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PHYSICAL REVIEW E 68, 036607 (2003

Incoherent white light solitons in logarithmically saturable noninstantaneous nonlinear media

H. Buljan12 A. Siber® M. Soljad¢,* T. SchwartZ M. SegeV* and D. N. Christodoulidés
IPhysics Department, Technion - Israel Institute of Technology, Haifa 32000, Israel
Department of Physics, Faculty of Science, University of Zagreb, PP 332, 10000 Zagreb, Croatia
3Institute of Physics, Bijenka c. 46, 10000 Zagreb, Croatia
4Physics Department, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
SCREOL - University of Central Florida, Orlando, Florida 32816, USA
(Received 1 May 2003; published 11 September 2003

We analytically demonstrate the existence of white light solitons in logarithmically saturable noninstanta-
neous nonlinear media. This incoherent soliton has elliptic Gaussian intensity profile, and elliptic Gaussian
spatial correlation statistics. The existence curve of the soliton connects the strength of the nonlinearity, the
spatial correlation distance as a function of frequency, and the characteristic width of the soliton. For this
soliton to exist, the spatial correlation distance must be smaller for larger temporal frequency constituents of
the beam.

DOI: 10.1103/PhysReVE.68.036607 PACS nun)erd2.65.Tg

[. INTRODUCTION family of such incoherent solitons. These incoherent solitons
have elliptic Gaussian intensity profile, and elliptic Gaussian
The propagation of incoherent light in noninstantaneousspatial correlation statistics. The existence curve of such a
nonlinear media and the associated nonlinear effects, such &sliton connects the strength of the self-focusing, the spatial
spatially incoherent solitons, have received considerable agorrelation distance at a particular frequency, and the char-
tention in recent yearkl—21]. It all started with the experi- acteristic width of the soliton. From the existence curve it
ment of Mitchellet. al.[1] which demonstrated the existence follows that this soliton exists only when the spatial correla-
of optical spatial solitons made of partially spatially incoher-tion distance is smaller for higher frequency constituents of
ent light. The spatially incoherent beam was generated b{he light.
passing laser light through a rotating diffugéf. The result

was intriguing and called for further research, since until Il. THE MUTUAL SPECTRAL DENSITY THEORY
then solitons were considered solely as coherent entities. An- o . )
other experiment by Mitchell and Segé®2] went one step We begin with a brief review of the mutual spectral den-

further and demonstrated solitons made of incoherensity appr(_)ach_utilized to dgscri_be the_ evolution of tempo_rally
“white” light by using light emitted from an incandescent and spatially incoherent light in noninstantaneous nonlinear
light bulb [2]. The experimental results from Refd] and media[23]. The phyS|ca.I system undef consideration is as
[2] were followed by a great deal of theoretical efforts aimedfollows: The source of light emits spatially and temporally
at understanding solitons made of incoherent light21.  incoherent cw(not pulsed light. The temporal power spec-
Importantly, in some cases closed-form analytical solutiond"Um of the light is broad, and contained within some interval
for partially spatially incoherent quasimonochromatic soli-L @min:®@max. For example, the light source used in Rief|
tons were found. This is the case for the logarithmically satu¥as an incandescent light bulb, and the width of the temporal
rable nonlinearity, where closed-form solutions were firstPOWer SPECtrum Waswmax— @minl/wo~0.3, where wg
found by using coherent density theof40], and subse- = (®@maxt @min)/2. Although the temporal power spectrum
quently by modal theor11], and mutual coherence function IS finite, due to the fact that it is broad, we refer to such light
theory [12,13. Analytic solutions for spatially incoherent @s white light{24]. Furthermore, in the spirit of Ref2] we
solitons were also found in Kerr-like medja4—19. How- call the solitons made of such light white light solitons. The
ever, all of these theoretical studies considered only spatiallp€am formed from temporally and spatially incoherent light
incoherent, but temporally coherefquasimonochromatic ~ enters the noninstantaneous nonlinear medium. Due to the
light. Therefore, they are unable to describe both temporally?oninstantaneous response of the medium, the induced non-
and spatially incoherent solitons, which were observed exlinear index of refraction is unable to follow fast phase fluc-
perimentally in Ref[2]. tuations of incoherent light, but responds only to the time-

Temporally and spatially incoherent solitons were treatedVeraged intensity. The time-averaged intensity is in
theoretically for the first time in a recent stud@2]. The temporal steady stat@l/dt=0; the time average is taken
characteristic features of these solitons, such as properties 8¥€r the response time of material. The dynamical equa-
the temporal power spectrum and spatiotemporal coherendi©n(s) that are used describe the evolution of time-averaged
properties, were analyzed by using numerical meth@a@s quantltles(l.e., _statlstlc_:ally averaged quantitjealong the

In this paper, we present the closed-form solution reprePropagation axig (not in timet). _ _
senting temporally and spatially incoherent solitons. More By assuming linear polarization of the light, the instanta-
specifically, in logarithmically saturable noninstantaneougl€ous electric field is described by a complex amplitude
nonlinear media, we find an analytic solution representing &(X,y,z,t), and the spatiotemporal coherence properties of
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the light are described by the mutual coherence function For the analysis presented henceforth, it is convenient to

[25], introduce new coordinates
‘7 =(E* E r+r
I'(Ry,R2;7)=(E*(Ry,t)E(Ry,t1)) r= 12 2 and p=r1—Ty.
1 (= _
- —loTt
- 277J’0 dol'y(R1,Ry)€ ' (1) Equation(2) in terms of new coordinates reads
B, i[ 9?

wherer=t;—t,, andI' ,(R;,R,) denotes the mutual spec- 72« _[ +
tral density[25]. Brackets(---) denote the time average 9z  K,|drydpy drydpy| “
over the response time of the material. In photorefractives, i
the response time can be as long as 0.1 s. The mutual coher- :_‘”( snlilr+ B,z) —sn I(r— B,z) ]Bw(r,p,z);
ence function describes the correlation statistics between the No 2 2
electric field values at two pointR(,t;) and (Rq,t,) that (4)

are separated in space and tif26]. We are interested in the
correlation statistics of the field between points upon thehe spatial vector=(r,i+rj)/2 is used to describe the
transverse cross section of the beam. Transverse cross s&ériations of the time-averaged intensity in space, whereas
tion is perpendicular to the propagatiaraxis; letr; andr,  the difference vectop=p,i+p,j is used to describe the cor-
denote the coordinates in this plane, i.By ="+ 2K, relation between phases at two different spatial points from
wherek denotes the unit vector of theaxis. The correlation the transverse cross section of the beam. We utilizé &@s
statistics in this plane is described by the mutual spectrahe starting point to find white light solitons, such as those
density B, (ry,r,,z2)=I,(r;+zK,r,+zk). Under the oObserved in Refl2].
paraxial approximation, the evolution &, is governed by
an integrodifferential equatiof23] lIl. SOLITONS IN THE LOGARITHMICALLY
SATURABLE NONLINEARITY
By _ I—[A(f)— APB, We consider the following model for the nonlinear refrac-
9z 2k, tive index: én(l) =« In(I/1y) [10-13,27. The coefficientx
ik >0 specifies the strength of the nonlinearity, wHilas the

=n—w{5n(l(rl,z))— on(l(ry,2)}By(r1,r2,2), (2 threshold intensity. Although this model nonlinearity differs

0 from the photorefractive screening nonlineafi@g] in which
white light solitons were observed experimently, it does
averaged intensity; the response of the materiah3gl) provide a pllatfo.rm.upo_n which we can find _analytical solu-
—n2+2n,n(1), wheren, and n(1) denote the linear and tions that.y|eld |nS|.ght into the reahstl_c physical process. In

0 0 0 fact, previous studies of coherent solitd2g] as well as of

gtr)]glline_ai)ﬁor/]énbut|ons, respectively, to the refractive 'ndex;spatially incoherent quasimonochromatic solitdi®—13
0 orb-

In deriving Eq.(2) h d that th di ._have used this model nonlinearity to gain valuable insight. In
di n env:ng 9 t;:vel' ave asstun;eth af et' me '[;Jm 'Sthis spirit, we use the logarithmic nonlinearity that yields
dispersioniess, 1.€., Ihe inear part of the relractive INDEX — .14seq_form solutions, highlighting important features of in-
is independent of frequency. Since the te@n(l) that o .

| I f ies is ind dent of tman(l)/at coherent white light solitons.

C_o(l;p esda_ re(Iunech_les 'Sh "} epen end ort d'( ) . To seek steady state solutions we require that both the
=Y, and since q2) is |n_t € Irequency domain, dispersion intensity profile and the spatiotemporal coherence properties
can be included by substitutingy— ny(w). In this paper, we

| he eff £ di . low f Wiical cal of the beam do not change during propagation, i.e., we re-
neglect the effect of dispersion to allow for analytical ca CU-quire 9B, /9z=0. Since quasimonochromatic spatially inco-
lations. Since the light is cw and the induced index of refrac

. L . i Therent solitons with elliptic Gaussian intensity profiles and
tion &n(l) is independent of time, ihy(w) does not vary P y P

anifi | he f g correlation statistics were previously found in logarithmi-
significantly over the frequency spa@min,@maxl, diSPer- ¢y saturablé11] and realistic saturabf21] nonlinear me-
sion effects are negligible.

, . dia, we seek for stationary wave solutions in the form
The mutual spectral densifg(r4,r,,z) contains infor-

mation on both intensity and spatial coherence properties of r)2( p)2( r§ p§
light at frequencyw. The information on coherence proper- B, (ry,px,l'y,py) =A, exp— Tt >t S+t —|
ties only is extracted by normalizing,(r,,r»,z) [25], 2R 2Q 2Ry 2Qy
5
Bu(ri,r2,2) (3y HereA, denotes the spectral density of the light beam; the
B,(r1,r1,2)B,(r,r,,2) ' quantitiesR, and R, denote the characteristic width of the
spatial soliton, wherea®, andQ, are closely related to the
The quantityu,,(ry,r,,2) is referred to as the complex co- spatial correlation distance of the incoherent light. When an-
herence factor at frequeney[25,26. The spatial correlation zatz(5) is inserted into evolution equatic@) with ¢B,,/9z
distance at frequency is determined by the characteristic =0, andén(l) =« In(I/1,), it follows that quantitieQ, and
width of w,(rq,r,,2) [25]. Qy must obey

where 1(r,z)=1/27[ dwB,(r,r,z) denotes the time-

Mw(rl!r21z): \/
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1 /g 8 — . . . .
Qx:Qy:k_w ?
w\NgK
E
@o =
= — ~6
where Q0=Cw51/\/nof< and w, denotes the central fre-
quency within the power spectrum. Quantit@sandQ, are 5
determined by the strength of the nonlinearity frequency
w, the linear index of refractiony, and the speed of light
The spatial coherence properties for each frequency con: . . . . .
stituent of the beam can be found from the complex coher- 4 s 0.9 10 11 12
ence factofsee Eq.3)]: W/,
1 02 1 p-2 FIG. 1. The spatial correlation distance decreases with the in-
Ho(TxspxsTy,py) =1Ly yexp —| — —— — — crease of frequency. The valuelgf(w) is calculated from Eq(8)
Qf w§ 4R?|2 with the following parametersk=0.0003, ng=2.3, R;=10 um,

wo=3.44x 10'® Hz, which corresponds to the wavelength of 547
nm in vacuum.

(1)

2 2
@) 2 12y (w) 2 j N N _

’ ’ the spatial correlation distance, the diffraction anglas
wherel,(w) andl,(w) denote the spatial correlation dis- Mainly governed by the degree of coherence. In that linit,
tances at frequency in the x andy directions, respectively. IS proportional to the ratio of the wavelength and the spatial
These spatial correlation distances are determined by tteorrelation distancef/ls;(\) [20]. From this, we imme-
characteristic widths of the complex coherence fagigy ~ diately obtainl ()X, which is exactly the result from Eq.
[25]. From Eq.(7) it follows that the characteristic widths of (8) in the limit Ri>I;(w). Equation(8) is more accurate
the elliptic beam are connected to the spatial correlation dissince it takes into account diffraction fro( the finite size

tanced () andl,(w) and the strength of the nonlinear- Of the beam envelope arid) the spatial incoherence.
ity through ' From Eq.(8) it also follows that the characteristic widths

should be larger than some threshold value,

1 noK 2 1 ) (8) 1 c

=\/—S0’-——, i=Xx\y.

lsi(w) mc? 47R? Y Ri>5 =
W\ Kllg

9

Equation(8) is the existence curve for the white light soli-
tons in the logarithmically saturable nonlinear medium. In
the limit of temporally coherentquasimonochromatjg¢ but
spatially incoherent solitons, we recover the solution for suc
solitons in logarithmic medi@10-12. In the limit of spa-
tially and temporally coherent beams, we recover the solu
tion for coherent solitons in logarithmically saturable nonlin-
ear medigd27]. R> ¢ (10
From the existence curve we read that for white light " 2wo(1—A)Vkng
solitons to exist, the spatial correlation distance must de-
crease for higher frequency constituents of the light. Figure then inequality(9) is satisfied for all frequencies. This means
illustrates the functional dependentg (w) as calculated that for the white light soliton to exist, its size must exceed a
from Eq.(8) for realistic parameter values. This result can bevalue imposed by the degree of tempdia) coherence4),
interpreted as follows. Optical spatial solitons occur whenand the strength of the nonlinearity.
diffraction is exactly balanced by refractignonlinearity. From Egs.(5) and(7) we see that the intensity profile and
White light solitons are made up of a continuum of frequen-the spatial correlation statistics of this white light soliton are
cies (wavelengths Through the nonlinear couplingn(l), elliptic Gaussian functions. Figure 2 shows contour of the
every frequency constituent “see” the same self-inducedotal intensity profile(thick long dashed ling and contours
waveguide, that is, the refraction “force” felt by every fre- of the complex coherence factor at three representative fre-
quency constituent is the same. Consequently, to balance thigiencies wmi,=2.69<10° Hz (dotted lind, wy=3.44
refraction force, all frequencies have the same diffractionx 10'° Hz (dashed-dotted ling and wa=4.19x 10 Hz
angle 6. If the size of the beam is several times larger than(solid ling). From theu, contours we see that higher fre-

Inequality(9) must be satisfied for every frequeneywithin

the spectrum. Suppose that the frequencies lie within the
l%nterval [®min,®max], Where oqin=wg(1—A) and ompax
=wp(1+A); A denotes the width of the temporal power
spectrum, i.e., the degree of temporal coherence. Clearly, if

036607-3
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dinatesr; . More precisely, the spatial correlation distance is
also a function ofr;, and must, in general, increase at the
tails of the solitor{ 20]. The soliton presented above does not
contain this generic feature. This is attributed to the fact that
the logarithmic nonlinearity is in fact approximation of the
more realistic case, In@@l/ly), in the limit whenl>1, [10—
13,27); this limit is not satisfied at the soliton “tails.” Hence,
Y 1 the model logarithmic nonlinearity has its limits in describ-
ing the realistic physical process: it gives useful information
on the features of incoherent solitons except for the tails. For
/ 1 the features of white light solitons specifically, numerical
simulations in realistic saturable nonlinearity shows that re-
sults highlighting the decrease of spatial correlation distance
with the increase of frequency are generic for white light
solitons[22].
! | Let us address the issue of soliton stability. This soliton
{ satisfies the stability criteriodly/dP>0, wherel, is the
o 2 4 é' PR intensity at the solit.on pegk, vv_hiIB_ depotes thg powelP
x [wm] =/[dr.dr,l [29]. Since this criterion is established under
quite general circumstancg®9], we can conclude that white
FIG. 2. The intensity structure and the complex coherence funclight soliton from Eq.(5) is stable. To support this view, let
tion of an incoherent white light soliton in logarithmic nonlinearity. us analyze the propagation of the beam with characteristics
The outer(thick) dashed curve is a contour plot of the intensity slightly different from the white light solitori5). We utilize
profile of the solitonl (x,y) defined byl(x,y)=Ise"" (Io is the  the procedure from Ref.12] for spatially incoherent, but
intensity at the pegkThe three internal ellipses are contours of the temporally coherent solitons in logarithmic medium. We as-

complex coherence factqr,, at frequenciesoyin=2.69x10"*Hz  gyme that the mutual spectral density is of the form
(dotted lin®, wy=3.44x10'"° Hz (dashed-dotted line and w

=4.19<10'° Hz (solid line. These contours are defined by F{ 2

oo
——— ]
———

y [wm]

-2 |

4|

10 -8 -6 -4 -2

rs
o(X1,Y1:X2,Y2)=u,(0,0x,y)=e" 1. Other parameters are B, (ry,px Ty ,py,z): aw(z)_H ex 2'
=0.0003,ny=2.3, R,=5 um, andR,=20 um. The contours of i 2si(z)
1, have smaller area for higher frequencies, i.e., coherence area is )
smaller for higher frequency constituents of the soliton beam. The Pj .

| s an ellipse sl - —+irpdu(2) |,
cross section of the complex coherence factor is an ellipse slightly Zq-z(z) w2 iPj
stretched along th& axis, whereas the intensity profile ellipse is ) 0

stretched along thg axis. (11

=Xy

2

guency constituents of the beam have smaller coherencghere¢,(z) anda,(z) denote the phase and the amplitude
area, which is in accordance with Fig. 1. From Eg).italso  of the mutual spectral density, respectived)(z) denotes its
follows thatls;(w) decreases with the increaseRf. This  width, andq;(z) is associated with the spatial correlation
means that major axis of the intensity profile ellipse is per-distance. When expressidfil) is inserted in the evolution
pendicular to the major axes of the ellipses representing thequation(4), we obtain a dynamical system for the set of
complex coherence factors. Ellipses represengingfrom  coordinates ,,,s;,q; , ¢,,) [12]:

Fig. 2 are very slightly elongated along tkeaxis (they are

almost circulay since parameter values there correspond to da,(z) _ iz 2)a.(2) (12)
the case whety ;(w) is one order of magnitude smaller than dz Kk, $u(2)84(2),

2\@R;. In such a casélg,(w)=nokm Twc 1=Ig (o)

[see EQ.(8)]. The ellipses become more elongated when dsi(z) 1

lsi(w) is several times larger than\/ERi, i.e., when the dz E(ﬁw(z)sj(z), (13
correlation distance is several times larger than the charac-

teristic width of the soliton. When the value of one of the dq;(z)

intensity profile semiaxes, sd,, becomes infinitely large, dz k—w%(Z)qj(Z), (14)
i.e., whenR,—c, the soliton from Eq.(5) becomes (1

+1b. Ldg_1 1 4@ « 1

Note that the complex coherence function T dr S g e — .
Lo(Tx.px:Ty,py) depends only on the difference coordinates o 02 kG ai(2)sj(z) ki Nosi(2)
p; - This means that the statistical fluctuations of light that (15

forms the soliton obey a stationary random procgzs|. ) ) ! ) .
However, in the context of spatially incoherent quasimono—'t is straightforward to see that a fixed point of the dynamical

H H _ _1-1
chromatic solitons, it has been shown that the complex coSyStem(12—(15) is given by q;=Qo=k, Vno/« and ¢,
herence factor must, in general, depend on the spatial coor=0, which are the conditions for the existence of white light
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soliton[see Eq(6)]. To gain more insight into the stability of Thus, since the medium is self-focusirg>0, the width of
the soliton, let us observe the evolution of the dynamicathe beam sj(z) oscillates around the valueR;(1
system(12)-(15) from an initial condition slightly displaced — 5q;(0)/Qy). If 59;(0)>0, the spatial correlation distance
from the soliton conditiong;(0)= Qo+ 6q;(0) and¢,(0) s initially larger than the correlation distance of the soliton;
= 0¢,(0); without losing any generality we assursg0)  consequently, diffraction tendency is initially smaller than
=R; anda,(0)=A,,. From Egs(12)—(15) we see that the self-focusing, and the radius oscillates around slightly
phase of the mutual spectral density is proportional to the  smaller value tharR; [12]. If §q;(0)<0, the spatial corre-
frequency, i.e., lation distance is initiallysmaller than the correlation dis-
tance of the soliton; consequently, diffraction initially over-
wng comes the nonlinearity, and the radius oscillates around
$u(2)=Kubo(2) =~ bo(2), (16)  slightly larger value tharR; [12]. Consequently, if the mu-
tual spectral density is slightly different from the mutual
spectral density of the solitdrEgs. (5), (6), and(8)], it will
where ¢(z) denotes the phase at the central frequengy  Oscillate close to it. The oscillations will be faster if the
From Eq.(12) it follows that a,(z)=a,(0)a’(z), where nonlinearity « is larger, or if the characteristic radil is
a’(2) is frequency independent. The quantitiegz), q;(2), smaller. To get an idea of the characteristic scales of the
and ¢o(z) can be expressed in terms of the characteristi®scillations, for the parameters=0.001, ny=2.3, andR,;
width s;(z). From Egs.(13) and (14) it follows thatqg;(z) ~ =20 um, the frequency of oscillations is Q;
=0;(0)/s;(0)sj(z). From Egs.(12) and (13) we obtain = \/ZKn(}IRj’zzl.M mm !, and the period iD;=2m/Q;
aw(z)=aw(0)[sj(0)/sj(z)]2. From Eq. (13) we see that =4.26 mm. The oscillations will be periodic or quasiperi-
¢0(z)=sj’1(z)dsj(z)/dz, which together with Eq.(15)  odic, since there are two characteristic frequencies of oscil-
gives an ordinary differential equation fej(z): lation (one per each spatial coordinate

d’si(z2) 1 s{(0) ko1
dZ Kk q7(0)sj(z) Mosi(2)

IV. CONCLUSION

In summary, we have presented closed-form soliton solu-
(17) tion representing spatially and temporally incoherent solitons
in logarithmically saturable noninstantaneous nonlinear me-
dia. This incoherent soliton has elliptic Gaussian intensity
This is Newton’s equation for a unit mass particle that feelsProfile, _and elliptic Gaussi_an spatial correlation statistics.
a forceF(s;). Finally, we can observe the evolution of a The existence curve of this soliton, E(), connects the
beam that is initially slightly displaced from the equilibrium: strength of the nonlinearity, the spatial correlation dis-
9;(0)=Qo+ 57;(0), | 50;(0)| <Qq. The radius of the beam tances as a function of frequendy,(«) andls (o), and
is s(z) =R+ 8s,(z), and the evolution ofs;(z) in the lin- the characteristic Wldths of the §ollt® andRy, respec-
earized regiméss;(z)|<si(z) is given by tively. From the existence curve it follows that for this soli-
ton to exist, the spatial correlation distance must be smaller
32 for larger frequency constituents of the light. Furthermore, its
d?s8s;(z) _ 2Ky, k7°60;(0) 24 size must exceed a threshold imposed by the strength of the

=Fi(s)), 1=xy.

dZ n32R. N noR2 55;(2) nonlinearity and the degree of temporal incoherence. The
o ! stability of the soliton follows from the criterionlly/dP
2k, K3/25qj(o) >0, and from analyzing the oscillations of the mutual spec-
=— OT—szésj(z), i=X,y. tral density that is close to the mutual spectral density of the
N R, soliton. For future work on white light solitons, we envision
(19) “dark” and “antidark” white light solitons. The analysis of
the spectral density at the darkest spot of a dark soliton and
the vicinity of such spot seems to be an interesting problem
The initial conditions for Eq(18) are set bys(z=0)=R;, in view of the recent study of universal pattern of colors near
and by the initial displacement of the phasé(z=0) an isolated phase singularifg0]. Finally, the properties of
=5j(0)5¢(0)=R;¢0(0), from which we obtain interactions of white light solitons and other interesting prob-
lems have not been explored yet.
Sj(Z): RJ( 1- 5qj(0)) + 6q](0) Rj COS()J'Z
Qo Qo ACKNOWLEDGMENTS
+ 9¢o(0) R sinQ.z. (19 This work was supported by the German-Israeli DIP
Q; ' project and the Israeli Science Foundation.
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