=X \backslash X^{\prime}$.

Now, consider a Gallai partition A_{1}, \ldots, A_{p} of $G \backslash X$ with $p \geq 2$. We may assume that $1 \leq\left|A_{1}\right| \leq \cdots \leq\left|A_{s}\right|<3 \leq\left|A_{s+1}\right| \leq \cdots \leq\left|A_{p}\right|$, where $0 \leq s \leq p$. Let \mathcal{R} be the reduced graph of $G \backslash X$ with vertices $a_{1}, a_{2}, \ldots, a_{p}$, where $a_{i} \in A_{i}$ for all $i \in[p]$. By Theorem 1.3.13, we may assume that the edges of \mathcal{R} are colored red and blue. As pointed out in Section 1.3.2, any monochromatic $C_{2 n+1}$ in \mathcal{R} would yield a monochromatic $C_{2 n+1}$ in G, so \mathcal{R} has neither a red nor a blue $C_{2 n+1}$. By Theorem 1.3.2, $p \leq 4 n$. Then $\left|A_{p}\right| \geq 2$ because $|G \backslash X| \geq n \cdot 2^{k}+1-2 k \geq 8 n-5$, and further, if $\left|A_{p}\right|=2$, then $k=3$. Thus
$\left|A_{p-4 n+8}\right|=2$, otherwise

$$
\begin{aligned}
|G| & =\sum_{i=0}^{4 n-7}\left|A_{p-i}\right|+\sum_{i=4 n-8}^{p-1}\left|A_{p-i}\right|+|X| \\
& \leq 2(4 n-8)+[p-(4 n-8)]+6 \\
& \leq 8 n-2 \\
& <n \cdot 2^{3}+1
\end{aligned}
$$

a contradiction. By Theorem 1.3.2, we have $R\left(C_{2 n-3}, C_{2 n-3}\right)=4 n-7$. Thus $\mathcal{R}\left[\left\{a_{p-4 n+8}\right.\right.$, $\left.\left.a_{p-4 n+9}, \ldots, a_{p}\right\}\right]$ has a monochromatic, say blue, $C_{2 n-3}$, and so $G\left[A_{p-4 n+8} \cup A_{p-4 n+9} \cup \cdots \cup A_{p}\right]$ has a blue $C_{2 n+1}$, a contradiction. Therefore we conclude $\left|A_{p}\right| \geq 3$, giving $p-s \geq 1$. Let

$$
\begin{aligned}
& B:=\left\{a_{i} \in\left\{a_{1}, \ldots, a_{p-1}\right\} \mid a_{i} a_{p} \text { is colored blue in } \mathcal{R}\right\} \\
& R:=\left\{a_{j} \in\left\{a_{1}, \ldots, a_{p-1}\right\} \mid a_{j} a_{p} \text { is colored red in } \mathcal{R}\right\}
\end{aligned}
$$

Then $|B|+|R|=p-1$. Let $B_{G}:=\bigcup_{a_{i} \in B} A_{i}$ and $R_{G}:=\bigcup_{a_{j} \in R} A_{j}$. We illustrate the above ideas in Figure 3.3.

Claim 3.2.3 ([9, 10]) If $\left|A_{p}\right| \geq n$ and $|B| \geq 3$ (resp. $|R| \geq 3$), then $\left|B_{G}\right| \leq 2 n$ (resp. $\left.\left|R_{G}\right| \leq 2 n\right)$.

Proof. Suppose $\left|A_{p}\right| \geq n$ and $|B| \geq 3$ but $\left|B_{G}\right| \geq 2 n+1$. By Claim 3.1.1, $G\left[B_{G}\right]$ has no blue edges and no vertex in X is blue-complete to $V(G) \backslash X$. Thus all the edges of $\mathcal{R}[B]$ are colored red in \mathcal{R}. Let $q:=|B|$ and let $B:=\left\{a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{q}}\right\}$ with $\left|A_{i_{1}}\right| \geq\left|A_{i_{2}}\right| \geq \cdots \geq\left|A_{i_{q}}\right|$. Then $G\left[B_{G}\right] \backslash \bigcup_{j=1}^{q} E\left(G\left[A_{i_{j}}\right]\right)$ is a complete multipartite graph with at least three parts. If $\left|A_{i_{1}}\right| \leq n$, then by Lemma 3.1.2 applied to $G\left[B_{G}\right] \backslash \bigcup_{j=1}^{q} E\left(G\left[A_{i_{j}}\right]\right), G\left[B_{G}\right]$ has a red $C_{2 n+1}$, a contradiction. Thus $\left|A_{i_{1}}\right| \geq n+1$.

Figure 3.3: Gallai partition of $G \backslash X$ and a partition of X

Let $Q_{b}:=\left\{v \in R_{G}: v\right.$ is blue-complete to $\left.A_{i_{1}}\right\}$, and $Q_{r}:=\left\{v \in R_{G}: v\right.$ is red-complete to $\left.A_{i_{1}}\right\}$. Then $Q_{b} \cup Q_{r}=R_{G}$. Let $Q:=\left(B_{G} \backslash A_{i_{1}}\right) \cup Q_{r} \cup X_{r}^{*}$. Then Q is red-complete to $A_{i_{1}}$ and $G[Q]$ must contain red edges, because $|B| \geq 3$ and all the edges of $\mathcal{R}[B]$ are colored red. By Claim 3.1.1 applied to $A_{i_{1}}$ and $Q,|Q| \leq n$. Note that $\left|A_{p} \cup Q_{b}\right| \geq\left|A_{p}\right| \geq\left|A_{i_{1}}\right| \geq n+1$ and $A_{p} \cup Q_{b}$ is blue-complete to $A_{i_{1}}$. By Claim 3.1.1 applied to $A_{i_{1}}$ and $A_{p} \cup Q_{b}, G\left[A_{p} \cup Q_{b}\right]$ has no blue edges. Since no vertex in X is blue-complete to $V(G) \backslash X$, we see that $G\left[A_{p} \cup Q_{b} \cup\left(X^{\prime} \backslash X_{r}^{*}\right)\right]$ has no blue edges. By minimality of $k,\left|A_{p} \cup Q_{b} \cup\left(X^{\prime} \backslash X_{r}^{*}\right)\right| \leq n \cdot 2^{k-1}$. Suppose first that $Q_{r} \cup X_{r}^{*}=\emptyset$. Then $Q_{b}=R_{G}$ and $G\left[B_{G} \cup X^{\prime \prime}\right]$ has no blue edges. By minimality of k,
$\left|B_{G} \cup X^{\prime \prime}\right| \leq n \cdot 2^{k-1}$. But then

$$
|G|=\left|B_{G} \cup X^{\prime \prime}\right|+\left|A_{p} \cup Q_{b} \cup X^{\prime}\right| \leq n \cdot 2^{k-1}+n \cdot 2^{k-1}<n \cdot 2^{k}+1
$$

a contradiction. Thus $Q_{r} \cup X_{r}^{*} \neq \emptyset$. Since $|B| \geq 3$, we see that $\left|B_{G} \backslash A_{i_{1}}\right| \geq 2$. Thus $n \geq|Q| \geq 3$.

Note that $G\left[A_{i_{1}}\right]$ has no blue edges and $\left|X^{\prime \prime} \backslash X_{r}^{*}\right| \leq k-2$. By Claim 3.2.1 applied to Q and $A_{i_{1}}$, we see that

$$
\left|A_{i_{1}}\right| \leq \begin{cases}n \cdot 2^{k-2} & \text { if }|Q|=n \\ n \cdot 2^{k-2}+2 & \text { if }|Q|=n-1 \\ 8 \cdot 2^{k-2}-1 & \text { if }|Q|=n-2 \text { and } n=5\end{cases}
$$

But then

$$
\begin{aligned}
|G| & =|Q|+\left|A_{i_{1}}\right|+\left|A_{p} \cup Q_{b} \cup\left(X^{\prime} \backslash X_{r}^{*}\right)\right|+\left|X^{\prime \prime} \backslash X_{r}^{*}\right| \\
& \leq \begin{cases}n+n \cdot 2^{k-2}+n \cdot 2^{k-1}+(k-2) & \text { if }|Q|=n \\
(n-1)+\left(n \cdot 2^{k-2}+2\right)+n \cdot 2^{k-1}+(k-2) & \text { if }|Q|=n-1 \\
(n-2)+\left(8 \cdot 2^{k-2}-1\right)+n \cdot 2^{k-1}+(k-2) & \text { if }|Q|=n-2 \text { and } n=5\end{cases} \\
& <n \cdot 2^{k}+1
\end{aligned}
$$

for all $k \geq 3$, a contradiction. This proves that if $\left|A_{p}\right| \geq n$ and $|B| \geq 3$, then $\left|B_{G}\right| \leq 2 n$. Similarly, one can prove that if $\left|A_{p}\right| \geq n$ and $|R| \geq 3$, then $\left|R_{G}\right| \leq 2 n$.

Claim 3.2.4 $p \leq 2 n-1$.

Proof. Suppose $p \geq 2 n$. Then $|B|+|R|=p-1 \geq 2 n-1$. We claim that $\left|A_{p}\right| \leq n-1$. Suppose $\left|A_{p}\right| \geq n$. We may assume that $|B| \geq|R|$. Then $\left|B_{G}\right| \geq|B| \geq n>3$. By Claim 3.2.3, $\left|B_{G}\right| \leq 2 n$. If $\left|R_{G}\right| \geq n+1$, then applying Lemma 3.1.1 to A_{p} and $R_{G}, G\left[R_{G}\right]$ has no red edges, and $X_{r}^{*}=\emptyset$. Then $\left|X^{\prime \prime}\right| \leq k-1$ and $G\left[R_{G} \cup X^{\prime}\right]$ has no red edges so that by minimality of $k,\left|R_{G} \cup X^{\prime}\right| \leq n \cdot 2^{k-1}$. Then

$$
\left|A_{p}\right|=|G|-\left|B_{G}\right|-\left|R_{G} \cup X^{\prime}\right|-\left|X^{\prime \prime}\right| \geq n \cdot 2^{k}+1-2 n-n \cdot 2^{k-1}-(k-1) \geq 2 n-1
$$

for all $k \geq 3$. By Lemma 3.1.1 applied to A_{p} and $B_{G}, G\left[A_{p}\right]$ has no blue edges and no vertex in X is blue-complete to $V(G) \backslash X$. Thus $G\left[A_{p} \cup X^{\prime \prime}\right]$ has neither red nor blue edges, and so $\left|A_{p} \cup X^{\prime \prime}\right| \leq n \cdot 2^{k-2}$ by the choice of k. But then

$$
\left|B_{G}\right|=|G|-\left|R_{G} \cup X^{\prime}\right|-\left|A_{p} \cup X^{\prime \prime}\right| \geq n \cdot 2^{k}+1-n \cdot 2^{k-1}-n \cdot 2^{k-2} \geq 2 n+1,
$$

for all $k \geq 3$, contrary to Claim 3.2.3. This proves that $\left|R_{G}\right| \leq n$. Then

$$
\left|A_{p} \cup X^{\prime}\right|=|G|-\left|B_{G}\right|-\left|R_{G}\right|-\left|X^{\prime \prime}\right| \geq\left(n \cdot 2^{k}+1\right)-2 n-n-k>n \cdot 2^{k-1}+1 .
$$

By minimality of $k, G\left[A_{p} \cup X^{\prime}\right]$ must have blue edges. Since $\left|A_{p}\right| \geq n$ and $\left|B_{G}\right| \geq n$, by Lemma 3.1.1 applied to A_{p} and $B_{G},\left|A_{p}\right|=n$ and $X_{b}^{*}=\emptyset$. Thus $|X| \leq 2(k-1)$. But then

$$
|G|=\left|B_{G}\right|+\left|R_{G}\right|+\left|A_{p}\right|+|X| \leq 2 n+n+n+2(k-1)<n \cdot 2^{k}+1,
$$

for all $k \geq 3$, a contradiction. This proves that $\left|A_{p}\right| \leq n-1$, as claimed.

Since $\left|A_{p}\right| \geq 3$, we have $3 \leq\left|A_{p}\right| \leq n-1$. Then $k=3$ because $n \in\{4,5\}$ and $|G|=n \cdot 2^{k}+1$,
and so in particular, $|G|=8 n+1$ and $|X| \leq 6$. Therefore,

$$
\left|B_{G}\right|+\left|R_{G}\right|=|G|-\left|A_{p}\right|-|X| \geq(8 n+1)-(n-1)-6=7 n-4
$$

We may thus assume that $\left|B_{G}\right| \geq 2 n+3$. We next prove that $\left|A_{p}\right| \leq n-2$. Suppose $\left|A_{p}\right|=n-1$. Let $B^{*} \subseteq B_{G}$ with $\left|B^{*}\right|$ minimal such that $G\left[B_{G} \backslash B^{*}\right]$ has no blue edges. By the proof of Claim 3.2.1(ii), $\left|B^{*}\right| \leq 2$. Then $\left|B_{G} \backslash B^{*}\right| \geq 2 n+1$, and so $\left|B \backslash B^{*}\right| \geq 3$ because $\left|A_{i}\right| \leq n-1$ for all $i \in[p]$. By the choice of B^{*}, all the edges in $\mathcal{R}\left[B \backslash B^{*}\right]$ are colored red. But then by Lemma 3.1.2, $G\left[B_{G} \backslash B^{*}\right]$ has a red $C_{2 n+1}$, a contradiction.

From the above argument, $3 \leq\left|A_{p}\right| \leq n-2$, and thus $\left|A_{p}\right|=3, n=5,|G|=41$, and $p \leq 20$. If $\left|A_{p-7}\right|=3$ or $\left|A_{p-12}\right| \geq 2$, then $\mathcal{R}\left[\left\{a_{p-8}, a_{p-7}, \ldots, a_{p}\right\}\right]$ has a monochromatic C_{5}, or $\mathcal{R}\left[\left\{a_{p-12}, a_{p-11}, \ldots, a_{p}\right\}\right]$ has a monochromatic C_{7} because $R\left(C_{5}, C_{5}\right)=9$ and $R\left(C_{7}, C_{7}\right)=$ 13. In either case, G has a monochromatic C_{11}, a contradiction. Thus $\left|A_{p-7}\right| \leq 2$ and $\left|A_{p-12}\right| \leq 1$. Then $\left|A_{p-7}\right|=2$, otherwise $|G| \leq 7 \cdot 3+13 \cdot 1+6<41$, a contradiction. Since $R\left(C_{6}, C_{6}\right)=8$ (see Table 1.3) we see that $\mathcal{R}\left[\left\{a_{p-7}, a_{p-6}, \ldots, a_{p}\right\}\right]$ has a monochromatic, say blue, C_{6}, and so $G \backslash X$ has a blue C_{10}. Thus $X_{b}^{*}=\emptyset$, so $|X| \leq 2(k-1)=4$. Furthermore, if $\left|A_{p-8}\right|=2$, then $\left|A_{p-4}\right|=2$, else $\mathcal{R}\left[\left\{a_{p-8}, a_{p-7}, \ldots, a_{p}\right\}\right]$ has a monochromatic C_{5}, and so G has a monochromatic C_{11}, a contradiction. But then

$$
|G|=\sum_{i=0}^{p-1}\left|A_{p-i}\right|+|X| \leq \begin{cases}{[4 \cdot 3+8 \cdot 2+(p-12) \cdot 1]+4 \leq 40,} & \text { if }\left|A_{p-8}\right|=2 \\ {[7 \cdot 3+2+(p-8) \cdot 1]+4 \leq 39,} & \text { if }\left|A_{p-8}\right| \leq 1\end{cases}
$$

In both cases, $|G|<41$, a contradiction.

Claim 3.2.5 ([9, 10]) $\left|A_{p}\right| \geq n+1$.

Proof. For a contradiction, suppose $\left|A_{p}\right| \leq n$. Then $\left|A_{p-1}\right| \leq n$. By Claim 3.2.4, $p \leq 2 n-1$. We may assume that $a_{p} a_{p-1}$ is colored blue in \mathcal{R}. Then $\left|A_{p} \cup A_{p-1} \cup X_{b}^{*}\right| \leq 2 n$, otherwise $\left|A_{p}\right|=n$ and $\left|A_{p-1} \cup X_{b}^{*}\right| \geq n+1$ so that by Lemma 3.1.1 we create a blue $C_{2 n+1}$, a contradiction. If $\left|A_{p-4}\right| \geq n-1$, then $\mathcal{R}\left[\left\{a_{p-4}, a_{p-3}, \ldots, a_{p}\right\}\right]$ has a monochromatic C_{3} or C_{5}, and so G contains a monochromatic $C_{2 n+1}$, a contradiction. Thus $\left|A_{p-4}\right| \leq n-2$. But then

$$
\begin{aligned}
|G| & =\left|A_{p} \cup A_{p-1} \cup X_{b}^{*}\right|+\left(\left|A_{p-2}\right|+\left|A_{p-3}\right|\right)+\sum_{i=4}^{p-1}\left|A_{p-i}\right|+\left|X \backslash X_{b}^{*}\right| \\
& \leq 2 n+2 n+(p-4)(n-2)+2(k-1) \\
& \leq 4 n+(2 n-5)(n-2)+2 k-2 \\
& <n \cdot 2^{k}+1
\end{aligned}
$$

for all $n \in\{4,5\}$ and $k \geq 3$, a contradiction.

Let us now introduce some notation which we will employ for the rest of the proof.

Definition 3.2.6 $B_{G}^{*}:=B_{G} \cup X_{b}^{*}$ and $R_{G}^{*}:=R_{G} \cup X_{r}^{*}$.

Claim 3.2.7 ([9, 10]) $2 \leq p-s \leq 3 n-7$.

Proof. To see why the upper bound is true, suppose that $p-s \geq 3 n-6$. Then $\mathcal{R}\left[\left\{a_{p-3 n+7}, a_{p-3 n+8}, \ldots, a_{p}\right\}\right]$ has a monochromatic $C_{2 n-5}$ because $R\left(C_{2 n-5}, C_{2 n-5}\right)=3 n-6$ when $n \in\{4,5\}$. But then G contains a monochromatic $C_{2 n+1}$, giving the desired contradiction.

To see why the lower bound holds, now suppose $p-s \leq 1$. As noted earlier, $p-s \geq 1$. Therefore, $p-s=1$, and so $\left|A_{i}\right| \leq 2$ for all $i \in[p-1]$. By Claim 3.2.4, $p \leq 2 n-1$. Then $\left|B_{G} \cup R_{G}\right| \leq 2(p-1)$ and so $\left|B_{G}^{*} \cup R_{G}^{*}\right| \leq 2(p-1)+2+2=2(p+1) \leq 4 n$. We may assume
that $\left|B_{G}^{*}\right| \geq\left|R_{G}^{*}\right|$. Suppose first that $\left|R_{G}^{*}\right| \geq n$. Then $\left|B_{G}^{*}\right| \geq n$. By Claim 3.2.5 $\left|A_{p}\right| \geq n+1$, so by Lemma 3.1.1, $G\left[A_{p}\right]$ has neither blue nor red edges. Then $\left|A_{p}\right| \leq n \cdot 2^{k-2}$ from the minimality of k. However,

$$
|G|=\left|B_{G}^{*}\right|+\left|R_{G}^{*}\right|+\left|A_{p}\right|+\left|X \backslash\left(B_{G}^{*} \cup R_{G}^{*}\right)\right| \leq 4 n+n \cdot 2^{k-2}+2(k-2)<n \cdot 2^{k}+1
$$

for all $k \geq 3$, a contradiction. Thus $\left|R_{G}^{*}\right| \leq n-1$. If $|B| \geq n+1$, then $\left|B_{G}\right| \leq 2 n$ by Claim 3.2.3; otherwise, $|B| \leq n$. In any case, $\left|B_{G}^{*}\right| \leq 2 n+2$. If $\left|B_{G}^{*}\right| \geq n-1$, then applying Claim 3.2.1(i,ii) to B_{G}^{*} and A_{p} implies that

$$
\left|B_{G}^{*}\right|+\left|A_{p}\right| \leq \begin{cases}(n-1)+\left(n \cdot 2^{k-1}+2\right), & \text { if }\left|B_{G}^{*}\right|=n-1 \\ (2 n+2)+n \cdot 2^{k-1}, & \text { if }\left|B_{G}^{*}\right| \geq n\end{cases}
$$

Either way, $\left|B_{G}^{*}\right|+\left|A_{p}\right| \leq 2 n+n \cdot 2^{k-1}+2$. But then
$|G|=\left|R_{G}^{*}\right|+\left(\left|B_{G}^{*}\right|+\left|A_{p}\right|\right)+\left|X \backslash\left(B_{G}^{*} \cup R_{G}^{*}\right)\right| \leq(n-1)+\left(2 n+n \cdot 2^{k-1}+2\right)+2(k-2)<n \cdot 2^{k}+1$
for all $k \geq 3$ and $n \in\{4,5\}$, a contradiction. Thus $\left|R_{G}^{*}\right| \leq\left|B_{G}^{*}\right| \leq n-2$. If $\left|B_{G}^{*}\right|=3$, then $n=5$. By Claim 3.2.1(iii) applied to B_{G}^{*} and $A_{p},\left|A_{p}\right| \leq 8 \cdot 2^{k-1}-1$. But then,

$$
|G|=\left|B_{G}^{*}\right|+\left|R_{G}^{*}\right|+\left|A_{p}\right|+\left|X \backslash\left(B_{G}^{*} \cup R_{G}^{*}\right)\right| \leq 3+3+\left(8 \cdot 2^{k-1}-1\right)+2(k-2)<5 \cdot 2^{k}+1
$$

for all $k \geq 3$, a contradiction. Thus $\left|R_{G}^{*}\right| \leq\left|B_{G}^{*}\right| \leq 2$. Note that $B \neq \emptyset$ or $R \neq \emptyset$ because $p \geq 2$. The maximality of m when choosing X_{1}, \ldots, X_{m} by condition (a) implies $B^{*} \neq \emptyset$, $R^{*} \neq \emptyset$, and B_{G}^{*} is neither blue- nor red-complete to R_{G}^{*} in G. On the other hand, the maximality of m again implies by condition (b) that $B_{G}^{*}=\emptyset$ and $R_{G}^{*}=\emptyset$, contrary to $p \geq 2$, therefore yielding the desired result.

Claim 3.2.8 ([9, 10]) $\left|A_{p-2}\right| \leq n-1$.

Proof. We will prove this claim by contradiction. Suppose $\left|A_{p-2}\right| \geq n$, so that $n \leq$ $\left|A_{p-2}\right| \leq\left|A_{p-1}\right| \leq\left|A_{p}\right|$. As is our custom, we may assume that \mathcal{R} contains blue and red edges. Now, $\mathcal{R}\left[\left\{a_{p-2}, a_{p-1}, a_{p}\right\}\right]$ is not a monochromatic triangle in \mathcal{R}, for otherwise we find a monochromatic $C_{2 n+1}$. Without loss of generality, let B_{1}, B_{2}, B_{3} be a permutation of A_{p-2}, A_{p-1}, A_{p} such that B_{2} is blue-complete, to $B_{1} \cup B_{3}$ in G. Then B_{1} must be red-complete to B_{3} in G. We may assume that $\left|B_{1}\right| \geq\left|B_{3}\right|$. By Lemma 3.1.1, $X_{b}^{*}=\emptyset$ and $X_{r}^{*}=\emptyset$. Let $A:=V(G) \backslash\left(B_{1} \cup B_{2} \cup B_{3} \cup X\right)$. Then no vertex in A is red-complete to $B_{1} \cup B_{3}$ in G by Lemma 3.1.1, and no vertex in A is blue-complete to $B_{1} \cup B_{2}$ or $B_{2} \cup B_{3}$ in G. Together, these conditions imply that A is red-complete to B_{2} in G; otherwise we find a blue $C_{2 n+1}$ by way of Lemma 3.1.1. Next, let us define the following sets:

$$
\begin{aligned}
& B_{1}^{*}:=\left\{b \in A \mid b \text { is blue-complete to } B_{1} \text { only in } G\right\} \\
& B_{2}^{*}:=\left\{b \in A \mid b \text { is blue-complete to both } B_{1} \text { and } B_{3} \text { in } G\right\} \\
& B_{3}^{*}:=\left\{b \in A \mid b \text { is blue-complete to } B_{3} \text { only in } G\right\} .
\end{aligned}
$$

Note that $B_{1}^{*}, B_{2}^{*}, B_{3}^{*}$ are pairwise disjoint and possibly empty. Then $A=B_{1}^{*} \cup B_{2}^{*} \cup B_{3}^{*}$. An illustration of this entire configuration is depicted in Figure 3.4.

We now claim that $G[A]$ has no blue edges. Suppose that $G[A]$ has a blue edge, say, uv. Let $b_{1}, \ldots, b_{n-1} \in B_{1}, b_{n}, \ldots, b_{2 n-2} \in B_{2}$, and $b_{2 n-1} \in B_{3}$. If $u v$ is an edge in $G\left[B_{1}^{*} \cup B_{2}^{*}\right]$, then we obtain a blue $C_{2 n+1}$ with vertices $b_{1}, u, v, b_{2}, b_{n}, b_{2 n-1}, b_{n+1}, b_{3}, b_{n+2}, \ldots, b_{n-1}, b_{2 n-2}$ in order, a contradiction. Similarly, $u v$ is not an edge in $G\left[B_{2}^{*} \cup B_{3}^{*}\right]$. Thus $u v$ must be an edge in $G\left[B_{1}^{*} \cup B_{3}^{*}\right]$ with one end in B_{1}^{*} and the other in B_{3}^{*}. We may assume that $u \in B_{1}^{*}$ and $v \in B_{3}^{*}$. Then we obtain a blue $C_{2 n+1}$ with vertices $b_{1}, u, v, b_{2 n-1}, b_{n}, b_{2}, b_{n+1}, \ldots, b_{n-1}, b_{2 n-2}$ in order, a contradiction. Therefore $G[A]$ has no blue edges, so that $|A| \leq n \cdot 2^{k-1}$ by minimality of k.

Figure 3.4: Three large parts in the Gallai partition

Next, we claim that $\left|B_{2} \cup A \cup X^{\prime}\right| \leq n \cdot 2^{k-1}$. If not, then $\left|B_{2} \cup A \cup X^{\prime}\right| \geq n \cdot 2^{k-1}+1$ so that by minimality of $k, G\left[B_{2} \cup A \cup X^{\prime}\right]$ must contain blue edges. Since $G[A]$ has no blue edges, A is red-complete to B_{2}, and $X_{b}^{*}=\emptyset$, it follows $G\left[B_{2}\right]$ must contain blue edges. By Lemma 3.1.1, $\left|B_{2}\right|=n$, and so $B_{2} \neq A_{p}$ by Claim 3.2.5. Without loss of generality, assume $B_{1}=A_{p}$. Then $G\left[B_{1}\right]$ has neither red nor blue edges by Lemma 3.1.1, and thus $G\left[B_{1} \cup X^{\prime}\right]$ has neither red nor blue edges. By minimality of $k,\left|B_{1} \cup X^{\prime}\right| \leq n \cdot 2^{k-2}$ and so $\left|B_{3} \cup X^{\prime \prime}\right| \leq\left|B_{1} \cup X^{\prime}\right| \leq n \cdot 2^{k-2}$. Note that $A=\emptyset$. If not, then for any $v \in A, G\left[B_{2} \cup\{v\}\right]$ has blue edges and $B_{2} \cup\{v\}$ is blue-complete to either B_{1} or B_{3}, contrary to Lemma 3.1.1. But then

$$
|G|=\left|B_{1} \cup X^{\prime}\right|+\left|B_{2}\right|+\left|B_{3} \cup X^{\prime \prime}\right| \leq n \cdot 2^{k-2}+n+n \cdot 2^{k-2}<n \cdot 2^{k}+1,
$$

for all $k \geq 3$, a contradiction. This proves that $\left|B_{2} \cup A \cup X^{\prime}\right| \leq n \cdot 2^{k-1}$.

Now, $\left|B_{1}\right| \geq\left|B_{3}\right|$ and $\left|B_{1}\right|+\left|B_{3}\right|=|G|-\left|B_{2} \cup A \cup X^{\prime}\right|-\left|X^{\prime \prime}\right| \geq n \cdot 2^{k-1}+1-(k-2) \geq 2 n+1$, so $\left|B_{1}\right| \geq n+1$. Since $\left|B_{2}\right| \geq n$ and $\left|B_{3}\right| \geq n$, by Lemma 3.1.1 $G\left[B_{1}\right]$ has neither red nor blue edges. Further, since $X_{r}^{*}=\emptyset$ and $X_{b}^{*}=\emptyset, G\left[B_{1} \cup X^{\prime \prime}\right]$ has neither red nor blue edges, so that $\left|B_{3}\right| \leq\left|B_{1} \cup X^{\prime \prime}\right| \leq n \cdot 2^{k-2}$ by minimality of k. But then

$$
|G|=\left|B_{2} \cup A \cup X^{\prime}\right|+\left|B_{1} \cup X^{\prime \prime}\right|+\left|B_{3}\right| \leq n \cdot 2^{k-1}+n \cdot 2^{k-2}+n \cdot 2^{k-2}=n \cdot 2^{k},
$$

a contradiction.

By Claim 3.2.7, $2 \leq p-s \leq 3 n-7$ and so $\left|A_{p-1}\right| \geq 3$. We may now assume that $a_{p} a_{p-1}$ is colored blue in \mathcal{R}. Then $a_{p-1} \in B$ and so $A_{p-1} \subseteq B_{G}$. Thus $\left|B_{G}\right| \geq\left|A_{p-1}\right| \geq 3$.

Claim 3.2.9 ([9, 10]) $\left|R_{G}^{*}\right| \leq 2 n$.

Proof. Suppose $\left|R_{G}^{*}\right| \geq 2 n+1$. By Claim 3.2.5, $\left|A_{p}\right| \geq n+1$. Further, $G\left[R_{G}^{*}\right]$ has no red edges by Lemma 3.1.1, so $X_{r}^{*}=\emptyset,\left|R_{G}^{*}\right|=\left|R_{G}\right|$, and all the edges in $\mathcal{R}[R]$ are colored blue. Note that by Claim 3.2.3, $|R| \leq 2$. Additionally, $\left|A_{p-2}\right| \leq n-1$ by Claim 3.2.8. Since $A_{p-1} \cap R_{G}=\emptyset$ and $\left|R_{G}\right| \geq 2 n+1$, then $|R| \geq 3$, a contradiction.

Claim 3.2.10 ([9, 10]) $\left|A_{p-1}\right| \leq n$.

Proof. For the sake of contradiction, suppose $\left|A_{p-1}\right| \geq n+1$. Then from our above assumption, $\left|B_{G}\right| \geq\left|A_{p-1}\right| \geq n+1$. Lemma 3.1.1 guarantees that neither $G\left[A_{p}\right]$ nor $G\left[B_{G}\right]$ has blue edges, and $X_{b}^{*}=\emptyset$, giving $|X| \leq 2(k-1)$. Again from the choice of $k,\left|B_{G} \cup X^{\prime \prime}\right| \leq$ $n \cdot 2^{k-1}$ and $\left|A_{p} \cup X^{\prime}\right| \leq n \cdot 2^{k-1}$.

We claim that $G\left[R_{G}\right]$ has blue edges. Suppose not. Then $G\left[A_{p} \cup R_{G} \cup X^{\prime}\right]$ has no blue edges. By the choice of $k,\left|A_{p} \cup R_{G} \cup X^{\prime}\right| \leq n \cdot 2^{k-1}$. But then $\left|B_{G} \cup X^{\prime \prime}\right|=|G|-\left|A_{p} \cup R_{G} \cup X^{\prime}\right| \geq$
$n \cdot 2^{k-1}+1$, a contradiction. Thus $G\left[R_{G}\right]$ has blue edges, as claimed. Combining this with Claim 3.2.9, $2 \leq\left|R_{G}\right| \leq\left|R_{G}^{*}\right| \leq 2 n$. We complete this claim in two cases.

First, consider the case when $\left|R_{G}^{*}\right| \geq n-1$. We will show that $\left|A_{p} \cup\left(X^{\prime} \backslash X_{r}^{*}\right)\right|+\left|R_{G}^{*}\right| \leq$ $n \cdot 2^{k-2}+\max \{2 n, k+n-1\}$ (recall by Definition 3.2.6, $R_{G}^{*}=R_{G} \cup X_{r}^{*}$). If $\left|R_{G}^{*}\right| \geq n$, then Lemma 3.1.1 implies $G\left[A_{p}\right]$ has no red edges, so $G\left[A_{p} \cup\left(X^{\prime} \backslash X_{r}^{*}\right)\right]$ has no red edges and thus $\left|A_{p} \cup\left(X^{\prime} \backslash X_{r}^{*}\right)\right| \leq n \cdot 2^{k-2}$ by the minimality of k. Therefore, $\left|A_{p} \cup\left(X^{\prime} \backslash X_{r}^{*}\right)\right|+\left|R_{G}^{*}\right| \leq$ $n \cdot 2^{k-2}+2 n$. If $\left|R_{G}^{*}\right|=n-1$, then applying Claim 3.2.1(ii) to R_{G}^{*} and $A_{p},\left|A_{p}\right| \leq n \cdot 2^{k-2}+2$. Thus $\left|A_{p} \cup\left(X^{\prime} \backslash X_{r}^{*}\right)\right|+\left|R_{G}^{*}\right| \leq n \cdot 2^{k-2}+2+(k-2)+(n-1)=n \cdot 2^{k-2}+k+n-1$, giving the desired result. But then
$|G|=\left(\left|A_{p} \cup\left(X^{\prime} \backslash X_{r}^{*}\right)\right|+\left|R_{G}^{*}\right|\right)+\left|B_{G} \cup\left(X^{\prime \prime} \backslash X_{r}^{*}\right)\right| \leq\left(n \cdot 2^{k-2}+\max \{2 n, k+n-1\}\right)+n \cdot 2^{k-1}<n \cdot 2^{k}+1$,
for all $k \geq 3$, a contradiction.

Finally, we examine the case when $2 \leq\left|R_{G}\right| \leq\left|R_{G}^{*}\right| \leq n-2$. If $\left|R_{G}^{*}\right|=3$, then $n=5$. By applying Claim 3.2.1(iii) to R_{G}^{*} and $A_{p},\left|A_{p}\right| \leq 8 \cdot 2^{k-2}-1$. However,
$|G| \leq\left|A_{p}\right|+\left|B_{G} \cup X^{\prime \prime}\right|+\left|R_{G}^{*}\right|+\left|X^{\prime} \backslash X_{r}^{*}\right| \leq\left(8 \cdot 2^{k-2}-1\right)+5 \cdot 2^{k-1}+3+(k-2)<5 \cdot 2^{k}+1$,
for all $k \geq 3$, a contradiction. Thus, because $G\left[R_{G}\right]$ contains a blue edge, $\left|R_{G}^{*}\right|=\left|R_{G}\right|=2$, and so in particular, $X_{r}^{*}=\emptyset$ and $\left|X^{\prime \prime}\right| \leq k-2$. Let $R_{G}=\{a, b\}$. Then $a b$ must be colored blue under c. Without loss of generality, suppose b is red-complete to B_{G} in G. Then neither $G\left[A_{p} \cup\{a\} \cup X^{\prime}\right]$ nor $G\left[B_{G} \cup\{b\} \cup X^{\prime \prime}\right]$ has blue edges. By minimality of $k,\left|A_{p} \cup\{a\} \cup X^{\prime}\right| \leq$ $n \cdot 2^{k-1}$ and $\left|B_{G} \cup\{b\} \cup X^{\prime \prime}\right| \leq n \cdot 2^{k-1}$. But then $|G|=\left|A_{p} \cup\{a\} \cup X^{\prime}\right|+\left|B_{G} \cup\{b\} \cup X^{\prime \prime}\right| \leq$ $n \cdot 2^{k-1}+n \cdot 2^{k-1}<n \cdot 2^{k}+1$ for all $k \geq 3$, a contradiction. Thus neither a nor b is red-complete to B_{G} in G. Let $a^{\prime}, b^{\prime} \in B_{G}$ be such that $a a^{\prime}$ and $b b^{\prime}$ are colored blue under c. Then $a^{\prime}=b^{\prime}$,
or else we obtain a blue $C_{2 n+1}$ in G with vertices $a^{\prime}, a, b, b^{\prime}, x_{1}, y_{1}, x_{2}, \ldots, y_{n-2}, x_{n-1}$ in order, where $x_{1}, \ldots, x_{n-1} \in A_{p}$ and $y_{1}, \ldots, y_{n-2} \in B_{G} \backslash\left\{a^{\prime}, b^{\prime}\right\}$, a contradiction. Thus $\{a, b\}$ is redcomplete to $B_{G} \backslash a^{\prime}$ in G. Then there exists $i \in[s]$ such that $A_{i}=\left\{a^{\prime}\right\}$. Since $G\left[B_{G}\right]$ has no blue edges, we see that $\left\{a, b, a^{\prime}\right\}$ must be red-complete to $B_{G} \backslash a^{\prime}$ in G. By Claim 3.2.1(ii,iii) applied to $\left\{a, b, a^{\prime}\right\}$ and $B_{G} \backslash a^{\prime}$, we have $\left|B_{G} \backslash a^{\prime}\right| \leq(4 n-12) \cdot 2^{k-2}+(14-3 n)$. But then

$$
\begin{aligned}
|G| & =\left|A_{p} \cup X^{\prime}\right|+\left|B_{G} \backslash a^{\prime}\right|+\left|\left\{a, b, a^{\prime}\right\}\right|+\left|X^{\prime \prime}\right| \\
& \leq n \cdot 2^{k-1}+\left[(4 n-12) \cdot 2^{k-2}+(14-3 n)\right]+3+(k-2) \\
& <n \cdot 2^{k}+1
\end{aligned}
$$

for all $k \geq 3$, a contradiction. Hence, $\left|A_{p-1}\right| \leq n$.

With these claims in mind, we are now ready to complete the proof. From Claim 3.2.9, $\left|R_{G}\right| \leq\left|R_{G}^{*}\right| \leq 2 n$. This allows us to divide the remaining proof into two cases.

First consider the case when $\left|R_{G}\right| \geq n$. Recall that $\left|A_{p}\right| \geq n+1$ by Claim 3.2.5. By Lemma 3.1.1, $G\left[A_{p}\right]$ has no red edges and $X_{r}^{*}=\emptyset$, so $|X| \leq 2(k-1)$. We assert that in this case, $\left|B_{G}\right| \geq n$. To see why, suppose $\left|B_{G}\right| \leq n-1$. If $\left|B_{G}\right|=n-1$, then $\left|A_{p}\right| \leq n \cdot 2^{k-2}+2$ by Claim 3.2.1(ii) applied to B_{G} and A_{p}. However, then

$$
|G|=\left|A_{p}\right|+\left|B_{G}\right|+\left|R_{G}\right|+|X| \leq\left(n \cdot 2^{k-2}+2\right)+(n-1)+2 n+2(k-1)<n \cdot 2^{k}+1
$$

for all $k \geq 3$, a contradiction. Hence we consider when $3 \leq\left|B_{G}\right| \leq n-2$. Then $n=5$ and $\left|B_{G}\right|=3$, so by Claim 3.2.1(iii) applied to B_{G} and $A_{p},\left|A_{p}\right| \leq 8 \cdot 2^{k-2}-1$. Adding back together,

$$
|G|=\left|A_{p}\right|+\left|B_{G}\right|+\left|R_{G}\right|+|X| \leq\left(8 \cdot 2^{k-2}-1\right)+3+10+2(k-1)<5 \cdot 2^{k}+1
$$

for all $k \geq 3$, a contradiction, so $\left|B_{G}\right| \geq n$, as claimed. Therefore, $G\left[A_{p}\right]$ has no blue edges and $X_{b}^{*}=\emptyset$ from Lemma 3.1.1. Since $G\left[A_{p} \cup X^{\prime}\right]$ has neither red nor blue edges, and both X_{r}^{*} and X_{b}^{*} are empty, it follows that $\left|X^{\prime \prime}\right| \leq k-2$ and $\left|A_{p} \cup X^{\prime}\right| \leq n \cdot 2^{k-2}$ by minimality of k. If $\left|B_{G}\right|=n$, then

$$
|G|=\left|A_{p} \cup X^{\prime}\right|+\left|X^{\prime \prime}\right|+\left(\left|B_{G}\right|+\left|R_{G}\right|\right) \leq n \cdot 2^{k-2}+(k-2)+(n+2 n)<n \cdot 2^{k}+1,
$$

for all $k \geq 3$, a contradiction, so we conclude $\left|B_{G}\right| \geq n+1$. Invoking Lemma 3.1.1 again, $G\left[B_{G}\right]$ has no blue edges and so $G\left[B_{G} \cup X^{\prime \prime}\right]$ has no blue edges, giving again that $\left|B_{G} \cup X^{\prime \prime}\right| \leq$ $n \cdot 2^{k-1}$ by minimality of k. But then

$$
|G|=\left|A_{p} \cup X^{\prime}\right|+\left|B_{G} \cup X^{\prime \prime}\right|+\left|R_{G}\right| \leq n \cdot 2^{k-2}+n \cdot 2^{k-1}+2 n<n \cdot 2^{k}+1,
$$

for all $k \geq 3$, a contradiction.

Finally, we consider the case when $\left|R_{G}\right| \leq n-1$. If $\left|B_{G}\right| \geq 2 n+1$, then by Lemma 3.1.1, $G\left[B_{G}\right]$ has no blue edges, so all the edges in $\mathcal{R}[B]$ are colored red. However, $\left|A_{p-1}\right| \leq n$ by Claim 3.2.10, and consequently $|B| \geq 3$, contrary to Claim 3.2.3. Thus $3 \leq\left|A_{p-1}\right| \leq\left|B_{G}\right| \leq 2 n$. As we have done above, if $\left|B_{G}\right|=n-1$, we apply Claim 3.2.1(ii) to B_{G} and A_{p}. If $\left|B_{G}\right| \geq n$, apply Claim 3.2.1(i) to B_{G} and A_{p}, and Lemma 3.1.1 to X. Putting these results together,

$$
\left|A_{p}\right|+\left|B_{G}\right|+|X| \leq \begin{cases}\left(n \cdot 2^{k-1}+2\right)+(n-1)+2 k, & \text { if }\left|B_{G}\right|=n-1 \\ n \cdot 2^{k-1}+2 n+2(k-1), & \text { if }\left|B_{G}\right| \geq n\end{cases}
$$

Regardless, $\left|A_{p}\right|+\left|B_{G}\right|+|X| \leq n \cdot 2^{k-1}+2 n+2 k-2$. But then

$$
|G|=\left(\left|A_{p}\right|+\left|B_{G}\right|+|X|\right)+\left|R_{G}\right| \leq\left(n \cdot 2^{k-1}+2 n+2 k-2\right)+(n-1)<n \cdot 2^{k}+1,
$$

for all $k \geq 3$, a contradiction, so it must be that $3 \leq\left|B_{G}\right| \leq n-2$, meaning $\left|B_{G}\right|=3$ and $n=5$. If $\left|R_{G}^{*}\right| \geq 4$ or $\left|B_{G}^{*}\right| \geq 4$, applying Claim 3.2.1(ii) to any four vertices in R_{G}^{*} or B_{G}^{*} and A_{p} yields $\left|A_{p}\right| \leq 5 \cdot 2^{k-1}+2$. Consequently,

$$
|G|=\left|A_{p}\right|+\left|B_{G}\right|+\left|R_{G}\right|+|X| \leq\left(5 \cdot 2^{k-1}+2\right)+3+4+2 k<5 \cdot 2^{k}+1
$$

for all $k \geq 3$, a contradiction. Therefore $\left|B_{G}\right|=\left|B_{G}^{*}\right|=3$, whence $X_{b}^{*}=\emptyset$, and $\left|R_{G}\right| \leq$ $\left|R_{G}^{*}\right| \leq 3$. Thus $\left|X \backslash X_{r}^{*}\right| \leq 2(k-2)$. Moreover, $\left|A_{p}\right| \leq 8 \cdot 2^{k-1}-1$ by Claim 3.2.1(iii) applied to B_{G} and A_{p}. As a result,

$$
|G|=\left|A_{p}\right|+\left|B_{G}\right|+\left|R_{G}^{*}\right|+\left|X \backslash X_{r}^{*}\right| \leq\left(8 \cdot 2^{k-1}-1\right)+3+3+2(k-2)<5 \cdot 2^{k}+1,
$$

for all $k \geq 3$, a contradiction.

This completes the proof of Theorem 1.3.26.

3.3 Proof of Theorem 1.3.27

Let $n \in\{6,7\}$. It suffices to show that $G R_{k}\left(C_{2 n+1}\right) \leq n \cdot 2^{k}+1$ for all $k \geq 1$. This is trivially true for $k=1$. By Theorem 1.3.2 and the fact that $G R\left(C_{2 n+1}, C_{2 n+1}\right)=R\left(C_{2 n+1}, C_{2 n+1}\right)$, we may assume that $k \geq 3$. Let $G:=K_{n \cdot 2^{k}+1}$ and let $c: E(G) \rightarrow[k]$ be any Gallai coloring of G. We next show that G contains a monochromatic copy of $C_{2 n+1}$ under the coloring c.

Suppose that G does not contain any monochromatic copy of $C_{2 n+1}$ under c. Then c is bad. Among all complete graphs on $n \cdot 2^{k}+1$ vertices with a bad k-edge-coloring, we again choose G to be a minimum-order counterexample with respect to k.

Claim 3.3.1 Let $W \subseteq V(G)$ and let $\ell \geq 3$ be an integer. Let $x_{1}, \ldots, x_{\ell} \in V(G) \backslash W$ such
that $\left\{x_{1}, \ldots, x_{\ell}\right\}$ is mc-complete, say blue-complete, to W under c. Let $q \in\{0,1, \ldots, k-1\}$ be the number of colors, other than blue, missing on $G[W]$ under c.
(i) If $\ell \geq n$, then $|W| \leq n \cdot 2^{k-1-q}$.
(ii) If $\ell=n-1$, then $|W| \leq n \cdot 2^{k-1-q}+2$.
(iii) If $\ell=n-2$, then $|W| \leq(21-2 n) \cdot 2^{k-1-q}+(5 n-31)$
(iv) If $\ell=n-3$, then $|W| \leq 11 \cdot 2^{k-1-q}+(n-7)$
(v) If $\ell=n-4$, then $n=7$ and $|W| \leq 13 \cdot 2^{k-1-q}$.

Put another way, Claim 3.3.1 asserts that

$$
|W| \leq \begin{cases}(2 n-1) \cdot 2^{k-1-q}+(n-7), & \text { if } \ell \geq 3 \\ (2 n-3) \cdot 2^{k-1-q}+(n-7), & \text { if } \ell \geq 4\end{cases}
$$

Proof. Each statement (i)-(v) is trivially true if $|W|<\max \{2 n+1-\ell, n+1\}$. Thus, we may assume that $|W| \geq \max \{2 n+1-\ell, n+1\}$. Note that $q \leq k-1$. If $q=k-1$, then all the edges of $G[W]$ are colored only blue. Since $\left\{x_{1}, \ldots, x_{\ell}\right\}$ is blue-complete to W and $|W| \geq \max \{2 n+1-\ell, n+1\}$, we see that $G\left[W \cup\left\{x_{1}, \ldots, x_{\ell}\right\}\right]$ contains a blue $C_{2 n+1}$, a contradiction. Thus $q \leq k-2$.

First, assume $\ell \geq n$. Since $|W| \geq n+1$, by Lemma 3.1.1, $G[W]$ contains no blue edges. By minimality of $k,|W| \leq n \cdot 2^{k-1-q}$, establishing (i).

For the remainder of the proof, we may assume that $\ell \leq n-1$, and that $G[W]$ contains at least one blue edge, otherwise $|W| \leq n \cdot 2^{k-1-q}$ by minimality of k, giving the result. Let W^{*}
be a minimal set of vertices in W such that $G\left[W \backslash W^{*}\right]$ has no blue edges. By minimality of $k,\left|W \backslash W^{*}\right| \leq n \cdot 2^{k-1-q}$.

Let P be a longest blue path in $G[W]$ with vertices $v_{1}, \ldots, v_{|P|}$ in order, where $|P| \geq 2$. It can be easily checked that if $|P| \geq 2(n-\ell)+2$, or $|P|=2(n-\ell)+1$ along with a blue edge in $G[W \backslash V(P)]$, then $G\left[W \cup\left\{x_{1}, \ldots, x_{\ell}\right\}\right]$ has a blue $C_{2 n+1}$, a contradiction. Thus $|P| \leq 2(n-\ell)+1$. Assume $|P|=2(n-\ell)+1$. Then $G\left[W \backslash\left\{v_{2}, \ldots, v_{|P|}\right\}\right]$ has no blue edges. By minimality of $k,|W|=\left|W \backslash\left\{v_{2}, \ldots, v_{|P|}\right\}\right|+\left|P \backslash\left\{v_{1}\right\}\right| \leq n \cdot 2^{k-1-q}+(|P|-1)=$ $n \cdot 2^{k-1-q}+2(n-\ell)$, as desired for each $\ell \in\{n-1, n-2, n-3, n-4\}$. Thus $2 \leq|P| \leq 2(n-\ell)$.

We now consider the case $\ell=n-1$. Then $|P|=2$. If $G[W]$ contains three blue edges, say $u_{1} w_{1}, u_{2} w_{2}, u_{3} w_{3}$, such that $u_{1}, u_{2}, u_{3}, w_{1}, w_{2}, w_{3}$ are all distinct, then we obtain a blue $C_{2 n+1}$ with vertices

$$
\begin{cases}v_{1}, u_{1}, w_{1}, v_{2}, u_{2}, w_{2}, v_{3}, u_{3}, w_{3}, v_{4}, u_{4}, v_{5}, u_{5}, & \text { if } n=6 \\ v_{1}, u_{1}, w_{1}, v_{2}, u_{2}, w_{2}, v_{3}, u_{3}, w_{3}, v_{4}, u_{4}, v_{5}, u_{5}, v_{6}, u_{6}, & \text { if } n=7\end{cases}
$$

in order, where $u_{4}, u_{5}, u_{6} \in W \backslash\left\{u_{1}, u_{2}, u_{3}, w_{1}, w_{2}, w_{3}\right\}$, a contradiction. Thus $\left|W^{*}\right| \leq 2$ because $|P|=2$. Hence, $|W|=\left|W \backslash W^{*}\right|+\left|W^{*}\right| \leq n \cdot 2^{k-1-q}+2$. This establishes (ii).

Thus $\ell \in\{n-2, n-3, n-4\}$. Assume first that $|P|=2$. Then all the blue edges of $G[W]$ form a matching. Let $u_{1} w_{1}, \ldots, u_{m} w_{m}$ be all the blue edges of $G[W]$. Let
$A:= \begin{cases}\left\{u_{1}, \ldots, u_{m}\right\}, & \text { if }|W|=\left|\left\{u_{1}, \ldots, u_{m}, w_{1}, \ldots, w_{m}\right\}\right|=2 m \\ \left\{u_{1}, \ldots, u_{m}\right\} \cup\{a\}, & \text { if }|W|-2 m \geq 1 \text { and } a \in W \backslash\left\{u_{1}, \ldots, u_{m}, w_{1}, \ldots, w_{m}\right\} \\ \left\{u_{1}, \ldots, u_{m}\right\} \cup\left\{a_{1}, a_{2}\right\}, & \text { if } n=7,|W|-2 m \geq 2 \text { and } a_{1}, a_{2} \in W \backslash\left\{u_{1}, \ldots, u_{m}, w_{1}, \ldots, w_{m}\right\} .\end{cases}$

Figure 3.5: Possible ways a green C_{15} arises from a green C_{9}

Suppose $|A| \geq(n-3) \cdot 2^{k-1-q}+1$. By [13] and Theorem 1.3.26, $G[A]$ has a monochromatic, say green, $C_{2 n-5}$ with $\left|V\left(C_{2 n-5}\right) \cap\left\{u_{1}, \ldots, u_{m}\right\}\right| \geq 12-n$. If $n=6$, then we may assume that $E\left(C_{7}\right)=\left\{u_{1} u_{2}, u_{2} u_{3}, \ldots, u_{6} u_{7}, u_{7} u_{1}\right\}$. Since G has no rainbow triangles under the coloring c, then for any $i \in\{1,3,5\},\left\{u_{i}, w_{i}\right\}$ is green-complete to $\left\{u_{i+1}, w_{i+1}\right\}$. Thus we obtain a green C_{13} from the green C_{7} by replacing the edge $u_{i} u_{i+1}$ with the path $u_{i} w_{i+1} w_{i} u_{i+1}$ for each $i \in\{1,3,5\}$. If $n=7$, there are four possible ways up to permutation that a_{1} and a_{2} can be arranged on the green C_{9} (see Figure 3.5). Similar to the case for $n=6$, we therefore obtain a green C_{15}, a contradiction. Thus, $|A| \leq(n-3) \cdot 2^{k-1-q}$. Therefore,

$$
\begin{aligned}
|W| & =|W \backslash A|+|A| \\
& \leq \begin{cases}2\left[(n-3) \cdot 2^{k-1-q}\right], & \text { if }|W|=2 m \\
\left(7 \cdot 2^{k-1-q}-1\right)+4 \cdot 2^{k-1-q}, & \text { if }|W| \geq 2 m+1 \\
\left(n \cdot 2^{k-1-q}-2\right)+(n-3) \cdot 2^{k-1-q}, & \text { if } n=7 \text { and }|W| \geq 2 m+2\end{cases}
\end{aligned}
$$

$$
= \begin{cases}(n-3) \cdot 2^{k-q}, & \text { if }|W|=2 m \tag{3.1}\\ (2 n-3) \cdot 2^{k-1-q}-1, & \text { if }|W| \geq 2 m+1 \\ 11 \cdot 2^{k-1-q}-2, & \text { if } n=7 \text { and }|W| \geq 2 m+2,\end{cases}
$$

as desired for each $\ell \in\{n-2, n-3, n-4\}$. So we may assume that $3 \leq|P| \leq 2(n-\ell)$.

Next suppose $\ell=n-2$. Then $|P| \in\{3,4\}$. Thus $\left|W^{*}\right| \leq 4$, else we obtain a blue $C_{2 n+1}$. Hence, $|W|=\left|W \backslash W^{*}\right|+\left|W^{*}\right| \leq n \cdot 2^{k-1-q}+4$, establishing (iii).

By the above arguments, we may now assume that $\ell \in\{n-3, n-4\}$. Suppose $|P|=3$. Then each component of the subgraph of $G[W]$ induced by all its blue edges is isomorphic to a K_{3}, a star, or a P_{2}. Partition W into the sets W_{1}, W_{2} and W_{3}, described below.
W_{1} : Select one vertex from each blue K_{3}
W_{2} : Select one vertex from each blue K_{3} not in W_{1}, the center vertex in each blue star, and one vertex from each blue P_{2}

$$
W_{3}:=W \backslash\left(W_{1} \cup W_{2}\right)
$$

Then $W=W_{1} \cup W_{2} \cup W_{3}$ with $|W|=\left|W_{1}\right|+\left|W_{2}\right|+\left|W_{3}\right|$. This partition is illustrated in Figure 3.6.

Note $\left|W_{3}\right| \leq n \cdot 2^{k-1-q}$ due to the minimality of k. By an argument similar to the case $|P|=2$, we have $\left|W_{2}\right| \leq(n-3) \cdot 2^{k-1-q}$. Therefore, our task is to appropriately bound W_{1}.

Figure 3.6: Partition of W

Define

$$
A:= \begin{cases}W_{1}, & \text { if } n=6, \ell=n-3 \text { and }|W|=3\left|W_{1}\right| \\ W_{1} \cup\{a\}, & \text { if } n=6, \ell=n-3 \text { and }|W|>3\left|W_{1}\right| \\ W_{1}, & \text { if } n=7 \text { and } \ell \in\{n-3, n-4\},\end{cases}
$$

where $a \in W$ does not belong to a blue K_{3}.
We claim that $|A| \leq 2 \cdot 2^{k-1-q}$. First note if $n=7$ and $\ell=n-3$, then $|A| \leq 3$ otherwise we find a blue C_{15}, giving the result. Now, suppose $|A| \geq 2 \cdot 2^{k-1-q}+1$. Then $G[A]$ has a monochromatic, say green, C_{5} with vertices $u_{1}, u_{2}, u_{3}, u_{4}, u_{5}$ in order. We may assume that $a \notin\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$. Enumerate the vertices of the corresponding blue K_{3} 's in $G[W]$ as u_{i}, y_{i}, z_{i} for all $i \in[n-2]$. Since G has no rainbow triangles under the coloring c, then for any $i \in[n-3]$, $\left\{u_{i}, y_{i}, z_{i}\right\}$ is green-complete to $\left\{u_{i+1}, y_{i+1}, z_{i+1}\right\}$. Additionally, we note $\left\{u_{5}, y_{5}, z_{5}\right\}$ is green-complete to $\left\{u_{1}, y_{1}, z_{1}\right\}$ when $n=7$. Then we obtain a green $C_{2 n+1}$ with vertices

$$
\begin{cases}u_{1}, u_{2}, y_{1}, y_{2}, z_{1}, z_{2}, z_{3}, z_{4}, y_{3}, y_{4}, u_{3}, u_{4}, u_{5}, & \text { if } n=6 \\ u_{1}, y_{2}, y_{3}, y_{4}, y_{5}, y_{1}, z_{2}, z_{3}, z_{4}, z_{5}, z_{1}, z_{2}, u_{3}, u_{4}, u_{5}, & \text { if } n=7\end{cases}
$$

in order, a contradiction (see Figure 3.7). Thus $|A| \leq 2 \cdot 2^{k-1-q}$.

Figure 3.7: $\quad \mathrm{A}$ green C_{13} arising from a green C_{5}

Therefore,

$$
\begin{aligned}
& |W|=\left|W_{1}\right|+\left|W_{2}\right|+\left|W_{3}\right| \\
& \leq \begin{cases}3\left(2 \cdot 2^{k-1-q}\right) & \text { if } n=6, \ell=n-3 \text { and }|W|=3\left|W_{1}\right| \\
\left(2 \cdot 2^{k-1-q}-1\right)+3 \cdot 2^{k-1-q}+6 \cdot 2^{k-1-q} & \text { if } n=6, \ell=n-3 \text { and }|W|>3\left|W_{1}\right| \\
3+3 \cdot 2^{k-1-q}+6 \cdot 2^{k-1-q} & \text { if } n=7 \text { and } \ell=n-3 \\
2 \cdot 2^{k-1-q}+4 \cdot 2^{k-1-q}+7 \cdot 2^{k-1-q} & \text { if } n=7 \text { and } \ell=n-4\end{cases} \\
& = \begin{cases}6 \cdot 2^{k-1-q} & \text { if } n=6, \ell=n-3 \text { and }|W|=3\left|W_{1}\right| \\
11 \cdot 2^{k-1-q}-1 & \text { if } n=6, \ell=n-3 \text { and }|W|>3\left|W_{1}\right| \\
9 \cdot 2^{k-1-q}+3 & \text { if } n=7 \text { and } \ell=n-3 \\
13 \cdot 2^{k-1-q} & \text { if } n=7 \text { and } \ell=n-4\end{cases}
\end{aligned}
$$

as desired. So we may assume that $4 \leq|P| \leq 2(n-\ell)$.

Now suppose $\ell=n-3$. Then $4 \leq|P| \leq 6$. Assume first that $\left|W^{*}\right| \leq 7$. Then

$$
|W|=\left|W \backslash W^{*}\right|+\left|W^{*}\right| \leq n \cdot 2^{k-1-q}+7<11 \cdot 2^{k-1-q}+n-7
$$

because $q \leq k-2$ and $k \geq 3$. So we may assume that $\left|W^{*}\right| \geq 8$. Let P^{\prime} be a longest blue path in $G[W \backslash V(P)]$.

Let us first handle the case when $n=6$. Because $\left|W^{*}\right| \geq 8$, we have $|P| \in\{4,5\}$, and

$$
\left|P^{\prime}\right| \leq \begin{cases}3, & \text { if }|P|=4 \\ 2, & \text { if }|P|=5\end{cases}
$$

Moreover, when $|P|=4$, there is at most one P^{\prime} such that $\left|P^{\prime}\right|=3$, otherwise we obtain a blue C_{13}. When $|P|=4$, it suffices to consider the worst-case scenario, namely when $\left|P^{\prime}\right|=3$, with vertices y_{1}, y_{2}, y_{3} in order. Define

$$
A:= \begin{cases}\left\{v_{2}, v_{3}, v_{4}, y_{3}\right\}, & \text { if }|P|=4 \\ \left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}, & \text { if }|P|=5\end{cases}
$$

Then the blue edges of $G[W \backslash A]$ induce a matching. Similar to the above case when $|P|=2$, we obtain $|W \backslash A| \leq 9 \cdot 2^{k-1-q}-1$. Hence,

$$
|W|=|W \backslash A|+|A| \leq 9 \cdot 2^{k-1-q}-1+3=9 \cdot 2^{k-1-q}+2
$$

which is less than the desired bound.

Now we consider when $n=7$. Again because $\left|W^{*}\right| \geq 8$, we have $|P|=4$ and $\left|P^{\prime}\right|=2$, else we obtain a blue C_{15}. Thus the blue edges in $G[W \backslash V(P)]$ form an induced matching. Let
$u_{1} w_{1}, \ldots, u_{m} w_{m}$ comprise the blue edges of $G[W \backslash V(P)]$. Define

$$
\begin{aligned}
A & :=W \backslash\left\{v_{1}, v_{2}, v_{3}, v_{4}, u_{1}, \ldots, u_{m}, w_{1}, \ldots, w_{m}\right\} \\
B & := \begin{cases}\left\{v_{1}, u_{1}, \ldots, u_{m}\right\} \cup A, & \text { if }|A| \leq 1 \\
\left\{v_{1}, u_{1}, \ldots, u_{m}\right\} \cup\left\{a_{1}, a_{2}\right\}, & \text { if }|A| \geq 2, \text { where } a_{1}, a_{2} \in A\end{cases}
\end{aligned}
$$

By similar reasoning to the case when $|P|=2$, we have $|B| \leq 4 \cdot 2^{k-1-q}$. Note that when $|A| \geq 2,\left|W \backslash\left\{v_{1}, v_{2}, v_{3}, u_{1}, \ldots, u_{m}\right\}\right| \leq 7 \cdot 2^{k-1-q}$ by minimality of k. Therefore,

$$
\begin{aligned}
|W| & = \begin{cases}2\left|B \backslash\left(A \cup\left\{v_{1}\right\}\right)\right|+|A|+|P| & |A| \leq 1 \\
\left|W \backslash\left\{v_{1}, v_{2}, v_{3}, u_{1}, \ldots, u_{m}\right\}\right|+\left|B \backslash\left\{a_{1}, a_{2}\right\}\right|+\left|\left\{v_{2}, v_{3}\right\}\right| & |A| \geq 2\end{cases} \\
& \leq \begin{cases}2\left(4 \cdot 2^{k-1-q}-1\right)+1+4 & \text { if }|A| \leq 1 \\
7 \cdot 2^{k-1-q}+\left(4 \cdot 2^{k-1-q}-2\right)+2 & \text { if }|A| \geq 2\end{cases}
\end{aligned}
$$

yielding the desired bound because $q \leq k-2$ and $k \geq 3$. This establishes case (iv).

Finally, we prove case (v), when $\ell=n-4$ and $n=7$. Assume first that $\left|W^{*}\right| \leq 12$. Then

$$
|W|=\left|W \backslash W^{*}\right|+\left|W^{*}\right| \leq 7 \cdot 2^{k-1-q}+12 \leq 13 \cdot 2^{k-1-q}
$$

because $q \leq k-2$ and $k \geq 3$. Thus we may assume that $\left|W^{*}\right| \geq 13$. Hence, $4 \leq|P| \leq 7$, else we obtain a blue C_{15}. Again we will let P^{\prime} be a longest blue path in $G[W \backslash V(P)]$.

Let us first handle the cases when $|P| \in\{6,7\}$. Then there exists a subset $A \subseteq W$ such that $|A| \leq 5$ and all the blue edges in $G[W \backslash A]$ form a matching. By similar reasoning to the
case $|P|=2$, we have $|W \backslash A| \leq 11 \cdot 2^{k-1-q}-1$, which yields

$$
|W|=|W \backslash A|+|A| \leq 11 \cdot 2^{k-1-q}-1+5 \leq 13 \cdot 2^{k-1-q},
$$

because $q \leq k-2$ and $k \geq 3$.

Now suppose $|P|=5$. Except for one case, we may apply identical reasoning as when $|P| \in\{6,7\}$. The only case we need to consider is when $\left|P^{\prime}\right|=3$ for possibly many disjoint longest blue paths in $G[W \backslash V(P)]$. Apply the partition on $G\left[W \backslash\left\{v_{1}, v_{2}\right\}\right]$ used to derive the case when $|P|=3$, to obtain corresponding parts $W_{1}^{\prime}, W_{2}^{\prime}$ and W_{3}^{\prime} (see Figure 3.6). By similar reasoning, we find $\left|W_{1}^{\prime}\right| \leq 2 \cdot 2^{k-1-q}$, and $\left|W_{3}^{\prime}\right| \leq 7 \cdot 2^{k-1-q}$. From an argument similar to the case $|P|=2$ used to obtain (3.1), $\left|W_{2}^{\prime}\right| \leq 4 \cdot 2^{k-1-q}-2$. Adding the parts together,

$$
\begin{aligned}
|W| & =\left|W_{1}^{\prime}\right|+\left|W_{2}^{\prime}\right|+\left|W_{3}^{\prime}\right|+\left|\left\{v_{1}, v_{2}\right\}\right| \\
& \leq 2 \cdot 2^{k-1-q}+\left(4 \cdot 2^{k-1-q}-2\right)+7 \cdot 2^{k-1-q}+2 \\
& =13 \cdot 2^{k-1-q}
\end{aligned}
$$

since $q \leq k-2$ and $k \geq 3$, as desired.

Thus $|P|=4$. Then $G[W \backslash V(P)]$ has at most one blue P_{4}, else we obtain a blue C_{15}. It suffices to consider the worst-case scenario when $G[W \backslash V(P)]$ has exactly one blue P_{4}, with vertices $y_{1}, y_{2}, y_{3}, y_{4}$ in order. Then each component of the subgraph of $G\left[W \backslash\left\{v_{4}, y_{4}\right\}\right]$
induced by all its blue edges is isomorphic to a K_{3}, a star, or a P_{2}. Define the following sets:
A_{0} : All vertices $v \in W$ such that v is not incident with any blue edge in $G[W]$
A_{1} : Select one vertex from each blue K_{3}
A_{2} : Select one vertex from each blue K_{3} not in W_{1}, the center vertex in each blue star, and one vertex from each blue P_{2}

We next choose W_{1} and W_{2} judiciously. If $G\left[W \backslash\left\{v_{4}, y_{4}\right\}\right]$ has no blue star, let

$$
\begin{aligned}
& W_{1}:=A_{1} \\
& W_{2}:= \begin{cases}A_{2} \cup A_{0}, & \text { if }\left|A_{0}\right| \leq 1 \\
A_{2} \cup\left\{a_{1}, a_{2}\right\}, & \text { if }\left|A_{0}\right| \geq 2, \text { where } a_{1}, a_{2} \in A_{0}\end{cases} \\
& W_{3}:=W \backslash\left(A_{1} \cup A_{2}\right) \cup\left\{v_{4}, y_{4}\right\} .
\end{aligned}
$$

If on the other hand $G\left[W \backslash\left\{v_{4}, y_{4}\right\}\right]$ has at least one blue star with center vertex x and two leaves x_{1}, x_{2}, let

$$
\begin{aligned}
& W_{1}:=A_{1} \cup\left\{x_{1}\right\} \\
& W_{2}:=\left(A_{2} \backslash\{x\}\right) \cup\left\{x_{1}, x_{2}\right\} \\
& W_{3}:=W \backslash\left(A_{1} \cup A_{2} \cup\left\{v_{4}, y_{4}\right\}\right) .
\end{aligned}
$$

By a similar argument to that given for the case $|P|=3$ (with $\ell=n-4$ and $n=7$),

$$
\begin{aligned}
\left|W_{1}\right| \leq 2 \cdot 2^{k-1-q},\left|W_{2}\right| \leq 4 \cdot 2^{k-1-q} \text { and }\left|W_{3}\right| \leq 7 \cdot 2^{k-1-q} . & \text { Therefore, } \\
|W|= & \begin{cases}\left|W_{1}\right|+2\left|W_{2} \backslash A_{0}\right|+\left|A_{0}\right|+\left|\left\{v_{4}, y_{4}\right\}\right| & \left|A_{0}\right| \leq 1 \text { and } G[W] \text { has no blue star } \\
\left|W_{1}\right|+\left|W_{2} \backslash\left\{a_{1}, a_{2}\right\}\right|+\left|\left\{v_{4}, y_{4}\right\}\right|+\left|W_{3}\right| & \left|A_{0}\right| \geq 2 \text { and } G[W] \text { has no blue star } \\
\left|W_{1} \backslash\left\{y_{1}\right\}\right|+\left|W_{2} \backslash\left\{y_{1}, y_{2}\right\}\right|+\left|\left\{x, v_{4}, y_{4}\right\}\right|+\left|W_{3}\right| & G[W] \text { has a blue star, }\end{cases} \\
& \leq \begin{cases}2 \cdot 2^{k-1-q}+8 \cdot 2^{k-1-q}+1+2 & \left|A_{0}\right| \leq 1 \text { and } G[W] \text { has no blue star } \\
2 \cdot 2^{k-1-q}+\left(4 \cdot 2^{k-1-q}-2\right)+2+7 \cdot 2^{k-1-q} & \left|A_{0}\right| \geq 2 \text { and } G[W] \text { has no blue star } \\
\left(2 \cdot 2^{k-1-q}-1\right)+\left(4 \cdot 2^{k-1-q}-2\right)+3+7 \cdot 2^{k-1-q} & G[W] \text { has a blue star, }\end{cases}
\end{aligned}
$$

yielding the desired bound because $q \leq k-2$ and $k \geq 3$.
This completes the proof of Claim 3.3.1.

Let X_{1}, \ldots, X_{m} be a maximum sequence of disjoint subsets of $V(G)$ such that, for all $j \in[m]$, one of the following holds:
(a) $1 \leq\left|X_{j}\right| \leq 3$, and X_{j} is mc-complete to $V(G) \backslash \bigcup_{i \in[j]} X_{i}$ under c, or
(b) $4 \leq\left|X_{j}\right| \leq 6$, and X_{j} can be partitioned into two non-empty sets $X_{j_{1}}$ and $X_{j_{2}}$, where $j_{1}, j_{2} \in[k]$ are two distinct colors, such that for each $t \in\{1,2\}, 1 \leq\left|X_{j_{t}}\right| \leq 3, X_{j_{t}}$ is j_{t}-complete to $V(G) \backslash \bigcup_{i \in[j]} X_{i}$ but not j_{t}-complete to $X_{j_{3-t}}$, and all the edges between $X_{j_{1}}$ and $X_{j_{2}}$ in G are colored using only the colors j_{1} and j_{2}.

Note that such a sequence X_{1}, \ldots, X_{m} may not exist. Let $X:=\bigcup_{j \in[m]} X_{j}$. For each $x \in X$, let $c(x)$ be the unique color on the edges between x and $V(G) \backslash X$ under c. For all $i \in[k]$, let $X_{i}^{*}:=\{x \in X: c(x)$ is color $i\}$. Then $X=\bigcup_{i \in[k]} X_{i}^{*}$. It is worth noting that for all $i \in[k]$, X_{i}^{*} is possibly empty. By abusing the notation, we use X_{b}^{*}, X_{r}^{*} and X_{g}^{*} to denote X_{i}^{*} when i is blue, red or green, respectively.

Claim 3.3.2 For all $i \in[k],\left|X_{i}^{*}\right| \leq 3$. Hence, $|X| \leq 3 k$.

Proof. Suppose the statement is false. Then $m \geq 2$. When choosing $X_{1}, X_{2}, \ldots, X_{m}$, let $j \in[m-1]$ be the largest index such that $\left|X_{p}^{*} \cap\left(X_{1} \cup X_{2} \cup \cdots \cup X_{j}\right)\right| \leq 3$ for all colors $p \in[k]$. Then $4 \leq\left|X_{i}^{*} \cap\left(X_{1} \cup X_{2} \cup \cdots \cup X_{j} \cup X_{j+1}\right)\right| \leq 6$ for some color $i \in[k]$ by the choice of j. Such a color i and an index j exist due to the assumption that the statement of Claim 3.3.2 is false. Let $A:=X_{1} \cup X_{2} \cup \cdots \cup X_{j} \cup X_{j+1}$. By the choice of $X_{1}, X_{2}, \ldots, X_{m}$, there are at most two colors $i \in[k]$ such that $4 \leq\left|X_{i}^{*} \cap A\right| \leq 6$. We may assume that such a color i is red or blue. Let $A_{b}:=\{x \in A: c(x)$ is color blue $\}$ and $A_{r}:=\{x \in A: c(x)$ is color red $\}$. It suffices to consider the worst-case scenario when $4 \leq\left|A_{b}\right| \leq 6$ and $4 \leq\left|A_{r}\right| \leq 6$. Then for any color $p \in[k]$ other than red and blue, $\left|X_{p}^{*} \cap A\right| \leq 3$. Thus by the choice of j, $\left|A \backslash\left(A_{b} \cup A_{r}\right)\right| \leq 3(k-2)$. We may assume that $\left|A_{b}\right| \geq\left|A_{r}\right|$. Note that $4 \leq\left|A_{b}\right| \leq 6 \leq n$. By Claim 3.3.1 applied to A_{b} and $V(G) \backslash A$, we see that

$$
|V(G) \backslash A| \leq \begin{cases}(2 n-3) \cdot 2^{k-1}+(n-7), & \text { if }\left|A_{b}\right|=4 \\ n \cdot 2^{k-1}+(2 n-10), & \text { if }\left|A_{b}\right|=5 \\ n \cdot 2^{k-1}+(2 n-12), & \text { if }\left|A_{b}\right|=6\end{cases}
$$

But then,

$$
\begin{aligned}
|G| & =\left|A \backslash\left(A_{b} \cup A_{r}\right)\right|+\left|A_{b}\right|+\left|A_{r}\right|+|V(G) \backslash A| \\
& \leq 3(k-2)+ \begin{cases}4+4+\left[(2 n-3) \cdot 2^{k-1}+(n-7)\right], & \text { if }\left|A_{b}\right|=4 \\
5+5+\left[n \cdot 2^{k-1}+(2 n-10)\right], & \text { if }\left|A_{b}\right|=5 \\
6+6+\left[n \cdot 2^{k-1}+(2 n-12)\right], & \text { if }\left|A_{b}\right|=6\end{cases} \\
& <n \cdot 2^{k}+1
\end{aligned}
$$

for all $k \geq 3$ and $n \in\{6,7\}$, a contradiction.

By Claim 3.3.2, $|X| \leq 3 k$. Let $X^{\prime} \subseteq X$ be such that for all $i \in[k],\left|X^{\prime} \cap X_{i}^{*}\right|=1$ when $X_{i}^{*} \neq \emptyset$. Similarly, define $X^{\prime \prime} \subseteq X$ such that for all $i \in[k],\left|X^{\prime \prime} \cap\left(X_{i}^{*} \backslash X^{\prime}\right)\right|=1$ when $X_{i}^{*} \backslash X^{\prime} \neq \emptyset$. Finally, let $X^{\prime \prime \prime}:=X \backslash\left(X^{\prime} \cup X^{\prime \prime}\right)$. Now consider a Gallai partition A_{1}, \ldots, A_{p} of $G \backslash X$ with $p \geq 2$. We may assume that $1 \leq\left|A_{1}\right| \leq \cdots \leq\left|A_{s}\right|<3 \leq\left|A_{s+1}\right| \leq \cdots \leq\left|A_{p}\right|$, where $0 \leq s \leq p$. Let \mathcal{R} be the reduced graph of $G \backslash X$ with vertices $a_{1}, a_{2}, \ldots, a_{p}$, where $a_{i} \in A_{i}$ for all $i \in[p]$. By Theorem 1.3.13, we may assume that every edge of \mathcal{R} is colored either red or blue. Note that any monochromatic $C_{2 n+1}$ in \mathcal{R} would yield a monochromatic $C_{2 n+1}$ in G. Thus \mathcal{R} has neither a red nor a blue $C_{2 n+1}$. By Theorem 1.3.2, $p \leq 4 n$. Then $\left|A_{p}\right| \geq 2$ because $|G \backslash X| \geq n \cdot 2^{k}+1-3 k \geq 8 n-8$ and $n \in\{6,7\}$.

Claim 3.3.3 $\left|A_{p-8}\right| \leq 2$ and $\left|A_{p-4 n+12}\right| \leq 1$. Moreover, if $\left|A_{p-7}\right| \geq 3$, then $\left|A_{p-4 n+16}\right| \leq$ $n-6$. Similarly, if $\left|A_{p-4 n+13}\right| \geq 2$, then $p \leq 4 n-12$.

Proof. Suppose $\left|A_{p-8}\right| \geq 3$ or $\left|A_{p-7}\right| \geq 3$ and $\left|A_{p-4 n+16}\right| \geq n-5$. By Theorem 1.3.2, $R\left(C_{2 n-7}, C_{2 n-7}\right)=4 n-15$. We see that either $\mathcal{R}\left[\left\{a_{p-8}, a_{p-7}, \ldots, a_{p}\right\}\right]$ has a monochromatic C_{5} that gives a monochromatic $C_{2 n+1}$ in G, or $\mathcal{R}\left[\left\{a_{p-4 n+16}, a_{p-4 n+15}, \ldots, a_{p}\right\}\right]$ has a monochromatic $C_{2 n-7}$ which again yields a monochromatic $C_{2 n+1}$ in G, a contradiction. Similarly, suppose $\left|A_{p-4 n+12}\right| \geq 2$ or $\left|A_{p-4 n+13}\right| \geq 2$ and $p \geq 4 n-11$ (and so $\left|A_{p-4 n+12}\right| \geq 1$). By Theorem 1.3.2, $R\left(C_{2 n-5}, C_{2 n-5}\right)=4 n-11$. Thus $\mathcal{R}\left[\left\{a_{p-4 n+12}, a_{p-4 n+13}, \ldots, a_{p}\right\}\right]$ has a monochromatic $C_{2 n-5}$, again yielding a monochromatic $C_{2 n+1}$ in G, a contradiction.

Claim 3.3.4 $\left|A_{p}\right| \geq 4$.

Proof. Suppose $\left|A_{p}\right| \leq 3$. Then $n \cdot 2^{k}+1-3 k \leq|G \backslash X| \leq p\left|A_{p}\right|=12 n$ because $p \leq 4 n$ and $|X| \leq 3 k$. It follows that $k=3$ and so $|X| \leq 3 k=9$ and $|G|=8 n+1$. Thus $p \geq 2 n+1$
because $\left|A_{p}\right| \leq 3$. Let green be the third color. Since $\left|A_{p}\right| \leq 3$, we see that G has no green $C_{2 n}$ under the coloring c. We claim that either $\left|X_{r}^{*}\right|=0$ or $\left|X_{b}^{*}\right|=0$. Suppose $\left|X_{r}^{*}\right| \geq 1$ and $\left|X_{b}^{*}\right| \geq 1$. Since G has no green $C_{2 n}$ and

$$
|G|-\left|A_{p} \cup X\right| \geq(8 n+1)-3-9 \geq 8 n-11>6 n-3 \geq G R_{3}\left(C_{2 n}\right)
$$

by Theorem 1.3.23 (i), there is either a red or a blue $C_{2 n}$ in $G \backslash\left(A_{p} \cup X\right)$. Thus $G \backslash\left(A_{p} \cup X_{g}^{*}\right)$ has either a red or a blue $C_{2 n+1}$ under c, a contradiction. This proves that either $\left|X_{r}^{*}\right|=0$ or $\left|X_{b}^{*}\right|=0$. We may assume that $\left|X_{b}^{*}\right|=0$. Then $\left|X^{\prime}\right| \leq 2$ and so $|X|=\left|X_{r}^{*} \cup X_{g}^{*}\right| \leq 6$. By Claim 3.3.3, $\left|A_{p-8}\right| \leq 2$ and $\left|A_{p-4 n+12}\right| \leq 1$. If $p \leq 4 n-6$ or $|X| \leq 4$, then

$$
|G|=\sum_{i=1}^{p}\left|A_{i}\right|+|X| \leq 3 \cdot 8+2(4 n-20)+(p-4 n+12)+|X| \leq 8 n<8 n+1
$$

a contradiction. Thus $p \geq 4 n-5$ and $|X| \geq 5$. Since $\left|X^{\prime}\right| \leq 2$ and $|X| \geq 5$, by Claim 3.3.2, $\left|X^{\prime}\right|=2$ and $\left|X_{r}^{*}\right| \geq 2$. By Theorem 1.3.3, $R\left(C_{2 n-2}, C_{2 n+1}\right)=4 n-5$. It follows that $\mathcal{R}\left[\left\{a_{1}, \ldots, a_{4 n-5}\right\}\right]$ has either a red $C_{2 n-2}$ or a blue $C_{2 n+1}$. Since c is bad, we see that $\mathcal{R}\left[\left\{a_{1}, \ldots, a_{4 n-5}\right\}\right]$ has a red $C_{2 n-2}$. But then $G\left[V\left(C_{2 n-2}\right) \cup X_{r}^{*} \cup\{v\}\right]$, where $v \in A_{p}$, has a red $C_{2 n+1}$, a contradiction.

Claim 3.3.5 If $\left|A_{p}\right| \leq n$, then $\left|A_{p-2}\right| \leq 3$.

Proof. Suppose $\left|A_{p}\right| \leq n$ but $\left|A_{p-2}\right| \geq 4$. Since $\left|A_{p}\right| \leq n$, we have $|G|-\left|A_{p} \cup A_{p-1} \cup A_{p-2}\right|-$ $|X| \geq n \cdot 2^{k}+1-3 n-3 k \geq 5 n-8$. Let B_{1}, B_{2}, B_{3} be a permutation of A_{p-2}, A_{p-1}, A_{p} such that B_{2} is, say, blue-complete to $B_{1} \cup B_{3}$ in G. This is possible due to Theorem 1.3.13. Let $b_{1}, \ldots, b_{4} \in B_{1}, b_{5}, \ldots, b_{8} \in B_{2}$, and $b_{9}, \ldots, b_{12} \in B_{3}$. Let $A:=V(G) \backslash\left(B_{1} \cup B_{2} \cup B_{3} \cup X\right)$,
and define

$$
\begin{aligned}
B_{1}^{*} & :=\left\{v \in A \mid v \text { is blue-complete to } B_{1} \text { and red-complete to } B_{3} \text { in } G\right\} \\
B_{2}^{*} & :=\left\{v \in A \mid v \text { is blue-complete to } B_{1} \cup B_{3} \text { in } G\right\} \\
B_{3}^{*} & :=\left\{v \in A \mid v \text { is red-complete to } B_{1} \cup B_{3} \text { in } G\right\} \\
B_{4}^{*} & :=\left\{v \in A \mid v \text { is red-complete to } B_{1} \text { and blue-complete to } B_{3} \text { in } G\right\} .
\end{aligned}
$$

Then $A=B_{1}^{*} \cup B_{2}^{*} \cup B_{3}^{*} \cup B_{4}^{*}$ and so $\left|B_{1}^{*} \cup B_{2}^{*} \cup B_{3}^{*} \cup B_{4}^{*}\right| \geq 5 n-8$. Note that $B_{1}^{*}, B_{2}^{*}, B_{3}^{*}, B_{4}^{*}$ are pairwise disjoint. Suppose first that B_{1} is red-complete to B_{3} in G. By Lemma 3.1.1 applied to B_{3}^{*} and $B_{1} \cup B_{3},\left|B_{3}^{*}\right| \leq n-1$. Thus $\left|B_{1}^{*}\right|+\left|B_{2}^{*}\right|+\left|B_{4}^{*}\right| \geq 5 n-8-(n-1)=4 n-7 \geq 2 n+5$ because $n \in\{6,7\}$. By symmetry, we may assume that $\left|B_{1}^{*}\right|+\left|B_{2}^{*}\right| \geq n+3$. We claim that $G\left[B_{1}^{*} \cup B_{2}^{*} \cup B_{4}^{*}\right]$ has no blue edges. Suppose not. Let $u v$ be a blue edge in $G\left[B_{1}^{*} \cup B_{2}^{*} \cup B_{4}^{*}\right]$. Since $\left|B_{1}^{*}\right|+\left|B_{2}^{*}\right| \geq n+3$, let $x, y \in B_{1}^{*} \cup B_{2}^{*}$ be two distinct vertices that are different from u and v. If $u, v \in B_{1}^{*} \cup B_{2}^{*}$, then we find a blue $C_{2 n+1}$ with vertices

$$
\begin{cases}u, v, b_{1}, b_{5}, b_{9}, b_{6}, b_{10}, b_{7}, b_{11}, b_{8}, b_{2}, x, b_{3}, & \text { if } n=6 \\ u, v, b_{1}, b_{5}, b_{9}, b_{6}, b_{10}, b_{7}, b_{11}, b_{8}, b_{2}, x, b_{3}, y, b_{4}, & \text { if } n=7\end{cases}
$$

in order, a contradiction. Thus we may assume that $v \in B_{4}^{*}$. If $u \in B_{1}^{*} \cup B_{2}^{*}$, then we find a blue $C_{2 n+1}$ with vertices

$$
\begin{cases}u, v, b_{9}, b_{5}, b_{10}, b_{6}, b_{11}, b_{7}, b_{12}, b_{8}, b_{1}, x, b_{2}, & \text { if } n=6 \\ u, v, b_{9}, b_{5}, b_{10}, b_{6}, b_{11}, b_{7}, b_{12}, b_{8}, b_{1}, x, b_{2}, y, b_{3}, & \text { if } n=7\end{cases}
$$

in order, a contradiction. Thus $u, v \in B_{4}^{*}$. But similarly, we obtain a blue $C_{2 n+1}$ with vertices

$$
\begin{cases}u, v, b_{9}, b_{5}, b_{1}, x, b_{2}, b_{6}, b_{3}, y, b_{4}, b_{7}, b_{10}, & \text { if } n=6 \\ u, v, b_{9}, b_{5}, b_{1}, x, b_{2}, b_{6}, b_{10}, b_{7}, b_{3}, y, b_{4}, b_{8}, b_{11}, & \text { if } n=7\end{cases}
$$

in order, a contradiction. This proves that $G\left[B_{1}^{*} \cup B_{2}^{*} \cup B_{4}^{*}\right]$ contains no blue edges. Since $\left|B_{1}^{*}\right|+\left|B_{2}^{*}\right|+\left|B_{4}^{*}\right| \geq 2 n+5$ and $\left|A_{p}\right| \leq n$, by Lemma 3.1.2, $G\left[B_{1}^{*} \cup B_{2}^{*} \cup B_{4}^{*}\right]$ has a red $C_{2 n+1}$, a contradiction. Thus B_{1} must be blue-complete to B_{3}. Then $\left|B_{1} \cup B_{2} \cup B_{3}\right| \leq 2 n$, else we obtain a blue $C_{2 n+1}$ in $G\left[B_{1} \cup B_{2} \cup B_{3}\right]$. By Lemma 3.1.1 applied to $B_{2} \cup B_{2}^{*}$ and $B_{1} \cup B_{3}$, we see that $\left|B_{2}^{*}\right| \leq n-5$. If $\left|B_{1}^{*}\right| \geq 3$, let $x, y, z \in B_{1}^{*}$ be distinct vertices. Then we find a blue $C_{2 n+1}$ with vertices

$$
\begin{cases}b_{1}, b_{5}, b_{9}, b_{6}, b_{10}, b_{7}, b_{11}, b_{8}, b_{12}, b_{2}, x, b_{3}, y, & \text { if } n=6 \\ b_{1}, b_{5}, b_{9}, b_{6}, b_{10}, b_{7}, b_{11}, b_{8}, b_{12}, b_{2}, x, b_{3}, y, b_{4}, z, & \text { if } n=7\end{cases}
$$

in order, a contradiction. Thus $\left|B_{1}^{*}\right| \leq 2$. Similarly, $\left|B_{4}^{*}\right| \leq 2$. Therefore,
$\left|B_{3}^{*}\right|=|G|-|X|-\left|B_{1} \cup B_{2} \cup B_{3}\right|-\left|B_{1}^{*} \cup B_{2}^{*} \cup B_{4}^{*}\right| \geq n \cdot 2^{k}+1-3 k-2 n-(n-5+2+2) \geq 5 n-7$.

By Lemma 3.1.1 applied to B_{3}^{*} and $B_{1} \cup B_{3}, G\left[B_{3}^{*}\right]$ contains no red edges. But then by Lemma 3.1.2 and the fact that $\left|A_{p}\right| \leq n$ and $\left|B_{3}^{*}\right| \geq 5 n-7, G\left[B_{3}^{*}\right]$ must contain a blue $C_{2 n+1}$, a contradiction. This proves that if $\left|A_{p}\right| \leq n$, then $\left|A_{p-2}\right| \leq 3$.

By Claim 3.3.4, $\left|A_{p}\right| \geq 4$ and so $p-s \geq 1$. Let

$$
\begin{aligned}
& B:=\left\{a_{i} \in\left\{a_{1}, \ldots, a_{p-1}\right\} \mid a_{i} a_{p} \text { is colored blue in } \mathcal{R}\right\} \\
& R:=\left\{a_{j} \in\left\{a_{1}, \ldots, a_{p-1}\right\} \mid a_{j} a_{p} \text { is colored red in } \mathcal{R}\right\}
\end{aligned}
$$

Then $|B|+|R|=p-1$. Let $B_{G}:=\bigcup_{a_{i} \in B} A_{i}$ and $R_{G}:=\bigcup_{a_{j} \in R} A_{j}$.

Claim 3.3.6 If every vertex in X is neither i - nor j-complete to $V(G) \backslash X$ for two distinct colors $i, j \in[k]$, then $X^{\prime \prime \prime}=\emptyset$.

Proof. \quad Suppose $X^{\prime \prime \prime} \neq \emptyset$. We may assume that every vertex in X is neither red- nor blue-complete to $V(G) \backslash X$. Then there exists at least one color $\ell \in[k]$ other than red and blue such that $\left|X_{\ell}^{*}\right|=3$. We claim that $k \geq 4$. Suppose $k=3$. Then $|G|=8 n+1$. We may assume the third color is green. Then $|X|=\left|X_{g}^{*}\right|=3$. By Claim 3.3.1 applied to X_{g}^{*} and $V(G) \backslash X_{g}^{*},\left|V(G) \backslash X_{g}^{*}\right| \leq 4(2 n-1)+(n-7)$. But then

$$
|G|=\left|X_{g}^{*}\right|+\left|V(G) \backslash X_{g}^{*}\right| \leq 3+4(2 n-1)+(n-7)<8 n+1,
$$

because $n \in\{6,7\}$, a contradiction. Thus $k \geq 4$, as claimed. When choosing $X_{1}, X_{2}, \ldots, X_{m}$, let $q \in[m]$ be the smallest index such that for some color $\ell^{\prime} \in[k]$ other than red and blue, $\left|X_{\ell^{\prime}}^{*} \cap\left(X_{1} \cup \cdots \cup X_{q}\right)\right|=3$. By the choice of $q,\left|X_{j}^{*} \cap\left(X_{1} \cup \cdots \cup X_{q-1}\right)\right| \leq 2$ for all $j \in[k]$. By the property (b) when choosing $X_{1}, X_{2}, \ldots, X_{m}$, there are possibly two colors $q_{1}:=\ell^{\prime}$ and $q_{2} \in[k]$ such that $\left|X_{q_{1}}^{*}\right|=3$ and $\left|X_{q_{2}}^{*}\right| \leq 3$. Since no vertex in X is red- or blue-complete to $V(G) \backslash X$, we see that $\left|\left(X_{1} \cup \cdots \cup X_{q}\right) \backslash\left(X_{q_{1}}^{*} \cup X_{q_{2}}^{*}\right)\right| \leq 2(k-4)$. By Claim 3.3.1 applied to $X_{q_{1}}^{*}$ and $V(G) \backslash\left(X_{1} \cup \cdots \cup X_{q}\right),\left|V(G) \backslash\left(X_{1} \cup \cdots \cup X_{q}\right)\right| \leq(2 n-1) \cdot 2^{k-1}+(n-7)$. But then

$$
\begin{aligned}
|G| & =\left|\left(X_{1} \cup \cdots \cup X_{q}\right) \backslash\left(X_{q_{1}}^{*} \cup X_{q_{2}}^{*}\right)\right|+\left|X_{q_{1}}^{*} \cup X_{q_{2}}^{*}\right|+\left|V(G) \backslash\left(X_{1} \cup \cdots \cup X_{q}\right)\right| \\
& \leq 2(k-4)+6+\left[(2 n-1) \cdot 2^{k-1}+(n-7)\right] \\
& <n \cdot 2^{k}+1
\end{aligned}
$$

for all $k \geq 4$, a contradiction.

Claim 3.3.7 If $\left|A_{p}\right| \geq n$ and $|B| \geq 3$ (resp. $|R| \geq 3$), then $\left|B_{G}\right| \leq 2 n\left(\right.$ resp. $\left.\left|R_{G}\right| \leq 2 n\right)$.

Proof. Suppose $\left|A_{p}\right| \geq n$ and $|B| \geq 3$ but $\left|B_{G}\right| \geq 2 n+1$. By Claim 3.1.1, $G\left[B_{G}\right]$ has no blue edges and no vertex in X is blue-complete to $V(G) \backslash X$. Thus all the edges of $\mathcal{R}[B]$ are colored red in \mathcal{R}. Let $q:=|B|$ and let $B:=\left\{a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{q}}\right\}$ with $\left|A_{i_{1}}\right| \geq\left|A_{i_{2}}\right| \geq \cdots \geq\left|A_{i_{q}}\right|$. Then $G\left[B_{G}\right] \backslash \bigcup_{j=1}^{q} E\left(G\left[A_{i_{j}}\right]\right)$ is a complete multipartite graph with at least three parts. If $\left|A_{i_{1}}\right| \leq n$, then by Lemma 3.1.2 applied to $G\left[B_{G}\right] \backslash \bigcup_{j=1}^{q} E\left(G\left[A_{i_{j}}\right]\right), G\left[B_{G}\right]$ has a red $C_{2 n+1}$, a contradiction. Thus $\left|A_{i_{1}}\right| \geq n+1$. Let $Q_{b}:=\left\{v \in R_{G}: v\right.$ is blue-complete to $\left.A_{i_{1}}\right\}$, and $Q_{r}:=$ $\left\{v \in R_{G}: v\right.$ is red-complete to $\left.A_{i_{1}}\right\}$. Then $Q_{b} \cup Q_{r}=R_{G}$. Let $Q:=\left(B_{G} \backslash A_{i_{1}}\right) \cup Q_{r} \cup X_{r}^{*}$. Then Q is red-complete to $A_{i_{1}}$ and $G[Q]$ must contain red edges, because $|B| \geq 3$ and all the edges of $\mathcal{R}[B]$ are colored red. By Claim 3.1.1 applied to $A_{i_{1}}$ and $Q,|Q| \leq n$. Note that $\left|A_{p} \cup Q_{b}\right| \geq\left|A_{p}\right| \geq\left|A_{i_{1}}\right| \geq n+1$ and $A_{p} \cup Q_{b}$ is blue-complete to $A_{i_{1}}$. By Claim 3.1.1 applied to $A_{i_{1}}$ and $A_{p} \cup Q_{b}, G\left[A_{p} \cup Q_{b}\right]$ has no blue edges. Since no vertex in X is blue-complete to $V(G) \backslash X$, we see that $G\left[A_{p} \cup Q_{b} \cup\left(X^{\prime} \backslash X_{r}^{*}\right)\right]$ has no blue edges. By minimality of k, $\left|A_{p} \cup Q_{b} \cup\left(X^{\prime} \backslash X_{r}^{*}\right)\right| \leq n \cdot 2^{k-1}$. Suppose first that $Q_{r} \cup X_{r}^{*}=\emptyset$. Then $Q_{b}=R_{G}$ and $G\left[B_{G} \cup X^{\prime \prime}\right]$ has no blue edges. By minimality of $k,\left|B_{G} \cup X^{\prime \prime}\right| \leq n \cdot 2^{k-1}$. Since no vertex in X is red- or blue-complete to $V(G) \backslash X$, by Claim 3.3.6, $X^{\prime \prime \prime}=\emptyset$. But then

$$
|G|=\left|B_{G} \cup X^{\prime \prime}\right|+\left|A_{p} \cup Q_{b} \cup X^{\prime}\right| \leq n \cdot 2^{k-1}+n \cdot 2^{k-1}<n \cdot 2^{k}+1
$$

a contradiction. Thus $Q_{r} \cup X_{r}^{*} \neq \emptyset$. Since $|B| \geq 3$, we see that $\left|B_{G} \backslash A_{i_{1}}\right| \geq 2$. Thus $n \geq|Q| \geq 3$.

We next claim that either $|Q| \geq 4$ or $k \geq 6$. Suppose $|Q|=3$ and $k \leq 5$. Then $\left|Q_{r} \cup X_{r}^{*}\right|=1$ and $\left|B_{G} \backslash A_{i_{1}}\right|=2$. Suppose $k=3$. We may assume that the third color is green. Since Q is red-complete to $A_{i_{1}}$, we see that $G\left[A_{i_{1}}\right]$ has neither red $C_{2 n-2}$ nor a green $C_{2 n+1}$. By

Theorem 1.3.3, $\left|A_{i_{1}}\right| \leq R\left(C_{2 n-2}, C_{2 n+1}\right)-1=4 n-6$. But then

$$
|G|=|Q|+\left|A_{i_{1}}\right|+\left|A_{p} \cup Q_{b}\right|+\left|X_{g}^{*}\right| \leq 3+(4 n-6)+n \cdot 2^{3-1}+3=8 n<8 n+1,
$$

a contradiction. Thus $k \in\{4,5\}$. Then $\left|X^{\prime} \backslash X_{r}^{*}\right| \leq k-3$, else, by Theorem 1.3.23 (i), $\left|A_{i_{1}}\right| \leq G R_{k-1}\left(C_{2 n}\right)-1 \leq(k-1)(n-1)+3 n-1$. But then

$$
\begin{aligned}
|G| & =|Q|+\left|A_{i_{1}}\right|+\left|A_{p} \cup Q_{b} \cup\left(X^{\prime} \backslash X_{r}^{*}\right)\right|+\left|\left(X^{\prime \prime} \cup X^{\prime \prime \prime}\right) \backslash X_{r}^{*}\right| \\
& \leq 3+[(k-1)(n-1)+3 n-1]+n \cdot 2^{k-1}+2(k-2) \\
& <n \cdot 2^{k}+1
\end{aligned}
$$

for all $k \in\{4,5\}$ and $n \in\{6,7\}$, a contradiction. Thus $\left|X^{\prime} \backslash X_{r}^{*}\right| \leq k-3$, and so $\left|X^{\prime \prime} \backslash X_{r}^{*}\right| \leq$ $k-3$. In particular, by Claim 3.3.6, this implies $X^{\prime \prime \prime}=\emptyset$. By Claim 3.3.1 applied to Q and $A_{i_{1}},\left|A_{i_{1}}\right| \leq(2 n-1) \cdot 2^{k-2}+(n-7)$. But then

$$
\begin{aligned}
|G| & =|Q|+\left|A_{i_{1}}\right|+\left|A_{p} \cup Q_{b} \cup\left(X^{\prime} \backslash X_{r}^{*}\right)\right|+\left|X^{\prime \prime} \backslash X_{r}^{*}\right| \\
& \leq 3+\left[(2 n-1) \cdot 2^{k-2}+(n-7)\right]+n \cdot 2^{k-1}+(k-3) \\
& <n \cdot 2^{k}+1
\end{aligned}
$$

for $k \in\{4,5\}$, a contradiction. This proves that either $|Q| \geq 4$ or $k \geq 6$, as claimed.

Note that $G\left[A_{i_{1}}\right]$ has no blue edges and $\left|\left(X^{\prime \prime} \cup X^{\prime \prime \prime}\right) \backslash X_{r}^{*}\right| \leq 2(k-2)$. By Claim 3.3.1 applied
to Q and $A_{i_{1}}$, we see that

$$
\left|A_{i_{1}}\right| \leq \begin{cases}n \cdot 2^{k-2} & \text { if }|Q|=n \\ n \cdot 2^{k-2}+2 & \text { if }|Q|=n-1 \\ (21-2 n) \cdot 2^{k-2}+(5 n-31) & \text { if }|Q|=n-2 \\ 11 \cdot 2^{k-2}+(n-7) & \text { if }|Q|=n-3 \\ 13 \cdot 2^{k-2} & \text { if }|Q|=n-4 \text { and } n=7\end{cases}
$$

But then

$$
\begin{aligned}
|G| & =|Q|+\left|A_{i_{1}}\right|+\left|A_{p} \cup Q_{b} \cup\left(X^{\prime} \backslash X_{r}^{*}\right)\right|+\left|\left(X^{\prime \prime} \cup X^{\prime \prime \prime}\right) \backslash X_{r}^{*}\right| \\
& \leq \begin{cases}n+n \cdot 2^{k-2}+n \cdot 2^{k-1}+2(k-2) & \text { if }|Q|=n \\
(n-1)+\left(n \cdot 2^{k-2}+2\right)+n \cdot 2^{k-1}+2(k-2) & \text { if }|Q|=n-1 \\
(n-2)+\left[(21-2 n) \cdot 2^{k-2}+(5 n-31)\right]+n \cdot 2^{k-1}+2(k-2) & \text { if }|Q|=n-2 \\
(n-3)+\left[11 \cdot 2^{k-2}+(n-7)\right]+n \cdot 2^{k-1}+2(k-2) & \text { if }|Q|=n-3 \text { and } n=7 \\
3+\left[(2 n-1) \cdot 2^{k-2}+(n-7)\right]+n \cdot 2^{k-1}+2(k-2) & \text { if }|Q|=3 \text { and } k \geq 6\end{cases}
\end{aligned}
$$

In each case, we have $|G|<n \cdot 2^{k}+1$, a contradiction. This proves that if $\left|A_{p}\right| \geq n$ and $|B| \geq 3$, then $\left|B_{G}\right| \leq 2 n$. Similarly, one can prove that if $\left|A_{p}\right| \geq n$ and $|R| \geq 3$, then $\left|R_{G}\right| \leq 2 n$.

Claim 3.3.8 $p \leq 2 n+1$.

Proof. Suppose $p \geq 2 n+2$. Then $|B|+|R|=p-1 \geq 2 n+1$. We claim that $\left|A_{p}\right| \leq n$. Suppose $\left|A_{p}\right| \geq n+1$. We may assume that $|B| \geq|R|$. Then $\left|B_{G}\right| \geq|B| \geq n+1$. By

Claim 3.3.7, $\left|B_{G}\right| \leq 2 n$, and by Claim 3.1.1, $G\left[A_{p}\right]$ has no blue edges and $X_{b}^{*}=\emptyset$. Then $\left|X^{\prime \prime} \cup X^{\prime \prime \prime}\right| \leq 2(k-1)$. If $\left|R_{G}\right| \geq n+1$, then by Claim 3.1.1, neither $G\left[R_{G}\right]$ nor $G\left[A_{p}\right]$ has red edges and $X_{r}^{*}=\emptyset$. By Claim 3.3.6, $X^{\prime \prime \prime}=\emptyset$. Note that $G\left[A_{p} \cup X^{\prime}\right]$ has neither red nor blue edges, and $G\left[R_{G} \cup X^{\prime \prime}\right]$ has no red edges. Then by minimality of k,

$$
|G|=\left|A_{p} \cup X^{\prime}\right|+\left|B_{G}\right|+\left|R_{G} \cup X^{\prime \prime}\right|+\left|X^{\prime \prime \prime}\right| \leq n \cdot 2^{k-2}+2 n+n \cdot 2^{k-1}<n \cdot 2^{k}+1
$$

for all $k \geq 3$, a contradiction. Thus, $\left|R_{G}\right| \leq n$. Then for all $k \geq 3$,

$$
\left|A_{p} \cup X^{\prime}\right|=|G|-\left|B_{G}\right|-\left|R_{G}\right|-\left|X^{\prime \prime} \cup X^{\prime \prime \prime}\right| \geq n \cdot 2^{k}+1-2 n-n-2(k-1)>n \cdot 2^{k-1}+1
$$

Since $G\left[A_{p} \cup X^{\prime}\right]$ has no blue edges, by the choice of $k, G\left[A_{p} \cup X^{\prime}\right]$ has a monochromatic $C_{2 n+1}$, a contradiction. This proves that $\left|A_{p}\right| \leq n$, as claimed.

Note that by Claim 3.3.4, $\left|A_{p}\right| \geq 4$. Additionally, Claims 3.3.5 and 3.3.3 give $\left|A_{p-2}\right| \leq 3$ and $\left|A_{p-8}\right| \leq 2$ with $\left|A_{p-4 n+12}\right| \leq 1$, respectively. Therefore, $k=3,|G|=8 n+1$ and $|X| \leq 9$. Because $n \in\{6,7\}$,

$$
\left|B_{G}\right|+\left|R_{G}\right|=|G|-\left|A_{p}\right|-|X| \geq(8 n+1)-n-9=7 n-8>6 n-3 \geq G R_{3}\left(C_{2 n}\right)
$$

by Theorem 1.3.23 (i). Therefore, $|X| \leq 6$, otherwise we find a monochromatic $C_{2 n+1}$. Recalculating the above inequality with this fact, we obtain

$$
\left|B_{G}\right|+\left|R_{G}\right|=|G|-\left|A_{p}\right|-|X| \geq(8 n+1)-n-6=7 n-5 .
$$

Thus at least one of $\left|B_{G}\right| \geq 3 n+1$ or $\left|R_{G}\right| \geq 3 n+1$, so we may assume $\left|B_{G}\right| \geq 3 n+1$. We next prove that $4 \leq\left|A_{p}\right| \leq n$ is impossible.

Suppose first that $5 \leq\left|A_{p}\right| \leq n$ and let $B^{*} \subseteq B_{G}$ be a minimal set such that $G\left[B_{G} \backslash B^{*}\right]$ has no blue edges. If $\left|B^{*}\right| \leq 2 n-10$, then $\left|B_{G} \backslash B^{*}\right| \geq(3 n+1)-(2 n-10)=n+11 \geq 2 n+4$, because $n \in\{6,7\}$. Therefore, $\left|B \backslash B^{*}\right| \geq 3$, and all edges of $\mathcal{R}\left[B \backslash B^{*}\right]$ are colored red, so that by Lemma 3.1.2 we find a monochromatic $C_{2 n+1}$, a contradiction. Thus, $\left|B^{*}\right| \geq 2 n-9$. Define the family of graphs

$$
\begin{aligned}
& \mathcal{H}_{1}:=\left\{(2 n-9) K_{2},(2 n-11) K_{2} \cup P_{3},(15-2 n) K_{2} \cup 2 P_{2 n-11},\right. \\
& \\
& \left.\qquad 2 P_{n-5} \cup P_{4}, P_{2 n-11} \cup P_{4},(15-2 n) K_{2} \cup P_{4 n-23}, P_{2 n-8}\right\}
\end{aligned}
$$

It follows that $G\left[B_{G}\right]$ contains a blue $H \in \mathcal{H}_{1}$, so that along with the vertices in A_{p}, we find a blue $C_{2 n+1}$, a contradiction.

Therefore suppose $\left|A_{p}\right|=4$. Then $\left|B_{G}\right|+\left|R_{G}\right|=|G|-\left|A_{p}\right|-|X| \geq 8 n+1-4-6 \geq 8 n-9$, so that $\left|B_{G}\right| \geq 4 n-4$. Let B^{*} be defined as above. If $\left|B^{*}\right| \leq 2 n-5$, then $\left|B_{G} \backslash B^{*}\right| \geq$ $(4 n-4)-(2 n-5)=2 n+1$, and thus $\left|B \backslash B^{*}\right| \geq 3$. Since $\mathcal{R}\left[B \backslash B^{*}\right]$ contains only red edges, by Lemma 3.1.2, there is a red $C_{2 n+1}$, a contradiction. Thus, $\left|B^{*}\right| \geq 2 n-4$. Define the family of graphs

$$
\mathcal{H}_{2}:=\left\{(2 n-4) K_{2},(14-n) K_{2} \cup P_{3 n-17},(20-2 n) K_{2} \cup 2 P_{2 n-11}, 8 K_{2} \cup P_{2 n-11}\right\}
$$

Let M denote a matching of size $m \geq 0$. For any $H \in \mathcal{H}_{2}$, let $H^{\prime}:=H \cup M$. It follows that $G\left[B_{G}\right]$ contains a blue H^{\prime}, where m is chosen to be as large as possible. Then removing at most two vertices, say $x, y \in V(H)$ from the longest blue subpaths in H, we obtain $M^{\prime}:=H^{\prime} \backslash\{x, y\}$, which is a matching of size $m^{\prime} \geq 6$. Denote the edges in M^{\prime} by $u_{i} v_{i}$, for all $i \in\left[m^{\prime}\right]$. Put another way, this means the blue edges in $G\left[B_{G} \backslash\{x, y\}\right]$ induce a blue matching. Let us define a new Gallai partition of $G\left[B_{G} \backslash\{x, y\}\right]$ in the following manner. If $\left|A_{i_{j}}\right|=\left|A_{i_{\ell}}\right|=1$ for some pair $j, \ell \in[q]$, and if $A_{i_{j}}$ is blue-complete to $A_{i_{\ell}}$, then create
the new part $A_{i_{s}}:=A_{i_{j}} \cup A_{i_{\ell}}$, so that $\left|A_{i_{s}}\right|=2$, where $s \in\left[q^{\prime}\right]$ and $q^{\prime} \leq q$; otherwise, define $A_{i_{j}}$ to be the same. By construction, only red edges appear between any two parts of this modified partition. We may assume $A_{i_{1}}, \ldots, A_{i_{t}}$ are all parts of the modified Gallai partition of $B_{G} \backslash\{x, y\}$ containing blue edges. Because $m^{\prime} \geq 6$, we see that $\bigcup_{j=1}^{t}\left|A_{i_{j}}\right| \geq 12$, and because $\left|A_{p}\right|=4$, we also have $t \geq 3$. In particular, if $\bigcup_{j=1}^{t}\left|A_{i_{j}}\right| \geq 2 n+1$, we are done by Lemma 3.1 .2 because $G\left[\bigcup_{j=1}^{t} A_{i_{j}}\right]-\bigcup_{j=1}^{t} E\left(A_{i_{j}}\right)$ is a complete multipartite graph containing only red edges. Thus we may assume $12 \leq \sum_{j=1}^{t}\left|A_{i_{j}}\right| \leq 2 n$. Note that $\left|B_{G} \backslash\{x, y\}\right|-\sum_{j=1}^{t}\left|A_{i_{j}}\right| \geq(4 n-4)-2-2 n=2 n-6$. Define $r:=2 n+1-\sum_{j=1}^{t}\left|A_{i_{j}}\right|$, and choose distinct vertices $v_{1}, \ldots, v_{r} \in B_{G} \backslash\left(\{x, y\} \cup \bigcup_{j=1}^{t} A_{i_{j}}\right)$. Because $v_{1}, \ldots, v_{r} \notin$ $\bigcup_{j=1}^{t} A_{i_{j}}$, we see that $\left\{v_{1}, \ldots, v_{r}\right\}$ is red-complete to $\bigcup_{j=1}^{t} A_{i_{j}}$, again yielding a red $C_{2 n+1}$ by Lemma 3.1.2, again forcing a contradiction.

Claim 3.3.9 $\left|A_{p}\right| \geq n+1$.

Proof. Suppose $\left|A_{p}\right| \leq n$. Then $p \geq 9$ because $|G| \geq 8 n+1$. By Claim 3.3.8, we have $9 \leq p \leq 2 n+1$. We may assume that $a_{p} a_{p-1}$ is colored blue in \mathcal{R}. Then $\left|A_{p} \cup A_{p-1} \cup X_{b}^{*}\right| \leq 2 n$, else $\left|X_{b}^{*}\right| \geq 1$ and so $G\left[A_{p} \cup A_{p-1} \cup X_{b}^{*}\right]$ has a blue $C_{2 n+1}$, a contradiction. It follows that $\left|A_{p} \cup A_{p-1} \cup X\right|=\left|A_{p} \cup A_{p-1} \cup X_{b}^{*}\right|+\left|X \backslash X_{b}^{*}\right| \leq 2 n+3(k-1)$. By Claim 3.3.5 and Claim 3.3.3, $\left|A_{p-2}\right| \leq 3$ and $\left|A_{p-8}\right| \leq 2$. But then

$$
\begin{aligned}
|G| & =\left|A_{p} \cup A_{p-1} \cup X\right|+\sum_{i=p-7}^{p-2}\left|A_{i}\right|+\sum_{i=1}^{p-8}\left|A_{i}\right| \\
& \leq[2 n+3(k-1)]+18+2(2 n+1-8) \\
& =6 n+3 k+1 \\
& <n \cdot 2^{k}+1,
\end{aligned}
$$

for $n \in\{6,7\}$ and all $k \geq 3$, a contradiction.

Claim 3.3.10 $\left|A_{p-2}\right| \leq n$.

Proof. Suppose $\left|A_{p-2}\right| \geq n+1$. Then $n+1 \leq\left|A_{p-2}\right| \leq\left|A_{p-1}\right| \leq\left|A_{p}\right|$ and so $\mathcal{R}\left[\left\{a_{p-2}, a_{p-1}, a_{p}\right\}\right]$ is not a monochromatic triangle in \mathcal{R} (else $G\left[A_{p} \cup A_{p-1} \cup A_{p-2}\right]$ has a a monochromatic $C_{2 n+1}$). Let B_{1}, B_{2}, B_{3} be a permutation of A_{p-2}, A_{p-1}, A_{p} such that B_{2} is, say blue-complete, to $B_{1} \cup B_{3}$ in G. Then B_{1} must be red-complete to B_{3} in G. By Claim 3.1.1, $X_{r}^{*}=\emptyset$ and $X_{b}^{*}=\emptyset$. By Claim 3.3.6, $X^{\prime \prime \prime}=\emptyset$. Let $A:=V(G) \backslash\left(B_{1} \cup B_{2} \cup B_{3} \cup X^{\prime} \cup X^{\prime \prime}\right)$. By Claim 3.1.1 again, $G\left[B_{2}\right]$ has no blue edges, and neither $G\left[B_{1} \cup X^{\prime}\right]$ nor $G\left[B_{3} \cup X^{\prime \prime}\right]$ has red or blue edges. By minimality of $k,\left|B_{1} \cup X^{\prime}\right| \leq n \cdot 2^{k-2}$ and $\left|B_{3} \cup X^{\prime \prime}\right| \leq n \cdot 2^{k-2}$. It follows that $\left|A \cup B_{2}\right|=|G|-\left|B_{1} \cup X^{\prime}\right|-\left|B_{3} \cup X^{\prime \prime}\right| \geq n \cdot 2^{k-1}+1$. By minimality of k, $G\left[A \cup B_{2}\right]$ must have blue edges. By Claim 3.1.1, no vertex in A is red-complete to $B_{1} \cup B_{3}$ in G, and no vertex in A is blue-complete to $B_{1} \cup B_{2}$ or $B_{2} \cup B_{3}$ in G. This implies that A must be red-complete to B_{2} in G. It follows that $G[A]$ must contain a blue edge, say $u v$. Let $b_{1}, \ldots, b_{n-1} \in B_{1}, b_{n}, \ldots, b_{2 n-2} \in B_{2}$, and $b_{2 n-1} \in B_{3}$. If $\{u, v\}$ is blue-complete to B_{1}, then we obtain a blue $C_{2 n+1}$ with vertices $b_{1}, u, v, b_{2}, b_{n}, b_{2 n-1}, b_{n+1}, b_{3}, b_{n+2}, \ldots, b_{n-1}, b_{2 n-2}$ in order, a contradiction. Thus $\{u, v\}$ is not blue-complete to B_{1}. Similarly, $\{u, v\}$ is not blue-complete to B_{3}. Since no vertex in A is red-complete to $B_{1} \cup B_{3}$, we may assume that u is blue-complete to B_{1} and v is blue-complete to B_{3}. But then we obtain a blue $C_{2 n+1}$ with vertices $b_{1}, u, v, b_{2 n-1}, b_{n}, b_{2}, b_{n+1}, \ldots, b_{n-1}, b_{2 n-2}$ in order.

Claim 3.3.11 $\left|B_{G}\right| \geq 4$ or $\left|R_{G}\right| \geq 4$.

Proof. Suppose $\left|B_{G}\right| \leq 3$ and $\left|R_{G}\right| \leq 3$. Since $p \geq 2$, we see that $B_{G} \neq \emptyset$ or $R_{G} \neq \emptyset$. By maximality of m (see condition (a) when choosing $X_{1}, X_{2}, \ldots, X_{m}$), $B_{G} \neq \emptyset, R_{G} \neq \emptyset$, and B_{G} is neither red- nor blue-complete to R_{G} in G. But then, since $\left|B_{G}\right| \leq 3$ and $\left|R_{G}\right| \leq 3$, by maximality of m again (see condition (b) when choosing $X_{1}, X_{2}, \ldots, X_{m}$), $B_{G}=\emptyset$ and
$R_{G}=\emptyset$, a contradiction.

Claim 3.3.12 $2 \leq p-s \leq 8$.

Proof. By Claim 3.3.3, $\left|A_{p-8}\right| \leq 2$ and so $p-s \leq 8$. Suppose $p-s \leq 1$. Then $p-s=1$ because $p-s \geq 1$. Thus $\left|A_{i}\right| \leq 2$ for all $i \in[p-1]$ by the choice of p and s. By Claim 3.3.8, $p \leq 2 n+1$. Then $\left|B_{G} \cup R_{G}\right| \leq 2(p-1)$ and so $\left|B_{G}^{*} \cup R_{G}^{*}\right| \leq 2(p-1)+3+3=2(p+2) \leq 4 n+6$. We may assume that $\left|B_{G}^{*}\right| \geq\left|R_{G}^{*}\right|$. If $\left|R_{G}^{*}\right| \geq n$, then $\left|B_{G}^{*}\right| \geq n$. By Claim 3.3.9 and Claim 3.1.1, $G\left[A_{p}\right]$ has neither blue nor red edges. By minimality of $k,\left|A_{p}\right| \leq n \cdot 2^{k-2}$. But then

$$
|G|=\left|B_{G}^{*} \cup R_{G}^{*}\right|+\left|A_{p}\right|+\left|X \backslash\left(B_{G}^{*} \cup R_{G}^{*}\right)\right| \leq(4 n+6)+n \cdot 2^{k-2}+3(k-2)<n \cdot 2^{k}+1
$$

for all $k \geq 3$, a contradiction. Thus $\left|R_{G}^{*}\right| \leq n-1$. We claim that $\left|B_{G}^{*}\right| \leq 2 n+3$. This is trivially true if $|B| \leq n$. If $|B| \geq n+1$, then $\left|B_{G}\right| \leq 2 n$ by Claim 3.3.7. Thus $\left|B_{G}^{*}\right| \leq 2 n+3$, as claimed. If $\left|B_{G}^{*}\right| \geq n-1$, then applying Claim 3.3.1 to B_{G}^{*} and A_{p} implies that

$$
\left|B_{G}^{*}\right|+\left|A_{p}\right| \leq \begin{cases}(n-1)+\left(n \cdot 2^{k-1}+2\right), & \text { if }\left|B_{G}^{*}\right|=n-1 \\ (2 n+3)+n \cdot 2^{k-1}, & \text { if }\left|B_{G}^{*}\right| \geq n .\end{cases}
$$

In either case, $\left|B_{G}^{*}\right|+\left|A_{p}\right| \leq(2 n+3)+n \cdot 2^{k-1}$. But then

$$
|G|=\left|R_{G}^{*}\right|+\left|B_{G}^{*}\right|+\left|A_{p}\right|+\left|X \backslash\left(B_{G}^{*} \cup R_{G}^{*}\right)\right| \leq(n-1)+\left[(2 n+3)+n \cdot 2^{k-1}\right]+3(k-2)<n \cdot 2^{k}+1,
$$

for all $k \geq 3$ and $n \in\{6,7\}$, a contradiction. Thus $\left|R_{G}^{*}\right| \leq\left|B_{G}^{*}\right| \leq n-2$. If $\left|B_{G}^{*}\right|=n-2$, then by Claim 3.3.1, $\left|A_{p}\right| \leq(21-2 n) \cdot 2^{k-1}+(5 n-31)$. But then
$|G|=\left|R_{G}^{*}\right|+\left|B_{G}^{*}\right|+\left|A_{p}\right|+\left|X \backslash\left(B_{G}^{*} \cup R_{G}^{*}\right)\right| \leq 2(n-2)+\left[(21-2 n) \cdot 2^{k-1}+(5 n-31)\right]+3(k-2)<n \cdot 2^{k}+1$,
for all $k \geq 3$ and $n \in\{6,7\}$, a contradiction. Thus $\left|R_{G}^{*}\right| \leq\left|B_{G}^{*}\right| \leq n-3$. By Claim 3.3.11, $\left|R_{G}^{*}\right| \leq\left|B_{G}^{*}\right|=\left|B_{G}\right|=4$ and $n=7$. By Claim 3.3.1, $\left|A_{p}\right| \leq 11 \cdot 2^{k-1}$. But then

$$
|G|=\left|R_{G}^{*}\right|+\left|B_{G}^{*}\right|+\left|A_{p}\right|+\left|X \backslash\left(B_{G}^{*} \cup R_{G}^{*}\right)\right| \leq 4+4+11 \cdot 2^{k-1}+3(k-2)<7 \cdot 2^{k}+1,
$$

for all $k \geq 3$, a contradiction.

By Claim 3.3.12, $2 \leq p-s \leq 8$ and so $\left|A_{p-1}\right| \geq 3$. We may now assume that $a_{p} a_{p-1}$ is colored blue in \mathcal{R}. Then $a_{p-1} \in B$ and so $A_{p-1} \subseteq B_{G}$. Thus $\left|B_{G}^{*}\right| \geq\left|B_{G}\right| \geq\left|A_{p-1}\right| \geq 3$.

Claim 3.3.13 $\left|R_{G}^{*}\right| \leq 2 n$.

Proof. Suppose $\left|R_{G}^{*}\right| \geq 2 n+1$. By Claim 3.3.9, $\left|A_{p}\right| \geq n+1$. By Claim 3.1.1, $G\left[R_{G}^{*}\right]$ has no red edges. Thus $\left|R_{G}^{*}\right|=\left|R_{G}\right|$ and so $X_{r}^{*}=\emptyset$. In particular, all the edges in $\mathcal{R}[R]$ are colored blue. By Claim 3.3.7, $|R| \leq 2$. By Claim 3.3.10, $\left|A_{p-2}\right| \leq n$. Since $A_{p-1} \cap R_{G}=\emptyset$ and $\left|R_{G}\right| \geq 2 n+1$, we see that $|R| \geq 3$, a contradiction.

Claim 3.3.14 $\left|A_{p-1}\right| \leq n$.

Proof. Suppose $\left|A_{p-1}\right| \geq n+1$. Then $\left|B_{G}\right| \geq\left|A_{p-1}\right| \geq n+1$. By Claim 3.1.1, neither $G\left[A_{p}\right]$ nor $G\left[B_{G}\right]$ has blue edges, and $X_{b}^{*}=\emptyset$. Thus $|X| \leq 3(k-1)$. We claim that $X^{\prime \prime \prime}=\emptyset$. Suppose $X^{\prime \prime \prime} \neq \emptyset$. By Claim 3.3.6, $\left|X_{i}^{*}\right| \geq 1$ for every color $i \in[k]$ other than blue, and $\left|X_{j}^{*}\right|=3$ for some color $j \in[k]$ other than blue. Then by Claim 3.3.1 applied to X_{j}^{*} and $V(G) \backslash X,|V(G) \backslash X| \leq(2 n-1) \cdot 2^{k-1}+n-7$. Thus $|X| \geq 3 k-4$, else,

$$
|G|=|V(G) \backslash X|+|X| \leq\left[(2 n-1) \cdot 2^{k-1}+n-7\right]+3 k-5<n \cdot 2^{k}+1
$$

for all $k \geq 3$, a contradiction. We claim that $k \geq 4$. Suppose $k=3$. We may assume that the
third color is green. Since $|X| \geq 3 k-4=5$, we have $\left|X_{r}^{*}\right| \geq 2$ and $\left|X_{g}^{*}\right| \geq 2$. By Claim 3.1.1 applied to A_{p} and $R_{G}^{*},\left|R_{G}^{*}\right| \leq n$. Thus $\left|A_{p}\right|+\left|B_{G}\right|=|G|-\left|R_{G}^{*}\right|-\left|X_{g}^{*}\right| \geq 8 n+1-n-3=7 n-2$. Thus either $\left|A_{p}\right| \geq 3 n+2$ or $\left|B_{G}\right| \geq 3 n+2$. We may assume that $\left|A_{p}\right| \geq 3 n+2$. By Theorem 1.3.2, $G\left[A_{p}\right]$ has either a red or a green $C_{2 n}$. Thus either $G\left[A_{p} \cup X_{r}^{*}\right]$ has a red $C_{2 n+1}$ or $G\left[A_{p} \cup X_{g}^{*}\right]$ has a green $C_{2 n+1}$, a contradiction, meaning that $k \geq 4$, as claimed.

Since $|X| \geq 3 k-4$, by Claim 3.3.2, we may assume that $2 \leq\left|X_{g}^{*}\right| \leq 3$, and $\left|X_{i}^{*}\right|=3$ for every color $i \in[k]$ other than blue and green. When choosing $X_{1}, X_{2}, \ldots, X_{m}$, let $q \in[m]$ be the smallest index such that for some color $\ell \in[k]$ other than blue, $\mid X_{\ell}^{*} \cap$ $\left(X_{1} \cup \cdots \cup X_{q}\right) \mid=3$. By the choice of $q,\left|X_{j}^{*} \cap\left(X_{1} \cup \cdots \cup X_{q-1}\right)\right| \leq 2$ for all $j \in[k]$. By property (b) when choosing $X_{1}, X_{2}, \ldots, X_{m}$, there are possibly two colors $q_{1}, q_{2} \in[k]$ such that $q_{1}=\ell,\left|X_{q_{1}}^{*} \cap\left(X_{1} \cup \cdots \cup X_{q}\right)\right|=3$ and $\left|X_{q_{2}}^{*} \cap\left(X_{1} \cup \cdots \cup X_{q}\right)\right| \leq 3$. Since $X_{b}^{*}=\emptyset$, $k \geq 4$ and $\left|X_{i}^{*}\right|=3$ for every color $i \in[k]$ other than blue and green, we see that $q<m$ and so $\left|\left(X_{1} \cup \cdots \cup X_{q}\right) \backslash\left(X_{q_{1}}^{*} \cup X_{q_{2}}^{*}\right)\right| \leq 2(k-4)$. By Claim 3.3.1 applied to $X_{q_{1}}^{*}$ and $V(G) \backslash\left(X_{1} \cup \cdots \cup X_{q}\right),\left|V(G) \backslash\left(X_{1} \cup \cdots \cup X_{q}\right)\right| \leq(2 n-1) \cdot 2^{k-1}+(n-7)$. But then

$$
\begin{aligned}
|G| & =\left|\left(X_{1} \cup \cdots \cup X_{q}\right) \backslash\left(X_{q_{1}}^{*} \cup X_{q_{2}}^{*}\right)\right|+\left|X_{q_{1}}^{*} \cup X_{q_{2}}^{*}\right|+\left|V(G) \backslash\left(X_{1} \cup \cdots \cup X_{q}\right)\right| \\
& \leq 2(k-4)+6+\left[(2 n-1) \cdot 2^{k-1}+(n-7)\right] \\
& <n \cdot 2^{k}+1
\end{aligned}
$$

for all $k \geq 4$, a contradiction. This proves that $X^{\prime \prime \prime}=\emptyset$, as claimed. Thus $|X| \leq 2(k-1)$.

Since neither $G\left[A_{p}\right]$ nor $G\left[B_{G}\right]$ has blue edges and $X_{b}^{*}=\emptyset$, we see that neither $G\left[A_{p} \cup X^{\prime}\right]$ nor $G\left[B_{G} \cup X^{\prime \prime}\right]$ has blue edges. By the choice of $k,\left|A_{p} \cup X^{\prime}\right| \leq n \cdot 2^{k-1}$ and $\left|B_{G} \cup X^{\prime \prime}\right| \leq n \cdot 2^{k-1}$. We claim that $G\left[R_{G}\right]$ has blue edges.

Suppose $G\left[R_{G}\right]$ has no blue edges. Then $G\left[A_{p} \cup R_{G} \cup X^{\prime}\right]$ has no blue edges. By the choice
of $k,\left|A_{p} \cup R_{G} \cup X^{\prime}\right| \leq n \cdot 2^{k-1}$. But then $\left|B_{G} \cup X^{\prime \prime}\right|=|G|-\left|A_{p} \cup R_{G} \cup X^{\prime}\right| \geq n \cdot 2^{k-1}+1$, a contradiction. Thus $G\left[R_{G}\right]$ has blue edges, as claimed. Then $\left|R_{G}\right| \geq 2$. By Claim 3.3.13, $2 \leq\left|R_{G}\right| \leq\left|R_{G}^{*}\right| \leq 2 n$. Suppose $\left|R_{G}^{*}\right| \geq n-1$. We claim that $\left|A_{p} \cup\left(X^{\prime} \backslash X_{r}^{*}\right)\right|+\left|R_{G}^{*}\right| \leq$ $n \cdot 2^{k-2}+\max \{2 n, k+n-1\}$. If $\left|R_{G}^{*}\right| \geq n$, then by Claim 3.1.1, $G\left[A_{p}\right]$ has no red edges and so $G\left[A_{p} \cup\left(X^{\prime} \backslash X_{r}^{*}\right)\right]$ has no red edges. By the choice of $k,\left|A_{p} \cup\left(X^{\prime} \backslash X_{r}^{*}\right)\right| \leq n \cdot 2^{k-2}$ and so $\left|A_{p} \cup\left(X^{\prime} \backslash X_{r}^{*}\right)\right|+\left|R_{G}^{*}\right| \leq n \cdot 2^{k-2}+2 n$. If $\left|R_{G}^{*}\right|=n-1$, then applying Claim 3.3.1 to R_{G}^{*} and $A_{p},\left|A_{p}\right| \leq n \cdot 2^{k-2}+2$. Thus $\left|A_{p} \cup\left(X^{\prime} \backslash X_{r}^{*}\right)\right|+\left|R_{G}^{*}\right| \leq\left(n \cdot 2^{k-2}+2\right)+(k-2)+(n-1)=$ $n \cdot 2^{k-2}+k+n-1$, and so $\left|A_{p} \cup\left(X^{\prime} \backslash X_{r}^{*}\right)\right|+\left|R_{G}^{*}\right| \leq n \cdot 2^{k-2}+\max \{2 n, k+n-1\}$, as claimed. But then
$|G|=\left|A_{p} \cup\left(X^{\prime} \backslash X_{r}^{*}\right)\right|+\left|R_{G}^{*}\right|+\left|B_{G} \cup\left(X^{\prime \prime} \backslash X_{r}^{*}\right)\right| \leq\left(n \cdot 2^{k-2}+\max \{2 n, k+n-1\}\right)+n \cdot 2^{k-1}<n \cdot 2^{k}+1$,
for all $k \geq 3$, a contradiction.

Next, suppose $\left|R_{G}^{*}\right|=n-2$. By applying Claim 3.3.1 to R_{G}^{*} and A_{p} we see that $\left|A_{p}\right| \leq$ $(21-2 n) \cdot 2^{k-2}+(5 n-31)$. But then

$$
\begin{aligned}
|G| & \leq\left|A_{p}\right|+\left|B_{G} \cup X^{\prime \prime}\right|+\left|R_{G}^{*}\right|+\left|X^{\prime} \backslash X_{r}^{*}\right| \\
& \leq\left[(21-2 n) \cdot 2^{k-2}+(5 n-31)\right]+n \cdot 2^{k-1}+(n-2)+(k-2) \\
& <n \cdot 2^{k}+1,
\end{aligned}
$$

for all $k \geq 3$, a contradiction. Thus $\left|R_{G}^{*}\right| \leq n-3$. If $\left|R_{G}^{*}\right|=4$, then $n=7$ and so by Claim 3.3.1 applied to R_{G}^{*} and $A_{p},\left|A_{p}\right| \leq 11 \cdot 2^{k-2}$. However,

$$
\begin{aligned}
|G| & \leq\left|A_{p}\right|+\left|B_{G} \cup X^{\prime \prime}\right|+\left|R_{G}^{*}\right|+\left|X^{\prime} \backslash R_{G}^{*}\right| \\
& \leq 11 \cdot 2^{k-2}+7 \cdot 2^{k-1}+4+(k-2) \\
& <7 \cdot 2^{k}+1,
\end{aligned}
$$

for all $k \geq 3$, a contradiction. Therefore, $\left|R_{G}^{*}\right| \leq 3$.

Let $x y$ be a blue edge in $G\left[R_{G}\right]$. This is possible because $G\left[R_{G}\right]$ has blue edges. We claim that either x or y is red-complete to B_{G}. Suppose there exist $x^{\prime}, y^{\prime} \in B_{G}$ such that $x x^{\prime}$ and $y y^{\prime}$ are colored blue. Then $x^{\prime}=y^{\prime}$, else we obtain a blue $C_{2 n+1}$ by Claim 3.1.1 applied to B_{G} and $A_{p} \cup\{x, y\}$. Thus x^{\prime} is the unique vertex in B_{G} such that $\{x, y\}$ is red-complete to $B_{G} \backslash x^{\prime}$ in G and $x x^{\prime}, y x^{\prime}$ are colored blue. Then there exists $i \in[s]$ such that $A_{i}=\left\{x^{\prime}\right\}$. Since $G\left[B_{G}\right]$ has no blue edges, we see that $\left\{x, y, x^{\prime}\right\}$ must be red-complete to $B_{G} \backslash x^{\prime}$ in G.

Now, if $\left|R_{G}^{*}\right|=3$, let $R_{G}^{*}=\{x, y, z\}$. If either $z x$ or $z y$ is blue, then $X_{r}^{*}=\emptyset$ and by the above reasoning, z is also red-complete to $B_{G} \backslash x^{\prime}$. The same is true if $z \in X_{r}^{*}$. By Claim 3.3.1, $\left|B_{G} \backslash x^{\prime}\right| \leq(2 n-3) \cdot 2^{k-2}+(n-7)$ and $\left|A_{p}\right| \leq(2 n-1) \cdot 2^{k-2}+(n-7)$. But then

$$
\begin{aligned}
|G| & =\left|A_{p}\right|+\left|B_{G} \backslash x^{\prime}\right|+\left|R_{G}^{*} \cup x^{\prime}\right|+|X| \\
& \leq\left[(2 n-1) \cdot 2^{k-2}+(n-7)\right]+\left[(2 n-3) \cdot 2^{k-2}+(n-7)\right]+4+2(k-2) \\
& <n \cdot 2^{k}+1
\end{aligned}
$$

for all $k \geq 3$, a contradiction. Therefore, we may assume both $z x$ and $z y$ are red, but that $z \notin X_{r}^{*}$.

In what follows, we now assume $2 \leq\left|R_{G}\right| \leq\left|R_{G}^{*}\right| \leq 3$. By Claim 3.3.1 applied to $\left\{x, y, x^{\prime}\right\}$ and $B_{G} \backslash x^{\prime},\left|B_{G} \backslash x^{\prime}\right| \leq(2 n-1) \cdot 2^{k-2}+n-7$. Note that $G\left[A_{p} \cup X^{\prime} \cup\{x, z\}\right]$ has no blue edges if $\left|R_{G}^{*}\right|=3$, and similarly $G\left[A_{p} \cup X^{\prime} \cup\{x\}\right]$ if $\left|R_{G}\right|=2$. Then $\left|X^{\prime \prime}\right| \geq k-2$, else,

$$
\begin{aligned}
|G| & =\left|A_{p} \cup X^{\prime} \cup\{x, z\}\right|+\left|B_{G} \backslash x^{\prime}\right|+\left|\left\{y, x^{\prime}\right\}\right|+\left|X^{\prime \prime}\right| \\
& \leq n \cdot 2^{k-1}+\left[(2 n-1) \cdot 2^{k-2}+n-7\right]+2+(k-3) \\
& <n \cdot 2^{k}+1,
\end{aligned}
$$

for all $k \geq 3$, a contradiction. Since $2 \leq\left|R_{G}\right| \leq\left|R_{G}^{*}\right| \leq 3$, we see that $\left|X_{r}^{*}\right| \leq 1$. It follows that $\left|X_{i}^{*}\right|=2$ for all colors $i \in[k]$ other than red and blue. Then neither $G\left[A_{p}\right]$ nor $G\left[B_{G} \backslash\left\{x^{\prime}\right\}\right]$ has a monochromatic $C_{2 n-1}$ in any color $i \in[k]$ other than red and blue. Clearly, neither $G\left[A_{p}\right]$ nor $G\left[B_{G} \backslash\left\{x^{\prime}\right\}\right]$ has red $C_{2 n-1}$ because $\{x, y\}$ is red-complete to both A_{p} and $B_{G} \backslash\left\{x^{\prime}\right\}$. By Theorem 1.3.26 for $n=6$ and Theorem 1.3.27 for $n=7$, $\left|B_{G} \backslash x^{\prime}\right| \leq(n-1) \cdot 2^{k-1}$ and $\left|A_{p}\right| \leq(n-1) \cdot 2^{k-1}$ (note that although proved simultaneously here, the proof for $G R_{k}\left(C_{13}\right)$ is independent of the proof for $G R_{k}\left(C_{15}\right)$, so we may use that $\left.G R_{k}\left(C_{13}\right)=6 \cdot 2^{k}+1\right)$. But then
$|G|=\left|A_{p}\right|+\left|B_{G} \backslash x^{\prime}\right|+\left|R_{G}^{*} \cup\left\{x^{\prime}\right\}\right|+\left|X \backslash X_{r}^{*}\right| \leq(n-1) \cdot 2^{k-1}+(n-1) \cdot 2^{k-1}+4+2(k-2)<n \cdot 2^{k}+1$,
for all $k \geq 3$, a contradiction. This proves that either x or y is red-complete to B_{G}. We may assume that x is red-complete to B_{G}.

Suppose $\left|R_{G}\right|=2$. Then $R_{G}=\{x, y\}$ and $\left|X_{r}^{*}\right| \leq 1$. It follows that neither $G\left[A_{p} \cup\{y\} \cup X^{\prime}\right]$ nor $G\left[B_{G} \cup\{x\} \cup X^{\prime \prime}\right]$ has blue edges. By minimality of $k,\left|A_{p} \cup\{y\} \cup X^{\prime}\right| \leq n \cdot 2^{k-1}$ and $\left|B_{G} \cup\{x\} \cup X^{\prime \prime}\right| \leq n \cdot 2^{k-1}$. But then $|G|=\left|A_{p} \cup\{y\} \cup X^{\prime}\right|+\left|B_{G} \cup\{x\} \cup X^{\prime \prime}\right| \leq$ $n \cdot 2^{k-1}+n \cdot 2^{k-1}<n \cdot 2^{k}+1$ for all $k \geq 3$, a contradiction. Thus $\left|R_{G}\right|=\left|R_{G}^{*}\right|=3$. Then $X_{r}^{*}=\emptyset$ and $G\left[A_{p}\right]$ has no red $C_{2 n}$. Clearly, $\left|X^{\prime}\right| \leq k-2$. We claim that $\left|X^{\prime}\right| \leq k-3$. Suppose $\left|X^{\prime}\right|=k-2$. Then $\left|X_{i}^{*}\right| \geq 1$ for all colors $i \in[k]$ other than red and blue. Thus $G\left[A_{p}\right]$ has no monochromatic $C_{2 n}$ in any colors $i \in[k]$ other than blue. Since $G\left[A_{p}\right]$ has no blue edges, by Theorem 1.3.23, $\left|A_{p}\right| \leq(n-1)(k-1)+3 n-1$. Then $k=3$, else,
$|G|=\left|A_{p}\right|+\left|B_{G} \cup X^{\prime \prime}\right|+\left|R_{G}\right|+\left|X^{\prime}\right| \leq[(n-1)(k-1)+3 n-1]+n \cdot 2^{k-1}+3+(k-2)<n \cdot 2^{k}+1$
for all $k \geq 4$. By Theorem 1.3.2, we see that $\left|A_{p}\right| \leq 3 n-2$ if $k=3$. But then

$$
|G|=\left|A_{p}\right|+\left|B_{G} \cup X^{\prime \prime}\right|+\left|R_{G}\right|+\left|X^{\prime}\right| \leq(3 n-2)+4 n+3+1=7 n+2<8 n+1 .
$$

Thus $\left|X^{\prime \prime}\right| \leq\left|X^{\prime}\right| \leq k-3$, as claimed. Since x is red-complete to B_{G}, it follows that $G\left[B_{G} \cup\{x\} \cup X^{\prime \prime}\right]$ has no blue edges. By minimality of $k,\left|B_{G} \cup\{x\} \cup X^{\prime \prime}\right| \leq n \cdot 2^{k-1}$. By Claim 3.3.1 applied to R_{G} and $A_{p},\left|A_{p}\right| \leq(2 n-1) \cdot 2^{k-2}+n-7$. But then
$|G|=\left|A_{p}\right|+\left|B_{G} \cup\{x\} \cup X^{\prime \prime}\right|+\left|R_{G} \backslash x\right|+\left|X^{\prime}\right| \leq\left[(2 n-1) \cdot 2^{k-2}+n-7\right]+n \cdot 2^{k-1}+2+(k-3)<n \cdot 2^{k}+1$
for all $k \geq 3$, a contradiction. Hence, $\left|A_{p-1}\right| \leq n$.

By Claim 3.3.14, $\left|A_{p-2}\right| \leq\left|A_{p-1}\right| \leq n$. Then $\left|B_{G}\right| \leq 2 n$, because this is trivially true when $|B| \leq 2$, and follows from Claim 3.3.7 when $|B| \geq 3$. By Claim 3.3.13, $\left|R_{G}\right| \leq\left|R_{G}^{*}\right| \leq 2 n$. Then $\left|B_{G}\right|+\left|R_{G}\right| \leq 4 n$. Finally, recall that $\left|B_{G}\right| \geq\left|A_{p-1}\right| \geq 3$ because $A_{p-1} \subseteq B_{G}$. We first consider the case when $\left|R_{G}^{*}\right| \geq n$. Since $\left|A_{p}\right| \geq n+1$, by Claim 3.1.1, $G\left[A_{p}\right]$ has no red edges. We claim that $\left|B_{G}\right| \geq n$. Suppose $3 \leq\left|B_{G}\right| \leq n-1$. Then $\left|A_{p}\right| \leq(2 n-1) \cdot 2^{k-2}+n-7$ by Claim 3.3.1 applied to B_{G} and A_{p}. But then
$|G|=\left|A_{p}\right|+\left|B_{G}\right|+\left|R_{G}^{*}\right|+\left|X \backslash X_{r}^{*}\right| \leq\left[(2 n-1) \cdot 2^{k-2}+n-7\right]+(n-1)+2 n+3(k-1)<n \cdot 2^{k}+1$,
for all $k \geq 3$, a contradiction. Thus $\left|B_{G}\right| \geq n$, as claimed. By Claim 3.1.1, $G\left[A_{p}\right]$ has no blue edges and $X_{b}^{*}=\emptyset$, so $\left|X^{\prime \prime \prime}\right| \leq\left|X^{\prime \prime}\right| \leq k-1$. Since $G\left[A_{p} \cup X^{\prime}\right]$ has neither red nor blue edges, it follows that $\left|A_{p} \cup X^{\prime}\right| \leq n \cdot 2^{k-2}$ by minimality of k. But then

$$
|G|=\left|A_{p} \cup X^{\prime}\right|+\left|X^{\prime \prime} \cup X^{\prime \prime \prime}\right|+\left(\left|B_{G}\right|+\left|R_{G}\right|\right) \leq n \cdot 2^{k-2}+2(k-1)+4 n<n \cdot 2^{k}+1,
$$

for all $k \geq 3$, a contradiction.

It remains to consider the case when $\left|R_{G}^{*}\right| \leq n-1$. If $\left|B_{G}^{*}\right| \geq n-1$, by Claim 3.3.1 applied to B_{G}^{*} and A_{p}, we have

$$
\left|A_{p}\right|+\left|B_{G}^{*}\right|+\left|X \backslash\left(X_{r}^{*} \cup X_{b}^{*}\right)\right| \leq \begin{cases}\left(n \cdot 2^{k-1}+2\right)+(n-1)+3(k-2), & \text { if }\left|B_{G}^{*}\right|=n-1 \\ n \cdot 2^{k-1}+(2 n+3)+3(k-2), & \text { if }\left|B_{G}^{*}\right| \geq n\end{cases}
$$

Thus in either case, $\left|A_{p}\right|+\left|B_{G}^{*}\right|+\left|X \backslash\left(X_{r}^{*} \cup X_{b}^{*}\right)\right| \leq n \cdot 2^{k-1}+2 n+3 k-3$. But then
$|G|=\left(\left|A_{p}\right|+\left|B_{G}^{*}\right|+\left|X \backslash\left(X_{r}^{*} \cup X_{b}^{*}\right)\right|\right)+\left|R_{G}^{*}\right| \leq\left(n \cdot 2^{k-1}+2 n+3 k-3\right)+(n-1)<n \cdot 2^{k}+1$,
for all $k \geq 3$, a contradiction. Thus $3 \leq\left|B_{G}^{*}\right| \leq n-2$. By Claim 3.3.11, either $\left|B_{G}^{*}\right| \geq 4$ or $\left|R_{G}^{*}\right| \geq 4$. By applying Claim 3.3.1 to B_{G}^{*} when $\left|B_{G}^{*}\right| \geq 4$ (or R_{G}^{*} when $\left|R_{G}^{*}\right| \geq 4$) and A_{p}, we have $\left|A_{p}\right| \leq(2 n-3) \cdot 2^{k-1}+n-7$. Then $\left|R_{G}^{*}\right| \geq n-2$, else

$$
\begin{aligned}
|G| & =\left|A_{p}\right|+\left|B_{G}^{*}\right|+\left|R_{G}^{*}\right|+\left|X \backslash\left(X_{r}^{*} \cup X_{b}^{*}\right)\right| \\
& \leq\left[(2 n-3) \cdot 2^{k-1}+(n-7)\right]+(n-2)+(n-3)+3(k-2) \\
& <n \cdot 2^{k}+1,
\end{aligned}
$$

for all $k \geq 3$ and $n \in\{6,7\}$, a contradiction. Thus $n-2 \leq\left|R_{G}^{*}\right| \leq n-1$. By Claim 3.3.1 applied to R_{G}^{*} and $A_{p},\left|A_{p}\right| \leq(21-2 n) \cdot 2^{k-1-q}+(5 n-31)$. But then

$$
\begin{aligned}
|G| & =\left|A_{p}\right|+\left|B_{G}^{*}\right|+\left|R_{G}^{*}\right|+\left|X \backslash\left(X_{r}^{*} \cup X_{b}^{*}\right)\right| \\
& \leq\left[(21-2 n) \cdot 2^{k-1}+(5 n-31)\right]+(n-2)+(n-1)+3(k-2) \\
& <n \cdot 2^{k}+1,
\end{aligned}
$$

for all $k \geq 3$ and $n \in\{6,7\}$, a contradiction.

This completes the proof of Theorem 1.3.27.

CHAPTER 4: IMPROVED UPPER BOUND FOR $G R_{k}\left(C_{2 n+1}\right)$

4.1 Proof of Theorem 1.3.28

Let $n \geq 8$ be given as in the statement. For all $k \geq 1$, define the function

$$
f(k, n):= \begin{cases}2 n+1 & \text { if } k=1 \\ 4 n+1 & \text { if } k=2 \\ (n \ln n) \cdot 2^{k}-(k+1) n+1 & \text { if } k \geq 3\end{cases}
$$

Clearly, $G R_{1}\left(C_{2 n+1}\right) \leq f(1, n)$ and by Theorem 1.3.2, $G R\left(C_{2 n+1}, C_{2 n+1}\right) \leq f(2, n)$. It suffices to show that $G R_{k}\left(C_{2 n+1}\right) \leq f(k, n)$ for all $k \geq 3$. Let $G:=K_{f(k, n)}$ and let $c: E(G) \rightarrow[k]$ be any Gallai-coloring of G. Suppose that G does not contain any monochromatic copy of $C_{2 n+1}$ under c. Then c is bad. Among all complete graphs on $f(k, n)$ vertices with a bad Gallai k-coloring, we choose G with k minimum. Let X_{1}, \ldots, X_{k} be disjoint subsets of $V(G)$ such that for each $i \in[k], X_{i}$ (possibly empty) is mc-complete in color i to $V(G) \backslash \bigcup_{i=1}^{k} X_{i}$. Choose X_{1}, \ldots, X_{k} so that $\sum_{i=1}^{k}\left|X_{i}\right| \leq(k+1) n$ is as large as possible. Denote $X:=\bigcup_{i=1}^{k} X_{i}$. Then $|X| \leq(k+1) n$. We next prove several claims.

Claim 4.1.1 For all $i \in[k],\left|X_{i}\right| \leq n-3$.

Proof. Suppose $\left|X_{i}\right| \geq n-2$ for some color $i \in[k]$. We may assume that color i is blue. We next show that $|G \backslash X| \leq f(k-1, n)+3$. Suppose $|G \backslash X| \geq f(k-1, n)+4$. Let A be a minimal set of vertices of $G \backslash X$ such that $G \backslash(X \cup A)$ has no blue edges. By minimality of $k,|G \backslash(X \cup A)| \leq f(k-1, n)-1$. Then $|A| \geq 5$ and so $G \backslash X$ must contain blue edges. Thus $\left|X_{i}\right| \leq n-1$, otherwise for any blue edge $u v$ in $G \backslash X$, we obtain a blue $C_{2 n+1}$ by Lemma 3.1.1.

Let $t:=n-\left|X_{i}\right|$. Then $t \in\{1,2\}$ because $n-2 \leq\left|X_{i}\right| \leq n-1$. It follows that $G \backslash X$ has a blue $H \in\left\{(2 t+1) K_{2},(2 t-1) K_{2} \cup P_{3}, K_{2} \cup 2 P_{t+1}, t K_{2} \cup P_{t+2}, P_{4} \cup(t-1) P_{3}, K_{2} \cup P_{2 t+1}, P_{2 t+2}\right\}$. But then we obtain a blue $C_{2 n+1}$ using $n-t$ vertices in X_{i}, all vertices and edges of H, and $n+t+1-|H|$ vertices in $V(G) \backslash(X \cup V(H))$, a contradiction. This proves that $|G \backslash X| \leq f(k-1, n)+3$. Thus

$$
\begin{aligned}
|G| & =|X|+|G \backslash X| \leq(k+1) n+f(k-1, n)+3 \\
& = \begin{cases}4 n+(4 n+1)+3, & \text { if } k=3 \\
(k+1) n+\left[(n \ln n) \cdot 2^{k-1}-k n+1\right]+3, & \text { if } k \geq 4\end{cases}
\end{aligned}
$$

so that in any case, $|G|<f(k, n)$ for all $k \geq 3$ and $n \geq 8$, a contradiction.

Claim 4.1.2 $X_{i}=\emptyset$ for some $i \in[k]$.

Proof. Suppose $X_{i} \neq \emptyset$ for every $i \in[k]$. By Claim 4.1.1, $|X| \leq k(n-3)$. Then

$$
|G \backslash X| \geq f(k, n)-k(n-3)=(n \ln n) \cdot 2^{k}-(k+1) n+1-k(n-3) \geq(n-1) k+3 n,
$$

for all $k \geq 3$ and $n \geq 8$. By Theorem 1.3.23, $G \backslash X$ contains a monochromatic $C_{2 n}$, and thus G contains a monochromatic $C_{2 n+1}$, since $X_{i} \neq \emptyset$ for all $i \in[k]$, a contradiction.

By Claims 4.1.1 and 4.1.2, $|X| \leq(k-1)(n-3)$. Consider now a Gallai partition of $G \backslash X$ with parts A_{1}, \ldots, A_{p}, where $p \geq 2$ and $\left|A_{1}\right| \leq\left|A_{2}\right| \leq \cdots \leq\left|A_{p}\right|$. By Theorem 1.3.2, $p \leq 4 n$. Additionally, let us define the sets

$$
\begin{aligned}
B & :=\left\{a_{i} \in\left\{a_{1}, \ldots, a_{p-1}\right\} \mid a_{i} a_{p} \text { is colored blue in } \mathcal{R}\right\} \\
R & :=\left\{a_{j} \in\left\{a_{1}, \ldots, a_{p-1}\right\} \mid a_{j} a_{p} \text { is colored red in } \mathcal{R}\right\}
\end{aligned}
$$

This motivates us to define the related sets in G as $B_{G}:=\bigcup_{a_{i} \in B} A_{i}$ and $R_{G}:=\bigcup_{a_{j} \in R} A_{j}$. Moreover, we employ the notation X_{r} to indicate X_{i} when $i=$ red, and likewise X_{b} when $i=$ blue.

Claim 4.1.3 $\left|B_{G} \cup R_{G}\right| \geq 2 n+1$.

Proof. Suppose $\left|B_{G} \cup R_{G}\right| \leq 2 n$. Then every vertex in $B_{G} \cup R_{G}$ is either red- or blue-complete to A_{p}. We may assume that X_{1} is red-complete to $V(G) \backslash X$ and X_{2} is blue-complete to $V(G) \backslash X$. Let $X_{1}^{\prime}:=X_{1} \cup R_{G}, X_{2}^{\prime}:=X_{2} \cup B_{G}$, and $X_{i}^{\prime}:=X_{i}$ for all $i \in\{3, \ldots, k\}$. But then

$$
\left|\bigcup_{i=1}^{k} X_{i}^{\prime}\right|=\left|X \cup B_{G} \cup R_{G}\right| \leq(k-1)(n-3)+2 n=(k+1) n-3(k-1)<(k+1) n,
$$

contrary to the choice of X_{1}, \ldots, X_{k}. Thus $\left|B_{G} \cup R_{G}\right| \geq 2 n+1$.

Claim 4.1.4 If $\left|A_{p}\right| \leq n$, then $\left|A_{p-2}\right| \leq\lfloor n / 2\rfloor$.

Proof. Let $q:=\lfloor n / 2\rfloor$. Suppose $\left|A_{p}\right| \leq n$ but $\left|A_{p-2}\right| \geq q+1$. Then $|G|-\mid A_{p} \cup$ $A_{p-1} \cup A_{p-2}|-|X| \geq f(k, n)-3 n-(n-3)(k-1) \geq 4 n$ for all $k \geq 3$ and $n \geq 8$. Let B_{1}, B_{2}, B_{3} be a permutation of A_{p-2}, A_{p-1}, A_{p} such that B_{2} is, say, blue-complete to $B_{1} \cup B_{3}$ in G. Let $b_{1}, \ldots, b_{q+1} \in B_{1}, b_{q+2}, \ldots, b_{2 q+2} \in B_{2}$, and $b_{2 q+3}, \ldots, b_{3 q+3} \in B_{3}$. Let $A:=V(G) \backslash\left(B_{1} \cup B_{2} \cup B_{3} \cup X\right)$, and define

$$
\begin{aligned}
B_{1}^{*} & :=\left\{v \in A \mid v \text { is blue-complete to } B_{1} \text { and red-complete to } B_{3} \text { in } G\right\} \\
B_{2}^{*} & :=\left\{v \in A \mid v \text { is blue-complete to } B_{1} \cup B_{3} \text { in } G\right\} \\
B_{3}^{*} & :=\left\{v \in A \mid v \text { is red-complete to } B_{1} \cup B_{3} \text { in } G\right\} \\
B_{4}^{*} & :=\left\{v \in A \mid v \text { is red-complete to } B_{1} \text { and blue-complete to } B_{3} \text { in } G\right\} .
\end{aligned}
$$

Then $A=B_{1}^{*} \cup B_{2}^{*} \cup B_{3}^{*} \cup B_{4}^{*}$ and so $|A|=|G|-\left|A_{p} \cup A_{p-1} \cup A_{p-2}\right|-|X| \geq 3 n$. Note that $B_{1}^{*}, B_{2}^{*}, B_{3}^{*}, B_{4}^{*}$ are pairwise disjoint. Suppose first that B_{1} is red-complete to B_{3} in G. By Lemma 3.1.1 applied to B_{3}^{*} and $B_{1} \cup B_{3},\left|B_{3}^{*}\right| \leq n-1$. Thus $\left|B_{1}^{*}\right|+\left|B_{2}^{*}\right|+\left|B_{4}^{*}\right| \geq$ $3 n-(n-1)=2 n+1$. By symmetry, we may assume that $\left|B_{1}^{*}\right|+\left|B_{2}^{*}\right| \geq n+1$. We claim that $G\left[B_{1}^{*} \cup B_{2}^{*} \cup B_{4}^{*}\right]$ has no blue edges. Suppose not. Let $u v$ be a blue edge in $G\left[B_{1}^{*} \cup B_{2}^{*} \cup B_{4}^{*}\right]$. Since $\left|B_{1}^{*}\right|+\left|B_{2}^{*}\right| \geq n+1$, let $x_{1}, \ldots, x_{q-1} \in B_{1}^{*} \cup B_{2}^{*}$ be distinct vertices that are different from u and v. If $u, v \in B_{1}^{*} \cup B_{2}^{*}$, then we find a blue $C_{2 n+1}$ with vertices

$$
\begin{cases}u, v, b_{1}, b_{q+2}, b_{2 q+3}, b_{q+3}, \ldots, b_{3 q+3}, b_{2 q+2}, b_{2}, x_{1}, b_{3}, \ldots, x_{q-2}, b_{q}, & \text { if } n \text { is even } \\ u, v, b_{1}, b_{q+2}, b_{2 q+3}, b_{q+3}, \ldots, b_{3 q+3}, b_{2 q+2}, b_{2}, x_{1}, b_{3}, \ldots, x_{q-2}, b_{q}, x_{q-1}, b_{q+1}, & \text { if } n \text { is odd }\end{cases}
$$

a contradiction. Thus we may assume that $v \in B_{4}^{*}$. If $u \in B_{1}^{*} \cup B_{2}^{*}$, then we find a blue $C_{2 n+1}$ with vertices

$$
\begin{cases}u, v, b_{2 q+3}, b_{q+2}, b_{2 q+4}, \ldots, b_{3 q+3}, b_{2 q+2}, b_{1}, x_{1}, \ldots, x_{q-2}, b_{q-1}, & \text { if } n \text { is even } \\ u, v, b_{2 q+3}, b_{q+2}, b_{2 q+4}, \ldots, b_{3 q+3}, b_{2 q+2}, b_{1}, x_{1}, \ldots, b_{q-1}, x_{q-1}, b_{q}, & \text { if } n \text { is odd }\end{cases}
$$

a contradiction. Thus $u, v \in B_{4}^{*}$. But then we obtain a blue $C_{2 n+1}$ with vertices

$$
\begin{cases}u, v, b_{2 q+3}, b_{q+2}, b_{1}, x_{1}, b_{2}, \ldots, x_{q-1}, b_{q}, b_{q+3}, b_{2 q+4}, b_{q+4}, \ldots, b_{2 q+1}, b_{3 q+2}, & \text { if } n \text { is even } \\ u, v, b_{2 q+3}, b_{q+2}, b_{1}, x_{1}, b_{2}, \ldots, x_{q-1}, b_{q}, b_{q+3}, b_{2 q+4}, b_{q+4}, \ldots, b_{2 q+2}, b_{3 q+3}, & \text { if } n \text { is odd }\end{cases}
$$

a contradiction. This proves that $G\left[B_{1}^{*} \cup B_{2}^{*} \cup B_{4}^{*}\right]$ contains no blue edges.

Since $\left|B_{1}^{*}\right|+\left|B_{2}^{*}\right|+\left|B_{4}^{*}\right| \geq 2 n+1$ and $\left|A_{p}\right| \leq n$, by Lemma 3.1.2, $G\left[B_{1}^{*} \cup B_{2}^{*} \cup B_{4}^{*}\right]$ has a red $C_{2 n+1}$, a contradiction. Thus B_{1} must be blue-complete to B_{3}. Then $\left|B_{1} \cup B_{2} \cup B_{3}\right| \leq 2 n$, else we obtain a blue $C_{2 n+1}$ in $G\left[B_{1} \cup B_{2} \cup B_{3}\right]$. By Lemma 3.1.1 applied to $B_{2} \cup B_{2}^{*}$ and
$B_{1} \cup B_{3}$, we see that $\left|B_{2}^{*}\right| \leq q-1$. If $\left|B_{1}^{*}\right| \geq q$, let $x_{1}, \ldots, x_{q} \in B_{1}^{*}$ be distinct vertices. Then we find a blue $C_{2 n+1}$ with vertices

$$
\begin{cases}b_{1}, b_{q+2}, b_{2 q+3}, b_{q+3}, \ldots, b_{3 q+3}, b_{2}, x_{1}, \ldots, b_{q}, x_{q-1}, & \text { if } n \text { is even } \\ b_{1}, b_{q+2}, b_{2 q+3}, b_{q+3}, \ldots, b_{3 q+3}, b_{2}, x_{1}, \ldots, b_{q}, x_{q-1}, b_{q+1}, x_{q}, & \text { if } n \text { is odd }\end{cases}
$$

a contradiction. Thus $\left|B_{1}^{*}\right| \leq q-1$, and similarly, $\left|B_{4}^{*}\right| \leq q-1$. Therefore,

$$
\begin{aligned}
\left|B_{3}^{*}\right| & =|G|-|X|-\left|B_{1} \cup B_{2} \cup B_{3}\right|-\left|B_{1}^{*}\right|-\left|B_{2}^{*}\right|-\left|B_{4}^{*}\right| \\
& \geq f(k, n)-(k-1)(n-3)-2 n-(q-1)-(q-1)-(q-1) \\
& \geq 2 n+1 .
\end{aligned}
$$

By Lemma 3.1.1 applied to B_{3}^{*} and $B_{1} \cup B_{3}, G\left[B_{3}^{*}\right]$ contains no red edges. But then by Lemma 3.1.2 and the fact that $\left|A_{p}\right| \leq n$ and $\left|B_{3}^{*}\right| \geq 2 n+1, G\left[B_{3}^{*}\right]$ must contain a blue $C_{2 n+1}$, a contradiction.

Claim 4.1.5 $\left|A_{p}\right| \geq n+1$.

Proof. Suppose $\left|A_{p}\right| \leq n$. Let $r_{i}:=\left|\left\{j \in[p]:\left|A_{j}\right| \geq i\right\}\right|$. Then $|G \backslash X|=\sum_{i=1}^{n} r_{i}$. Let
$q:=\left|A_{p-2}\right|$. By Lemma 3.1.3 and Claim 4.1.4,

$$
\begin{aligned}
& |G|=|X|+\left(\left|A_{p}\right|-q\right)+\left(\left|A_{p-1}\right|-q\right)+\sum_{i=1}^{q} r_{i} \\
& \leq(k-1)(n-3)+(2 n-2 q)+\sum_{i=1}^{q} 4\left\lceil\frac{n}{i}\right\rceil \\
& \leq(k-1)(n-3)+(2 n-2 q)+\sum_{i=1}^{q} 4\left(\frac{n}{i}+1\right) \\
& =(k-1)(n-3)+2 n+2 q+4 n \sum_{i=1}^{q} \frac{1}{i} \\
& (k-1)(n-3)+2 n+8+4 n \sum_{i=1}^{4} \frac{1}{i}, \\
& n \in\{8,9\}, q=\left\lfloor\frac{n}{2}\right\rfloor=4 \\
& \leq \begin{cases}(k-1)(n-3)+2 n+10+4 n \sum_{i=1}^{5} \frac{1}{i}, & n=10, q=\left\lfloor\frac{n}{2}\right\rfloor=5 \\
(k-1)(n-3)+2 n+2\left\lfloor\frac{n}{2}\right\rfloor+4 n\left(1+\int_{1}^{\left\lfloor\frac{n}{2}\right\rfloor} \frac{1}{x} d x\right), & n \geq 11, q=\left\lfloor\frac{n}{2}\right\rfloor\end{cases} \\
& (k-1)(n-3)+2 n+2\left(\left\lfloor\frac{n}{2}\right\rfloor-1\right)+4 n\left(1+\int_{1}^{\left\lfloor\frac{n}{2}\right\rfloor-1} \frac{1}{x} d x\right), \quad n \geq 8, q \leq\left\lfloor\frac{n}{2}\right\rfloor-1 . \\
& (k-1)(n-3)+2 n+8+\frac{25 n}{3}, \quad n \in\{8,9\}, q=\left\lfloor\frac{n}{2}\right\rfloor=4 \\
& \leq \begin{cases}(k-1)(n-3)+2 n+10+\frac{137 n}{15}, & n=10, q=\left\lfloor\frac{n}{2}\right\rfloor \\
(k-1)(n-3)+2 n+2\left\lfloor\frac{n}{2}\right\rfloor+4 n\left(1+\ln \frac{n}{2}\right), & n \geq 11, q=\left\lfloor\frac{n}{2}\right\rfloor\end{cases} \\
& (k-1)(n-3)+2 n+2\left(\left\lfloor\frac{n}{2}\right\rfloor-1\right)+4 n\left[1+\ln \left(\frac{n}{2}-1\right)\right], \quad n \geq 8, q \leq\left\lfloor\frac{n}{2}\right\rfloor-1 . \\
& <f(k, n),
\end{aligned}
$$

for all $k \geq 3$ and $n \geq 8$, a contradiction.

Claim 4.1.6 $\left|B_{G}\right| \geq n+1$ and $\left|R_{G}\right| \geq n+1$. Moreover, both X_{r} and X_{b} are empty, giving $|X| \leq(k-2)(n-3)$.

Proof. We may assume that $\left|B_{G}\right| \geq\left|R_{G}\right|$. By Claim 4.1.3, $\left|B_{G}\right| \geq n+1$. Suppose for a contradiction that $\left|R_{G}\right| \leq n$. Since $\left|A_{p}\right| \geq n+1$ by Claim 4.1.5, then by Lemma 3.1.1 $X_{b}=\emptyset$ and neither $G\left[A_{p}\right]$ nor $G\left[B_{G}\right]$ has blue edges. By minimality of $k,\left|A_{p}\right| \leq f(k-1, n)-1$ and $\left|B_{G}\right| \leq f(k-1, n)-1$. Note that $|X|>(k-2)(n-3)$, otherwise

$$
|G|=\left|A_{p}\right|+\left|B_{G}\right|+\left|R_{G}\right|+|X| \leq 2[f(k-1, n)-1]+n+(k-2)(n-3)<f(k, n)
$$

for all $k \geq 3$ and $n \geq 8$, a contradiction. By Claim 4.1.1, $X_{i} \neq \emptyset$ for all $i \in[k]$ other than blue. Thus neither $G\left[A_{p}\right]$ nor $G\left[B_{G}\right]$ has monochromatic $C_{2 n}$. By Theorem 1.3.23, $\left|A_{p}\right| \leq(k-1)(n-1)+3 n-1$ and $\left|B_{G}\right| \leq(k-1)(n-1)+3 n-1$. But then

$$
|G|=\left|A_{p}\right|+\left|B_{G}\right|+\left|R_{G}\right|+|X| \leq 2[(k-1)(n-1)+3 n-1]+n+(k-1)(n-3)<f(k, n)
$$

for all $k \geq 3$ and $n \geq 8$, a contradiction. Thus, $\left|B_{G}\right| \geq n+1$ and $\left|R_{G}\right| \geq n+1$. Therefore, Lemma 3.1.1 implies $X_{r}=\emptyset$, and thus we have $|X| \leq(k-2)(n-3)$.

Claim 4.1.7 $\left|A_{p-2}\right| \leq n$.

Proof. Suppose $\left|A_{p-2}\right| \geq n+1$. Then $n+1 \leq\left|A_{p-2}\right| \leq\left|A_{p-1}\right| \leq\left|A_{p}\right|$ and so $\mathcal{R}\left[\left\{a_{p-2}, a_{p-1}, a_{p}\right\}\right]$ is not a monochromatic triangle in \mathcal{R} (else $G\left[A_{p} \cup A_{p-1} \cup A_{p-2}\right]$ has a monochromatic $C_{2 n+1}$). Let B_{1}, B_{2}, B_{3} be a permutation of A_{p-2}, A_{p-1}, A_{p} such that B_{2} is, say blue-complete, to $B_{1} \cup B_{3}$ in G. Then B_{1} must be red-complete to B_{3} in G. By Claim 4.1.6, $|X| \leq(k-2)(n-3)$. Let $A:=V(G) \backslash\left(B_{1} \cup B_{2} \cup B_{3} \cup X\right)$. By Claim 3.1.1 again, $G\left[B_{2}\right]$ has no blue edges, and
neither $G\left[B_{1}\right]$ nor $G\left[B_{3}\right]$ has red or blue edges. By minimality of $k,\left|B_{1}\right| \leq f(k-2, n)-1$ and $\left|B_{3}\right| \leq f(k-2, n)-1$. Observe that

$$
\begin{array}{rlr}
\left|A \cup B_{2}\right|= & |G|-\left|B_{1}\right|-\left|B_{3}\right|-|X| \\
& =f(k, n)-2[f(k-2, n)-1]-(k-2)(n-3) & k=3 \\
& = \begin{cases}(8 n \ln n-4 n+1)-2(2 n)-(n-3), & k=4 \\
(16 n \ln n-5 n+1)-2(4 n)-2(n-3), \\
{\left[(n \ln n) \cdot 2^{k}-(k+1) n+1\right]-2\left[(n \ln n) \cdot 2^{k-2}-(k-1) n\right]-(k-2)(n-3),} & k \geq 5\end{cases}
\end{array}
$$

In any case, we see that $\left|A \cup B_{2}\right| \geq f(k-1, n)$. By minimality of $k, G\left[A \cup B_{2}\right]$ must have blue edges. By Claim 3.1.1, no vertex in A is red-complete to $B_{1} \cup B_{3}$ in G, and no vertex in A is blue-complete to $B_{1} \cup B_{2}$ or $B_{2} \cup B_{3}$ in G. This implies that A must be red-complete to B_{2} in G. It follows that $G[A]$ must contain a blue edge, say $u v$. Let $b_{1}, \ldots, b_{n-1} \in B_{1}, b_{n}, \ldots, b_{2 n-2} \in B_{2}$, and $b_{2 n-1} \in B_{3}$. If $\{u, v\}$ is blue-complete to B_{1}, then we obtain a blue $C_{2 n+1}$ with vertices $b_{1}, u, v, b_{2}, b_{n}, b_{2 n-1}, b_{n+1}, b_{3}, b_{n+2}, \ldots, b_{n-1}, b_{2 n-2}$ in order, a contradiction. Thus $\{u, v\}$ is not blue-complete to B_{1}. Similarly, $\{u, v\}$ is not blue-complete to B_{3}. Since no vertex in A is red-complete to $B_{1} \cup B_{3}$, we may assume that u is blue-complete to B_{1} and v is blue-complete to B_{3}. But then we obtain a blue $C_{2 n+1}$ with vertices $b_{1}, u, v, b_{2 n-1}, b_{n}, b_{2}, b_{n+1}, \ldots, b_{n-1}, b_{2 n-2}$ in order.

We may assume that $A_{p-1} \subseteq B_{G}$. By Claim 4.1.7, $\left|A_{p-2}\right| \leq n$. By Lemma 3.1.2, $\left|R_{G}\right| \leq 2 n$ and $\left|B_{G} \backslash A_{p-1}\right| \leq 2 n$. By Claim 4.1.6, $|X| \leq(k-2)(n-3)$. By minimality of $k,\left|A_{p}\right| \leq$
$f(k-2, n)-1$. Then

$$
\begin{array}{rlr}
|G|= & \left|A_{p}\right|+\left|A_{p-1}\right|+\left|B_{G} \backslash A_{p-1}\right|+\left|R_{G}\right|+|X| \\
& \leq 2[f(k-2, n)-1]+2 n+2 n+(k-2)(n-3) & \\
& = \begin{cases}2(2 n)+2 n+2 n+(n-3), & k=3 \\
2(4 n)+2 n+2 n+2(n-3), & k=4 \\
2\left[(n \ln n) \cdot 2^{k-2}-(k-1) n\right]+2 n+2 n+(k-2)(n-3), & k \geq 5\end{cases}
\end{array}
$$

In any case, we see that $|G|<f(k, n)$ for all $k \geq 3$ and $n \geq 8$, a contradiction.

This completes the proof of Theorem 1.3.28.

CHAPTER 5: FUTURE WORK

In this chapter we discuss some further possible research areas related to the work in this dissertation.

5.1 Hadwiger Numbers

Several different avenues of study come to mind branching off of the work done in this dissertation. Certainly the most obvious project, but perhaps the least helpful, would entail exploring other forbidden subgraphs when $\alpha(G)=2$ to verify HC. To date, only six forbidden subgraphs H such that $\alpha(H) \leq 2$ and $|H| \geq 6$ are known, which are $W_{5}, \overline{K_{1,5}}, K_{6}, K_{7}, H_{6}$, and H_{7} (four of these were proven in our work). One could then complete the list of six vertex graphs (of which there are more than 30), but this seems a tedious task which may not be very instructive.

A more interesting question is the following. Let us consider a notably weaker conjecture that HC, attributed independently to Woodall, and Duchet and Meyniel (see [84]).

Conjecture 5.1.1 For any graph $G, h(G) \geq|G| / \alpha(G)$.

Coupled with Fact 1.2.5, HC implies Conjecture 5.1.1. Proving this conjecture when $\alpha(G) \leq$ 2 would of course establish HC by the equivalence given in Theorem 1.2.11. But what if $\alpha(G) \geq 3$? This conjecture seems too difficult to prove in full generality, so one could certainly attempt a similar approach of forbidding certain subgraphs when, say, $\alpha(G)=3$ in order to obtain partial evidence. The author tried in several ways to forbid C_{5} and prove the conjecture holds for $\alpha(G)=3$. However, this situation is far more complicated because
of the increased difficulty in forcing cliques of the desired order. For $\alpha(G) \geq 3$ we are also without an analogue to Theorem 1.2.15 which was extremely helpful in our work. Even if one manages to show Conjecture 5.1.1 holds for $\alpha(G)=3$ with certain forbidden subgraphs, such a result is still not general enough to satisfy most researchers interested in this topic.

Recall that if HC is true, then there must exist a partition of $V(G)$ into t independent sets for any K_{t+1} minor-free graph. This condition on the partition can be relaxed in the following ways. First, we can instead look for a partition of $V(G)$ into t (not necessarily independent) sets V_{1}, \ldots, V_{t}, called a defective coloring, such that $\Delta\left(G\left[V_{i}\right]\right) \leq d$ for all $i \in[t]$ for some $d \geq 0$, called the defect. Showing that such a partition exists with defect zero is exactly HC. Some promising results have been obtained to this effect (see the dynamic survey by Wood [88]). An initial result of Edwards, Kang, Kim, Oum, and Seymour [32] in 2015 showed that every K_{t+1} minor-free graph G is t-colorable with defect $O\left((t+1)^{2} \log (t+1)\right)$. Van den Heuvel and Wood [85] improved this result in 2018 to show that G is t-colorable with defect $t-1$. Recall that HC remains open for all $t \geq 6$. If considering all such values of t is too hard, an interesting problem would then be to consider the case when $t=6$ and improve the defect to be as close to zero as possible. A second relaxation of HC comes about by asking the same question, but instead of bounding the maximum degree we restrict the order of the components found in V_{1}, \ldots, V_{t}. If the maximum order of any monochromatic component is c, then we say G is t-colorable with clustering c. Several results have been obtained in this direction as well but we omit them here (see [88] for more information).

5.2 Ramsey Theory and Gallai-Ramsey Numbers

As mentioned in Chapter 1, our result concerning the Gallai-Ramsey numbers of odd cycles was generalized shortly after we completed our project by [18], though our work was cited
by that group. It would be interesting if one could find general bounds on $G R_{k}\left(K_{n}\right)$ for all $n \geq 6$ because this could potentially help to improve bounds on $R\left(K_{n}, K_{n}\right)$ in those cases. For the case when $n=5$, it would be extremely helpful to settle this case independent of $R\left(K_{5}, K_{5}\right)$. We ideally would like the Gallai-Ramsey number to indicate something about the classical Ramsey number because the latter is typically so difficult to compute. Having a proof of $G R_{k}\left(K_{5}\right)$ independent of $R\left(K_{5}, K_{5}\right)$ would either provide more evidence for or disprove Conjecture 1.3.18.

Because $G R_{k}\left(C_{2 n+1}\right)$ has been settled for all n, another natural area of exploration is the classical three-color Ramsey number. Currently, $R_{3}\left(C_{n}\right)$ is known only for $3 \leq n \leq 7$ (see the survey by Radziszowski [69]). Conjecture 1.3.4 (the Triple Odd Cycle conjecture) mentioned in Chapter 1 remains open and so verifying that $R_{3}\left(C_{9}\right)=33$ would provide more evidence of the conjecture. However, the proof that $R_{3}\left(C_{7}\right)=25$ is long and difficult (see [37]), so a new technique must be introduced in order to make further progress in this area.

Recent work has also been conducted on Gallai-colorings of hypergraphs (see [14]). This seems an interesting area of study since even fewer Ramsey-type results are known for hypergraphs. Therefore, one could study the odd cycle Gallai-Ramsey problem in the context of 3-uniform hypergraphs to further generalize the results in this dissertation.

LIST OF REFERENCES

[1] B. Albar and D. Gonçalves, On triangles in K_{r}-minor free graphs, Journal of Graph Theory 88 (2018), no. 1, 154-173, Preprint appeared in 2013, arXiv:1304.5468.
[2] V. Angeltveit and B. D. McKay, $R(5,5) \leq 48$, Preprint: arXiv:1703.08768v2.
[3] K. Appel and W. Haken, Every Planar Map is Four Colorable. Part I. Discharging, Illinois Journal of Mathematics 21 (1977), 429-490.
[4] , Every Planar Map is Four Colorable. Part II. Reducibility, Illinois Journal of Mathematics 21 (1977), 491-567.
[5] J. Balogh and A. V. Kostochka, Large Minors in Graphs with Given Independence Number, Discrete Mathematics (2011), no. 20, 2203-2215.
[6] A. Bialostocki and J. Schönheim, On Some Turán and Ramsey Numbers for C_{4}, Graph Theory and Combinatorics (1984), 29-33.
[7] J. A. Bondy and P. Erdős, Ramsey Numbers for Cycles in Graphs, Journal of Combinatorial Theory, Series B 14 (1973), 46-54.
[8] C. Bosse, A note on Hadwiger's Conjecture for W_{5}-free graphs with independence number two, (2019), Submitted. Preprint: arXiv:1901.06985.
[9] C. Bosse and Z-X. Song, Gallai-Ramsey Numbers of C_{9} with Multiple Colors, (2017), Preprint: arXiv:1709.06130v2.
[10] , Multicolor Gallai-Ramsey Numbers of C_{9} and C_{11}, (2018), Submitted. Preprint: arXiv:1802.06503v2.
[11] C. Bosse, Z-X. Song, and J. Zhang, Improved Upper Bounds for Gallai-Ramsey Numbers of Odd Cycles, (2018), Submitted. Preprint: arXiv:1808.09963.
[12] C. W. Bostwick, J. Rainwater, and J. D. Baum, E1321, American Mathematical Monthly 66 (1959), no. 2, 141-142.
[13] D. Bruce and Z-X. Song, Gallai-Ramsey Numbers for C_{7} with Multiple Colors, Discrete Mathematics 342 (2019), 1191-1194.
[14] M. Budden, J. Hiller, and A. Penland, Constructive Methods in Gallai-Ramsey Theory for Hypergraphs, (2019), Preprint: arXiv:1902.01301.
[15] L. E. Bush, The William Lowell Putnam Mathematical Competition, American Mathematical Monthly 60 (1953), no. 8, 539-542.
[16] G. Chartrand and S. Schuster, On a Variation of the Ramsey Number, Transactions of the American Mathematical Society 173 (1972), 353-362.
[17] M. Chen, Y. Li, and C. Pei, Gallai-Ramsey Numbers of Odd Cycles and Complete Bipartite Graphs, Graphs and Combinatorics 34 (2018), 1185-1196.
[18] Y. Chen, Z-X. Song, and F. Zhang, Multicolor Ramsey numbers of cycles in Gallai colorings, (2019), Submitted. Preprint: arXiv:1906.05263.
[19] M. Chudnovsky and A. Fradkin, Hadwiger's Conjecture for Quasi-line Graphs, Journal of Graph Theory 59 (2008), no. 1, 17-33.
[20] , An Approximate Version of Hadwiger's Conjecture for Claw-free Graphs, Journal of Graph Theory 63 (2010), no. 4, 259-278.
[21] M. Chudnovsky and P. Seymour, The Structure of Claw-free Graphs, Surveys in Combinatorics, London Mathematical Society Lecture Note Series, vol. 327, Cambridge University Press, 2005, pp. 153-171.
[22] , Packing seagulls, Combinatorica 32 (2012), no. 3, 251-282.
[23] F. R. K. Chung and R. L. Graham, Edge-Colored Complete Graphs with Precisely Colored Subgraphs, Combinatorica 3 (1983), 315-324.
[24] V. Chvátal and F. Harary, Generalized Ramsey Theory for Graphs, Bulletin of the American Mathematical Society 78 (1972), 423-426.
[25] A. N. Day and J. R. Johnson, Multicolour Ramsey Numbers of Odd Cycles, Journal of Combinatorial Theory, Series B 124 (2017), 56-63.
[26] R. Diestel, Graph Theory, Graduate Texts in Mathematics, vol. 173, Springer Berlin Heidelberg, 2005.
[27] G. A. Dirac, A Property of 4-Chromatic Graphs and some Remarks on Critical Graphs, Journal of the London Mathematical Society s1-27 (1952), no. 1, 85-92.
[28] G. A. Dirac, Some Theorems on Abstract Graphs, Proceedings of the London Mathematical Society s3-2 (1952), 69-81.
[29] P. Duchet and H. Meyniel, On Hadwiger's Number and the Stability Number, Annals of Discrete Mathematics 13 (1982), 71-74.
[30] T. Dzido, Ramsey Numbers for Various Graph Classes, Ph.D. thesis, University of Gdańsk, Poland, November 2005.
[31] T. Dzido, A. A. Nowik, and P. Szuca, New Lower Bound for Multicolor Ramsey Numbers for Even Cycles, Electronic Journal of Combinatorics 12 (2005), no. \# N13.
[32] K. Edwards, D. Y. Kang, J. Kim, S. Oum, and P. Seymour, A Relative of Hadwiger's Conjecture, SIAM Journal of Discrete Mathematics 29 (2015), no. 4, 2385-2388.
[33] P. Erdős, Some Remarks on the Theory of Graphs, Bulletin of the American Mathematical Society 53 (1947), 292-294.
[34] P. Erdős, R. J. Faudree, C. C. Rousseau, and R. H. Schelp, Generalized Ramsey Theory for Multiple Colors, Journal of Combinatorial Theory, Series B 20 (1976), 250-264.
[35] G. Exoo, Constructing Ramsey Graphs with a Computer, Congressus Numerantium 59 (1987), 31-36.
$[36] \ldots, A$ Lower Bound for $R(5,5)$, Journal of Graph Theory 13 (1989), 97-98.
[37] R. J. Faudree, A. A. Schelten, and I. Schiermeyer, The Ramsey Number $r\left(C_{7}, C_{7}, C_{7}\right)$, Discussiones Mathematicae Graph Theory 23 (2003), 141-158.
[38] R. J. Faudree, R. J. Gould, M. S. Jacobson, and C. Magnant, Ramsey Numbers in Rainbow Triangle Free Colorings, Australasian Journal of Combinatorics 46 (2010), 269-284.
[39] R. J. Faudree and R. H. Schelp, All Ramsey Numbers for Cycles in Graphs, Discrete Mathematics 8 (1974), 313-329.
[40] J. Fox, Complete Minors and Independence Number, SIAM Journal of Discrete Mathematics 24 (2010), no. 4, 1313-1321.
[41] J. Fox, A. Grinshpun, and J. Pach, The Erdős-Hajnal Conjecture for Rainbow Triangles, Journal of Combinatorial Theory, Series B 111 (2015), 75-125.
[42] S. Fujita and C. Magnant, Gallai-Ramsey Numbers for Cycles, Discrete Mathematics 311 (2011), 1247-1254.
[43] S. Fujita, C. Magnant, and K. Ozeki, Rainbow Generalizations of Ramsey Theory - A Dynamic Survey, Theory and Applications of Graphs 0 (2014), Revision 5, April 2018.
[44] T. Gallai, Transitiv Orientierbare Graphen, Acta Mathematica Academiae Scientiarum Hungaricae 18 (1967), 25-66, English Translation in [65].
[45] R. L. Graham and J. H. Spencer, Ramsey Theory, Scientific American 263 (1990), no. 1, 112-117.
[46] J. E. Graver and J. Yackel, Some Graph Theoretic Results Associated with Ramsey's Theorem, Journal of Combinatorial Theory, 4 (1968), 125-175.
[47] R. E. Greenwood and A. M. Gleason, Combinatorial Relations and Chromatic Graphs, Canadian Journal of Mathematics 7 (1955), 1-7.
[48] J. Gregory, Gallai-Ramsey Number of an 8-Cycle, Master's thesis, Georgia Southern University, 2016, Electronic Theses \& Dissertations. Advisor: C. Magnant.
[49] A. Gyárfás, G. Sárközy, A. Sebő, and S. Selkow, Ramsey-Type Results for Gallai Colorings, Journal of Graph Theory 64 (2010), 233-243.
[50] H. Hadwiger, Über eine Klassifikation der Streckenkomplexe, Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich 88 (1943), 133-143.
[51] M. Hall, C. Magnant, K. Ozeki, and M. Tsugaki, Improved Upper Bounds for GallaiRamsey Numbers of Paths and Cycles, Journal of Graph Theory 75 (2014), 59-74.
[52] I. T. Jakobsen, On Certain Homomorphism Properties of Graphs I, Mathematica Scandinavica 31 (1972), no. 2, 379-404.
[53] , On Certain Homomorphism Properties of Graphs II, Mathematica Scandinavica 52 (1983), no. 2, 229-261.
[54] M. Jenssen and J. Skokan, Exact Ramsey Numbers of Odd Cycles via Nonlinear Optimisation, Preprint: arXiv:1608.05705v1.
[55] L. K. Jørgensen, Contractions to K_{8}, Journal of Graph Theory 18 (1994), no. 5, 431448.
[56] J. G. Kalbfleisch, Chromatic Graphs and Ramsey's Theorem, Ph.D. thesis, University of Waterloo, January 1966.
[57] K. Kawarabayashi and B. Toft, Any 7-chromatic Graph has K_{7} or $K_{4,4}$ as a Minor, Combinatorica 25 (2005), 327-353.
[58] K. Kawarabayashi and Z-X. Z. Song, Some Remarks on the Odd Hadwiger's Conjecture, Combinatorica 27 (2007), 429-438.
[59] G. Kéry, On a Theorem of Ramsey, Matematikai Lapok 15 (1964), 204-224, (in Hungarian).
[60] D. König, Theorie der endlichen und unendlichen Graphen, Akademische Verlagsgesellschaft (1936), reprinted Chelsea 1950.
[61] M. Kriesell, On Seymour's Strengthening of Hadwiger's Conjecture for Graphs with Certain Forbidden Subgraphs, Discrete Mathematics 310 (2010), 2714-2724.
[62] C. Kuratowski, Sur le problème des courbes gauches en Topologie, Fundamenta Mathematicae 15 (1930), no. 1, 271-283.
[63] H. Liu, C. Magnant, A. Saito, I. Schiermeyer, and Y. Shi, Gallai-Ramsey Number for K_{4}, Communicated via private manuscript. Submitted for publication.
[64] T. Łuczak, $R\left(C_{n}, C_{n}, C_{n}\right) \leq(4+o(1)) n$, Journal of Combinatorial Theory, Series B 75 (1999), 174-187.
[65] F. Maffray and M. Preissmann, A Translation of Gallai's Paper: 'Transitiv Orientierbare Graphen, Perfect Graphs (J. L. Ramirez-Alfonsin and B. A. Reed, eds.), Wiley, New York, 2001, pp. 25-66.
[66] C. Magnant and I. Schiermeyer, Gallai-Ramsey number for K_{5}, (2019), Preprint: arXiv:1901.03622.
[67] P. Maritz and S. Mouton, Francis Guthrie: A Colourful Life, Math Intelligencer 34 (2012), no. 3, 67-75.
[68] M. Plummer, M. Stiebitz, and B. Toft, On a Special Case of Hadwiger's Conjecture, Discussiones Mathematicae Graph Theory 23 (2003), no. 2, 333-363.
[69] S. Radziszowski, Small Ramsey Numbers, Electronic Journal of Combinatorics (2017), no. DS1, Revision \#15.
[70] F. P. Ramsey, On a Problem of Formal Logic, Proceedings of the London Mathematical Society 30 (1929), no. 4, 264-286.
[71] B. Reed and P. Seymour, Hadwiger's Conjecture for Line Graphs, European Journal of Combinatorics 25 (2004), no. 6, 873-876.
[72] N. Robertson, D. Sanders, P. Seymour, and R. Thomas, The Four-Colour Theorem, Journal of Combinatorial Theory, Series B 70 (1997), 2-44.
[73] N. Robertson, P. Seymour, and R. Thomas, Hadwiger's Conjecture for K_{6}-free Graphs, Combinatorica 13 (1993), 279-361.
[74] M. Rolek, Graphs with no $K_{9}^{=}$minor are 10-colorable, (2018), Preprint: arXiv:1809.05975.
[75] M. Rolek and Z-X. Song, Coloring Graphs with Forbidden Minors, Journal of Combinatorial Theory, Series B 127 (2017), 14-31.
[76] V. Rosta, On a Ramsey Type Problem of J. A. Bondy and P. Erdős, I and II, Journal of Combinatorial Theory, Series B 15 (1973), 94-120.
[77] P. Seymour, Hadwiger's Conjecture, ch. 13, pp. 417-437, Springer, Cham, 2016, In: Open Problems in Mathematics (edited by J. Nash Jr. and M. Rassias).
[78] Z-X. Song and R. Thomas, The extremal function for K_{9} minors, Journal of Combinatorial Theory, Series B 96 (2006), 240-252.
[79] Z-X. Song and J. Zhang, A Conjecture on Gallai-Ramsey Numbers of Even Cycles and Paths, (2018), Preprint: arXiv:1803.07963.
[80] Y. Sun and Y. Yang, Study of the Three Color Ramsey Number $R_{3}\left(C_{8}\right)$, Journal of Beijing Jiaotong University 35 (2011), 14-17, (in Chinese).
[81] Y. Sun, Y. Yang, X. Lin, and W. Zheng, The Value of the Ramsey Number $R_{4}\left(C_{4}\right)$, Utilitas Mathematica 73 (2007).
[82] B. Thomas and Z-X. Song, Hadwiger's Conjecture for Graphs with Forbidden Holes, SIAM Journal of Discrete Mathematics 31 (2017), no. 3, 1572-1580.
[83] R. Thomas, An Update on the Four-color Theorem, Notices of the American Mathematical Society 45 (1998), no. 7, 848-859.
[84] B. Toft, A Survey of Hadwiger's Conjecture, Congressus Numerantium (1996), no. 115, 249-283, In: Surveys in Graph Theory (edited by G. Chartrand and M. Jacobson).
[85] J. van den Heuvel and D. Wood, Improper colourings inspired by Hadwiger's conjecture, Journal of the London Mathematical Society 2 (2018), no. 98, 129-148.
[86] K. Wagner, Über eine Eigenschaft der ebenen Komplexe, Mathematische Annalen 114 (1937), 570-590.
[87] D. B. West, Introduction to Graph Theory, 2 ed., Prentice Hall, 2000.
[88] D. Wood, Defective and Clustered Graph Colouring, The Electronic Journal of Combinatorics (2018), no. DS23.
[89] Y. Yuansheng and P. Rowlinson, On the Third Ramsey Numbers of Graphs with Five Edges, Journal of Combinatorial Mathematics and Combinatorial Computing 11 (1992), 213-222.
[90] _ On Graphs without 6-Cycles and Related Ramsey Numbers, Utilitas Mathematica 44 (1993), 192-196.
[91] J. Zhang, H. Lei, Y. Shi, and Z-X. Song, Gallai-Ramsey Numbers of C_{10} and C_{12}, (2018), Submitted. Preprint: arXiv:1808.10282.

