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PROPAGATION OF LOCAL DISTURBANCES IN REACTION
DIFFUSION SYSTEMS MODELING QUADRATIC AUTOCATALYSIS∗

XINFU CHEN† AND YUANWEI QI‡

Abstract. This article studies the propagation of initial disturbance in a quadratic autocat-
alytic chemical reaction in one-dimensional slab geometry, where two chemical species A, called the
reactant, and B, called the autocatalyst, are involved in the simple scheme A + B → 2B. Exper-
iments demonstrate that chemical systems for which quadratic or cubic catalysis forms a key step
can support propagating chemical wavefronts. When the autocatalyst is introduced locally into an
expanse of the reactant, which is initially at uniform concentration, the developing reaction is often
observed to generate two wavefronts, which propagate outward from the initial reaction zone. We
show rigorously that with such an initial setting the spatial region is divided into three regions by
the two wavefronts. In the middle expanding region, the reactant is almost consumed so that A ≈ 0,
whereas in the other two regions there is basically no reaction so that B ≈ 0. Most of the chemical
reaction takes place near the wavefronts. The detailed characterization of the concentrations is given
for each of the three zones.

Key words. quadratic autocatalysis, traveling wave, propagation of local disturbance, reaction-
diffusion

AMS subject classifications. 34C20, 34C25, 92E20

DOI. 10.1137/07070276X

1. Introduction. In this paper we consider an isothermal autocatalytic chemical
reaction step governed by the quadratic reaction relation

A + B → 2B with rate kab.

Here, k > 0 is the reaction rate, and a and b are the concentrations of reactant A and
autocatalyst B, respectively.

Well documented in the literature, the quadratic reaction relation has appeared
in several important models of real chemical reactions, e.g., the Belousor–Zhabotinskii
reaction and also gas-phase radical chain branching, oxidation reactions, such as the
carbon-monoxide-oxygen reaction, and hydrogen-oxygen systems [13].

Experimental observations demonstrate the existence of propagating chemical
wave fronts in unstirred chemical systems for which quadratic or cubic catalysis forms
a key step [15], [25]. These wavefronts, or travelling waves, arise due to the interaction
of reaction and diffusion. Quite often when a quantity of autocatalyst is added locally
into an expanse of reactant, which is initially at uniform concentration, the ensuing
reaction is observed to generate wavefronts which propagate outward from the initial
reaction zone, consuming fresh reactant ahead of the wavefront as it propagates. This
is the phenomenon to be addressed in this paper.
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274 XINFU CHEN AND YUANWEI QI

We study the following system for u = u(x, t), v = v(x, t):⎧⎨
⎩

ut −Duxx = −uv in R × (0,∞),
vt − vxx = uv in R × (0,∞),
u(·, 0) = u0(·), v(·, 0) = v0(·) on R × {0}.

(1.1)

It is the result of simple scaling of the standard system

at = DAaxx − kab, bt = DBbxx + kab,

with D = DA/DB .
Our basic assumptions are the following:
(A1) D ∈ (0, 1];
(A2) u0(x) = 1 for all x ∈ R; and
(A3) v0 is a continuous nonnegative function having compact support, v0(0) > 0.
Our main result is the following.
Theorem 1.1. Assume (A1)–(A3) and let (u, v) be the solution of (1.1). Set

m(t) = 2t− 3(log[3 + t] − log 3).(1.2)

Then for each t > 0 and x ∈ [−m(t),m(t)], we have (u, v) ≈ (0, 1) in the following
sense:

u(x, t) ≤ e−μ[m(t)−|x|],
∣∣∣1 − v(x, t)

∣∣∣ ≤ C√
1 + m(t) − |x|

.(1.3)

On the other hand, when x ∈ (−∞,−m(t)]∪ [m(t),∞), we have (u, v) ≈ (1, 0) in
the sense that ∣∣∣1 − u(x, t)

∣∣∣ + v(x, t) ≤ C
{

1 + |x| −m(t)
}
em(t)−|x|.(1.4)

A result somewhat similar to ours is obtained by Billingham and Needham [7]
using formal asymptotic and numerical computation. There, instead of a Cauchy
initial problem, an initial-boundary value problem on (0,∞) is considered, with a
homogenous Newmann condition at x = 0. The proof we give here is rigorous.

It will be interesting to see how to generalize our result to the cubic autocatalysis
reaction with nonlinear reaction term uv2. But a number of technical difficulties need
to be overcome, not least of which is a result similar to that of Bramson on the
traveling speed of a scalar equation with nonlinearity u(1 − u)2.

The organization of this paper is as follows. Section 2 contains the analysis of u
behind the reaction front. In section 3 the estimate of the front location is provided.
The behavior of (u, v) after the reaction has taken place is shown in section 4.

We note in passing that unlike the single equation case, of which many excellent
results have been proved in the last 30 years as exemplified by the works of Aronson
and Weinberger [2], Fife and McLeod [10], Sattinger [21], and Chen and Guo [8] (the
survey paper of Xin [24] provides a more detailed account on recent progress), there
are very limited results on the study of traveling waves and their effect on global
dynamics for parabolic systems. With the recent progress of proving the existence
of traveling waves in [9] and [20], we hope to spur interest in such problems since
many mathematical models in biology, most of which are reaction-diffusion systems,
are deeply linked to traveling wave phenomena. We also note that systems similar to
ours appear in the study of thermal-diffusive flows with advection; see [4], [16], [17],
[18], [19], and [23].
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PROPAGATION OF DISTURBANCES IN AUTOCATALYSIS 275

2. Exponential decay of a reactant behind a reaction front. Whenever an
autocatalyst presents, the chemical reaction takes place very fast; as a result, the re-
actant is consumed quickly and therefore experiences an exponential decay (in time).
The central issue here is to find the spreading speed of the autocatalyst. Mathemati-
cally, by assuming D ∈ (0, 1] (i.e., the reactant diffuses no faster than the autocatalyst
does), we are able to find a good comparison to pin down the autocatalyst’s spreading
speed.

2.1. A comparison.
Lemma 2.1. Assume that D ∈ (0, 1] and u0(x) ≥ 0, v0(x) ≥ 0, u0(x) + v0(x) ≥ 1

for every x ∈ R. Then the solution of (1.1) satisfies

v(x, t) ≥
√
D Φ(x, t) ∀(x, t) ∈ R × (0,∞),

where Φ is the solution of the initial value problem of the Fisher KPP (Kolmogorov–
Petrovskii–Piskuno) equation

Φt − Φxx = Φ − Φ2 in R × (0,∞), Φ(·, 0) = v0(·) on R × {0}.(2.1)

Proof. Denote by K(x, t) the fundamental solution to the heat operator,

K(x, t) := (4πt)−1/2e−x2/(4t).

Then the solution of (1.1) can be decomposed as

u = u0 − u1, v = v0 + v1,

where

u0(x, t) =

∫
R

K(x− y,D t) u0(y) dy,

v0(x, t) =

∫
R

K(x− y, t) v0(y) dy,

u1(x, t) =

∫ t

0

∫
R

K(x, y,D(t− s) ) f(y, s) dyds,

v1(x, t) =

∫ t

0

∫
R

K(x− y, t− s) f(y, s) dyds,

f(x, t) = u(x, t) v(x, t).

Here u0 and v0 are the concentrations of the reactant and the autocatalyst, respec-
tively, before chemical reaction is initiated. The quantity u1 is the amount of reactant
consumed and v1 is the amount of autocatalyst produced in the reaction.

By the maximum principle, we know that u ≥ 0 and v ≥ 0, and so f := uv ≥ 0.
Upon noticing that

K(x,Dt) := (4πDt)−1/2e−x2/(4Dt) ≤ (4πDt)−1/2e−x2/(4t) = D−1/2K(x, t),

we see that

u1(x, t) ≤ D−1/2 v1(x, t) ∀ (x, t) ∈ R × [0,∞).

This implies that

u = u0 − u1 ≥ u0 − v1

√
D

= u0 − v − v0

√
D

=

(
u0 +

v0

√
D

)
− v√

D
.
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276 XINFU CHEN AND YUANWEI QI

Note that

u0(x, t) +
v0(x, t)√

D
=

∫
R

K(y,Dt)u0(x− y)dy +
1√
D

∫
R

K(y, t)v0(x− y)dy

=
1√
π

∫
R

{
e−η2

u0(x− 2η
√
Dt ) + e−Dη2

v0(x− 2η
√
Dt )

}
dη

≥ 1√
π

∫
R

e−η2
{
u0(x− 2η

√
Dt ) + v0(x− 2η

√
Dt )

}
dη

≥ 1√
π

∫
R

e−η2

dη = 1.

Thus, (
v√
D

)
t

−
(

v√
D

)
xx

= u
v√
D

≥
(

1 − v√
D

)
v√
D
.

A simple comparison then gives Φ ≤ v/
√
D.

2.2. Bramson’s result. We denote by W the minimum speed traveling wave
profile of the Fisher equation

2W ′ + W ′′ + W −W 2 = 0 on R,

W (−∞) = 1, W (0) = 1/2, W (∞) = 0.

The following result can be derived from Bramson’s work [3].
Lemma 2.2. Assume that v0 is a nonnegative continuous function on R with

compact support and v0(0) > 0. Let Φ be the solution of (2.1). Then there exist
constants z+ and z− such that

lim
t→∞

sup
x>0

∣∣∣Φ(x, t) −W ([x− z+ −m(t)])
∣∣∣ = 0,

lim
t→∞

sup
x<0

∣∣∣Φ(x, t) −W ([m(t) + z− − x])
∣∣∣ = 0,

where

m(t) := 2t− 3[log(3 + t) − log 3] ∀ t > 0.

2.3. The exponential decay of u in the reaction zone.
Theorem 2.3. Assume that D ∈ (0, 1], u0 ≥ 0, v0 ≥ 0, u0+v0 ≥ 1, and v0(0) > 0.

Let (u, v) be the solution of (1.1). Then there exists a positive constant k such that

v > k in Q := {(x, t) | t > 0, |x| < m(t)}.(2.2)

Consequently, with μ = [
√

1 + kD − 1]/D, there holds

u(x, t) ≤ ū(x, t) := eμ[x−m(t)] + e−μ[m(t)+x] ∀ t ≥ 0, x ∈ R.

Proof. First, applying the comparison lemma, Lemma 2.1, and Bramson’s result,
Lemma 2.2, we see that v > k in Q.
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PROPAGATION OF DISTURBANCES IN AUTOCATALYSIS 277

Since u ≤ 1, we need only consider the function u in the set Q. When (x, t) ∈ Q,
we use v ≥ k to calculate

ūt −Dūxx + vū ≥ ūt −Dūxx + kū

= ū

{
k −Dμ2 − 2μ +

3μ

3 + t

}
≥ ū[k −Dμ2 − 2μ] = 0.

Since ū > 1 ≥ u on the parabolic boundary of Q, the assertion of the lemma thus
follows from the parabolic comparison principle.

3. Location of the reaction front. The comparison of v with the solution of
the Fisher equation shows that the reaction front is at least as far as ±(2t − 3 log t)
from the origin for large t. Here we show that the reaction front is located exactly in
a vicinity of ±(2t− 3 log t).

For this, we denote

û(x, t) = min
{

1, eμ[x−m(t)] + e−μ[m(t)+x]
}
.

Then u ≤ û. Consequently,

vt − vxx = uv ≤ ûv in R × (0,∞).

Hence, by Green’s formula,

0 ≤ v(x, t) ≤
∫

R

G(x, t; y, 0) v0(y) dy,

where for each (x, t) ∈ R × (0,∞), G(x, t; ·, ·) is the fundamental solution of

Gs + Gyy = û(y, s) G(x, t, y, s) ∀ y ∈ R, s ∈ [0, t),

G(x, t; y, t) = δ(x− y) ∀ y ∈ R.

Here δ is the Dirac measure. Using Bramson’s technique [3, Chapters 6 and 7], one
can derive that

G(x, y, t, 0) ≤ C(μ) et−|x−y|2/(4t)
√

4πt
(1 − e−|y| [|x|−m(t)+1]/t).

Since v0 has compact support, by following calculations illustrated in [3] we obtain
the following.

Lemma 3.1. There exists a positive constant C1 such that

v(±[m(t) + z], t) ≤ C1[1 + |z|]e−z ∀z ∈ R, t > 0.

Note that when u0 ≡ 1, we have u0 ≡ 1 so that

|u− 1| = u1 ≤ D−1/2v1 ≤ D−1/2v.

The estimate (1.4) thus follows from the above lemma.

4. Autocatalyst generated after reaction. We know that the two reaction
fronts are near m(t) and −m(t). In the reaction zone [−m(t),m(t)], the reactant is
consumed very quickly. As the autocatalyst is assumed to diffuse no slower than the
reactant, it is expected that v ≈ 1 inside the reaction zone when reaction is completed.
This section is devoted to proving this expectation.
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4.1. An L∞ estimate of v.
Lemma 4.1. There exists a positive constant C2 such that

v(x, t) ≤ C2, |ux| ≤ C2e
−μ||x|−m(t)|] ∀x ∈ R, t > 0.

Proof. Set

K = max

{
1

4
,

1

(μ2 + 2μ)

}
.

Let t0 be the constant such that

Ke−m(t0) =
1

4
.

Consider the function

v̄(x, t) = 1 −Kū = 1 −Keμ[x−m(t)] −Ke−μ[x+m(t)](4.1)

in the set

Q(t0) := {(x, t) | t > t0, |x| < m(t) −m(t0)}.

Since u < ū in Q(t0), we have

v̄t − v̄xx − uv̄ ≥ v̄t − v̄xx − ūv̄ ≥ Kū2 > 0.

Then we have v̄ ≥ 1/2 on the parabolic boundary of Q(t0). Hence, by comparison,

v ≤ M v̄ in Q(t0), M := sup
∂Q(t0)

v ≤ C1[1 + m(t0)]e
m(t0).

This estimate, together with Lemma 3.1, implies that v is uniformly bounded.
Once we know the boundedness of v, we can obtain the estimate for ux by applying

the local parabolic estimate. For each x ∈ R and t ≥ 2,

‖ux‖L∞(Q1) ≤ C(D)
{
‖f‖L∞(Q2) + min{‖u‖L∞(Q2), ‖u− 1‖L∞(Q2)}

}
,

where

Q1 = (x− 1, x + 1) × (max{t− 1, 0}, t], Q2 := (x− 2, x + 2) × (max{t− 2, 0}, t].

Here we used, for simplicity, the assumption that u0 ≡ 1 is a smooth function.

4.2. The equilibrium state after reaction. Now we show that v ≈ 1 in
(−m(t),m(t)) for large t. For this purpose, we consider the function

w = u + v − u0 − v0.

Note that u0 ≡ 1; then

‖v0(·, t)‖L∞(R) =

∥∥∥∥
∫

R

K(· − y, t)v0(y)dy

∥∥∥∥
L∞(R)

= O

(
1√
t

)
,

|u(x, t)| ≤ e−μ|m(t)−x| + e−μ[x+m(t)].
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PROPAGATION OF DISTURBANCES IN AUTOCATALYSIS 279

We see that

|v − 1| ≤ |w| + |u| + |v0|.

The assertion (1.3) thus follows from the following.
Lemma 4.2. There exists a constant C2 > 0 such that

|w(x, t)| ≤ C2√
m(t) − |x|

∀x ∈ (−m(t),m(t)), t > 0.

Proof. Note that w satisfies

wt − wxx = (D − 1)uxx in R × (0,∞), w(·, 0) = 0.

Hence,

w(x, t) = (D − 1)

∫ t

0

∫
R

K(x− y, t− s)uyy(y, s)dyds

= (D − 1)

∫ t

0

∫
R

Kx(x− y, t− s)uy(y, s)dyds.

It then follows that

|w(x, t)| ≤ C(1 −D)
{
J(x, t) + J(−x, t)

}
,

where

J(x, t) =

∫ t

0

∫
R

|Kx(x− y, t− s)|e−μ|y−m(s)|dyds

=

∫ t

0

∫
R

|Kx(x− y −m(t− s), s)| e−μ|y|dyds.

To complete the proof, it suffices to show the following:

J(m(t) − z, t) ≤ C√
z

∀ z > 0.

Let z > 0 and t > 0 be arbitrary. Note that

J(m(t) − z, t) =

∫ t

0

∫
R

|Kx(m(t) −m(t− s) − z − y, s)| e−μ|y|dyds,

Kx(x, s) = −xe−x2/(4s)

4
√
πs3/2

.

We divide the integral in s into the following three intervals.
(i) s ∈ [z/4, 2z]. For each fixed y ∈ R, we have

∫ 2z

z/4

|Kx(m(t) −m(s) − z − y, s)|ds

≤
∫ 2z

z/4

|m(t) −m(t− s) − y − z|
4
√
π[z/4]3/2

e−|m(t)−m(t−s)−y−z|2/(4z)ds.
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We use the change of variable from s to η defined by

η =
m(t) −m(t− s) − z − y

z
, dη =

m′(t− s)

z
ds =

2 − 3
3+(t−s)

z
ds ≥ ds

z
.

We find that∫ min{2z,t}

z/4

|Kx(m(t) −m(t− s) − z − y, s)|ds ≤ 2√
πz

∫
R

ηe−η2

dη =
2√
πz

.

It then follows that∫ min{2z,t}

z/4

∫
R

|Kx(m(t) −m(t− s) − z − y, s)|e−μ|y|dsdy ≤ 2√
πz

∫
R

e−μ|y|dy ≤ 4

μ
√
πz

.

(ii) s > 2z. We write∫
R

|Kx(m(t) −m(t− s) − z − y, s)|e−μ|y|dy =

∫
|y|>s/6

+

∫
|y|<s/6

.

For the first integral,∫
|y|>s/6

≤ e−μs/6

∫
R

|Kx(m(t) −m(t− s) − z − y, s|dy

= 2e−μs/6K(0, s) =
e−μs/6

√
πs

.

For the second integral, we first notice that |m(t)−m(t−s)| ≥ s (since 1 ≤ m′ < 2
on [0,∞)). Hence, when |y| < s/6,

|m(t) −m(t− s) − z − y| ≥ |m(t) −m(t− s)| − z − y ≥ s− s

2
− s

6
=

s

3
.

Consequently,∫
|y|<s/6

|Kx|e−μ|y|dy ≤
∫
|x|>s/3

|Kx(x, s)|dx = 2K
(s

3
, s
)

=

√
3e−s/36

√
πs

.

Thus, ∫ t

z

∫
R

|Kx(m(t) −m(t− s) − z − y, s)| e−μ|y|dyds

≤
∫ ∞

z

(
e−μs/6

√
πs

+

√
3e−s/36

√
πs

)
ds = O(e−z/36) + O(e−μz/6).

(iii) 0 < s < z/4. We write∫
R

|Kx(m(t) −m(t− s) − z − y, s)|e−μ|y|dy =

∫
|y|>z/4

+

∫
|y|<z/4

.

The first integral is easy to estimate:∫
|y|>z/4

≤ e−μz/4

∫
R

|Kx|dy =
e−μz/4

√
πs
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For the second integral, we notice that |m(t)−m(t−s)| ≤ 2s ≤ z/2, so that when
|y| ≤ z/4, we have

|m(t) −m(t− s) − z − y| ≥ z − |m(t) −m(t− s)| − |y| ≥ z − z/2 − z/4 = z/4.

Also, |m(t) −m(t− s) − z − y| < 2z. Hence,

|Kx(m(t) −m(t− s) − z − y, s)| ≤ ze−z2/(64s)

2
√
πs3/2

.

It follows that∫
|y|<z/4

|Kx|e−μ|y|dy ≤ ze−z2/(64s)

2
√
πs3/2

∫
R

e−μ|y| =
ze−z2/(64s)

μ
√
πs3/2

.

Thus,∫ min{z/4,t}

0

∫
R

|Kx|e−μ|y|dy ≤
∫ z/4

0

ze−z2/(64s)ds

μ
√
πs3/2

+

∫ z

0

e−μz/4ds√
πs

=

∫ ∞

√
z/8

4

μ
√
π
e−η2

dη +

√
ze−μz/4

√
π

= O(e−μz/8).

Combining all these estimate, we then obtain the assertion of the lemma.
Proof of Theorem 1.1. The theorem follows directly from the results of Theorem

2.3 and Lemmas 4.1 and 4.2.

REFERENCES

[1] R. Aris, P. Gray, and S. K. Scott, Modelling of cubic autocatalysis by successive biomolecular
steps, Chem. Eng. Sci., 43 (1988), pp. 207–211.

[2] D. G. Aronson and H. F. Weinberger, Multidimensional diffusion arising in population
genetics, Adv. Math., 30 (1978), pp. 33–76.

[3] M. Bramson, Convergence of solutions of the Kolmogorov equation to travelling waves, Mem.
Amer. Math. Soc., 44 (1983), no. 285.

[4] H. Berestycki, F. Hamel, A. Kiselev, and L. Ryzhik, Quenching and propagation in
KPP reaction-diffusion equations with a heat loss, Arch. Ration. Mech. Anal., 178 (2005),
pp. 57–80.

[5] J. Billingham and D. J. Needham, The development of travelling wave in quadratic and cubic
autocatalysis with unequal diffusion rates. I. Permanent from travelling waves, Philos.
Trans. R. Soc. London Ser. A, 334 (1991), pp. 1–24.

[6] J. Billingham and D. J. Needham, The development of travelling wave in quadratic and cubic
autocatalysis with unequal diffusion rates. II. An initial value problem with an immobilized
or nearly immobilized autocatalyst, Philos. Trans. R. Soc. London Ser. A, 336 (1991),
pp. 497–539.

[7] J. Billingham and D. J. Needham, The development of travelling waves in quadratic and
cubic autocatalysis with unequal diffusion rates. III. Large time development in quadratic
autocatalysis, Quart. Appl. Math., 50 (1992), pp. 343–372.

[8] X. Chen and J.-S. Guo, Existence and asymptotic stability of traveling waves of discrete
quasilinear monostable equations, J. Differential Equations, 184 (2002), pp. 549–569.

[9] X. Chen and Y. Qi, Sharp estimates on minimum travelling wave speed of reaction diffusion
systems modelling autocatalysis, SIAM J. Math. Anal., 39 (2007), pp. 437–448.

[10] P. C. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equations to
travelling wave front solutions, Arch. Ration. Mech. Anal., 65 (1977), pp. 335–361.

[11] S. Focant and Th. Gallay, Existence and stability of propagating fronts for an autocatalytic
reaction-diffusion system, Phys. D, 120 (1998), pp. 346–368.

[12] R. J. Gowland and G. Stedman, A novel moving boundary reaction involving hydroxylamine
and nitric acid, J. Chem. Soc. Chem. Comm., 10 (1983), pp. 1038–1039.

D
ow

nl
oa

de
d 

08
/1

3/
19

 to
 1

32
.1

70
.2

7.
11

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

282 XINFU CHEN AND YUANWEI QI

[13] P. Gray, J. F. Griffiths, and S. K. Scott, Experiemental studies of the ignition diagram
and the effect of added hydrogen, Proc. Roy. Soc. London Ser. A, 397 (1984), pp. 21–44.

[14] P. Gray and S. K. Scott, Chemical Oscillations and Instabilties, Clarendon, Oxford, 1990.
[15] A. Hanna, A. Saul, and K. Showalter, Detailed studies of propagating fronts in the iodate

oxidation of arsenous acid, J. Amer. Chem. Soc., 104 (1982), pp. 3838–3844.
[16] S. Heinze, G. Papanicolaou, and A. Stevens, Variational principles for propagation speeds

in inhomogeneous media, SIAM J. Appl. Math., 62 (2001), pp. 129–148.
[17] A. Kiselev and L. Ryzhik, Enhancement of the traveling front speeds in reaction-diffusion

equations with advection, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18 (2001),
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