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ABSTRACT

Network softwarization is among the most significant innovations of computer networks in the

last few decades. The lack of uniform and programmable interfaces for network management led

to the design of OpenFlow protocol for the university campuses and enterprise networks. This

breakthrough coupled with other similar efforts led to an emergence of two complementary but

independent paradigms called software-defined networking (SDN) and network function virtual-

ization (NFV). As of this writing, these paradigms are becoming the de-facto norms of wired and

wireless networks alike.

This dissertation mainly addresses the scalability aspect of SDN for multiple network types. Al-

though centralized control and separation of control and data planes play a pivotal role for ease

of network management, these concepts bring in many challenges as well. Scalability is among

the most crucial challenges due to the unprecedented growth of computer networks in the past

few years. Therefore, we strive to grapple with this problem in diverse networking scenarios and

propose novel solutions by harnessing capabilities provided by SDN and other related technolo-

gies. Specifically, we present the techniques to deploy SDN at the Internet scale and to extend the

concepts of softwarization for mobile access networks and vehicular networks. Multiple optimiza-

tions are employed to mitigate latency and other overheads that contribute to achieve performance

gains. Additionally, by taking care of sparse connectivity and high mobility, the intrinsic con-

straints of centralization for wireless ad-hoc networks are addressed in a systematic manner. The

state-of-the-art virtualization techniques are coupled with cloud computing methods to exploit the

potential of softwarization in general and SDN in particular. Finally, by tapping into the capabili-

ties of machine learning techniques, an SDN-based solution is proposed that inches closer towards

the longstanding goal of self-driving networks. Extensive experiments performed on a large-scale

testbed corroborates effectiveness of our approaches.
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CHAPTER 1: INTRODUCTION

The astounding success of the Internet is one of the most remarkable breakthroughs that have a

profound impact on humankind. Due to this stellar growth, computer networks get increasingly

complex to deploy and operate, despite many ingenious developments along the way. Many types

of equipment, proprietary software, and prolonged standardization process slowed network inno-

vation and made it hard to manage. Part of the problem is to focus on individual protocols, models,

and devices for solving every single problem in a unique way. As a result, network operators de-

velop their own ad-hoc tools and scripts to design and maintain the networks. The lack of a holistic

approach for deployment and troubleshooting has made it difficult to manage the networks in an

efficient way. Furthermore, the static configuration of traditional networks does not allow dynamic

reconfigurations or fault-tolerance mechanisms for the adaptive load changes or the fluctuating en-

vironment networks operate in. The tightly coupled control and data planes also hinder flexibility

and agility to update the protocol stack. All these factors led for rethinking the way we design and

interact with our networks and paved the way for a new paradigm called ”network softwarization”,

which is the main theme of the following sections and subsequent chapters of this dissertation.

1.1 Software-defined Networking

Software-defined networking (SDN) is a recently emerging technology that strives to change the

way we design and manage networks. The most striking features of SDN include separation of

the control and data planes, programmable network elements, and the centralized control with a

global network view. By splitting from the control logic, the forwarding fabric is greatly sim-

plified in order to provide opportunities for the decision making rules to be pushed dynamically

without disrupting the whole network. The centralized approach for the control plane allows net-
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work management from a vantage point and enforces differential policies by considering broader

goals of the overall system. The centralized control plane is realized by a controller node that is

responsible for all decision making tasks which handle the forwarding devices for smooth network

operations. However, it is important to emphasize that a single controller node may not be ade-

quate for performance, reliability, and scalability of a production network. Therefore, the preferred

approach is to design a logically centralized but physically distributed control plane with multiple

controller nodes. The programmability aspect is attained by two different means. First, the con-

troller instructs the forwarding devices with an open and well-defined programming interface that

all elements of an SDN-based network conform to. The OpenFlow is a notable example of such an

interface. Second, the network operators and programmers develop high-level network functions

in form of applications and submit these applications to the controller that is responsible to deploy

low-level policies at the infrastructure-level to meet requirements of the programmers.

The SDN-based data plane is formed by forwarding devices or switches that can be programmed

with vendor-agnostic APIs. Such switches contain flow tables that implement the logic provided by

the controller. Specifically, the flow table consists of multiple flow entries of match fields, priority,

counters, instructions, and flags among other components. By extracting the packet header fields

and the metadata, the match field is used to filter a set of packets that belong to a particular flow.

Wildcards can also be applied to aggregate a set of flows. Then a set of actions specified by the

controller are performed on the matched packets. The actions can range from simply forwarding a

packet to a specific port, to rather sophisticated operations such as adding a packet to a specified

queue for QoS support, directing a packet to a specified meter for rate control, or push-pop tags

of VLAN or MPLS headers. In case a switch does not match an incoming packet with any of

the match fields, the packet is either dropped or forwarded to the controller for further processing.

To make room for new entries, the existing flow table entries are removed either after a hard

time-out or due to being idle for long. Therefore, the controller has to setup flow table entries

2



from time-to-time so that switches know how to handle incoming traffic. Apart from the flow

table setup, the controller also interact with switches for troubleshooting, network monitoring, and

statistics collection that serve to maintain global network view. For all these operations, either

controller or switch can initiate communication on a secure channel. The flow table maintenance

and other management tasks can either be performed over a separately dedicated network (out-of-

band connection), or the same channel can be utilized which is being used for data transmission

(in-band connection).

1.2 Network Function Virualization and Cloud Computing

Complementary but independent to SDN, network function virtualization (NFV) is another signif-

icant technology that emerged around the same time. NFV was proposed to improve deployment

of network services by leveraging capabilities of state-of-the-art virtualization technologies and

commodity hardware that is cheaper to reprogram and maintain. Similar to SDN, NFV decouples

the network services from the infrastructure layer by implementing network appliances in form

of software modules which can be dynamically managed on the physical or the virtual abstrac-

tion layer. The capability to dynamically add, remove, migrate or upgrade the network functions

depending on adaptive requirements provides immense opportunities to optimally provision and

utilize physical resources without compromising performance or incurring a high cost. Like an

SDN controller, an NFV orchestration engine is envisioned for the centralized control and man-

agement of network functions. Therefore, SDN and NFV are closely related in terms of certain

features, but are completely different from the system architecture perspective. Particularly, NFV

enables software implementation of network functions to reduce the cost of specialized hardware,

while SDN simplifies network management with centralized control, programmable forwarding

devices, and open interfaces. With this distinction in mind, SDN can serve NFV by providing cen-

3



tralized control for network functions, and similarly, NFV can be used to virtualize SDN controller

or other components.

Considering the business model and design layout of cloud computing, SDN and NFV have the po-

tential to play a significant role in this widely accepted computing paradigm. More precisely, SDN

principles can be applied for data center network management. Additionally, SDN-based cloud

federation can streamline multi-vendor service providers that give the end-users an opportunity

to select the most suitable vendor among a wide range. NFV allows dynamic resources scaling,

live migration, and cost-effective services availability, which makes it a favorable technology for

on-demand and pay-per-usage service model of cloud computing.

1.3 Network Softwarization

The convergence of SDN, NFV, and cloud computing is ushering a new era of network softwariza-

tion. The futuristic network designs are predominately based on concepts such as programmabil-

ity, virtualization, open and vendor-neutral interfaces, and centralized network management. This

trend of network softwarization is expected to simplify network management, accelerate transfor-

mations, and reduce deployment and maintenance cost of the next generation networks. Reliance

on software components by mitigating specialized hardware constraints is being considered as a

major driving force towards this paradigm shift. However, this trend also introduces many technical

challenges that were non-existent in traditional networks. We highlight some of these challenges

throughout this dissertation. Another aspect worth attention is that network softwarization is not

a solution to all networking problems. SDN is a tool for simplifying network management, that

allows the development of new solutions to the longstanding problems. The centralized control

still relies on the low-level rules and statistics collection mechanisms. Therefore, network soft-

warization and the enabling technologies are at their infancy stage with promising outcomes at the
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outset, but require innovative vision and insightful thinking from a long-term perspective.

1.4 Key Contributions

The scalable network design with SDN principles is the prominent focus of this dissertation. We

propose a peer-to-peer control plane architecture that addresses crucial challenges of initial SDN

prototype, enabling large-scale deployment of SDN-based networks in practical scenarios. Apart

from scalability, our proposal also deals with overheads, reliability, heterogeneity, and simplistic

network management, which are prerequisites of any modern network design.

Secondly, we outline the challenges of considering SDN for wireless, mobile, and ad-hoc networks.

The practically deployable architectures for wireless access networks and vehicular networks are

proposed, that cope with limitations of SDN for such volatile scenarios. Without compromising

the benefits of SDN, efficient mobility management and QoS techniques are presented to handle

rapid mobility with handovers and provide end-user satisfaction. Additionally, some practical

applications and benefits of our approaches are also discussed.

By effectively utilizing recent advances in machine learning, network softwarization, and large-

scale data processing platforms, we propose a framework, called DeepSDN, which strives to con-

nect the dots towards longstanding goal of self-driving networks. Specifically, we extend the earlier

proposed parameter server architecture for distributed machine learning problems and presents a

revised parameter server that uses centralized control, global view, and programmability features

of SDN for implementing the learning techniques to achieve optimized control and management.

Finally, a reference framework for cloud-based SDN experiments is presented that itself is based

on SDN principles. We designed a testbed platform of this framework and used it to perform all

experiments for this dissertation. The comparative evaluation results validate the effectiveness of
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our approaches.

1.5 Dissertation Organization

The dissertation is organized as follows. Chapter 2 describes the existing research related to our

work. Chapter 3 presents a reference framework for the evaluation testbed that we use for all

experiments in the dissertation. A scalable control plane architecture for SDN is proposed in

Chapter 4. Furthermore, Chapter 5 outlines an SDN-based architecture for mobile access networks.

Subsequently, Chapter 6 demonstrates an SDN-based approach for mobility management and QoS

support for vehicular ad-hoc networks (VANETs). Chapter 7 introduces a machine learning based

architecture that aims to fulfill the goal towards self-driving networks. Finally, Chapter 8 discusses

the conclusion of the dissertation.
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CHAPTER 2: LITERATURE REVIEW

This chapter is dedicated to the related research studies that helped to formulate this dissertation.

The first section presents the foundation and use-cases of SDN. Then, the scalability aspect of

SDN is elaborated with respect to existing literature. Furthermore, the challenges pertaining to

consideration of SDN for wireless and mobile networks are discussed along with various solutions

proposed by the research community. And finally, consideration of SDN for self-driving networks

is presented in last section.

2.1 Introduction

Although the quest for the programmable networks exists since the late 90s [1], [2], OpenFlow

brings the major breakthrough when a programmable switch was introduced for Stanford Univer-

sity campus network [3]. Initially it focused on a short-term question that ”As researchers, how

can we run experiments in our campus networks?”. And as expected, this idea rapidly expanded

to other campuses and enterprise networks. The other similar concepts were emerging around the

same time, ForCES among the most notable ones [4]. Apart from the programmable switch, Open-

Flow also borrowed the concept of the control plane and the data plane separation from SCP and

RCP [5], [6]. A standalone entity called ”controller” was introduced to manage forwarding devices

with an open interface. The controller enabled the centralized control of the network from a vantage

point, that distinguished the OpenFlow-enabled networks from conventional networks which op-

erates on the principles of distributed computing. All these developments led to a new networking

paradigm called software-defined networking (SDN). The centralized control, programmability,

global network view, open interfaces, and the dichotomy of data and control planes emerged as the

pillars of SDN. The Open Networking Foundation (ONF) was formed as a collaborative commu-

7



nity to streamline SDN-related projects and to lay the groundwork for software-defined standards.

The ONF provided OpenFlow-switch specification that became the de-facto norm for SDN-based

networks. However, the intrinsic features of SDN introduced new challenges for the networking

community which were not applicable in conventional networks. Some of these challenges are

discussed in the following sections.

2.2 SDN Scalability

The concern of SDN scalability stems from the centralized control, which is one of its core propo-

sitions. A standalone controller introduces single-point-of-failure, capacity and performance bot-

tleneck, and geographic constraints, among other challenges. A benchmark study reports that a

single SDN controller can handle 1.6 million requests per second with an average response time

of 2 ms [7]. However, it suggests that a single physical controller is not enough to manage a siz-

able network and multiple controllers are needed in order to maintain high availability and low

response time. Therefore, the next reasonable step forward was to have a logically centralized but

physically distributed control plane that retains the properties of SDN and achieves performance

comparable to conventional networks. Subsequently, many control plane designs were proposed

that were composed of either flat or hierarchical layer of multiple controllers which exploits cen-

tralized databases or file systems to maintain a consistent and logically centralized network view.

Hyberflow [8], Kandoo [9], and Orion [10] are the notable works in this line of research. A re-

cent work presents a dynamically scalable control plane that manages congested controllers and

in-band control channels using control flow tables [11]. A comprehensive survey of SDN control

plane scalability highlights the major challenges that must be addressed for SDN deployment at

large-scale [12]. As discussed in Chapter 4, we propose a peer-to-peer control plane architecture

that addresses the scalability aspect of SDN in a systematic manner.
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2.3 Challenges and Considerations of SDN for Wireless Realm

Although the original OpenFlow switch was designed for wired networks, it didn’t take a long time

to be considered for the wireless networks as well [13]. The benefits of the key use-cases of SDN

motivated the wireless community to apply softwarization principles for tackling longstanding is-

sues of wireless domain. Therefore, the software-defined wireless networking (SWDN) paradigm

emerged as a new building block, with the goals to achieve SDN-like success [14]. However,

wireless and mobile networks possess distinct characteristics which do not exist in case of wired

networks. Unpredictable mobility, unreliable channels characteristics, limited resources, and un-

stable topology are such properties of mobile wireless networks that need a judicious attention.

Therefore, SDN principles cannot be applied for the wireless domain in a straightforward manner.

Considering these aspects, Li et al. posit that SDN can simplify the design and implementation

of cellular networks, and proposes an extended controller platform to address scalability and other

challenges of SDN [15]. Similarly, Gudipati et al. argue that the existing control plane of LTE

is suboptimal to efficiently utilize limited spectrum for connectivity purpose [16]. To address this

problem, they propose SoftRAN, which is a centralized control plane architecture based on SDN

principles. MobileFlow is another SDN-based architecture for mobile carrier networks that infuses

innovation in the mobile networks by enabling open interfaces and APIs to roll out new network

features in a limited budget and less time [17]. A similar approach for the wireless mesh networks

is followed in [18]. A detailed survey of software-defined and virtualized wireless mobile networks

is presented in [19]. Chapters 5 and 6 of this dissertation elaborate our approaches of considering

SDN for wireless and ad-hoc networks respectively.
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2.4 SDN for Self-driving Networks

The crucial challenges of the ever-growing network control and management are discussed in [20],

that also outlines the blueprint towards self-driving networks. This work also stresses the suit-

ability of statistical inference and machine learning techniques for prediction problems. DeepRM

describes a deep reinforcement learning solution that translates the network resource management

problem into a learning problem [21]. It mentions that resources management problems are ubiq-

uitous in computer networks and the prevailing wisdom of using heuristics is not a suitable way

to solve such problems mainly due to lack of accuracy, flexibility, and complexity. [22] presents

a machine learning based tool called WISE that is capable of predicting the effects of probable

configuration and deployment changes in content distribution networks. A new paradigm called

”Knowledge Defined Networking” is proposed in [23], that integrates machine learning, data an-

alytics and SDN concepts to the existing Internet architecture. COBANETS utilizes unsupervised

deep learning, probabilistic models, and network virtualization techniques for network optimiza-

tion [24]. ANEMA is an autonomous network management architecture with self-optimization and

self-healing properties that achieve autonomic behaviors in the network components [25]. A pre-

dictive resource scaling mechanism for cloud systems is proposed in [26], that addresses SLA vi-

olations and over-provisioning of resources. As discussed in Chapter 7, our contribution is mainly

based on the concept of the Knowledge Plane for Internet [27] and a distributed framework, called

parameter server, for highly scalable deep learning models [28]. We extended these concepts with

SDN principles and propose a practical framework for cloud data centers.
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CHAPTER 3: A NOVEL APPROACH FOR SIMULATION AND

ANALYSIS OF CLOUD DATA CENTER APPLICATIONS 1

Considering the unprecedented surge in demands and expectations of smart cloud-based services

and applications, there is an increasing demand of scalable tools that can effectively evaluate the

performance of these services and provide insights for improving their design and implementation.

A realistic and accurate emulation platform is a prerequisite for the efficient assessment of smart

cloud data centers, and for improving the capability and flexibility of utilizing the vast resources

available to smart cloud applications. The platform needs to be scalable and diverse enough to

handle out of the box experiments, as well as simple enough for ease of use and management. The

overheads incurred to meet these goals directly hamper the performance of a framework. There-

fore, mitigation of the overheads adds to the salient features. In this chapter, we present a reference

model that strives to meet such requirements while addressing overheads. We demonstrate proof

of the concept using off-the-shelf software components and present some test cases of the perfor-

mance results obtained by the implementation of our platform.

3.1 Introduction

Smart cloud computing technologies allow companies and users to focus more on innovation rather

than infrastructure and resources. The sheer diversity of applications (for example, healthcare,

image optimization, traffic engineering, to name a few) imposes varied configuration, extensibility,

customization requirements. It is not feasible to use the production networks to evaluate vastly

heterogeneous nature of applications. An evaluation platform is necessary for dynamic and flexible

1Related Publication: K. S. Atwal and M. Bassiouni, A novel approach for simulation and analysis of cloud data
center applications, in Proceedings of the IEEE International Conference on Smart Cloud. IEEE, 2016, pp. 164169.
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application modeling. The viable options to perform networking experiments is to employ testbeds,

emulators, simulators, or variation of any of these techniques. However, benefits, drawbacks, and

the importance of using such tools in isolation are well known to the research community [29],

[30]. Furthermore, the essential requirements, such as high performance, flexibility, scalability,

realism, granularity, simplicity, extensibility, overheads, robustness, are the characteristics that

leave no option to come up with a framework without having some trade-offs.

The data center environments, the building blocks of cloud computing, span from hundreds to

millions of computing components. The federated clouds are gaining prominence to establish

global geographic presence and proximity to the end users for content delivery network (CDN)

type services, that directly contribute towards CapEx and OpEx savings.

One of the foremost facets that contribute to the widespread penetration of cloud computing is

its ability to dynamically adapt resources provisioning with respect to peculiar user demands or

other constraints (e.g., time-dependent services, load-balancing, burst traffic, QoS). Hybrid clouds,

which impose different ownership, authorization and authentication requirements, are the specific

traits of clouds that are being widely adopted. Therefore, it becomes imperative to consider these

aspects while evaluating such environments.

Many evaluation tools are available for analysis of cloud systems. However, each tool is developed

to perform specific kind of experiments. Therefore, these tools are not suitable to fulfill the above

mentioned exhaustive set of requirements. Furthermore, a minimum level of uniformity lacks from

these platforms. In this chapter, we propose a generic reference model for evaluation platforms to

overcome these limitations. The simulation and emulation tools are incompatible with each other

due to independent developments, varying requirements, and customizations etc. Therefore, a

reference model can be seminal for interoperability and portability.

Software-defined networking (SDN) is recently emerged as a promising paradigm, that is con-
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sidered to revolutionize the way we think of conventional networking [31]. SDN simplifies the

network orchestration by separating the control plane and data plane. Furthermore, programma-

bility, centralized control, flow-based decision making, are the other important concepts of SDN.

It would be interesting to apply SDN principles to envisage the reference model for the evaluation

platforms.

Following are the major contributions of this chapter:

• It underlines the ever evolving design requirements to model smart cloud services and appli-

cations.

• A generic reference model is proposed to meet the broad spectrum of requirements in a

systematic and structured manner. The model is implemented using off-the-shelf software

components, integrated with small tweaks to enhance adaptability.

• The proposed model is evaluated to assess its feasibility and applicability. We present the

results obtained through a number of experiments performed with the implementation of our

platform.

Rest of the chapter is organized as follows. Related work is discussed in Section 3.2. Section 3.3

presents the proposed reference model. Then, evaluation of the proposal is given in Section 3.4,

followed by an elaboration of results in Section 3.5. Finally, Section 3.6 describes the conclusion

and future scope of the work.

3.2 Related Work

SDN-based cloud simulator is developed in [32]. CloudSimSDN is based on CloudSim [33], that

extends functionality of the existing platform by incorporating SDN principles in it. However, the
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platform lacks the ability to harness virtualization technologies and also does not support realistic

simulation environments considering middleboxes and other features. Many other platforms ex-

tend or improve the CloudSim as per specific requirements. SENDIM is an integrated framework

that aims to simplify development and management of heterogeneous components of clouds by

following SDN principles [34]. Centralized orchestration of cloud infrastructure is the main con-

sideration of SENDIM. NS-3 is a very popular platform that has capabilities of a simulator as well

as an emulator [35]. Mainly due to its extensible and flexible architecture, NS-3 can simulate a

diverse set of networking scenarios and topologies. However, NS-3 provides limited support for

realistic SDN paradigm. A cloud-based distributed platform is proposed in [36]. However, it aims

to simulate the distributed computing scenarios by exploiting the capabilities of cloud computing,

rather than specifically evaluating the models of cloud systems. Mininet-based emulation platform

for clouds is proposed in [37]. CloudNaaS framework is presented in [38], that aims to provide

better granularity of the network services to the customers. EMUSIM is proposed in [39], that

integrates emulation and simulation to perform cloud computing experiments. The main focus of

EMUSIM is to evaluate the real applications running in the cloud rather than their software model-

ing, so that the accuracy and understanding of applications could be improved for performance and

cost gains. MobiCloud is the platform to evaluate requirements and efficiency of communication

between mobile infrastructure and the cloud resources [40]. A detailed survey of cloud computing

simulation tools is presented in [41].

Most of the available platforms for evaluation of cloud data centers either do not follow the prin-

ciples of SDN paradigm or impose significant constraints on extensive analysis of clouds features.

Furthermore, many existing evaluation platforms do not support multi-data center scenarios. And,

several tools are developed by keeping very specific requirements in mind, that limit the scope for

flexibility and extensibility.

Advantages of realizing the OpenFlow-based SDN principles in enterprise or carrier-grade net-
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works are explained in [42], that also presents the crucial challenges being faced by the design

and management of evolving cloud technologies. SDN-based cloud computing architecture is pro-

posed in [43]. OpenFlow-based SDN deployment in globally distributed data centers is described

in [44]. B4 deployment shows the optimum resources consumption while minimizing the over-

heads (nearly 100% links utilization is reported).

3.3 System Model

Motivated by the requirements highlighted in the introduction section, we incorporate the following

characteristics in our reference model:

• Layered design

• Centralized Control

• Modularity

• Programmability

• Interoperability

Each of these characteristics is briefly described below.

3.3.1 Layered Design

The cloud systems follow abstractions at various levels to achieve flexibility and management.

And, layering is the natural concept to implement abstractions in computer networking. Hierarchy

of layers also helps to attain scalability and robustness. Therefore, following the convention, we
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also formulate our model in layers. Although not strictly enforced, following is the blueprint of

favorable layers to implement the model:

Cloud applications layer: Applications and services can either be provided by the smart cloud

provider or deployed by users themselves. It also includes middleware frameworks as applications.

The application layer provides APIs to implement control functionality or any kind of business

logic.

Platform layer: Cloud providers allocate the computing resources to users as per their require-

ments. Users deploy their own software solutions without dealing with the underlying hardware or

software complexities. The major distinction between platform layer and control layer (described

below) is that users need not control or manage the underlying cloud resources, but perform their

operations on the available settings. However, users have full control over whatever is deployed by

themselves on top of the provided infrastructure.

Control layer: Logically centralized control plane is decoupled from the application logic or

physical resources. The reasoning for this separation is to have provision for all components of the

system to evolve independently. Also, the management of entire network can be easily done by the

centralized control.

Abstraction layer: Various virtualization technologies are already available and others are still

evolving that can be utilized for on-demand resources profiling in smart cloud environments. The

underlying physical infrastructure needs to be virtualized to perform a seamless migration, rapid

elasticity, load-balancing, and other operations. Resource pooling can also be done to serve multi-

ple customers using the multi-tenant model. Physical and virtual data planes can be incorporated

into the data center networks.

Physical layer: Massive physical resources are abstracted by leveraging virtualization techniques

16



to achieve resource adaptation, mobility, security, fault-tolerance etc. Easy reconfiguration and

adaptation of hardware resources in the cloud infrastructure is a crucial aspect.

As per requirements, these layers can be implemented anywhere in the hierarchy of the proposed

model. For instance, the control layer can be implemented in the distributed control plane, and

abstraction and physical layers can be implemented in the data center infrastructure.

3.3.2 Centralized Control

The centralized control is an important ingredient of SDN design philosophy. It simplifies the

development of cloud-based networking services and applications, and assists to overcome er-

ror prone enforcement and modification of policies. The centralization of global network view

helps to achieve efficient resources utilization in highly demanding environments. Furthermore,

the centralized network monitoring enables easier maintenance and troubleshooting as well as ef-

ficient power utilization. Although the centralized control eliminates the complications of network

management, it has its own limitations. Specifically, the centralized control may suffer from scal-

ability, resilience, and security issues among others. Therefore, it is important to deal with these

challenges while taking benefits of centralized control. To address these limitations, we introduce

the concept of distributed controller and proxy controller. As explained below in detail, the proxy

controller alleviates the requirement of distributed state management while providing the global

network view, and the distributed controller provides scalability and robustness while mitigating

the overheads by having peer-to-peer communication among nodes.
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3.3.3 Modularity

A modular architecture is the prerequisite of any software system that allows it to evolve rapidly

and meet extensibility needs of its users. Any user-centric platform should be designed in such a

way that its users can fine tune and customize it for specific purposes. It should provide enough

support for the development and integration of new models or subsystems in a plug-and-play fash-

ion. Besides providing flexibility, a modular architecture also simplifies troubleshooting and main-

tenance, since any issue can be tracked, isolated, and fixed in a systematic way without perturbing

the other independent components. As mentioned earlier, modularity in our model is realized by

having a layered structure.

3.3.4 Programmability

Programmability is the complementary feature of modularity that provides opportunities to imple-

ment customized software components on-top-of or beside existing platforms. The APIs exposed

by the programmable systems must be flexible enough to carry unimagined tasks, as well as sim-

ple and accessible enough for usability. Programmability is also adapted in SDN stack to control

the forwarding devices (data plane) from a vantage point. Users implement the required function-

ality in the form of applications by using favorable language and submit to the controller. The

controller is responsible to deploy the sought functionality at the forwarding devices. Similarly,

network administrators can compose and enforce policies at the data plane via the control plane.

3.3.5 Interoperability

Interoperability enables compatibility, portability, and communication among unrelated compo-

nents. Considering the heterogeneity of technologies, devices, and applications of smart clouds,
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interoperability becomes a crucial feature of such environments. For a highly adaptable and usable

model, it should be neutral to any particular platform and also should not be dependent on any spe-

cific technology or software component implementation. Federation of multiple cloud providers is

an apt usability of interoperability. The major task is to find a common set of specifications and

interfaces to achieve the desired level of interoperability among systems. Our proposed model is a

step forward towards this task.

With these characteristics, Figure 3.1 shows the layered taxonomy of the proposed reference

model. The data center infrastructure is separated from the control sub-system. Furthermore,

the control plane is designed in a hierarchy that is managed by two different controllers. The

middle layer is a distributed controller with multiple nodes (labeled Node 1, Node 2, ..., Node

n) to scale out at a large level. Each node is responsible for handling a set of physical resources

at the underlying layer. The nodes communicate with each other via communication channels to

share the relevant information that is not available to a particular node. By exposing flexible APIs,

the distributed controller provides opportunities of extensibility and programmability by allowing

programmers and network managers to deploy applications and policies in the form of modules.

The proxy controller at the top layer maintains a global view of the network and is responsible

for enforcing network-wide policies. The proxy controller also handles the competing resources

sharing among nodes of the distributed controller, and resolve configuration conflicts, if they arise.

The main purpose to have a separate proxy controller is to maintain a coherent and consistent

network state without incurring much overhead that is inevitable if distributed data store or another

similar mechanism is used. Finally, the layers of the hierarchy can be defined recursively as per

scalability and granularity requirements.
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Figure 3.1: A reference model for the evaluation tools for cloud-based applications

Notice that the proposed model is transparent enough to allow abstractions at multiple levels by

deploying any of available virtualization tools and techniques. However, the model is most suitable

to evaluate cloud environments having the promising non-strict layered distributed design shown

in Figure 3.1. The model is not directly applicable to cloud systems with purely strict distributed

design. Extending the platform to these cloud systems is a future scope of work.

3.4 Evaluation Platform

To validate the potential of our proposed model, we use ONOS [45], FlowVisor [46], and Mininet

[47] as off-the-shelf tools. Some functionality of these tools is tweaked to set up an environment

that closely resembles and complies with our model. Initial experiments are performed to highlight

the effectiveness of the proposal. A brief description of these tools is given below.
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3.4.1 ONOS

Open Networking Operating System (ONOS) is an open source implementation of SDN control

plane, that allows development and deployment of network control applications. Due to its design

characteristics, ONOS can be used for access networks, data center networks, enterprise networks,

as well as other networking scenarios. In order to achieve high performance, scalability, robustness,

availability, ONOS is designed to operate as a distributed cluster of symmetric nodes. Moreover,

modular approach of ONOS provides extensibility and flexibility to implement customized features

and services. ONOS exposes sufficient set of APIs to support instant implementation and deploy-

ment of network applications or any other business logic. Intent-based programming support by

ONOS significantly simplifies the network policy enforcement and application development pro-

cess. Finally, ONOS is compliant with OpenStack and other clouds related technologies.

3.4.2 FlowVisor

FlowVisor is an SDN-based proxy controller that enables switch-level network virtualization by

creating isolated slices of a production network. In its standard form, FlowVisor works as a trans-

parent proxy controller between the control plane and data plane. However, we performed some

customizations to deploy it as the proxy controller at the root of our hierarchical model. Besides

slice isolation, the centralized policy enforcement, separation of control and virtualization logic,

and global network monitoring are the other traits of FlowVisor that make it a suitable choice for

our platform. To achieve optimum performance gains as well as maximum resource utilization,

while at the same time incurring minimum overheads, we can delegate the workload to the trans-

parent proxy controller and distributed control plane by appropriately exploiting these features.
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3.4.3 Mininet

Mininet is the lightweight container-based network emulation tool for instant prototyping of large-

scale networks. To scale up to hundreds of nodes, Mininet takes advantage of the already available

features of Linux-based operating systems, such as OS-level virtualization, network namespace,

virtual ethernet pairs, and processes. The testing scripts and scenarios of Mininet can be deployed

to the real network with exactly same code. Mininet emulates links, hosts, and switches to eval-

uate a network topology. The flexible interface of Mininet allows it to easily configure with any

software or hardware switch or controller running in the real or simulated network, provided that

the machines have IP-level connectivity. Further, Mininet is extended for the cluster mode sup-

port to emulate distributed networks, that makes it suitable to deploy with distributed control plane

comprises of ONOS instances.

By default, the global network topology state is cached in memory on each instance of ONOS.

And, the joining and leaving nodes are managed by the cluster membership management, that is

implemented using Hazelcast’s distributed structure. However, these tasks introduce overheads

that can be subverted. To overcome the overheads, ONOS instances can be deployed as data

center entities, along with a proxy controller, FlowVisor in our test case scenario, at the top layer

to centrally configure and manage resources. Therefore, we accordingly customized ONOS and

FlowVisor for global network view and nodes management.

At the simplest level, a tree-like topology is used in data center networks where end hosts connect

to top-of-rack switches. These edge switches are connected to aggregation switches, which are

further connected to core switches in the topmost layer. As shown in Figure 3.2, we designed

similar scenario using the tree topology provided by Mininet and varying fanout to increase the

number of switches and hosts. Figure 3.3 shows the evaluation scenario of the proposed reference

model. As in diagram, ONOS instances communicate with each other to share the information
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required for a local instance; however, the global topology management is handled by FlowVisor.

Figure 3.2: Data center topology

Figure 3.3: The evaluation platform for the proposed model
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3.5 Preliminary Results

We used Intel (R) Xeon (R) CPU E5-2603, running at 1.60 GHz, with six cores, 64 GB RAM, 2

TB hard disk, and Ubuntu 14.04.1 LTS 64-bit operating system. Multiple instances of ONOS are

deployed by having separate Virtual Machines (VMs) for each instance, using the Oracle Virtual

Box. Each experiment is averaged by 20 runs, and Open vSwitch [48] is used for all topologies.

End-to-end bandwidth, measured in Mbps, of a varied number of switches and hosts is summarized

in Table 3.1. Similar results are presented in [47], but without specifying the type of controller de-

ployed to perform the experiments. Mininet supports several controllers, including the OpenFlow

reference controller that is natively implemented in Mininet, and a remote controller. The remote

controller can be any off-the-shelf controller running outside of the VM, a different physical ma-

chine, or anywhere in the network. The controller type is a crucial configuration component since

the reference controller and remote controller significantly affect measurements. To benchmark

the difference, we deployed the linear topology with exactly same number of switches and hosts

as was done in [47]. The variation is highlighted in Figure 3.4. The factor for this difference is

the use of a remote controller that significantly decreases the bandwidth. And, by increasing the

number of switches and hosts, the total available bandwidth is shared and reduced for each device;

however, the platform provides usable bandwidth in aggregation. We use ONOS as the remote

controller, but the results may vary for other types of controllers.
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Table 3.1: End-to-end bandwidth

Switches Hosts Bandwidth Bandwidth
(reference) (remote)

1 2 26624 269
10 10 15360 24.4
20 20 11264 9.66
40 40 7127 3.65
60 60 5079 2.30
80 80 3604 1.66
100 100 2467 1.23
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Figure 3.4: Comparison of the remote and reference controller bandwidth

Figure 3.5 shows the time required to setup and tear down a topology in cloud environment. Since

our main focus is the switching system of clouds, the graph shows only that particular information.

More details of the topology are given in Table 3.2. We can observe that although time grows

rapidly for larger topologies and further optimizations are possible, still the waiting time to start a
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topology is reasonable considering the booting time required for switches.
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Figure 3.5: Topology setup and tear down time

We measured CPU utilization to assess overhead incurred by the platform. As in previous experi-

ments, the number of switches and hosts were varied to get the relative performance metric of the

simulation environment. Figure 3.6 shows the graph of CPU consumption. It indicates that the rate

of growth is fairly low. Therefore, we can infer that the platform carries out large-scale operations

while minimizing overheads.
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Table 3.2: Topology setup and tear down time

Switches Hosts Time (sec)
7 8 1.364

13 27 7.465
31 125 39.840
43 216 44.228
57 343 48.700
73 512 65.612
91 728 100.812

111 1000 134.277
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Figure 3.6: Overhead of CPU utilization
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3.6 Conclusion and Future Work

An exhaustive and realistic evaluation platform is essential to architect smart cloud computing

systems. Various tools already exist for simulation and analysis purpose. However, most of the

available tools somehow fall short of providing a level of realism and flexibility. Moreover, lack

of conformity is another major issue. Therefore, we propose a generic reference model, that is

carefully designed to meet an extensive set of requirements. The proposed model can be adopted

to implement a concrete platform, and we have demonstrated this by using existing software com-

ponents. Initial results are also presented to demonstrate the potential usefulness of the model.

As future work, we would like to assess our model for support of exhaustive test cases including,

Service-Level-Agreement (SLA) testing, on-demand testing, and embedded testing.
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CHAPTER 4: A SCALABLE PEER-TO-PEER CONTROL PLANE

ARCHITECTURE FOR SOFTWARE DEFINED NETWORKS 1

Control plane scalability is one of the major concerns in Software Defined Networking (SDN) de-

ployment. Although the centralization of the control plane by decoupling it from the data plane

facilitates ease of network management, however, it introduces new challenges. One of these chal-

lenges is to maintain performance, consistency, and scalability while minimizing the corresponding

overheads. In this chapter, we propose an architecture that allows the control plane to evolve at a

hyper-scale level as well as address important performance and reliability issues. A hierarchical

control plane architecture with peer-to-peer communication among logically distributed controllers

is designed with the goal of achieving optimum performance and consistency gains while mitigat-

ing overheads. A root controller is deployed at the top layer of the hierarchy to maintain global

network view. The proposed model is helpful in improving network robustness against failures and

supporting a desired level of reliability. To evaluate our model, we developed a realistic emulation

platform using ONOS, FlowVisor, Mininet, and Open vSwitch. The proposed architecture is com-

pared with earlier solutions and experimental results are presented to demonstrate the effectiveness

of the proposed model.

4.1 Introduction

Software Defined Networking (SDN) has gained very much attention from academia as well as the

industry in recent times. It is envisioned to overcome the existing shortcomings of data center net-

works, access networks, and enterprise networks. Learning from prior experiences [49], separation

1Related Publication: K. S. Atwal, A. Guleria, and M. Bassiouni, A scalable peer-to-peer control plane architec-
ture for software defined networks, in Network Computing and Applications (NCA), 2016 IEEE 15th International
Symposium on. IEEE, 2016, pp. 148152.
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of the control plane and the data plane is a crucial aspect for achieving SDN goals. Furthermore,

centralized control, network programmability, and flow-based decision making are some of the

other important features of SDN. Due to its salient features, SDN is being widely deployed in

multi-datacenter and multi-domain networks by using OpenFlow protocol.

However, there are many challenges still need to be addressed. The control plane scalability is

one of the prominent challenges among others. The issue of scalability escalates even further if

we consider performance and robustness of the network, which are generally the prerequisites of

any realistic network. Therefore, it becomes imperative to address the control plane scalability in

a systematic manner by considering the other important aspects of a pragmatic network. In this

chapter, we propose a model to deal with scalability, robustness, and performance of SDN control

plane architecture. Although a single controller can handle sufficiently large number of requests

with an acceptable average response time [7], still there are other factors that require multiple

controllers deployment [50], such as:

• Geographically wide distribution of the network.

• High availability and low response time requirements for QoS or real-time services.

• Handling bottleneck of the single point of failure.

• Partitioning large-scale networks (e.g. data center, enterprise networks) into many sub-

networks, that can be controlled separately.

• Management of segregated inter-networks by different proprietary domains.

There are multiple ways to deal with the scalability of the control plane. First, the performance of

the physically centralized control logic (i.e single controller) can be increased by deploying more

hardware resources or performing some optimization techniques for performance enhancements
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up to a certain level [51]. Second, the overall workload of the control plane can be alleviated

by minimizing the set of operations performed by it and devolving some functionality to other

components [52]. Third, multiple controllers can be deployed that form a physically distributed

or logically centralized control plane [53]. Given the earlier reasons for requirements of multiple

controllers, we chose the last option to address the control plane scalability issue; therefore, other

approaches are out of scope. Furthermore, multiple controllers could be deployed in a fashion such

that the control plane is fully decentralized and physically distributed [54], or logically centralized

[55]. Our approach maintains logically centralized but physically distributed control plane.

Following are the major contributions of this chapter:

• We propose highly scalable control plane architecture for SDN, that can be adopted to meet

optimum performance demands of enterprise and data center networks.

• Consistency of the network state is handled very efficiently while mitigating the correspond-

ing overheads.

• The proposed model allows the network to be configured dynamically as per desired level of

robustness requirements.

• An integrated emulation platform is developed to evaluate the proposed model, and corrob-

orative results are presented.

Rest of the chapter is organized as follows. Related work is discussed in Section 4.2. Section 4.3

presents the system model of the proposed architecture. Then, evaluation platform for the proposed

scheme is described in Section 4.4, followed by an elaboration of results in Section 4.5. Finally,

Section 4.6 includes the conclusion and future scope of the work.
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4.2 Related Work

Our model is motivated from Orion [10], which is a hierarchical control plane architecture for

large-scale networks. Our proposal differs from Orion in many respects. First, the top layer of

controllers is not distributed. Rather, a root controller is placed in the hierarchy to maintain the

coherent network view while incurring minimum overheads. Secondly, communication channels

among zone controllers are provided to serve information requirement of any controller at rela-

tively local level. Finally, if any zone controller fails, load will be distributed either to existing

neighboring zone controllers or to newly added controller, depending on the adaptive controller

provisioning mechanism.

Zoning mechanism for hierarchical network optimization is proposed in [56], that does not con-

sider coherent network abstraction at the application layer. Our model utilizes resources more

efficiently by off-loading some functionality to the root controller at the top layer of the hierarchy.

Dynamic controllers adaptability and controller-switch assignment/reassignment are proposed in

[57], that uses distributed data store to maintain coherent network view and perform load adapta-

tion among multiple controllers. However, load balancing can be handled more efficiently if it is

controlled by a physically centralized entity; therefore, we delegate this functionality to the root

controller. A distributed hierarchical control plane to improve scalability and service flexibility is

proposed in [58]. However, it does not deal with failures, and our solution is more robust against

failures at multiple layers. HyperFlow [8] is an event-based, logically centralized but physically

distributed control plane architecture for OpenFlow. Although HyperFlow is resilient to network

partitioning and component failures, however, it does not consider dynamic controllers adaptation

and load balancing, which are crucial functionalities of data centers and other similar networks.

Kandoo [9] proposes the two-layer hierarchy of controllers to achieve scalability. However, it also

does not consider failure and adaptability of controllers. A formal model on SDN control plane is
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presented in [59], which shows that the hierarchical organization is required to achieve scalability

and elasticity of any practically feasible network.

Most of the existing logically distributed control plane architectures either fall short of robustness

against failures or incur the communication or state management overheads that directly hampers

the performance. Furthermore, the intense demands of data center type networks are not taken into

consideration, such as dynamic resources provisioning based on user demands, optimum utilization

of the existing infrastructure to save cost. Therefore, contrary to the state of the art solutions, our

proposal uniquely addresses the control plane scalability while making sure to provide robustness

and handle overheads in a systematic way.

4.3 System Model

Following are the main challenges for a logically centralized control plane architecture of SDN:

• The global network view has to be maintained coherently across multiple controllers in case

of any component failure and dynamic network topology changes.

• The inconsistency and competing resources issues may emerge among multiple controllers

that need to be resolved with the priority to achieve overall optimum state.

• In a multi-controller scenario with a global network view, it is important to have the state

synchronization and reachability between all controllers.

• The communication overheads are inherently increased in the deployment of multiple com-

ponents.

• Dynamic controllers adaptation is required for efficient resources utilization. For instance,
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on-demand resources provisioning is needed in data center networks to fulfill user demands

and meet the Service-Level Agreements (SLAs).

Other than that, an effective failover mechanism is needed for resilience and robustness of the

network. Considering these aspects, we designed a logically centralized but physically distributed

control plane architecture for SDN. By virtue of its design, the proposed model is not strictly

physically distributed, since some functionality of the control logic is handled by the physically

centralized controller. Figure 4.1 depicts the hierarchical model of our proposed system. The hier-

archy is formed in such a way that the relatively local events are handled by the zone controllers

and global events are handled by the root controller. The idea is to distribute the load among con-

trollers, along with maintaining the coherent network state, while minimizing the communication

and other overheads that contributes towards performance gains.

Figure 4.1: Hierarchical SDN architecture.

The root controller is mainly responsible for managing the global network view and some other

network-wide functionalities, while the zone controllers directly control the underlying physical

devices (i.e forwarding plane) via OpenFlow protocol. Furthermore, the communication channels
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are established between zone controllers for peer-to-peer communication. These channels are used

to share any kind of information among zone controllers that is not available to a particular con-

troller. Fetching the required information from neighboring controllers contributes to minimizing

the latency that can be higher if the information is requested from the root controller at the top layer.

Also, due to localized information sharing, the peer-to-peer interaction reduces the communication

overheads in the network.

As shown in the diagram, the forwarding plane is formed by partitioning physical resources in

zones. The zones can either be created as per segregation requirements of geographically dis-

tributed sub-networks, or as per multiple proprietary domain management services. The zones can

also be configured for the purpose of evenly distributed load management and optimum resources

utilization of a large enterprise. The reliable TCP connections are employed for peer-to-peer com-

munication among zone controllers as well as interaction with the root controller at the top layer.

The solid arrows in the diagram represent the established connections among various components,

while the dotted arrows highlight the provision to add multiple connections for backup purpose.

The next major task is to categorize the roles and responsibilities of the root controller and the

zone controllers. In this aspect, our main focus is to delegate functionalities so that the consistent

network view is maintained without many overheads, and service requests are served as per prox-

imity of the components. With these goals, the following subsections elaborate functionalities of

the control layers and describe the modules defined to implement such functionalities.

4.3.1 Root Controller

Below are the main responsibilities of the root controller:

• Maintain the globally consistent network view and share it to the zone controllers, applica-
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tion layer, and other services.

• Configuration of network components, such as zone controllers, switches.

• Dynamic provisioning of the zone controllers for average resources utilization, and failover

mechanism enforcement in case of failures.

• Perform controller-switch assignment/mapping and initiate the switch migration when needed.

• Network statistics collection via zone controllers.

• Rules generation for network-wide policies enforcement.

Following are the modules defined to implement these tasks of the root controller:

Storage module: The network state information is stored in the storage module. The physical

centralization of the network topology information alleviates the overheads of the distributed data

stores or shared file systems.

Monitor module: The desired level of consistency in the network state is dependent on the real

time topology changes and other events in the network. To achieve this objective, the monitoring

module is carefully defined to continuously observe the network state and find a ”sweet spot” or an

optimal point having sufficient level of accuracy while minimizing the corresponding overheads.

Load adaption module: Optimum resources utilization is an important priority of the data center

networks and enterprise networks. By getting the real time usage updates from the monitoring

module, the load adaptation module provides dynamic provisioning of the network resources. It

implements the load balancing methods that make sure to efficiently utilize the capacity of the zone

controllers.

Partitioning module: The logically centralized but physically distributed control plane implies

segregation of workload among multiple controllers. It closely resembles the multi-tenant and

multi-domain model of the modern data centers. By implementing the clustering techniques, the
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partitioning module creates slices of the network as per specific requirements and assign the slices

to the zone controllers in an optimized way.

4.3.2 Zone Controllers

Below are the major responsibilities of the zone controllers:

• Flow management of the switches that belong to their respective zones.

• Computation, selection, and installation of the routes for the relevant flows.

• Network topology discovery and maintenance with coordination of the root controller.

• Handling host and switch management issues such as path failover, traffic engineering, qual-

ity of service, host specific updates etc.

Following are the modules that define these tasks of the zone controllers:

Path computation module: In SDN design philosophy, the complexity of the forwarding devices

is significantly reduced by shifting the decision-making capability to the controller. The main

objective behind this structural change is to let the control logic and forwarding logic evolve and

innovate separately. Therefore, path computation and selection are performed by the controller, and

the routes are installed in the switches either proactively or reactively by employing OpenFlow or

any other similar protocol.

Events processing module: Events triggering is a very frequent activity in networks. The events

processing module is implemented to handle the events generated by either users or other network

components. It also coordinates with the root controller to notify the events in respective zones.

Application module: Users and network administrators implement network logic in the form of

applications and submit to the controller for eventually deploying the sought functionality in the
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forwarding devices. The application module exposes sufficient set of APIs to let the intended

functionality gets quickly deployed without any hassle.

Communication module: One of our design objectives is to provide the required information to

various components of the network without incurring much overheads and delay. To this end, the

communication module is defined to manage the peer-to-peer interaction among zone controllers,

as well as communications with the root controller at the top layer and switches at the bottom layer

(via southbound channels).

Failover module: In case of any zone controller failure, the affected switches are either assigned to

the other available controllers or a new controller is deployed in case of the insufficient capability

of the running controllers. The recovery mechanism tries to stabilize the network without much

loss, and the steady degradation strategy is applied in worst case.

Robustness: As explained earlier, the provision fo alternative connections is provided at the mul-

tiple layers of the proposed design. Zone controllers failure is handled by the logically distributed

control plane. Similarly, the root controller can be replicated to a backup controller much easily

due to its physical centralization. Furthermore, the timeout or heartbeat strategy can be used to

decide any component failure, and the preemption can be enforced to migrate the affected devices

back to their original source. Therefore, the proposed model provides sufficient opportunities to

get the desired level of robustness against failures.

4.4 Evaluation Platform

To validate the potential of our proposed model, we use ONOS, FlowVisor, Open vSwitch, and

Mininet to build an integrated emulation platform. By default, the global network topology state is

cached in memory of each instance of ONOS. And, the joining and leaving nodes are managed by

the cluster membership management, that is implemented using Hazelcast’s distributed structure.
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However, these tasks do not conform with our proposal. Therefore, we accordingly customized

ONOS and FlowVisor for global network view and nodes management.

4.5 Results

We used Intel (R) Xeon (R) CPU E5-2603, running at 1.60 GHz, with six cores, 64 GB RAM, 2

TB hard disk, and Ubuntu 14.04.1 LTS 64-bit operating system. Cbench and iperf tools are used

for benchmarking the results. Each experiment is averaged by 20 runs. The number of hosts and

switches ranges from 20 to 120 per zone for all experiments.

For the comparative analysis, we benchmarked our model with Orion. The topology configuration

parameters are equally chosen for accordance of both models. In the first experiment, flow setup

rates of both models are compared. Figure 4.2 shows the relative results of the time required

by both models. As shown in the diagram, the flow setup time is lower in our model mainly

due to centralized control at the root controller. With only one zone, the controller of our model

can handle 17279 new flows per second, while the Orion area controller handles 8114 flows per

second. Furthermore, the rate of flow setup growth is stable while increasing the number of zone

controllers.

The second experiment compares the delay time incurred in Orion and our model. Again, the

testing parameters are same for comparing the two models. From Figure 4.3 we can see that our

model experiences less delay as compared to Orion. The delay time of Orion is 14 ms in 5 number

of areas and 20 switches, whereas our model has 12.3 ms delay with an equal number of zones and

switches. The major factor for the lower average delay time of our model is the communication

among zone controllers to share the topology state and other relevant information. An improvement

of few milliseconds is crucial for the time-sensitive services and applications.
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Figure 4.3: Comparison of the average delay time
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To measure scalability, we performed experiments to evaluate the effect of increasing the number

of zone controllers deployment. Figure 4.4 shows the time required to setup and tear down a

topology with respect to zone controllers. We observe that the time grows relatively steadily given

that the multi-fold addition of switches and hosts for each zone controller (120 switches, hosts per

controller). It shows the large-scale capability of the proposed model.
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Figure 4.4: Topology setup and tear down time

We measured CPU utilization to assess the overheads incurred by our proposed model. As in

previous experiments, the number of switches and hosts were varied to get the relative performance

metric of the architecture. Figure 4.5 shows the graph of CPU consumption. It indicates that the

rate of growth is fairly low corresponding to an increment in the number of zone controllers.

Therefore, we can infer that the control plane carries out intended operations while minimizing the

corresponding overheads.
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4.6 Conclusion and Future Work

In this chapter, we propose a logically centralized but physically distributed control plane architec-

ture for SDN, that aims to be highly scalable as well performance and robustness intensive while

minimizing the overheads. Our model eliminates the need of the distributed data store, distributed

protocols or any similar mechanism to maintain coherent network view. And, the modular ap-

proach with the layered architecture makes it suitable to deploy in the data center and enterprise

networks. Comparative results are also presented to demonstrate the potential usefulness of the

model. Components migration algorithms and events registration techniques are the future scope

of the work.
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CHAPTER 5: CLOUD-BASED SOFTWARE DEFINED VIRTUALIZED

WIRELESS MOBILE ACCESS NETWORKS

Mainly due to exponential growth in smart devices based mobile computing, the access networks

are gaining tremendous momentum. Software-defined networking (SDN), along with cloud com-

puting and virtualization techniques, is considered as a major step forward from the conventional

networking. Although SDN is being widely deployed in the data centers and enterprise networks,

its adaptation in wireless mobile networks is still in an infancy stage. Unreliable channel and inter-

mittent network connectivity limit the scope of SDN in the wireless context. However, by dealing

with these issues, the benefits of the centralized control philosophy of SDN can be reaped for opti-

mum spectrum sharing, QoS support and other services. In this chapter, we propose SoftAccess, a

cloud-based architecture for mobile wireless access networks that follows SDN principles and im-

plements virtualization techniques. Seamless network connectivity and mobility management are

the crucial aspects of wireless access networks. The proposed model addresses these challenges

while making sure to achieve optimum performance and robustness against failures by harnessing

capabilities of SDN and cloud computing. We deployed a testbed to evaluate the proposed archi-

tecture. The comparative experimental results are presented to corroborate the effectiveness of the

proposal.

5.1 Introduction

The smart devices and Internet of Things (IoT) based computing is creating an unprecedented

amount of traffic in the conventional networks. Multi-billion devices are projected to get con-

nected to the Internet in upcoming years, that opens the door for a web of mobile devices and

corresponding apps with multitude of services having diverse set of quality parameters, network
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capacity and other disruptive requirements. The hand-held and wearable devices have given enor-

mous computing capabilities to its users. However, the network infrastructure is not being able to

grow with similar innovations and advancements. Therefore, the research community is rethinking

existing network architectures and structures from the ground-up. Software-defined networking

(SDN) is one such paradigm recently emerged from these efforts [31], that is being considered as

a breakthrough in recent networking technologies. SDN is being complemented with cloud com-

puting and network virtualization techniques to fully exploit its capabilities for handling existing

issues in the traditional networks. The tightly coupled vertical integration of network components

inhibits the rapid network growth in the real-time scenarios and adds more complexity to already

burdened resources. It further complicates the orchestration and management of the networks that

results in an increase of capital and operational expenditures.

SDN aims to simplify network management by decoupling the decision-making control function-

ality from the forwarding devices. Its core principle is the separation of the control plane from the

data plane so that all components may evolve independently in order to provides opportunities for

network innovation.

Data

Plane

Controller 
Control Plane

Secure

Channels

(OpenFlow)

Figure 5.1: A typical SDN architecture.

As shown in Figure 5.1, the data plane is relieved from the control functionality that alleviates

complexities of the switching devices. The decision-making capabilities are delegated to the cen-
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tralized entity (either physically or logically centralized) that forms the control plane. The forward-

ing devices can be controlled and programmed from the control plane via secure communication

channels using OpenFlow [3] or similar vendor agnostic APIs. It allows network operators and

programmers to deploy their specific functionalities on the fly onto the otherwise dumb devices

by implementing network apps as per requirements in hand. The users control the forwarding de-

vices by pushing their requirements to the controller, that is responsible for enforcing the network

policies accordingly.

By integrating SDN with other promising technologies such as network virtualization and cloud

computing, the longstanding issues of the conventional networking can be tackled. However, SDN

is mainly embraced for wired networks such as data centers, enterprise networks [44], and its

applicability in wireless networks is still very limited. The unreliable communication channels

and frequent connection loss due to unreachability or interference hinders secure and dependable

communication among controllers and forwarding devices. These issues may lead to complete

network breakdown, since the data plane is formed by the dumb devices that can not perform any

operation without instructions from the control plane. Furthermore, the mobility management is a

complex task that may exhaust the centralized control plane, if not handled carefully. Therefore,

the unique characteristics of wireless access networks such as mobility, wireless medium, power

conservation, do not allow direct applicability of SDN in these environments.

In this chapter, we propose SoftAccess, an architecture that incorporates SDN principles in the

wireless access networks by utilizing capabilities of cloud computing and virtualization techniques.

SoftAccess addresses the inherent challenges of wireless networks while providing SDN benefits

in a systematic manner. Following are the main contributions of the chapter:

• We discuss the applicability of SDN principles in mobile wireless context.

• An architecture is proposed that allows SDN to be deployed in wireless scenarios while
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making sure to address inherent challenges of such networks.

• Comparative results are presented to demonstrate effectiveness of the proposal. A testbed is

deployed to perform the experiments.

• Some practically feasible applications of the scheme are also discussed.

Rest of the chapter is organized as follows. Related work is discussed in Section 5.2. Section 5.3

describes the architecture of SoftAccess. Then, evaluation platform and experimental results are

presented in Section 5.4. Some practical applications of the proposed architecture are discussed in

Section 5.5. Finally, Section 5.6 includes the conclusion and future scope of the work.

5.2 Related Work

Our work is closely related to [60] and [61]. SDN-based mobile cloud architecture for MANET

environments is presented in [60]. It provides a framework for the components required by SDN in

ad-hoc scenarios, and also discusses various use cases and services of the proposal. Our approach

is applicable to the path selection, multipath transmission and other use cases mentioned in [60].

However, the wireless interfaces on nodes are statically preconfigured to the specific frequencies

in [60]. On the contrary, SoftAccess can dynamically adapt to multiple frequencies via the control

messages of the controller that employs virtualization techniques to do this job. An architecture

for next generation cellular networks is devised in [61], that integrates SDN and network function

virtualization (NFV) techniques to support distributed content routing, heterogeneous networks,

and other techniques that strive to address shortcomings of existing LTE networks.

HetNet Cloud is an SDN-based cloud architecture for the implementation of core and access vir-

tual heterogeneous wireless networks [62]. It allows the network operators to build their own
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network by programming the leased network resources from the cloud, and use the spare bits of

the OpenFlow packet model to identify virtual network entities. However, nodes mobility and con-

nection loss are not considered by HetNet Cloud. A software-defined hyper-cellular architecture is

proposed in [63], that integrates cloud-based radio access networks (RANs) and software-defined

RANs to enable green and elastic wireless access. To manage user mobility, it deploys centralized

base station as a controller. However, due to distributed control nodes, the state synchronization

is a major challenge in this approach. The elasticity provisions of cloud-based evolved packet

core (EPC) for virtualized 5G networks are presented in [64]. It introduces state sharing and syn-

chronization mechanisms to achieve scalability and fault tolerance. The recent state of the art

approaches for SDN in wireless networking are outlined in [65].

SoftRAN is an SDN-based control plane architecture for the radio access networks (RANs) [16].

It abstracts base stations in a local geographical area as a virtual base station that can perform

load balancing and interference management. A mobile extension of SDN, called meSDN, is

proposed in [66], that enables WLAN virtualization, QoS, and power efficiency improvements

on mobile devices. Similar to our scenario, the meSDN framework also considers the global

controller and local controller provisions for the control plane; however, it does not consolidate the

cloud computing techniques that provide optimum resources utilization and user-centric service

models. CloudMAC is an SDN-based architecture for enterprise WLANs that processes MAC

frames on virtual access points hosted in a data center [67]. An SDN-based spectrum management

architecture with a baseband virtualization for wireless networks is proposed in [68]. It shows the

benefits for SDN principles in wireless spectrum sharing and other services.

Most of the existing approaches either fall short of exhaustively considering unique traits of wire-

less access networks or incur formidable cost and overheads for deployment in real life cases.

However, contrary to the state of the art solutions, SoftAccess successfully accomplishes its de-

sign goals by effectively utilizing SDN and other technologies.
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Figure 5.2 shows the summarized schematic diagram of so far existing approaches for SDN-based

wireless mobile networks.

Data
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Figure 5.2: SDN in wireless scenario.

5.3 System Model

SoftAccess is an extension of our work in Chapter 4, that addresses scalability of SDN in data

centers by having physically distributed but logically centralized control plane since physical cen-

tralization of control plane architecture does not scale well. However, mobility management, spec-

trum sharing, unreliable connectivity and other characteristics of wireless mobile networks were

not considered in the earlier work. Also, virtualization and clouds techniques were not incorpo-

rated.

Following are the additional challenges of wireless access networks:

• Given the constant variations in link/channel conditions and significant computation of cen-

tralized route discovery, SDN principles can not be extended to wireless networks in a
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straightforward manner.

• Smooth handover process of mobile devices among multiple domains is an arduous task.

• Computational intensive mobility management can throttle the control plane.

• Additional provisions are required to handle sparsity or density of continuously changing

network topologies.

• Non-uniform network traffic of multiple co-existing radio access technologies pave the way

for further complications.

• Finite energy and other resources scarcity with very stringent performance and latency needs

are some of the other problems associated with wireless access networks.

SoftAccess is designed to uniquely address these issues by harnessing capabilities of cloud com-

puting, virtualization, and other techniques. Figure 5.3 shows the architecture of SoftAccess. As

shown in the diagram, it has a logically centralized but physically distributed control plane. How-

ever, due to a physically centralized global controller, it also possesses traits of physical central-

ization. The global centralized controller is placed in the clouds and the local controllers are de-

ployed in the vicinity of the hardware infrastructure. The physical layer is formed by aggregating

forwarding devices by virtualization techniques, i.e., the physical infrastructure is abstracted from

the control plane. A varying number of switches represents the provision to aggregate any number

of resources as per specific requirements. Virtualization can also be defined for the purpose of

evenly distributed load management and optimum resources utilization of a large enterprise. The

reliable TCP connections are employed for peer-to-peer communication among local controllers

as well as interaction with the cloud-based global controller at the top layer.

As elaborated below in details, the global controller is mainly responsible for managing the global

network view and some other network-wide functionalities, while the local controllers control
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the underlying physical devices (i.e forwarding plane) via OpenFlow protocol. Furthermore, the

communication channels are established between local controllers for peer-to-peer communica-

tion. These channels are used to share any kind of information among local controllers that is not

available to a particular controller. Fetching the required information from neighboring controllers

contributes to minimizing the latency that can be higher if the information is requested from the

global controller at the top layer. Also, due to localized information sharing, the peer-to-peer

interaction reduces the communication overheads in the network.

Figure 5.3: Hierarchical SDN architecture.

Following are the key characteristics of SoftAccess:

Cloud-based global controller: Clouds provide an abundance of processing, storage, and other

resources on demand that allow computational and data intensive tasks to be executed on less

capable mobile devices. It also gives the desired level of performance, robustness and QoS support
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at very flexible cost models.

Seamless connectivity and mobility: In case of unavailability of global controller due to some

reasons, the local controllers continue to serve the forwarding devices and keep the network alive.

The peer-to-peer interaction among local controllers facilitates to keep a continuity of on-going

communication sessions with vertical handovers or multiple stations.

Virtualization: It is a well known fact that integration and coordination of heterogeneous nature

of technologies is not an easy task. To this end, virtualization of physical resources provides

opportunities to configure multiple wireless interfaces that can operate at separate frequencies.

The controller deployment in clouds promise lower operational costs for using real-time computing

resources, since resources can be added or removed on-demand and in very simplified manner. As

a result, the network operators can expand their infrastructure as they need it, rather than provision-

ing in advance. Given that the control function of SoftAccess can be placed in a cloud as modules,

it overhauls the conventional networks into a stateless network that results in control-oblivious data

plane.

The inherent challenges of wireless networks may result in a significant bottleneck for physically

centralized control plane. Therefore, local controllers are deployed to manage relatively localized

events and keep the network stable in the case of unreachability or other issues of the global

controller.

Following are the additional reasons of local controllers deployment close to the edge of the net-

work:

• Due to closeness with the hardware infrastructure, the local controller has a more updated

view than the global controller; hence it can better manage its localized resources.
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• The mobility management is re-factored to the local controllers mainly due to their vicin-

ity with the corresponding devices. Also, having multiple local controller nodes in place

simplifies computation of otherwise complicated mobility management.

• SoftAccess allows mobile users to dynamically select the best possible available network and

efficiently utilize coordinated and simultaneous use of multiple radio resources or interfaces

on the devices equipped with multi-homed, multi-path capabilities. The local controllers

implement this functionality by having direct control over the virtualized layer of physical

resources.

• The local controllers possess uplink and downlink resources management provisions that

allow access points to coordinate bi-directional transmissions with the shared-medium wire-

less MAC protocols.

Various tasks of the control plane of SoftAccess can be configured with programmable modules

that allow flexibility, and simplifies troubleshooting and maintenance by tracking, isolating, and

fixing any issue in a systematic way without perturbing the other independent components. We

developed the following modules for SoftAccess:

Mobility manager: Mobility is characterized by many factors including position, direction, move-

ment pattern, acceleration, density, and duration of the communication. The mobility manager con-

sider these factors to keep track of the incoming and outgoing devices in its region. To achieve scal-

ability and reliability, our approach follows the distributed mobility management (DMM) paradigm

where local controllers coordinate among neighboring nodes to ensure seamless mobility and han-

dover process. Also, having multiple local controller nodes in place simplifies the computation

of otherwise complicated mobility management. The local controllers act as the data aggrega-

tors and provide address prefixes to the global controller which configures the reachable interfaces

accordingly. The global controller also keeps track of the already registered devices in a region.
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Furthermore, the local controllers provide functionality to dynamically change the anchor points

for moving devices that alleviate signaling overheads during service sessions. Additionally, the lo-

cal controllers calculate the flow matching rules, corresponding actions, and the path modifications

to forward the data towards destination. OpenFlow protocol is employed for these configurations.

Spectrum manager: It is one of the most important components of SoftAccess. It provides fine-

grained channel bandwidth management according to the type of services and applications. Given

the heterogeneous requirements of a diverse range of devices, it is essential to fulfilling their trans-

mission rate, delay, and other demands accordingly.

Statistics manager: The desired level of consistency in the network state is dependent on the real

time topology changes and other events in the network. To achieve this objective, the local con-

trollers collect statistics from their respective devices and submit reports to the global controller.

Subsequently, the global controller uses this information to maintain the global network state and

topology.

Storage manager: The network state information is stored and handled by the storage manager.

The physical centralization of the network topology information alleviates the overheads of the dis-

tributed data stores or shared file systems and simplifies high consistency of network management

from a vantage point.

Flow manager: As specified by the OpenFlow protocol, the flow manager uses wildcards and

filtering mechanisms to calculate optimum paths for the flows. The local controllers are responsible

to immediately handle the flow requests of devices and provide real-time updates to the information

base of the global controller. The flow manager uses the statistics manager to measure various

metrics for the privileged traffic steering and meet end users requirements.

Load manager: The load manager supervises dynamic provisioning of the network resources by
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getting the real time usage updates from the statistics manager. It implements the load balancing

methods that make sure to efficiently utilize the capacity of physical resources.

Events manager: The events manager is implemented to handle the events generated by either

users or other network components. It also coordinates with the global controller to notify the

events.

Application manager: There is a proliferation of applications for communication networks. Users

and network administrators implement network logic in the form of applications and submit to

the controller for eventually deploying the sought functionality in the forwarding devices. The

application manager exposes sufficient set of APIs to let the intended functionality gets quickly

deployed.

Communication manager: To mitigate latency and other overheads, the communication manager

is defined to manage the peer-to-peer interaction among local controllers, as well as communica-

tions with the global controller at the top layer and switches at the bottom layer (via southbound

channels).

Failover manager: Failure of even a single component can have a cascade effect on the entire

network that can cause severe damages to services and resources. Therefore, the failover manager

is designed to handle failures of a single or multiple components. In a case of any local controller

failure, the affected switches are either assigned to the other nearby available controllers or a new

controller is deployed by the global controller in case of the insufficient capability of the running

local controllers. The global controller has a backup and restore provision in clouds to handle

unexpected events.
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5.4 Evaluation Platform and Results

To validate the potential of SoftAccess, we use ONOS, FlowVisor, Open vSwitch, and Mininet-

Wifi to build an integrated testbed that is extended from our earlier emulation platform developed

for evaluation of smart cloud applications [69]. The available open source components are cus-

tomized and extended with required modules to setup the testbed.

We used physically separate machines with the configuration of Intel (R) Xeon (R) CPU E5-2603,

running at 1.60 GHz, with six cores, 64 GB RAM, 2 TB hard disk, and Ubuntu 14.04.1 LTS 64-bit

operating system. Multiple instances of ONOS are deployed on one machine by having separate

virtual machines (VMs) for each instance, using the Oracle Virtual Box. Cbench, iperf and other

network tracing utilities are used for benchmarking the results. Each experiment is averaged by 20

runs. The number of hosts and switches are varied at runtime for all experiments.

For the comparative analysis, we benchmarked SoftAccess with existing works. The topology

configuration parameters are equally chosen for the sake of conformity other models. In the first

experiment, packet delivery ratio with respect to mobility of 50 nodes is compared with [60]. Fig-

ure 5.4 shows the relative results of the packet delivery ratio of both models. It is evident from

the diagram that SoftAccess achieves better packet delivery ratio even though it drops as the mo-

bility increases due to routes unavailability and failures with higher speeds. Localized information

sharing and efficient state management contributes towards packet delivery ratio improvement.

The control traffic comparison is shown in Figure 5.5. SoftAccess generates fewer control bea-

cons due to peer-to-peer communication among the local controllers that avoids global controller

involvement for flow setup and other control tasks. Therefore, it incurs less overheads that results

in network scalability and performance improvements. It is worthwhile to notice that the control

traffic grows as the mobility increases, due to more frequent positioning parameter changes that
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require more control messages.
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Figure 5.4: Comparison of the packet delivery ratio

Next, the controller failure comparison is shown in Figure 5.6. Evidently, [60] does not handle the

situation of controller failure in their approach, therefore, the packet delivery ratio drops abruptly

at the time of controller failure. On the other hand, SoftAccess has the provision to dynamically

adapt load distribution among other controllers in case of failure. Therefore, the packet delivery

ratio again reaches a stable state after an interruption of short time period. However, this recovery

time may be higher for the stringent requirements of delay sensitive access networks. Reduction

in this failover time is one of our future works.

Then we performed throughput comparison with [68]. Similar to above results, topology con-

figuration and other parameters were equally chosen for the experiment. Figure 5.7 shows that

SoftAccess achieve more throughput with respect to the number of links. And, compared to [68],
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Figure 5.5: Control traffic comparison

0 20 40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

70

80

90

100

Time (seconds)

Pa
ck

et
D

el
iv

er
y

R
at

io
(%

)

SoftAccess
Ku et al.

Figure 5.6: Controller failure comparison
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SoftAccess throughput is stable with nodes mobility, that further underlines the effectiveness of

our model. Throughput improvements are attributed to the less control traffic overheads and infor-

mation localization.
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Figure 5.7: Throughput comparison

Finally, we measured the effects of nodes mobility on delay time. We can observe from Figure 5.8

that latency is increased with devices mobility. It leads us to infer that the mobility management is

a crucial aspect for the delay sensitive, real-time services and applications.
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5.5 Practical Applications

Following are few of the potential use cases of SoftAccess:

Cellular networks: By the virtue of its design, SoftAccess is a suitable consideration for the radio

access networks (RANs) and other telecommunication technologies.

Ad hoc networks: The mobile ad hoc networks (MANETs), vehicular ad hoc networks (VANETs),

and sensor networks have very peculiar characteristics such as unpredictable mobility, power con-

straints and unreliable connectivity. Therefore, the cloud-based architecture of SoftAccess makes

it a very plausible option in such scenarios that addresses mobility, resources limitations, and other

issues.

Campus networks: OpenFlow-based wireless networks are already being deployed in campus

networks [70]. SoftAccess complements the existing solutions by supporting additional features.
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Enterprise WLANs: Optimum resources utilization, seamless connectivity and guaranteed QoS

support are the major goals of the enterprise WLANs. The global network view of SoftAccess

provides very flexible resources allocation and load balancing provisions.

5.6 Conclusion and Future Work

Largely due to substantially growing proliferation of smart mobile devices, cloud-based applica-

tions and services, the existing wireless access networks are unable to bear pressure on the network

resources that can quickly get strained with very strict capacity, performance and latency require-

ments. In this chapter, we propose SoftAccess, a logically centralized but physically distributed

architecture for wireless mobile access networks based on SDN principles, that aims to be highly

scalable as well performance and robustness intensive while obviating the corresponding chal-

lenges. Along with SDN concepts, we harnessed cloud computing and virtualization techniques to

meet the goals of mobile access networks. Our model eliminates the need of the distributed data

store, distributed protocols or any similar mechanism to maintain coherent network view. Com-

parative results and practical applications are presented to demonstrate the potential usefulness of

SoftAccess. Other than failover improvements, interference mitigation techniques and mobility

management optimization are the future scope of the work.
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CHAPTER 6: SDN-BASED MOBILITY MANAGEMENT AND QOS

SUPPORT FOR VEHICULAR AD-HOC NETWORKS

Along with non-safety related applications, traffic safety is the major concern of the Vehicular

Ad-hoc Networks (VANETs). However, the mobility management due to the high speed of vehi-

cles, intermittent connectivity, and frequent topology variations are some of the crucial roadblocks.

These challenges impose setback for quality of service (QoS) guarantee that leads to unfulfilled

goals of VANETs deployment. The centralized control of the Software-Defined Networking (SDN)

paradigm allows optimum utilization of global network view to meet the QoS requirements. Fur-

thermore, by a systematic design of the SDN control plane, the issues of mobility management and

poor network connectivity can also be addressed in an efficient manner. In this chapter, we pro-

pose an SDN-based architecture that utilizes cloud computing and deals with inherent constraints

of VANETs. A logically distributed control plane is devised for seamless connectivity, mobility

management, and QoS support. The proposed model achieves optimum performance and robust-

ness against failures by harnessing capabilities of SDN and cloud computing. We implemented

the QoS and routing applications to evaluate the proposed model. The comparative experimental

results are presented to demonstrate the effectiveness of the proposed framework.

6.1 Introduction

The major goals of VANETs deployment are safety, traffic management, and infotainment. Real-

time safety critical messages are disseminated to avoid imminent collisions or any other hazardous

situations. Driver assistance with optimum route selection, toll avoidance (if preferred), congestion

notifications with respect to travel time and fuel consumption contributes towards efficient traffic

management. Due to the environment it operates in, VANET faces many crucial challenges. High
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mobility of vehicles makes rapid changes in the dynamic network topology that pose significant

challenges for connection establishment and on-going communication sessions [71]. Similarly,

varying density of nodes with unforeseen circumstances further complicates topological instability

of the network. However, the objectives of VANETs, particularly safety-related, strictly demands

some baseline assurance to its applications in terms of QoS and other performance metrics [72].

Therefore, time sensitivity and the QoS are essential aspects of VANETs realization in practice.

VANETs comprise of road-side units (RSUs) and in-vehicle on-board units (OBUs) devices that

implement the protocols and contain the equipment for communication. Vehicle-to-vehicle (V-

to-V) communication is defined as the ad-hoc mode where vehicles interact with each other and

share useful information without the supervision of any coordinating authority. On the other hand,

vehicle-to-infrastructure (V-to-I) and vice versa is the infrastructure mode, where communication

is handled by the permanently fixed or temporarily deployed RSUs. A typical vehicular networks

scenario is depicted in Figure 6.1.

Figure 6.1: A typical VANET scenario.

Software Defined Networking (SDN) paradigm relies on the separation of the decision-making ca-

pability and the forwarding functionality. The control plane is defined as the centralized entity that

possesses all decision-making proficiency and the data plane consists of dumb forwarding devices
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that are controlled and managed by the controller via an open interface (e.g. OpenFlow). The

global network view and real-time statistics updates contribute to exploit consistent network state

for simplified administration and programmability. However, physical centralization of control

plane has inherent limitations, some of which are highlighted in Chapter 4, along with a practically

feasible solution.

In this chapter, we present design, implementation and evaluation of an SDN-based hierarchical

architecture that incorporates cloud computing to deal with pertinent issues of VANETs. Rest of

the chapter is organized as follows. Related work is discussed in Section 6.2. Section 6.3 presents

the architecture of the proposed model. The two applications for the control plane are described

in Section 6.4. Then, evaluation platform and comparative results for the proposed mechanism are

elaborated in Section 6.5. Some potential benefits of the proposed architecture are discussed in

Section 6.6. Finally, Section 6.7 includes the conclusion and future work.

6.2 Related Work

The SDN-based architecture for vehicular networks is presented in [73]. Its feasibility is demon-

strated by comparing SDN-based routing with legacy routing protocols. However, it requires that

the traffic from any wireless node needs to run through its own SDN module, the operation that

incurs substantial overheads in ad hoc environments. In our approach, all traffic need not travel

through every substrate en-route to the destination. RSU cloud [74] is a vehicular cloud to imple-

ment the Internet of Vehicles that benefits from the flexibility and programmability offered in SDN.

However, given that the RSU cloud comprises of roadside RSUs, it has a limited applicability in

V-to-V communication and the network may get disconnected if there is no connection between

vehicles and RSUs. By using the control and management features of SDN, the application-level

QoS metrics for online real-time applications are proposed in [75]. An SDN-based architecture
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for heterogeneous vehicular communication in [76] shows that the logically centralized control

plane provides agile configuration capability for multiple devices and network resources, and the

vehicle trajectory predictions can be utilized to reduce the management overheads. An SDN en-

abled technique for high-performance multicast in vehicular networks is outlined in [77], that uses

the network topology information provided by the global network view for making an efficient

scheduling decision. This work further underlines the benefits of SDN principles in VANETs sce-

nario. The scalability problem of VANETs is outlined in [78], that also suggests some ways to

address it. Due to its hierarchical model and logically centralized control plane, our proposed

architecture deals with the scalability problem of VANETs in a better way.

Li et al. [79] present an optimization strategy to make a balance between latency and corresponding

cost for an SDN-based vehicular networks. This work shows the possibility of optimum network

performance by applying SDN concepts to VANETs. Our previous work addresses the QoS issue

by categorizing data into multiple classes and assigning priorities to upload or download requests

[80]. GPSR [81] and CLWPR [82] are the notable position-based routing protocols for VANETs.

A cloud-based hierarchical architecture for vehicular networks with the goals of efficient resources

management and reliability of cloud services for vehicles is presented in [83].

Most of the existing approaches either fall short of considering the SDN and clouds based technolo-

gies or incur formidable cost and overheads for deployment in real life cases. The proposed model

successfully accomplishes goals of VANETs by effectively utilizing SDN and other techniques.

6.3 System Model

Given its peculiar characteristics, VANETs are categorized as distributed and self-organized net-

works. On the other hand, SDN paradigm is based on the principle of centralized control. There-
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fore, consideration of SDN for VANETs is a challenging task. However, there are few aspects

of vehicular networks that can be exploited along with SDN principles. For example, vehicles

follow a predictable topology by having a GPS service for maps of roads and streets, that allows

traffic optimization with global network view and other SDN techniques. Following are additional

challenges of considering SDN for VANETs:

• Given the constant variations in link/channel conditions and significant computation of cen-

tralized route discovery, SDN principles can not be extended to vehicular networks in a

straightforward manner.

• Smooth handover process of vehicles among multiple domains is an arduous task.

• Computational intensive mobility management can throttle the control plane.

• Additional provisions are required to handle sparsity or density of continuously changing

network topologies.

• Non-uniform network traffic of multiple co-existing radio access technologies add further

complications.

We propose an SDN-based hierarchical architecture to address these issues by incorporating a

layered design and harnessing capabilities of cloud computing. Figure 6.2 shows the high-level

design of our model, and internal components of the global controller and OBUs (mounted on

each vehicle) are depicted in Figures 6.3 and 6.4 respectively. The global centralized controller is

placed in the cloud and the local controllers are deployed in OBUs. It can be observed from the

diagrams that the control plane is composed of a single global controller in the cloud and a local

controller per vehicle (per OBU) that results in a logically centralized but physically distributed

control plane. The global controller contains the core modules, which are the building blocks
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of control functionality and provides the platform to implement and deploy various applications

on top of the control plane. Additionally, the global controller maintains a centralized database

repository for a consistent view of the topology and other network-wide activities that is utilized

by the scheduler to implement QoS related queues and enforce the specific policies. In the V-to-I

mode, vehicles interact with the global controller via RSUs. And, RSUs exploit services of the

global controller to fulfill requirements of the nodes in their respective coverage regions.

Figure 6.2: SDN-based VANET architecture.
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Figure 6.3: Internal components of the global controller.

Figure 6.4: Internal components of the local controllers.

The local controllers are deployed in the vicinity of the vehicular nodes for the reasons given

below:

• Due to short radio range of vehicles and relatively sparse deployment of RSUs, the commu-

nication among vehicles and RSUs is sporadic.
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• High speed of vehicles adds to frequent disruptions in the network topology. Additionally,

the high mobility of vehicles gives very short time duration to share data among other vehi-

cles and the en-route RSUs.

• Sometimes the associated delay of connection establishment with RSU is too much to bear

for delivering an emergency message.

• The local controllers abstracts the handover points from the vehicles, and obviate the vehicles

to run their own mobility protocols. Consequently, operations at the forwarding plane of

vehicles are simplified that contributes to network performance and efficiency improvements.

Furthermore, the mobility management is re-factored to the local controllers mainly due to

their vicinity with the corresponding devices.

• The peer-to-peer information sharing among local controllers improves multi-hop commu-

nication support. Vehicles rely on the local controllers which handle the dynamic selection

of V-to-V or V-to-I mode.

• Due to proximity with the hardware infrastructure, the local controller has a more updated

view than the global controller; hence it can better manage its localized resources.

• In general, the non-safety related applications such as audio/video streaming, software up-

dates, file sharing, Internet access etc. are resources-intensive; therefore, it makes sense to

deploy such applications at the global controller for V-to-I communication. Similarly, safety

related real-time applications require immediate attention; hence, should be deployed in the

proximity of the consumers for V-to-V communication. With this in mind, we aim to deploy

safety applications at local controllers and non-safety applications at the global controller.

The global controller is mainly responsible for managing the global network view and some other

network-wide functionalities, while the local controllers control the underlying physical devices
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(i.e forwarding plane) via OpenFlow protocol. Furthermore, the communication channels are es-

tablished between local controllers for peer-to-peer communication. These channels are used to

share any information that is otherwise unavailable to a particular controller. Fetching the required

information from neighboring controllers contributes to minimizing the latency that can be higher

if the information is requested from the global controller at the top layer. Also, due to localized in-

formation sharing, the peer-to-peer interaction reduces the communication overheads in the entire

network. Following are the key characteristics of our model:

Cloud-based global controller: Clouds provide an abundance of processing, storage, and net-

working resources on demand that allow computational and data intensive tasks to be executed

on less capable mobile devices. It also gives the desired level of performance, robustness and

QoS support at very flexible cost models. Moreover, the centralization aspect of clouds tends to

naturally apply to the globally centralized controller of our model. Additionally, the cloud-based

architecture provides mobile users the ubiquitous communication capability and information ac-

cess regardless of the physical location.

Seamless connectivity and mobility: In case of unavailability of global controller due to the

reasons mentioned before, the local controllers continue to serve the vehicles and avoids fragmen-

tation of the network. The peer-to-peer interaction among local controllers facilitates to keep a

continuity of on-going communication sessions with vertical handovers, which is a challenging

task for the conventional networks, given the diversity of technologies and network characteristics.

6.4 Applications for the Control Plane

SDN-route: As mentioned in [84], the network programmability capability provided by SDN can

eliminate triangle routing problem since the binding cache of a mobile node can be placed on the
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shortest path and the centralized control of SDN mitigates protocol complexity. Furthermore, this

approach implies faster handover and less overhead on wireless links. And, global network visi-

bility alleviates the multi-hop flooding of routing information that leads to network scalability and

performance gains. Therefore, by taking cues from RouteFlow [85] and RCP [86], we developed

a routing application called SDN-route that leverages advantages of global network view for route

optimization. However, opposed to [84], we delegate the binding cache storage capability to the

local controllers rather than switches. Conforming to the OpenFlow protocol, SDN-route uses

wildcards and filtering mechanisms to calculate optimum paths for the flows. Additionally, the

control functionality is removed from the end devices and shifted into a higher control layer, only

the final outcome of route processing is distributed to the substrate via OpenFlow. SDN-route uses

the statistics manager to measure various metrics for the privileged traffic steering and meet end

users requirements.

SDN-QoS: The policy of traffic prioritization by the the IEEE 802.11e standard for QoS is not

sufficient, because it provides no way to prioritize traffic of the same access category (AC) and the

priority is statically given in a specified manner to predefined classes. On the contrary, an interest-

ing characteristic of SDN is that it allows flow-based QoS control in a fine-granular and flexible

way. We exploited this capability to dynamically achieve QoS in VANETs and implemented the

QoS mechanism proposed in [80] within this framework.

6.5 Evaluation Platform and Results

To validate the potential of our model, we use ONOS, FlowVisor, Open vSwitch, and Mininet-Wifi

to build an integrated testbed that is extended from our earlier developed emulation platform for

evaluation of smart cloud applications in Chapter 3. The available open source components are

customized and extended with required modules to setup the testbed. The global controller, local
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controllers, and the forwarding plane are deployed on physically separate machines to achieve

realism and performance of the platform. The ONOS instances are deployed as the local controllers

that communicate with each other to share the required information; however, the global topology

management is handled by FlowVisor.

We used separate machines with the configuration of Intel (R) Xeon (R) CPU E5-2603, running at

1.60 GHz, with six cores, 64 GB RAM, 2 TB hard disk, and Ubuntu 14.04.1 LTS 64-bit operating

system. Cbench, iperf and other network tracing utilities are used for benchmarking the results.

Each experiment is averaged by 20 runs. Unless otherwise mentioned, the number of vehicles are

randomly varied from 20 to 180 at runtime for all experiments.

For the comparative analysis, we benchmarked our model with existing works. The topology con-

figuration parameters are equally chosen for the sake of conformity with the other models. In the

first experiment, packet delivery ratio with respect to average speed of vehicles is compared with

GPSR [81] and CLWPR [82]. It is evident from Figure 6.5 that our routing application achieves

better packet delivery ratio even though all three models degrade in performance as the mobility in-

creases due to routes unavailability and failures with higher speeds. Localized information sharing

and efficient state management contributes towards packet delivery ratio improvement.
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Figure 6.5: Comparison of the packet delivery ratio

Then we compared the end-to-end delay with variation in speed of vehicles. We can observe from

Figure 6.6 that SDN-route outperforms GPSR and CLWPR in terms of delay. As mentioned earlier,

peer-to-peer coordination among local controllers significantly improves the localized information

sharing and reduces the communication overheads that contributes for minimum delay and seam-

less experience for end users. However, it must be noted that the delay tends to increase with

mobility of vehicles. It leads us to infer that the mobility management is a crucial aspect for the

delay sensitive, real-time services and applications.
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Figure 6.6: Comparison of end-to-end delay
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Figure 6.7: Controller failure comparison
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Next, to assess the robustness of our model, we compared the controller failure scenario with [73],

and results are shown in Figure 6.7. Similar to above results, topology configuration and other

parameters were equally chosen for the experiment. We can see that SDN-route recovers after

an abrupt failure of a local controller. Our proposal has the provision to dynamically adapt load

distribution among other controllers in case of failure. Therefore, the packet delivery ratio again

reaches a stable state after an interruption of short time period.

To evaluate the QoS capability of our proposal, we compared it with [80]. Comparison of service

ratio is shown in Figure 6.8. We gained a significant improvement in the service ratio with re-

spect to arrival rate of requests that underlines the effectiveness of incorporating SDN principles in

conventional VANETs scenarios. The service ratio improvement is attributed to the QoS support

achieved by the coherent and global network view provided by SDN control plane.
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Figure 6.8: Comparison of service ratio

Figure 6.9 shows the impact of vehicles density to handover latency with respect to increasing

speed of vehicles. It illustrates that the number of vehicles as well as the increase in speed adversely
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affect the handover latency. The higher number of vehicles and speed incur more congestion and

communication overheads that contributes to increase in handover latency. However, mainly due

to consistent network state information and less communication overheads, our model experience

acceptable latency.
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Figure 6.9: Measurement of handover latency

6.6 Benefits

Following are some potential benefits of the proposed model:

• Considering the trend of reorganizing traditional backbone and IP networks with SDN prin-

ciples, the proposed model pave the way for seamless integration of VANETs with fixed IP

networks.

• For the proof-of-concept, we described the architecture for the wireless LAN only; how-

ever, as mentioned in [76], it can be deployed with cellular networks and other technologies
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of heterogeneous nature. Furthermore, the IEEE 802.21 standard for Media Independent

Handover (MIH) services can be utilized to enable handover among disparate networks [87].

• As mobile devices are rapidly moving from conventional computing to apps development,

our model provides a platform to the network programmers to develop in-vehicle apps that

can be deployed via control plane.

• Due to ad hoc nature of VANETs, the IEEE 802.11p MAC protocol does not offer the possi-

bility for the centralized polling-based channel access or the collision-free phase [88]. How-

ever, the control plane of our model has knowledge about all communicating nodes, and the

controller can act as a coordinator to alleviate constraints of the existing MAC protocol.

6.7 Conclusion

Fast mobility of vehicles, dispersed nodes, intermittent connectivity, real-time communication re-

quirements pose a significant challenge for VANETs to achieve its goals. Due to its intrinsic

characteristics, SDN concepts can not be directly applied for wireless networks in general and

VANETs in particular. Considering all these factors, we devised a SDN-based architecture for

VANETs that systematically addresses challenges of vehicular communications, while eliminates

limitations of SDN for such scenarios. By delegating control functionality among a global con-

troller in clouds and local controllers on each OBU, it provides an opportunity for V-to-V, V-to-I,

as well as hybrid communication. Our model eliminates the need of the distributed data store,

distributed protocols or any similar mechanism to maintain coherent network view. We implement

two applications to demonstrate efficient mobility management and QoS support of the proposal.

Furthermore, comparative results and potential benefits are presented to validate usefulness of our

model. Multihoming to simultaneously connect vehicles with multiple access networks and opti-

mum data dissemination strategies for the proposed model are the future scope of the work.
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CHAPTER 7: CONNECTING THE DOTS TOWARDS SELF-DRIVING

NETWORKS

The cloud data centers are going through an unprecedented growth from past few years. In an

era of real-time video streaming, on-demand gaming, door-step e-commerce services, and highly

inter-connected social networks, cost-effective service models, adaptive resources provisioning and

upfront applications availability contribute significantly towards such a stellar growth. However,

there are many challenges that must be addressed in a systematic manner to meet the requirements

of increasingly demanding current and upcoming applications of the cloud computing paradigm.

Optimum resources management, instant response time, interoperability among a diverse set of

emerging technologies and innovative applications are a few of these challenges. On the other

hand, the recent trend in softwarization of networks, particularly enabled by network function

virtualization (NFV) and software-defined networking (SDN) principles, provides immense op-

portunities to better utilize the network resources by programmable abstractions with an efficient

control and management techniques. Furthermore, machine learning based solutions are gaining

prominence in resource optimization problems and autonomous systems. Therefore, in this chap-

ter, we strive to connect the dots by state-of-the-art methodologies in networking and machine

learning domains and utilize these developments to grapple with the challenges of the cloud-based

systems. We propose DeepSDN, an SDN-based solution that harnesses existing machine learning

techniques to move a step closer towards self-driving networks. The comparative results obtained

from an experimental testbed corroborates effectiveness of our approach and suggest a way forward

towards autonomous network management.

77



7.1 Introduction

No matter how far we progress in the networking research, there seems to have few challenges that

remain at least partially unsolved. Part of it is due to the fact that other related technologies are

also evolving in-line or faster than networking. Additionally, our own expectations as end users are

also pushing the limits with the emergence of new technologies and devices. Heterogeneity, scal-

ability, resources management, quality of service (QoS), high availability, are few such challenges

that stay with us for a long time. Integration of augmented or virtual reality (AR/VR) platforms

with a rapid surge of mobile hand-held and wearable smart devices equipped with omnipresent

sensors are introducing an entirely new class of challenges in networking. D. Clark et al. empha-

sized that the current Internet architecture cannot sustain the futuristic demands, and suggested to

build a network that can assemble, reassemble, and heal itself without any external intervention

[27]. They further argued that such a network cannot be built incrementally with contemporary

techniques. Therefore, they proposed a new construct, called Knowledge Plane, that relies on AI

techniques and cognitive systems to build and maintain high-level models of the network. How-

ever, the vision of Knowledge Plane did not take off for practical implementations mainly due to

the sheer complexity of inherently distributed networks and lack of suitable AI techniques specif-

ically designed to realize such a goal. However, recent developments of network softwarization

and other related themes change the trend in the networking domain. Particularly, software-defined

networks (SDN) and network function virtualization (NFV), are significantly pushing boundaries

of network innovation. Logically centralized control, programmability, and global network view

provided by SDN principles addresses complexity and simplifies network management [89]. Sim-

ilarly, emerging techniques of AI such as machine learning and deep learning are being employed

beyond Computer Vision and Robotics domains.

In simplest terms, machine learning is a domain of artificial intelligence that deals with selecting an
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appropriate response in a particular situation. Choosing the next move in games like Chess, Deep

Blue, Go etc. is a classic example. In the case of networking, optimum resources allocation, load

balancing, and making recommendations for personalized user experience are few considerable

candidates. Broadly speaking, the learning approach can be relevant for any problem that requires

a number of decisions to satisfy an objective function. Such techniques are especially favorable for

the problems that are hard to solve otherwise due to lack of precise modeling, inevitable trade-off

for accuracy to deal with complexity, and scalability concerns. Additionally, high replication rate

of these techniques provides an opportunity to quickly expand the system in similar domains once

the base model is ready and optimized up to a certain level.

However, the success of learning-based approaches is highly dependent on the availability of huge

data to learn from past experiences. Moreover, it is a compute-intensive task that requires a lot of

resources to gain a certain level of accuracy. The availability of a vast amount of raw and meta-

data due to the repetitive nature of cloud services along with virtually unlimited resources in cloud

data centers make the learning techniques well suitable for such an environment. And our reliance

on clouds for essentially all sorts of digital activities probably makes them the most appropriate

platform to be taken care of. Therefore, in this chapter, we coupled SDN principles with recent

advances in AI and introduce a framework that incorporates intelligence capabilities to the plat-

form by leveraging state-of-the-art networking technologies along with machine learning and data

analytics techniques, which aims to grapple with challenges of cloud computing. Following are

the major contributions of this chapter:

• We present the design, implementation, evaluation of DeepSDN for data center networks. A

practical deployment of our proposal shows that we are moving a step closer towards letting

networks make many decisions on its own.

• A revised parameter server is devised by utilizing SDN principles with an existing parameter
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server architecture for distributed machine learning algorithms.

• We also highlight some practical applications of DeepSDN.

• Finally, experimental results obtained from the CloudLab testbed shows the effectiveness of

DeepSDN.

Rest of the chapter is organized as follows. Related work is discussed in Section 7.2. High-

level system overview and the detailed architectural design is presented in Sections 7.3 and 7.4

respectively. Implementation details of our proposal are demonstrated in Section 7.5. Then, the

platform evaluation and comparative results are elaborated in Section 7.6. Finally, Section 7.7

outlines some noteworthy applications of the proposal followed by the conclusion and future scope

of the work in Section 7.8.

7.2 Related Work

Our work is mainly based on the concept of the Knowledge Plane for Internet [27] and a distributed

framework, called parameter server, for highly scalable deep learning models [28]. We extended

these concepts with SDN principles and propose a practical framework for cloud data centers.

The crucial challenges of the ever-growing network control and management are discussed in [20],

that also outlines the blueprint towards self-driving networks. This work also stresses the suit-

ability of statistical inference and machine learning techniques for prediction problems. DeepRM

describes a deep reinforcement learning solution that translates the network resource management

problem into a learning problem [21]. It mentions that resources management problems are ubiq-

uitous in computer networks and the prevailing wisdom of using heuristics is not a suitable way

to solve such problems mainly due to lack of accuracy, flexibility, and complexity. Therefore,
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DeepRM considers learning approaches to tackle these problems and shows promising results

compared with heuristics. However, DeepRM does not consider these techniques for large-scale

distributed systems. [22] presents a machine learning based tool called WISE that is capable of

predicting the effects of probable configuration and deployment changes in content distribution

networks. It shows that WISE can accurately predict service response time of globally distributed

CDN nodes. It also highlights the challenges to prepare datasets for training machine learning

models and presents effective solutions to address these challenges.

A new paradigm called ”Knowledge Defined Networking” is proposed in [23], that integrates ma-

chine learning, data analytics and SDN concepts to the existing Internet architecture. Similar to our

approach, it also posits that SDN and other recent developments enable practical implementation

of the Knowledge Plane. However, it evaluates the prototype using simple simulations without as-

sessing scalability and other issues for data centers. COBANETS utilizes unsupervised deep learn-

ing, probabilistic models, and network virtualization techniques for network optimization [24]. It

shows that the generative deep neural networks can be used to extract context representations and

can be combined with other machine learning techniques for otherwise complex network manage-

ment task. ANEMA is an autonomous network management architecture with self-optimization

and self-healing properties that achieve autonomic behaviors in the network components [25]. It

formulates multiple policies to express objectives of network administrators. However, it relies

on the utility function theory, and hence, does not employ learning techniques for autonomous

network management. A predictive resource scaling mechanism for cloud systems is proposed

in [26], that addresses SLA violations and over-provisioning of resources. Our model follows a

broader approach, that includes learning, decision-making, and self-optimization capabilities.
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7.3 System Overview

Motivated by the conceptual proposal of the Knowledge Plane and recent advances in respective

domains in networking and AI, we present a practically deployable framework for data centers.

Figure 7.1 shows the high-level architecture of DeepSDN that endeavors to fulfill an objective

towards self-driving networks. The control and forwarding planes of SDN are augmented with

an intelligence layer to enable learning capabilities within existing networks. The cloud and net-

work controllers perform traditional control and management functionality as described in previous

works.

Clark et al. mentioned that ”there is no way for the operator to express, or the network to model,

what the high-level goal of the operator is, and how the low-level decisions relate to that high-

level goal.” DeepSDN fills this gap by leveraging capabilities of the Intent-based API that allows

operators to express high-level goals in simplistic terms. The control plane maintains the global

network view and complements the intelligence layer for cognitive decision making. The intelli-

gence layer is a unified system that engages knowledge-based functionality for decision making.

The following section describes the functional building blocks of DeepSDN.

7.4 Architecture Design Details

Our goal is same as the initial vision of the Knowledge Plane, i.e., ”the ability of the network to

know what it is being asked to do, so that it can more and more take care of itself, rather than

depending on people to attend to it.” Therefore, we retain the blueprint of the Knowledge Plane by

incorporating the earlier proposed attributes such as global perspective, compositional structure,

and cognitive framework in DeepSDN. Figure 7.2 shows the detailed design of the intelligence

layer.
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Figure 7.1: High-level overview for the SDN-based self-driving networks

Figure 7.2: Detailed design of the intelligence layer
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7.4.1 Intelligence Layer

Similar to the Knowledge Plane, the intelligence layer is a separate construct that complements

control plane and data plane of SDN paradigm. The proposed model operates in the supervised

learning mode when inputs/outputs and intended actions are manually defined. On the other hand,

with internal state representation, it operates in unsupervised mode by learning itself with an assis-

tance from the data analysis engine and the control plane. Similarly, it operates in reinforcement

learning mode when it plays with various configurations of the system and learns from rewards of

the actions taken. Additionally, with the internal state representation in place, the supervised mode

operates in tandem with the unsupervised mode. The deep learning incorporates multiple layers

of representation with non-linear modules that can be complemented with the supervised learning

techniques to produce training data instances from the available raw data [90].

The supervised learning is rooted on well-defined criteria, systematic experimental model, and la-

beled data, whereas, reinforcement learning is based on uncertainty. Reinforcement learning is a

specific machine learning technique that allows the learning algorithms to make autonomous deci-

sions and optimize the system by gaining experience through interactions, observation, and feed-

back in terms of rewards. The intrinsic characteristic of reinforcement learning is that it achieves

the objective function by interaction between the learning algorithm and the environment it oper-

ates on. Reinforcement learning is proved to be effective along with deep neural networks [91],

which shows that the learning agents may optimize their goals by generalizing the past experience

to tackle new situations with only very limited knowledge. Essentially, the goal of reinforcement

learning techniques is to satisfy or optimize the reward function [92]. Therefore, to get desirable

results, it is very important to define the reward function very clearly. By keeping manual control

in the loop, we try to address this issue by letting operators or end-users to define their own reward

function as per appropriate requirements. However, there is a scope to further refine this operation.
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The unsupervised learning operates on the unlabeled data for the learning purpose and it does not

follow the action-reward-feedback loop.

The reinforcement learning techniques can either be model-based or model-free, the former being

slower and compute-intensive but more accurate and effective, whereas, the latter being faster

and inexpensive but slow learners [93]. However, the model-based learning can be optimized

by utilizing insights from supervised learning that provides feedback based on instant actions and

corresponding effects, which expedite the iterative transitioning for better planning and estimation.

It is a challenging task to come up with a practical reinforcement learning solution that operates

online, i.e., learn by continuous communication between the learner and an environment in a real-

time scenario. This line of research is a future scope of the work.

7.4.2 Revised Parameter Server

The parameter server is a distributed machine learning framework that maintains the global param-

eters and state in server nodes and distributes the workload over worker nodes [94]. The salient

features of the framework include asynchronous communication, flexible consistency models, scal-

ability, fault tolerance, and support for diverse machine learning algorithms. The parameter server

framework is specifically designed for cloud computing environments considering machines unre-

liability, data loss, and performance fluctuations due to unpredictable network latency and varied

workloads. Furthermore, vectors and matrices data structures are used to represent shared param-

eters, considering that linear algebra data types are more convenient for machine learning appli-

cations. For a detailed description, we refer readers to the initial proposal [94] and an improved

version of parameter server [28]. Some other implementations of the parameter server architecture

are also presented in [95] and [96].

As shown in Figure 7.3, we design the revised parameter server (RPS) by utilizing SDN capability
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in distributed machine learning scenario. More precisely, we refactored the ”server” functionality

of parameter server to the global network controller and kept everything else essentially the same

as the original proposal. Given that the SDN control plane already has global configuration infor-

mation and other network-wide statistics, it makes sense to utilize this feature towards streamlining

the overall platform for cloud applications. Other than that, all other functionality is kept pretty

much the same, such as range-based non-blocking push and pull operations for data communica-

tion, the capability to execute user-defined functions in the controller platform, user-defined filters,

optimized parallelization including data and model parallelism, elastic scalability and robustness.

The consistent hashing technique is adapted from the original proposal to store the parameters in

the controller.

RPS is designed for general-purpose large-scale learning techniques that are particularly well-

suited for the iterative computations inherent in deep networks training. Like earlier proposal,

RPS is also capable of running multiple algorithms simultaneously, that is accomplished by parti-

tioning worker nodes into groups. However, a worker manager is also included to handle localized

events within a group. It is also responsible to manage local statistics, monitor workers activity,

and dynamically schedule jobs for workers. Moreover, the worker manager of each group coordi-

nates with the controller to maintain a consistent view of the system that is handled by the resource

manager at the global level. Worker groups get an updated copy of parameters from the servers

and send back the calculated gradients to the corresponding servers that use the gradients to iter-

ate towards the objective function. Furthermore, in reinforcement learning settings, RPS does not

require any prior knowledge of the system, and it can support a diverse set of objective functions.

Also, in the case of reinforcement learning, the workers operate as agents that learn to make deci-

sions by receiving rewards based on the self-controlled actions taken to perform a task. The agents

observe versatile characteristics of the system during training sessions and prepare a structured log

of objects or events for future reference. Finally, independent parameter namespace support is also
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incorporated to increase parallelization and other purposes.

Figure 7.3: The Revised Parameter Server

7.4.3 Data Analysis Engine

The data analysis engine is used to process raw data so that the machine learning techniques can

extract relevant features from the training data to achieve the objective function. In general, the

learning algorithms start from the initial state and iteratively converge towards an optimal solution

that is defined by the objective function. Considering that the raw data may have been collected

in months and years, and may consist of terabytes to petabytes, the analysis engine is included

as a separate component for scalability and high performance. Additionally, since accuracy and

convergence rate of the learning algorithms is highly dependent on training data, therefore, the

analysis engine is solely responsible for this task. In case of unsupervised learning, when sufficient

training data examples are unknown or unavailable, the analysis engine processes raw data to find

a pattern or structure to be used by the algorithms. And the parameters are used to communicate

an estimate of current sample set for the generative model of the problem in hand.
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7.4.4 Control Layer

The control plane oversees a set of forwarding devices. In SDN context, handling state distribution

is a major task of the control plane. We harness the global view and logically centralized aspects

of SDN control plane to design an integrated system based on the parameter server for distributed

machine learning techniques. Particularly, we exploited the control plane for coordinating various

parameters of worker groups by moving the ”server” semantics of the parameter server to the

logically centralized controller. Furthermore, the open-ended programmatic interface of the control

plane is utilized to build management as well as learning-based applications. Figure 7.4 shows the

detailed design of the control layer.

Figure 7.4: Detailed design of the network control

The global view is constructed by topology and state information gathered by each controller in-

stance. The database maintains the consistent data store in a key-value structure for distribution

and persistence. With a hierarchy of the global controller and multiple local instances, the con-

trol plane is logically centralized by physically distributed architecture for scale-out performance
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in cloud data centers [89]. Multiple controller instances are individually responsible to handle a

group of workers and multiple forwarding devices. Additional controller nodes can be dynami-

cally provisioned as forwarding plane or workers load increases. The global view and the data

store together serve as a glue between the worker groups and the clusters of servers. Due to the

asynchronous approach, the servers and workers run independently and in parallel. The controller

has a complete and up-to-date state of parameters.

The vast amount of raw data can swamp shared resources of the control plane. Therefore, partition-

ing and aggregation are used as complementary techniques for scalability and to avoid saturation

of resources. Specifically, partitioning is preferred over replication so that the control applications

can run on multiple independent instances without overwhelming the capacity. Similarly, aggre-

gation of resources in a cluster of servers and a group of workers enables operations that are too

costly to execute otherwise on an individual component. The other aspects of the control plane are

implemented as software modules explained below:

Monitor manager: The desired level of consistency in the network state is dependent on the real-

time topology changes and other events in the network. Additionally, state management is needed

to implement elastic resources provisioning on user demand. To achieve these objectives, the local

controller instances collect statistics from their respective zones and submit reports to the global

controller. Subsequently, the global controller uses this information to maintain the global network

state and topology.

Storage manager: The network state information is stored and handled by the storage manager.

The physical centralization of the network topology information alleviates the overheads of the

distributed data stores or shared file systems and simplifies high consistency of network manage-

ment from a vantage point.

Events manager: The events manager is implemented to handle the events generated by either

users or other network components. It also coordinates with the global controller to notify the
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events.

Application manager: Users and network administrators implement network logic in the form of

applications and submit to the controller for eventually deploying the sought functionality in the

forwarding devices.

Communication manager: To mitigate latency and other overheads, the communication manager

is defined to manage the peer-to-peer interaction among local controllers, as well as communica-

tions with the global controller at the top layer and switches at the bottom layer via southbound

channels.

Failure manager: Failure of even a single component can have a cascade effect on the entire net-

work that can cause severe damages to services and resources. Therefore, the failover manager is

designed to handle failures of one or additional components. In case of a controller instance fail-

ure, the overall system continues operating by load distribution of the failed node and deployment

of additional nodes if required. Failure manager is responsible to detect and address failures. It

also provides runtime extensibility to the system as dynamic resources allocation is a significant

tenet of cloud computing. The global controller has a backup and restore provision in clouds to

handle unexpected events.

Software modules of DeepSDN are programmed as loosely-coupled components that can be dy-

namically integrated with the core system without compromising dependencies among running

modules.

7.4.5 Intent-based API

The goal of an intent-based API is to let network operators and administrators define what they

intend the network to do without specifying that exactly how to get it done [97]. The underlying

network modules implement the desired state via low-level policies without any manual interven-
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tion. The intent API maps high-level commands of network operators to low-level instructions,

formulate the relevant policies for network components, and create the intended state by enforc-

ing these policies. Furthermore, to maintain the state, intent framework constantly monitor the

network to detect and resolve suboptimal performance or any policy conflict due to high load of

components failure.

7.5 Implementation

To demonstrate the usability of DeepSDN, we implemented the Downpour SGD algorithm pre-

sented in [94] that is a variant of asynchronous stochastic gradient descent (SGD) for large-scale

training models and datasets. The traditional SGD technique is a sequential method for train-

ing deep neural network that is commonly used for optimization problems. Downpour SGD is a

high-performance distributed learning algorithm that runs iteratively in the independently operat-

ing worker nodes. The compute-intensive task of gradient calculation is divided among all of the

workers and the results are collected by the parameter servers of the respective workers.

ONOS serves as a control plane of DeepSDN that controls and manages the forwarding devices as

well as functions as the parameter server for worker nodes. ONOS consists of many salient features

for optimization such as low-latency data store, optimized data model, caching layer to reduce

communication overheads, the in-memory topology view, network I/O optimization, several event

channels for events notifications, and a network API specifically designed for network applications

[45]. Other than these features, ONOS also provides inbuilt support for the Intent-based API that

makes it a very suitable choice for DeepSDN implementation. Therefore, we extended ONOS

code-base by implementing Downpour SGD algorithm and making it compatible with the revised

parameter server architecture described earlier.
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To provide reliability, the design techniques of ONOS are adapted to handle failures of multiple

components. Zookeeper [98] is used for coordination of consensus-based distributed algorithms,

membership management, and failure handling. Furthermore, the keepalive and hardware-based

probing techniques are employed to monitor various components and links of the system. Addi-

tionally, the control applications can either rely on Zookeeper functions or implement their own

techniques to detect instance failures.

7.6 Evaluation Platform and Results

To test the validity of our proposal, we designed a deep neural network with a fully connected

hidden layer with 50 neurons and a sigmoid activation function that operates on approximately

100,000 parameters to achieve the objective function. The training datasets are prepared from the

raw traffic traces collected by deploying a folded clos topology [99] using the CloudLab testbed

platform [100]. We deployed 200 workers and 25 servers on separate machines, and each machine

is Intel Xeon E5-2603 with 6 cores, 128 GB RAM, 4 TM hard drive and 10 Gb Ethernet connec-

tivity. Furthermore, we used 10,000 samples to train the deep neural network and additional 1,000

samples to validate the results.

For each experiment, the monitor manager of DeepSDN captures traffic and export raw data in

the tcpdump format for further processing to prepare the training data. However, the data col-

lected by the monitor manager is not suitable to be directly used by the training models. There-

fore, further processing and transformations are necessary to extract relevant features from the

raw data. Therefore, for the datasets to be representative and consistent with the experiments, the

techniques mentioned in WISE [22] are employed to transform the raw data into the training data

that is understandable to the training model. Specifically, dependency structures, pair-wise inde-

pendence testing, and indexing techniques are followed from WISE. Furthermore, as mentioned
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in [22], cross-validation is inherently unscalable to deal with overfitting, therefore data decom-

position and pruning techniques are used that produces evenly distributed training datasets across

multiple buckets. During raw data collection, multiple delays including processing delay, queu-

ing delay, propagation delay, were taken into consideration. Additionally, link-capacity, distance,

5-tuple headers, packet count, traffic volume, routing parameters, and response time were used to

prepare the training datasets.

Accurate performance prediction is among the primary goals of DeepSDN. Therefore, we evalu-

ated estimation of response time metric that is produced by the reinforcement learning approach

based on training from the existing dataset. Figure 7.5 shows that our model provides a relatively

good estimation of response time as compared to the actual metric. However, we believe that the

slight inaccurate prediction arises due to insufficient training data.
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Figure 7.5: Comparison of an average response time

To further analyze the impact of training data on prediction accuracy, we performed experiments

with a varied number of training samples. As evident in Figure 7.6, the estimation accuracy is
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significantly dependent on the training dataset. It is also noteworthy that this dependency tends to

diminish after a certain number of samples and the model starts to converge. The actual number of

samples required to attain a certain level of accuracy depends on the quality of the dataset and the

training model characteristics among other factors.

Next, Figure 7.7 demonstrates that the learning model improves with time and starts to converge

after a certain number of iterations. As mentioned earlier, the reinforcement learning approach

optimizes the prediction based on learning from the reward received in response to the action taken

in the previous iteration. This process continues until the defined objective function is achieved or

the optimization level is reached accordingly to the availability of dataset and training model.
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Figure 7.6: Prediction error of response time
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Figure 7.7: Learning accuracy w. r. t. number of iterations

Another design goal of DeepSDN is large-scale applicability for cloud data centers. To this end, we

assessed the CPU consumption of our framework by increasing the number of parameter servers.

We can see from Figure 7.8 that there is a steady increase in CPU utilization corresponding to

parameter servers. Therefore, we conclude that the distributed architecture of DeepSDN is capable

to handle large-scale learning models.

Finally, we also demonstrate the scalability of DeepSDN by evaluating the time taken by the train-

ing model with a number of parameter servers. We can observe from Figure 7.9 that the number

of parameter servers plays a crucial role for training purpose. However, as highlighted in previous

results, the number of servers is relevant up to a certain point, after that we do not gain the similar

speedup by further increasing the number of parameter servers.
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Figure 7.8: Scalability of DeepSDN
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7.7 Notable Applications

• With DeepSDN, an intelligent orchestration engine can be deployed that decides location,

availability, and timeline to offer on-demand services. Additionally, by taking the operating

characteristics of servers and network congestion into consideration, resources consumption

forecasting can be done that helps to define adaptive utilization policies.

• DeepSDN also addresses the longstanding traffic measurement issue of large clouds by en-

abling learning-based techniques for sophisticated monitoring and statistical techniques that

can be implemented based on distinct user requirements on top of the common set of APIs

exposed by the system [101]. The unified framework would substantially simplify the job

of network engineers and operators for the measurements task. Based on the traffic matrices

and counters collected by the monitor manager, learning-based inference techniques can be

developed for various purposes including dynamic provisioning, diagnosis, and optimiza-

tions.

• Machine learning techniques are successfully being employed for prediction of multiple

performance metrics such as processing time, storage space, and bandwidth requirements.

WISE [22] mentions that the reasoning systems such as DeepSDN can be extended to other

realms such as routing, policy decisions, and security configurations.

• An adaptive machine learning-based model is proposed in [102] that predicts live migration

characteristics to improve efficiency and utilization of data centers. It shows that important

metrics responsible for performance degradation can be successfully modeled and, based on

these predictions, machine learning techniques can be applied to mitigate SLA violations.

• As presented in [103], reinforcement learning approach can be utilized for dynamic config-

uration of virtual machines. The learning agent iteratively interacts with the environment
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and choose optimum configuration parameters to get rewarded. The reward function can be

defined according to resources utilization policies or SLA requirements.

7.8 Conclusion and Future Work

Although the vision to have intelligent networks is here from a while, only recent advances in the

building blocks of such a vision have enabled us to propose a concrete framework that materializes

the initial design goals. Such improvements include advanced machine learning and deep learning

techniques, network softwarization, impressive processing capabilities, parallel processing tech-

niques, and very large-scale data processing platforms. Furthermore, cloud computing provides

a powerhouse of processing and ocean of data readily available to be utilized in a systematic and

efficient manner. However, owing to its tremendous growth, cloud data centers also face many

challenges that hinder to maintain the growth rate. Optimum resources utilization, interoperabil-

ity among diverse technologies, and instant response time for seamless user experience are among

such challenges. Past research suggests that these issues essentially boils down to efficient network

management and optimization problems. And recent advances in machine learning and deep learn-

ing make these techniques plausible candidates for such problems. Additionally, SDN principles

and abundance of physical resources with readily available raw data in data centers motivate us to

consider learning techniques to grapple with challenges of cloud computing. Therefore, we strive

to utilize relatively interdisciplinary techniques and propose a framework, called DeepSDN, by

connecting the dots. Additionally, we extended the earlier proposed parameter server architecture

for distributed machine learning problems and presents a revised parameter server that uses cen-

tralized control, global view, and programmability features of SDN for implementing the learning

techniques to achieve optimized control and management. Broadly speaking, we believe that the

level of complexity introduced by unprecedented scale and time-bound performance requirements
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can be effectively handled by self-driving network management, and this chapter takes us a step

closer towards this direction.

The future line of research includes consideration of other learning techniques for DeepSDN, op-

timizations for resources sharing, and holistic approaches to prepare amenable training datasets.
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CHAPTER 8: CONCLUSION

In this dissertation, we have addressed the scalability issue of SDN and considered this nascent

technology for wireless and ad-hoc networks. We have shown that having a single controller is

not a feasible option for SDN deployment at large-scale, and logically centralized but physically

distributed control plane is a pragmatic approach from the design and requirements perspective.

Therefore, we proposed a peer-to-peer control plane architecture with a hierarchy of controllers

to manage the data plane of their respective domains. The peer-to-peer interaction among adja-

cent controllers reduces latency and minimizes communication overheads of the control messages.

Additionally, dynamical controllers provisioning allows adaptive load-balancing and provides ro-

bustness against failures. The consistent global network view is maintained with appropriate state

synchronization methods that prioritize overall efficiency and usability of the network. Further-

more, the software modules are implemented to deploy such a practical control plane architecture.

The evaluation results are presented to compare our proposal with existing models, which shows

the effectiveness of our design decisions and optimization techniques. Some feasible use-cases of

the proposal are also discussed.

We have also shown that SDN principles cannot be applied directly for wireless, mobile, and ad-

hoc networks. Unstable and often unpredictable topology, sporadic connectivity, and unreliable

channel conditions pose unique challenges for such environments. However, if somehow we man-

age to address these concerns, SDN has the potential to revolutionize the wireless domain just like

its wired counterpart. For example, the centralized control would allow better spectrum sharing

and QoS techniques due to having a global network perspective. Therefore, we proposed an SDN-

based architecture for wireless access networks that conforms to the environment it operates in and

provides opportunities for network innovation in a unique way. To do so, we borrowed the idea

of the scalable control plane from our earlier work and extended it with cloud computing, virtu-
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alization, and other techniques that make it suitable for access networks. The evaluation results

show that we achieve equivalent or better performance as compared to other similar proposals.

Additionally, we applied these techniques for vehicular ad-hoc networks (VANETs) and showed

their usefulnesses. Particularly, we designed and deployed routing and QoS applications on top of

the controller platform of SDN and demonstrated the effectiveness of these techniques.

SDN has emerged as a significant technology to simplify network management. However, network

designers still need to rely on the control platform that deals with low-level operations at the infras-

tructure layer. This closed-form model is highly complicated to analyze and optimize manually.

On the other hand, the recent success of artificial intelligence techniques for computer vision and

robotics fields has motivated the research community to contemplate these techniques for com-

puter networks as well. More precisely, the machine learning and deep learning approaches are

shown to be very effective for automation and optimization problems, especially if a large and ac-

curate dataset is provided for training purpose. Also, these techniques require abundant computing

resources to perform well under limited time constraints. We observe that the cloud data centers

have a huge amount of raw or readily available data, coupled with nearly unlimited resources. And,

our increasingly high reliance on clouds for all sorts of digital activities are posing serious perfor-

mance challenges for data center networks. Therefore, we proposed a machine learning based

platform called DeepSDN that utilizes SDN for optimizing and streamlining cloud data centers.

The experimental results obtained from an experimental testbed corroborates effectiveness of our

approach and suggest a way forward towards autonomous network management. However, the

lack of standardized datasets and the machine learning algorithms specifically tailored for com-

puter networks is a major concern that must be addressed to achieve this goal.
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